Sample records for optimal quantum control

  1. Adaptive hybrid optimal quantum control for imprecisely characterized systems.

    PubMed

    Egger, D J; Wilhelm, F K

    2014-06-20

    Optimal quantum control theory carries a huge promise for quantum technology. Its experimental application, however, is often hindered by imprecise knowledge of the input variables, the quantum system's parameters. We show how to overcome this by adaptive hybrid optimal control, using a protocol named Ad-HOC. This protocol combines open- and closed-loop optimal control by first performing a gradient search towards a near-optimal control pulse and then an experimental fidelity estimation with a gradient-free method. For typical settings in solid-state quantum information processing, adaptive hybrid optimal control enhances gate fidelities by an order of magnitude, making optimal control theory applicable and useful.

  2. Optimal Control for Quantum Driving of Two-Level Systems

    NASA Astrophysics Data System (ADS)

    Qi, Xiao-Qiu

    2018-01-01

    In this paper, the optimal quantum control of two-level systems is studied by the decompositions of SU(2). Using the Pontryagin maximum principle, the minimum time of quantum control is analyzed in detail. The solution scheme of the optimal control function is given in the general case. Finally, two specific cases, which can be applied in many quantum systems, are used to illustrate the scheme, while the corresponding optimal control functions are obtained.

  3. Hybrid Quantum-Classical Approach to Quantum Optimal Control.

    PubMed

    Li, Jun; Yang, Xiaodong; Peng, Xinhua; Sun, Chang-Pu

    2017-04-14

    A central challenge in quantum computing is to identify more computational problems for which utilization of quantum resources can offer significant speedup. Here, we propose a hybrid quantum-classical scheme to tackle the quantum optimal control problem. We show that the most computationally demanding part of gradient-based algorithms, namely, computing the fitness function and its gradient for a control input, can be accomplished by the process of evolution and measurement on a quantum simulator. By posing queries to and receiving answers from the quantum simulator, classical computing devices update the control parameters until an optimal control solution is found. To demonstrate the quantum-classical scheme in experiment, we use a seven-qubit nuclear magnetic resonance system, on which we have succeeded in optimizing state preparation without involving classical computation of the large Hilbert space evolution.

  4. Controlling the Transport of an Ion: Classical and Quantum Mechanical Solutions

    DTIC Science & Technology

    2014-07-09

    quantum systems: tools, achievements, and limitations Christiane P Koch Shortcuts to adiabaticity for an ion in a rotating radially- tight trap M Palmero...Keywords: coherent control, ion traps, quantum information, optimal control theory 1. Introduction Control methods are key enabling techniques in many...figure 6. 3.4. Feasibility analysis of quantum optimal control Numerical optimization of the wavepacket motion is expected to become necessary once

  5. Quantum optimal control with automatic differentiation using graphics processors

    NASA Astrophysics Data System (ADS)

    Leung, Nelson; Abdelhafez, Mohamed; Chakram, Srivatsan; Naik, Ravi; Groszkowski, Peter; Koch, Jens; Schuster, David

    We implement quantum optimal control based on automatic differentiation and harness the acceleration afforded by graphics processing units (GPUs). Automatic differentiation allows us to specify advanced optimization criteria and incorporate them into the optimization process with ease. We will describe efficient techniques to optimally control weakly anharmonic systems that are commonly encountered in circuit QED, including coupled superconducting transmon qubits and multi-cavity circuit QED systems. These systems allow for a rich variety of control schemes that quantum optimal control is well suited to explore.

  6. Optimal and robust control of quantum state transfer by shaping the spectral phase of ultrafast laser pulses.

    PubMed

    Guo, Yu; Dong, Daoyi; Shu, Chuan-Cun

    2018-04-04

    Achieving fast and efficient quantum state transfer is a fundamental task in physics, chemistry and quantum information science. However, the successful implementation of the perfect quantum state transfer also requires robustness under practically inevitable perturbative defects. Here, we demonstrate how an optimal and robust quantum state transfer can be achieved by shaping the spectral phase of an ultrafast laser pulse in the framework of frequency domain quantum optimal control theory. Our numerical simulations of the single dibenzoterrylene molecule as well as in atomic rubidium show that optimal and robust quantum state transfer via spectral phase modulated laser pulses can be achieved by incorporating a filtering function of the frequency into the optimization algorithm, which in turn has potential applications for ultrafast robust control of photochemical reactions.

  7. Time-optimal control with finite bandwidth

    NASA Astrophysics Data System (ADS)

    Hirose, M.; Cappellaro, P.

    2018-04-01

    Time-optimal control theory provides recipes to achieve quantum operations with high fidelity and speed, as required in quantum technologies such as quantum sensing and computation. While technical advances have achieved the ultrastrong driving regime in many physical systems, these capabilities have yet to be fully exploited for the precise control of quantum systems, as other limitations, such as the generation of higher harmonics or the finite response time of the control apparatus, prevent the implementation of theoretical time-optimal control. Here we present a method to achieve time-optimal control of qubit systems that can take advantage of fast driving beyond the rotating wave approximation. We exploit results from time-optimal control theory to design driving protocols that can be implemented with realistic, finite-bandwidth control fields, and we find a relationship between bandwidth limitations and achievable control fidelity.

  8. Efficient Online Optimized Quantum Control for Adiabatic Quantum Computation

    NASA Astrophysics Data System (ADS)

    Quiroz, Gregory

    Adiabatic quantum computation (AQC) relies on controlled adiabatic evolution to implement a quantum algorithm. While control evolution can take many forms, properly designed time-optimal control has been shown to be particularly advantageous for AQC. Grover's search algorithm is one such example where analytically-derived time-optimal control leads to improved scaling of the minimum energy gap between the ground state and first excited state and thus, the well-known quadratic quantum speedup. Analytical extensions beyond Grover's search algorithm present a daunting task that requires potentially intractable calculations of energy gaps and a significant degree of model certainty. Here, an in situ quantum control protocol is developed for AQC. The approach is shown to yield controls that approach the analytically-derived time-optimal controls for Grover's search algorithm. In addition, the protocol's convergence rate as a function of iteration number is shown to be essentially independent of system size. Thus, the approach is potentially scalable to many-qubit systems.

  9. Training Schrödinger's cat: quantum optimal control. Strategic report on current status, visions and goals for research in Europe

    NASA Astrophysics Data System (ADS)

    Glaser, Steffen J.; Boscain, Ugo; Calarco, Tommaso; Koch, Christiane P.; Köckenberger, Walter; Kosloff, Ronnie; Kuprov, Ilya; Luy, Burkhard; Schirmer, Sophie; Schulte-Herbrüggen, Thomas; Sugny, Dominique; Wilhelm, Frank K.

    2015-12-01

    It is control that turns scientific knowledge into useful technology: in physics and engineering it provides a systematic way for driving a dynamical system from a given initial state into a desired target state with minimized expenditure of energy and resources. As one of the cornerstones for enabling quantum technologies, optimal quantum control keeps evolving and expanding into areas as diverse as quantum-enhanced sensing, manipulation of single spins, photons, or atoms, optical spectroscopy, photochemistry, magnetic resonance (spectroscopy as well as medical imaging), quantum information processing and quantum simulation. In this communication, state-of-the-art quantum control techniques are reviewed and put into perspective by a consortium of experts in optimal control theory and applications to spectroscopy, imaging, as well as quantum dynamics of closed and open systems. We address key challenges and sketch a roadmap for future developments.

  10. Simultaneous deterministic control of distant qubits in two semiconductor quantum dots.

    PubMed

    Gamouras, A; Mathew, R; Freisem, S; Deppe, D G; Hall, K C

    2013-10-09

    In optimal quantum control (OQC), a target quantum state of matter is achieved by tailoring the phase and amplitude of the control Hamiltonian through femtosecond pulse-shaping techniques and powerful adaptive feedback algorithms. Motivated by recent applications of OQC in quantum information science as an approach to optimizing quantum gates in atomic and molecular systems, here we report the experimental implementation of OQC in a solid-state system consisting of distinguishable semiconductor quantum dots. We demonstrate simultaneous high-fidelity π and 2π single qubit gates in two different quantum dots using a single engineered infrared femtosecond pulse. These experiments enhance the scalability of semiconductor-based quantum hardware and lay the foundation for applications of pulse shaping to optimize quantum gates in other solid-state systems.

  11. Steering Quantum Dynamics of a Two-Qubit System via Optimal Bang-Bang Control

    NASA Astrophysics Data System (ADS)

    Hu, Juju; Ke, Qiang; Ji, Yinghua

    2018-02-01

    The optimization of control time for quantum systems has been an important field of control science attracting decades of focus, which is beneficial for efficiency improvement and decoherence suppression caused by the environment. Based on analyzing the advantages and disadvantages of the existing Lyapunov control, using a bang-bang optimal control technique, we investigate the fast state control in a closed two-qubit quantum system, and give three optimized control field design methods. Numerical simulation experiments indicate the effectiveness of the methods. Compared to the standard Lyapunov control or standard bang-bang control method, the optimized control field design methods effectively shorten the state control time and avoid high-frequency oscillation that occurs in bang-bang control.

  12. Optimal adaptive control for quantum metrology with time-dependent Hamiltonians.

    PubMed

    Pang, Shengshi; Jordan, Andrew N

    2017-03-09

    Quantum metrology has been studied for a wide range of systems with time-independent Hamiltonians. For systems with time-dependent Hamiltonians, however, due to the complexity of dynamics, little has been known about quantum metrology. Here we investigate quantum metrology with time-dependent Hamiltonians to bridge this gap. We obtain the optimal quantum Fisher information for parameters in time-dependent Hamiltonians, and show proper Hamiltonian control is generally necessary to optimize the Fisher information. We derive the optimal Hamiltonian control, which is generally adaptive, and the measurement scheme to attain the optimal Fisher information. In a minimal example of a qubit in a rotating magnetic field, we find a surprising result that the fundamental limit of T 2 time scaling of quantum Fisher information can be broken with time-dependent Hamiltonians, which reaches T 4 in estimating the rotation frequency of the field. We conclude by considering level crossings in the derivatives of the Hamiltonians, and point out additional control is necessary for that case.

  13. Optimal adaptive control for quantum metrology with time-dependent Hamiltonians

    PubMed Central

    Pang, Shengshi; Jordan, Andrew N.

    2017-01-01

    Quantum metrology has been studied for a wide range of systems with time-independent Hamiltonians. For systems with time-dependent Hamiltonians, however, due to the complexity of dynamics, little has been known about quantum metrology. Here we investigate quantum metrology with time-dependent Hamiltonians to bridge this gap. We obtain the optimal quantum Fisher information for parameters in time-dependent Hamiltonians, and show proper Hamiltonian control is generally necessary to optimize the Fisher information. We derive the optimal Hamiltonian control, which is generally adaptive, and the measurement scheme to attain the optimal Fisher information. In a minimal example of a qubit in a rotating magnetic field, we find a surprising result that the fundamental limit of T2 time scaling of quantum Fisher information can be broken with time-dependent Hamiltonians, which reaches T4 in estimating the rotation frequency of the field. We conclude by considering level crossings in the derivatives of the Hamiltonians, and point out additional control is necessary for that case. PMID:28276428

  14. Gradient Optimization for Analytic conTrols - GOAT

    NASA Astrophysics Data System (ADS)

    Assémat, Elie; Machnes, Shai; Tannor, David; Wilhelm-Mauch, Frank

    Quantum optimal control becomes a necessary step in a number of studies in the quantum realm. Recent experimental advances showed that superconducting qubits can be controlled with an impressive accuracy. However, most of the standard optimal control algorithms are not designed to manage such high accuracy. To tackle this issue, a novel quantum optimal control algorithm have been introduced: the Gradient Optimization for Analytic conTrols (GOAT). It avoids the piecewise constant approximation of the control pulse used by standard algorithms. This allows an efficient implementation of very high accuracy optimization. It also includes a novel method to compute the gradient that provides many advantages, e.g. the absence of backpropagation or the natural route to optimize the robustness of the control pulses. This talk will present the GOAT algorithm and a few applications to transmons systems.

  15. Connection between optimal control theory and adiabatic-passage techniques in quantum systems

    NASA Astrophysics Data System (ADS)

    Assémat, E.; Sugny, D.

    2012-08-01

    This work explores the relationship between optimal control theory and adiabatic passage techniques in quantum systems. The study is based on a geometric analysis of the Hamiltonian dynamics constructed from Pontryagin's maximum principle. In a three-level quantum system, we show that the stimulated Raman adiabatic passage technique can be associated to a peculiar Hamiltonian singularity. One deduces that the adiabatic pulse is solution of the optimal control problem only for a specific cost functional. This analysis is extended to the case of a four-level quantum system.

  16. Global optimization for quantum dynamics of few-fermion systems

    NASA Astrophysics Data System (ADS)

    Li, Xikun; Pecak, Daniel; Sowiński, Tomasz; Sherson, Jacob; Nielsen, Anne E. B.

    2018-03-01

    Quantum state preparation is vital to quantum computation and quantum information processing tasks. In adiabatic state preparation, the target state is theoretically obtained with nearly perfect fidelity if the control parameter is tuned slowly enough. As this, however, leads to slow dynamics, it is often desirable to be able to carry out processes more rapidly. In this work, we employ two global optimization methods to estimate the quantum speed limit for few-fermion systems confined in a one-dimensional harmonic trap. Such systems can be produced experimentally in a well-controlled manner. We determine the optimized control fields and achieve a reduction in the ramping time of more than a factor of four compared to linear ramping. We also investigate how robust the fidelity is to small variations of the control fields away from the optimized shapes.

  17. Chopped random-basis quantum optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caneva, Tommaso; Calarco, Tommaso; Montangero, Simone

    2011-08-15

    In this work, we describe in detail the chopped random basis (CRAB) optimal control technique recently introduced to optimize time-dependent density matrix renormalization group simulations [P. Doria, T. Calarco, and S. Montangero, Phys. Rev. Lett. 106, 190501 (2011)]. Here, we study the efficiency of this control technique in optimizing different quantum processes and we show that in the considered cases we obtain results equivalent to those obtained via different optimal control methods while using less resources. We propose the CRAB optimization as a general and versatile optimal control technique.

  18. Free-time and fixed end-point optimal control theory in dissipative media: application to entanglement generation and maintenance.

    PubMed

    Mishima, K; Yamashita, K

    2009-07-07

    We develop monotonically convergent free-time and fixed end-point optimal control theory (OCT) in the density-matrix representation to deal with quantum systems showing dissipation. Our theory is more general and flexible for tailoring optimal laser pulses in order to control quantum dynamics with dissipation than the conventional fixed-time and fixed end-point OCT in that the optimal temporal duration of laser pulses can also be optimized exactly. To show the usefulness of our theory, it is applied to the generation and maintenance of the vibrational entanglement of carbon monoxide adsorbed on the copper (100) surface, CO/Cu(100). We demonstrate the numerical results and clarify how to combat vibrational decoherence as much as possible by the tailored shapes of the optimal laser pulses. It is expected that our theory will be general enough to be applied to a variety of dissipative quantum dynamics systems because the decoherence is one of the quantum phenomena sensitive to the temporal duration of the quantum dynamics.

  19. Accelerated optimization and automated discovery with covariance matrix adaptation for experimental quantum control

    NASA Astrophysics Data System (ADS)

    Roslund, Jonathan; Shir, Ofer M.; Bäck, Thomas; Rabitz, Herschel

    2009-10-01

    Optimization of quantum systems by closed-loop adaptive pulse shaping offers a rich domain for the development and application of specialized evolutionary algorithms. Derandomized evolution strategies (DESs) are presented here as a robust class of optimizers for experimental quantum control. The combination of stochastic and quasi-local search embodied by these algorithms is especially amenable to the inherent topology of quantum control landscapes. Implementation of DES in the laboratory results in efficiency gains of up to ˜9 times that of the standard genetic algorithm, and thus is a promising tool for optimization of unstable or fragile systems. The statistical learning upon which these algorithms are predicated also provide the means for obtaining a control problem’s Hessian matrix with no additional experimental overhead. The forced optimal covariance adaptive learning (FOCAL) method is introduced to enable retrieval of the Hessian matrix, which can reveal information about the landscape’s local structure and dynamic mechanism. Exploitation of such algorithms in quantum control experiments should enhance their efficiency and provide additional fundamental insights.

  20. Solving quantum optimal control problems using Clebsch variables and Lin constraints

    NASA Astrophysics Data System (ADS)

    Delgado-Téllez, M.; Ibort, A.; Rodríguez de la Peña, T.

    2018-01-01

    Clebsch variables (and Lin constraints) are applied to the study of a class of optimal control problems for affine-controlled quantum systems. The optimal control problem will be modelled with controls defined on an auxiliary space where the dynamical group of the system acts freely. The reciprocity between both theories: the classical theory defined by the objective functional and the quantum system, is established by using a suitable version of Lagrange’s multipliers theorem and a geometrical interpretation of the constraints of the system as defining a subspace of horizontal curves in an associated bundle. It is shown how the solutions of the variational problem defined by the objective functional determine solutions of the quantum problem. Then a new way of obtaining explicit solutions for a family of optimal control problems for affine-controlled quantum systems (finite or infinite dimensional) is obtained. One of its main advantages, is the the use of Clebsch variables allows to compute such solutions from solutions of invariant problems that can often be computed explicitly. This procedure can be presented as an algorithm that can be applied to a large class of systems. Finally, some simple examples, spin control, a simple quantum Hamiltonian with an ‘Elroy beanie’ type classical model and a controlled one-dimensional quantum harmonic oscillator, illustrating the main features of the theory, will be discussed.

  1. Comparing, optimizing, and benchmarking quantum-control algorithms in a unifying programming framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Machnes, S.; Institute for Theoretical Physics, University of Ulm, D-89069 Ulm; Sander, U.

    2011-08-15

    For paving the way to novel applications in quantum simulation, computation, and technology, increasingly large quantum systems have to be steered with high precision. It is a typical task amenable to numerical optimal control to turn the time course of pulses, i.e., piecewise constant control amplitudes, iteratively into an optimized shape. Here, we present a comparative study of optimal-control algorithms for a wide range of finite-dimensional applications. We focus on the most commonly used algorithms: GRAPE methods which update all controls concurrently, and Krotov-type methods which do so sequentially. Guidelines for their use are given and open research questions aremore » pointed out. Moreover, we introduce a unifying algorithmic framework, DYNAMO (dynamic optimization platform), designed to provide the quantum-technology community with a convenient matlab-based tool set for optimal control. In addition, it gives researchers in optimal-control techniques a framework for benchmarking and comparing newly proposed algorithms with the state of the art. It allows a mix-and-match approach with various types of gradients, update and step-size methods as well as subspace choices. Open-source code including examples is made available at http://qlib.info.« less

  2. Optimal control of fast and high-fidelity quantum state transfer in spin-1/2 chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiong-Peng; Shao, Bin, E-mail: sbin610@bit.edu.cn; Hu, Shuai

    Spin chains are promising candidates for quantum communication and computation. Using quantum optimal control (OC) theory based on the Krotov method, we present a protocol to perform quantum state transfer with fast and high fidelity by only manipulating the boundary spins in a quantum spin-1/2 chain. The achieved speed is about one order of magnitude faster than that is possible in the Lyapunov control case for comparable fidelities. Additionally, it has a fundamental limit for OC beyond which optimization is not possible. The controls are exerted only on the couplings between the boundary spins and their neighbors, so that themore » scheme has good scalability. We also demonstrate that the resulting OC scheme is robust against disorder in the chain.« less

  3. Exploring the complexity of quantum control optimization trajectories.

    PubMed

    Nanduri, Arun; Shir, Ofer M; Donovan, Ashley; Ho, Tak-San; Rabitz, Herschel

    2015-01-07

    The control of quantum system dynamics is generally performed by seeking a suitable applied field. The physical objective as a functional of the field forms the quantum control landscape, whose topology, under certain conditions, has been shown to contain no critical point suboptimal traps, thereby enabling effective searches for fields that give the global maximum of the objective. This paper addresses the structure of the landscape as a complement to topological critical point features. Recent work showed that landscape structure is highly favorable for optimization of state-to-state transition probabilities, in that gradient-based control trajectories to the global maximum value are nearly straight paths. The landscape structure is codified in the metric R ≥ 1.0, defined as the ratio of the length of the control trajectory to the Euclidean distance between the initial and optimal controls. A value of R = 1 would indicate an exactly straight trajectory to the optimal observable value. This paper extends the state-to-state transition probability results to the quantum ensemble and unitary transformation control landscapes. Again, nearly straight trajectories predominate, and we demonstrate that R can take values approaching 1.0 with high precision. However, the interplay of optimization trajectories with critical saddle submanifolds is found to influence landscape structure. A fundamental relationship necessary for perfectly straight gradient-based control trajectories is derived, wherein the gradient on the quantum control landscape must be an eigenfunction of the Hessian. This relation is an indicator of landscape structure and may provide a means to identify physical conditions when control trajectories can achieve perfect linearity. The collective favorable landscape topology and structure provide a foundation to understand why optimal quantum control can be readily achieved.

  4. Optimal control of complex atomic quantum systems

    PubMed Central

    van Frank, S.; Bonneau, M.; Schmiedmayer, J.; Hild, S.; Gross, C.; Cheneau, M.; Bloch, I.; Pichler, T.; Negretti, A.; Calarco, T.; Montangero, S.

    2016-01-01

    Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit – the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations. PMID:27725688

  5. Optimal control of complex atomic quantum systems.

    PubMed

    van Frank, S; Bonneau, M; Schmiedmayer, J; Hild, S; Gross, C; Cheneau, M; Bloch, I; Pichler, T; Negretti, A; Calarco, T; Montangero, S

    2016-10-11

    Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit - the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations.

  6. Towards Quantum Cybernetics:. Optimal Feedback Control in Quantum Bio Informatics

    NASA Astrophysics Data System (ADS)

    Belavkin, V. P.

    2009-02-01

    A brief account of the quantum information dynamics and dynamical programming methods for the purpose of optimal control in quantum cybernetics with convex constraints and cońcave cost and bequest functions of the quantum state is given. Consideration is given to both open loop and feedback control schemes corresponding respectively to deterministic and stochastic semi-Markov dynamics of stable or unstable systems. For the quantum feedback control scheme with continuous observations we exploit the separation theorem of filtering and control aspects for quantum stochastic micro-dynamics of the total system. This allows to start with the Belavkin quantum filtering equation and derive the generalized Hamilton-Jacobi-Bellman equation using standard arguments of classical control theory. This is equivalent to a Hamilton-Jacobi equation with an extra linear dissipative term if the control is restricted to only Hamiltonian terms in the filtering equation. A controlled qubit is considered as an example throughout the development of the formalism. Finally, we discuss optimum observation strategies to obtain a pure quantum qubit state from a mixed one.

  7. Quantum computing gates via optimal control

    NASA Astrophysics Data System (ADS)

    Atia, Yosi; Elias, Yuval; Mor, Tal; Weinstein, Yossi

    2014-10-01

    We demonstrate the use of optimal control to design two entropy-manipulating quantum gates which are more complex than the corresponding, commonly used, gates, such as CNOT and Toffoli (CCNOT): A two-qubit gate called polarization exchange (PE) and a three-qubit gate called polarization compression (COMP) were designed using GRAPE, an optimal control algorithm. Both gates were designed for a three-spin system. Our design provided efficient and robust nuclear magnetic resonance (NMR) radio frequency (RF) pulses for 13C2-trichloroethylene (TCE), our chosen three-spin system. We then experimentally applied these two quantum gates onto TCE at the NMR lab. Such design of these gates and others could be relevant for near-future applications of quantum computing devices.

  8. High-fidelity spin entanglement using optimal control.

    PubMed

    Dolde, Florian; Bergholm, Ville; Wang, Ya; Jakobi, Ingmar; Naydenov, Boris; Pezzagna, Sébastien; Meijer, Jan; Jelezko, Fedor; Neumann, Philipp; Schulte-Herbrüggen, Thomas; Biamonte, Jacob; Wrachtrup, Jörg

    2014-02-28

    Precise control of quantum systems is of fundamental importance in quantum information processing, quantum metrology and high-resolution spectroscopy. When scaling up quantum registers, several challenges arise: individual addressing of qubits while suppressing cross-talk, entangling distant nodes and decoupling unwanted interactions. Here we experimentally demonstrate optimal control of a prototype spin qubit system consisting of two proximal nitrogen-vacancy centres in diamond. Using engineered microwave pulses, we demonstrate single electron spin operations with a fidelity F≈0.99. With additional dynamical decoupling techniques, we further realize high-quality, on-demand entangled states between two electron spins with F>0.82, mostly limited by the coherence time and imperfect initialization. Crosstalk in a crowded spectrum and unwanted dipolar couplings are simultaneously eliminated to a high extent. Finally, by high-fidelity entanglement swapping to nuclear spin quantum memory, we demonstrate nuclear spin entanglement over a length scale of 25 nm. This experiment underlines the importance of optimal control for scalable room temperature spin-based quantum information devices.

  9. Searching for quantum optimal controls under severe constraints

    DOE PAGES

    Riviello, Gregory; Tibbetts, Katharine Moore; Brif, Constantin; ...

    2015-04-06

    The success of quantum optimal control for both experimental and theoretical objectives is connected to the topology of the corresponding control landscapes, which are free from local traps if three conditions are met: (1) the quantum system is controllable, (2) the Jacobian of the map from the control field to the evolution operator is of full rank, and (3) there are no constraints on the control field. This paper investigates how the violation of assumption (3) affects gradient searches for globally optimal control fields. The satisfaction of assumptions (1) and (2) ensures that the control landscape lacks fundamental traps, butmore » certain control constraints can still prevent successful optimization of the objective. Using optimal control simulations, we show that the most severe field constraints are those that limit essential control resources, such as the number of control variables, the control duration, and the field strength. Proper management of these resources is an issue of great practical importance for optimization in the laboratory. For each resource, we show that constraints exceeding quantifiable limits can introduce artificial traps to the control landscape and prevent gradient searches from reaching a globally optimal solution. These results demonstrate that careful choice of relevant control parameters helps to eliminate artificial traps and facilitate successful optimization.« less

  10. Quantum demolition filtering and optimal control of unstable systems.

    PubMed

    Belavkin, V P

    2012-11-28

    A brief account of the quantum information dynamics and dynamical programming methods for optimal control of quantum unstable systems is given to both open loop and feedback control schemes corresponding respectively to deterministic and stochastic semi-Markov dynamics of stable or unstable systems. For the quantum feedback control scheme, we exploit the separation theorem of filtering and control aspects as in the usual case of quantum stable systems with non-demolition observation. This allows us to start with the Belavkin quantum filtering equation generalized to demolition observations and derive the generalized Hamilton-Jacobi-Bellman equation using standard arguments of classical control theory. This is equivalent to a Hamilton-Jacobi equation with an extra linear dissipative term if the control is restricted to Hamiltonian terms in the filtering equation. An unstable controlled qubit is considered as an example throughout the development of the formalism. Finally, we discuss optimum observation strategies to obtain a pure quantum qubit state from a mixed one.

  11. Parameter Estimation of Fractional-Order Chaotic Systems by Using Quantum Parallel Particle Swarm Optimization Algorithm

    PubMed Central

    Huang, Yu; Guo, Feng; Li, Yongling; Liu, Yufeng

    2015-01-01

    Parameter estimation for fractional-order chaotic systems is an important issue in fractional-order chaotic control and synchronization and could be essentially formulated as a multidimensional optimization problem. A novel algorithm called quantum parallel particle swarm optimization (QPPSO) is proposed to solve the parameter estimation for fractional-order chaotic systems. The parallel characteristic of quantum computing is used in QPPSO. This characteristic increases the calculation of each generation exponentially. The behavior of particles in quantum space is restrained by the quantum evolution equation, which consists of the current rotation angle, individual optimal quantum rotation angle, and global optimal quantum rotation angle. Numerical simulation based on several typical fractional-order systems and comparisons with some typical existing algorithms show the effectiveness and efficiency of the proposed algorithm. PMID:25603158

  12. Optimal control of open quantum systems: A combined surrogate Hamiltonian optimal control theory approach applied to photochemistry on surfaces

    NASA Astrophysics Data System (ADS)

    Asplund, Erik; Klüner, Thorsten

    2012-03-01

    In this paper, control of open quantum systems with emphasis on the control of surface photochemical reactions is presented. A quantum system in a condensed phase undergoes strong dissipative processes. From a theoretical viewpoint, it is important to model such processes in a rigorous way. In this work, the description of open quantum systems is realized within the surrogate Hamiltonian approach [R. Baer and R. Kosloff, J. Chem. Phys. 106, 8862 (1997)], 10.1063/1.473950. An efficient and accurate method to find control fields is optimal control theory (OCT) [W. Zhu, J. Botina, and H. Rabitz, J. Chem. Phys. 108, 1953 (1998), 10.1063/1.475576; Y. Ohtsuki, G. Turinici, and H. Rabitz, J. Chem. Phys. 120, 5509 (2004)], 10.1063/1.1650297. To gain control of open quantum systems, the surrogate Hamiltonian approach and OCT, with time-dependent targets, are combined. Three open quantum systems are investigated by the combined method, a harmonic oscillator immersed in an ohmic bath, CO adsorbed on a platinum surface, and NO adsorbed on a nickel oxide surface. Throughout this paper, atomic units, i.e., ℏ = me = e = a0 = 1, have been used unless otherwise stated.

  13. Speedup for quantum optimal control from automatic differentiation based on graphics processing units

    NASA Astrophysics Data System (ADS)

    Leung, Nelson; Abdelhafez, Mohamed; Koch, Jens; Schuster, David

    2017-04-01

    We implement a quantum optimal control algorithm based on automatic differentiation and harness the acceleration afforded by graphics processing units (GPUs). Automatic differentiation allows us to specify advanced optimization criteria and incorporate them in the optimization process with ease. We show that the use of GPUs can speedup calculations by more than an order of magnitude. Our strategy facilitates efficient numerical simulations on affordable desktop computers and exploration of a host of optimization constraints and system parameters relevant to real-life experiments. We demonstrate optimization of quantum evolution based on fine-grained evaluation of performance at each intermediate time step, thus enabling more intricate control on the evolution path, suppression of departures from the truncated model subspace, as well as minimization of the physical time needed to perform high-fidelity state preparation and unitary gates.

  14. Analytical optimal pulse shapes obtained with the aid of genetic algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerrero, Rubén D., E-mail: rdguerrerom@unal.edu.co; Arango, Carlos A.; Reyes, Andrés

    2015-09-28

    We propose a methodology to design optimal pulses for achieving quantum optimal control on molecular systems. Our approach constrains pulse shapes to linear combinations of a fixed number of experimentally relevant pulse functions. Quantum optimal control is obtained by maximizing a multi-target fitness function using genetic algorithms. As a first application of the methodology, we generated an optimal pulse that successfully maximized the yield on a selected dissociation channel of a diatomic molecule. Our pulse is obtained as a linear combination of linearly chirped pulse functions. Data recorded along the evolution of the genetic algorithm contained important information regarding themore » interplay between radiative and diabatic processes. We performed a principal component analysis on these data to retrieve the most relevant processes along the optimal path. Our proposed methodology could be useful for performing quantum optimal control on more complex systems by employing a wider variety of pulse shape functions.« less

  15. Time-optimal thermalization of single-mode Gaussian states

    NASA Astrophysics Data System (ADS)

    Carlini, Alberto; Mari, Andrea; Giovannetti, Vittorio

    2014-11-01

    We consider the problem of time-optimal control of a continuous bosonic quantum system subject to the action of a Markovian dissipation. In particular, we consider the case of a one-mode Gaussian quantum system prepared in an arbitrary initial state and which relaxes to the steady state due to the action of the dissipative channel. We assume that the unitary part of the dynamics is represented by Gaussian operations which preserve the Gaussian nature of the quantum state, i.e., arbitrary phase rotations, bounded squeezing, and unlimited displacements. In the ideal ansatz of unconstrained quantum control (i.e., when the unitary phase rotations, squeezing, and displacement of the mode can be performed instantaneously), we study how control can be optimized for speeding up the relaxation towards the fixed point of the dynamics and we analytically derive the optimal relaxation time. Our model has potential and interesting applications to the control of modes of electromagnetic radiation and of trapped levitated nanospheres.

  16. A quantum annealing architecture with all-to-all connectivity from local interactions.

    PubMed

    Lechner, Wolfgang; Hauke, Philipp; Zoller, Peter

    2015-10-01

    Quantum annealers are physical devices that aim at solving NP-complete optimization problems by exploiting quantum mechanics. The basic principle of quantum annealing is to encode the optimization problem in Ising interactions between quantum bits (qubits). A fundamental challenge in building a fully programmable quantum annealer is the competing requirements of full controllable all-to-all connectivity and the quasi-locality of the interactions between physical qubits. We present a scalable architecture with full connectivity, which can be implemented with local interactions only. The input of the optimization problem is encoded in local fields acting on an extended set of physical qubits. The output is-in the spirit of topological quantum memories-redundantly encoded in the physical qubits, resulting in an intrinsic fault tolerance. Our model can be understood as a lattice gauge theory, where long-range interactions are mediated by gauge constraints. The architecture can be realized on various platforms with local controllability, including superconducting qubits, NV-centers, quantum dots, and atomic systems.

  17. A quantum annealing architecture with all-to-all connectivity from local interactions

    PubMed Central

    Lechner, Wolfgang; Hauke, Philipp; Zoller, Peter

    2015-01-01

    Quantum annealers are physical devices that aim at solving NP-complete optimization problems by exploiting quantum mechanics. The basic principle of quantum annealing is to encode the optimization problem in Ising interactions between quantum bits (qubits). A fundamental challenge in building a fully programmable quantum annealer is the competing requirements of full controllable all-to-all connectivity and the quasi-locality of the interactions between physical qubits. We present a scalable architecture with full connectivity, which can be implemented with local interactions only. The input of the optimization problem is encoded in local fields acting on an extended set of physical qubits. The output is—in the spirit of topological quantum memories—redundantly encoded in the physical qubits, resulting in an intrinsic fault tolerance. Our model can be understood as a lattice gauge theory, where long-range interactions are mediated by gauge constraints. The architecture can be realized on various platforms with local controllability, including superconducting qubits, NV-centers, quantum dots, and atomic systems. PMID:26601316

  18. Optimized pulses for the control of uncertain qubits

    DOE PAGES

    Grace, Matthew D.; Dominy, Jason M.; Witzel, Wayne M.; ...

    2012-05-18

    The construction of high-fidelity control fields that are robust to control, system, and/or surrounding environment uncertainties is a crucial objective for quantum information processing. Using the two-state Landau-Zener model for illustrative simulations of a controlled qubit, we generate optimal controls for π/2 and π pulses and investigate their inherent robustness to uncertainty in the magnitude of the drift Hamiltonian. Next, we construct a quantum-control protocol to improve system-drift robustness by combining environment-decoupling pulse criteria and optimal control theory for unitary operations. By perturbatively expanding the unitary time-evolution operator for an open quantum system, previous analysis of environment-decoupling control pulses hasmore » calculated explicit control-field criteria to suppress environment-induced errors up to (but not including) third order from π/2 and π pulses. We systematically integrate this criteria with optimal control theory, incorporating an estimate of the uncertain parameter to produce improvements in gate fidelity and robustness, demonstrated via a numerical example based on double quantum dot qubits. For the qubit model used in this work, postfacto analysis of the resulting controls suggests that realistic control-field fluctuations and noise may contribute just as significantly to gate errors as system and environment fluctuations.« less

  19. EDITORIAL: Focus on Quantum Control

    NASA Astrophysics Data System (ADS)

    Rabitz, Herschel

    2009-10-01

    Control of quantum phenomena has grown from a dream to a burgeoning field encompassing wide-ranging experimental and theoretical activities. Theoretical research in this area primarily concerns identification of the principles for controlling quantum phenomena, the exploration of new experimental applications and the development of associated operational algorithms to guide such experiments. Recent experiments with adaptive feedback control span many applications including selective excitation, wave packet engineering and control in the presence of complex environments. Practical procedures are also being developed to execute real-time feedback control considering the resultant back action on the quantum system. This focus issue includes papers covering many of the latest advances in the field. Focus on Quantum Control Contents Control of quantum phenomena: past, present and future Constantin Brif, Raj Chakrabarti and Herschel Rabitz Biologically inspired molecular machines driven by light. Optimal control of a unidirectional rotor Guillermo Pérez-Hernández, Adam Pelzer, Leticia González and Tamar Seideman Simulating quantum search algorithm using vibronic states of I2 manipulated by optimally designed gate pulses Yukiyoshi Ohtsuki Efficient coherent control by sequences of pulses of finite duration Götz S Uhrig and Stefano Pasini Control by decoherence: weak field control of an excited state objective Gil Katz, Mark A Ratner and Ronnie Kosloff Multi-qubit compensation sequences Y Tomita, J T Merrill and K R Brown Environment-invariant measure of distance between evolutions of an open quantum system Matthew D Grace, Jason Dominy, Robert L Kosut, Constantin Brif and Herschel Rabitz Simplified quantum process tomography M P A Branderhorst, J Nunn, I A Walmsley and R L Kosut Achieving 'perfect' molecular discrimination via coherent control and stimulated emission Stephen D Clow, Uvo C Holscher and Thomas C Weinacht A convenient method to simulate and visually represent two-photon power spectra of arbitrarily and adaptively shaped broadband laser pulses M A Montgomery and N H Damrauer Accurate and efficient implementation of the von Neumann representation for laser pulses with discrete and finite spectra Frank Dimler, Susanne Fechner, Alexander Rodenberg, Tobias Brixner and David J Tannor Coherent strong-field control of multiple states by a single chirped femtosecond laser pulse M Krug, T Bayer, M Wollenhaupt, C Sarpe-Tudoran, T Baumert, S S Ivanov and N V Vitanov Quantum-state measurement of ionic Rydberg wavepackets X Zhang and R R Jones On the paradigm of coherent control: the phase-dependent light-matter interaction in the shaping window Tiago Buckup, Jurgen Hauer and Marcus Motzkus Use of the spatial phase of a focused laser beam to yield mechanistic information about photo-induced chemical reactions V J Barge, Z Hu and R J Gordon Coherent control of multiple vibrational excitations for optimal detection S D McGrane, R J Scharff, M Greenfield and D S Moore Mode selectivity with polarization shaping in the mid-IR David B Strasfeld, Chris T Middleton and Martin T Zanni Laser-guided relativistic quantum dynamics Chengpu Liu, Markus C Kohler, Karen Z Hatsagortsyan, Carsten Muller and Christoph H Keitel Continuous quantum error correction as classical hybrid control Hideo Mabuchi Quantum filter reduction for measurement-feedback control via unsupervised manifold learning Anne E B Nielsen, Asa S Hopkins and Hideo Mabuchi Control of the temporal profile of the local electromagnetic field near metallic nanostructures Ilya Grigorenko and Anatoly Efimov Laser-assisted molecular orientation in gaseous media: new possibilities and applications Dmitry V Zhdanov and Victor N Zadkov Optimization of laser field-free orientation of a state-selected NO molecular sample Arnaud Rouzee, Arjan Gijsbertsen, Omair Ghafur, Ofer M Shir, Thomas Back, Steven Stolte and Marc J J Vrakking Controlling the sense of molecular rotation Sharly Fleischer, Yuri Khodorkovsky, Yehiam Prior and Ilya Sh Averbukh Optimal control of interacting particles: a multi-configuration time-dependent Hartree-Fock approach Michael Mundt and David J Tannor Exact quantum dissipative dynamics under external time-dependent driving fields Jian Xu, Rui-Xue Xu and Yi Jing Yan Pulse trains in molecular dynamics and coherent spectroscopy: a theoretical study J Voll and R de Vivie-Riedle Quantum control of electron localization in molecules driven by trains of half-cycle pulses Emil Persson, Joachim Burgdorfer and Stefanie Grafe Quantum control design by Lyapunov trajectory tracking for dipole and polarizability coupling Jean-Michel Coron, Andreea Grigoriu, Catalin Lefter and Gabriel Turinici Sliding mode control of quantum systems Daoyi Dong and Ian R Petersen Implementation of fault-tolerant quantum logic gates via optimal control R Nigmatullin and S G Schirmer Generalized filtering of laser fields in optimal control theory: application to symmetry filtering of quantum gate operations Markus Schroder and Alex Brown

  20. Achieving Optimal Quantum Acceleration of Frequency Estimation Using Adaptive Coherent Control.

    PubMed

    Naghiloo, M; Jordan, A N; Murch, K W

    2017-11-03

    Precision measurements of frequency are critical to accurate time keeping and are fundamentally limited by quantum measurement uncertainties. While for time-independent quantum Hamiltonians the uncertainty of any parameter scales at best as 1/T, where T is the duration of the experiment, recent theoretical works have predicted that explicitly time-dependent Hamiltonians can yield a 1/T^{2} scaling of the uncertainty for an oscillation frequency. This quantum acceleration in precision requires coherent control, which is generally adaptive. We experimentally realize this quantum improvement in frequency sensitivity with superconducting circuits, using a single transmon qubit. With optimal control pulses, the theoretically ideal frequency precision scaling is reached for times shorter than the decoherence time. This result demonstrates a fundamental quantum advantage for frequency estimation.

  1. Efficiency of quantum vs. classical annealing in nonconvex learning problems

    PubMed Central

    Zecchina, Riccardo

    2018-01-01

    Quantum annealers aim at solving nonconvex optimization problems by exploiting cooperative tunneling effects to escape local minima. The underlying idea consists of designing a classical energy function whose ground states are the sought optimal solutions of the original optimization problem and add a controllable quantum transverse field to generate tunneling processes. A key challenge is to identify classes of nonconvex optimization problems for which quantum annealing remains efficient while thermal annealing fails. We show that this happens for a wide class of problems which are central to machine learning. Their energy landscapes are dominated by local minima that cause exponential slowdown of classical thermal annealers while simulated quantum annealing converges efficiently to rare dense regions of optimal solutions. PMID:29382764

  2. Optimal control of hybrid qubits: Implementing the quantum permutation algorithm

    NASA Astrophysics Data System (ADS)

    Rivera-Ruiz, C. M.; de Lima, E. F.; Fanchini, F. F.; Lopez-Richard, V.; Castelano, L. K.

    2018-03-01

    The optimal quantum control theory is employed to determine electric pulses capable of producing quantum gates with a fidelity higher than 0.9997, when noise is not taken into account. Particularly, these quantum gates were chosen to perform the permutation algorithm in hybrid qubits in double quantum dots (DQDs). The permutation algorithm is an oracle based quantum algorithm that solves the problem of the permutation parity faster than a classical algorithm without the necessity of entanglement between particles. The only requirement for achieving the speedup is the use of a one-particle quantum system with at least three levels. The high fidelity found in our results is closely related to the quantum speed limit, which is a measure of how fast a quantum state can be manipulated. Furthermore, we model charge noise by considering an average over the optimal field centered at different values of the reference detuning, which follows a Gaussian distribution. When the Gaussian spread is of the order of 5 μ eV (10% of the correct value), the fidelity is still higher than 0.95. Our scheme also can be used for the practical realization of different quantum algorithms in DQDs.

  3. Optimal control of photoelectron emission by realistic waveforms

    NASA Astrophysics Data System (ADS)

    Solanpää, J.; Ciappina, M. F.; Räsänen, E.

    2017-09-01

    Recent experimental techniques in multicolor waveform synthesis allow the temporal shaping of strong femtosecond laser pulses with applications in the control of quantum mechanical processes in atoms, molecules, and nanostructures. Prediction of the shapes of the optimal waveforms can be done computationally using quantum optimal control theory. In this work we demonstrate the control of above-threshold photoemission of one-dimensional hydrogen model with pulses feasible for experimental waveform synthesis. By mixing different spectral channels and thus lowering the intensity requirements for individual channels, the resulting optimal pulses can extend the cutoff energies by at least up to 50% and bring up the electron yield by several orders of magnitude. Insights into the electron dynamics for optimized photoelectron emission are obtained with a semiclassical two-step model.

  4. Cooperating or fighting with control noise in the optimal manipulation of quantum dynamics

    NASA Astrophysics Data System (ADS)

    Shuang, Feng; Rabitz, Herschel

    2004-11-01

    This paper investigates the impact of control field noise on the optimal manipulation of quantum dynamics. Simulations are performed on several multilevel quantum systems with the goal of population transfer in the presence of significant control noise. The noise enters as run-to-run variations in the control amplitude and phase with the observation being an ensemble average over many runs as is commonly done in the laboratory. A genetic algorithm with an improved elitism operator is used to find the optimal field that either fights against or cooperates with control field noise. When seeking a high control yield it is possible to find fields that successfully fight with the noise while attaining good quality stable results. When seeking modest control yields, fields can be found which are optimally shaped to cooperate with the noise and thereby drive the dynamics more efficiently. In general, noise reduces the coherence of the dynamics, but the results indicate that population transfer objectives can be met by appropriately either fighting or cooperating with noise, even when it is intense.

  5. Cooperating or fighting with control noise in the optimal manipulation of quantum dynamics.

    PubMed

    Shuang, Feng; Rabitz, Herschel

    2004-11-15

    This paper investigates the impact of control field noise on the optimal manipulation of quantum dynamics. Simulations are performed on several multilevel quantum systems with the goal of population transfer in the presence of significant control noise. The noise enters as run-to-run variations in the control amplitude and phase with the observation being an ensemble average over many runs as is commonly done in the laboratory. A genetic algorithm with an improved elitism operator is used to find the optimal field that either fights against or cooperates with control field noise. When seeking a high control yield it is possible to find fields that successfully fight with the noise while attaining good quality stable results. When seeking modest control yields, fields can be found which are optimally shaped to cooperate with the noise and thereby drive the dynamics more efficiently. In general, noise reduces the coherence of the dynamics, but the results indicate that population transfer objectives can be met by appropriately either fighting or cooperating with noise, even when it is intense.

  6. Feedback quantum control of molecular electronic population transfer

    NASA Astrophysics Data System (ADS)

    Bardeen, Christopher J.; Yakovlev, Vladislav V.; Wilson, Kent R.; Carpenter, Scott D.; Weber, Peter M.; Warren, Warren S.

    1997-11-01

    Feedback quantum control, where the sample `teaches' a computer-controlled arbitrary lightform generator to find the optimal light field, is experimentally demonstrated for a molecular system. Femtosecond pulses tailored by a computer-controlled acousto-optic pulse shaper excite fluorescence from laser dye molecules in solution. Fluorescence and laser power are monitored, and the computer uses the experimental data and a genetic algorithm to optimize population transfer from ground to first excited state. Both efficiency (the ratio of excited state population to laser energy) and effectiveness (total excited state population) are optimized. Potential use as an `automated theory tester' is discussed.

  7. Optimal quantum networks and one-shot entropies

    NASA Astrophysics Data System (ADS)

    Chiribella, Giulio; Ebler, Daniel

    2016-09-01

    We develop a semidefinite programming method for the optimization of quantum networks, including both causal networks and networks with indefinite causal structure. Our method applies to a broad class of performance measures, defined operationally in terms of interative tests set up by a verifier. We show that the optimal performance is equal to a max relative entropy, which quantifies the informativeness of the test. Building on this result, we extend the notion of conditional min-entropy from quantum states to quantum causal networks. The optimization method is illustrated in a number of applications, including the inversion, charge conjugation, and controlization of an unknown unitary dynamics. In the non-causal setting, we show a proof-of-principle application to the maximization of the winning probability in a non-causal quantum game.

  8. Multi-objective optimization in quantum parameter estimation

    NASA Astrophysics Data System (ADS)

    Gong, BeiLi; Cui, Wei

    2018-04-01

    We investigate quantum parameter estimation based on linear and Kerr-type nonlinear controls in an open quantum system, and consider the dissipation rate as an unknown parameter. We show that while the precision of parameter estimation is improved, it usually introduces a significant deformation to the system state. Moreover, we propose a multi-objective model to optimize the two conflicting objectives: (1) maximizing the Fisher information, improving the parameter estimation precision, and (2) minimizing the deformation of the system state, which maintains its fidelity. Finally, simulations of a simplified ɛ-constrained model demonstrate the feasibility of the Hamiltonian control in improving the precision of the quantum parameter estimation.

  9. Efficient experimental design of high-fidelity three-qubit quantum gates via genetic programming

    NASA Astrophysics Data System (ADS)

    Devra, Amit; Prabhu, Prithviraj; Singh, Harpreet; Arvind; Dorai, Kavita

    2018-03-01

    We have designed efficient quantum circuits for the three-qubit Toffoli (controlled-controlled-NOT) and the Fredkin (controlled-SWAP) gate, optimized via genetic programming methods. The gates thus obtained were experimentally implemented on a three-qubit NMR quantum information processor, with a high fidelity. Toffoli and Fredkin gates in conjunction with the single-qubit Hadamard gates form a universal gate set for quantum computing and are an essential component of several quantum algorithms. Genetic algorithms are stochastic search algorithms based on the logic of natural selection and biological genetics and have been widely used for quantum information processing applications. We devised a new selection mechanism within the genetic algorithm framework to select individuals from a population. We call this mechanism the "Luck-Choose" mechanism and were able to achieve faster convergence to a solution using this mechanism, as compared to existing selection mechanisms. The optimization was performed under the constraint that the experimentally implemented pulses are of short duration and can be implemented with high fidelity. We demonstrate the advantage of our pulse sequences by comparing our results with existing experimental schemes and other numerical optimization methods.

  10. 2011 Quantum Control of Light & Matter Gordon Research Conference (July 31-August 5, 2011, Mount Holyoke College, South Hadley, MA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas Weinacht

    2011-08-05

    Quantum control of light and matter is the quest to steer a physical process to a desirable outcome, employing constructive and destructive interference. Three basic questions address feasibility of quantum control: (1) The problem of controllability, does a control field exist for a preset initial and target state; (2) Synthesis, constructively finding the field that leads to the target; and (3) Optimal Control Theory - optimizing the field that carries out this task. These continue to be the fundamental theoretical questions to be addressed in the conference. How to realize control fields in the laboratory is an ongoing challenge. Thismore » task is very diverse viewing the emergence of control scenarios ranging from attoseconds to microseconds. How do the experimental observations reflect on the theoretical framework? The typical arena of quantum control is an open environment where much of the control is indirect. How are control scenarios realized in dissipative open systems? Can new control opportunities emerge? Can one null decoherence effects? An ideal setting for control is ultracold matter. The initial and final state can be defined more precisely. Coherent control unifies many fields of physical science. A lesson learned in one field can reflect on another. Currently quantum information processing has emerged as a primary target of control where the key issue is controlling quantum gate operation. Modern nonlinear spectroscopy has emerged as another primary field. The challenge is to unravel the dynamics of molecular systems undergoing strong interactions with the environment. Quantum optics where non-classical fields are to be generated and employed. Finally, coherent control is the basis for quantum engineering. These issues will be under the limelight of the Gordon conference on Quantum Control of Light and Matter.« less

  11. Linear Quantum Systems: Non-Classical States and Robust Stability

    DTIC Science & Technology

    2016-06-29

    quantum linear systems subject to non-classical quantum fields. The major outcomes of this project are (i) derivation of quantum filtering equations for...derivation of quantum filtering equations for systems non-classical input states including single photon states, (ii) determination of how linear...history going back some 50 years, to the birth of modern control theory with Kalman’s foundational work on filtering and LQG optimal control

  12. A parallel adaptive quantum genetic algorithm for the controllability of arbitrary networks.

    PubMed

    Li, Yuhong; Gong, Guanghong; Li, Ni

    2018-01-01

    In this paper, we propose a novel algorithm-parallel adaptive quantum genetic algorithm-which can rapidly determine the minimum control nodes of arbitrary networks with both control nodes and state nodes. The corresponding network can be fully controlled with the obtained control scheme. We transformed the network controllability issue into a combinational optimization problem based on the Popov-Belevitch-Hautus rank condition. A set of canonical networks and a list of real-world networks were experimented. Comparison results demonstrated that the algorithm was more ideal to optimize the controllability of networks, especially those larger-size networks. We demonstrated subsequently that there were links between the optimal control nodes and some network statistical characteristics. The proposed algorithm provides an effective approach to improve the controllability optimization of large networks or even extra-large networks with hundreds of thousands nodes.

  13. Effect of diatomic molecular properties on binary laser pulse optimizations of quantum gate operations.

    PubMed

    Zaari, Ryan R; Brown, Alex

    2011-07-28

    The importance of the ro-vibrational state energies on the ability to produce high fidelity binary shaped laser pulses for quantum logic gates is investigated. The single frequency 2-qubit ACNOT(1) and double frequency 2-qubit NOT(2) quantum gates are used as test cases to examine this behaviour. A range of diatomics is sampled. The laser pulses are optimized using a genetic algorithm for binary (two amplitude and two phase parameter) variation on a discretized frequency spectrum. The resulting trends in the fidelities were attributed to the intrinsic molecular properties and not the choice of method: a discretized frequency spectrum with genetic algorithm optimization. This is verified by using other common laser pulse optimization methods (including iterative optimal control theory), which result in the same qualitative trends in fidelity. The results differ from other studies that used vibrational state energies only. Moreover, appropriate choice of diatomic (relative ro-vibrational state arrangement) is critical for producing high fidelity optimized quantum logic gates. It is also suggested that global phase alignment imposes a significant restriction on obtaining high fidelity regions within the parameter search space. Overall, this indicates a complexity in the ability to provide appropriate binary laser pulse control of diatomics for molecular quantum computing. © 2011 American Institute of Physics

  14. Realization of optimized quantum controlled-logic gate based on the orbital angular momentum of light.

    PubMed

    Zeng, Qiang; Li, Tao; Song, Xinbing; Zhang, Xiangdong

    2016-04-18

    We propose and experimentally demonstrate an optimized setup to implement quantum controlled-NOT operation using polarization and orbital angular momentum qubits. This device is more adaptive to inputs with various polarizations, and can work both in classical and quantum single-photon regime. The logic operations performed by such a setup not only possess high stability and polarization-free character, they can also be easily extended to deal with multi-qubit input states. As an example, the experimental implementation of generalized three-qubit Toffoli gate has been presented.

  15. Design and experimental realization of an optimal scheme for teleportation of an n-qubit quantum state

    NASA Astrophysics Data System (ADS)

    Sisodia, Mitali; Shukla, Abhishek; Thapliyal, Kishore; Pathak, Anirban

    2017-12-01

    An explicit scheme (quantum circuit) is designed for the teleportation of an n-qubit quantum state. It is established that the proposed scheme requires an optimal amount of quantum resources, whereas larger amount of quantum resources have been used in a large number of recently reported teleportation schemes for the quantum states which can be viewed as special cases of the general n-qubit state considered here. A trade-off between our knowledge about the quantum state to be teleported and the amount of quantum resources required for the same is observed. A proof-of-principle experimental realization of the proposed scheme (for a 2-qubit state) is also performed using 5-qubit superconductivity-based IBM quantum computer. The experimental results show that the state has been teleported with high fidelity. Relevance of the proposed teleportation scheme has also been discussed in the context of controlled, bidirectional, and bidirectional controlled state teleportation.

  16. Optimal quantum control of multimode couplings between trapped ion qubits for scalable entanglement.

    PubMed

    Choi, T; Debnath, S; Manning, T A; Figgatt, C; Gong, Z-X; Duan, L-M; Monroe, C

    2014-05-16

    We demonstrate entangling quantum gates within a chain of five trapped ion qubits by optimally shaping optical fields that couple to multiple collective modes of motion. We individually address qubits with segmented optical pulses to construct multipartite entangled states in a programmable way. This approach enables high-fidelity gates that can be scaled to larger qubit registers for quantum computation and simulation.

  17. Optimal control of quantum rings by terahertz laser pulses.

    PubMed

    Räsänen, E; Castro, A; Werschnik, J; Rubio, A; Gross, E K U

    2007-04-13

    Complete control of single-electron states in a two-dimensional semiconductor quantum-ring model is established, opening a path into coherent laser-driven single-gate qubits. The control scheme is developed in the framework of optimal-control theory for laser pulses of two-component polarization. In terms of pulse lengths and target-state occupations, the scheme is shown to be superior to conventional control methods that exploit Rabi oscillations generated by uniform circularly polarized pulses. Current-carrying states in a quantum ring can be used to manipulate a two-level subsystem at the ring center. Combining our results, we propose a realistic approach to construct a laser-driven single-gate qubit that has switching times in the terahertz regime.

  18. Preserving electron spin coherence in solids by optimal dynamical decoupling.

    PubMed

    Du, Jiangfeng; Rong, Xing; Zhao, Nan; Wang, Ya; Yang, Jiahui; Liu, R B

    2009-10-29

    To exploit the quantum coherence of electron spins in solids in future technologies such as quantum computing, it is first vital to overcome the problem of spin decoherence due to their coupling to the noisy environment. Dynamical decoupling, which uses stroboscopic spin flips to give an average coupling to the environment that is effectively zero, is a particularly promising strategy for combating decoherence because it can be naturally integrated with other desired functionalities, such as quantum gates. Errors are inevitably introduced in each spin flip, so it is desirable to minimize the number of control pulses used to realize dynamical decoupling having a given level of precision. Such optimal dynamical decoupling sequences have recently been explored. The experimental realization of optimal dynamical decoupling in solid-state systems, however, remains elusive. Here we use pulsed electron paramagnetic resonance to demonstrate experimentally optimal dynamical decoupling for preserving electron spin coherence in irradiated malonic acid crystals at temperatures from 50 K to room temperature. Using a seven-pulse optimal dynamical decoupling sequence, we prolonged the spin coherence time to about 30 mus; it would otherwise be about 0.04 mus without control or 6.2 mus under one-pulse control. By comparing experiments with microscopic theories, we have identified the relevant electron spin decoherence mechanisms in the solid. Optimal dynamical decoupling may be applied to other solid-state systems, such as diamonds with nitrogen-vacancy centres, and so lay the foundation for quantum coherence control of spins in solids at room temperature.

  19. Multi-AUV autonomous task planning based on the scroll time domain quantum bee colony optimization algorithm in uncertain environment

    PubMed Central

    Zhang, Rubo; Yang, Yu

    2017-01-01

    Research on distributed task planning model for multi-autonomous underwater vehicle (MAUV). A scroll time domain quantum artificial bee colony (STDQABC) optimization algorithm is proposed to solve the multi-AUV optimal task planning scheme. In the uncertain marine environment, the rolling time domain control technique is used to realize a numerical optimization in a narrowed time range. Rolling time domain control is one of the better task planning techniques, which can greatly reduce the computational workload and realize the tradeoff between AUV dynamics, environment and cost. Finally, a simulation experiment was performed to evaluate the distributed task planning performance of the scroll time domain quantum bee colony optimization algorithm. The simulation results demonstrate that the STDQABC algorithm converges faster than the QABC and ABC algorithms in terms of both iterations and running time. The STDQABC algorithm can effectively improve MAUV distributed tasking planning performance, complete the task goal and get the approximate optimal solution. PMID:29186166

  20. Multi-AUV autonomous task planning based on the scroll time domain quantum bee colony optimization algorithm in uncertain environment.

    PubMed

    Li, Jianjun; Zhang, Rubo; Yang, Yu

    2017-01-01

    Research on distributed task planning model for multi-autonomous underwater vehicle (MAUV). A scroll time domain quantum artificial bee colony (STDQABC) optimization algorithm is proposed to solve the multi-AUV optimal task planning scheme. In the uncertain marine environment, the rolling time domain control technique is used to realize a numerical optimization in a narrowed time range. Rolling time domain control is one of the better task planning techniques, which can greatly reduce the computational workload and realize the tradeoff between AUV dynamics, environment and cost. Finally, a simulation experiment was performed to evaluate the distributed task planning performance of the scroll time domain quantum bee colony optimization algorithm. The simulation results demonstrate that the STDQABC algorithm converges faster than the QABC and ABC algorithms in terms of both iterations and running time. The STDQABC algorithm can effectively improve MAUV distributed tasking planning performance, complete the task goal and get the approximate optimal solution.

  1. Coherent optimal control of photosynthetic molecules

    NASA Astrophysics Data System (ADS)

    Caruso, F.; Montangero, S.; Calarco, T.; Huelga, S. F.; Plenio, M. B.

    2012-04-01

    We demonstrate theoretically that open-loop quantum optimal control techniques can provide efficient tools for the verification of various quantum coherent transport mechanisms in natural and artificial light-harvesting complexes under realistic experimental conditions. To assess the feasibility of possible biocontrol experiments, we introduce the main settings and derive optimally shaped and robust laser pulses that allow for the faithful preparation of specified initial states (such as localized excitation or coherent superposition, i.e., propagating and nonpropagating states) of the photosystem and probe efficiently the subsequent dynamics. With these tools, different transport pathways can be discriminated, which should facilitate the elucidation of genuine quantum dynamical features of photosystems and therefore enhance our understanding of the role that coherent processes may play in actual biological complexes.

  2. Linear Quantum Systems: Non-Classical States and Robust Stability

    DTIC Science & Technology

    2016-06-29

    has a history going back some 50 years, to the birth of modern control theory with Kalman’s foundational work on filtering and LQG optimal control ...information   if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION. 1. REPORT DATE (DD...analysis and control of quantum linear systems and their interactions with non-classical quantum fields by developing control theoretic concepts exploiting

  3. Tunable, Flexible, and Efficient Optimization of Control Pulses for Practical Qubits

    NASA Astrophysics Data System (ADS)

    Machnes, Shai; Assémat, Elie; Tannor, David; Wilhelm, Frank K.

    2018-04-01

    Quantum computation places very stringent demands on gate fidelities, and experimental implementations require both the controls and the resultant dynamics to conform to hardware-specific constraints. Superconducting qubits present the additional requirement that pulses must have simple parameterizations, so they can be further calibrated in the experiment, to compensate for uncertainties in system parameters. Other quantum technologies, such as sensing, require extremely high fidelities. We present a novel, conceptually simple and easy-to-implement gradient-based optimal control technique named gradient optimization of analytic controls (GOAT), which satisfies all the above requirements, unlike previous approaches. To demonstrate GOAT's capabilities, with emphasis on flexibility and ease of subsequent calibration, we optimize fast coherence-limited pulses for two leading superconducting qubits architectures—flux-tunable transmons and fixed-frequency transmons with tunable couplers.

  4. Designing, programming, and optimizing a (small) quantum computer

    NASA Astrophysics Data System (ADS)

    Svore, Krysta

    In 1982, Richard Feynman proposed to use a computer founded on the laws of quantum physics to simulate physical systems. In the more than thirty years since, quantum computers have shown promise to solve problems in number theory, chemistry, and materials science that would otherwise take longer than the lifetime of the universe to solve on an exascale classical machine. The practical realization of a quantum computer requires understanding and manipulating subtle quantum states while experimentally controlling quantum interference. It also requires an end-to-end software architecture for programming, optimizing, and implementing a quantum algorithm on the quantum device hardware. In this talk, we will introduce recent advances in connecting abstract theory to present-day real-world applications through software. We will highlight recent advancement of quantum algorithms and the challenges in ultimately performing a scalable solution on a quantum device.

  5. Robust Learning Control Design for Quantum Unitary Transformations.

    PubMed

    Wu, Chengzhi; Qi, Bo; Chen, Chunlin; Dong, Daoyi

    2017-12-01

    Robust control design for quantum unitary transformations has been recognized as a fundamental and challenging task in the development of quantum information processing due to unavoidable decoherence or operational errors in the experimental implementation of quantum operations. In this paper, we extend the systematic methodology of sampling-based learning control (SLC) approach with a gradient flow algorithm for the design of robust quantum unitary transformations. The SLC approach first uses a "training" process to find an optimal control strategy robust against certain ranges of uncertainties. Then a number of randomly selected samples are tested and the performance is evaluated according to their average fidelity. The approach is applied to three typical examples of robust quantum transformation problems including robust quantum transformations in a three-level quantum system, in a superconducting quantum circuit, and in a spin chain system. Numerical results demonstrate the effectiveness of the SLC approach and show its potential applications in various implementation of quantum unitary transformations.

  6. Resonator reset in circuit QED by optimal control for large open quantum systems

    NASA Astrophysics Data System (ADS)

    Boutin, Samuel; Andersen, Christian Kraglund; Venkatraman, Jayameenakshi; Ferris, Andrew J.; Blais, Alexandre

    2017-10-01

    We study an implementation of the open GRAPE (gradient ascent pulse engineering) algorithm well suited for large open quantum systems. While typical implementations of optimal control algorithms for open quantum systems rely on explicit matrix exponential calculations, our implementation avoids these operations, leading to a polynomial speedup of the open GRAPE algorithm in cases of interest. This speedup, as well as the reduced memory requirements of our implementation, are illustrated by comparison to a standard implementation of open GRAPE. As a practical example, we apply this open-system optimization method to active reset of a readout resonator in circuit QED. In this problem, the shape of a microwave pulse is optimized such as to empty the cavity from measurement photons as fast as possible. Using our open GRAPE implementation, we obtain pulse shapes, leading to a reset time over 4 times faster than passive reset.

  7. NMR System for a Type II Quantum Computer

    DTIC Science & Technology

    2007-06-01

    Kevin Henry, Jr., "Coherent Control in QIP" June 2007. Please see Appendix pdf file pages 296-399. 4 Chapter 1 Introduction Recent research [1, 2, 3...can often by reduced by careful design of the time dependence of control fields. This is possible since the operators underlying the incoherence are...ob- tained by measurement. 21 1.2 Optimal Control Theory applied to Quantum Systems One of the main goals for theoretical research in quantum control

  8. ProjectQ: Compiling quantum programs for various backends

    NASA Astrophysics Data System (ADS)

    Haener, Thomas; Steiger, Damian S.; Troyer, Matthias

    In order to control quantum computers beyond the current generation, a high level quantum programming language and optimizing compilers will be essential. Therefore, we have developed ProjectQ - an open source software framework to facilitate implementing and running quantum algorithms both in software and on actual quantum hardware. Here, we introduce the backends available in ProjectQ. This includes a high-performance simulator and emulator to test and debug quantum algorithms, tools for resource estimation, and interfaces to several small-scale quantum devices. We demonstrate the workings of the framework and show how easily it can be further extended to control upcoming quantum hardware.

  9. Experimental demonstration of a quantum annealing algorithm for the traveling salesman problem in a nuclear-magnetic-resonance quantum simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Hongwei; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031; Kong Xi

    The method of quantum annealing (QA) is a promising way for solving many optimization problems in both classical and quantum information theory. The main advantage of this approach, compared with the gate model, is the robustness of the operations against errors originated from both external controls and the environment. In this work, we succeed in demonstrating experimentally an application of the method of QA to a simplified version of the traveling salesman problem by simulating the corresponding Schroedinger evolution with a NMR quantum simulator. The experimental results unambiguously yielded the optimal traveling route, in good agreement with the theoretical prediction.

  10. Geometry of Quantum Computation with Qudits

    PubMed Central

    Luo, Ming-Xing; Chen, Xiu-Bo; Yang, Yi-Xian; Wang, Xiaojun

    2014-01-01

    The circuit complexity of quantum qubit system evolution as a primitive problem in quantum computation has been discussed widely. We investigate this problem in terms of qudit system. Using the Riemannian geometry the optimal quantum circuits are equivalent to the geodetic evolutions in specially curved parametrization of SU(dn). And the quantum circuit complexity is explicitly dependent of controllable approximation error bound. PMID:24509710

  11. Holonomic Quantum Control by Coherent Optical Excitation in Diamond.

    PubMed

    Zhou, Brian B; Jerger, Paul C; Shkolnikov, V O; Heremans, F Joseph; Burkard, Guido; Awschalom, David D

    2017-10-06

    Although geometric phases in quantum evolution are historically overlooked, their active control now stimulates strategies for constructing robust quantum technologies. Here, we demonstrate arbitrary single-qubit holonomic gates from a single cycle of nonadiabatic evolution, eliminating the need to concatenate two separate cycles. Our method varies the amplitude, phase, and detuning of a two-tone optical field to control the non-Abelian geometric phase acquired by a nitrogen-vacancy center in diamond over a coherent excitation cycle. We demonstrate the enhanced robustness of detuned gates to excited-state decoherence and provide insights for optimizing fast holonomic control in dissipative quantum systems.

  12. Holonomic Quantum Control by Coherent Optical Excitation in Diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Brian B.; Jerger, Paul C.; Shkolnikov, V. O.

    Although geometric phases in quantum evolution are historically overlooked, their active control now stimulates strategies for constructing robust quantum technologies. Here, we demonstrate arbitrary singlequbit holonomic gates from a single cycle of nonadiabatic evolution, eliminating the need to concatenate two separate cycles. Our method varies the amplitude, phase, and detuning of a two-tone optical field to control the non-Abelian geometric phase acquired by a nitrogen-vacancy center in diamond over a coherent excitation cycle. We demonstrate the enhanced robustness of detuned gates to excited-state decoherence and provide insights for optimizing fast holonomic control in dissipative quantum systems.

  13. Optimal control of universal quantum gates in a double quantum dot

    NASA Astrophysics Data System (ADS)

    Castelano, Leonardo K.; de Lima, Emanuel F.; Madureira, Justino R.; Degani, Marcos H.; Maialle, Marcelo Z.

    2018-06-01

    We theoretically investigate electron spin operations driven by applied electric fields in a semiconductor double quantum dot (DQD) formed in a nanowire with longitudinal potential modulated by local gating. We develop a model that describes the process of loading and unloading the DQD taking into account the overlap between the electron wave function and the leads. Such a model considers the spatial occupation and the spin Pauli blockade in a time-dependent fashion due to the highly mixed states driven by the external electric field. Moreover, we present a road map based on the quantum optimal control theory (QOCT) to find a specific electric field that performs two-qubit quantum gates on a faster timescale and with higher possible fidelity. By employing the QOCT, we demonstrate the possibility of performing within high efficiency a universal set of quantum gates {cnot, H, and T } , where cnot is the controlled-not gate, H is the Hadamard gate, and T is the π /8 gate, even in the presence of the loading/unloading process and charge noise effects. Furthermore, by varying the intensity of the applied magnetic field B , the optimized fidelity of the gates oscillates with a period inversely proportional to the gate operation time tf. This behavior can be useful to attain higher fidelity for fast gate operations (>1 GHz) by appropriately choosing B and tf to produce a maximum of the oscillation.

  14. Common foundations of optimal control across the sciences: evidence of a free lunch

    NASA Astrophysics Data System (ADS)

    Russell, Benjamin; Rabitz, Herschel

    2017-03-01

    A common goal in the sciences is optimization of an objective function by selecting control variables such that a desired outcome is achieved. This scenario can be expressed in terms of a control landscape of an objective considered as a function of the control variables. At the most basic level, it is known that the vast majority of quantum control landscapes possess no traps, whose presence would hinder reaching the objective. This paper reviews and extends the quantum control landscape assessment, presenting evidence that the same highly favourable landscape features exist in many other domains of science. The implications of this broader evidence are discussed. Specifically, control landscape examples from quantum mechanics, chemistry and evolutionary biology are presented. Despite the obvious differences, commonalities between these areas are highlighted within a unified mathematical framework. This mathematical framework is driven by the wide-ranging experimental evidence on the ease of finding optimal controls (in terms of the required algorithmic search effort beyond the laboratory set-up overhead). The full scope and implications of this observed common control behaviour pose an open question for assessment in further work. This article is part of the themed issue 'Horizons of cybernetical physics'.

  15. Sum-of-squares-based fuzzy controller design using quantum-inspired evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Gwo-Ruey; Huang, Yu-Chia; Cheng, Chih-Yung

    2016-07-01

    In the field of fuzzy control, control gains are obtained by solving stabilisation conditions in linear-matrix-inequality-based Takagi-Sugeno fuzzy control method and sum-of-squares-based polynomial fuzzy control method. However, the optimal performance requirements are not considered under those stabilisation conditions. In order to handle specific performance problems, this paper proposes a novel design procedure with regard to polynomial fuzzy controllers using quantum-inspired evolutionary algorithms. The first contribution of this paper is a combination of polynomial fuzzy control and quantum-inspired evolutionary algorithms to undertake an optimal performance controller design. The second contribution is the proposed stability condition derived from the polynomial Lyapunov function. The proposed design approach is dissimilar to the traditional approach, in which control gains are obtained by solving the stabilisation conditions. The first step of the controller design uses the quantum-inspired evolutionary algorithms to determine the control gains with the best performance. Then, the stability of the closed-loop system is analysed under the proposed stability conditions. To illustrate effectiveness and validity, the problem of balancing and the up-swing of an inverted pendulum on a cart is used.

  16. Data-driven gradient algorithm for high-precision quantum control

    NASA Astrophysics Data System (ADS)

    Wu, Re-Bing; Chu, Bing; Owens, David H.; Rabitz, Herschel

    2018-04-01

    In the quest to achieve scalable quantum information processing technologies, gradient-based optimal control algorithms (e.g., grape) are broadly used for implementing high-precision quantum gates, but their performance is often hindered by deterministic or random errors in the system model and the control electronics. In this paper, we show that grape can be taught to be more effective by jointly learning from the design model and the experimental data obtained from process tomography. The resulting data-driven gradient optimization algorithm (d-grape) can in principle correct all deterministic gate errors, with a mild efficiency loss. The d-grape algorithm may become more powerful with broadband controls that involve a large number of control parameters, while other algorithms usually slow down due to the increased size of the search space. These advantages are demonstrated by simulating the implementation of a two-qubit controlled-not gate.

  17. Enhancing quantum effects via periodic modulations in optomechanical systems

    NASA Astrophysics Data System (ADS)

    Farace, Alessandro; Giovannetti, Vittorio

    2012-07-01

    Parametrically modulated optomechanical systems have been recently proposed as a simple and efficient setting for the quantum control of a micromechanical oscillator: relevant possibilities include the generation of squeezing in the oscillator position (or momentum) and the enhancement of entanglement between mechanical and radiation modes. In this paper we further investigate this modulation regime, considering an optomechanical system with one or more parameters being modulated over time. We first apply a sinusoidal modulation of the mechanical frequency and characterize the optimal regime in which the visibility of purely quantum effects is maximal. We then introduce a second modulation on the input laser intensity and analyze the interplay between the two. We find that an interference pattern shows up, so that different choices of the relative phase between the two modulations can either enhance or cancel the desired quantum effects, opening new possibilities for optimal quantum control strategies.

  18. Dynamic optimization and its relation to classical and quantum constrained systems

    NASA Astrophysics Data System (ADS)

    Contreras, Mauricio; Pellicer, Rely; Villena, Marcelo

    2017-08-01

    We study the structure of a simple dynamic optimization problem consisting of one state and one control variable, from a physicist's point of view. By using an analogy to a physical model, we study this system in the classical and quantum frameworks. Classically, the dynamic optimization problem is equivalent to a classical mechanics constrained system, so we must use the Dirac method to analyze it in a correct way. We find that there are two second-class constraints in the model: one fix the momenta associated with the control variables, and the other is a reminder of the optimal control law. The dynamic evolution of this constrained system is given by the Dirac's bracket of the canonical variables with the Hamiltonian. This dynamic results to be identical to the unconstrained one given by the Pontryagin equations, which are the correct classical equations of motion for our physical optimization problem. In the same Pontryagin scheme, by imposing a closed-loop λ-strategy, the optimality condition for the action gives a consistency relation, which is associated to the Hamilton-Jacobi-Bellman equation of the dynamic programming method. A similar result is achieved by quantizing the classical model. By setting the wave function Ψ(x , t) =e iS(x , t) in the quantum Schrödinger equation, a non-linear partial equation is obtained for the S function. For the right-hand side quantization, this is the Hamilton-Jacobi-Bellman equation, when S(x , t) is identified with the optimal value function. Thus, the Hamilton-Jacobi-Bellman equation in Bellman's maximum principle, can be interpreted as the quantum approach of the optimization problem.

  19. Final Technical Report of the project "Controlling Quantum Information by Quantum Correlations"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girolami, Davide

    The report describes hypotheses, aims, methods and results of the project 20170675PRD2, “Controlling Quantum Information by Quantum Correlations”, which has been run from July 31, 2017 to January 7, 2018. The technical work has been performed by Director’s Fellow Davide Girolami of the T-4 Division, Physics of Condensed Matter and Complex Systems, under the supervision of Wojciech Zurek (T-4), Lukasz Cincio (T-4), and Marcus Daniels (CCS-7). The project ended as Davide Girolami has been converted to J. R. Oppenheimer Fellow to work on the project 20180702PRD1, “Optimal Control of Quantum Machines”, started on January 8, 2018.

  20. Exploiting Non-Markovianity for Quantum Control.

    PubMed

    Reich, Daniel M; Katz, Nadav; Koch, Christiane P

    2015-07-22

    Quantum technology, exploiting entanglement and the wave nature of matter, relies on the ability to accurately control quantum systems. Quantum control is often compromised by the interaction of the system with its environment since this causes loss of amplitude and phase. However, when the dynamics of the open quantum system is non-Markovian, amplitude and phase flow not only from the system into the environment but also back. Interaction with the environment is then not necessarily detrimental. We show that the back-flow of amplitude and phase can be exploited to carry out quantum control tasks that could not be realized if the system was isolated. The control is facilitated by a few strongly coupled, sufficiently isolated environmental modes. Our paradigmatic example considers a weakly anharmonic ladder with resonant amplitude control only, restricting realizable operations to SO(N). The coupling to the environment, when harnessed with optimization techniques, allows for full SU(N) controllability.

  1. Optimal Synthesis of the Joint Unitary Evolutions

    NASA Astrophysics Data System (ADS)

    Wei, Hai-Rui; Alsaedi, Ahmed; Hobiny, Aatef; Deng, Fu-Guo; Hu, Hui; Zhang, Dun

    2018-07-01

    Joint unitary operations play a central role in quantum communication and computation. We give a quantum circuit for implementing a type of unconstructed useful joint unitary evolutions in terms of controlled-NOT (CNOT) gates and single-qubit rotations. Our synthesis is optimal and possible in experiment. Two CNOT gates and seven R x , R y or R z rotations are required for our synthesis, and the arbitrary parameter contained in the evolutions can be controlled by local Hamiltonian or external fields.

  2. Optimal Synthesis of the Joint Unitary Evolutions

    NASA Astrophysics Data System (ADS)

    Wei, Hai-Rui; Alsaedi, Ahmed; Hobiny, Aatef; Deng, Fu-Guo; Hu, Hui; Zhang, Dun

    2018-03-01

    Joint unitary operations play a central role in quantum communication and computation. We give a quantum circuit for implementing a type of unconstructed useful joint unitary evolutions in terms of controlled-NOT (CNOT) gates and single-qubit rotations. Our synthesis is optimal and possible in experiment. Two CNOT gates and seven R x , R y or R z rotations are required for our synthesis, and the arbitrary parameter contained in the evolutions can be controlled by local Hamiltonian or external fields.

  3. Initial state-specific photodissociation dynamics of pyrrole via 1 π σ ∗/ S 0 conical intersection initiated with optimally controlled UV-laser pulses

    NASA Astrophysics Data System (ADS)

    Nandipati, K. R.; Kanakati, Arun Kumar; Singh, H.; Lan, Z.; Mahapatra, S.

    2017-09-01

    Optimal initiation of quantum dynamics of N-H photodissociation of pyrrole on the S0-1πσ∗(1A2) coupled electronic states by UV-laser pulses in an effort to guide the subsequent dynamics to dissociation limits is studied theoretically. Specifically, the task of designing optimal laser pulses that act on initial vibrational states of the system for an effective UV-photodissociation is considered by employing optimal control theory. The associated control mechanism(s) for the initial state dependent photodissociation dynamics of pyrrole in the presence of control pulses is examined and discussed in detail. The initial conditions determine implicitly the variation in the dissociation probabilities for the two channels, upon interaction with the field. The optimal pulse corresponds to the objective fixed as maximization of overall reactive flux subject to constraints of reasonable fluence and quantum dynamics. The simple optimal pulses obtained by the use of genetic algorithm based optimization are worth an experimental implementation given the experimental relevance of πσ∗-photochemistry in recent times.

  4. Optimally combining dynamical decoupling and quantum error correction.

    PubMed

    Paz-Silva, Gerardo A; Lidar, D A

    2013-01-01

    Quantum control and fault-tolerant quantum computing (FTQC) are two of the cornerstones on which the hope of realizing a large-scale quantum computer is pinned, yet only preliminary steps have been taken towards formalizing the interplay between them. Here we explore this interplay using the powerful strategy of dynamical decoupling (DD), and show how it can be seamlessly and optimally integrated with FTQC. To this end we show how to find the optimal decoupling generator set (DGS) for various subspaces relevant to FTQC, and how to simultaneously decouple them. We focus on stabilizer codes, which represent the largest contribution to the size of the DGS, showing that the intuitive choice comprising the stabilizers and logical operators of the code is in fact optimal, i.e., minimizes a natural cost function associated with the length of DD sequences. Our work brings hybrid DD-FTQC schemes, and their potentially considerable advantages, closer to realization.

  5. Optimally combining dynamical decoupling and quantum error correction

    PubMed Central

    Paz-Silva, Gerardo A.; Lidar, D. A.

    2013-01-01

    Quantum control and fault-tolerant quantum computing (FTQC) are two of the cornerstones on which the hope of realizing a large-scale quantum computer is pinned, yet only preliminary steps have been taken towards formalizing the interplay between them. Here we explore this interplay using the powerful strategy of dynamical decoupling (DD), and show how it can be seamlessly and optimally integrated with FTQC. To this end we show how to find the optimal decoupling generator set (DGS) for various subspaces relevant to FTQC, and how to simultaneously decouple them. We focus on stabilizer codes, which represent the largest contribution to the size of the DGS, showing that the intuitive choice comprising the stabilizers and logical operators of the code is in fact optimal, i.e., minimizes a natural cost function associated with the length of DD sequences. Our work brings hybrid DD-FTQC schemes, and their potentially considerable advantages, closer to realization. PMID:23559088

  6. Brachistochrone of entanglement for spin chains

    NASA Astrophysics Data System (ADS)

    Carlini, Alberto; Koike, Tatsuhiko

    2017-03-01

    We analytically investigate the role of entanglement in time-optimal state evolution as an application of the quantum brachistochrone, a general method for obtaining the optimal time-dependent Hamiltonian for reaching a target quantum state. As a model, we treat two qubits indirectly coupled through an intermediate qubit that is directly controllable, which represents a typical situation in quantum information processing. We find the time-optimal unitary evolution law and quantify residual entanglement by the two-tangle between the indirectly coupled qubits, for all possible sets of initial pure quantum states of a tripartite system. The integrals of the motion of the brachistochrone are determined by fixing the minimal time at which the residual entanglement is maximized. Entanglement plays a role for W and Greenberger-Horne-Zeilinger (GHz) initial quantum states, and for the bi-separable initial state in which the indirectly coupled qubits have a nonzero value of the 2-tangle.

  7. EDITORIAL: Quantum control theory for coherence and information dynamics Quantum control theory for coherence and information dynamics

    NASA Astrophysics Data System (ADS)

    Viola, Lorenza; Tannor, David

    2011-08-01

    Precisely characterizing and controlling the dynamics of realistic open quantum systems has emerged in recent years as a key challenge across contemporary quantum sciences and technologies, with implications ranging from physics, chemistry and applied mathematics to quantum information processing (QIP) and quantum engineering. Quantum control theory aims to provide both a general dynamical-system framework and a constructive toolbox to meet this challenge. The purpose of this special issue of Journal of Physics B: Atomic, Molecular and Optical Physics is to present a state-of-the-art account of recent advances and current trends in the field, as reflected in two international meetings that were held on the subject over the last summer and which motivated in part the compilation of this volume—the Topical Group: Frontiers in Open Quantum Systems and Quantum Control Theory, held at the Institute for Theoretical Atomic, Molecular and Optical Physics (ITAMP) in Cambridge, Massachusetts (USA), from 1-14 August 2010, and the Safed Workshop on Quantum Decoherence and Thermodynamics Control, held in Safed (Israel), from 22-27 August 2010. Initial developments in quantum control theory date back to (at least) the early 1980s, and have been largely inspired by the well-established mathematical framework for classical dynamical systems. As the above-mentioned meetings made clear, and as the burgeoning body of literature on the subject testifies, quantum control has grown since then well beyond its original boundaries, and has by now evolved into a highly cross-disciplinary field which, while still fast-moving, is also entering a new phase of maturity, sophistication, and integration. Two trends deserve special attention: on the one hand, a growing emphasis on control tasks and methodologies that are specifically motivated by QIP, in addition and in parallel to applications in more traditional areas where quantum coherence is nevertheless vital (such as, for instance, quantum control of chemical reactions or high-resolution magnetic resonance spectroscopy); on the other hand, an unprecedented demand for close coupling between theory and experiment, with theoretical developments becoming more and more attuned to and driven by experimental advances as different quantum technologies continue to evolve at an impressive pace in the laboratory. Altogether, these two trends account for several of the recurrent themes in this volume, as well as in the current quantum control literature as a whole: namely, the quest for control strategies that can attain the highest degree of precision and robustness possible, while striving for efficiency and, ultimately, optimality in achieving the intended control task under realistic operational constraints. From a theory standpoint, this makes it imperative to take into account increasingly more realistic control settings; to assess the quantitative impact of limited control resources and/or system knowledge; and to provide a rigorous and general foundation for existing experimental approaches in order to further enhance applicability and performance. From an experimental standpoint, renewed emphasis is in turn placed on validating theoretical predictions and benchmarking performance, so that the limiting constraints can be singled out for additional theoretical analysis and guidance. This ongoing cross-talk is clearly reflected in this collection, which brings together theoreticians and experimentalists, with a significant fraction of the papers reporting on combined quantum control theory-experiment efforts. While a precise categorization would neither be possible nor desirable, contributions to this volume have been loosely grouped into five broad sections. This grouping has been made in the hope that connections between different problems and/or technical approaches will become more transparent, facilitating the transfer of concepts and methods. The special issue opens with a section devoted to open-loop control methods, with special emphasis on dynamical decoupling (DD), which is becoming an increasingly important tool for decoherence control at the physical 'quantum firmware' level. In addition to including original research results, the first two articles, by Brion et al and Biercuk et al, also serve to pedagogically review some background in their respective subjects. In particular, Brion et al revisit one of the conceptually simplest approaches to open-loop manipulation of both closed and open quantum systems, nonholonomic control, motivated by its broad applicability to QIP settings. A special instance of open-loop control based on sequences of (nearly) instantaneous `bang-bang' pulses is addressed by Biercuk et al, who reformulate the simplest DD scenario, suppression of phase decoherence in a single qubit, as a filter-design problem. Peng et al report on the implementation of 'concatenated' DD for arbitrary single-qubit decoherence in the context of nuclear magnetic resonance QIP. A dedicated analysis of the performance of different DD schemes in the presence of realistic pulse errors is given by Wang and Dobrovitski. DD is also one of the strategies used by Lucamarini et al to reduce polarization decoherence in a photon qubit. These authors additionally report on the use of active feedback to counter transmission noise, effectively setting the stage for the second section, which is centered on closed-loop control. Unlike in open-loop control, measurement is an essential ingredient in closed-loop schemes aimed at both reliably identifying features of the target quantum system and further modifying its dynamics. The importance of directly measuring the spectrum of the underlying system-environment coupling is stressed by Almog et al, who show how this knowledge is crucial, in particular, for predicting the performance of DD sequences in experiments and for optimizing performance. Riofrio et al address a weak-measurement protocol for implementing quantum state tomography, which is a necessary 'primitive' for inferring the target quantum state and thereby diagnosing the control performance. Next, the impact of realistic control and system imperfections in continuous-time Markovian feedback strategies for rapid state preparation is analyzed by Combes and Wiseman. A prominent role is played in the special issue by optimal control (OC) approaches, reflecting their central importance for quantum control and QIP. The OC contributions have been divided into two separate sections, depending on whether the target dynamics is modeled as Hamiltonian (section 3) or dissipative (section 4), respectively. The contribution by Beltrani et al deals with `control landscapes', which provide a foundation for analyzing the performance of numerical OC algorithms and their robustness against control errors. Specifically, this paper characterizes geometric properties of the control landscape, relevant to the optimal control of state-to-state transitions. Application of OC theory to the problem of population transfer and coherence enhancement in Λ-systems is studied by Kumar et al, whereas Goerz et al report on the OC-design of a high-fidelity controlled phase-gate in atomic qubits. The robustness of an OC solution is specifically addressed by Negretti et al, along with an approach for identifying easily implementable while still 'close-to-optimal' control pulses. Powerful relaxation-optimized OC schemes (based on so-called opengrape algorithms) for generating unitary target gates in the presence of known dissipation parameters are discussed by Schulte-Herbrüggen et al. Next, Lapert et al report on the problem of time-optimal control of spin-1/2 systems undergoing Bloch relaxation dynamics, highlighting the crucial role played by singular extremals in the control synthesis. Alternative approaches for optimized control of qubits exposed to various decoherence processes are developed by Esher et al and Xue et al, based on a perturbative 'bath-optimized' formalism and on numerical optimization via a genetic algorithm, respectively. Testifying to the richness of the field, the volume concludes with four contributions that address a diverse range of problems. The exploitation of properties of adiabatic quantum evolutions is common to the first two papers. In particular, Legthtas et al offer a rigorous explanation for the robustness of a control protocol, chirped pulsing, that is widely employed in 'adiabatic rapid passage' experiments, while Han et al present a theoretical framework for adiabatic Raman photo-association schemes relevant to ultracold atomic systems. In the context of cavity quantum electrodynamics, Montenegro and Orszag describe how to engineer a system of two atoms coupled to distant lossy cavities so that stable atomic entanglement is generated. Finally, still very little is known about the physical mechanisms that are responsible for and control the experimentally observed 'coherent' features of transport phenomena in biological systems. The last contribution by Alicki and Giraldi analyzes energy transport in dynamical systems that can be modeled as 'quantum networks', and points to this fascinating emerging frontier. It is our hope that the above papers may help readers to gain an overview of some of the main trends in current quantum control efforts, both theoretical and experimental. In closing, we take the opportunity to thank the organizations which sponsored the above-mentioned ITAMP Topical Group (the United States National Science Foundation and Harvard University) and the Safed Workshop (the Israeli Science Foundation, the Safed Scientific Workshop program, CECAM and ACAM). Last but not least our sincere gratitude goes to all of the contributors to the volume and the reviewers as well as the J. Phys. B staff, for their respective efforts in preparing the papers and ensuring the overall quality of this special issue.

  8. Quantum-classical interface based on single flux quantum digital logic

    NASA Astrophysics Data System (ADS)

    McDermott, R.; Vavilov, M. G.; Plourde, B. L. T.; Wilhelm, F. K.; Liebermann, P. J.; Mukhanov, O. A.; Ohki, T. A.

    2018-04-01

    We describe an approach to the integrated control and measurement of a large-scale superconducting multiqubit array comprising up to 108 physical qubits using a proximal coprocessor based on the Single Flux Quantum (SFQ) digital logic family. Coherent control is realized by irradiating the qubits directly with classical bitstreams derived from optimal control theory. Qubit measurement is performed by a Josephson photon counter, which provides access to the classical result of projective quantum measurement at the millikelvin stage. We analyze the power budget and physical footprint of the SFQ coprocessor and discuss challenges and opportunities associated with this approach.

  9. Communication at the quantum speed limit along a spin chain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Michael; Montangero, Simone; Giovannetti, Vittorio

    2010-08-15

    Spin chains have long been considered as candidates for quantum channels to facilitate quantum communication. We consider the transfer of a single excitation along a spin-1/2 chain governed by Heisenberg-type interactions. We build on the work of Balachandran and Gong [V. Balachandran and J. Gong, Phys. Rev. A 77, 012303 (2008)] and show that by applying optimal control to an external parabolic magnetic field, one can drastically increase the propagation rate by two orders of magnitude. In particular, we show that the theoretical maximum propagation rate can be reached, where the propagation of the excitation takes the form of amore » dispersed wave. We conclude that optimal control is not only a useful tool for experimental application, but also for theoretical inquiry into the physical limits and dynamics of many-body quantum systems.« less

  10. Two-qubit logical operations in three quantum dots system.

    PubMed

    Łuczak, Jakub; Bułka, Bogdan R

    2018-06-06

    We consider a model of two interacting always-on, exchange-only qubits for which controlled phase (CPHASE), controlled NOT (CNOT), quantum Fourier transform (QFT) and SWAP operations can be implemented only in a few electrical pulses in a nanosecond time scale. Each qubit is built of three quantum dots (TQD) in a triangular geometry with three electron spins which are always kept coupled by exchange interactions only. The qubit states are encoded in a doublet subspace and are fully electrically controlled by a voltage applied to gate electrodes. The two qubit quantum gates are realized by short electrical pulses which change the triangular symmetry of TQD and switch on exchange interaction between the qubits. We found an optimal configuration to implement the CPHASE gate by a single pulse of the order 2.3 ns. Using this gate, in combination with single qubit operations, we searched for optimal conditions to perform the other gates: CNOT, QFT and SWAP. Our studies take into account environment effects and leakage processes as well. The results suggest that the system can be implemented for fault tolerant quantum computations.

  11. Implementation of ternary Shor’s algorithm based on vibrational states of an ion in anharmonic potential

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Chen, Shu-Ming; Zhang, Jian; Wu, Chun-Wang; Wu, Wei; Chen, Ping-Xing

    2015-03-01

    It is widely believed that Shor’s factoring algorithm provides a driving force to boost the quantum computing research. However, a serious obstacle to its binary implementation is the large number of quantum gates. Non-binary quantum computing is an efficient way to reduce the required number of elemental gates. Here, we propose optimization schemes for Shor’s algorithm implementation and take a ternary version for factorizing 21 as an example. The optimized factorization is achieved by a two-qutrit quantum circuit, which consists of only two single qutrit gates and one ternary controlled-NOT gate. This two-qutrit quantum circuit is then encoded into the nine lower vibrational states of an ion trapped in a weakly anharmonic potential. Optimal control theory (OCT) is employed to derive the manipulation electric field for transferring the encoded states. The ternary Shor’s algorithm can be implemented in one single step. Numerical simulation results show that the accuracy of the state transformations is about 0.9919. Project supported by the National Natural Science Foundation of China (Grant No. 61205108) and the High Performance Computing (HPC) Foundation of National University of Defense Technology, China.

  12. Entanglement-assisted quantum feedback control

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naoki; Mikami, Tomoaki

    2017-07-01

    The main advantage of quantum metrology relies on the effective use of entanglement, which indeed allows us to achieve strictly better estimation performance over the standard quantum limit. In this paper, we propose an analogous method utilizing entanglement for the purpose of feedback control. The system considered is a general linear dynamical quantum system, where the control goal can be systematically formulated as a linear quadratic Gaussian control problem based on the quantum Kalman filtering method; in this setting, an entangled input probe field is effectively used to reduce the estimation error and accordingly the control cost function. In particular, we show that, in the problem of cooling an opto-mechanical oscillator, the entanglement-assisted feedback control can lower the stationary occupation number of the oscillator below the limit attainable by the controller with a coherent probe field and furthermore beats the controller with an optimized squeezed probe field.

  13. WavePacket: A Matlab package for numerical quantum dynamics.II: Open quantum systems, optimal control, and model reduction

    NASA Astrophysics Data System (ADS)

    Schmidt, Burkhard; Hartmann, Carsten

    2018-07-01

    WavePacket is an open-source program package for numeric simulations in quantum dynamics. It can solve time-independent or time-dependent linear Schrödinger and Liouville-von Neumann-equations in one or more dimensions. Also coupled equations can be treated, which allows, e.g., to simulate molecular quantum dynamics beyond the Born-Oppenheimer approximation. Optionally accounting for the interaction with external electric fields within the semi-classical dipole approximation, WavePacket can be used to simulate experiments involving tailored light pulses in photo-induced physics or chemistry. Being highly versatile and offering visualization of quantum dynamics 'on the fly', WavePacket is well suited for teaching or research projects in atomic, molecular and optical physics as well as in physical or theoretical chemistry. Building on the previous Part I [Comp. Phys. Comm. 213, 223-234 (2017)] which dealt with closed quantum systems and discrete variable representations, the present Part II focuses on the dynamics of open quantum systems, with Lindblad operators modeling dissipation and dephasing. This part also describes the WavePacket function for optimal control of quantum dynamics, building on rapid monotonically convergent iteration methods. Furthermore, two different approaches to dimension reduction implemented in WavePacket are documented here. In the first one, a balancing transformation based on the concepts of controllability and observability Gramians is used to identify states that are neither well controllable nor well observable. Those states are either truncated or averaged out. In the other approach, the H2-error for a given reduced dimensionality is minimized by H2 optimal model reduction techniques, utilizing a bilinear iterative rational Krylov algorithm. The present work describes the MATLAB version of WavePacket 5.3.0 which is hosted and further developed at the Sourceforge platform, where also extensive Wiki-documentation as well as numerous worked-out demonstration examples with animated graphics can be found.

  14. Experimental fault-tolerant universal quantum gates with solid-state spins under ambient conditions

    PubMed Central

    Rong, Xing; Geng, Jianpei; Shi, Fazhan; Liu, Ying; Xu, Kebiao; Ma, Wenchao; Kong, Fei; Jiang, Zhen; Wu, Yang; Du, Jiangfeng

    2015-01-01

    Quantum computation provides great speedup over its classical counterpart for certain problems. One of the key challenges for quantum computation is to realize precise control of the quantum system in the presence of noise. Control of the spin-qubits in solids with the accuracy required by fault-tolerant quantum computation under ambient conditions remains elusive. Here, we quantitatively characterize the source of noise during quantum gate operation and demonstrate strategies to suppress the effect of these. A universal set of logic gates in a nitrogen-vacancy centre in diamond are reported with an average single-qubit gate fidelity of 0.999952 and two-qubit gate fidelity of 0.992. These high control fidelities have been achieved at room temperature in naturally abundant 13C diamond via composite pulses and an optimized control method. PMID:26602456

  15. Optimal quantum control of Bose-Einstein condensates in magnetic microtraps: Comparison of gradient-ascent-pulse-engineering and Krotov optimization schemes

    NASA Astrophysics Data System (ADS)

    Jäger, Georg; Reich, Daniel M.; Goerz, Michael H.; Koch, Christiane P.; Hohenester, Ulrich

    2014-09-01

    We study optimal quantum control of the dynamics of trapped Bose-Einstein condensates: The targets are to split a condensate, residing initially in a single well, into a double well, without inducing excitation, and to excite a condensate from the ground state to the first-excited state of a single well. The condensate is described in the mean-field approximation of the Gross-Pitaevskii equation. We compare two optimization approaches in terms of their performance and ease of use; namely, gradient-ascent pulse engineering (GRAPE) and Krotov's method. Both approaches are derived from the variational principle but differ in the way the control is updated, additional costs are accounted for, and second-order-derivative information can be included. We find that GRAPE produces smoother control fields and works in a black-box manner, whereas Krotov with a suitably chosen step-size parameter converges faster but can produce sharp features in the control fields.

  16. Chaos Quantum-Behaved Cat Swarm Optimization Algorithm and Its Application in the PV MPPT

    PubMed Central

    2017-01-01

    Cat Swarm Optimization (CSO) algorithm was put forward in 2006. Despite a faster convergence speed compared with Particle Swarm Optimization (PSO) algorithm, the application of CSO is greatly limited by the drawback of “premature convergence,” that is, the possibility of trapping in local optimum when dealing with nonlinear optimization problem with a large number of local extreme values. In order to surmount the shortcomings of CSO, Chaos Quantum-behaved Cat Swarm Optimization (CQCSO) algorithm is proposed in this paper. Firstly, Quantum-behaved Cat Swarm Optimization (QCSO) algorithm improves the accuracy of the CSO algorithm, because it is easy to fall into the local optimum in the later stage. Chaos Quantum-behaved Cat Swarm Optimization (CQCSO) algorithm is proposed by introducing tent map for jumping out of local optimum in this paper. Secondly, CQCSO has been applied in the simulation of five different test functions, showing higher accuracy and less time consumption than CSO and QCSO. Finally, photovoltaic MPPT model and experimental platform are established and global maximum power point tracking control strategy is achieved by CQCSO algorithm, the effectiveness and efficiency of which have been verified by both simulation and experiment. PMID:29181020

  17. Chaos Quantum-Behaved Cat Swarm Optimization Algorithm and Its Application in the PV MPPT.

    PubMed

    Nie, Xiaohua; Wang, Wei; Nie, Haoyao

    2017-01-01

    Cat Swarm Optimization (CSO) algorithm was put forward in 2006. Despite a faster convergence speed compared with Particle Swarm Optimization (PSO) algorithm, the application of CSO is greatly limited by the drawback of "premature convergence," that is, the possibility of trapping in local optimum when dealing with nonlinear optimization problem with a large number of local extreme values. In order to surmount the shortcomings of CSO, Chaos Quantum-behaved Cat Swarm Optimization (CQCSO) algorithm is proposed in this paper. Firstly, Quantum-behaved Cat Swarm Optimization (QCSO) algorithm improves the accuracy of the CSO algorithm, because it is easy to fall into the local optimum in the later stage. Chaos Quantum-behaved Cat Swarm Optimization (CQCSO) algorithm is proposed by introducing tent map for jumping out of local optimum in this paper. Secondly, CQCSO has been applied in the simulation of five different test functions, showing higher accuracy and less time consumption than CSO and QCSO. Finally, photovoltaic MPPT model and experimental platform are established and global maximum power point tracking control strategy is achieved by CQCSO algorithm, the effectiveness and efficiency of which have been verified by both simulation and experiment.

  18. Geometrizing adiabatic quantum computation

    NASA Astrophysics Data System (ADS)

    Rezakhani, Ali; Kuo, Wan-Jung; Hamma, Alioscia; Lidar, Daniel; Zanardi, Paolo

    2010-03-01

    A time-optimal approach to adiabatic quantum computation (AQC) is formulated. The corresponding natural Riemannian metric is also derived, through which AQC can be understood as the problem of finding a geodesic on the manifold of control parameters. We demonstrate this geometrization through some examples, where we show that it leads to improved performance of AQC, and sheds light on the roles of entanglement and curvature of the control manifold in algorithmic performance. The underlying connection with quantum phase transitions is also explored.

  19. Implementation of quantum logic gates using polar molecules in pendular states.

    PubMed

    Zhu, Jing; Kais, Sabre; Wei, Qi; Herschbach, Dudley; Friedrich, Bretislav

    2013-01-14

    We present a systematic approach to implementation of basic quantum logic gates operating on polar molecules in pendular states as qubits for a quantum computer. A static electric field prevents quenching of the dipole moments by rotation, thereby creating the pendular states; also, the field gradient enables distinguishing among qubit sites. Multi-target optimal control theory is used as a means of optimizing the initial-to-target transition probability via a laser field. We give detailed calculations for the SrO molecule, a favorite candidate for proposed quantum computers. Our simulation results indicate that NOT, Hadamard and CNOT gates can be realized with high fidelity, as high as 0.985, for such pendular qubit states.

  20. Pareto-front shape in multiobservable quantum control

    NASA Astrophysics Data System (ADS)

    Sun, Qiuyang; Wu, Re-Bing; Rabitz, Herschel

    2017-03-01

    Many scenarios in the sciences and engineering require simultaneous optimization of multiple objective functions, which are usually conflicting or competing. In such problems the Pareto front, where none of the individual objectives can be further improved without degrading some others, shows the tradeoff relations between the competing objectives. This paper analyzes the Pareto-front shape for the problem of quantum multiobservable control, i.e., optimizing the expectation values of multiple observables in the same quantum system. Analytic and numerical results demonstrate that with two commuting observables the Pareto front is a convex polygon consisting of flat segments only, while with noncommuting observables the Pareto front includes convexly curved segments. We also assess the capability of a weighted-sum method to continuously capture the points along the Pareto front. Illustrative examples with realistic physical conditions are presented, including NMR control experiments on a 1H-13C two-spin system with two commuting or noncommuting observables.

  1. Stochastic gradient ascent outperforms gamers in the Quantum Moves game

    NASA Astrophysics Data System (ADS)

    Sels, Dries

    2018-04-01

    In a recent work on quantum state preparation, Sørensen and co-workers [Nature (London) 532, 210 (2016), 10.1038/nature17620] explore the possibility of using video games to help design quantum control protocols. The authors present a game called "Quantum Moves" (https://www.scienceathome.org/games/quantum-moves/) in which gamers have to move an atom from A to B by means of optical tweezers. They report that, "players succeed where purely numerical optimization fails." Moreover, by harnessing the player strategies, they can "outperform the most prominent established numerical methods." The aim of this Rapid Communication is to analyze the problem in detail and show that those claims are untenable. In fact, without any prior knowledge and starting from a random initial seed, a simple stochastic local optimization method finds near-optimal solutions which outperform all players. Counterdiabatic driving can even be used to generate protocols without resorting to numeric optimization. The analysis results in an accurate analytic estimate of the quantum speed limit which, apart from zero-point motion, is shown to be entirely classical in nature. The latter might explain why gamers are reasonably good at the game. A simple modification of the BringHomeWater challenge is proposed to test this hypothesis.

  2. Maximizing entanglement in bosonic Josephson junctions using shortcuts to adiabaticity and optimal control

    NASA Astrophysics Data System (ADS)

    Stefanatos, Dionisis; Paspalakis, Emmanuel

    2018-05-01

    In this article we consider a bosonic Josephson junction, a model system composed by two coupled nonlinear quantum oscillators which can be implemented in various physical contexts, initially prepared in a product of weakly populated coherent states. We quantify the maximum achievable entanglement between the modes of the junction and then use shortcuts to adiabaticity, a method developed to speed up adiabatic quantum dynamics, as well as numerical optimization, to find time-dependent controls (the nonlinearity and the coupling of the junction) which bring the system to a maximally entangled state.

  3. Generalized filtering of laser fields in optimal control theory: application to symmetry filtering of quantum gate operations

    NASA Astrophysics Data System (ADS)

    Schröder, Markus; Brown, Alex

    2009-10-01

    We present a modified version of a previously published algorithm (Gollub et al 2008 Phys. Rev. Lett.101 073002) for obtaining an optimized laser field with more general restrictions on the search space of the optimal field. The modification leads to enforcement of the constraints on the optimal field while maintaining good convergence behaviour in most cases. We demonstrate the general applicability of the algorithm by imposing constraints on the temporal symmetry of the optimal fields. The temporal symmetry is used to reduce the number of transitions that have to be optimized for quantum gate operations that involve inversion (NOT gate) or partial inversion (Hadamard gate) of the qubits in a three-dimensional model of ammonia.

  4. Control landscapes are almost always trap free: a geometric assessment

    NASA Astrophysics Data System (ADS)

    Russell, Benjamin; Rabitz, Herschel; Wu, Re-Bing

    2017-05-01

    A proof is presented that almost all closed, finite dimensional quantum systems have trap free (i.e. free from local optima) landscapes for a large and physically general class of circumstances, which includes qubit evolutions in quantum computing. This result offers an explanation for why gradient-based methods succeed so frequently in quantum control. The role of singular controls is analyzed using geometric tools in the case of the control of the propagator, and thus in the case of observables as well. Singular controls have been implicated as a source of landscape traps. The conditions under which singular controls can introduce traps, and thus interrupt the progress of a control optimization, are discussed and a geometrical characterization of the issue is presented. It is shown that a control being singular is not sufficient to cause control optimization progress to halt, and sufficient conditions for a trap free landscape are presented. It is further shown that the local surjectivity (full rank) assumption of landscape analysis can be refined to the condition that the end-point map is transverse to each of the level sets of the fidelity function. This mild condition is shown to be sufficient for a quantum system’s landscape to be trap free. The control landscape is shown to be trap free for all but a null set of Hamiltonians using a geometric technique based on the parametric transversality theorem. Numerical evidence confirming this analysis is also presented. This new result is the analogue of the work of Altifini, wherein it was shown that controllability holds for all but a null set of quantum systems in the dipole approximation. These collective results indicate that the availability of adequate control resources remains the most physically relevant issue for achieving high fidelity control performance while also avoiding landscape traps.

  5. 2001 Gordon Research Conference on Quantum Control of Light and Matter. Final progress report [agenda and attendee list

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapiro, Moshe

    2001-08-03

    The Gordon Research Conference on Quantum Control of Light and Matter [Quantum Control of Atomic and Molecular Motion] was held at Mount Holyoke College, South Hadley, Massachusetts, July 29 - August 3, 2001. The conference was attended by 119 participants. The attendees represented the spectrum of endeavor in this field, coming from academia, industry, and government laboratories, and included US and foreign scientists, senior researchers, young investigators, and students. Emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate discussion about the key issues in themore » field today. Session topics included the following: General perspectives, Phase control, Optimal control, Quantum information, Light manipulation and manipulation with light, Control in the condensed phase, Strong field control, Laser cooling and Bose-Einstein Condensate dynamics, and Control in the solid phase.« less

  6. Arbitrary-quantum-state preparation of a harmonic oscillator via optimal control

    NASA Astrophysics Data System (ADS)

    Rojan, Katharina; Reich, Daniel M.; Dotsenko, Igor; Raimond, Jean-Michel; Koch, Christiane P.; Morigi, Giovanna

    2014-08-01

    The efficient initialization of a quantum system is a prerequisite for quantum technological applications. Here we show that several classes of quantum states of a harmonic oscillator can be efficiently prepared by means of a Jaynes-Cummings interaction with a single two-level system. This is achieved by suitably tailoring external fields which drive the dipole and/or the oscillator. The time-dependent dynamics that leads to the target state is identified by means of optimal control theory (OCT) based on Krotov's method. Infidelities below 10-4 can be reached for the parameters of the experiment of Raimond, Haroche, Brune and co-workers, where the oscillator is a mode of a high-Q microwave cavity and the dipole is a Rydberg transition of an atom. For this specific situation we analyze the limitations on the fidelity due to parameter fluctuations and identify robust dynamics based on pulses found using ensemble OCT. Our analysis can be extended to quantum-state preparation of continuous-variable systems in other platforms, such as trapped ions and circuit QED.

  7. Optimal control of orientation and entanglement for two dipole-dipole coupled quantum planar rotors.

    PubMed

    Yu, Hongling; Ho, Tak-San; Rabitz, Herschel

    2018-05-09

    Optimal control simulations are performed for orientation and entanglement of two dipole-dipole coupled identical quantum rotors. The rotors at various fixed separations lie on a model non-interacting plane with an applied control field. It is shown that optimal control of orientation or entanglement represents two contrasting control scenarios. In particular, the maximally oriented state (MOS) of the two rotors has a zero entanglement entropy and is readily attainable at all rotor separations. Whereas, the contrasting maximally entangled state (MES) has a zero orientation expectation value and is most conveniently attainable at small separations where the dipole-dipole coupling is strong. It is demonstrated that the peak orientation expectation value attained by the MOS at large separations exhibits a long time revival pattern due to the small energy splittings arising form the extremely weak dipole-dipole coupling between the degenerate product states of the two free rotors. Moreover, it is found that the peak entanglement entropy value attained by the MES remains largely unchanged as the two rotors are transported to large separations after turning off the control field. Finally, optimal control simulations of transition dynamics between the MOS and the MES reveal the intricate interplay between orientation and entanglement.

  8. Investigations of quantum heuristics for optimization

    NASA Astrophysics Data System (ADS)

    Rieffel, Eleanor; Hadfield, Stuart; Jiang, Zhang; Mandra, Salvatore; Venturelli, Davide; Wang, Zhihui

    We explore the design of quantum heuristics for optimization, focusing on the quantum approximate optimization algorithm, a metaheuristic developed by Farhi, Goldstone, and Gutmann. We develop specific instantiations of the of quantum approximate optimization algorithm for a variety of challenging combinatorial optimization problems. Through theoretical analyses and numeric investigations of select problems, we provide insight into parameter setting and Hamiltonian design for quantum approximate optimization algorithms and related quantum heuristics, and into their implementation on hardware realizable in the near term.

  9. Partial differential equations constrained combinatorial optimization on an adiabatic quantum computer

    NASA Astrophysics Data System (ADS)

    Chandra, Rishabh

    Partial differential equation-constrained combinatorial optimization (PDECCO) problems are a mixture of continuous and discrete optimization problems. PDECCO problems have discrete controls, but since the partial differential equations (PDE) are continuous, the optimization space is continuous as well. Such problems have several applications, such as gas/water network optimization, traffic optimization, micro-chip cooling optimization, etc. Currently, no efficient classical algorithm which guarantees a global minimum for PDECCO problems exists. A new mapping has been developed that transforms PDECCO problem, which only have linear PDEs as constraints, into quadratic unconstrained binary optimization (QUBO) problems that can be solved using an adiabatic quantum optimizer (AQO). The mapping is efficient, it scales polynomially with the size of the PDECCO problem, requires only one PDE solve to form the QUBO problem, and if the QUBO problem is solved correctly and efficiently on an AQO, guarantees a global optimal solution for the original PDECCO problem.

  10. Flux qubit interaction with rapid single-flux quantum logic circuits: Control and readout

    NASA Astrophysics Data System (ADS)

    Klenov, N. V.; Kuznetsov, A. V.; Soloviev, I. I.; Bakurskiy, S. V.; Denisenko, M. V.; Satanin, A. M.

    2017-07-01

    We present the results of an analytical study and numerical simulation of the dynamics of a superconducting three-Josephson-junction (3JJ) flux qubit magnetically coupled with rapid single-flux quantum (RSFQ) logic circuit, which demonstrate the fundamental possibility of implementing the simplest logic operations at picosecond times, as well as rapid non-destructive readout. It is shown that when solving optimization problems, the qubit dynamics can be conveniently interpreted as a precession of the magnetic moment vector around the direction of the magnetic field. In this case, the role of magnetic field components is played by combinations of the Hamiltonian matrix elements, and the role of the magnetic moment is played by the Bloch vector. Features of the 3JJ qubit model are discussed during the analysis of how the qubit is affected by exposure to a short control pulse, as are the similarities between the Bloch and Landau-Lifshitz-Gilbert equations. An analysis of solutions to the Bloch equations made it possible to develop recommendations for the use of readout RSFQ circuits in implementing an optimal interface between the classical and quantum parts of the computer system, as well as to justify the use of single-quantum logic in order to control superconducting quantum circuits on a chip.

  11. Exploring constrained quantum control landscapes

    NASA Astrophysics Data System (ADS)

    Moore, Katharine W.; Rabitz, Herschel

    2012-10-01

    The broad success of optimally controlling quantum systems with external fields has been attributed to the favorable topology of the underlying control landscape, where the landscape is the physical observable as a function of the controls. The control landscape can be shown to contain no suboptimal trapping extrema upon satisfaction of reasonable physical assumptions, but this topological analysis does not hold when significant constraints are placed on the control resources. This work employs simulations to explore the topology and features of the control landscape for pure-state population transfer with a constrained class of control fields. The fields are parameterized in terms of a set of uniformly spaced spectral frequencies, with the associated phases acting as the controls. This restricted family of fields provides a simple illustration for assessing the impact of constraints upon seeking optimal control. Optimization results reveal that the minimum number of phase controls necessary to assure a high yield in the target state has a special dependence on the number of accessible energy levels in the quantum system, revealed from an analysis of the first- and second-order variation of the yield with respect to the controls. When an insufficient number of controls and/or a weak control fluence are employed, trapping extrema and saddle points are observed on the landscape. When the control resources are sufficiently flexible, solutions producing the globally maximal yield are found to form connected "level sets" of continuously variable control fields that preserve the yield. These optimal yield level sets are found to shrink to isolated points on the top of the landscape as the control field fluence is decreased, and further reduction of the fluence turns these points into suboptimal trapping extrema on the landscape. Although constrained control fields can come in many forms beyond the cases explored here, the behavior found in this paper is illustrative of the impacts that constraints can introduce.

  12. Functional Basis for Efficient Physical Layer Classical Control in Quantum Processors

    NASA Astrophysics Data System (ADS)

    Ball, Harrison; Nguyen, Trung; Leong, Philip H. W.; Biercuk, Michael J.

    2016-12-01

    The rapid progress seen in the development of quantum-coherent devices for information processing has motivated serious consideration of quantum computer architecture and organization. One topic which remains open for investigation and optimization relates to the design of the classical-quantum interface, where control operations on individual qubits are applied according to higher-level algorithms; accommodating competing demands on performance and scalability remains a major outstanding challenge. In this work, we present a resource-efficient, scalable framework for the implementation of embedded physical layer classical controllers for quantum-information systems. Design drivers and key functionalities are introduced, leading to the selection of Walsh functions as an effective functional basis for both programing and controller hardware implementation. This approach leverages the simplicity of real-time Walsh-function generation in classical digital hardware, and the fact that a wide variety of physical layer controls, such as dynamic error suppression, are known to fall within the Walsh family. We experimentally implement a real-time field-programmable-gate-array-based Walsh controller producing Walsh timing signals and Walsh-synthesized analog waveforms appropriate for critical tasks in error-resistant quantum control and noise characterization. These demonstrations represent the first step towards a unified framework for the realization of physical layer controls compatible with large-scale quantum-information processing.

  13. ProjectQ Software Framework

    NASA Astrophysics Data System (ADS)

    Steiger, Damian S.; Haener, Thomas; Troyer, Matthias

    Quantum computers promise to transform our notions of computation by offering a completely new paradigm. A high level quantum programming language and optimizing compilers are essential components to achieve scalable quantum computation. In order to address this, we introduce the ProjectQ software framework - an open source effort to support both theorists and experimentalists by providing intuitive tools to implement and run quantum algorithms. Here, we present our ProjectQ quantum compiler, which compiles a quantum algorithm from our high-level Python-embedded language down to low-level quantum gates available on the target system. We demonstrate how this compiler can be used to control actual hardware and to run high-performance simulations.

  14. Controlling the loss of quantum correlations via quantum memory channels

    NASA Astrophysics Data System (ADS)

    Duran, Durgun; Verçin, Abdullah

    2018-07-01

    A generic behavior of quantum correlations during any quantum process taking place in a noisy environment is that they are non-increasing. We have shown that mitigation of these decreases providing relative enhancements in correlations is possible by means of quantum memory channels which model correlated environmental quantum noises. For two-qubit systems subject to mixtures of two-use actions of different decoherence channels we point out that improvement in correlations can be achieved in such way that the input-output fidelity is also as high as possible. These make it possible to create the optimal conditions in realizing any quantum communication task in a noisy environment.

  15. Integrated-optics heralded controlled-NOT gate for polarization-encoded qubits

    NASA Astrophysics Data System (ADS)

    Zeuner, Jonas; Sharma, Aditya N.; Tillmann, Max; Heilmann, René; Gräfe, Markus; Moqanaki, Amir; Szameit, Alexander; Walther, Philip

    2018-03-01

    Recent progress in integrated-optics technology has made photonics a promising platform for quantum networks and quantum computation protocols. Integrated optical circuits are characterized by small device footprints and unrivalled intrinsic interferometric stability. Here, we take advantage of femtosecond-laser-written waveguides' ability to process polarization-encoded qubits and present an implementation of a heralded controlled-NOT gate on chip. We evaluate the gate performance in the computational basis and a superposition basis, showing that the gate can create polarization entanglement between two photons. Transmission through the integrated device is optimized using thermally expanded core fibers and adiabatically reduced mode-field diameters at the waveguide facets. This demonstration underlines the feasibility of integrated quantum gates for all-optical quantum networks and quantum repeaters.

  16. Autonomous calibration of single spin qubit operations

    NASA Astrophysics Data System (ADS)

    Frank, Florian; Unden, Thomas; Zoller, Jonathan; Said, Ressa S.; Calarco, Tommaso; Montangero, Simone; Naydenov, Boris; Jelezko, Fedor

    2017-12-01

    Fully autonomous precise control of qubits is crucial for quantum information processing, quantum communication, and quantum sensing applications. It requires minimal human intervention on the ability to model, to predict, and to anticipate the quantum dynamics, as well as to precisely control and calibrate single qubit operations. Here, we demonstrate single qubit autonomous calibrations via closed-loop optimisations of electron spin quantum operations in diamond. The operations are examined by quantum state and process tomographic measurements at room temperature, and their performances against systematic errors are iteratively rectified by an optimal pulse engineering algorithm. We achieve an autonomous calibrated fidelity up to 1.00 on a time scale of minutes for a spin population inversion and up to 0.98 on a time scale of hours for a single qubit π/2 -rotation within the experimental error of 2%. These results manifest a full potential for versatile quantum technologies.

  17. Implementation of a quantum controlled-SWAP gate with photonic circuits

    NASA Astrophysics Data System (ADS)

    Ono, Takafumi; Okamoto, Ryo; Tanida, Masato; Hofmann, Holger F.; Takeuchi, Shigeki

    2017-03-01

    Quantum information science addresses how the processing and transmission of information are affected by uniquely quantum mechanical phenomena. Combination of two-qubit gates has been used to realize quantum circuits, however, scalability is becoming a critical problem. The use of three-qubit gates may simplify the structure of quantum circuits dramatically. Among them, the controlled-SWAP (Fredkin) gates are essential since they can be directly applied to important protocols, e.g., error correction, fingerprinting, and optimal cloning. Here we report a realization of the Fredkin gate for photonic qubits. We achieve a fidelity of 0.85 in the computational basis and an output state fidelity of 0.81 for a 3-photon Greenberger-Horne-Zeilinger state. The estimated process fidelity of 0.77 indicates that our Fredkin gate can be applied to various quantum tasks.

  18. Quantum Adiabatic Brachistochrone

    NASA Astrophysics Data System (ADS)

    Rezakhani, A. T.; Kuo, W.-J.; Hamma, A.; Lidar, D. A.; Zanardi, P.

    2009-08-01

    We formulate a time-optimal approach to adiabatic quantum computation (AQC). A corresponding natural Riemannian metric is also derived, through which AQC can be understood as the problem of finding a geodesic on the manifold of control parameters. This geometrization of AQC is demonstrated through two examples, where we show that it leads to improved performance of AQC, and sheds light on the roles of entanglement and curvature of the control manifold in algorithmic performance.

  19. Quantum adiabatic brachistochrone.

    PubMed

    Rezakhani, A T; Kuo, W-J; Hamma, A; Lidar, D A; Zanardi, P

    2009-08-21

    We formulate a time-optimal approach to adiabatic quantum computation (AQC). A corresponding natural Riemannian metric is also derived, through which AQC can be understood as the problem of finding a geodesic on the manifold of control parameters. This geometrization of AQC is demonstrated through two examples, where we show that it leads to improved performance of AQC, and sheds light on the roles of entanglement and curvature of the control manifold in algorithmic performance.

  20. Classical Optimal Control for Energy Minimization Based On Diffeomorphic Modulation under Observable-Response-Preserving Homotopy.

    PubMed

    Soley, Micheline B; Markmann, Andreas; Batista, Victor S

    2018-06-12

    We introduce the so-called "Classical Optimal Control Optimization" (COCO) method for global energy minimization based on the implementation of the diffeomorphic modulation under observable-response-preserving homotopy (DMORPH) gradient algorithm. A probe particle with time-dependent mass m( t;β) and dipole μ( r, t;β) is evolved classically on the potential energy surface V( r) coupled to an electric field E( t;β), as described by the time-dependent density of states represented on a grid, or otherwise as a linear combination of Gaussians generated by the k-means clustering algorithm. Control parameters β defining m( t;β), μ( r, t;β), and E( t;β) are optimized by following the gradients of the energy with respect to β, adapting them to steer the particle toward the global minimum energy configuration. We find that the resulting COCO algorithm is capable of resolving near-degenerate states separated by large energy barriers and successfully locates the global minima of golf potentials on flat and rugged surfaces, previously explored for testing quantum annealing methodologies and the quantum optimal control optimization (QuOCO) method. Preliminary results show successful energy minimization of multidimensional Lennard-Jones clusters. Beyond the analysis of energy minimization in the specific model systems investigated, we anticipate COCO should be valuable for solving minimization problems in general, including optimization of parameters in applications to machine learning and molecular structure determination.

  1. Gradient ascent pulse engineering approach to CNOT gates in donor electron spin quantum computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, D.-B.; Goan, H.-S.

    2008-11-07

    In this paper, we demonstrate how gradient ascent pulse engineering (GRAPE) optimal control methods can be implemented on donor electron spin qubits in semiconductors with an architecture complementary to the original Kane's proposal. We focus on the high fidelity controlled-NOT (CNOT) gate and we explicitly find the digitized control sequences for a controlled-NOT gate by optimizing its fidelity using the effective, reduced donor electron spin Hamiltonian with external controls over the hyperfine A and exchange J interactions. We then simulate the CNOT-gate sequence with the full spin Hamiltonian and find that it has an error of 10{sup -6} that ismore » below the error threshold of 10{sup -4} required for fault-tolerant quantum computation. Also the CNOT gate operation time of 100 ns is 3 times faster than 297 ns of the proposed global control scheme.« less

  2. Nanophotonic enhanced quantum emitters

    NASA Astrophysics Data System (ADS)

    Li, Xin; Zhou, Zhang-Kai; Yu, Ying; Gather, Malte; Di Falco, Andrea

    2017-08-01

    Quantum dots are excellent solid-state quantum sources, because of their stability, their narrow spectral linewidth, and radiative lifetime in the range of 1ns. Most importantly, they can be integrated into more complex nanophononics devices, to realize high quality quantum emitters of single photons or entangled photon sources. Recent progress in nanotechnology materials and devices has opened a number of opportunities to increase, optimize and ultimately control the emission property of single quantum dot. In this work, we present an approach that combines the properties of quantum dots with the flexibility of light control offered by nanoplasmonics and metamaterials structuring. Specifically, we show the nanophotonic enhancement of two types of quantum dots devices. The quantum dots are inserted into optical-positioned micropillar cavities, or decorated on the facets of core-shell GaAs/AlGaAs nanowires, fabricated with a bottom-up approach. In both cases, the metallic nanofeatures, which are designed to control the emission and the polarization state of the emitted light, are realized via direct electron-beam-induced deposition. This approach permits to create three-dimensional features with nanometric resolution and positional accuracy, and does not require wet lithographic steps and previous knowledge of the exact spatial arrangement of the quantum devices.

  3. Time-optimal excitation of maximum quantum coherence: Physical limits and pulse sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Köcher, S. S.; Institute of Energy and Climate Research; Heydenreich, T.

    Here we study the optimum efficiency of the excitation of maximum quantum (MaxQ) coherence using analytical and numerical methods based on optimal control theory. The theoretical limit of the achievable MaxQ amplitude and the minimum time to achieve this limit are explored for a set of model systems consisting of up to five coupled spins. In addition to arbitrary pulse shapes, two simple pulse sequence families of practical interest are considered in the optimizations. Compared to conventional approaches, substantial gains were found both in terms of the achieved MaxQ amplitude and in pulse sequence durations. For a model system, theoreticallymore » predicted gains of a factor of three compared to the conventional pulse sequence were experimentally demonstrated. Motivated by the numerical results, also two novel analytical transfer schemes were found: Compared to conventional approaches based on non-selective pulses and delays, double-quantum coherence in two-spin systems can be created twice as fast using isotropic mixing and hard spin-selective pulses. Also it is proved that in a chain of three weakly coupled spins with the same coupling constants, triple-quantum coherence can be created in a time-optimal fashion using so-called geodesic pulses.« less

  4. Coherent feedback control of a single qubit in diamond

    NASA Astrophysics Data System (ADS)

    Hirose, Masashi; Cappellaro, Paola

    2016-04-01

    Engineering desired operations on qubits subjected to the deleterious effects of their environment is a critical task in quantum information processing, quantum simulation and sensing. The most common approach relies on open-loop quantum control techniques, including optimal-control algorithms based on analytical or numerical solutions, Lyapunov design and Hamiltonian engineering. An alternative strategy, inspired by the success of classical control, is feedback control. Because of the complications introduced by quantum measurement, closed-loop control is less pervasive in the quantum setting and, with exceptions, its experimental implementations have been mainly limited to quantum optics experiments. Here we implement a feedback-control algorithm using a solid-state spin qubit system associated with the nitrogen vacancy centre in diamond, using coherent feedback to overcome the limitations of measurement-based feedback, and show that it can protect the qubit against intrinsic dephasing noise for milliseconds. In coherent feedback, the quantum system is connected to an auxiliary quantum controller (ancilla) that acquires information about the output state of the system (by an entangling operation) and performs an appropriate feedback action (by a conditional gate). In contrast to open-loop dynamical decoupling techniques, feedback control can protect the qubit even against Markovian noise and for an arbitrary period of time (limited only by the coherence time of the ancilla), while allowing gate operations. It is thus more closely related to quantum error-correction schemes, although these require larger and increasing qubit overheads. Increasing the number of fresh ancillas enables protection beyond their coherence time. We further evaluate the robustness of the feedback protocol, which could be applied to quantum computation and sensing, by exploring a trade-off between information gain and decoherence protection, as measurement of the ancilla-qubit correlation after the feedback algorithm voids the protection, even if the rest of the dynamics is unchanged.

  5. Visible Quantum Nanophotonics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subramania, Ganapathi Subramanian; Wang, George T.; Fischer, Arthur J.

    2017-09-01

    The goal of this LDRD is to develop a quantum nanophotonics capability that will allow practical control over electron (hole) and photon confinement in more than one dimension. We plan to use quantum dots (QDs) to control electrons, and photonic crystals to control photons. InGaN QDs will be fabricated using quantum size control processes, and methods will be developed to add epitaxial layers for hole injection and surface passivation. We will also explore photonic crystal nanofabrication techniques using both additive and subtractive fabrication processes, which can tailor photonic crystal properties. These two efforts will be combined by incorporating the QDsmore » into photonic crystal surface emitting lasers (PCSELs). Modeling will be performed using finite-different time-domain and gain analysis to optimize QD-PCSEL designs that balance laser performance with the ability to nano-fabricate structures. Finally, we will develop design rules for QD-PCSEL architectures, to understand their performance possibilities and limits.« less

  6. Spin-state transfer in laterally coupled quantum-dot chains with disorders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Song; Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026; Bayat, Abolfazl

    2010-08-15

    Quantum dot arrays are a promising medium for transferring quantum information between two distant points without resorting to mobile qubits. Here we study the two most common disorders, namely hyperfine interaction and exchange coupling fluctuations, in quantum dot arrays and their effects on quantum communication through these chains. Our results show that the hyperfine interaction is more destructive than the exchange coupling fluctuations. The average optimal time for communication is not affected by any disorder in the system and our simulations show that antiferromagnetic chains are much more resistive than the ferromagnetic ones against both kind of disorders. Even whenmore » time modulation of a coupling and optimal control is employed to improve the transmission, the antiferromagnetic chain performs much better. We have assumed the quasistatic approximation for hyperfine interaction and time-dependent fluctuations in the exchange couplings. Particularly for studying exchange coupling fluctuations we have considered the static disorder, white noise, and 1/f noise.« less

  7. Control of optical bistability and third-order nonlinearity via tunneling induced quantum interference in triangular quantum dot molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Si-Cong, E-mail: tiansicong@ciomp.ac.cn; Tong, Cun-Zhu, E-mail: tongcz@ciomp.ac.cn; Zhang, Jin-Long

    The optical bistability of a triangular quantum dot molecules embedded inside a unidirectional ring cavity is studied. The type, the threshold and the hysteresis loop of the optical bistability curves can be modified by the tunneling parameters, as well as the probe laser field. The linear and nonlinear susceptibilities of the medium are also studied to interpret the corresponding results. The physical interpretation is that the tunneling can induce the quantum interference, which modifies the linear and the nonlinear response of the medium. As a consequence, the characteristics of the optical bistability are changed. The scheme proposed here can bemore » utilized for optimizing and controlling the optical switching process.« less

  8. Optimal protocols for slowly driven quantum systems.

    PubMed

    Zulkowski, Patrick R; DeWeese, Michael R

    2015-09-01

    The design of efficient quantum information processing will rely on optimal nonequilibrium transitions of driven quantum systems. Building on a recently developed geometric framework for computing optimal protocols for classical systems driven in finite time, we construct a general framework for optimizing the average information entropy for driven quantum systems. Geodesics on the parameter manifold endowed with a positive semidefinite metric correspond to protocols that minimize the average information entropy production in finite time. We use this framework to explicitly compute the optimal entropy production for a simple two-state quantum system coupled to a heat bath of bosonic oscillators, which has applications to quantum annealing.

  9. Quadratic constrained mixed discrete optimization with an adiabatic quantum optimizer

    NASA Astrophysics Data System (ADS)

    Chandra, Rishabh; Jacobson, N. Tobias; Moussa, Jonathan E.; Frankel, Steven H.; Kais, Sabre

    2014-07-01

    We extend the family of problems that may be implemented on an adiabatic quantum optimizer (AQO). When a quadratic optimization problem has at least one set of discrete controls and the constraints are linear, we call this a quadratic constrained mixed discrete optimization (QCMDO) problem. QCMDO problems are NP-hard, and no efficient classical algorithm for their solution is known. Included in the class of QCMDO problems are combinatorial optimization problems constrained by a linear partial differential equation (PDE) or system of linear PDEs. An essential complication commonly encountered in solving this type of problem is that the linear constraint may introduce many intermediate continuous variables into the optimization while the computational cost grows exponentially with problem size. We resolve this difficulty by developing a constructive mapping from QCMDO to quadratic unconstrained binary optimization (QUBO) such that the size of the QUBO problem depends only on the number of discrete control variables. With a suitable embedding, taking into account the physical constraints of the realizable coupling graph, the resulting QUBO problem can be implemented on an existing AQO. The mapping itself is efficient, scaling cubically with the number of continuous variables in the general case and linearly in the PDE case if an efficient preconditioner is available.

  10. A scalable, self-analyzing digital locking system for use on quantum optics experiments.

    PubMed

    Sparkes, B M; Chrzanowski, H M; Parrain, D P; Buchler, B C; Lam, P K; Symul, T

    2011-07-01

    Digital control of optics experiments has many advantages over analog control systems, specifically in terms of the scalability, cost, flexibility, and the integration of system information into one location. We present a digital control system, freely available for download online, specifically designed for quantum optics experiments that allows for automatic and sequential re-locking of optical components. We show how the inbuilt locking analysis tools, including a white-noise network analyzer, can be used to help optimize individual locks, and verify the long term stability of the digital system. Finally, we present an example of the benefits of digital locking for quantum optics by applying the code to a specific experiment used to characterize optical Schrödinger cat states.

  11. Acetylcholine molecular arrays enable quantum information processing

    NASA Astrophysics Data System (ADS)

    Tamulis, Arvydas; Majauskaite, Kristina; Talaikis, Martynas; Zborowski, Krzysztof; Kairys, Visvaldas

    2017-09-01

    We have found self-assembly of four neurotransmitter acetylcholine (ACh) molecular complexes in a water molecules environment by using geometry optimization with DFT B97d method. These complexes organizes to regular arrays of ACh molecules possessing electronic spins, i.e. quantum information bits. These spin arrays could potentially be controlled by the application of a non-uniform external magnetic field. The proper sequence of resonant electromagnetic pulses would then drive all the spin groups into the 3-spin entangled state and proceed large scale quantum information bits.

  12. Controlling neutron orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Clark, Charles W.; Barankov, Roman; Huber, Michael G.; Arif, Muhammad; Cory, David G.; Pushin, Dmitry A.

    2015-09-01

    The quantized orbital angular momentum (OAM) of photons offers an additional degree of freedom and topological protection from noise. Photonic OAM states have therefore been exploited in various applications ranging from studies of quantum entanglement and quantum information science to imaging. The OAM states of electron beams have been shown to be similarly useful, for example in rotating nanoparticles and determining the chirality of crystals. However, although neutrons--as massive, penetrating and neutral particles--are important in materials characterization, quantum information and studies of the foundations of quantum mechanics, OAM control of neutrons has yet to be achieved. Here, we demonstrate OAM control of neutrons using macroscopic spiral phase plates that apply a `twist' to an input neutron beam. The twisted neutron beams are analysed with neutron interferometry. Our techniques, applied to spatially incoherent beams, demonstrate both the addition of quantum angular momenta along the direction of propagation, effected by multiple spiral phase plates, and the conservation of topological charge with respect to uniform phase fluctuations. Neutron-based studies of quantum information science, the foundations of quantum mechanics, and scattering and imaging of magnetic, superconducting and chiral materials have until now been limited to three degrees of freedom: spin, path and energy. The optimization of OAM control, leading to well defined values of OAM, would provide an additional quantized degree of freedom for such studies.

  13. Quantum Optimization of Fully Connected Spin Glasses

    NASA Astrophysics Data System (ADS)

    Venturelli, Davide; Mandrà, Salvatore; Knysh, Sergey; O'Gorman, Bryan; Biswas, Rupak; Smelyanskiy, Vadim

    2015-07-01

    Many NP-hard problems can be seen as the task of finding a ground state of a disordered highly connected Ising spin glass. If solutions are sought by means of quantum annealing, it is often necessary to represent those graphs in the annealer's hardware by means of the graph-minor embedding technique, generating a final Hamiltonian consisting of coupled chains of ferromagnetically bound spins, whose binding energy is a free parameter. In order to investigate the effect of embedding on problems of interest, the fully connected Sherrington-Kirkpatrick model with random ±1 couplings is programmed on the D-Wave TwoTM annealer using up to 270 qubits interacting on a Chimera-type graph. We present the best embedding prescriptions for encoding the Sherrington-Kirkpatrick problem in the Chimera graph. The results indicate that the optimal choice of embedding parameters could be associated with the emergence of the spin-glass phase of the embedded problem, whose presence was previously uncertain. This optimal parameter setting allows the performance of the quantum annealer to compete with (and potentially outperform, in the absence of analog control errors) optimized simulated annealing algorithms.

  14. Beating the limits with initial correlations

    NASA Astrophysics Data System (ADS)

    Basilewitsch, Daniel; Schmidt, Rebecca; Sugny, Dominique; Maniscalco, Sabrina; Koch, Christiane P.

    2017-11-01

    Fast and reliable reset of a qubit is a key prerequisite for any quantum technology. For real world open quantum systems undergoing non-Markovian dynamics, reset implies not only purification, but in particular erasure of initial correlations between qubit and environment. Here, we derive optimal reset protocols using a combination of geometric and numerical control theory. For factorizing initial states, we find a lower limit for the entropy reduction of the qubit as well as a speed limit. The time-optimal solution is determined by the maximum coupling strength. Initial correlations, remarkably, allow for faster reset and smaller errors. Entanglement is not necessary.

  15. Optimal Control for Fast and Robust Generation of Entangled States in Anisotropic Heisenberg Chains

    NASA Astrophysics Data System (ADS)

    Zhang, Xiong-Peng; Shao, Bin; Zou, Jian

    2017-05-01

    Motivated by some recent results of the optimal control (OC) theory, we study anisotropic XXZ Heisenberg spin-1/2 chains with control fields acting on a single spin, with the aim of exploring how maximally entangled state can be prepared. To achieve the goal, we use a numerical optimization algorithm (e.g., the Krotov algorithm, which was shown to be capable of reaching the quantum speed limit) to search an optimal set of control parameters, and then obtain OC pulses corresponding to the target fidelity. We find that the minimum time for implementing our target state depending on the anisotropy parameter Δ of the model. Finally, we analyze the robustness of the obtained results for the optimal fidelities and the effectiveness of the Krotov method under some realistic conditions.

  16. Reaching Agreement in Quantum Hybrid Networks.

    PubMed

    Shi, Guodong; Li, Bo; Miao, Zibo; Dower, Peter M; James, Matthew R

    2017-07-20

    We consider a basic quantum hybrid network model consisting of a number of nodes each holding a qubit, for which the aim is to drive the network to a consensus in the sense that all qubits reach a common state. Projective measurements are applied serving as control means, and the measurement results are exchanged among the nodes via classical communication channels. In this way the quantum-opeartion/classical-communication nature of hybrid quantum networks is captured, although coherent states and joint operations are not taken into consideration in order to facilitate a clear and explicit analysis. We show how to carry out centralized optimal path planning for this network with all-to-all classical communications, in which case the problem becomes a stochastic optimal control problem with a continuous action space. To overcome the computation and communication obstacles facing the centralized solutions, we also develop a distributed Pairwise Qubit Projection (PQP) algorithm, where pairs of nodes meet at a given time and respectively perform measurements at their geometric average. We show that the qubit states are driven to a consensus almost surely along the proposed PQP algorithm, and that the expected qubit density operators converge to the average of the network's initial values.

  17. Adiabatic quantum games and phase-transition-like behavior between optimal strategies

    NASA Astrophysics Data System (ADS)

    de Ponte, M. A.; Santos, Alan C.

    2018-06-01

    In this paper we propose a game of a single qubit whose strategies can be implemented adiabatically. In addition, we show how to implement the strategies of a quantum game through controlled adiabatic evolutions, where we analyze the payment of a quantum player for various situations of interest: (1) when the players receive distinct payments, (2) when the initial state is an arbitrary superposition, and (3) when the device that implements the strategy is inefficient. Through a graphical analysis, it is possible to notice that the curves that represent the gains of the players present a behavior similar to the curves that give rise to a phase transition in thermodynamics. These transitions are associated with optimal strategy changes and occur in the absence of entanglement and interaction between the players.

  18. Efficient quantum transmission in multiple-source networks.

    PubMed

    Luo, Ming-Xing; Xu, Gang; Chen, Xiu-Bo; Yang, Yi-Xian; Wang, Xiaojun

    2014-04-02

    A difficult problem in quantum network communications is how to efficiently transmit quantum information over large-scale networks with common channels. We propose a solution by developing a quantum encoding approach. Different quantum states are encoded into a coherent superposition state using quantum linear optics. The transmission congestion in the common channel may be avoided by transmitting the superposition state. For further decoding and continued transmission, special phase transformations are applied to incoming quantum states using phase shifters such that decoders can distinguish outgoing quantum states. These phase shifters may be precisely controlled using classical chaos synchronization via additional classical channels. Based on this design and the reduction of multiple-source network under the assumption of restricted maximum-flow, the optimal scheme is proposed for specially quantized multiple-source network. In comparison with previous schemes, our scheme can greatly increase the transmission efficiency.

  19. Experimental Adiabatic Quantum Factorization under Ambient Conditions Based on a Solid-State Single Spin System.

    PubMed

    Xu, Kebiao; Xie, Tianyu; Li, Zhaokai; Xu, Xiangkun; Wang, Mengqi; Ye, Xiangyu; Kong, Fei; Geng, Jianpei; Duan, Changkui; Shi, Fazhan; Du, Jiangfeng

    2017-03-31

    The adiabatic quantum computation is a universal and robust method of quantum computing. In this architecture, the problem can be solved by adiabatically evolving the quantum processor from the ground state of a simple initial Hamiltonian to that of a final one, which encodes the solution of the problem. Adiabatic quantum computation has been proved to be a compatible candidate for scalable quantum computation. In this Letter, we report on the experimental realization of an adiabatic quantum algorithm on a single solid spin system under ambient conditions. All elements of adiabatic quantum computation, including initial state preparation, adiabatic evolution (simulated by optimal control), and final state read-out, are realized experimentally. As an example, we found the ground state of the problem Hamiltonian S_{z}I_{z} on our adiabatic quantum processor, which can be mapped to the factorization of 35 into its prime factors 5 and 7.

  20. Experimental Adiabatic Quantum Factorization under Ambient Conditions Based on a Solid-State Single Spin System

    NASA Astrophysics Data System (ADS)

    Xu, Kebiao; Xie, Tianyu; Li, Zhaokai; Xu, Xiangkun; Wang, Mengqi; Ye, Xiangyu; Kong, Fei; Geng, Jianpei; Duan, Changkui; Shi, Fazhan; Du, Jiangfeng

    2017-03-01

    The adiabatic quantum computation is a universal and robust method of quantum computing. In this architecture, the problem can be solved by adiabatically evolving the quantum processor from the ground state of a simple initial Hamiltonian to that of a final one, which encodes the solution of the problem. Adiabatic quantum computation has been proved to be a compatible candidate for scalable quantum computation. In this Letter, we report on the experimental realization of an adiabatic quantum algorithm on a single solid spin system under ambient conditions. All elements of adiabatic quantum computation, including initial state preparation, adiabatic evolution (simulated by optimal control), and final state read-out, are realized experimentally. As an example, we found the ground state of the problem Hamiltonian SzIz on our adiabatic quantum processor, which can be mapped to the factorization of 35 into its prime factors 5 and 7.

  1. Memory-built-in quantum cloning in a hybrid solid-state spin register

    NASA Astrophysics Data System (ADS)

    Wang, Weibin; Zu, Chong; He, Li; Zhang, Wengang; Duan, Luming

    2015-05-01

    As a way to circumvent the quantum no-cloning theorem, approximate quantum cloning protocols have received wide attention with remarkable applications. Copying of quantum states to memory qubits provides an important strategy for eavesdropping in quantum cryptography. We report an experiment that realizes cloning of quantum states from an electron spin to a nuclear spin in a hybrid solid-state spin register with near-optimal fidelity. The nuclear spin provides an ideal memory qubit at room temperature, which stores the cloned quantum states for a millisecond under ambient conditions, exceeding the lifetime of the original quantum state carried by the electron spin by orders of magnitude, and making it an ideal memory qubit. Our experiment is based on control of an individual nitrogen vacancy (NV) center in the diamond, which is a diamond defect that attracts strong interest in recent years with great potential for implementation of quantum information protocols.

  2. Control-enhanced multiparameter quantum estimation

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Yuan, Haidong

    2017-10-01

    Most studies in multiparameter estimation assume the dynamics is fixed and focus on identifying the optimal probe state and the optimal measurements. In practice, however, controls are usually available to alter the dynamics, which provides another degree of freedom. In this paper we employ optimal control methods, particularly the gradient ascent pulse engineering (GRAPE), to design optimal controls for the improvement of the precision limit in multiparameter estimation. We show that the controlled schemes are not only capable to provide a higher precision limit, but also have a higher stability to the inaccuracy of the time point performing the measurements. This high time stability will benefit the practical metrology, where it is hard to perform the measurement at a very accurate time point due to the response time of the measurement apparatus.

  3. Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network.

    PubMed

    Goto, Hayato

    2016-02-22

    The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.

  4. Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network

    NASA Astrophysics Data System (ADS)

    Goto, Hayato

    2016-02-01

    The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.

  5. Accurate and Robust Unitary Transformations of a High-Dimensional Quantum System

    NASA Astrophysics Data System (ADS)

    Anderson, B. E.; Sosa-Martinez, H.; Riofrío, C. A.; Deutsch, Ivan H.; Jessen, Poul S.

    2015-06-01

    Unitary transformations are the most general input-output maps available in closed quantum systems. Good control protocols have been developed for qubits, but questions remain about the use of optimal control theory to design unitary maps in high-dimensional Hilbert spaces, and about the feasibility of their robust implementation in the laboratory. Here we design and implement unitary maps in a 16-dimensional Hilbert space associated with the 6 S1 /2 ground state of 133Cs, achieving fidelities >0.98 with built-in robustness to static and dynamic perturbations. Our work has relevance for quantum information processing and provides a template for similar advances on other physical platforms.

  6. Deterministic generation of remote entanglement with active quantum feedback

    DOE PAGES

    Martin, Leigh; Motzoi, Felix; Li, Hanhan; ...

    2015-12-10

    We develop and study protocols for deterministic remote entanglement generation using quantum feedback, without relying on an entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can bemore » modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Lastly, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone.« less

  7. The Quantum Approximation Optimization Algorithm for MaxCut: A Fermionic View

    NASA Technical Reports Server (NTRS)

    Wang, Zhihui; Hadfield, Stuart; Jiang, Zhang; Rieffel, Eleanor G.

    2017-01-01

    Farhi et al. recently proposed a class of quantum algorithms, the Quantum Approximate Optimization Algorithm (QAOA), for approximately solving combinatorial optimization problems. A level-p QAOA circuit consists of steps in which a classical Hamiltonian, derived from the cost function, is applied followed by a mixing Hamiltonian. The 2p times for which these two Hamiltonians are applied are the parameters of the algorithm. As p increases, however, the parameter search space grows quickly. The success of the QAOA approach will depend, in part, on finding effective parameter-setting strategies. Here, we analytically and numerically study parameter setting for QAOA applied to MAXCUT. For level-1 QAOA, we derive an analytical expression for a general graph. In principle, expressions for higher p could be derived, but the number of terms quickly becomes prohibitive. For a special case of MAXCUT, the Ring of Disagrees, or the 1D antiferromagnetic ring, we provide an analysis for arbitrarily high level. Using a Fermionic representation, the evolution of the system under QAOA translates into quantum optimal control of an ensemble of independent spins. This treatment enables us to obtain analytical expressions for the performance of QAOA for any p. It also greatly simplifies numerical search for the optimal values of the parameters. By exploring symmetries, we identify a lower-dimensional sub-manifold of interest; the search effort can be accordingly reduced. This analysis also explains an observed symmetry in the optimal parameter values. Further, we numerically investigate the parameter landscape and show that it is a simple one in the sense of having no local optima.

  8. Fast and robust control of two interacting spins

    NASA Astrophysics Data System (ADS)

    Yu, Xiao-Tong; Zhang, Qi; Ban, Yue; Chen, Xi

    2018-06-01

    Rapid preparation, manipulation, and correction of spin states with high fidelity are requisite for quantum information processing and quantum computing. In this paper, we propose a fast and robust approach for controlling two spins with Heisenberg and Ising interactions. By using the concept of shortcuts to adiabaticity, we first inverse design the driving magnetic fields for achieving fast spin flip or generating the entangled Bell state, and further optimize them with respect to the error and fluctuation. In particular, the designed shortcut protocols can efficiently suppress the unwanted transition or control error induced by anisotropic antisymmetric Dzyaloshinskii-Moriya exchange. Several examples and comparisons are illustrated, showing the advantages of our methods. Finally, we emphasize that the results can be naturally extended to multiple interacting spins and other quantum systems in an analogous fashion.

  9. Unraveling Quantum Annealers using Classical Hardness

    PubMed Central

    Martin-Mayor, Victor; Hen, Itay

    2015-01-01

    Recent advances in quantum technology have led to the development and manufacturing of experimental programmable quantum annealing optimizers that contain hundreds of quantum bits. These optimizers, commonly referred to as ‘D-Wave’ chips, promise to solve practical optimization problems potentially faster than conventional ‘classical’ computers. Attempts to quantify the quantum nature of these chips have been met with both excitement and skepticism but have also brought up numerous fundamental questions pertaining to the distinguishability of experimental quantum annealers from their classical thermal counterparts. Inspired by recent results in spin-glass theory that recognize ‘temperature chaos’ as the underlying mechanism responsible for the computational intractability of hard optimization problems, we devise a general method to quantify the performance of quantum annealers on optimization problems suffering from varying degrees of temperature chaos: A superior performance of quantum annealers over classical algorithms on these may allude to the role that quantum effects play in providing speedup. We utilize our method to experimentally study the D-Wave Two chip on different temperature-chaotic problems and find, surprisingly, that its performance scales unfavorably as compared to several analogous classical algorithms. We detect, quantify and discuss several purely classical effects that possibly mask the quantum behavior of the chip. PMID:26483257

  10. Spin Glass a Bridge Between Quantum Computation and Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Ohzeki, Masayuki

    2013-09-01

    In this chapter, we show two fascinating topics lying between quantum information processing and statistical mechanics. First, we introduce an elaborated technique, the surface code, to prepare the particular quantum state with robustness against decoherence. Interestingly, the theoretical limitation of the surface code, accuracy threshold, to restore the quantum state has a close connection with the problem on the phase transition in a special model known as spin glasses, which is one of the most active researches in statistical mechanics. The phase transition in spin glasses is an intractable problem, since we must strive many-body system with complicated interactions with change of their signs depending on the distance between spins. Fortunately, recent progress in spin-glass theory enables us to predict the precise location of the critical point, at which the phase transition occurs. It means that statistical mechanics is available for revealing one of the most interesting parts in quantum information processing. We show how to import the special tool in statistical mechanics into the problem on the accuracy threshold in quantum computation. Second, we show another interesting technique to employ quantum nature, quantum annealing. The purpose of quantum annealing is to search for the most favored solution of a multivariable function, namely optimization problem. The most typical instance is the traveling salesman problem to find the minimum tour while visiting all the cities. In quantum annealing, we introduce quantum fluctuation to drive a particular system with the artificial Hamiltonian, in which the ground state represents the optimal solution of the specific problem we desire to solve. Induction of the quantum fluctuation gives rise to the quantum tunneling effect, which allows nontrivial hopping from state to state. We then sketch a strategy to control the quantum fluctuation efficiently reaching the ground state. Such a generic framework is called quantum annealing. The most typical instance is quantum adiabatic computation based on the adiabatic theorem. The quantum adiabatic computation as discussed in the other chapter, unfortunately, has a crucial bottleneck for a part of the optimization problems. We here introduce several recent trials to overcome such a weakpoint by use of developments in statistical mechanics. Through both of the topics, we would shed light on the birth of the interdisciplinary field between quantum mechanics and statistical mechanics.

  11. Efficient Variational Quantum Simulator Incorporating Active Error Minimization

    NASA Astrophysics Data System (ADS)

    Li, Ying; Benjamin, Simon C.

    2017-04-01

    One of the key applications for quantum computers will be the simulation of other quantum systems that arise in chemistry, materials science, etc., in order to accelerate the process of discovery. It is important to ask the following question: Can this simulation be achieved using near-future quantum processors, of modest size and under imperfect control, or must it await the more distant era of large-scale fault-tolerant quantum computing? Here, we propose a variational method involving closely integrated classical and quantum coprocessors. We presume that all operations in the quantum coprocessor are prone to error. The impact of such errors is minimized by boosting them artificially and then extrapolating to the zero-error case. In comparison to a more conventional optimized Trotterization technique, we find that our protocol is efficient and appears to be fundamentally more robust against error accumulation.

  12. Electrically tunable spin filtering for electron tunneling between spin-resolved quantum Hall edge states and a quantum dot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiyama, H., E-mail: kiyama@meso.t.u-tokyo.ac.jp; Fujita, T.; Teraoka, S.

    2014-06-30

    Spin filtering with electrically tunable efficiency is achieved for electron tunneling between a quantum dot and spin-resolved quantum Hall edge states by locally gating the two-dimensional electron gas (2DEG) leads near the tunnel junction to the dot. The local gating can change the potential gradient in the 2DEG and consequently the edge state separation. We use this technique to electrically control the ratio of the dot–edge state tunnel coupling between opposite spins and finally increase spin filtering efficiency up to 91%, the highest ever reported, by optimizing the local gating.

  13. Coulomb-coupled quantum-dot thermal transistors

    NASA Astrophysics Data System (ADS)

    Zhang, Yanchao; Yang, Zhimin; Zhang, Xin; Lin, Bihong; Lin, Guoxing; Chen, Jincan

    2018-04-01

    A quantum-dot thermal transistor consisting of three Coulomb-coupled quantum dots coupled to the respective electronic reservoirs by tunnel contacts is established. The heat flows through the collector and emitter can be controlled by the temperature of the base. It is found that a small change in the base heat flow can induce a large heat flow change in the collector and emitter. The huge amplification factor can be obtained by optimizing the Coulomb interaction between the collector and the emitter or by decreasing the tunneling rate at the base. The proposed quantum-dot thermal transistor may open up potential applications in low-temperature solid-state thermal circuits at the nanoscale.

  14. Efficient Quantum Transmission in Multiple-Source Networks

    PubMed Central

    Luo, Ming-Xing; Xu, Gang; Chen, Xiu-Bo; Yang, Yi-Xian; Wang, Xiaojun

    2014-01-01

    A difficult problem in quantum network communications is how to efficiently transmit quantum information over large-scale networks with common channels. We propose a solution by developing a quantum encoding approach. Different quantum states are encoded into a coherent superposition state using quantum linear optics. The transmission congestion in the common channel may be avoided by transmitting the superposition state. For further decoding and continued transmission, special phase transformations are applied to incoming quantum states using phase shifters such that decoders can distinguish outgoing quantum states. These phase shifters may be precisely controlled using classical chaos synchronization via additional classical channels. Based on this design and the reduction of multiple-source network under the assumption of restricted maximum-flow, the optimal scheme is proposed for specially quantized multiple-source network. In comparison with previous schemes, our scheme can greatly increase the transmission efficiency. PMID:24691590

  15. Realizing a partial general quantum cloning machine with superconducting quantum-interference devices in a cavity QED

    NASA Astrophysics Data System (ADS)

    Fang, Bao-Long; Yang, Zhen; Ye, Liu

    2009-05-01

    We propose a scheme for implementing a partial general quantum cloning machine with superconducting quantum-interference devices coupled to a nonresonant cavity. By regulating the time parameters, our system can perform optimal symmetric (asymmetric) universal quantum cloning, optimal symmetric (asymmetric) phase-covariant cloning, and optimal symmetric economical phase-covariant cloning. In the scheme the cavity is only virtually excited, thus, the cavity decay is suppressed during the cloning operations.

  16. Fidelity-Based Ant Colony Algorithm with Q-learning of Quantum System

    NASA Astrophysics Data System (ADS)

    Liao, Qin; Guo, Ying; Tu, Yifeng; Zhang, Hang

    2018-03-01

    Quantum ant colony algorithm (ACA) has potential applications in quantum information processing, such as solutions of traveling salesman problem, zero-one knapsack problem, robot route planning problem, and so on. To shorten the search time of the ACA, we suggest the fidelity-based ant colony algorithm (FACA) for the control of quantum system. Motivated by structure of the Q-learning algorithm, we demonstrate the combination of a FACA with the Q-learning algorithm and suggest the design of a fidelity-based ant colony algorithm with the Q-learning to improve the performance of the FACA in a spin-1/2 quantum system. The numeric simulation results show that the FACA with the Q-learning can efficiently avoid trapping into local optimal policies and increase the speed of convergence process of quantum system.

  17. Fidelity-Based Ant Colony Algorithm with Q-learning of Quantum System

    NASA Astrophysics Data System (ADS)

    Liao, Qin; Guo, Ying; Tu, Yifeng; Zhang, Hang

    2017-12-01

    Quantum ant colony algorithm (ACA) has potential applications in quantum information processing, such as solutions of traveling salesman problem, zero-one knapsack problem, robot route planning problem, and so on. To shorten the search time of the ACA, we suggest the fidelity-based ant colony algorithm (FACA) for the control of quantum system. Motivated by structure of the Q-learning algorithm, we demonstrate the combination of a FACA with the Q-learning algorithm and suggest the design of a fidelity-based ant colony algorithm with the Q-learning to improve the performance of the FACA in a spin-1/2 quantum system. The numeric simulation results show that the FACA with the Q-learning can efficiently avoid trapping into local optimal policies and increase the speed of convergence process of quantum system.

  18. High-dimensional quantum cloning and applications to quantum hacking

    PubMed Central

    Bouchard, Frédéric; Fickler, Robert; Boyd, Robert W.; Karimi, Ebrahim

    2017-01-01

    Attempts at cloning a quantum system result in the introduction of imperfections in the state of the copies. This is a consequence of the no-cloning theorem, which is a fundamental law of quantum physics and the backbone of security for quantum communications. Although perfect copies are prohibited, a quantum state may be copied with maximal accuracy via various optimal cloning schemes. Optimal quantum cloning, which lies at the border of the physical limit imposed by the no-signaling theorem and the Heisenberg uncertainty principle, has been experimentally realized for low-dimensional photonic states. However, an increase in the dimensionality of quantum systems is greatly beneficial to quantum computation and communication protocols. Nonetheless, no experimental demonstration of optimal cloning machines has hitherto been shown for high-dimensional quantum systems. We perform optimal cloning of high-dimensional photonic states by means of the symmetrization method. We show the universality of our technique by conducting cloning of numerous arbitrary input states and fully characterize our cloning machine by performing quantum state tomography on cloned photons. In addition, a cloning attack on a Bennett and Brassard (BB84) quantum key distribution protocol is experimentally demonstrated to reveal the robustness of high-dimensional states in quantum cryptography. PMID:28168219

  19. High-dimensional quantum cloning and applications to quantum hacking.

    PubMed

    Bouchard, Frédéric; Fickler, Robert; Boyd, Robert W; Karimi, Ebrahim

    2017-02-01

    Attempts at cloning a quantum system result in the introduction of imperfections in the state of the copies. This is a consequence of the no-cloning theorem, which is a fundamental law of quantum physics and the backbone of security for quantum communications. Although perfect copies are prohibited, a quantum state may be copied with maximal accuracy via various optimal cloning schemes. Optimal quantum cloning, which lies at the border of the physical limit imposed by the no-signaling theorem and the Heisenberg uncertainty principle, has been experimentally realized for low-dimensional photonic states. However, an increase in the dimensionality of quantum systems is greatly beneficial to quantum computation and communication protocols. Nonetheless, no experimental demonstration of optimal cloning machines has hitherto been shown for high-dimensional quantum systems. We perform optimal cloning of high-dimensional photonic states by means of the symmetrization method. We show the universality of our technique by conducting cloning of numerous arbitrary input states and fully characterize our cloning machine by performing quantum state tomography on cloned photons. In addition, a cloning attack on a Bennett and Brassard (BB84) quantum key distribution protocol is experimentally demonstrated to reveal the robustness of high-dimensional states in quantum cryptography.

  20. An approach to optimal semi-active control of vibration energy harvesting based on MEMS

    NASA Astrophysics Data System (ADS)

    Rojas, Rafael A.; Carcaterra, Antonio

    2018-07-01

    In this paper the energy harvesting problem involving typical MEMS technology is reduced to an optimal control problem, where the objective function is the absorption of the maximum amount of energy in a given time interval from a vibrating environment. The interest here is to identify a physical upper bound for this energy storage. The mathematical tool is a new optimal control called Krotov's method, that has not yet been applied to engineering problems, except in quantum dynamics. This approach leads to identify new maximum bounds to the energy harvesting performance. Novel MEMS-based device control configurations for vibration energy harvesting are proposed with particular emphasis to piezoelectric, electromagnetic and capacitive circuits.

  1. Quantum Error Correction: Optimal, Robust, or Adaptive? Or, Where is The Quantum Flyball Governor?

    NASA Astrophysics Data System (ADS)

    Kosut, Robert; Grace, Matthew

    2012-02-01

    In The Human Use of Human Beings: Cybernetics and Society (1950), Norbert Wiener introduces feedback control in this way: ``This control of a machine on the basis of its actual performance rather than its expected performance is known as feedback ... It is the function of control ... to produce a temporary and local reversal of the normal direction of entropy.'' The classic classroom example of feedback control is the all-mechanical flyball governor used by James Watt in the 18th century to regulate the speed of rotating steam engines. What is it that is so compelling about this apparatus? First, it is easy to understand how it regulates the speed of a rotating steam engine. Secondly, and perhaps more importantly, it is a part of the device itself. A naive observer would not distinguish this mechanical piece from all the rest. So it is natural to ask, where is the all-quantum device which is self regulating, ie, the Quantum Flyball Governor? Is the goal of quantum error correction (QEC) to design such a device? Devloping the computational and mathematical tools to design this device is the topic of this talk.

  2. Implementing two optimal economical quantum cloning with superconducting quantum interference devices in a cavity

    NASA Astrophysics Data System (ADS)

    Ye, Liu; Hu, GuiYu; Li, AiXia

    2011-01-01

    We propose a unified scheme to implement the optimal 1 → 3 economical phase-covariant quantum cloning and optimal 1 → 3 economical real state cloning with superconducting quantum interference devices (SQUIDs) in a cavity. During this process, no transfer of quantum information between the SQUIDs and cavity is required. The cavity field is only virtually excited. The scheme is insensitive to cavity decay. Therefore, the scheme can be experimentally realized in the range of current cavity QED techniques.

  3. Broken symmetry in a two-qubit quantum control landscape

    NASA Astrophysics Data System (ADS)

    Bukov, Marin; Day, Alexandre G. R.; Weinberg, Phillip; Polkovnikov, Anatoli; Mehta, Pankaj; Sels, Dries

    2018-05-01

    We analyze the physics of optimal protocols to prepare a target state with high fidelity in a symmetrically coupled two-qubit system. By varying the protocol duration, we find a discontinuous phase transition, which is characterized by a spontaneous breaking of a Z2 symmetry in the functional form of the optimal protocol, and occurs below the quantum speed limit. We study in detail this phase and demonstrate that even though high-fidelity protocols come degenerate with respect to their fidelity, they lead to final states of different entanglement entropy shared between the qubits. Consequently, while globally both optimal protocols are equally far away from the target state, one is locally closer than the other. An approximate variational mean-field theory which captures the physics of the different phases is developed.

  4. Optimal diabatic dynamics of Majorana-based quantum gates

    NASA Astrophysics Data System (ADS)

    Rahmani, Armin; Seradjeh, Babak; Franz, Marcel

    2017-08-01

    In topological quantum computing, unitary operations on qubits are performed by adiabatic braiding of non-Abelian quasiparticles, such as Majorana zero modes, and are protected from local environmental perturbations. In the adiabatic regime, with timescales set by the inverse gap of the system, the errors can be made arbitrarily small by performing the process more slowly. To enhance the performance of quantum information processing with Majorana zero modes, we apply the theory of optimal control to the diabatic dynamics of Majorana-based qubits. While we sacrifice complete topological protection, we impose constraints on the optimal protocol to take advantage of the nonlocal nature of topological information and increase the robustness of our gates. By using the Pontryagin's maximum principle, we show that robust equivalent gates to perfect adiabatic braiding can be implemented in finite times through optimal pulses. In our implementation, modifications to the device Hamiltonian are avoided. Focusing on thermally isolated systems, we study the effects of calibration errors and external white and 1 /f (pink) noise on Majorana-based gates. While a noise-induced antiadiabatic behavior, where a slower process creates more diabatic excitations, prohibits indefinite enhancement of the robustness of the adiabatic scheme, our fast optimal protocols exhibit remarkable stability to noise and have the potential to significantly enhance the practical performance of Majorana-based information processing.

  5. Optimal quantum cloning based on the maximin principle by using a priori information

    NASA Astrophysics Data System (ADS)

    Kang, Peng; Dai, Hong-Yi; Wei, Jia-Hua; Zhang, Ming

    2016-10-01

    We propose an optimal 1 →2 quantum cloning method based on the maximin principle by making full use of a priori information of amplitude and phase about the general cloned qubit input set, which is a simply connected region enclosed by a "longitude-latitude grid" on the Bloch sphere. Theoretically, the fidelity of the optimal quantum cloning machine derived from this method is the largest in terms of the maximin principle compared with that of any other machine. The problem solving is an optimization process that involves six unknown complex variables, six vectors in an uncertain-dimensional complex vector space, and four equality constraints. Moreover, by restricting the structure of the quantum cloning machine, the optimization problem is simplified as a three-real-parameter suboptimization problem with only one equality constraint. We obtain the explicit formula for a suboptimal quantum cloning machine. Additionally, the fidelity of our suboptimal quantum cloning machine is higher than or at least equal to that of universal quantum cloning machines and phase-covariant quantum cloning machines. It is also underlined that the suboptimal cloning machine outperforms the "belt quantum cloning machine" for some cases.

  6. Compiling Planning into Quantum Optimization Problems: A Comparative Study

    DTIC Science & Technology

    2015-06-07

    and Sipser, M. 2000. Quantum computation by adiabatic evolution. arXiv:quant- ph/0001106. Fikes, R. E., and Nilsson, N. J. 1972. STRIPS: A new...become available: quantum annealing. Quantum annealing is one of the most accessible quantum algorithms for a computer sci- ence audience not versed...in quantum computing because of its close ties to classical optimization algorithms such as simulated annealing. While large-scale universal quantum

  7. Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network

    PubMed Central

    Goto, Hayato

    2016-01-01

    The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence. PMID:26899997

  8. Size-Dependent Optoelectronic Properties and Controlled Doping of Semiconductor Quantum Dots

    NASA Astrophysics Data System (ADS)

    Engel, Jesse Hart

    Given a rapidly developing world, the need exists for inexpensive renewable energy alternatives to help avoid drastic climate change. Photovoltaics have the potential to fill the energy needs of the future, but significant cost decreases are necessary for widespread adoption. Semiconductor nanocrystals, also known as quantum dots, are a nascent technology with long term potential to enable inexpensive and high efficiency photovoltaics. When deposited as a film, quantum dots form unique nanocomposites whose electronic and optical properties can be broadly tuned through manipulation of their individual constituents. The contents of this thesis explore methods to understand and optimize the optoelectronic properties of PbSe quantum dot films for use in photovoltaic applications. Systematic optimization of photovoltaic performance is demonstrated as a function of nanocrystal size, establishing the potential for utilizing extreme quantum confinement to improve device energetics and alignment. Detailed investigations of the mechanisms of electrical transport are performed, revealing that electronic coupling in quantum dot films is significantly less than often assumed based on optical shifts. A method is proposed to employ extended regions of built-in electrical field, through controlled doping, to sidestep issues of poor transport. To this end, treatments with chemical redox agents are found to effect profound and reversible doping within nanocrystal films, sufficient to enable their use as chemical sensors, but lacking the precision required for optoelectronic applications. Finally, a novel doping method employing "redox buffers" is presented to enact precise, stable, and reversible charge-transfer doping in porous semiconductor films. An example of oxidatively doping PbSe quantum dot thin films is presented, and the future potential for redox buffers in photovoltaic applications is examined.

  9. Elimination of Bimodal Size in InAs/GaAs Quantum Dots for Preparation of 1.3-μm Quantum Dot Lasers

    NASA Astrophysics Data System (ADS)

    Su, Xiang-Bin; Ding, Ying; Ma, Ben; Zhang, Ke-Lu; Chen, Ze-Sheng; Li, Jing-Lun; Cui, Xiao-Ran; Xu, Ying-Qiang; Ni, Hai-Qiao; Niu, Zhi-Chuan

    2018-02-01

    The device characteristics of semiconductor quantum dot lasers have been improved with progress in active layer structures. Self-assembly formed InAs quantum dots grown on GaAs had been intensively promoted in order to achieve quantum dot lasers with superior device performances. In the process of growing high-density InAs/GaAs quantum dots, bimodal size occurs due to large mismatch and other factors. The bimodal size in the InAs/GaAs quantum dot system is eliminated by the method of high-temperature annealing and optimized the in situ annealing temperature. The annealing temperature is taken as the key optimization parameters, and the optimal annealing temperature of 680 °C was obtained. In this process, quantum dot growth temperature, InAs deposition, and arsenic (As) pressure are optimized to improve quantum dot quality and emission wavelength. A 1.3-μm high-performance F-P quantum dot laser with a threshold current density of 110 A/cm2 was demonstrated.

  10. Elimination of Bimodal Size in InAs/GaAs Quantum Dots for Preparation of 1.3-μm Quantum Dot Lasers.

    PubMed

    Su, Xiang-Bin; Ding, Ying; Ma, Ben; Zhang, Ke-Lu; Chen, Ze-Sheng; Li, Jing-Lun; Cui, Xiao-Ran; Xu, Ying-Qiang; Ni, Hai-Qiao; Niu, Zhi-Chuan

    2018-02-21

    The device characteristics of semiconductor quantum dot lasers have been improved with progress in active layer structures. Self-assembly formed InAs quantum dots grown on GaAs had been intensively promoted in order to achieve quantum dot lasers with superior device performances. In the process of growing high-density InAs/GaAs quantum dots, bimodal size occurs due to large mismatch and other factors. The bimodal size in the InAs/GaAs quantum dot system is eliminated by the method of high-temperature annealing and optimized the in situ annealing temperature. The annealing temperature is taken as the key optimization parameters, and the optimal annealing temperature of 680 °C was obtained. In this process, quantum dot growth temperature, InAs deposition, and arsenic (As) pressure are optimized to improve quantum dot quality and emission wavelength. A 1.3-μm high-performance F-P quantum dot laser with a threshold current density of 110 A/cm 2 was demonstrated.

  11. Adiabatic Quantum Computing with Neutral Atoms

    NASA Astrophysics Data System (ADS)

    Hankin, Aaron; Biedermann, Grant; Burns, George; Jau, Yuan-Yu; Johnson, Cort; Kemme, Shanalyn; Landahl, Andrew; Mangan, Michael; Parazzoli, L. Paul; Schwindt, Peter; Armstrong, Darrell

    2012-06-01

    We are developing, both theoretically and experimentally, a neutral atom qubit approach to adiabatic quantum computation. Using our microfabricated diffractive optical elements, we plan to implement an array of optical traps for cesium atoms and use Rydberg-dressed ground states to provide a controlled atom-atom interaction. We will develop this experimental capability to generate a two-qubit adiabatic evolution aimed specifically toward demonstrating the two-qubit quadratic unconstrained binary optimization (QUBO) routine.

  12. Optimal eavesdropping in cryptography with three-dimensional quantum states.

    PubMed

    Bruss, D; Macchiavello, C

    2002-03-25

    We study optimal eavesdropping in quantum cryptography with three-dimensional systems, and show that this scheme is more secure against symmetric attacks than protocols using two-dimensional states. We generalize the according eavesdropping transformation to arbitrary dimensions, and discuss the connection with optimal quantum cloning.

  13. Controlling Continuous-Variable Quantum Key Distribution with Entanglement in the Middle Using Tunable Linear Optics Cloning Machines

    NASA Astrophysics Data System (ADS)

    Wu, Xiao Dong; Chen, Feng; Wu, Xiang Hua; Guo, Ying

    2017-02-01

    Continuous-variable quantum key distribution (CVQKD) can provide detection efficiency, as compared to discrete-variable quantum key distribution (DVQKD). In this paper, we demonstrate a controllable CVQKD with the entangled source in the middle, contrast to the traditional point-to-point CVQKD where the entanglement source is usually created by one honest party and the Gaussian noise added on the reference partner of the reconciliation is uncontrollable. In order to harmonize the additive noise that originates in the middle to resist the effect of malicious eavesdropper, we propose a controllable CVQKD protocol by performing a tunable linear optics cloning machine (LOCM) at one participant's side, say Alice. Simulation results show that we can achieve the optimal secret key rates by selecting the parameters of the tuned LOCM in the derived regions.

  14. A Swarm Optimization Genetic Algorithm Based on Quantum-Behaved Particle Swarm Optimization.

    PubMed

    Sun, Tao; Xu, Ming-Hai

    2017-01-01

    Quantum-behaved particle swarm optimization (QPSO) algorithm is a variant of the traditional particle swarm optimization (PSO). The QPSO that was originally developed for continuous search spaces outperforms the traditional PSO in search ability. This paper analyzes the main factors that impact the search ability of QPSO and converts the particle movement formula to the mutation condition by introducing the rejection region, thus proposing a new binary algorithm, named swarm optimization genetic algorithm (SOGA), because it is more like genetic algorithm (GA) than PSO in form. SOGA has crossover and mutation operator as GA but does not need to set the crossover and mutation probability, so it has fewer parameters to control. The proposed algorithm was tested with several nonlinear high-dimension functions in the binary search space, and the results were compared with those from BPSO, BQPSO, and GA. The experimental results show that SOGA is distinctly superior to the other three algorithms in terms of solution accuracy and convergence.

  15. Quantum entanglement and spin control in silicon nanocrystal.

    PubMed

    Berec, Vesna

    2012-01-01

    Selective coherence control and electrically mediated exchange coupling of single electron spin between triplet and singlet states using numerically derived optimal control of proton pulses is demonstrated. We obtained spatial confinement below size of the Bohr radius for proton spin chain FWHM. Precise manipulation of individual spins and polarization of electron spin states are analyzed via proton induced emission and controlled population of energy shells in pure (29)Si nanocrystal. Entangled quantum states of channeled proton trajectories are mapped in transverse and angular phase space of (29)Si <100> axial channel alignment in order to avoid transversal excitations. Proton density and proton energy as impact parameter functions are characterized in single particle density matrix via discretization of diagonal and nearest off-diagonal elements. We combined high field and low densities (1 MeV/92 nm) to create inseparable quantum state by superimposing the hyperpolarizationed proton spin chain with electron spin of (29)Si. Quantum discretization of density of states (DOS) was performed by the Monte Carlo simulation method using numerical solutions of proton equations of motion. Distribution of gaussian coherent states is obtained by continuous modulation of individual spin phase and amplitude. Obtained results allow precise engineering and faithful mapping of spin states. This would provide the effective quantum key distribution (QKD) and transmission of quantum information over remote distances between quantum memory centers for scalable quantum communication network. Furthermore, obtained results give insights in application of channeled protons subatomic microscopy as a complete versatile scanning-probe system capable of both quantum engineering of charged particle states and characterization of quantum states below diffraction limit linear and in-depth resolution.PACS NUMBERS: 03.65.Ud, 03.67.Bg, 61.85.+p, 67.30.hj.

  16. Robust quantum optimizer with full connectivity.

    PubMed

    Nigg, Simon E; Lörch, Niels; Tiwari, Rakesh P

    2017-04-01

    Quantum phenomena have the potential to speed up the solution of hard optimization problems. For example, quantum annealing, based on the quantum tunneling effect, has recently been shown to scale exponentially better with system size than classical simulated annealing. However, current realizations of quantum annealers with superconducting qubits face two major challenges. First, the connectivity between the qubits is limited, excluding many optimization problems from a direct implementation. Second, decoherence degrades the success probability of the optimization. We address both of these shortcomings and propose an architecture in which the qubits are robustly encoded in continuous variable degrees of freedom. By leveraging the phenomenon of flux quantization, all-to-all connectivity with sufficient tunability to implement many relevant optimization problems is obtained without overhead. Furthermore, we demonstrate the robustness of this architecture by simulating the optimal solution of a small instance of the nondeterministic polynomial-time hard (NP-hard) and fully connected number partitioning problem in the presence of dissipation.

  17. Quantum Heterogeneous Computing for Satellite Positioning Optimization

    NASA Astrophysics Data System (ADS)

    Bass, G.; Kumar, V.; Dulny, J., III

    2016-12-01

    Hard optimization problems occur in many fields of academic study and practical situations. We present results in which quantum heterogeneous computing is used to solve a real-world optimization problem: satellite positioning. Optimization problems like this can scale very rapidly with problem size, and become unsolvable with traditional brute-force methods. Typically, such problems have been approximately solved with heuristic approaches; however, these methods can take a long time to calculate and are not guaranteed to find optimal solutions. Quantum computing offers the possibility of producing significant speed-up and improved solution quality. There are now commercially available quantum annealing (QA) devices that are designed to solve difficult optimization problems. These devices have 1000+ quantum bits, but they have significant hardware size and connectivity limitations. We present a novel heterogeneous computing stack that combines QA and classical machine learning and allows the use of QA on problems larger than the quantum hardware could solve in isolation. We begin by analyzing the satellite positioning problem with a heuristic solver, the genetic algorithm. The classical computer's comparatively large available memory can explore the full problem space and converge to a solution relatively close to the true optimum. The QA device can then evolve directly to the optimal solution within this more limited space. Preliminary experiments, using the Quantum Monte Carlo (QMC) algorithm to simulate QA hardware, have produced promising results. Working with problem instances with known global minima, we find a solution within 8% in a matter of seconds, and within 5% in a few minutes. Future studies include replacing QMC with commercially available quantum hardware and exploring more problem sets and model parameters. Our results have important implications for how heterogeneous quantum computing can be used to solve difficult optimization problems in any field.

  18. Exploring the quantum speed limit with computer games

    NASA Astrophysics Data System (ADS)

    Sørensen, Jens Jakob W. H.; Pedersen, Mads Kock; Munch, Michael; Haikka, Pinja; Jensen, Jesper Halkjær; Planke, Tilo; Andreasen, Morten Ginnerup; Gajdacz, Miroslav; Mølmer, Klaus; Lieberoth, Andreas; Sherson, Jacob F.

    2016-04-01

    Humans routinely solve problems of immense computational complexity by intuitively forming simple, low-dimensional heuristic strategies. Citizen science (or crowd sourcing) is a way of exploiting this ability by presenting scientific research problems to non-experts. ‘Gamification’—the application of game elements in a non-game context—is an effective tool with which to enable citizen scientists to provide solutions to research problems. The citizen science games Foldit, EteRNA and EyeWire have been used successfully to study protein and RNA folding and neuron mapping, but so far gamification has not been applied to problems in quantum physics. Here we report on Quantum Moves, an online platform gamifying optimization problems in quantum physics. We show that human players are able to find solutions to difficult problems associated with the task of quantum computing. Players succeed where purely numerical optimization fails, and analyses of their solutions provide insights into the problem of optimization of a more profound and general nature. Using player strategies, we have thus developed a few-parameter heuristic optimization method that efficiently outperforms the most prominent established numerical methods. The numerical complexity associated with time-optimal solutions increases for shorter process durations. To understand this better, we produced a low-dimensional rendering of the optimization landscape. This rendering reveals why traditional optimization methods fail near the quantum speed limit (that is, the shortest process duration with perfect fidelity). Combined analyses of optimization landscapes and heuristic solution strategies may benefit wider classes of optimization problems in quantum physics and beyond.

  19. Exploring the quantum speed limit with computer games.

    PubMed

    Sørensen, Jens Jakob W H; Pedersen, Mads Kock; Munch, Michael; Haikka, Pinja; Jensen, Jesper Halkjær; Planke, Tilo; Andreasen, Morten Ginnerup; Gajdacz, Miroslav; Mølmer, Klaus; Lieberoth, Andreas; Sherson, Jacob F

    2016-04-14

    Humans routinely solve problems of immense computational complexity by intuitively forming simple, low-dimensional heuristic strategies. Citizen science (or crowd sourcing) is a way of exploiting this ability by presenting scientific research problems to non-experts. 'Gamification'--the application of game elements in a non-game context--is an effective tool with which to enable citizen scientists to provide solutions to research problems. The citizen science games Foldit, EteRNA and EyeWire have been used successfully to study protein and RNA folding and neuron mapping, but so far gamification has not been applied to problems in quantum physics. Here we report on Quantum Moves, an online platform gamifying optimization problems in quantum physics. We show that human players are able to find solutions to difficult problems associated with the task of quantum computing. Players succeed where purely numerical optimization fails, and analyses of their solutions provide insights into the problem of optimization of a more profound and general nature. Using player strategies, we have thus developed a few-parameter heuristic optimization method that efficiently outperforms the most prominent established numerical methods. The numerical complexity associated with time-optimal solutions increases for shorter process durations. To understand this better, we produced a low-dimensional rendering of the optimization landscape. This rendering reveals why traditional optimization methods fail near the quantum speed limit (that is, the shortest process duration with perfect fidelity). Combined analyses of optimization landscapes and heuristic solution strategies may benefit wider classes of optimization problems in quantum physics and beyond.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang Baolong; Department of Mathematics and Physics, Hefei University, Hefei, 230022; Song Qingming

    We present a scheme to realize a special quantum cloning machine in separate cavities. The quantum cloning machine can copy the quantum information from a photon pulse to two distant atoms. Choosing the different parameters, the method can perform optimal symmetric (asymmetric) universal quantum cloning and optimal symmetric (asymmetric) phase-covariant cloning.

  1. A device-oriented optimizer for solving ground state problems on an approximate quantum computer, Part II: Experiments for interacting spin and molecular systems

    NASA Astrophysics Data System (ADS)

    Kandala, Abhinav; Mezzacapo, Antonio; Temme, Kristan; Bravyi, Sergey; Takita, Maika; Chavez-Garcia, Jose; Córcoles, Antonio; Smolin, John; Chow, Jerry; Gambetta, Jay

    Hybrid quantum-classical algorithms can be used to find variational solutions to generic quantum problems. Here, we present an experimental implementation of a device-oriented optimizer that uses superconducting quantum hardware. The experiment relies on feedback between the quantum device and classical optimization software which is robust to measurement noise. Our device-oriented approach uses naturally available interactions for the preparation of trial states. We demonstrate the application of this technique for solving interacting spin and molecular structure problems.

  2. Optimizing Variational Quantum Algorithms Using Pontryagin’s Minimum Principle

    DOE PAGES

    Yang, Zhi -Cheng; Rahmani, Armin; Shabani, Alireza; ...

    2017-05-18

    We use Pontryagin’s minimum principle to optimize variational quantum algorithms. We show that for a fixed computation time, the optimal evolution has a bang-bang (square pulse) form, both for closed and open quantum systems with Markovian decoherence. Our findings support the choice of evolution ansatz in the recently proposed quantum approximate optimization algorithm. Focusing on the Sherrington-Kirkpatrick spin glass as an example, we find a system-size independent distribution of the duration of pulses, with characteristic time scale set by the inverse of the coupling constants in the Hamiltonian. The optimality of the bang-bang protocols and the characteristic time scale ofmore » the pulses provide an efficient parametrization of the protocol and inform the search for effective hybrid (classical and quantum) schemes for tackling combinatorial optimization problems. Moreover, we find that the success rates of our optimal bang-bang protocols remain high even in the presence of weak external noise and coupling to a thermal bath.« less

  3. Optimizing Variational Quantum Algorithms Using Pontryagin’s Minimum Principle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhi -Cheng; Rahmani, Armin; Shabani, Alireza

    We use Pontryagin’s minimum principle to optimize variational quantum algorithms. We show that for a fixed computation time, the optimal evolution has a bang-bang (square pulse) form, both for closed and open quantum systems with Markovian decoherence. Our findings support the choice of evolution ansatz in the recently proposed quantum approximate optimization algorithm. Focusing on the Sherrington-Kirkpatrick spin glass as an example, we find a system-size independent distribution of the duration of pulses, with characteristic time scale set by the inverse of the coupling constants in the Hamiltonian. The optimality of the bang-bang protocols and the characteristic time scale ofmore » the pulses provide an efficient parametrization of the protocol and inform the search for effective hybrid (classical and quantum) schemes for tackling combinatorial optimization problems. Moreover, we find that the success rates of our optimal bang-bang protocols remain high even in the presence of weak external noise and coupling to a thermal bath.« less

  4. Highly efficient multiple-layer CdS quantum dot sensitized III-V solar cells.

    PubMed

    Lin, Chien-Chung; Han, Hau-Vei; Chen, Hsin-Chu; Chen, Kuo-Ju; Tsai, Yu-Lin; Lin, Wein-Yi; Kuo, Hao-Chung; Yu, Peichen

    2014-02-01

    In this review, the concept of utilization of solar spectrum in order to increase the solar cell efficiency is discussed. Among the three mechanisms, down-shifting effect is investigated in detail. Organic dye, rare-earth minerals and quantum dots are three most popular down-shift materials. While the enhancement of solar cell efficiency was not clearly observed in the past, the advances in quantum dot fabrication have brought strong response out of the hybrid platform of a quantum dot solar cell. A multiple layer structure, including PDMS as the isolation layer, is proposed and demonstrated. With the help of pulse spray system, precise control can be achieved and the optimized concentration can be found.

  5. Optimal discrimination of M coherent states with a small quantum computer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, Marcus P. da; Guha, Saikat; Dutton, Zachary

    2014-12-04

    The ability to distinguish between coherent states optimally plays in important role in the efficient usage of quantum resources for classical communication and sensing applications. While it has been known since the early 1970’s how to optimally distinguish between two coherent states, generalizations to larger sets of coherent states have so far failed to reach optimality. In this work we outline how optimality can be achieved by using a small quantum computer, building on recent proposals for optimal qubit state discrimination with multiple copies.

  6. Optimal feedback scheme and universal time scaling for Hamiltonian parameter estimation.

    PubMed

    Yuan, Haidong; Fung, Chi-Hang Fred

    2015-09-11

    Time is a valuable resource and it is expected that a longer time period should lead to better precision in Hamiltonian parameter estimation. However, recent studies in quantum metrology have shown that in certain cases more time may even lead to worse estimations, which puts this intuition into question. In this Letter we show that by including feedback controls this intuition can be restored. By deriving asymptotically optimal feedback controls we quantify the maximal improvement feedback controls can provide in Hamiltonian parameter estimation and show a universal time scaling for the precision limit under the optimal feedback scheme. Our study reveals an intriguing connection between noncommutativity in the dynamics and the gain of feedback controls in Hamiltonian parameter estimation.

  7. Adiabatic quantum simulation of quantum chemistry.

    PubMed

    Babbush, Ryan; Love, Peter J; Aspuru-Guzik, Alán

    2014-10-13

    We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions.

  8. Compact and highly stable quantum dots through optimized aqueous phase transfer

    NASA Astrophysics Data System (ADS)

    Tamang, Sudarsan; Beaune, Grégory; Poillot, Cathy; De Waard, Michel; Texier-Nogues, Isabelle; Reiss, Peter

    2011-03-01

    A large number of different approaches for the aqueous phase transfer of quantum dots have been proposed. Surface ligand exchange with small hydrophilic thiols, such as L-cysteine, yields the lowest particle hydrodynamic diameter. However, cysteine is prone to dimer formation, which limits colloidal stability. We demonstrate that precise pH control during aqueous phase transfer dramatically increases the colloidal stability of InP/ZnS quantum dots. Various bifunctional thiols have been applied. The formation of disulfides, strongly diminishing the fluorescence QY has been prevented through addition of appropriate reducing agents. Bright InP/ZnS quantum dots with a hydrodynamic diameter <10 nm and long-term stability have been obtained. Finally we present in vitro studies of the quantum dots functionalized with the cell-penetrating peptide maurocalcine.

  9. Stoichiometry control in quantum dots: a viable analog to impurity doping of bulk materials.

    PubMed

    Luther, Joseph M; Pietryga, Jeffrey M

    2013-03-26

    A growing body of research indicates that the stoichiometry of compound semiconductor quantum dots (QDs) may offer control over the materials' optoelectronic properties in ways that could be invaluable in electronic devices. Quantum dots have been characterized as having a stoichiometric bulk-like core with a highly reconstructed surface of a more flexible composition, consisting essentially of ligated, weakly bound ions. As such, many efforts toward stoichiometry-based control over material properties have focused on ligand manipulation. In this issue of ACS Nano, Murray and Kagan's groups instead demonstrate control of the conductive properties of QD arrays by altering the stoichiometry via atomic infusion using a thermal evaporation technique. In this work, PbSe and PbS QD films are made to show controlled n- or p-type behavior, which is key to developing optimized QD-based electronics. In this Perspective, we discuss recent developments and the future outlook in using stoichiometry as a tool to further manipulate QD material properties in this context.

  10. Optimizing single-nanoparticle two-photon microscopy by in situ adaptive control of femtosecond pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Donghai; Deng, Yongkai; Chu, Saisai

    2016-07-11

    Single-nanoparticle two-photon microscopy shows great application potential in super-resolution cell imaging. Here, we report in situ adaptive optimization of single-nanoparticle two-photon luminescence signals by phase and polarization modulations of broadband laser pulses. For polarization-independent quantum dots, phase-only optimization was carried out to compensate the phase dispersion at the focus of the objective. Enhancement of the two-photon excitation fluorescence intensity under dispersion-compensated femtosecond pulses was achieved. For polarization-dependent single gold nanorod, in situ polarization optimization resulted in further enhancement of two-photon photoluminescence intensity than phase-only optimization. The application of in situ adaptive control of femtosecond pulse provides a way for object-orientedmore » optimization of single-nanoparticle two-photon microscopy for its future applications.« less

  11. An alternative laser driven photodissociation mechanism of pyrrole via πσ*1∕S0 conical intersection.

    PubMed

    Nandipati, K R; Lan, Z; Singh, H; Mahapatra, S

    2017-06-07

    A first principles quantum dynamics study of N-H photodissociation of pyrrole on the S 0 - 1 πσ * (A21) coupled electronic states is carried out with the aid of an optimally designed UV-laser pulse. A new photodissociation path, as compared to the conventional barrier crossing on the πσ*1 state, opens up upon electronic transitions under the influence of pump-dump laser pulses, which efficiently populate both the dissociation channels. The interplay of electronic transitions due both to vibronic coupling and the laser pulse is observed in the control mechanism and discussed in detail. The proposed control mechanism seems to be robust, and not discussed in the literature so far, and is expected to trigger future experiments on the πσ*1 photochemistry of molecules of chemical and biological importance. The design of the optimal pulses and their application to enhance the overall dissociation probability is carried out within the framework of optimal control theory. The quantum dynamics of the system in the presence of pulse is treated by solving the time-dependent Schrödinger equation in the semi-classical dipole approximation.

  12. An alternative laser driven photodissociation mechanism of pyrrole via πσ*1∕S0 conical intersection

    PubMed Central

    Nandipati, K. R.; Lan, Z.; Singh, H.; Mahapatra, S.

    2017-01-01

    A first principles quantum dynamics study of N–H photodissociation of pyrrole on the S0−1πσ*(A21) coupled electronic states is carried out with the aid of an optimally designed UV-laser pulse. A new photodissociation path, as compared to the conventional barrier crossing on the πσ*1 state, opens up upon electronic transitions under the influence of pump-dump laser pulses, which efficiently populate both the dissociation channels. The interplay of electronic transitions due both to vibronic coupling and the laser pulse is observed in the control mechanism and discussed in detail. The proposed control mechanism seems to be robust, and not discussed in the literature so far, and is expected to trigger future experiments on the πσ*1 photochemistry of molecules of chemical and biological importance. The design of the optimal pulses and their application to enhance the overall dissociation probability is carried out within the framework of optimal control theory. The quantum dynamics of the system in the presence of pulse is treated by solving the time-dependent Schrödinger equation in the semi-classical dipole approximation. PMID:28595406

  13. An alternative laser driven photodissociation mechanism of pyrrole via π*1σ/S0 conical intersection

    NASA Astrophysics Data System (ADS)

    Nandipati, K. R.; Lan, Z.; Singh, H.; Mahapatra, S.

    2017-06-01

    A first principles quantum dynamics study of N-H photodissociation of pyrrole on the S0-1π σ*(A12) coupled electronic states is carried out with the aid of an optimally designed UV-laser pulse. A new photodissociation path, as compared to the conventional barrier crossing on the π*1σ state, opens up upon electronic transitions under the influence of pump-dump laser pulses, which efficiently populate both the dissociation channels. The interplay of electronic transitions due both to vibronic coupling and the laser pulse is observed in the control mechanism and discussed in detail. The proposed control mechanism seems to be robust, and not discussed in the literature so far, and is expected to trigger future experiments on the π*1σ photochemistry of molecules of chemical and biological importance. The design of the optimal pulses and their application to enhance the overall dissociation probability is carried out within the framework of optimal control theory. The quantum dynamics of the system in the presence of pulse is treated by solving the time-dependent Schrödinger equation in the semi-classical dipole approximation.

  14. Mapping from multiple-control Toffoli circuits to linear nearest neighbor quantum circuits

    NASA Astrophysics Data System (ADS)

    Cheng, Xueyun; Guan, Zhijin; Ding, Weiping

    2018-07-01

    In recent years, quantum computing research has been attracting more and more attention, but few studies on the limited interaction distance between quantum bits (qubit) are deeply carried out. This paper presents a mapping method for transforming multiple-control Toffoli (MCT) circuits into linear nearest neighbor (LNN) quantum circuits instead of traditional decomposition-based methods. In order to reduce the number of inserted SWAP gates, a novel type of gate with the optimal LNN quantum realization was constructed, namely NNTS gate. The MCT gate with multiple control bits could be better cascaded by the NNTS gates, in which the arrangement of the input lines was LNN arrangement of the MCT gate. Then, the communication overhead measurement model on inserted SWAP gate count from the original arrangement to the new arrangement was put forward, and we selected one of the LNN arrangements with the minimum SWAP gate count. Moreover, the LNN arrangement-based mapping algorithm was given, and it dealt with the MCT gates in turn and mapped each MCT gate into its LNN form by inserting the minimum number of SWAP gates. Finally, some simplification rules were used, which can further reduce the final quantum cost of the LNN quantum circuit. Experiments on some benchmark MCT circuits indicate that the direct mapping algorithm results in fewer additional SWAP gates in about 50%, while the average improvement rate in quantum cost is 16.95% compared to the decomposition-based method. In addition, it has been verified that the proposed method has greater superiority for reversible circuits cascaded by MCT gates with more control bits.

  15. Tunable, Flexible and Efficient Optimization of Control Pulses for Superconducting Qubits, part I - Theory

    NASA Astrophysics Data System (ADS)

    Machnes, Shai; AsséMat, Elie; Tannor, David; Wilhelm, Frank

    Quantum computation places very stringent demands on gate fidelities, and experimental implementations require both the controls and the resultant dynamics to conform to hardware-specific ansatzes and constraints. Superconducting qubits present the additional requirement that pulses have simple parametrizations, so they can be further calibrated in the experiment, to compensate for uncertainties in system characterization. We present a novel, conceptually simple and easy-to-implement gradient-based optimal control algorithm, GOAT, which satisfies all the above requirements. In part II we shall demonstrate the algorithm's capabilities, by using GOAT to optimize fast high-accuracy pulses for two leading superconducting qubits architectures - Xmons and IBM's flux-tunable couplers.

  16. Quantum speed limits: from Heisenberg’s uncertainty principle to optimal quantum control

    NASA Astrophysics Data System (ADS)

    Deffner, Sebastian; Campbell, Steve

    2017-11-01

    One of the most widely known building blocks of modern physics is Heisenberg’s indeterminacy principle. Among the different statements of this fundamental property of the full quantum mechanical nature of physical reality, the uncertainty relation for energy and time has a special place. Its interpretation and its consequences have inspired continued research efforts for almost a century. In its modern formulation, the uncertainty relation is understood as setting a fundamental bound on how fast any quantum system can evolve. In this topical review we describe important milestones, such as the Mandelstam-Tamm and the Margolus-Levitin bounds on the quantum speed limit, and summarise recent applications in a variety of current research fields—including quantum information theory, quantum computing, and quantum thermodynamics amongst several others. To bring order and to provide an access point into the many different notions and concepts, we have grouped the various approaches into the minimal time approach and the geometric approach, where the former relies on quantum control theory, and the latter arises from measuring the distinguishability of quantum states. Due to the volume of the literature, this topical review can only present a snapshot of the current state-of-the-art and can never be fully comprehensive. Therefore, we highlight but a few works hoping that our selection can serve as a representative starting point for the interested reader.

  17. Modified Newton-Raphson GRAPE methods for optimal control of spin systems

    NASA Astrophysics Data System (ADS)

    Goodwin, D. L.; Kuprov, Ilya

    2016-05-01

    Quadratic convergence throughout the active space is achieved for the gradient ascent pulse engineering (GRAPE) family of quantum optimal control algorithms. We demonstrate in this communication that the Hessian of the GRAPE fidelity functional is unusually cheap, having the same asymptotic complexity scaling as the functional itself. This leads to the possibility of using very efficient numerical optimization techniques. In particular, the Newton-Raphson method with a rational function optimization (RFO) regularized Hessian is shown in this work to require fewer system trajectory evaluations than any other algorithm in the GRAPE family. This communication describes algebraic and numerical implementation aspects (matrix exponential recycling, Hessian regularization, etc.) for the RFO Newton-Raphson version of GRAPE and reports benchmarks for common spin state control problems in magnetic resonance spectroscopy.

  18. Black holes are almost optimal quantum cloners

    NASA Astrophysics Data System (ADS)

    Adami, Christoph; Ver Steeg, Greg

    2015-06-01

    If black holes were able to clone quantum states, a number of paradoxes in black hole physics would disappear. However, the linearity of quantum mechanics forbids exact cloning of quantum states. Here we show that black holes indeed clone incoming quantum states with a fidelity that depends on the black hole’s absorption coefficient, without violating the no-cloning theorem because the clones are only approximate. Perfectly reflecting black holes are optimal universal ‘quantum cloning machines’ and operate on the principle of stimulated emission, exactly as their quantum optical counterparts. In the limit of perfect absorption, the fidelity of clones is only equal to what can be obtained via quantum state estimation methods. But for any absorption probability less than one, the cloning fidelity is nearly optimal as long as ω /T≥slant 10, a common parameter for modest-sized black holes.

  19. Creating fractional quantum Hall states with atomic clusters using light-assisted insertion of angular momentum

    NASA Astrophysics Data System (ADS)

    Zhang, Junyi; Beugnon, Jerome; Nascimbene, Sylvain

    We describe a protocol to prepare clusters of ultracold bosonic atoms in strongly interacting states reminiscent of fractional quantum Hall states. Our scheme consists in injecting a controlled amount of angular momentum to an atomic gas using Raman transitions carrying orbital angular momentum. By injecting one unit of angular momentum per atom, one realizes a single-vortex state, which is well described by mean-field theory for large enough particle numbers. We also present schemes to realize fractional quantum Hall states, namely, the bosonic Laughlin and Moore-Read states. We investigate the requirements for adiabatic nucleation of such topological states, in particular comparing linear Landau-Zener ramps and arbitrary ramps obtained from optimized control methods. We also show that this protocol requires excellent control over the isotropic character of the trapping potential. ERC-Synergy Grant UQUAM, ANR-10-IDEX-0001-02, DIM NanoK Atocirc project.

  20. A quantum retrograde canon: complete population inversion in n 2-state systems

    NASA Astrophysics Data System (ADS)

    Padan, Alon; Suchowski, Haim

    2018-04-01

    We present a novel approach for analytically reducing a family of time-dependent multi-state quantum control problems to two-state systems. The presented method translates between {SU}(2)× {SU}(2) related n 2-state systems and two-state systems, such that the former undergo complete population inversion (CPI) if and only if the latter reach specific states. For even n, the method translates any two-state CPI scheme to a family of CPI schemes in n 2-state systems. In particular, facilitating CPI in a four-state system via real time-dependent nearest-neighbors couplings is reduced to facilitating CPI in a two-level system. Furthermore, we show that the method can be used for operator control, and provide conditions for producing several universal gates for quantum computation as an example. In addition, we indicate a basis for utilizing the method in optimal control problems.

  1. Precise control of coupling strength in photonic molecules over a wide range using nanoelectromechanical systems

    PubMed Central

    Du, Han; Zhang, Xingwang; Chen, Guoqiang; Deng, Jie; Chau, Fook Siong; Zhou, Guangya

    2016-01-01

    Photonic molecules have a range of promising applications including quantum information processing, where precise control of coupling strength is critical. Here, by laterally shifting the center-to-center offset of coupled photonic crystal nanobeam cavities, we demonstrate a method to precisely and dynamically control the coupling strength of photonic molecules through integrated nanoelectromechanical systems with a precision of a few GHz over a range of several THz without modifying the nature of their constituent resonators. Furthermore, the coupling strength can be tuned continuously from negative (strong coupling regime) to zero (weak coupling regime) and further to positive (strong coupling regime) and vice versa. Our work opens a door to the optimization of the coupling strength of photonic molecules in situ for the study of cavity quantum electrodynamics and the development of efficient quantum information devices. PMID:27097883

  2. Realization of the three-qubit quantum controlled gate based on matching Hermitian generators

    NASA Astrophysics Data System (ADS)

    Gautam, Kumar; Rawat, Tarun Kumar; Parthasarathy, Harish; Sharma, Navneet; Upadhyaya, Varun

    2017-05-01

    This paper deals with the design of quantum unitary gate by matching the Hermitian generators. A given complicated quantum controlled gate is approximated by perturbing a simple quantum system with a small time-varying potential. The basic idea is to evaluate the generator H_φ of the perturbed system approximately using first-order perturbation theory in the interaction picture. H_φ depends on a modulating signal φ(t){:} 0≤t≤T which modulates a known potential V. The generator H_φ of the given gate U_g is evaluated using H_g=ι log U_g. The optimal modulating signal φ(t) is chosen so that \\Vert H_g - H_φ \\Vert is a minimum. The simple quantum system chosen for our simulation is harmonic oscillator with charge perturbed by an electric field that is a constant in space but time varying and is controlled externally. This is used to approximate the controlled unitary gate obtained by perturbing the oscillator with an anharmonic term proportional to q^3. Simulations results show significantly small noise-to-signal ratio. Finally, we discuss how the proposed method is particularly suitable for designing some commonly used unitary gates. Another example was chosen to illustrate this method of gate design is the ion-trap model.

  3. Multi-strategy based quantum cost reduction of linear nearest-neighbor quantum circuit

    NASA Astrophysics Data System (ADS)

    Tan, Ying-ying; Cheng, Xue-yun; Guan, Zhi-jin; Liu, Yang; Ma, Haiying

    2018-03-01

    With the development of reversible and quantum computing, study of reversible and quantum circuits has also developed rapidly. Due to physical constraints, most quantum circuits require quantum gates to interact on adjacent quantum bits. However, many existing quantum circuits nearest-neighbor have large quantum cost. Therefore, how to effectively reduce quantum cost is becoming a popular research topic. In this paper, we proposed multiple optimization strategies to reduce the quantum cost of the circuit, that is, we reduce quantum cost from MCT gates decomposition, nearest neighbor and circuit simplification, respectively. The experimental results show that the proposed strategies can effectively reduce the quantum cost, and the maximum optimization rate is 30.61% compared to the corresponding results.

  4. Quantum adiabatic machine learning

    NASA Astrophysics Data System (ADS)

    Pudenz, Kristen L.; Lidar, Daniel A.

    2013-05-01

    We develop an approach to machine learning and anomaly detection via quantum adiabatic evolution. This approach consists of two quantum phases, with some amount of classical preprocessing to set up the quantum problems. In the training phase we identify an optimal set of weak classifiers, to form a single strong classifier. In the testing phase we adiabatically evolve one or more strong classifiers on a superposition of inputs in order to find certain anomalous elements in the classification space. Both the training and testing phases are executed via quantum adiabatic evolution. All quantum processing is strictly limited to two-qubit interactions so as to ensure physical feasibility. We apply and illustrate this approach in detail to the problem of software verification and validation, with a specific example of the learning phase applied to a problem of interest in flight control systems. Beyond this example, the algorithm can be used to attack a broad class of anomaly detection problems.

  5. Quantum optimal control of isomerization dynamics of a one-dimensional reaction-path model dominated by a competing dissociation channel

    NASA Astrophysics Data System (ADS)

    Kurosaki, Yuzuru; Artamonov, Maxim; Ho, Tak-San; Rabitz, Herschel

    2009-07-01

    Quantum wave packet optimal control simulations with intense laser pulses have been carried out for studying molecular isomerization dynamics of a one-dimensional (1D) reaction-path model involving a dominant competing dissociation channel. The 1D intrinsic reaction coordinate model mimics the ozone open→cyclic ring isomerization along the minimum energy path that successively connects the ozone cyclic ring minimum, the transition state (TS), the open (global) minimum, and the dissociative O2+O asymptote on the O3 ground-state A1' potential energy surface. Energetically, the cyclic ring isomer, the TS barrier, and the O2+O dissociation channel lie at ˜0.05, ˜0.086, and ˜0.037 hartree above the open isomer, respectively. The molecular orientation of the modeled ozone is held constant with respect to the laser-field polarization and several optimal fields are found that all produce nearly perfect isomerization. The optimal control fields are characterized by distinctive high temporal peaks as well as low frequency components, thereby enabling abrupt transfer of the time-dependent wave packet over the TS from the open minimum to the targeted ring minimum. The quick transition of the ozone wave packet avoids detrimental leakage into the competing O2+O channel. It is possible to obtain weaker optimal laser fields, resulting in slower transfer of the wave packets over the TS, when a reduced level of isomerization is satisfactory.

  6. Robust quantum optimizer with full connectivity

    PubMed Central

    Nigg, Simon E.; Lörch, Niels; Tiwari, Rakesh P.

    2017-01-01

    Quantum phenomena have the potential to speed up the solution of hard optimization problems. For example, quantum annealing, based on the quantum tunneling effect, has recently been shown to scale exponentially better with system size than classical simulated annealing. However, current realizations of quantum annealers with superconducting qubits face two major challenges. First, the connectivity between the qubits is limited, excluding many optimization problems from a direct implementation. Second, decoherence degrades the success probability of the optimization. We address both of these shortcomings and propose an architecture in which the qubits are robustly encoded in continuous variable degrees of freedom. By leveraging the phenomenon of flux quantization, all-to-all connectivity with sufficient tunability to implement many relevant optimization problems is obtained without overhead. Furthermore, we demonstrate the robustness of this architecture by simulating the optimal solution of a small instance of the nondeterministic polynomial-time hard (NP-hard) and fully connected number partitioning problem in the presence of dissipation. PMID:28435880

  7. Optimally stopped variational quantum algorithms

    NASA Astrophysics Data System (ADS)

    Vinci, Walter; Shabani, Alireza

    2018-04-01

    Quantum processors promise a paradigm shift in high-performance computing which needs to be assessed by accurate benchmarking measures. In this article, we introduce a benchmark for the variational quantum algorithm (VQA), recently proposed as a heuristic algorithm for small-scale quantum processors. In VQA, a classical optimization algorithm guides the processor's quantum dynamics to yield the best solution for a given problem. A complete assessment of the scalability and competitiveness of VQA should take into account both the quality and the time of dynamics optimization. The method of optimal stopping, employed here, provides such an assessment by explicitly including time as a cost factor. Here, we showcase this measure for benchmarking VQA as a solver for some quadratic unconstrained binary optimization. Moreover, we show that a better choice for the cost function of the classical routine can significantly improve the performance of the VQA algorithm and even improve its scaling properties.

  8. Implementing a quantum cloning machine in separate cavities via the optical coherent pulse as a quantum communication bus

    NASA Astrophysics Data System (ADS)

    Zhu, Meng-Zheng; Ye, Liu

    2015-04-01

    An efficient scheme is proposed to implement a quantum cloning machine in separate cavities based on a hybrid interaction between electron-spin systems placed in the cavities and an optical coherent pulse. The coefficient of the output state for the present cloning machine is just the direct product of two trigonometric functions, which ensures that different types of quantum cloning machine can be achieved readily in the same framework by appropriately adjusting the rotated angles. The present scheme can implement optimal one-to-two symmetric (asymmetric) universal quantum cloning, optimal symmetric (asymmetric) phase-covariant cloning, optimal symmetric (asymmetric) real-state cloning, optimal one-to-three symmetric economical real-state cloning, and optimal symmetric cloning of qubits given by an arbitrary axisymmetric distribution. In addition, photon loss of the qubus beams during the transmission and decoherence effects caused by such a photon loss are investigated.

  9. The operations of quantum logic gates with pure and mixed initial states.

    PubMed

    Chen, Jun-Liang; Li, Che-Ming; Hwang, Chi-Chuan; Ho, Yi-Hui

    2011-04-07

    The implementations of quantum logic gates realized by the rovibrational states of a C(12)O(16) molecule in the X((1)Σ(+)) electronic ground state are investigated. Optimal laser fields are obtained by using the modified multitarget optimal theory (MTOCT) which combines the maxima of the cost functional and the fidelity for state and quantum process. The projection operator technique together with modified MTOCT is used to get optimal laser fields. If initial states of the quantum gate are pure states, states at target time approach well to ideal target states. However, if the initial states are mixed states, the target states do not approach well to ideal ones. The process fidelity is introduced to investigate the reliability of the quantum gate operation driven by the optimal laser field. We found that the quantum gates operate reliably whether the initial states are pure or mixed.

  10. Quantum population and entanglement evolution in photosynthetic process

    NASA Astrophysics Data System (ADS)

    Zhu, Jing

    Applications of the concepts of quantum information theory are usually related to the powerful and counter-intuitive quantum mechanical effects of superposition, interference and entanglement. In this thesis, I examine the role of coherence and entanglement in complex chemical systems. The research has focused mainly on two related projects: The first project is developing a theoretical model to explain the recent ultrafast experiments on excitonic migration in photosynthetic complexes that show long-lived coherence of the order of hundreds of femtoseconds and the second project developing the Grover algorithm for global optimization of complex systems. The first part can be divided into two sections. The first section is investigating the theoretical frame about the transfer of electronic excitation energy through the Fenna-Matthews-Olson (FMO) pigment-protein complex. The new developed modified scaled hierarchical equation of motion (HEOM) approach is employed for simulating the open quantum system. The second section is investigating the evolution of entanglement in the FMO complex based on the simulation result via scaled HEOM approach. We examine the role of multipartite entanglement in the FMO complex by direct computation of the convex roof optimization for a number of different measures, including pairwise, triplet, quadruple and quintuple sites entanglement. Our results support the hypothesis that multipartite entanglement is maximum primary along the two distinct electronic energy transfer pathways. The second part of this thesis can be separated into two sections. The first section demonstrated that a modified Grover's quantum algorithm can be applied to real problems of finding a global minimum using modest numbers of quantum bits. Calculations of the global minimum of simple test functions and Lennard-Jones clusters have been carried out on a quantum computer simulator using a modified Grover's algorithm. The second section is implementing the basic quantum logical gates upon arrays of trapped ultracold polar molecules as qubits for the quantum computer. Utilized herein is the Multi-Target Optimal Control Theory (MTOCT) as a means of manipulating the initial-to-target transition probability via external laser field. The detailed calculation is applied for the SrO molecule, an ideal candidate in proposed quantum computers using arrays of trapped ultra-cold polar molecules.

  11. Searching for the optimal synthesis parameters of InP/CdxZn1-xSe quantum dots when combined with a broad band phosphor to optimize color rendering and efficacy of a hybrid remote phosphor white LED

    NASA Astrophysics Data System (ADS)

    Ryckaert, Jana; Correia, António; Smet, Kevin; Tessier, Mickael D.; Dupont, Dorian; Hens, Zeger; Hanselaer, Peter; Meuret, Youri

    2017-09-01

    Combining traditional phosphors with a broad emission spectrum and non-scattering quantum dots with a narrow emission spectrum can have multiple advantages for white LEDs. It allows to reduce the amount of scattering in the wavelength conversion element, increasing the efficiency of the complete system. Furthermore, the unique possibility to tune the emission spectrum of quantum dots allows to optimize the resulting LED spectrum in order to achieve optimal color rendering properties for the light source. However, finding the optimal quantum dot properties to achieve optimal efficacy and color rendering is a non-trivial task. Instead of simply summing up the emission spectra of the blue LED, phosphor and quantum dots, we propose a complete simulation tool that allows an accurate analysis of the final performance for a range of different quantum dot synthesis parameters. The recycling of the reflected light from the wavelength conversion element by the LED package is taken into account, as well as the re-absorption and the associated red-shift. This simulation tool is used to vary two synthesis parameters (core size and cadmium fraction) of InP/CdxZn1-xSe quantum dots. We find general trends for the ideal quantum dot that should be combined with a specific YAG:Ce broad band phosphor to obtain optimal efficiency and color rendering for a white LED with a specific pumping LED and recycling cavity, with a desired CCT of 3500K.

  12. Quantum approximate optimization algorithm for MaxCut: A fermionic view

    NASA Astrophysics Data System (ADS)

    Wang, Zhihui; Hadfield, Stuart; Jiang, Zhang; Rieffel, Eleanor G.

    2018-02-01

    Farhi et al. recently proposed a class of quantum algorithms, the quantum approximate optimization algorithm (QAOA), for approximately solving combinatorial optimization problems (E. Farhi et al., arXiv:1411.4028; arXiv:1412.6062; arXiv:1602.07674). A level-p QAOA circuit consists of p steps; in each step a classical Hamiltonian, derived from the cost function, is applied followed by a mixing Hamiltonian. The 2 p times for which these two Hamiltonians are applied are the parameters of the algorithm, which are to be optimized classically for the best performance. As p increases, parameter optimization becomes inefficient due to the curse of dimensionality. The success of the QAOA approach will depend, in part, on finding effective parameter-setting strategies. Here we analytically and numerically study parameter setting for the QAOA applied to MaxCut. For the level-1 QAOA, we derive an analytical expression for a general graph. In principle, expressions for higher p could be derived, but the number of terms quickly becomes prohibitive. For a special case of MaxCut, the "ring of disagrees," or the one-dimensional antiferromagnetic ring, we provide an analysis for an arbitrarily high level. Using a fermionic representation, the evolution of the system under the QAOA translates into quantum control of an ensemble of independent spins. This treatment enables us to obtain analytical expressions for the performance of the QAOA for any p . It also greatly simplifies the numerical search for the optimal values of the parameters. By exploring symmetries, we identify a lower-dimensional submanifold of interest; the search effort can be accordingly reduced. This analysis also explains an observed symmetry in the optimal parameter values. Further, we numerically investigate the parameter landscape and show that it is a simple one in the sense of having no local optima.

  13. Advantages of Unfair Quantum Ground-State Sampling.

    PubMed

    Zhang, Brian Hu; Wagenbreth, Gene; Martin-Mayor, Victor; Hen, Itay

    2017-04-21

    The debate around the potential superiority of quantum annealers over their classical counterparts has been ongoing since the inception of the field. Recent technological breakthroughs, which have led to the manufacture of experimental prototypes of quantum annealing optimizers with sizes approaching the practical regime, have reignited this discussion. However, the demonstration of quantum annealing speedups remains to this day an elusive albeit coveted goal. We examine the power of quantum annealers to provide a different type of quantum enhancement of practical relevance, namely, their ability to serve as useful samplers from the ground-state manifolds of combinatorial optimization problems. We study, both numerically by simulating stoquastic and non-stoquastic quantum annealing processes, and experimentally, using a prototypical quantum annealing processor, the ability of quantum annealers to sample the ground-states of spin glasses differently than thermal samplers. We demonstrate that (i) quantum annealers sample the ground-state manifolds of spin glasses very differently than thermal optimizers (ii) the nature of the quantum fluctuations driving the annealing process has a decisive effect on the final distribution, and (iii) the experimental quantum annealer samples ground-state manifolds significantly differently than thermal and ideal quantum annealers. We illustrate how quantum annealers may serve as powerful tools when complementing standard sampling algorithms.

  14. Efficient retrieval of landscape Hessian: Forced optimal covariance adaptive learning

    NASA Astrophysics Data System (ADS)

    Shir, Ofer M.; Roslund, Jonathan; Whitley, Darrell; Rabitz, Herschel

    2014-06-01

    Knowledge of the Hessian matrix at the landscape optimum of a controlled physical observable offers valuable information about the system robustness to control noise. The Hessian can also assist in physical landscape characterization, which is of particular interest in quantum system control experiments. The recently developed landscape theoretical analysis motivated the compilation of an automated method to learn the Hessian matrix about the global optimum without derivative measurements from noisy data. The current study introduces the forced optimal covariance adaptive learning (FOCAL) technique for this purpose. FOCAL relies on the covariance matrix adaptation evolution strategy (CMA-ES) that exploits covariance information amongst the control variables by means of principal component analysis. The FOCAL technique is designed to operate with experimental optimization, generally involving continuous high-dimensional search landscapes (≳30) with large Hessian condition numbers (≳104). This paper introduces the theoretical foundations of the inverse relationship between the covariance learned by the evolution strategy and the actual Hessian matrix of the landscape. FOCAL is presented and demonstrated to retrieve the Hessian matrix with high fidelity on both model landscapes and quantum control experiments, which are observed to possess nonseparable, nonquadratic search landscapes. The recovered Hessian forms were corroborated by physical knowledge of the systems. The implications of FOCAL extend beyond the investigated studies to potentially cover other physically motivated multivariate landscapes.

  15. Characterization of quantum interference control of injected currents in LT-GaAs for carrier-envelope phase measurements.

    PubMed

    Roos, Peter; Quraishi, Qudsia; Cundiff, Steven; Bhat, Ravi; Sipe, J

    2003-08-25

    We use two mutually coherent, harmonically related pulse trains to experimentally characterize quantum interference control (QIC) of injected currents in low-temperature-grown gallium arsenide. We observe real-time QIC interference fringes, optimize the QIC signal fidelity, uncover critical signal dependences regarding beam spatial position on the sample, measure signal dependences on the fundamental and second harmonic average optical powers, and demonstrate signal characteristics that depend on the focused beam spot sizes. Following directly from our motivation for this study, we propose an initial experiment to measure and ultimately control the carrier-envelope phase evolution of a single octave-spanning pulse train using the QIC phenomenon.

  16. Towards Laser Cooling Trapped Ions with Telecom Light

    NASA Astrophysics Data System (ADS)

    Dungan, Kristina; Becker, Patrick; Donoghue, Liz; Liu, Jackie; Olmschenk, Steven

    2015-05-01

    Quantum information has many potential applications in communication, atomic clocks, and the precision measurement of fundamental constants. Trapped ions are excellent candidates for applications in quantum information because of their isolation from external perturbations, and the precise control afforded by laser cooling and manipulation of the quantum state. For many applications in quantum communication, it would be advantageous to interface ions with telecom light. We present progress towards laser cooling and trapping of doubly-ionized lanthanum, which should require only infrared, telecom-compatible light. Additionally, we present progress on optimization of a second-harmonic generation cavity for laser cooling and trapping barium ions, for future sympathetic cooling experiments. This research is supported by the Army Research Office, Research Corporation for Science Advancement, and Denison University.

  17. Quantum interference of position and momentum: A particle propagation paradox

    NASA Astrophysics Data System (ADS)

    Hofmann, Holger F.

    2017-08-01

    Optimal simultaneous control of position and momentum can be achieved by maximizing the probabilities of finding their experimentally observed values within two well-defined intervals. The assumption that particles move along straight lines in free space can then be tested by deriving a lower limit for the probability of finding the particle in a corresponding spatial interval at any intermediate time t . Here, it is shown that this lower limit can be violated by quantum superpositions of states confined within the respective position and momentum intervals. These violations of the particle propagation inequality show that quantum mechanics changes the laws of motion at a fundamental level, providing a different perspective on causality relations and time evolution in quantum mechanics.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang Baolong; Department of Mathematics and Physics, Hefei University, Hefei 230022; Yang Zhen

    We propose a scheme for implementing a partial general quantum cloning machine with superconducting quantum-interference devices coupled to a nonresonant cavity. By regulating the time parameters, our system can perform optimal symmetric (asymmetric) universal quantum cloning, optimal symmetric (asymmetric) phase-covariant cloning, and optimal symmetric economical phase-covariant cloning. In the scheme the cavity is only virtually excited, thus, the cavity decay is suppressed during the cloning operations.

  19. Tunable, Flexible and Efficient Optimization of Control Pulses for Superconducting Qubits, part II - Applications

    NASA Astrophysics Data System (ADS)

    AsséMat, Elie; Machnes, Shai; Tannor, David; Wilhelm-Mauch, Frank

    In part I, we presented the theoretic foundations of the GOAT algorithm for the optimal control of quantum systems. Here in part II, we focus on several applications of GOAT to superconducting qubits architecture. First, we consider a control-Z gate on Xmons qubits with an Erf parametrization of the optimal pulse. We show that a fast and accurate gate can be obtained with only 16 parameters, as compared to hundreds of parameters required in other algorithms. We present numerical evidences that such parametrization should allow an efficient in-situ calibration of the pulse. Next, we consider the flux-tunable coupler by IBM. We show optimization can be carried out in a more realistic model of the system than was employed in the original study, which is expected to further simplify the calibration process. Moreover, GOAT reduced the complexity of the optimal pulse to only 6 Fourier components, composed with analytic wrappers.

  20. Adiabatic Quantum Simulation of Quantum Chemistry

    PubMed Central

    Babbush, Ryan; Love, Peter J.; Aspuru-Guzik, Alán

    2014-01-01

    We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions. PMID:25308187

  1. Optimal approach to quantum communication using dynamic programming.

    PubMed

    Jiang, Liang; Taylor, Jacob M; Khaneja, Navin; Lukin, Mikhail D

    2007-10-30

    Reliable preparation of entanglement between distant systems is an outstanding problem in quantum information science and quantum communication. In practice, this has to be accomplished by noisy channels (such as optical fibers) that generally result in exponential attenuation of quantum signals at large distances. A special class of quantum error correction protocols, quantum repeater protocols, can be used to overcome such losses. In this work, we introduce a method for systematically optimizing existing protocols and developing more efficient protocols. Our approach makes use of a dynamic programming-based searching algorithm, the complexity of which scales only polynomially with the communication distance, letting us efficiently determine near-optimal solutions. We find significant improvements in both the speed and the final-state fidelity for preparing long-distance entangled states.

  2. Photonic engineering of highly linearly polarized quantum dot emission at telecommunication wavelengths

    NASA Astrophysics Data System (ADS)

    Mrowiński, P.; Emmerling, M.; Schneider, C.; Reithmaier, J. P.; Misiewicz, J.; Höfling, S.; Sek, G.

    2018-04-01

    In this work, we discuss a method to control the polarization anisotropy of spontaneous emission from neutral excitons confined in quantum-dot-like nanostructures, namely single epitaxial InAs quantum dashes emitting at telecom wavelengths. The nanostructures are embedded inside lithographically defined, in-plane asymmetric photonic mesa structures, which generate polarization-dependent photonic confinement. First, we study the influence of the photonic confinement on the polarization anisotropy of the emission by photoluminescence spectroscopy, and we find evidence of different contributions to a degree of linear polarization (DOLP), i.e., from the quantum dash and the photonic mesa, in total giving rise to DOLP =0.85 . Then, we perform finite-difference time-domain simulations of photonic confinement, and we calculate the DOLP in a dipole approximation showing well-matched results for the established model. Furthermore, by using numerical calculations, we demonstrate several types of photonic confinements where highly linearly polarized emission with DOLP of about 0.9 is possible by controlling the position of a quantum emitter inside the photonic structure. Then, we elaborate on anisotropic quantum emitters allowing for exceeding DOLP =0.95 in an optimized case, and we discuss the ways towards efficient linearly polarized single photon source at telecom bands.

  3. Coherence in quantum estimation

    NASA Astrophysics Data System (ADS)

    Giorda, Paolo; Allegra, Michele

    2018-01-01

    The geometry of quantum states provides a unifying framework for estimation processes based on quantum probes, and it establishes the ultimate bounds of the achievable precision. We show a relation between the statistical distance between infinitesimally close quantum states and the second order variation of the coherence of the optimal measurement basis with respect to the state of the probe. In quantum phase estimation protocols, this leads to propose coherence as the relevant resource that one has to engineer and control to optimize the estimation precision. Furthermore, the main object of the theory i.e. the symmetric logarithmic derivative, in many cases allows one to identify a proper factorization of the whole Hilbert space in two subsystems. The factorization allows one to discuss the role of coherence versus correlations in estimation protocols; to show how certain estimation processes can be completely or effectively described within a single-qubit subsystem; and to derive lower bounds for the scaling of the estimation precision with the number of probes used. We illustrate how the framework works for both noiseless and noisy estimation procedures, in particular those based on multi-qubit GHZ-states. Finally we succinctly analyze estimation protocols based on zero-temperature critical behavior. We identify the coherence that is at the heart of their efficiency, and we show how it exhibits the non-analyticities and scaling behavior proper of a large class of quantum phase transitions.

  4. A fault-tolerant addressable spin qubit in a natural silicon quantum dot

    PubMed Central

    Takeda, Kenta; Kamioka, Jun; Otsuka, Tomohiro; Yoneda, Jun; Nakajima, Takashi; Delbecq, Matthieu R.; Amaha, Shinichi; Allison, Giles; Kodera, Tetsuo; Oda, Shunri; Tarucha, Seigo

    2016-01-01

    Fault-tolerant quantum computing requires high-fidelity qubits. This has been achieved in various solid-state systems, including isotopically purified silicon, but is yet to be accomplished in industry-standard natural (unpurified) silicon, mainly as a result of the dephasing caused by residual nuclear spins. This high fidelity can be achieved by speeding up the qubit operation and/or prolonging the dephasing time, that is, increasing the Rabi oscillation quality factor Q (the Rabi oscillation decay time divided by the π rotation time). In isotopically purified silicon quantum dots, only the second approach has been used, leaving the qubit operation slow. We apply the first approach to demonstrate an addressable fault-tolerant qubit using a natural silicon double quantum dot with a micromagnet that is optimally designed for fast spin control. This optimized design allows access to Rabi frequencies up to 35 MHz, which is two orders of magnitude greater than that achieved in previous studies. We find the optimum Q = 140 in such high-frequency range at a Rabi frequency of 10 MHz. This leads to a qubit fidelity of 99.6% measured via randomized benchmarking, which is the highest reported for natural silicon qubits and comparable to that obtained in isotopically purified silicon quantum dot–based qubits. This result can inspire contributions to quantum computing from industrial communities. PMID:27536725

  5. A fault-tolerant addressable spin qubit in a natural silicon quantum dot.

    PubMed

    Takeda, Kenta; Kamioka, Jun; Otsuka, Tomohiro; Yoneda, Jun; Nakajima, Takashi; Delbecq, Matthieu R; Amaha, Shinichi; Allison, Giles; Kodera, Tetsuo; Oda, Shunri; Tarucha, Seigo

    2016-08-01

    Fault-tolerant quantum computing requires high-fidelity qubits. This has been achieved in various solid-state systems, including isotopically purified silicon, but is yet to be accomplished in industry-standard natural (unpurified) silicon, mainly as a result of the dephasing caused by residual nuclear spins. This high fidelity can be achieved by speeding up the qubit operation and/or prolonging the dephasing time, that is, increasing the Rabi oscillation quality factor Q (the Rabi oscillation decay time divided by the π rotation time). In isotopically purified silicon quantum dots, only the second approach has been used, leaving the qubit operation slow. We apply the first approach to demonstrate an addressable fault-tolerant qubit using a natural silicon double quantum dot with a micromagnet that is optimally designed for fast spin control. This optimized design allows access to Rabi frequencies up to 35 MHz, which is two orders of magnitude greater than that achieved in previous studies. We find the optimum Q = 140 in such high-frequency range at a Rabi frequency of 10 MHz. This leads to a qubit fidelity of 99.6% measured via randomized benchmarking, which is the highest reported for natural silicon qubits and comparable to that obtained in isotopically purified silicon quantum dot-based qubits. This result can inspire contributions to quantum computing from industrial communities.

  6. Improving the Performance of PbS Quantum Dot Solar Cells by Optimizing ZnO Window Layer

    NASA Astrophysics Data System (ADS)

    Yang, Xiaokun; Hu, Long; Deng, Hui; Qiao, Keke; Hu, Chao; Liu, Zhiyong; Yuan, Shengjie; Khan, Jahangeer; Li, Dengbing; Tang, Jiang; Song, Haisheng; Cheng, Chun

    2017-04-01

    Comparing with hot researches in absorber layer, window layer has attracted less attention in PbS quantum dot solar cells (QD SCs). Actually, the window layer plays a key role in exciton separation, charge drifting, and so on. Herein, ZnO window layer was systematically investigated for its roles in QD SCs performance. The physical mechanism of improved performance was also explored. It was found that the optimized ZnO films with appropriate thickness and doping concentration can balance the optical and electrical properties, and its energy band align well with the absorber layer for efficient charge extraction. Further characterizations demonstrated that the window layer optimization can help to reduce the surface defects, improve the heterojunction quality, as well as extend the depletion width. Compared with the control devices, the optimized devices have obtained an efficiency of 6.7% with an enhanced V oc of 18%, J sc of 21%, FF of 10%, and power conversion efficiency of 58%. The present work suggests a useful strategy to improve the device performance by optimizing the window layer besides the absorber layer.

  7. Sustained State-Independent Quantum Contextual Correlations from a Single Ion

    NASA Astrophysics Data System (ADS)

    Leupold, F. M.; Malinowski, M.; Zhang, C.; Negnevitsky, V.; Alonso, J.; Home, J. P.; Cabello, A.

    2018-05-01

    We use a single trapped-ion qutrit to demonstrate the quantum-state-independent violation of noncontextuality inequalities using a sequence of randomly chosen quantum nondemolition projective measurements. We concatenate 53 ×106 sequential measurements of 13 observables, and unambiguously violate an optimal noncontextual bound. We use the same data set to characterize imperfections including signaling and repeatability of the measurements. The experimental sequence was generated in real time with a quantum random number generator integrated into our control system to select the subsequent observable with a latency below 50 μ s , which can be used to constrain contextual hidden-variable models that might describe our results. The state-recycling experimental procedure is resilient to noise and independent of the qutrit state, substantiating the fact that the contextual nature of quantum physics is connected to measurements and not necessarily to designated states. The use of extended sequences of quantum nondemolition measurements finds applications in the fields of sensing and quantum information.

  8. Quantum junction solar cells.

    PubMed

    Tang, Jiang; Liu, Huan; Zhitomirsky, David; Hoogland, Sjoerd; Wang, Xihua; Furukawa, Melissa; Levina, Larissa; Sargent, Edward H

    2012-09-12

    Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO(2)); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising the benefits of facile quantum tuning. Here we report rectifying junctions constructed entirely using inherently band-aligned quantum-tuned materials. Realizing these quantum junction diodes relied upon the creation of an n-type quantum dot solid having a clean bandgap. We combine stable, chemically compatible, high-performance n-type and p-type materials to create the first quantum junction solar cells. We present a family of photovoltaic devices having widely tuned bandgaps of 0.6-1.6 eV that excel where conventional quantum-to-bulk devices fail to perform. Devices having optimal single-junction bandgaps exhibit certified AM1.5 solar power conversion efficiencies of 5.4%. Control over doping in quantum solids, and the successful integration of these materials to form stable quantum junctions, offers a powerful new degree of freedom to colloidal quantum dot optoelectronics.

  9. Attachment of Quantum Dots on Zinc Oxide Nanorods

    NASA Astrophysics Data System (ADS)

    Seay, Jared; Liang, Huan; Harikumar, Parameswar

    2011-03-01

    ZnO nanorods grown by hydrothermal technique are of great interest for potential applications in photovoltaic and optoelectronic devices. In this study we investigate the optimization of the optical absorption properties by a low temperature, chemical bath deposition technique. Our group fabricated nanorods on indium tin oxide (ITO) substrate with precursor solution of zinc nitrate hexahydrate and hexamethylenetramine (1:1 molar ratio) at 95C for 9 hours. In order to optimize the light absorption characteristics of ZnO nanorods, CdSe/ZnS core-shell quantum dots (QDs) of various diameters were attached to the surface of ZnO nanostructures grown on ITO and gold-coated silicon substrates. Density of quantum dots was varied by controlling the number drops on the surface of the ZnO nanorods. For a 0.1 M concentration of QDs of 10 nm diameter, the PL intensity at 385 nm increased as the density of the quantum dots on ZnO nanostructures was increased. For quantum dots at 1 M concentration, the PL intensity at 385 nm increased at the beginning and then decreased at higher density. We will discuss the observed changes in PL intensity with QD concentration with ZnO-QD band structure and recombination-diffusion processes taking place at the interface.

  10. Assessment of optimal control mechanism complexity by experimental landscape Hessian analysis: fragmentation of CH2BrI

    NASA Astrophysics Data System (ADS)

    Xing, Xi; Rey-de-Castro, Roberto; Rabitz, Herschel

    2014-12-01

    Optimally shaped femtosecond laser pulses can often be effectively identified in adaptive feedback quantum control experiments, but elucidating the underlying control mechanism can be a difficult task requiring significant additional analysis. We introduce landscape Hessian analysis (LHA) as a practical experimental tool to aid in elucidating control mechanism insights. This technique is applied to the dissociative ionization of CH2BrI using shaped fs laser pulses for optimization of the absolute yields of ionic fragments as well as their ratios for the competing processes of breaking the C-Br and C-I bonds. The experimental results suggest that these nominally complex problems can be reduced to a low-dimensional control space with insights into the control mechanisms. While the optimal yield for some fragments is dominated by a non-resonant intensity-driven process, the optimal generation of other fragments maa difficult task requiring significant additionaly be explained by a non-resonant process coupled to few level resonant dynamics. Theoretical analysis and modeling is consistent with the experimental observations.

  11. Phase-space interference in extensive and nonextensive quantum heat engines

    NASA Astrophysics Data System (ADS)

    Hardal, Ali Ü. C.; Paternostro, Mauro; Müstecaplıoǧlu, Özgür E.

    2018-04-01

    Quantum interference is at the heart of what sets the quantum and classical worlds apart. We demonstrate that quantum interference effects involving a many-body working medium is responsible for genuinely nonclassical features in the performance of a quantum heat engine. The features with which quantum interference manifests itself in the work output of the engine depends strongly on the extensive nature of the working medium. While identifying the class of work substances that optimize the performance of the engine, our results shed light on the optimal size of such media of quantum workers to maximize the work output and efficiency of quantum energy machines.

  12. Optimization Via Open System Quantum Annealing

    DTIC Science & Technology

    2016-01-07

    Daniel A. Lidar. Experimental signature of programmable quantum annealing, Nature Communications , (06 2013): 0. doi: 10.1038/ncomms3067 T. F...Demonstrated error correction effectiveness. • Demonstrated quantum annealing correction on antiferromagnetic chains, with substantial fidelity gains...Rev. A 91, 022309 (2015). 3. A. Kalev and I. Hen, “ Fidelity -optimized quantum state estimation”, New Journal of Physics 17 092008 (2015). 4. I

  13. Adiabatic Quantum Computation with Neutral Atoms

    NASA Astrophysics Data System (ADS)

    Biedermann, Grant

    2013-03-01

    We are implementing a new platform for adiabatic quantum computation (AQC)[2] based on trapped neutral atoms whose coupling is mediated by the dipole-dipole interactions of Rydberg states. Ground state cesium atoms are dressed by laser fields in a manner conditional on the Rydberg blockade mechanism,[3,4] thereby providing the requisite entangling interactions. As a benchmark we study a Quadratic Unconstrained Binary Optimization (QUBO) problem whose solution is found in the ground state spin configuration of an Ising-like model. In collaboration with Lambert Parazzoli, Sandia National Laboratories; Aaron Hankin, Center for Quantum Information and Control (CQuIC), University of New Mexico; James Chin-Wen Chou, Yuan-Yu Jau, Peter Schwindt, Cort Johnson, and George Burns, Sandia National Laboratories; Tyler Keating, Krittika Goyal, and Ivan Deutsch, Center for Quantum Information and Control (CQuIC), University of New Mexico; and Andrew Landahl, Sandia National Laboratories. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories

  14. Quantum computation over the butterfly network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soeda, Akihito; Kinjo, Yoshiyuki; Turner, Peter S.

    2011-07-15

    In order to investigate distributed quantum computation under restricted network resources, we introduce a quantum computation task over the butterfly network where both quantum and classical communications are limited. We consider deterministically performing a two-qubit global unitary operation on two unknown inputs given at different nodes, with outputs at two distinct nodes. By using a particular resource setting introduced by M. Hayashi [Phys. Rev. A 76, 040301(R) (2007)], which is capable of performing a swap operation by adding two maximally entangled qubits (ebits) between the two input nodes, we show that unitary operations can be performed without adding any entanglementmore » resource, if and only if the unitary operations are locally unitary equivalent to controlled unitary operations. Our protocol is optimal in the sense that the unitary operations cannot be implemented if we relax the specifications of any of the channels. We also construct protocols for performing controlled traceless unitary operations with a 1-ebit resource and for performing global Clifford operations with a 2-ebit resource.« less

  15. Optimizing Teleportation Cost in Distributed Quantum Circuits

    NASA Astrophysics Data System (ADS)

    Zomorodi-Moghadam, Mariam; Houshmand, Mahboobeh; Houshmand, Monireh

    2018-03-01

    The presented work provides a procedure for optimizing the communication cost of a distributed quantum circuit (DQC) in terms of the number of qubit teleportations. Because of technology limitations which do not allow large quantum computers to work as a single processing element, distributed quantum computation is an appropriate solution to overcome this difficulty. Previous studies have applied ad-hoc solutions to distribute a quantum system for special cases and applications. In this study, a general approach is proposed to optimize the number of teleportations for a DQC consisting of two spatially separated and long-distance quantum subsystems. To this end, different configurations of locations for executing gates whose qubits are in distinct subsystems are considered and for each of these configurations, the proposed algorithm is run to find the minimum number of required teleportations. Finally, the configuration which leads to the minimum number of teleportations is reported. The proposed method can be used as an automated procedure to find the configuration with the optimal communication cost for the DQC. This cost can be used as a basic measure of the communication cost for future works in the distributed quantum circuits.

  16. XY vs X Mixer in Quantum Alternating Operator Ansatz for Optimization Problems with Constraints

    NASA Technical Reports Server (NTRS)

    Wang, Zhihui; Rubin, Nicholas; Rieffel, Eleanor G.

    2018-01-01

    Quantum Approximate Optimization Algorithm, further generalized as Quantum Alternating Operator Ansatz (QAOA), is a family of algorithms for combinatorial optimization problems. It is a leading candidate to run on emerging universal quantum computers to gain insight into quantum heuristics. In constrained optimization, penalties are often introduced so that the ground state of the cost Hamiltonian encodes the solution (a standard practice in quantum annealing). An alternative is to choose a mixing Hamiltonian such that the constraint corresponds to a constant of motion and the quantum evolution stays in the feasible subspace. Better performance of the algorithm is speculated due to a much smaller search space. We consider problems with a constant Hamming weight as the constraint. We also compare different methods of generating the generalized W-state, which serves as a natural initial state for the Hamming-weight constraint. Using graph-coloring as an example, we compare the performance of using XY model as a mixer that preserves the Hamming weight with the performance of adding a penalty term in the cost Hamiltonian.

  17. Generalized Geometric Quantum Speed Limits

    NASA Astrophysics Data System (ADS)

    Pires, Diego Paiva; Cianciaruso, Marco; Céleri, Lucas C.; Adesso, Gerardo; Soares-Pinto, Diogo O.

    2016-04-01

    The attempt to gain a theoretical understanding of the concept of time in quantum mechanics has triggered significant progress towards the search for faster and more efficient quantum technologies. One of such advances consists in the interpretation of the time-energy uncertainty relations as lower bounds for the minimal evolution time between two distinguishable states of a quantum system, also known as quantum speed limits. We investigate how the nonuniqueness of a bona fide measure of distinguishability defined on the quantum-state space affects the quantum speed limits and can be exploited in order to derive improved bounds. Specifically, we establish an infinite family of quantum speed limits valid for unitary and nonunitary evolutions, based on an elegant information geometric formalism. Our work unifies and generalizes existing results on quantum speed limits and provides instances of novel bounds that are tighter than any established one based on the conventional quantum Fisher information. We illustrate our findings with relevant examples, demonstrating the importance of choosing different information metrics for open system dynamics, as well as clarifying the roles of classical populations versus quantum coherences, in the determination and saturation of the speed limits. Our results can find applications in the optimization and control of quantum technologies such as quantum computation and metrology, and might provide new insights in fundamental investigations of quantum thermodynamics.

  18. Quantum-enhanced reinforcement learning for finite-episode games with discrete state spaces

    NASA Astrophysics Data System (ADS)

    Neukart, Florian; Von Dollen, David; Seidel, Christian; Compostella, Gabriele

    2017-12-01

    Quantum annealing algorithms belong to the class of metaheuristic tools, applicable for solving binary optimization problems. Hardware implementations of quantum annealing, such as the quantum annealing machines produced by D-Wave Systems, have been subject to multiple analyses in research, with the aim of characterizing the technology's usefulness for optimization and sampling tasks. Here, we present a way to partially embed both Monte Carlo policy iteration for finding an optimal policy on random observations, as well as how to embed n sub-optimal state-value functions for approximating an improved state-value function given a policy for finite horizon games with discrete state spaces on a D-Wave 2000Q quantum processing unit (QPU). We explain how both problems can be expressed as a quadratic unconstrained binary optimization (QUBO) problem, and show that quantum-enhanced Monte Carlo policy evaluation allows for finding equivalent or better state-value functions for a given policy with the same number episodes compared to a purely classical Monte Carlo algorithm. Additionally, we describe a quantum-classical policy learning algorithm. Our first and foremost aim is to explain how to represent and solve parts of these problems with the help of the QPU, and not to prove supremacy over every existing classical policy evaluation algorithm.

  19. Spatial Search by Quantum Walk is Optimal for Almost all Graphs.

    PubMed

    Chakraborty, Shantanav; Novo, Leonardo; Ambainis, Andris; Omar, Yasser

    2016-03-11

    The problem of finding a marked node in a graph can be solved by the spatial search algorithm based on continuous-time quantum walks (CTQW). However, this algorithm is known to run in optimal time only for a handful of graphs. In this work, we prove that for Erdös-Renyi random graphs, i.e., graphs of n vertices where each edge exists with probability p, search by CTQW is almost surely optimal as long as p≥log^{3/2}(n)/n. Consequently, we show that quantum spatial search is in fact optimal for almost all graphs, meaning that the fraction of graphs of n vertices for which this optimality holds tends to one in the asymptotic limit. We obtain this result by proving that search is optimal on graphs where the ratio between the second largest and the largest eigenvalue is bounded by a constant smaller than 1. Finally, we show that we can extend our results on search to establish high fidelity quantum communication between two arbitrary nodes of a random network of interacting qubits, namely, to perform quantum state transfer, as well as entanglement generation. Our work shows that quantum information tasks typically designed for structured systems retain performance in very disordered structures.

  20. Novel systems and methods for quantum communication, quantum computation, and quantum simulation

    NASA Astrophysics Data System (ADS)

    Gorshkov, Alexey Vyacheslavovich

    Precise control over quantum systems can enable the realization of fascinating applications such as powerful computers, secure communication devices, and simulators that can elucidate the physics of complex condensed matter systems. However, the fragility of quantum effects makes it very difficult to harness the power of quantum mechanics. In this thesis, we present novel systems and tools for gaining fundamental insights into the complex quantum world and for bringing practical applications of quantum mechanics closer to reality. We first optimize and show equivalence between a wide range of techniques for storage of photons in atomic ensembles. We describe experiments demonstrating the potential of our optimization algorithms for quantum communication and computation applications. Next, we combine the technique of photon storage with strong atom-atom interactions to propose a robust protocol for implementing the two-qubit photonic phase gate, which is an important ingredient in many quantum computation and communication tasks. In contrast to photon storage, many quantum computation and simulation applications require individual addressing of closely-spaced atoms, ions, quantum dots, or solid state defects. To meet this requirement, we propose a method for coherent optical far-field manipulation of quantum systems with a resolution that is not limited by the wavelength of radiation. While alkali atoms are currently the system of choice for photon storage and many other applications, we develop new methods for quantum information processing and quantum simulation with ultracold alkaline-earth atoms in optical lattices. We show how multiple qubits can be encoded in individual alkaline-earth atoms and harnessed for quantum computing and precision measurements applications. We also demonstrate that alkaline-earth atoms can be used to simulate highly symmetric systems exhibiting spin-orbital interactions and capable of providing valuable insights into strongly correlated physics of transition metal oxides, heavy fermion materials, and spin liquid phases. While ultracold atoms typically exhibit only short-range interactions, numerous exotic phenomena and practical applications require long-range interactions, which can be achieved with ultracold polar molecules. We demonstrate the possibility to engineer a repulsive interaction between polar molecules, which allows for the suppression of inelastic collisions, efficient evaporative cooling, and the creation of novel phases of polar molecules.

  1. Experimental Optimal Single Qubit Purification in an NMR Quantum Information Processor

    PubMed Central

    Hou, Shi-Yao; Sheng, Yu-Bo; Feng, Guan-Ru; Long, Gui-Lu

    2014-01-01

    High quality single qubits are the building blocks in quantum information processing. But they are vulnerable to environmental noise. To overcome noise, purification techniques, which generate qubits with higher purities from qubits with lower purities, have been proposed. Purifications have attracted much interest and been widely studied. However, the full experimental demonstration of an optimal single qubit purification protocol proposed by Cirac, Ekert and Macchiavello [Phys. Rev. Lett. 82, 4344 (1999), the CEM protocol] more than one and half decades ago, still remains an experimental challenge, as it requires more complicated networks and a higher level of precision controls. In this work, we design an experiment scheme that realizes the CEM protocol with explicit symmetrization of the wave functions. The purification scheme was successfully implemented in a nuclear magnetic resonance quantum information processor. The experiment fully demonstrated the purification protocol, and showed that it is an effective way of protecting qubits against errors and decoherence. PMID:25358758

  2. High-fidelity gates in quantum dot spin qubits

    PubMed Central

    Koh, Teck Seng; Coppersmith, S. N.; Friesen, Mark

    2013-01-01

    Several logical qubits and quantum gates have been proposed for semiconductor quantum dots controlled by voltages applied to top gates. The different schemes can be difficult to compare meaningfully. Here we develop a theoretical framework to evaluate disparate qubit-gating schemes on an equal footing. We apply the procedure to two types of double-dot qubits: the singlet–triplet and the semiconducting quantum dot hybrid qubit. We investigate three quantum gates that flip the qubit state: a DC pulsed gate, an AC gate based on logical qubit resonance, and a gate-like process known as stimulated Raman adiabatic passage. These gates are all mediated by an exchange interaction that is controlled experimentally using the interdot tunnel coupling g and the detuning ϵ, which sets the energy difference between the dots. Our procedure has two steps. First, we optimize the gate fidelity (f) for fixed g as a function of the other control parameters; this yields an that is universal for different types of gates. Next, we identify physical constraints on the control parameters; this yields an upper bound that is specific to the qubit-gate combination. We show that similar gate fidelities should be attainable for singlet-triplet qubits in isotopically purified Si, and for hybrid qubits in natural Si. Considerably lower fidelities are obtained for GaAs devices, due to the fluctuating magnetic fields ΔB produced by nuclear spins. PMID:24255105

  3. Quantum chi-squared and goodness of fit testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Temme, Kristan; Verstraete, Frank

    2015-01-15

    A quantum mechanical hypothesis test is presented for the hypothesis that a certain setup produces a given quantum state. Although the classical and the quantum problems are very much related to each other, the quantum problem is much richer due to the additional optimization over the measurement basis. A goodness of fit test for i.i.d quantum states is developed and a max-min characterization for the optimal measurement is introduced. We find the quantum measurement which leads both to the maximal Pitman and Bahadur efficiencies, and determine the associated divergence rates. We discuss the relationship of the quantum goodness of fitmore » test to the problem of estimating multiple parameters from a density matrix. These problems are found to be closely related and we show that the largest error of an optimal strategy, determined by the smallest eigenvalue of the Fisher information matrix, is given by the divergence rate of the goodness of fit test.« less

  4. Heterogeneous quantum computing for satellite constellation optimization: solving the weighted k-clique problem

    NASA Astrophysics Data System (ADS)

    Bass, Gideon; Tomlin, Casey; Kumar, Vaibhaw; Rihaczek, Pete; Dulny, Joseph, III

    2018-04-01

    NP-hard optimization problems scale very rapidly with problem size, becoming unsolvable with brute force methods, even with supercomputing resources. Typically, such problems have been approximated with heuristics. However, these methods still take a long time and are not guaranteed to find an optimal solution. Quantum computing offers the possibility of producing significant speed-up and improved solution quality. Current quantum annealing (QA) devices are designed to solve difficult optimization problems, but they are limited by hardware size and qubit connectivity restrictions. We present a novel heterogeneous computing stack that combines QA and classical machine learning, allowing the use of QA on problems larger than the hardware limits of the quantum device. These results represent experiments on a real-world problem represented by the weighted k-clique problem. Through this experiment, we provide insight into the state of quantum machine learning.

  5. Gossip algorithms in quantum networks

    NASA Astrophysics Data System (ADS)

    Siomau, Michael

    2017-01-01

    Gossip algorithms is a common term to describe protocols for unreliable information dissemination in natural networks, which are not optimally designed for efficient communication between network entities. We consider application of gossip algorithms to quantum networks and show that any quantum network can be updated to optimal configuration with local operations and classical communication. This allows to speed-up - in the best case exponentially - the quantum information dissemination. Irrespective of the initial configuration of the quantum network, the update requiters at most polynomial number of local operations and classical communication.

  6. Temporal Planning for Compilation of Quantum Approximate Optimization Algorithm Circuits

    NASA Technical Reports Server (NTRS)

    Venturelli, Davide; Do, Minh Binh; Rieffel, Eleanor Gilbert; Frank, Jeremy David

    2017-01-01

    We investigate the application of temporal planners to the problem of compiling quantum circuits to newly emerging quantum hardware. While our approach is general, we focus our initial experiments on Quantum Approximate Optimization Algorithm (QAOA) circuits that have few ordering constraints and allow highly parallel plans. We report on experiments using several temporal planners to compile circuits of various sizes to a realistic hardware. This early empirical evaluation suggests that temporal planning is a viable approach to quantum circuit compilation.

  7. A software methodology for compiling quantum programs

    NASA Astrophysics Data System (ADS)

    Häner, Thomas; Steiger, Damian S.; Svore, Krysta; Troyer, Matthias

    2018-04-01

    Quantum computers promise to transform our notions of computation by offering a completely new paradigm. To achieve scalable quantum computation, optimizing compilers and a corresponding software design flow will be essential. We present a software architecture for compiling quantum programs from a high-level language program to hardware-specific instructions. We describe the necessary layers of abstraction and their differences and similarities to classical layers of a computer-aided design flow. For each layer of the stack, we discuss the underlying methods for compilation and optimization. Our software methodology facilitates more rapid innovation among quantum algorithm designers, quantum hardware engineers, and experimentalists. It enables scalable compilation of complex quantum algorithms and can be targeted to any specific quantum hardware implementation.

  8. High-performance Förster resonance energy transfer (FRET)-based dye-sensitized solar cells: rational design of quantum dots for wide solar-spectrum utilization.

    PubMed

    Lee, Eunwoo; Kim, Chanhoi; Jang, Jyongsik

    2013-07-29

    High-performance Förster resonance energy transfer (FRET)-based dye-sensitized solar cells (DSSCs) have been successfully fabricated through the optimized design of a CdSe/CdS quantum-dot (QD) donor and a dye acceptor. This simple approach enables quantum dots and dyes to simultaneously utilize the wide solar spectrum, thereby resulting in high conversion efficiency over a wide wavelength range. In addition, major parameters that affect the FRET interaction between donor and acceptor have been investigated including the fluorescent emission spectrum of QD, and the content of deposited QDs into the TiO2 matrix. By judicious control of these parameters, the FRET interaction can be readily optimized for high photovoltaic performance. In addition, the as-synthesized water-soluble quantum dots were highly dispersed in a nanoporous TiO2 matrix, thereby resulting in excellent contact between donors and acceptors. Importantly, high-performance FRET-based DSSCs can be prepared without any infrared (IR) dye synthetic procedures. This novel strategy offers great potential for applications of dye-sensitized solar cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Experimental opto-mechanics with levitated nanoparticles: towards quantum control and thermodynamic cycles (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Kiesel, Nikolai; Blaser, Florian; Delic, Uros; Grass, David; Dechant, Andreas; Lutz, Eric; Bathaee, Marzieh; Aspelmeyer, Markus

    2015-08-01

    Combining optical levitation and cavity optomechanics constitutes a promising approach to prepare and control the motional quantum state of massive objects (>10^9 amu). This, in turn, would represent a completely new type of light-matter interface and has, for example, been predicted to enable experimental tests of macrorealistic models or of non-Newtonian gravity at small length scales. Such ideas have triggered significant experimental efforts to realizing such novel systems. To this end, we have recently successfully demonstrated cavity-cooling of a levitated sub-micron silica particle in a classical regime at a pressure of approximately 1mbar. Access to higher vacuum of approx. 10^-6 mbar has been demonstrated using 3D-feedback cooling in optical tweezers without cavity-coupling. Here we will illustrate our strategy towards trapping, 3D-cooling and quantum control of nanoparticles in ultra-high vacuum using cavity-based feedback cooling methods and clean particle loading with hollow-core photonic crystal fibers. We will also discuss the current experimental progress both in 3D-cavity cooling and HCPCF-based transport of nanoparticles. As yet another application of cavity-controlled levitated nanoparticles we will show how to implement a thermodynamic Sterling cycle operating in the underdamped regime. We present optimized protocols with respect to efficiency at maximum power in this little explored regime. We also show that the excellent level of control in our system will allow reproducing all relevant features of such optimized protocols. In a next step, this will enable studies of thermodynamics cycles in a regime where the quantization of the mechanical motion becomes relevant.

  10. Optimal control of the power adiabatic stroke of an optomechanical heat engine.

    PubMed

    Bathaee, M; Bahrampour, A R

    2016-08-01

    We consider the power adiabatic stroke of the Otto optomechanical heat engine introduced in Phys. Rev. Lett. 112, 150602 (2014)PRLTAO0031-900710.1103/PhysRevLett.112.150602. We derive the maximum extractable work of both optomechanical normal modes in the minimum time while the system experiences quantum friction effects. We show that the total work done by the system in the power adiabatic stroke is optimized by a bang-bang control. The time duration of the power adiabatic stroke is of the order of the inverse of the effective optomechanical-coupling coefficient. The optimal phase-space trajectory of the Otto cycle for both optomechanical normal modes is also obtained.

  11. Fast state transfer in a Λ-system: a shortcut-to-adiabaticity approach to robust and resource optimized control

    NASA Astrophysics Data System (ADS)

    Mortensen, Henrik Lund; Sørensen, Jens Jakob W. H.; Mølmer, Klaus; Sherson, Jacob Friis

    2018-02-01

    We propose an efficient strategy to find optimal control functions for state-to-state quantum control problems. Our procedure first chooses an input state trajectory, that can realize the desired transformation by adiabatic variation of the system Hamiltonian. The shortcut-to-adiabaticity formalism then provides a control Hamiltonian that realizes the reference trajectory exactly but on a finite time scale. As the final state is achieved with certainty, we define a cost functional that incorporates the resource requirements and a perturbative expression for robustness. We optimize this functional by systematically varying the reference trajectory. We demonstrate the method by application to population transfer in a laser driven three-level Λ-system, where we find solutions that are fast and robust against perturbations while maintaining a low peak laser power.

  12. High fidelity quantum gates with vibrational qubits.

    PubMed

    Berrios, Eduardo; Gruebele, Martin; Shyshlov, Dmytro; Wang, Lei; Babikov, Dmitri

    2012-11-26

    Physical implementation of quantum gates acting on qubits does not achieve a perfect fidelity of 1. The actual output qubit may not match the targeted output of the desired gate. According to theoretical estimates, intrinsic gate fidelities >99.99% are necessary so that error correction codes can be used to achieve perfect fidelity. Here we test what fidelity can be accomplished for a CNOT gate executed by a shaped ultrafast laser pulse interacting with vibrational states of the molecule SCCl(2). This molecule has been used as a test system for low-fidelity calculations before. To make our test more stringent, we include vibrational levels that do not encode the desired qubits but are close enough in energy to interfere with population transfer by the laser pulse. We use two complementary approaches: optimal control theory determines what the best possible pulse can do; a more constrained physical model calculates what an experiment likely can do. Optimal control theory finds pulses with fidelity >0.9999, in excess of the quantum error correction threshold with 8 × 10(4) iterations. On the other hand, the physical model achieves only 0.9992 after 8 × 10(4) iterations. Both calculations converge as an inverse power law toward unit fidelity after >10(2) iterations/generations. In principle, the fidelities necessary for quantum error correction are reachable with qubits encoded by molecular vibrations. In practice, it will be challenging with current laboratory instrumentation because of slow convergence past fidelities of 0.99.

  13. Control of noisy quantum systems: Field-theory approach to error mitigation

    NASA Astrophysics Data System (ADS)

    Hipolito, Rafael; Goldbart, Paul M.

    2016-04-01

    We consider the basic quantum-control task of obtaining a target unitary operation (i.e., a quantum gate) via control fields that couple to the quantum system and are chosen to best mitigate errors resulting from time-dependent noise, which frustrate this task. We allow for two sources of noise: fluctuations in the control fields and fluctuations arising from the environment. We address the issue of control-error mitigation by means of a formulation rooted in the Martin-Siggia-Rose (MSR) approach to noisy, classical statistical-mechanical systems. To do this, we express the noisy control problem in terms of a path integral, and integrate out the noise to arrive at an effective, noise-free description. We characterize the degree of success in error mitigation via a fidelity metric, which characterizes the proximity of the sought-after evolution to ones that are achievable in the presence of noise. Error mitigation is then best accomplished by applying the optimal control fields, i.e., those that maximize the fidelity subject to any constraints obeyed by the control fields. To make connection with MSR, we reformulate the fidelity in terms of a Schwinger-Keldysh (SK) path integral, with the added twist that the "forward" and "backward" branches of the time contour are inequivalent with respect to the noise. The present approach naturally and readily allows the incorporation of constraints on the control fields—a useful feature in practice, given that constraints feature in all real experiments. In addition to addressing the noise average of the fidelity, we consider its full probability distribution. The information content present in this distribution allows one to address more complex questions regarding error mitigation, including, in principle, questions of extreme value statistics, i.e., the likelihood and impact of rare instances of the fidelity and how to harness or cope with their influence. We illustrate this MSR-SK reformulation by considering a model system consisting of a single spin-s freedom (with s arbitrary), focusing on the case of 1 /f noise in the weak-noise limit. We discover that optimal error mitigation is accomplished via a universal control field protocol that is valid for all s , from the qubit (i.e., s =1 /2 ) case to the classical (i.e., s →∞ ) limit. In principle, this MSR-SK approach provides a transparent framework for addressing quantum control in the presence of noise for systems of arbitrary complexity.

  14. Reexamination of optimal quantum state estimation of pure states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, A.; Hashimoto, T.; Horibe, M.

    2005-09-15

    A direct derivation is given for the optimal mean fidelity of quantum state estimation of a d-dimensional unknown pure state with its N copies given as input, which was first obtained by Hayashi in terms of an infinite set of covariant positive operator valued measures (POVM's) and by Bruss and Macchiavello establishing a connection to optimal quantum cloning. An explicit condition for POVM measurement operators for optimal estimators is obtained, by which we construct optimal estimators with finite POVMs using exact quadratures on a hypersphere. These finite optimal estimators are not generally universal, where universality means the fidelity is independentmore » of input states. However, any optimal estimator with finite POVM for M(>N) copies is universal if it is used for N copies as input.« less

  15. Diffusion Monte Carlo approach versus adiabatic computation for local Hamiltonians

    NASA Astrophysics Data System (ADS)

    Bringewatt, Jacob; Dorland, William; Jordan, Stephen P.; Mink, Alan

    2018-02-01

    Most research regarding quantum adiabatic optimization has focused on stoquastic Hamiltonians, whose ground states can be expressed with only real non-negative amplitudes and thus for whom destructive interference is not manifest. This raises the question of whether classical Monte Carlo algorithms can efficiently simulate quantum adiabatic optimization with stoquastic Hamiltonians. Recent results have given counterexamples in which path-integral and diffusion Monte Carlo fail to do so. However, most adiabatic optimization algorithms, such as for solving MAX-k -SAT problems, use k -local Hamiltonians, whereas our previous counterexample for diffusion Monte Carlo involved n -body interactions. Here we present a 6-local counterexample which demonstrates that even for these local Hamiltonians there are cases where diffusion Monte Carlo cannot efficiently simulate quantum adiabatic optimization. Furthermore, we perform empirical testing of diffusion Monte Carlo on a standard well-studied class of permutation-symmetric tunneling problems and similarly find large advantages for quantum optimization over diffusion Monte Carlo.

  16. Quantum microbiology.

    PubMed

    Trevors, J T; Masson, L

    2011-01-01

    During his famous 1943 lecture series at Trinity College Dublin, the reknown physicist Erwin Schrodinger discussed the failure and challenges of interpreting life by classical physics alone and that a new approach, rooted in Quantum principles, must be involved. Quantum events are simply a level of organization below the molecular level. This includes the atomic and subatomic makeup of matter in microbial metabolism and structures, as well as the organic, genetic information code of DNA and RNA. Quantum events at this time do not elucidate, for example, how specific genetic instructions were first encoded in an organic genetic code in microbial cells capable of growth and division, and its subsequent evolution over 3.6 to 4 billion years. However, due to recent technological advances, biologists and physicists are starting to demonstrate linkages between various quantum principles like quantum tunneling, entanglement and coherence in biological processes illustrating that nature has exerted some level quantum control to optimize various processes in living organisms. In this article we explore the role of quantum events in microbial processes and endeavor to show that after nearly 67 years, Schrödinger was prophetic and visionary in his view of quantum theory and its connection with some of the fundamental mechanisms of life.

  17. Quantum Adiabatic Algorithms and Large Spin Tunnelling

    NASA Technical Reports Server (NTRS)

    Boulatov, A.; Smelyanskiy, V. N.

    2003-01-01

    We provide a theoretical study of the quantum adiabatic evolution algorithm with different evolution paths proposed in this paper. The algorithm is applied to a random binary optimization problem (a version of the 3-Satisfiability problem) where the n-bit cost function is symmetric with respect to the permutation of individual bits. The evolution paths are produced, using the generic control Hamiltonians H (r) that preserve the bit symmetry of the underlying optimization problem. In the case where the ground state of H(0) coincides with the totally-symmetric state of an n-qubit system the algorithm dynamics is completely described in terms of the motion of a spin-n/2. We show that different control Hamiltonians can be parameterized by a set of independent parameters that are expansion coefficients of H (r) in a certain universal set of operators. Only one of these operators can be responsible for avoiding the tunnelling in the spin-n/2 system during the quantum adiabatic algorithm. We show that it is possible to select a coefficient for this operator that guarantees a polynomial complexity of the algorithm for all problem instances. We show that a successful evolution path of the algorithm always corresponds to the trajectory of a classical spin-n/2 and provide a complete characterization of such paths.

  18. Exploring quantum computing application to satellite data assimilation

    NASA Astrophysics Data System (ADS)

    Cheung, S.; Zhang, S. Q.

    2015-12-01

    This is an exploring work on potential application of quantum computing to a scientific data optimization problem. On classical computational platforms, the physical domain of a satellite data assimilation problem is represented by a discrete variable transform, and classical minimization algorithms are employed to find optimal solution of the analysis cost function. The computation becomes intensive and time-consuming when the problem involves large number of variables and data. The new quantum computer opens a very different approach both in conceptual programming and in hardware architecture for solving optimization problem. In order to explore if we can utilize the quantum computing machine architecture, we formulate a satellite data assimilation experimental case in the form of quadratic programming optimization problem. We find a transformation of the problem to map it into Quadratic Unconstrained Binary Optimization (QUBO) framework. Binary Wavelet Transform (BWT) will be applied to the data assimilation variables for its invertible decomposition and all calculations in BWT are performed by Boolean operations. The transformed problem will be experimented as to solve for a solution of QUBO instances defined on Chimera graphs of the quantum computer.

  19. Optimizing inhomogeneous spin ensembles for quantum memory

    NASA Astrophysics Data System (ADS)

    Bensky, Guy; Petrosyan, David; Majer, Johannes; Schmiedmayer, Jörg; Kurizki, Gershon

    2012-07-01

    We propose a method to maximize the fidelity of quantum memory implemented by a spectrally inhomogeneous spin ensemble. The method is based on preselecting the optimal spectral portion of the ensemble by judiciously designed pulses. This leads to significant improvement of the transfer and storage of quantum information encoded in the microwave or optical field.

  20. Two-qubit quantum cloning machine and quantum correlation broadcasting

    NASA Astrophysics Data System (ADS)

    Kheirollahi, Azam; Mohammadi, Hamidreza; Akhtarshenas, Seyed Javad

    2016-11-01

    Due to the axioms of quantum mechanics, perfect cloning of an unknown quantum state is impossible. But since imperfect cloning is still possible, a question arises: "Is there an optimal quantum cloning machine?" Buzek and Hillery answered this question and constructed their famous B-H quantum cloning machine. The B-H machine clones the state of an arbitrary single qubit in an optimal manner and hence it is universal. Generalizing this machine for a two-qubit system is straightforward, but during this procedure, except for product states, this machine loses its universality and becomes a state-dependent cloning machine. In this paper, we propose some classes of optimal universal local quantum state cloners for a particular class of two-qubit systems, more precisely, for a class of states with known Schmidt basis. We then extend our machine to the case that the Schmidt basis of the input state is deviated from the local computational basis of the machine. We show that more local quantum coherence existing in the input state corresponds to less fidelity between the input and output states. Also we present two classes of a state-dependent local quantum copying machine. Furthermore, we investigate local broadcasting of two aspects of quantum correlations, i.e., quantum entanglement and quantum discord, defined, respectively, within the entanglement-separability paradigm and from an information-theoretic perspective. The results show that although quantum correlation is, in general, very fragile during the broadcasting procedure, quantum discord is broadcasted more robustly than quantum entanglement.

  1. Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system

    DOE PAGES

    Zhou, Brian B.; Baksic, Alexandre; Ribeiro, Hugo; ...

    2016-11-28

    Adiabatic evolutions find widespread utility in applications to quantum state engineering1 , geometric quantum computation2 , and quantum simulation3 . Although offering desirable robustness to experimental imperfections, adiabatic techniques are susceptible to decoherence during their long operation time. A recent strategy termed ‘shortcuts to adiabaticity’ 4–10 (STA) aims to circumvent this trade-off by designing fast dynamics to reproduce the results of infinitely slow, adiabatic processes. Here, as a realization of this strategy, we implement ‘superadiabatic’ transitionless driving11 (SATD) to speed up stimulated Raman adiabatic passage1,12–15 (STIRAP) in a solid-state lambda (Λ) system. Utilizing optical transitions to a dissipative excited statemore » in the nitrogen vacancy (NV) center in diamond, we demonstrate the accelerated performance of different shortcut trajectories for population transfer and for the transfer and initialization of coherent superpositions. We reveal that SATD protocols exhibit robustness to dissipation and experimental uncertainty, and can be optimized when these effects are present. These results motivate STA as a promising tool for controlling open quantum systems comprising individual or hybrid nanomechanical, superconducting, and photonic elements in the solid state12–17.« less

  2. Optimal quantum observables

    NASA Astrophysics Data System (ADS)

    Haapasalo, Erkka; Pellonpää, Juha-Pekka

    2017-12-01

    Various forms of optimality for quantum observables described as normalized positive-operator-valued measures (POVMs) are studied in this paper. We give characterizations for observables that determine the values of the measured quantity with probabilistic certainty or a state of the system before or after the measurement. We investigate observables that are free from noise caused by classical post-processing, mixing, or pre-processing of quantum nature. Especially, a complete characterization of pre-processing and post-processing clean observables is given, and necessary and sufficient conditions are imposed on informationally complete POVMs within the set of pure states. We also discuss joint and sequential measurements of optimal quantum observables.

  3. Effect of local minima on adiabatic quantum optimization.

    PubMed

    Amin, M H S

    2008-04-04

    We present a perturbative method to estimate the spectral gap for adiabatic quantum optimization, based on the structure of the energy levels in the problem Hamiltonian. We show that, for problems that have an exponentially large number of local minima close to the global minimum, the gap becomes exponentially small making the computation time exponentially long. The quantum advantage of adiabatic quantum computation may then be accessed only via the local adiabatic evolution, which requires phase coherence throughout the evolution and knowledge of the spectrum. Such problems, therefore, are not suitable for adiabatic quantum computation.

  4. Complexity of the Quantum Adiabatic Algorithm

    NASA Technical Reports Server (NTRS)

    Hen, Itay

    2013-01-01

    The Quantum Adiabatic Algorithm (QAA) has been proposed as a mechanism for efficiently solving optimization problems on a quantum computer. Since adiabatic computation is analog in nature and does not require the design and use of quantum gates, it can be thought of as a simpler and perhaps more profound method for performing quantum computations that might also be easier to implement experimentally. While these features have generated substantial research in QAA, to date there is still a lack of solid evidence that the algorithm can outperform classical optimization algorithms.

  5. Quantum Hamilton equations of motion for bound states of one-dimensional quantum systems

    NASA Astrophysics Data System (ADS)

    Köppe, J.; Patzold, M.; Grecksch, W.; Paul, W.

    2018-06-01

    On the basis of Nelson's stochastic mechanics derivation of the Schrödinger equation, a formal mathematical structure of non-relativistic quantum mechanics equivalent to the one in classical analytical mechanics has been established in the literature. We recently were able to augment this structure by deriving quantum Hamilton equations of motion by finding the Nash equilibrium of a stochastic optimal control problem, which is the generalization of Hamilton's principle of classical mechanics to quantum systems. We showed that these equations allow a description and numerical determination of the ground state of quantum problems without using the Schrödinger equation. We extend this approach here to deliver the complete discrete energy spectrum and related eigenfunctions for bound states of one-dimensional stationary quantum systems. We exemplify this analytically for the one-dimensional harmonic oscillator and numerically by analyzing a quartic double-well potential, a model of broad importance in many areas of physics. We furthermore point out a relation between the tunnel splitting of such models and mean first passage time concepts applied to Nelson's diffusion paths in the ground state.

  6. A quantum annealing approach for fault detection and diagnosis of graph-based systems

    NASA Astrophysics Data System (ADS)

    Perdomo-Ortiz, A.; Fluegemann, J.; Narasimhan, S.; Biswas, R.; Smelyanskiy, V. N.

    2015-02-01

    Diagnosing the minimal set of faults capable of explaining a set of given observations, e.g., from sensor readouts, is a hard combinatorial optimization problem usually tackled with artificial intelligence techniques. We present the mapping of this combinatorial problem to quadratic unconstrained binary optimization (QUBO), and the experimental results of instances embedded onto a quantum annealing device with 509 quantum bits. Besides being the first time a quantum approach has been proposed for problems in the advanced diagnostics community, to the best of our knowledge this work is also the first research utilizing the route Problem → QUBO → Direct embedding into quantum hardware, where we are able to implement and tackle problem instances with sizes that go beyond previously reported toy-model proof-of-principle quantum annealing implementations; this is a significant leap in the solution of problems via direct-embedding adiabatic quantum optimization. We discuss some of the programmability challenges in the current generation of the quantum device as well as a few possible ways to extend this work to more complex arbitrary network graphs.

  7. Tailoring many-body entanglement through local control

    NASA Astrophysics Data System (ADS)

    Lucas, Felix; Mintert, Florian; Buchleitner, Andreas

    2013-09-01

    We construct optimal time-local control pulses based on a multipartite entanglement measure as target functional. The underlying control Hamiltonians are derived in a purely algebraic fashion, and the resulting pulses drive a composite quantum system rapidly into that highly entangled state which can be created most efficiently for a given interaction mechanism, and which bears entanglement that is robust against decoherence. Moreover, it is shown that the control scheme is insensitive to experimental imperfections in first order.

  8. Design Issues of GaAs and AlGaAs Delta-Doped p-i-n Quantum-Well APD's

    NASA Technical Reports Server (NTRS)

    Wang, Yang

    1994-01-01

    We examine the basic design issues in the optimization of GaAs delta-doped and AlGAs delta-doped quantum-well avalanche photodiode (APD) structures using a theoretical analysis based on an ensemble Monte Carlo simulation. The devices are variations of the p-i-n doped quantum-well structure previously described in the literature. They have the same low-noise, high-gain and high-bandwidth features as the p-i-n doped quantum-well device. However, the use of delta doping provides far greater control or the doping concentrations within each stage possibly enhancing the extent to which the device can be depleted. As a result, it is expected that the proposed devices will operate at higher gain levels (at very low noise) than devices previously developed.

  9. Optimized 4-bit Quantum Reversible Arithmetic Logic Unit

    NASA Astrophysics Data System (ADS)

    Ayyoub, Slimani; Achour, Benslama

    2017-08-01

    Reversible logic has received a great attention in the recent years due to its ability to reduce the power dissipation. The main purposes of designing reversible logic are to decrease quantum cost, depth of the circuits and the number of garbage outputs. The arithmetic logic unit (ALU) is an important part of central processing unit (CPU) as the execution unit. This paper presents a complete design of a new reversible arithmetic logic unit (ALU) that can be part of a programmable reversible computing device such as a quantum computer. The proposed ALU based on a reversible low power control unit and small performance parameters full adder named double Peres gates. The presented ALU can produce the largest number (28) of arithmetic and logic functions and have the smallest number of quantum cost and delay compared with existing designs.

  10. Staircase Quantum Dots Configuration in Nanowires for Optimized Thermoelectric Power

    PubMed Central

    Li, Lijie; Jiang, Jian-Hua

    2016-01-01

    The performance of thermoelectric energy harvesters can be improved by nanostructures that exploit inelastic transport processes. One prototype is the three-terminal hopping thermoelectric device where electron hopping between quantum-dots are driven by hot phonons. Such three-terminal hopping thermoelectric devices have potential in achieving high efficiency or power via inelastic transport and without relying on heavy-elements or toxic compounds. We show in this work how output power of the device can be optimized via tuning the number and energy configuration of the quantum-dots embedded in parallel nanowires. We find that the staircase energy configuration with constant energy-step can improve the power factor over a serial connection of a single pair of quantum-dots. Moreover, for a fixed energy-step, there is an optimal length for the nanowire. Similarly for a fixed number of quantum-dots there is an optimal energy-step for the output power. Our results are important for future developments of high-performance nanostructured thermoelectric devices. PMID:27550093

  11. High-fidelity gates in quantum dot spin qubits.

    PubMed

    Koh, Teck Seng; Coppersmith, S N; Friesen, Mark

    2013-12-03

    Several logical qubits and quantum gates have been proposed for semiconductor quantum dots controlled by voltages applied to top gates. The different schemes can be difficult to compare meaningfully. Here we develop a theoretical framework to evaluate disparate qubit-gating schemes on an equal footing. We apply the procedure to two types of double-dot qubits: the singlet-triplet and the semiconducting quantum dot hybrid qubit. We investigate three quantum gates that flip the qubit state: a DC pulsed gate, an AC gate based on logical qubit resonance, and a gate-like process known as stimulated Raman adiabatic passage. These gates are all mediated by an exchange interaction that is controlled experimentally using the interdot tunnel coupling g and the detuning [Symbol: see text], which sets the energy difference between the dots. Our procedure has two steps. First, we optimize the gate fidelity (f) for fixed g as a function of the other control parameters; this yields an f(opt)(g) that is universal for different types of gates. Next, we identify physical constraints on the control parameters; this yields an upper bound f(max) that is specific to the qubit-gate combination. We show that similar gate fidelities (~99:5%) should be attainable for singlet-triplet qubits in isotopically purified Si, and for hybrid qubits in natural Si. Considerably lower fidelities are obtained for GaAs devices, due to the fluctuating magnetic fields ΔB produced by nuclear spins.

  12. A multi target approach to control chemical reactions in their inhomogeneous solvent environment

    NASA Astrophysics Data System (ADS)

    Keefer, Daniel; Thallmair, Sebastian; Zauleck, Julius P. P.; de Vivie-Riedle, Regina

    2015-12-01

    Shaped laser pulses offer a powerful tool to manipulate molecular quantum systems. Their application to chemical reactions in solution is a promising concept to redesign chemical synthesis. Along this road, theoretical developments to include the solvent surrounding are necessary. An appropriate theoretical treatment is helpful to understand the underlying mechanisms. In our approach we simulate the solvent by randomly selected snapshots from molecular dynamics trajectories. We use multi target optimal control theory to optimize pulses for the various arrangements of explicit solvent molecules simultaneously. This constitutes a major challenge for the control algorithm, as the solvent configurations introduce a large inhomogeneity to the potential surfaces. We investigate how the algorithm handles the new challenges and how well the controllability of the system is preserved with increasing complexity. Additionally, we introduce a way to statistically estimate the efficiency of the optimized laser pulses in the complete thermodynamical ensemble.

  13. Quantum dot laser optimization: selectively doped layers

    NASA Astrophysics Data System (ADS)

    Korenev, Vladimir V.; Konoplev, Sergey S.; Savelyev, Artem V.; Shernyakov, Yurii M.; Maximov, Mikhail V.; Zhukov, Alexey E.

    2016-08-01

    Edge emitting quantum dot (QD) lasers are discussed. It has been recently proposed to use modulation p-doping of the layers that are adjacent to QD layers in order to control QD's charge state. Experimentally it has been proven useful to enhance ground state lasing and suppress the onset of excited state lasing at high injection. These results have been also confirmed with numerical calculations involving solution of drift-diffusion equations. However, deep understanding of physical reasons for such behavior and laser optimization requires analytical approaches to the problem. In this paper, under a set of assumptions we provide an analytical model that explains major effects of selective p-doping. Capture rates of elections and holes can be calculated by solving Poisson equations for electrons and holes around the charged QD layer. The charge itself is ruled by capture rates and selective doping concentration. We analyzed this self-consistent set of equations and showed that it can be used to optimize QD laser performance and to explain underlying physics.

  14. Origins and optimization of entanglement in plasmonically coupled quantum dots

    DOE PAGES

    Otten, Matthew; Larson, Jeffrey; Min, Misun; ...

    2016-08-11

    In this paper, a system of two or more quantum dots interacting with a dissipative plasmonic nanostructure is investigated in detail by using a cavity quantum electrodynamics approach with a model Hamiltonian. We focus on determining and understanding system configurations that generate multiple bipartite quantum entanglements between the occupation states of the quantum dots. These configurations include allowing for the quantum dots to be asymmetrically coupled to the plasmonic system. Analytical solution of a simplified limit for an arbitrary number of quantum dots and numerical simulations and optimization for the two- and three-dot cases are used to develop guidelines formore » maximizing the bipartite entanglements. For any number of quantum dots, we show that through simple starting states and parameter guidelines, one quantum dot can be made to share a strong amount of bipartite entanglement with all other quantum dots in the system, while entangling all other pairs to a lesser degree.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodwin, D. L.; Kuprov, Ilya, E-mail: i.kuprov@soton.ac.uk

    Quadratic convergence throughout the active space is achieved for the gradient ascent pulse engineering (GRAPE) family of quantum optimal control algorithms. We demonstrate in this communication that the Hessian of the GRAPE fidelity functional is unusually cheap, having the same asymptotic complexity scaling as the functional itself. This leads to the possibility of using very efficient numerical optimization techniques. In particular, the Newton-Raphson method with a rational function optimization (RFO) regularized Hessian is shown in this work to require fewer system trajectory evaluations than any other algorithm in the GRAPE family. This communication describes algebraic and numerical implementation aspects (matrixmore » exponential recycling, Hessian regularization, etc.) for the RFO Newton-Raphson version of GRAPE and reports benchmarks for common spin state control problems in magnetic resonance spectroscopy.« less

  16. Identifying a cooperative control mechanism between an applied field and the environment of open quantum systems

    NASA Astrophysics Data System (ADS)

    Gao, Fang; Rey-de-Castro, Roberto; Wang, Yaoxiong; Rabitz, Herschel; Shuang, Feng

    2016-05-01

    Many systems under control with an applied field also interact with the surrounding environment. Understanding the control mechanisms has remained a challenge, especially the role played by the interaction between the field and the environment. In order to address this need, here we expand the scope of the Hamiltonian-encoding and observable-decoding (HE-OD) technique. HE-OD was originally introduced as a theoretical and experimental tool for revealing the mechanism induced by control fields in closed quantum systems. The results of open-system HE-OD analysis presented here provide quantitative mechanistic insights into the roles played by a Markovian environment. Two model open quantum systems are considered for illustration. In these systems, transitions are induced by either an applied field linked to a dipole operator or Lindblad operators coupled to the system. For modest control yields, the HE-OD results clearly show distinct cooperation between the dynamics induced by the optimal field and the environment. Although the HE-OD methodology introduced here is considered in simulations, it has an analogous direct experimental formulation, which we suggest may be applied to open systems in the laboratory to reveal mechanistic insights.

  17. Base norms and discrimination of generalized quantum channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenčová, A.

    2014-02-15

    We introduce and study norms in the space of hermitian matrices, obtained from base norms in positively generated subspaces. These norms are closely related to discrimination of so-called generalized quantum channels, including quantum states, channels, and networks. We further introduce generalized quantum decision problems and show that the maximal average payoffs of decision procedures are again given by these norms. We also study optimality of decision procedures, in particular, we obtain a necessary and sufficient condition under which an optimal 1-tester for discrimination of quantum channels exists, such that the input state is maximally entangled.

  18. Large-scale semidefinite programming for many-electron quantum mechanics.

    PubMed

    Mazziotti, David A

    2011-02-25

    The energy of a many-electron quantum system can be approximated by a constrained optimization of the two-electron reduced density matrix (2-RDM) that is solvable in polynomial time by semidefinite programming (SDP). Here we develop a SDP method for computing strongly correlated 2-RDMs that is 10-20 times faster than previous methods [D. A. Mazziotti, Phys. Rev. Lett. 93, 213001 (2004)]. We illustrate with (i) the dissociation of N(2) and (ii) the metal-to-insulator transition of H(50). For H(50) the SDP problem has 9.4×10(6) variables. This advance also expands the feasibility of large-scale applications in quantum information, control, statistics, and economics. © 2011 American Physical Society

  19. Large-Scale Semidefinite Programming for Many-Electron Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Mazziotti, David A.

    2011-02-01

    The energy of a many-electron quantum system can be approximated by a constrained optimization of the two-electron reduced density matrix (2-RDM) that is solvable in polynomial time by semidefinite programming (SDP). Here we develop a SDP method for computing strongly correlated 2-RDMs that is 10-20 times faster than previous methods [D. A. Mazziotti, Phys. Rev. Lett. 93, 213001 (2004)PRLTAO0031-900710.1103/PhysRevLett.93.213001]. We illustrate with (i) the dissociation of N2 and (ii) the metal-to-insulator transition of H50. For H50 the SDP problem has 9.4×106 variables. This advance also expands the feasibility of large-scale applications in quantum information, control, statistics, and economics.

  20. Quantum structures for recombination control in the light-emitting transistor

    NASA Astrophysics Data System (ADS)

    Chen, Kanuo; Hsiao, Fu-Chen; Joy, Brittany; Dallesasse, John M.

    2017-02-01

    Recombination of carriers in the direct-bandgap base of a transistor-injected quantum cascade laser (TI-QCL) is shown to be controllable through the field applied across the quantum cascade region located in the transistor's base-collector junction. The influence of the electric field on the quantum states in the cascade region's superlattice allows free flow of electrons out of the transistor base only for field values near the design field that provides optimal QCL gain. Quantum modulation of base recombination in the light-emitting transistor is therefore observed. In a GaAs-based light-emitting transistor, a periodic superlattice is grown between the p-type base and the n-type collector. Under different base-collector biasing conditions the distribution of quantum states, and as a consequence transition probabilities through the wells and barriers forming the cascade region, leads to strong field-dependent mobility for electrons in transit through the base-collector junction. The radiative base recombination, which is influenced by minority carrier transition lifetime, can be modulated through the quantum states alignment in the superlattice. A GaAs-based transistor-injected quantum cascade laser with AlGaAs/GaAs superlattice is designed and fabricated. Radiative base recombination is measured under both common-emitter and common-base configuration. In both configurations the optical output from the base is proportional to the emitter injection. When the quantum states in the superlattice are aligned the optical output in the base is reduced as electrons encounter less impedance entering the collector; when the quantum states are misaligned electrons have longer lifetime in the base and the radiative base recombination process is enhanced.

  1. Quantum Corral Wave-function Engineering

    NASA Astrophysics Data System (ADS)

    Correa, Alfredo; Reboredo, Fernando; Balseiro, Carlos

    2005-03-01

    We present a theoretical method for the design and optimization of quantum corrals[1] with specific electronic properties. Taking advantage that spins are subject to a RKKY interaction that is directly controlled by the scattering of the quantum corral, we design corral structures that reproduce spin Hamiltonians with coupling constants determined a priori[2]. We solve exactly the bi-dimensional scattering problem for each corral configuration within the s-wave approximation[3] and subsequently the geometry of the quantum corral is optimized by means of simulated annealing[4] and genetic algorithms[5]. We demonstrate the possibility of automatic design of structures with complicated target electronic properties[6]. This work was performed under the auspices of the US Department of Energy by the University of California at the LLNL under contract no W-7405-Eng-48. [1] M. F. Crommie, C. P. Lutz and D. M. Eigler, Nature 403, 512 (2000) [2] D. P. DiVincenzo et al., Nature 408, 339 (2000) [3] G. A. Fiete and E. J. Heller, Rev. Mod. Phys. 75, 933 (2003) [4] M. R. A. T. N. Metropolis et al., J. Chem. Phys. 1087 (1953) [5] E. Aarts and J. K. Lenstra, eds. Local search in combinatorial problems (Princeton University Press, 1997) [6] A. A. Correa, F. Reboredo and C. Balseiro, Phys. Rev. B (in press).

  2. Adaptation to high CO2 concentration in an optimal environment: radiation capture, canopy quantum yield and carbon use efficiency

    NASA Technical Reports Server (NTRS)

    Monje, O.; Bugbee, B.

    1998-01-01

    The effect of elevated [CO2] on wheat (Triticum aestivum L. Veery 10) productivity was examined by analysing radiation capture, canopy quantum yield, canopy carbon use efficiency, harvest index and daily C gain. Canopies were grown at either 330 or 1200 micromoles mol-1 [CO2] in controlled environments, where root and shoot C fluxes were monitored continuously from emergence to harvest. A rapidly circulating hydroponic solution supplied nutrients, water and root zone oxygen. At harvest, dry mass predicted from gas exchange data was 102.8 +/- 4.7% of the observed dry mass in six trials. Neither radiation capture efficiency nor carbon use efficiency were affected by elevated [CO2], but yield increased by 13% due to a sustained increase in canopy quantum yield. CO2 enrichment increased root mass, tiller number and seed mass. Harvest index and chlorophyll concentration were unchanged, but CO2 enrichment increased average life cycle net photosynthesis (13%, P < 0.05) and root respiration (24%, P < 0.05). These data indicate that plant communities adapt to CO2 enrichment through changes in C allocation. Elevated [CO2] increases sink strength in optimal environments, resulting in sustained increases in photosynthetic capacity, canopy quantum yield and daily C gain throughout the life cycle.

  3. Finite-size effect on optimal efficiency of heat engines.

    PubMed

    Tajima, Hiroyasu; Hayashi, Masahito

    2017-07-01

    The optimal efficiency of quantum (or classical) heat engines whose heat baths are n-particle systems is given by the strong large deviation. We give the optimal work extraction process as a concrete energy-preserving unitary time evolution among the heat baths and the work storage. We show that our optimal work extraction turns the disordered energy of the heat baths to the ordered energy of the work storage, by evaluating the ratio of the entropy difference to the energy difference in the heat baths and the work storage, respectively. By comparing the statistical mechanical optimal efficiency with the macroscopic thermodynamic bound, we evaluate the accuracy of the macroscopic thermodynamics with finite-size heat baths from the statistical mechanical viewpoint. We also evaluate the quantum coherence effect on the optimal efficiency of the cycle processes without restricting their cycle time by comparing the classical and quantum optimal efficiencies.

  4. Optimal Correlations in Many-Body Quantum Systems

    NASA Astrophysics Data System (ADS)

    Amico, L.; Rossini, D.; Hamma, A.; Korepin, V. E.

    2012-06-01

    Information and correlations in a quantum system are closely related through the process of measurement. We explore such relation in a many-body quantum setting, effectively bridging between quantum metrology and condensed matter physics. To this aim we adopt the information-theory view of correlations and study the amount of correlations after certain classes of positive-operator-valued measurements are locally performed. As many-body systems, we consider a one-dimensional array of interacting two-level systems (a spin chain) at zero temperature, where quantum effects are most pronounced. We demonstrate how the optimal strategy to extract the correlations depends on the quantum phase through a subtle interplay between local interactions and coherence.

  5. The theory of variational hybrid quantum-classical algorithms

    NASA Astrophysics Data System (ADS)

    McClean, Jarrod R.; Romero, Jonathan; Babbush, Ryan; Aspuru-Guzik, Alán

    2016-02-01

    Many quantum algorithms have daunting resource requirements when compared to what is available today. To address this discrepancy, a quantum-classical hybrid optimization scheme known as ‘the quantum variational eigensolver’ was developed (Peruzzo et al 2014 Nat. Commun. 5 4213) with the philosophy that even minimal quantum resources could be made useful when used in conjunction with classical routines. In this work we extend the general theory of this algorithm and suggest algorithmic improvements for practical implementations. Specifically, we develop a variational adiabatic ansatz and explore unitary coupled cluster where we establish a connection from second order unitary coupled cluster to universal gate sets through a relaxation of exponential operator splitting. We introduce the concept of quantum variational error suppression that allows some errors to be suppressed naturally in this algorithm on a pre-threshold quantum device. Additionally, we analyze truncation and correlated sampling in Hamiltonian averaging as ways to reduce the cost of this procedure. Finally, we show how the use of modern derivative free optimization techniques can offer dramatic computational savings of up to three orders of magnitude over previously used optimization techniques.

  6. Temperature Scaling Law for Quantum Annealing Optimizers.

    PubMed

    Albash, Tameem; Martin-Mayor, Victor; Hen, Itay

    2017-09-15

    Physical implementations of quantum annealing unavoidably operate at finite temperatures. We point to a fundamental limitation of fixed finite temperature quantum annealers that prevents them from functioning as competitive scalable optimizers and show that to serve as optimizers annealer temperatures must be appropriately scaled down with problem size. We derive a temperature scaling law dictating that temperature must drop at the very least in a logarithmic manner but also possibly as a power law with problem size. We corroborate our results by experiment and simulations and discuss the implications of these to practical annealers.

  7. Fundamental limits to single-photon detection determined by quantum coherence and backaction

    NASA Astrophysics Data System (ADS)

    Young, Steve M.; Sarovar, Mohan; Léonard, François

    2018-03-01

    Single-photon detectors have achieved impressive performance and have led to a number of new scientific discoveries and technological applications. Existing models of photodetectors are semiclassical in that the field-matter interaction is treated perturbatively and time-separated from physical processes in the absorbing matter. An open question is whether a fully quantum detector, whereby the optical field, the optical absorption, and the amplification are considered as one quantum system, could have improved performance. Here we develop a theoretical model of such photodetectors and employ simulations to reveal the critical role played by quantum coherence and amplification backaction in dictating the performance. We show that coherence and backaction lead to trade-offs between detector metrics and also determine optimal system designs through control of the quantum-classical interface. Importantly, we establish the design parameters that result in a ideal photodetector with 100% efficiency, no dark counts, and minimal jitter, thus paving the route for next-generation detectors.

  8. Bright Single InAsP Quantum Dots at Telecom Wavelengths in Position-Controlled InP Nanowires: The Role of the Photonic Waveguide.

    PubMed

    Haffouz, Sofiane; Zeuner, Katharina D; Dalacu, Dan; Poole, Philip J; Lapointe, Jean; Poitras, Daniel; Mnaymneh, Khaled; Wu, Xiaohua; Couillard, Martin; Korkusinski, Marek; Schöll, Eva; Jöns, Klaus D; Zwiller, Valery; Williams, Robin L

    2018-05-09

    We report on the site-selected growth of bright single InAsP quantum dots embedded within InP photonic nanowire waveguides emitting at telecom wavelengths. We demonstrate a dramatic dependence of the emission rate on both the emission wavelength and the nanowire diameter. With an appropriately designed waveguide, tailored to the emission wavelength of the dot, an increase in the count rate by nearly 2 orders of magnitude (0.4 to 35 kcps) is obtained for quantum dots emitting in the telecom O-band, showing high single-photon purity with multiphoton emission probabilities down to 2%. Using emission-wavelength-optimized waveguides, we demonstrate bright, narrow-line-width emission from single InAsP quantum dots with an unprecedented tuning range of 880 to 1550 nm. These results pave the way toward efficient single-photon sources at telecom wavelengths using deterministically grown InAsP/InP nanowire quantum dots.

  9. Optimal architectures for long distance quantum communication.

    PubMed

    Muralidharan, Sreraman; Li, Linshu; Kim, Jungsang; Lütkenhaus, Norbert; Lukin, Mikhail D; Jiang, Liang

    2016-02-15

    Despite the tremendous progress of quantum cryptography, efficient quantum communication over long distances (≥ 1000 km) remains an outstanding challenge due to fiber attenuation and operation errors accumulated over the entire communication distance. Quantum repeaters (QRs), as a promising approach, can overcome both photon loss and operation errors, and hence significantly speedup the communication rate. Depending on the methods used to correct loss and operation errors, all the proposed QR schemes can be classified into three categories (generations). Here we present the first systematic comparison of three generations of quantum repeaters by evaluating the cost of both temporal and physical resources, and identify the optimized quantum repeater architecture for a given set of experimental parameters for use in quantum key distribution. Our work provides a roadmap for the experimental realizations of highly efficient quantum networks over transcontinental distances.

  10. Optimal architectures for long distance quantum communication

    PubMed Central

    Muralidharan, Sreraman; Li, Linshu; Kim, Jungsang; Lütkenhaus, Norbert; Lukin, Mikhail D.; Jiang, Liang

    2016-01-01

    Despite the tremendous progress of quantum cryptography, efficient quantum communication over long distances (≥1000 km) remains an outstanding challenge due to fiber attenuation and operation errors accumulated over the entire communication distance. Quantum repeaters (QRs), as a promising approach, can overcome both photon loss and operation errors, and hence significantly speedup the communication rate. Depending on the methods used to correct loss and operation errors, all the proposed QR schemes can be classified into three categories (generations). Here we present the first systematic comparison of three generations of quantum repeaters by evaluating the cost of both temporal and physical resources, and identify the optimized quantum repeater architecture for a given set of experimental parameters for use in quantum key distribution. Our work provides a roadmap for the experimental realizations of highly efficient quantum networks over transcontinental distances. PMID:26876670

  11. Optimal architectures for long distance quantum communication

    NASA Astrophysics Data System (ADS)

    Muralidharan, Sreraman; Li, Linshu; Kim, Jungsang; Lütkenhaus, Norbert; Lukin, Mikhail D.; Jiang, Liang

    2016-02-01

    Despite the tremendous progress of quantum cryptography, efficient quantum communication over long distances (≥1000 km) remains an outstanding challenge due to fiber attenuation and operation errors accumulated over the entire communication distance. Quantum repeaters (QRs), as a promising approach, can overcome both photon loss and operation errors, and hence significantly speedup the communication rate. Depending on the methods used to correct loss and operation errors, all the proposed QR schemes can be classified into three categories (generations). Here we present the first systematic comparison of three generations of quantum repeaters by evaluating the cost of both temporal and physical resources, and identify the optimized quantum repeater architecture for a given set of experimental parameters for use in quantum key distribution. Our work provides a roadmap for the experimental realizations of highly efficient quantum networks over transcontinental distances.

  12. Optimal quantum operations at zero energy cost

    NASA Astrophysics Data System (ADS)

    Chiribella, Giulio; Yang, Yuxiang

    2017-08-01

    Quantum technologies are developing powerful tools to generate and manipulate coherent superpositions of different energy levels. Envisaging a new generation of energy-efficient quantum devices, here we explore how coherence can be manipulated without exchanging energy with the surrounding environment. We start from the task of converting a coherent superposition of energy eigenstates into another. We identify the optimal energy-preserving operations, both in the deterministic and in the probabilistic scenario. We then design a recursive protocol, wherein a branching sequence of energy-preserving filters increases the probability of success while reaching maximum fidelity at each iteration. Building on the recursive protocol, we construct efficient approximations of the optimal fidelity-probability trade-off, by taking coherent superpositions of the different branches generated by probabilistic filtering. The benefits of this construction are illustrated in applications to quantum metrology, quantum cloning, coherent state amplification, and ancilla-driven computation. Finally, we extend our results to transitions where the input state is generally mixed and we apply our findings to the task of purifying quantum coherence.

  13. Molecular nanomagnets with switchable coupling for quantum simulation

    DOE PAGES

    Chiesa, Alessandro; Whitehead, George F. S.; Carretta, Stefano; ...

    2014-12-11

    Molecular nanomagnets are attractive candidate qubits because of their wide inter- and intra-molecular tunability. Uniform magnetic pulses could be exploited to implement one- and two-qubit gates in presence of a properly engineered pattern of interactions, but the synthesis of suitable and potentially scalable supramolecular complexes has proven a very hard task. Indeed, no quantum algorithms have ever been implemented, not even a proof-of-principle two-qubit gate. In this paper we show that the magnetic couplings in two supramolecular {Cr7Ni}-Ni-{Cr7Ni} assemblies can be chemically engineered to fit the above requisites for conditional gates with no need of local control. Microscopic parameters aremore » determined by a recently developed many-body ab-initio approach and used to simulate quantum gates. We find that these systems are optimal for proof-of-principle two-qubit experiments and can be exploited as building blocks of scalable architectures for quantum simulation.« less

  14. Exponentially-Biased Ground-State Sampling of Quantum Annealing Machines with Transverse-Field Driving Hamiltonians

    NASA Technical Reports Server (NTRS)

    Mandra, Salvatore

    2017-01-01

    We study the performance of the D-Wave 2X quantum annealing machine on systems with well-controlled ground-state degeneracy. While obtaining the ground state of a spin-glass benchmark instance represents a difficult task, the gold standard for any optimization algorithm or machine is to sample all solutions that minimize the Hamiltonian with more or less equal probability. Our results show that while naive transverse-field quantum annealing on the D-Wave 2X device can find the ground-state energy of the problems, it is not well suited in identifying all degenerate ground-state configurations associated to a particular instance. Even worse, some states are exponentially suppressed, in agreement with previous studies on toy model problems [New J. Phys. 11, 073021 (2009)]. These results suggest that more complex driving Hamiltonians are needed in future quantum annealing machines to ensure a fair sampling of the ground-state manifold.

  15. Device-independent secret-key-rate analysis for quantum repeaters

    NASA Astrophysics Data System (ADS)

    Holz, Timo; Kampermann, Hermann; Bruß, Dagmar

    2018-01-01

    The device-independent approach to quantum key distribution (QKD) aims to establish a secret key between two or more parties with untrusted devices, potentially under full control of a quantum adversary. The performance of a QKD protocol can be quantified by the secret key rate, which can be lower bounded via the violation of an appropriate Bell inequality in a setup with untrusted devices. We study secret key rates in the device-independent scenario for different quantum repeater setups and compare them to their device-dependent analogon. The quantum repeater setups under consideration are the original protocol by Briegel et al. [Phys. Rev. Lett. 81, 5932 (1998), 10.1103/PhysRevLett.81.5932] and the hybrid quantum repeater protocol by van Loock et al. [Phys. Rev. Lett. 96, 240501 (2006), 10.1103/PhysRevLett.96.240501]. For a given repeater scheme and a given QKD protocol, the secret key rate depends on a variety of parameters, such as the gate quality or the detector efficiency. We systematically analyze the impact of these parameters and suggest optimized strategies.

  16. Microfluidic Technology: Uncovering the Mechanisms of Nanocrystal Nucleation and Growth.

    PubMed

    Lignos, Ioannis; Maceiczyk, Richard; deMello, Andrew J

    2017-05-16

    The controlled and reproducible formation of colloidal semiconductor nanocrystals (or quantum dots) is of central importance in nanoscale science and technology. The tunable size- and shape-dependent properties of such materials make them ideal candidates for the development of efficient and low-cost displays, solar cells, light-emitting devices, and catalysts. The formidable difficulties associated with the macroscale preparation of semiconductor nanocrystals (possessing bespoke optical and chemical properties) result from the fact that underlying reaction mechanisms are complex and that the reactive environment is difficult to control. Automated microfluidic reactors coupled with monitoring systems and optimization algorithms aim to elucidate complex reaction mechanisms that govern both nucleation and growth of nanocrystals. Such platforms are ideally suited for the efficient optimization of reaction parameters, assuring the reproducible synthesis of nanocrystals with user-defined properties. This Account aims to inform the nanomaterials community about how microfluidic technologies can supplement flask experimentation for the ensemble investigation of formation mechanisms and design of semiconductor nanocrystals. We present selected studies outlining the preparation of quantum dots using microfluidic systems with integrated analytics. Such microfluidic reaction systems leverage the ability to extract real-time information regarding optical, structural, and compositional characteristics of quantum dots during nucleation and growth stages. The Account further highlights our recent research activities focused on the development and application of droplet-based microfluidics with integrated optical detection systems for the efficient and rapid screening of reaction conditions and a better understanding of the mechanisms of quantum dot synthesis. We describe the features and operation of fully automated microfluidic reactors and their subsequent application to high-throughput parametric screening of metal chalcogenides (CdSe, PbS, PbSe, CdSeTe), ternary and core/shell heavy metal-free quantum dots (CuInS 2 , CuInS 2 /ZnS), and all-inorganic perovskite nanocrystals (CsPbX 3 , X = Cl, Br, I) syntheses. Critically, concurrent absorption and photoluminescence measurements on millisecond to second time scales allow the extraction of basic parameters governing nanocrystal formation. Moreover, experimental data obtained from such microfluidic platforms can be directly supported by theoretical models of nucleation and growth. To this end, we also describe the use of metamodeling algorithms able to accurately predict optimized conditions of CdSe synthesis using a minimal number of sample parameters. Importantly, we discuss future challenges that must be addressed before microfluidic technologies are in a position to be widely adopted for the on-demand formation of nanocrystals. From a technology perspective, these challenges include the development of novel engineering platforms for the formation of complex architectures, the integration of monitoring systems able to harvest photophysical and structural information, the incorporation of continuous purification systems, and the application of optimization algorithms to multicomponent quantum dot systems.

  17. Quantum evolution: The case of weak localization for a 3D alloy-type Anderson model and application to Hamiltonian based quantum computation

    NASA Astrophysics Data System (ADS)

    Cao, Zhenwei

    Over the years, people have found Quantum Mechanics to be extremely useful in explaining various physical phenomena from a microscopic point of view. Anderson localization, named after physicist P. W. Anderson, states that disorder in a crystal can cause non-spreading of wave packets, which is one possible mechanism (at single electron level) to explain metal-insulator transitions. The theory of quantum computation promises to bring greater computational power over classical computers by making use of some special features of Quantum Mechanics. The first part of this dissertation considers a 3D alloy-type model, where the Hamiltonian is the sum of the finite difference Laplacian corresponding to free motion of an electron and a random potential generated by a sign-indefinite single-site potential. The result shows that localization occurs in the weak disorder regime, i.e., when the coupling parameter lambda is very small, for energies E ≤ --Clambda 2. The second part of this dissertation considers adiabatic quantum computing (AQC) algorithms for the unstructured search problem to the case when the number of marked items is unknown. In an ideal situation, an explicit quantum algorithm together with a counting subroutine are given that achieve the optimal Grover speedup over classical algorithms, i.e., roughly speaking, reduce O(2n) to O(2n/2), where n is the size of the problem. However, if one considers more realistic settings, the result shows this quantum speedup is achievable only under a very rigid control precision requirement (e.g., exponentially small control error).

  18. QSPIN: A High Level Java API for Quantum Computing Experimentation

    NASA Technical Reports Server (NTRS)

    Barth, Tim

    2017-01-01

    QSPIN is a high level Java language API for experimentation in QC models used in the calculation of Ising spin glass ground states and related quadratic unconstrained binary optimization (QUBO) problems. The Java API is intended to facilitate research in advanced QC algorithms such as hybrid quantum-classical solvers, automatic selection of constraint and optimization parameters, and techniques for the correction and mitigation of model and solution errors. QSPIN includes high level solver objects tailored to the D-Wave quantum annealing architecture that implement hybrid quantum-classical algorithms [Booth et al.] for solving large problems on small quantum devices, elimination of variables via roof duality, and classical computing optimization methods such as GPU accelerated simulated annealing and tabu search for comparison. A test suite of documented NP-complete applications ranging from graph coloring, covering, and partitioning to integer programming and scheduling are provided to demonstrate current capabilities.

  19. Padé spectrum decompositions of quantum distribution functions and optimal hierarchical equations of motion construction for quantum open systems

    NASA Astrophysics Data System (ADS)

    Hu, Jie; Luo, Meng; Jiang, Feng; Xu, Rui-Xue; Yan, YiJing

    2011-06-01

    Padé spectrum decomposition is an optimal sum-over-poles expansion scheme of Fermi function and Bose function [J. Hu, R. X. Xu, and Y. J. Yan, J. Chem. Phys. 133, 101106 (2010)], 10.1063/1.3484491. In this work, we report two additional members to this family, from which the best among all sum-over-poles methods could be chosen for different cases of application. Methods are developed for determining these three Padé spectrum decomposition expansions at machine precision via simple algorithms. We exemplify the applications of present development with optimal construction of hierarchical equations-of-motion formulations for nonperturbative quantum dissipation and quantum transport dynamics. Numerical demonstrations are given for two systems. One is the transient transport current to an interacting quantum-dots system, together with the involved high-order co-tunneling dynamics. Another is the non-Markovian dynamics of a spin-boson system.

  20. Construction of Pancreatic Cancer Classifier Based on SVM Optimized by Improved FOA

    PubMed Central

    Ma, Xiaoqi

    2015-01-01

    A novel method is proposed to establish the pancreatic cancer classifier. Firstly, the concept of quantum and fruit fly optimal algorithm (FOA) are introduced, respectively. Then FOA is improved by quantum coding and quantum operation, and a new smell concentration determination function is defined. Finally, the improved FOA is used to optimize the parameters of support vector machine (SVM) and the classifier is established by optimized SVM. In order to verify the effectiveness of the proposed method, SVM and other classification methods have been chosen as the comparing methods. The experimental results show that the proposed method can improve the classifier performance and cost less time. PMID:26543867

  1. Realizing Rec. 2020 color gamut with quantum dot displays.

    PubMed

    Zhu, Ruidong; Luo, Zhenyue; Chen, Haiwei; Dong, Yajie; Wu, Shin-Tson

    2015-09-07

    We analyze how to realize Rec. 2020 wide color gamut with quantum dots. For photoluminescence, our simulation indicates that we are able to achieve over 97% of the Rec. 2020 standard with quantum dots by optimizing the emission spectra and redesigning the color filters. For electroluminescence, by optimizing the emission spectra of quantum dots is adequate to render over 97% of the Rec. 2020 standard. We also analyze the efficiency and angular performance of these devices, and then compare results with LCDs using green and red phosphors-based LED backlight. Our results indicate that quantum dot display is an outstanding candidate for achieving wide color gamut and high optical efficiency.

  2. Enhancing the gate fidelity of silicon-based singlet-triplet qubits under symmetric exchange control using optimized pulse sequences

    NASA Astrophysics Data System (ADS)

    Zhang, Chengxian; Throckmorton, Robert; Yang, Xu-Chen; Wang, Xin; Barnes, Edwin

    We perform Randomized Benchmarking of a family of recently introduced control scheme for singlet-triplet qubits in semiconductor double quantum dots, which is optimized to have substantially shorter gate times. We study their performances under the recently introduced symmetric control scheme of changing the exchange interaction by raising and lowering the barrier between the two dots (barrier control) and compare these results to those under the traditional tilt control method in which the exchange interaction is varied by detuning. It has been suggested that the barrier control method encounters a much smaller charge noise. We found that for the cases where the charge noise is dominant, corresponding to the device made on isotopically enriched silicon, the optimized sequences offer much longer coherence time under barrier control compared to the tilt control method of the strength of the exchange interaction. This work was supported by the Research Grants Council of Hong Kong SAR (No. CityU 21300116) and the National Natural Science Foundation of China (No. 11604277), and by LPS-MPO-CMTC.

  3. Experimental implementation of non-Gaussian attacks on a continuous-variable quantum-key-distribution system.

    PubMed

    Lodewyck, Jérôme; Debuisschert, Thierry; García-Patrón, Raúl; Tualle-Brouri, Rosa; Cerf, Nicolas J; Grangier, Philippe

    2007-01-19

    An intercept-resend attack on a continuous-variable quantum-key-distribution protocol is investigated experimentally. By varying the interception fraction, one can implement a family of attacks where the eavesdropper totally controls the channel parameters. In general, such attacks add excess noise in the channel, and may also result in non-Gaussian output distributions. We implement and characterize the measurements needed to detect these attacks, and evaluate experimentally the information rates available to the legitimate users and the eavesdropper. The results are consistent with the optimality of Gaussian attacks resulting from the security proofs.

  4. Porous Silicon Nanoparticle Photosensitizers for Singlet Oxygen and Their Phototoxicity Against Cancer Cells

    PubMed Central

    Xiao, Ling; Gu, Luo; Howell, Stephen B.; Sailor, Michael J.

    2011-01-01

    Porous Si nanoparticles, prepared from electrochemically etched single crystal Si wafers, function as photosensitizers to generate 1O2 in ethanol and in aqueous media. The preparation conditions for the porous Si nanoparticles were optimized to maximize (1) the yield of material; (2) its quantum yield of 1O2 production; and (3) its in vitro degradation properties. The optimal formulation was determined to consist of nanoparticles 146 ± 7 nm in diameter, with nominal pore sizes of 12 ± 4 nm. The quantum yield for 1O2 production is 0.10 ± 0.02 in ethanol and 0.17 ± 0.01 in H2O. HeLa or NIH-3T3 cells treated with 100 µg/mL porous Si nanoparticles and exposed to 60 J/cm2 white light (infrared filtered, 100 mW/cm2 for 10 min) exhibit ~ 45% cell death, while controls containing no nanoparticles show 10% or 25% cell death, respectively. The dark control experiment yields < 10% cytotoxicity for either cell type. PMID:21452822

  5. Are Cloned Quantum States Macroscopic?

    NASA Astrophysics Data System (ADS)

    Fröwis, F.; Dür, W.

    2012-10-01

    We study quantum states produced by optimal phase covariant quantum cloners. We argue that cloned quantum superpositions are not macroscopic superpositions in the spirit of Schrödinger’s cat, despite their large particle number. This is indicated by calculating several measures for macroscopic superpositions from the literature, as well as by investigating the distinguishability of the two superposed cloned states. The latter rapidly diminishes when considering imperfect detectors or noisy states and does not increase with the system size. In contrast, we find that cloned quantum states themselves are macroscopic, in the sense of both proposed measures and their usefulness in quantum metrology with an optimal scaling in system size. We investigate the applicability of cloned states for parameter estimation in the presence of different kinds of noise.

  6. Quantum approach to classical statistical mechanics.

    PubMed

    Somma, R D; Batista, C D; Ortiz, G

    2007-07-20

    We present a new approach to study the thermodynamic properties of d-dimensional classical systems by reducing the problem to the computation of ground state properties of a d-dimensional quantum model. This classical-to-quantum mapping allows us to extend the scope of standard optimization methods by unifying them under a general framework. The quantum annealing method is naturally extended to simulate classical systems at finite temperatures. We derive the rates to assure convergence to the optimal thermodynamic state using the adiabatic theorem of quantum mechanics. For simulated and quantum annealing, we obtain the asymptotic rates of T(t) approximately (pN)/(k(B)logt) and gamma(t) approximately (Nt)(-c/N), for the temperature and magnetic field, respectively. Other annealing strategies are also discussed.

  7. Optical Implementation of the Optimal Universal and Phase-Covariant Quantum Cloning Machines

    NASA Astrophysics Data System (ADS)

    Ye, Liu; Song, Xue-Ke; Yang, Jie; Yang, Qun; Ma, Yang-Cheng

    Quantum cloning relates to the security of quantum computation and quantum communication. In this paper, firstly we propose a feasible unified scheme to implement optimal 1 → 2 universal, 1 → 2 asymmetric and symmetric phase-covariant cloning, and 1 → 2 economical phase-covariant quantum cloning machines only via a beam splitter. Then 1 → 3 economical phase-covariant quantum cloning machines also can be realized by adding another beam splitter in context of linear optics. The scheme is based on the interference of two photons on a beam splitter with different splitting ratios for vertical and horizontal polarization components. It is shown that under certain condition, the scheme is feasible by current experimental technology.

  8. A review on economic emission dispatch problems using quantum computational intelligence

    NASA Astrophysics Data System (ADS)

    Mahdi, Fahad Parvez; Vasant, Pandian; Kallimani, Vish; Abdullah-Al-Wadud, M.

    2016-11-01

    Economic emission dispatch (EED) problems are one of the most crucial problems in power systems. Growing energy demand, limitation of natural resources and global warming make this topic into the center of discussion and research. This paper reviews the use of Quantum Computational Intelligence (QCI) in solving Economic Emission Dispatch problems. QCI techniques like Quantum Genetic Algorithm (QGA) and Quantum Particle Swarm Optimization (QPSO) algorithm are discussed here. This paper will encourage the researcher to use more QCI based algorithm to get better optimal result for solving EED problems.

  9. Lossless quantum data compression with exponential penalization: an operational interpretation of the quantum Rényi entropy.

    PubMed

    Bellomo, Guido; Bosyk, Gustavo M; Holik, Federico; Zozor, Steeve

    2017-11-07

    Based on the problem of quantum data compression in a lossless way, we present here an operational interpretation for the family of quantum Rényi entropies. In order to do this, we appeal to a very general quantum encoding scheme that satisfies a quantum version of the Kraft-McMillan inequality. Then, in the standard situation, where one is intended to minimize the usual average length of the quantum codewords, we recover the known results, namely that the von Neumann entropy of the source bounds the average length of the optimal codes. Otherwise, we show that by invoking an exponential average length, related to an exponential penalization over large codewords, the quantum Rényi entropies arise as the natural quantities relating the optimal encoding schemes with the source description, playing an analogous role to that of von Neumann entropy.

  10. Exploiting Quantum Resonance to Solve Combinatorial Problems

    NASA Technical Reports Server (NTRS)

    Zak, Michail; Fijany, Amir

    2006-01-01

    Quantum resonance would be exploited in a proposed quantum-computing approach to the solution of combinatorial optimization problems. In quantum computing in general, one takes advantage of the fact that an algorithm cannot be decoupled from the physical effects available to implement it. Prior approaches to quantum computing have involved exploitation of only a subset of known quantum physical effects, notably including parallelism and entanglement, but not including resonance. In the proposed approach, one would utilize the combinatorial properties of tensor-product decomposability of unitary evolution of many-particle quantum systems for physically simulating solutions to NP-complete problems (a class of problems that are intractable with respect to classical methods of computation). In this approach, reinforcement and selection of a desired solution would be executed by means of quantum resonance. Classes of NP-complete problems that are important in practice and could be solved by the proposed approach include planning, scheduling, search, and optimal design.

  11. Quantum and classical dynamics in adiabatic computation

    NASA Astrophysics Data System (ADS)

    Crowley, P. J. D.; Äńurić, T.; Vinci, W.; Warburton, P. A.; Green, A. G.

    2014-10-01

    Adiabatic transport provides a powerful way to manipulate quantum states. By preparing a system in a readily initialized state and then slowly changing its Hamiltonian, one may achieve quantum states that would otherwise be inaccessible. Moreover, a judicious choice of final Hamiltonian whose ground state encodes the solution to a problem allows adiabatic transport to be used for universal quantum computation. However, the dephasing effects of the environment limit the quantum correlations that an open system can support and degrade the power of such adiabatic computation. We quantify this effect by allowing the system to evolve over a restricted set of quantum states, providing a link between physically inspired classical optimization algorithms and quantum adiabatic optimization. This perspective allows us to develop benchmarks to bound the quantum correlations harnessed by an adiabatic computation. We apply these to the D-Wave Vesuvius machine with revealing—though inconclusive—results.

  12. Optimal GHZ Paradox for Three Qubits

    NASA Astrophysics Data System (ADS)

    Ren, Changliang; Su, Hong-Yi; Xu, Zhen-Peng; Wu, Chunfeng; Chen, Jing-Ling

    2015-08-01

    Quatum nonlocality as a valuable resource is of vital importance in quantum information processing. The characterization of the resource has been extensively investigated mainly for pure states, while relatively less is know for mixed states. Here we prove the existence of the optimal GHZ paradox by using a novel and simple method to extract an optimal state that can saturate the tradeoff relation between quantum nonlocality and the state purity. In this paradox, the logical inequality which is formulated by the GHZ-typed event probabilities can be violated maximally by the optimal state for any fixed amount of purity (or mixedness). Moreover, the optimal state can be described as a standard GHZ state suffering flipped color noise. The maximal amount of noise that the optimal state can resist is 50%. We suggest our result to be a step toward deeper understanding of the role played by the AVN proof of quantum nonlocality as a useful physical resource.

  13. Non-Markovianity in the optimal control of an open quantum system described by hierarchical equations of motion

    NASA Astrophysics Data System (ADS)

    Mangaud, E.; Puthumpally-Joseph, R.; Sugny, D.; Meier, C.; Atabek, O.; Desouter-Lecomte, M.

    2018-04-01

    Optimal control theory is implemented with fully converged hierarchical equations of motion (HEOM) describing the time evolution of an open system density matrix strongly coupled to the bath in a spin-boson model. The populations of the two-level sub-system are taken as control objectives; namely, their revivals or exchange when switching off the field. We, in parallel, analyze how the optimal electric field consequently modifies the information back flow from the environment through different non-Markovian witnesses. Although the control field has a dipole interaction with the central sub-system only, its indirect influence on the bath collective mode dynamics is probed through HEOM auxiliary matrices, revealing a strong correlation between control and dissipation during a non-Markovian process. A heterojunction is taken as an illustrative example for modeling in a realistic way the two-level sub-system parameters and its spectral density function leading to a non-perturbative strong coupling regime with the bath. Although, due to strong system-bath couplings, control performances remain rather modest, the most important result is a noticeable increase of the non-Markovian bath response induced by the optimally driven processes.

  14. Optimized cross-resonance gate for coupled transmon systems

    NASA Astrophysics Data System (ADS)

    Kirchhoff, Susanna; Keßler, Torsten; Liebermann, Per J.; Assémat, Elie; Machnes, Shai; Motzoi, Felix; Wilhelm, Frank K.

    2018-04-01

    The cross-resonance (CR) gate is an entangling gate for fixed-frequency superconducting qubits. While being simple and extensible, it is comparatively slow, at 160 ns, and thus of limited fidelity due to on-going incoherent processes. Using two different optimal control algorithms, we estimate the quantum speed limit for a controlled-not cnot gate in this system to be 10 ns, indicating a potential for great improvements. We show that the ability to approach this limit depends strongly on the choice of ansatz used to describe optimized control pulses and limitations placed on their complexity. Using a piecewise-constant ansatz, with a single carrier and bandwidth constraints, we identify an experimentally feasible 70-ns pulse shape. Further, an ansatz based on the two dominant frequencies involved in the optimal control problem allows for an optimal solution more than twice as fast again, at under 30 ns, with smooth features and limited complexity. This is twice as fast as gate realizations using tunable-frequency, resonantly coupled qubits. Compared to current CR-gate implementations, we project our scheme will provide a sixfold speed-up and thus a sixfold reduction in fidelity loss due to incoherent effects.

  15. QCAD simulation and optimization of semiconductor double quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, Erik; Gao, Xujiao; Kalashnikova, Irina

    2013-12-01

    We present the Quantum Computer Aided Design (QCAD) simulator that targets modeling quantum devices, particularly silicon double quantum dots (DQDs) developed for quantum qubits. The simulator has three di erentiating features: (i) its core contains nonlinear Poisson, e ective mass Schrodinger, and Con guration Interaction solvers that have massively parallel capability for high simulation throughput, and can be run individually or combined self-consistently for 1D/2D/3D quantum devices; (ii) the core solvers show superior convergence even at near-zero-Kelvin temperatures, which is critical for modeling quantum computing devices; (iii) it couples with an optimization engine Dakota that enables optimization of gate voltagesmore » in DQDs for multiple desired targets. The Poisson solver includes Maxwell- Boltzmann and Fermi-Dirac statistics, supports Dirichlet, Neumann, interface charge, and Robin boundary conditions, and includes the e ect of dopant incomplete ionization. The solver has shown robust nonlinear convergence even in the milli-Kelvin temperature range, and has been extensively used to quickly obtain the semiclassical electrostatic potential in DQD devices. The self-consistent Schrodinger-Poisson solver has achieved robust and monotonic convergence behavior for 1D/2D/3D quantum devices at very low temperatures by using a predictor-correct iteration scheme. The QCAD simulator enables the calculation of dot-to-gate capacitances, and comparison with experiment and between solvers. It is observed that computed capacitances are in the right ballpark when compared to experiment, and quantum con nement increases capacitance when the number of electrons is xed in a quantum dot. In addition, the coupling of QCAD with Dakota allows to rapidly identify which device layouts are more likely leading to few-electron quantum dots. Very efficient QCAD simulations on a large number of fabricated and proposed Si DQDs have made it possible to provide fast feedback for design comparison and optimization.« less

  16. Narrow Band Gap Lead Sulfide Hole Transport Layers for Quantum Dot Photovoltaics.

    PubMed

    Zhang, Nanlin; Neo, Darren C J; Tazawa, Yujiro; Li, Xiuting; Assender, Hazel E; Compton, Richard G; Watt, Andrew A R

    2016-08-24

    The band structure of colloidal quantum dot (CQD) bilayer heterojunction solar cells is optimized using a combination of ligand modification and QD band gap control. Solar cells with power conversion efficiencies of up to 9.33 ± 0.50% are demonstrated by aligning the absorber and hole transport layers (HTL). Key to achieving high efficiencies is optimizing the relative position of both the valence band and Fermi energy at the CQD bilayer interface. By comparing different band gap CQDs with different ligands, we find that a smaller band gap CQD HTL in combination with a more p-type-inducing CQD ligand is found to enhance hole extraction and hence device performance. We postulate that the efficiency improvements observed are largely due to the synergistic effects of narrower band gap QDs, causing an upshift of valence band position due to 1,2-ethanedithiol (EDT) ligands and a lowering of the Fermi level due to oxidation.

  17. Shortcuts to adiabaticity by counterdiabatic driving for trapped-ion displacement in phase space

    PubMed Central

    An, Shuoming; Lv, Dingshun; del Campo, Adolfo; Kim, Kihwan

    2016-01-01

    The application of adiabatic protocols in quantum technologies is severely limited by environmental sources of noise and decoherence. Shortcuts to adiabaticity by counterdiabatic driving constitute a powerful alternative that speed up time-evolution while mimicking adiabatic dynamics. Here we report the experimental implementation of counterdiabatic driving in a continuous variable system, a shortcut to the adiabatic transport of a trapped ion in phase space. The resulting dynamics is equivalent to a ‘fast-motion video' of the adiabatic trajectory. The robustness of this protocol is shown to surpass that of competing schemes based on classical local controls and Fourier optimization methods. Our results demonstrate that shortcuts to adiabaticity provide a robust speedup of quantum protocols of wide applicability in quantum technologies. PMID:27669897

  18. Sequential quantum cloning under real-life conditions

    NASA Astrophysics Data System (ADS)

    Saberi, Hamed; Mardoukhi, Yousof

    2012-05-01

    We consider a sequential implementation of the optimal quantum cloning machine of Gisin and Massar and propose optimization protocols for experimental realization of such a quantum cloner subject to the real-life restrictions. We demonstrate how exploiting the matrix-product state (MPS) formalism and the ensuing variational optimization techniques reveals the intriguing algebraic structure of the Gisin-Massar output of the cloning procedure and brings about significant improvements to the optimality of the sequential cloning prescription of Delgado [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.98.150502 98, 150502 (2007)]. Our numerical results show that the orthodox paradigm of optimal quantum cloning can in practice be realized in a much more economical manner by utilizing a considerably lesser amount of informational and numerical resources than hitherto estimated. Instead of the previously predicted linear scaling of the required ancilla dimension D with the number of qubits n, our recipe allows a realization of such a sequential cloning setup with an experimentally manageable ancilla of dimension at most D=3 up to n=15 qubits. We also address satisfactorily the possibility of providing an optimal range of sequential ancilla-qubit interactions for optimal cloning of arbitrary states under realistic experimental circumstances when only a restricted class of such bipartite interactions can be engineered in practice.

  19. Optimization of digital image processing to determine quantum dots' height and density from atomic force microscopy.

    PubMed

    Ruiz, J E; Paciornik, S; Pinto, L D; Ptak, F; Pires, M P; Souza, P L

    2018-01-01

    An optimized method of digital image processing to interpret quantum dots' height measurements obtained by atomic force microscopy is presented. The method was developed by combining well-known digital image processing techniques and particle recognition algorithms. The properties of quantum dot structures strongly depend on dots' height, among other features. Determination of their height is sensitive to small variations in their digital image processing parameters, which can generate misleading results. Comparing the results obtained with two image processing techniques - a conventional method and the new method proposed herein - with the data obtained by determining the height of quantum dots one by one within a fixed area, showed that the optimized method leads to more accurate results. Moreover, the log-normal distribution, which is often used to represent natural processes, shows a better fit to the quantum dots' height histogram obtained with the proposed method. Finally, the quantum dots' height obtained were used to calculate the predicted photoluminescence peak energies which were compared with the experimental data. Again, a better match was observed when using the proposed method to evaluate the quantum dots' height. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Recent progress of quantum annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Sei

    2015-03-10

    We review the recent progress of quantum annealing. Quantum annealing was proposed as a method to solve generic optimization problems. Recently a Canadian company has drawn a great deal of attention, as it has commercialized a quantum computer based on quantum annealing. Although the performance of quantum annealing is not sufficiently understood, it is likely that quantum annealing will be a practical method both on a conventional computer and on a quantum computer.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Kentaro

    An optimal quantum measurement is considered for the so-called quasi-Bell states under the quantum minimax criterion. It is shown that the minimax-optimal POVM for the quasi-Bell states is given by its square-root measurement and is applicable to the teleportation of a superposition of two coherent states.

  2. Quantum Resonance Approach to Combinatorial Optimization

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    1997-01-01

    It is shown that quantum resonance can be used for combinatorial optimization. The advantage of the approach is in independence of the computing time upon the dimensionality of the problem. As an example, the solution to a constraint satisfaction problem of exponential complexity is demonstrated.

  3. Feedback control of nonlinear quantum systems: a rule of thumb.

    PubMed

    Jacobs, Kurt; Lund, Austin P

    2007-07-13

    We show that in the regime in which feedback control is most effective - when measurements are relatively efficient, and feedback is relatively strong - then, in the absence of any sharp inhomogeneity in the noise, it is always best to measure in a basis that does not commute with the system density matrix than one that does. That is, it is optimal to make measurements that disturb the state one is attempting to stabilize.

  4. Faithful Remote Information Concentration Based on the Optimal Universal 1→2 Telecloning of Arbitrary Two-Qubit States

    NASA Astrophysics Data System (ADS)

    Peng, Jia-Yin; Lei, Hong-Xuan; Mo, Zhi-Wen

    2014-05-01

    The previous protocols of remote quantum information concentration were focused on the reverse process of quantum telecloning of single-qubit states. We here investigate the reverse process of optimal universal 1→2 telecloning of arbitrary two-qubit states. The aim of this telecloning is to distribute respectively the quantum information to two groups of spatially separated receivers from a group of two senders situated at two different locations. Our scheme shows that the distributed quantum information can be remotely concentrated back to a group of two different receivers with 1 of probability by utilizing maximally four-particle cluster state and four-particle GHZ state as quantum channel.

  5. Communication theory of quantum systems. Ph.D. Thesis, 1970

    NASA Technical Reports Server (NTRS)

    Yuen, H. P. H.

    1971-01-01

    Communication theory problems incorporating quantum effects for optical-frequency applications are discussed. Under suitable conditions, a unique quantum channel model corresponding to a given classical space-time varying linear random channel is established. A procedure is described by which a proper density-operator representation applicable to any receiver configuration can be constructed directly from the channel output field. Some examples illustrating the application of our methods to the development of optical quantum channel representations are given. Optimizations of communication system performance under different criteria are considered. In particular, certain necessary and sufficient conditions on the optimal detector in M-ary quantum signal detection are derived. Some examples are presented. Parameter estimation and channel capacity are discussed briefly.

  6. Efficient optimization of the quantum relative entropy

    NASA Astrophysics Data System (ADS)

    Fawzi, Hamza; Fawzi, Omar

    2018-04-01

    Many quantum information measures can be written as an optimization of the quantum relative entropy between sets of states. For example, the relative entropy of entanglement of a state is the minimum relative entropy to the set of separable states. The various capacities of quantum channels can also be written in this way. We propose a unified framework to numerically compute these quantities using off-the-shelf semidefinite programming solvers, exploiting the approximation method proposed in Fawzi, Saunderson and Parrilo (2017 arXiv: 1705.00812). As a notable application, this method allows us to provide numerical counterexamples for a proposed lower bound on the quantum conditional mutual information in terms of the relative entropy of recovery.

  7. Architectures and Applications for Scalable Quantum Information Systems

    DTIC Science & Technology

    2007-01-01

    quantum computation models, such as adiabatic quantum computing , can be converted to quantum circuits. Therefore, in our design flow’s first phase...vol. 26, no. 5, pp. 1484–1509, 1997. [19] A. Childs, E. Farhi, and J. Preskill, “Robustness of adiabatic quantum computation ,” Phys. Rev. A, vol. 65...magnetic resonance computer with three quantum bits that simulates an adiabatic quantum optimization algorithm. Adiabatic

  8. Relativistic and noise effects on multiplayer Prisoners' dilemma with entangling initial states

    NASA Astrophysics Data System (ADS)

    Goudarzi, H.; Rashidi, S. S.

    2017-11-01

    Three-players Prisoners' dilemma (Alice, Bob and Colin) is studied in the presence of a single collective environment effect as a noise. The environmental effect is coupled with final states by a particular form of Kraus operators K_0 and K_1 through amplitude damping channel. We introduce the decoherence parameter 0≤p≤1 to the corresponding noise matrices, in order to controling the rate of environment influence on payoff of each players. Also, we consider the Unruh effect on the payoff of player, who is located at a noninertial frame. We suppose that two players (Bob and Colin) are in Rindler region I from Minkowski space-time, and move with same uniform acceleration (r_b=r_c) and frequency mode. The game is begun with the classical strategies cooperation ( C) and defection ( D) accessible to each player. Furthermore, the players are allowed to access the quantum strategic space ( Q and M). The quantum entanglement is coupled with initial classical states by the parameter γ \\in [0,π /2]. Using entangled initial states by exerting an unitary operator \\hat{J} as entangling gate, the quantum game (competition between Prisoners, as a three-qubit system) is started by choosing the strategies from classical or quantum strategic space. Arbitrarily chosen strategy by each player can lead to achieving profiles, which can be considered as Nash equilibrium or Pareto optimal. It is shown that in the presence of noise effect, choosing quantum strategy Q results in a winning payoff against the classical strategy D and, for example, the strategy profile ( Q, D, C) is Pareto optimal. We find that the unfair miracle move of Eisert from quantum strategic space is an effective strategy for accelerated players in decoherence mode (p=1) of the game.

  9. Effect of the Semiconductor Quantum Dot Shell Structure on Fluorescence Quenching by Acridine Ligand

    NASA Astrophysics Data System (ADS)

    Linkov, P. A.; Vokhmintcev, K. V.; Samokhvalov, P. S.; Laronze-Cochard, M.; Sapi, J.; Nabiev, I. R.

    2018-02-01

    The main line of research in cancer treatment is the development of methods for early diagnosis and targeted drug delivery to cancer cells. Fluorescent semiconductor core/shell nanocrystals of quantum dots (e.g., CdSe/ZnS) conjugated with an anticancer drug, e.g., an acridine derivative, allow real-time tracking and control of the process of the drug delivery to tumors. However, linking of acridine derivatives to a quantum dot can be accompanied by quantum dot fluorescence quenching caused by electron transfer from the quantum dot to the organic molecule. In this work, it has been shown that the structure of the shell of the quantum dot plays the decisive role in the process of photoinduced charge transfer from the quantum dot to the acridine ligand, which is responsible for fluorescence quenching. It has been shown that multicomponent ZnS/CdS/ZnS shells of CdSe cores of quantum dots, which have a relatively small thickness, make it possible to significantly suppress a decrease in the quantum yield of fluorescence of quantum dots as compared to both the classical ZnS thin shell and superthick shells of the same composition. Thus, core/multicomponent shell CdSe/ZnS/CdS/ZnS quantum dots can be used as optimal fluorescent probes for the development of systems for diagnosis and treatment of cancer with the use of anticancer compounds based on acridine derivatives.

  10. Nonadiabatic quantum dynamics and laser control of Br2 in solid argon.

    PubMed

    Accardi, A; Borowski, A; Kühn, O

    2009-07-02

    A five-dimensional reaction surface-vibronic coupling model is introduced to describe the B- to C-state predissociation dynamics of Br(2) occupying a double substitutional lattice site in a face-centered cubic argon crystal at low temperatures. The quantum dynamics driven by a Franck-Condon vertical excitation is investigated, revealing the role of matrix cage compression for efficient nonadiabatic transitions. Vibrational preexcitation of the Br(2) bond in the electronic ground state can be used to access a different regime of predissociation which does not require substantial matrix compression because the Franck-Condon window shifts into the energetic range of the B-C level crossing. Using optimal control theory, it is shown how vibrational preexcitation can be achieved via a pump-dump-type mechanism involving the repulsive C state.

  11. Gigahertz dynamics of a strongly driven single quantum spin.

    PubMed

    Fuchs, G D; Dobrovitski, V V; Toyli, D M; Heremans, F J; Awschalom, D D

    2009-12-11

    Two-level systems are at the core of numerous real-world technologies such as magnetic resonance imaging and atomic clocks. Coherent control of the state is achieved with an oscillating field that drives dynamics at a rate determined by its amplitude. As the strength of the field is increased, a different regime emerges where linear scaling of the manipulation rate breaks down and complex dynamics are expected. By calibrating the spin rotation with an adiabatic passage, we have measured the room-temperature "strong-driving" dynamics of a single nitrogen vacancy center in diamond. With an adiabatic passage to calibrate the spin rotation, we observed dynamics on sub-nanosecond time scales. Contrary to conventional thinking, this breakdown of the rotating wave approximation provides opportunities for time-optimal quantum control of a single spin.

  12. Near-optimal quantum circuit for Grover's unstructured search using a transverse field

    NASA Astrophysics Data System (ADS)

    Jiang, Zhang; Rieffel, Eleanor G.; Wang, Zhihui

    2017-06-01

    Inspired by a class of algorithms proposed by Farhi et al. (arXiv:1411.4028), namely, the quantum approximate optimization algorithm (QAOA), we present a circuit-based quantum algorithm to search for a needle in a haystack, obtaining the same quadratic speedup achieved by Grover's original algorithm. In our algorithm, the problem Hamiltonian (oracle) and a transverse field are applied alternately to the system in a periodic manner. We introduce a technique, based on spin-coherent states, to analyze the composite unitary in a single period. This composite unitary drives a closed transition between two states that have high degrees of overlap with the initial state and the target state, respectively. The transition rate in our algorithm is of order Θ (1 /√{N }) , and the overlaps are of order Θ (1 ) , yielding a nearly optimal query complexity of T ≃√{N }(π /2 √{2 }) . Our algorithm is a QAOA circuit that demonstrates a quantum advantage with a large number of iterations that is not derived from Trotterization of an adiabatic quantum optimization (AQO) algorithm. It also suggests that the analysis required to understand QAOA circuits involves a very different process from estimating the energy gap of a Hamiltonian in AQO.

  13. Channel Simulation in Quantum Metrology

    NASA Astrophysics Data System (ADS)

    Laurenza, Riccardo; Lupo, Cosmo; Spedalieri, Gaetana; Braunstein, Samuel L.; Pirandola, Stefano

    2018-04-01

    In this review we discuss how channel simulation can be used to simplify the most general protocols of quantum parameter estimation, where unlimited entanglement and adaptive joint operations may be employed. Whenever the unknown parameter encoded in a quantum channel is completely transferred in an environmental program state simulating the channel, the optimal adaptive estimation cannot beat the standard quantum limit. In this setting, we elucidate the crucial role of quantum teleportation as a primitive operation which allows one to completely reduce adaptive protocols over suitable teleportation-covariant channels and derive matching upper and lower bounds for parameter estimation. For these channels,wemay express the quantum Cramér Rao bound directly in terms of their Choi matrices. Our review considers both discrete- and continuous-variable systems, also presenting some new results for bosonic Gaussian channels using an alternative sub-optimal simulation. It is an open problem to design simulations for quantum channels that achieve the Heisenberg limit.

  14. Computational Role of Tunneling in a Programmable Quantum Annealer

    NASA Technical Reports Server (NTRS)

    Boixo, Sergio; Smelyanskiy, Vadim; Shabani, Alireza; Isakov, Sergei V.; Dykman, Mark; Amin, Mohammad; Mohseni, Masoud; Denchev, Vasil S.; Neven, Hartmut

    2016-01-01

    Quantum tunneling is a phenomenon in which a quantum state tunnels through energy barriers above the energy of the state itself. Tunneling has been hypothesized as an advantageous physical resource for optimization. Here we present the first experimental evidence of a computational role of multiqubit quantum tunneling in the evolution of a programmable quantum annealer. We developed a theoretical model based on a NIBA Quantum Master Equation to describe the multi-qubit dissipative cotunneling effects under the complex noise characteristics of such quantum devices.We start by considering a computational primitive, the simplest non-convex optimization problem consisting of just one global and one local minimum. The quantum evolutions enable tunneling to the global minimum while the corresponding classical paths are trapped in a false minimum. In our study the non-convex potentials are realized by frustrated networks of qubit clusters with strong intra-cluster coupling. We show that the collective effect of the quantum environment is suppressed in the critical phase during the evolution where quantum tunneling decides the right path to solution. In a later stage dissipation facilitates the multiqubit cotunneling leading to the solution state. The predictions of the model accurately describe the experimental data from the D-WaveII quantum annealer at NASA Ames. In our computational primitive the temperature dependence of the probability of success in the quantum model is opposite to that of the classical paths with thermal hopping. Specially, we provide an analysis of an optimization problem with sixteen qubits,demonstrating eight qubit cotunneling that increases success probabilities. Furthermore, we report results for larger problems with up to 200 qubits that contain the primitive as subproblems.

  15. Open quantum systems and error correction

    NASA Astrophysics Data System (ADS)

    Shabani Barzegar, Alireza

    Quantum effects can be harnessed to manipulate information in a desired way. Quantum systems which are designed for this purpose are suffering from harming interaction with their surrounding environment or inaccuracy in control forces. Engineering different methods to combat errors in quantum devices are highly demanding. In this thesis, I focus on realistic formulations of quantum error correction methods. A realistic formulation is the one that incorporates experimental challenges. This thesis is presented in two sections of open quantum system and quantum error correction. Chapters 2 and 3 cover the material on open quantum system theory. It is essential to first study a noise process then to contemplate methods to cancel its effect. In the second chapter, I present the non-completely positive formulation of quantum maps. Most of these results are published in [Shabani and Lidar, 2009b,a], except a subsection on geometric characterization of positivity domain of a quantum map. The real-time formulation of the dynamics is the topic of the third chapter. After introducing the concept of Markovian regime, A new post-Markovian quantum master equation is derived, published in [Shabani and Lidar, 2005a]. The section of quantum error correction is presented in three chapters of 4, 5, 6 and 7. In chapter 4, we introduce a generalized theory of decoherence-free subspaces and subsystems (DFSs), which do not require accurate initialization (published in [Shabani and Lidar, 2005b]). In Chapter 5, we present a semidefinite program optimization approach to quantum error correction that yields codes and recovery procedures that are robust against significant variations in the noise channel. Our approach allows us to optimize the encoding, recovery, or both, and is amenable to approximations that significantly improve computational cost while retaining fidelity (see [Kosut et al., 2008] for a published version). Chapter 6 is devoted to a theory of quantum error correction (QEC) that applies to any linear map, in particular maps that are not completely positive (CP). This is a complementary to the second chapter which is published in [Shabani and Lidar, 2007]. In the last chapter 7 before the conclusion, a formulation for evaluating the performance of quantum error correcting codes for a general error model is presented, also published in [Shabani, 2005]. In this formulation, the correlation between errors is quantified by a Hamiltonian description of the noise process. In particular, we consider Calderbank-Shor-Steane codes and observe a better performance in the presence of correlated errors depending on the timing of the error recovery.

  16. Arbitrary Dicke-State Control of Symmetric Rydberg Ensembles

    NASA Astrophysics Data System (ADS)

    Deutsch, Ivan

    2017-04-01

    We study the production of arbitrary superpositions of Dicke states via optimal control. We show that N atomic hyperfine qubits, interacting symmetrically via the Rydberg blockade, are well described by the Jaynes-Cummings Model (JCM), familiar in cavity QED. In this isomorphism, the presence or absence of a collective Rydberg excitation plays the role of the two-level system and the number of symmetric excitations of the hyperfine qubits plays the role of the bosonic excitations of the JCM. This system is fully controllable through the addition of phase-modulated microwaves that drive transitions between the Rydberg-dressed states. In the weak dressing regime, this results in a single-axis twisting Hamiltonian, plus time-dependent rotations of the collective spin. For strong dressing we control the entire Jaynes-Cummings ladder. Using optimal control, we design microwave waveforms that can generate arbitrary states in the symmetric subspace. This includes cat states, Dicke states, and spin squeezed states. With currently feasible parameters, it is possible to generate arbitrary symmetric states of _10 hyperfine qubits in 1 microsec, assuming a fast microwave phase switching time. The same control can be achieved with a ``dressed-ground control'' scheme, which reduces the demands for fast phase switching at the expense of increased total control time. More generally, we can achieve control on larger ensembles of qubits by designing waveforms that are bandwidth limited within the coherence time of the system. We use this to study general questions of the ``quantum speed limit'' and information content in a waveform that is needed to generate arbitrary quantum states.

  17. Quantum state transfer in double-quantum-well devices

    NASA Technical Reports Server (NTRS)

    Jakumeit, Jurgen; Tutt, Marcel; Pavlidis, Dimitris

    1994-01-01

    A Monte Carlo simulation of double-quantum-well (DQW) devices is presented in view of analyzing the quantum state transfer (QST) effect. Different structures, based on the AlGaAs/GaAs system, were simulated at 77 and 300 K and optimized in terms of electron transfer and device speed. The analysis revealed the dominant role of the impurity scattering for the QST. Different approaches were used for the optimization of QST devices and basic physical limitations were found in the electron transfer between the QWs. The maximum transfer of electrons from a high to a low mobility well was at best 20%. Negative differential resistance is hampered by the almost linear rather than threshold dependent relation of electron transfer on electric field. By optimizing the doping profile the operation frequency limit could be extended to 260 GHz.

  18. Number-unconstrained quantum sensing

    NASA Astrophysics Data System (ADS)

    Mitchell, Morgan W.

    2017-12-01

    Quantum sensing is commonly described as a constrained optimization problem: maximize the information gained about an unknown quantity using a limited number of particles. Important sensors including gravitational wave interferometers and some atomic sensors do not appear to fit this description, because there is no external constraint on particle number. Here, we develop the theory of particle-number-unconstrained quantum sensing, and describe how optimal particle numbers emerge from the competition of particle-environment and particle-particle interactions. We apply the theory to optical probing of an atomic medium modeled as a resonant, saturable absorber, and observe the emergence of well-defined finite optima without external constraints. The results contradict some expectations from number-constrained quantum sensing and show that probing with squeezed beams can give a large sensitivity advantage over classical strategies when each is optimized for particle number.

  19. Full Wave Function Optimization with Quantum Monte Carlo and Its Effect on the Dissociation Energy of FeS.

    PubMed

    Haghighi Mood, Kaveh; Lüchow, Arne

    2017-08-17

    Diffusion quantum Monte Carlo calculations with partial and full optimization of the guide function are carried out for the dissociation of the FeS molecule. For the first time, quantum Monte Carlo orbital optimization for transition metal compounds is performed. It is demonstrated that energy optimization of the orbitals of a complete active space wave function in the presence of a Jastrow correlation function is required to obtain agreement with the experimental dissociation energy. Furthermore, it is shown that orbital optimization leads to a 5 Δ ground state, in agreement with experiments but in disagreement with other high-level ab initio wave function calculations which all predict a 5 Σ + ground state. The role of the Jastrow factor in DMC calculations with pseudopotentials is investigated. The results suggest that a large Jastrow factor may improve the DMC accuracy substantially at small additional cost.

  20. Quantum information density scaling and qubit operation time constraints of CMOS silicon-based quantum computer architectures

    NASA Astrophysics Data System (ADS)

    Rotta, Davide; Sebastiano, Fabio; Charbon, Edoardo; Prati, Enrico

    2017-06-01

    Even the quantum simulation of an apparently simple molecule such as Fe2S2 requires a considerable number of qubits of the order of 106, while more complex molecules such as alanine (C3H7NO2) require about a hundred times more. In order to assess such a multimillion scale of identical qubits and control lines, the silicon platform seems to be one of the most indicated routes as it naturally provides, together with qubit functionalities, the capability of nanometric, serial, and industrial-quality fabrication. The scaling trend of microelectronic devices predicting that computing power would double every 2 years, known as Moore's law, according to the new slope set after the 32-nm node of 2009, suggests that the technology roadmap will achieve the 3-nm manufacturability limit proposed by Kelly around 2020. Today, circuital quantum information processing architectures are predicted to take advantage from the scalability ensured by silicon technology. However, the maximum amount of quantum information per unit surface that can be stored in silicon-based qubits and the consequent space constraints on qubit operations have never been addressed so far. This represents one of the key parameters toward the implementation of quantum error correction for fault-tolerant quantum information processing and its dependence on the features of the technology node. The maximum quantum information per unit surface virtually storable and controllable in the compact exchange-only silicon double quantum dot qubit architecture is expressed as a function of the complementary metal-oxide-semiconductor technology node, so the size scale optimizing both physical qubit operation time and quantum error correction requirements is assessed by reviewing the physical and technological constraints. According to the requirements imposed by the quantum error correction method and the constraints given by the typical strength of the exchange coupling, we determine the workable operation frequency range of a silicon complementary metal-oxide-semiconductor quantum processor to be within 1 and 100 GHz. Such constraint limits the feasibility of fault-tolerant quantum information processing with complementary metal-oxide-semiconductor technology only to the most advanced nodes. The compatibility with classical complementary metal-oxide-semiconductor control circuitry is discussed, focusing on the cryogenic complementary metal-oxide-semiconductor operation required to bring the classical controller as close as possible to the quantum processor and to enable interfacing thousands of qubits on the same chip via time-division, frequency-division, and space-division multiplexing. The operation time range prospected for cryogenic control electronics is found to be compatible with the operation time expected for qubits. By combining the forecast of the development of scaled technology nodes with operation time and classical circuitry constraints, we derive a maximum quantum information density for logical qubits of 2.8 and 4 Mqb/cm2 for the 10 and 7-nm technology nodes, respectively, for the Steane code. The density is one and two orders of magnitude less for surface codes and for concatenated codes, respectively. Such values provide a benchmark for the development of fault-tolerant quantum algorithms by circuital quantum information based on silicon platforms and a guideline for other technologies in general.

  1. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots.

    PubMed

    Huber, Daniel; Reindl, Marcus; Huo, Yongheng; Huang, Huiying; Wildmann, Johannes S; Schmidt, Oliver G; Rastelli, Armando; Trotta, Rinaldo

    2017-05-26

    The development of scalable sources of non-classical light is fundamental to unlocking the technological potential of quantum photonics. Semiconductor quantum dots are emerging as near-optimal sources of indistinguishable single photons. However, their performance as sources of entangled-photon pairs are still modest compared to parametric down converters. Photons emitted from conventional Stranski-Krastanov InGaAs quantum dots have shown non-optimal levels of entanglement and indistinguishability. For quantum networks, both criteria must be met simultaneously. Here, we show that this is possible with a system that has received limited attention so far: GaAs quantum dots. They can emit triggered polarization-entangled photons with high purity (g (2) (0) = 0.002±0.002), high indistinguishability (0.93±0.07 for 2 ns pulse separation) and high entanglement fidelity (0.94±0.01). Our results show that GaAs might be the material of choice for quantum-dot entanglement sources in future quantum technologies.

  2. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots

    PubMed Central

    Huber, Daniel; Reindl, Marcus; Huo, Yongheng; Huang, Huiying; Wildmann, Johannes S.; Schmidt, Oliver G.; Rastelli, Armando; Trotta, Rinaldo

    2017-01-01

    The development of scalable sources of non-classical light is fundamental to unlocking the technological potential of quantum photonics. Semiconductor quantum dots are emerging as near-optimal sources of indistinguishable single photons. However, their performance as sources of entangled-photon pairs are still modest compared to parametric down converters. Photons emitted from conventional Stranski–Krastanov InGaAs quantum dots have shown non-optimal levels of entanglement and indistinguishability. For quantum networks, both criteria must be met simultaneously. Here, we show that this is possible with a system that has received limited attention so far: GaAs quantum dots. They can emit triggered polarization-entangled photons with high purity (g(2)(0) = 0.002±0.002), high indistinguishability (0.93±0.07 for 2 ns pulse separation) and high entanglement fidelity (0.94±0.01). Our results show that GaAs might be the material of choice for quantum-dot entanglement sources in future quantum technologies. PMID:28548081

  3. Artificial Bee Colony Optimization of Capping Potentials for Hybrid Quantum Mechanical/Molecular Mechanical Calculations.

    PubMed

    Schiffmann, Christoph; Sebastiani, Daniel

    2011-05-10

    We present an algorithmic extension of a numerical optimization scheme for analytic capping potentials for use in mixed quantum-classical (quantum mechanical/molecular mechanical, QM/MM) ab initio calculations. Our goal is to minimize bond-cleavage-induced perturbations in the electronic structure, measured by means of a suitable penalty functional. The optimization algorithm-a variant of the artificial bee colony (ABC) algorithm, which relies on swarm intelligence-couples deterministic (downhill gradient) and stochastic elements to avoid local minimum trapping. The ABC algorithm outperforms the conventional downhill gradient approach, if the penalty hypersurface exhibits wiggles that prevent a straight minimization pathway. We characterize the optimized capping potentials by computing NMR chemical shifts. This approach will increase the accuracy of QM/MM calculations of complex biomolecules.

  4. Optimal power and efficiency of quantum Stirling heat engines

    NASA Astrophysics Data System (ADS)

    Yin, Yong; Chen, Lingen; Wu, Feng

    2017-01-01

    A quantum Stirling heat engine model is established in this paper in which imperfect regeneration and heat leakage are considered. A single particle which contained in a one-dimensional infinite potential well is studied, and the system consists of countless replicas. Each particle is confined in its own potential well, whose occupation probabilities can be expressed by the thermal equilibrium Gibbs distributions. Based on the Schrödinger equation, the expressions of power output and efficiency for the engine are obtained. Effects of imperfect regeneration and heat leakage on the optimal performance are discussed. The optimal performance region and the optimal values of important parameters of the engine cycle are obtained. The results obtained can provide some guidelines for the design of a quantum Stirling heat engine.

  5. Interferometry with non-classical motional states of a Bose-Einstein condensate.

    PubMed

    van Frank, S; Negretti, A; Berrada, T; Bücker, R; Montangero, S; Schaff, J-F; Schumm, T; Calarco, T; Schmiedmayer, J

    2014-05-30

    The Ramsey interferometer is a prime example of precise control at the quantum level. It is usually implemented using internal states of atoms, molecules or ions, for which powerful manipulation procedures are now available. Whether it is possible to control external degrees of freedom of more complex, interacting many-body systems at this level remained an open question. Here we demonstrate a two-pulse Ramsey-type interferometer for non-classical motional states of a Bose-Einstein condensate in an anharmonic trap. The control sequences used to manipulate the condensate wavefunction are obtained from optimal control theory and are directly optimized to maximize the interferometric contrast. They permit a fast manipulation of the atomic ensemble compared to the intrinsic decay processes and many-body dephasing effects. This allows us to reach an interferometric contrast of 92% in the experimental implementation.

  6. An Improved Quantum-Behaved Particle Swarm Optimization Algorithm with Elitist Breeding for Unconstrained Optimization.

    PubMed

    Yang, Zhen-Lun; Wu, Angus; Min, Hua-Qing

    2015-01-01

    An improved quantum-behaved particle swarm optimization with elitist breeding (EB-QPSO) for unconstrained optimization is presented and empirically studied in this paper. In EB-QPSO, the novel elitist breeding strategy acts on the elitists of the swarm to escape from the likely local optima and guide the swarm to perform more efficient search. During the iterative optimization process of EB-QPSO, when criteria met, the personal best of each particle and the global best of the swarm are used to generate new diverse individuals through the transposon operators. The new generated individuals with better fitness are selected to be the new personal best particles and global best particle to guide the swarm for further solution exploration. A comprehensive simulation study is conducted on a set of twelve benchmark functions. Compared with five state-of-the-art quantum-behaved particle swarm optimization algorithms, the proposed EB-QPSO performs more competitively in all of the benchmark functions in terms of better global search capability and faster convergence rate.

  7. Numerical simulation of the optimal two-mode attacks for two-way continuous-variable quantum cryptography in reverse reconciliation

    NASA Astrophysics Data System (ADS)

    Zhang, Yichen; Li, Zhengyu; Zhao, Yijia; Yu, Song; Guo, Hong

    2017-02-01

    We analyze the security of the two-way continuous-variable quantum key distribution protocol in reverse reconciliation against general two-mode attacks, which represent all accessible attacks at fixed channel parameters. Rather than against one specific attack model, the expression of secret key rates of the two-way protocol are derived against all accessible attack models. It is found that there is an optimal two-mode attack to minimize the performance of the protocol in terms of both secret key rates and maximal transmission distances. We identify the optimal two-mode attack, give the specific attack model of the optimal two-mode attack and show the performance of the two-way protocol against the optimal two-mode attack. Even under the optimal two-mode attack, the performances of two-way protocol are still better than the corresponding one-way protocol, which shows the advantage of making double use of the quantum channel and the potential of long-distance secure communication using a two-way protocol.

  8. Counterfactual quantum cloning without transmitting any physical particles

    NASA Astrophysics Data System (ADS)

    Guo, Qi; Zhai, Shuqin; Cheng, Liu-Yong; Wang, Hong-Fu; Zhang, Shou

    2017-11-01

    We propose a counterfactual 1 →2 economical phase-covariant cloning scheme. Compared with the existing protocols using flying qubits, the main difference of the presented scheme is that the cloning can be achieved without transmitting the photon between the two parties. In addition, this counterfactual scheme does not need to construct controlled quantum gates to perform joint logical operations between the cloned qubit and the blank copy. We also numerically evaluate the performance of the present scheme in the practical experiment, which shows this cloning scheme can be implemented with a high success of probability and the fidelity is close to the optimal value in the ideal asymptotic limit.

  9. Efficient quantum repeater with respect to both entanglement-concentration rate and complexity of local operations and classical communication

    NASA Astrophysics Data System (ADS)

    Su, Zhaofeng; Guan, Ji; Li, Lvzhou

    2018-01-01

    Quantum entanglement is an indispensable resource for many significant quantum information processing tasks. However, in practice, it is difficult to distribute quantum entanglement over a long distance, due to the absorption and noise in quantum channels. A solution to this challenge is a quantum repeater, which can extend the distance of entanglement distribution. In this scheme, the time consumption of classical communication and local operations takes an important place with respect to time efficiency. Motivated by this observation, we consider a basic quantum repeater scheme that focuses on not only the optimal rate of entanglement concentration but also the complexity of local operations and classical communication. First, we consider the case where two different two-qubit pure states are initially distributed in the scenario. We construct a protocol with the optimal entanglement-concentration rate and less consumption of local operations and classical communication. We also find a criterion for the projective measurements to achieve the optimal probability of creating a maximally entangled state between the two ends. Second, we consider the case in which two general pure states are prepared and general measurements are allowed. We get an upper bound on the probability for a successful measurement operation to produce a maximally entangled state without any further local operations.

  10. Computational Multiqubit Tunnelling in Programmable Quantum Annealers

    DTIC Science & Technology

    2016-08-25

    ARTICLE Received 3 Jun 2015 | Accepted 26 Nov 2015 | Published 7 Jan 2016 Computational multiqubit tunnelling in programmable quantum annealers...state itself. Quantum tunnelling has been hypothesized as an advantageous physical resource for optimization in quantum annealing. However, computational ...qubit tunnelling plays a computational role in a currently available programmable quantum annealer. We devise a probe for tunnelling, a computational

  11. Trap elimination and reduction of size dispersion due to aging in CdS x Se1- x quantum dots

    NASA Astrophysics Data System (ADS)

    Verma, Abhishek; Nagpal, Swati; Pandey, Praveen K.; Bhatnagar, P. K.; Mathur, P. C.

    2007-12-01

    Quantum Dots of CdS x Se1- x embedded in borosilicate glass matrix have been grown using Double-Step annealing method. Optical characterization of the quantum dots has been done through the combinative analysis of optical absorption and photoluminescence spectroscopy at room temperature. Decreasing trend of photoluminescence intensity with aging has been observed and is attributed to trap elimination. The changes in particle size, size distribution, number of quantum dots, volume fraction, trap related phenomenon and Gibbs free energy of quantum dots, has been explained on the basis of the diffusion-controlled growth process, which continues with passage of time. For a typical case, it was found that after 24 months of aging, the average radii increased from 3.05 to 3.12 nm with the increase in number of quantum dots by 190% and the size-dispersion decreased from 10.8% to 9.9%. For this sample, the initial size range of the quantum dots was 2.85 to 3.18 nm. After that no significant change was found in these parameters for the next 12 months. This shows that the system attains almost a stable nature after 24 months of aging. It was also observed that the size-dispersion in quantum dots reduces with the increase in annealing duration, but at the cost of quantum confinement effect. Therefore, a trade off optimization has to be done between the size-dispersion and the quantum confinement.

  12. Synthesis and Adsorption Study of BSA Surface Imprinted Polymer on CdS Quantum Dots

    NASA Astrophysics Data System (ADS)

    Tang, Ping-ping; Cai, Ji-bao; Su, Qing-de

    2010-04-01

    A new bovine serum albumin (BSA) surface imprinting method was developed by the incorporation of quantum dots (QDs) into molecularly imprinted polymers (MIP), which can offer shape selectivity. Preparation and adsorption conditions were optimized. Physical appearance of the QDs and QDs-MIP particles was illustrated by scanning electron microscope images. Photoluminescence emission of CdS was quenched when rebinding of the template. The quenching of photoluminescence emissions is presumably due to the fluorescence resonance energy transfer between quantum dots and BSA template molecules. The adsorption is compiled with Langmuir isotherm, and chemical adsorption is the rate-controlling step. The maximum adsorption capacity could reach 226.0 mg/g, which is 142.4 mg/g larger than that of undoped BSA MIP. This study demonstrates the validity of QDs coupled with MIP technology for analyzing BSA.

  13. Designing quantum dots for solotronics.

    PubMed

    Kobak, J; Smoleński, T; Goryca, M; Papaj, M; Gietka, K; Bogucki, A; Koperski, M; Rousset, J-G; Suffczyński, J; Janik, E; Nawrocki, M; Golnik, A; Kossacki, P; Pacuski, W

    2014-01-01

    Solotronics, optoelectronics based on solitary dopants, is an emerging field of research and technology reaching the ultimate limit of miniaturization. It aims at exploiting quantum properties of individual ions or defects embedded in a semiconductor matrix. It has already been shown that optical control of a magnetic ion spin is feasible using the carriers confined in a quantum dot. However, a serious obstacle was the quenching of the exciton luminescence by magnetic impurities. Here we show, by photoluminescence studies on thus-far-unexplored individual CdTe dots with a single cobalt ion and CdSe dots with a single manganese ion, that even if energetically allowed, nonradiative exciton recombination through single-magnetic-ion intra-ionic transitions is negligible in such zero-dimensional structures. This opens solotronics for a wide range of as yet unconsidered systems. On the basis of results of our single-spin relaxation experiments and on the material trends, we identify optimal magnetic-ion quantum dot systems for implementation of a single-ion-based spin memory.

  14. Designing quantum dots for solotronics

    PubMed Central

    Kobak, J.; Smoleński, T.; Goryca, M.; Papaj, M.; Gietka, K.; Bogucki, A.; Koperski, M.; Rousset, J.-G.; Suffczyński, J.; Janik, E.; Nawrocki, M.; Golnik, A.; Kossacki, P.; Pacuski, W.

    2014-01-01

    Solotronics, optoelectronics based on solitary dopants, is an emerging field of research and technology reaching the ultimate limit of miniaturization. It aims at exploiting quantum properties of individual ions or defects embedded in a semiconductor matrix. It has already been shown that optical control of a magnetic ion spin is feasible using the carriers confined in a quantum dot. However, a serious obstacle was the quenching of the exciton luminescence by magnetic impurities. Here we show, by photoluminescence studies on thus-far-unexplored individual CdTe dots with a single cobalt ion and CdSe dots with a single manganese ion, that even if energetically allowed, nonradiative exciton recombination through single-magnetic-ion intra-ionic transitions is negligible in such zero-dimensional structures. This opens solotronics for a wide range of as yet unconsidered systems. On the basis of results of our single-spin relaxation experiments and on the material trends, we identify optimal magnetic-ion quantum dot systems for implementation of a single-ion-based spin memory. PMID:24463946

  15. A Novel Quantum-Behaved Bat Algorithm with Mean Best Position Directed for Numerical Optimization

    PubMed Central

    Zhu, Wenyong; Liu, Zijuan; Duan, Qingyan; Cao, Long

    2016-01-01

    This paper proposes a novel quantum-behaved bat algorithm with the direction of mean best position (QMBA). In QMBA, the position of each bat is mainly updated by the current optimal solution in the early stage of searching and in the late search it also depends on the mean best position which can enhance the convergence speed of the algorithm. During the process of searching, quantum behavior of bats is introduced which is beneficial to jump out of local optimal solution and make the quantum-behaved bats not easily fall into local optimal solution, and it has better ability to adapt complex environment. Meanwhile, QMBA makes good use of statistical information of best position which bats had experienced to generate better quality solutions. This approach not only inherits the characteristic of quick convergence, simplicity, and easy implementation of original bat algorithm, but also increases the diversity of population and improves the accuracy of solution. Twenty-four benchmark test functions are tested and compared with other variant bat algorithms for numerical optimization the simulation results show that this approach is simple and efficient and can achieve a more accurate solution. PMID:27293424

  16. Communication: Analytical optimal pulse shapes obtained with the aid of genetic algorithms: Controlling the photoisomerization yield of retinal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerrero, R. D., E-mail: rdguerrerom@unal.edu.co; Arango, C. A., E-mail: caarango@icesi.edu.co; Reyes, A., E-mail: areyesv@unal.edu.co

    We recently proposed a Quantum Optimal Control (QOC) method constrained to build pulses from analytical pulse shapes [R. D. Guerrero et al., J. Chem. Phys. 143(12), 124108 (2015)]. This approach was applied to control the dissociation channel yields of the diatomic molecule KH, considering three potential energy curves and one degree of freedom. In this work, we utilized this methodology to study the strong field control of the cis-trans photoisomerization of 11-cis retinal. This more complex system was modeled with a Hamiltonian comprising two potential energy surfaces and two degrees of freedom. The resulting optimal pulse, made of 6 linearlymore » chirped pulses, was capable of controlling the population of the trans isomer on the ground electronic surface for nearly 200 fs. The simplicity of the pulse generated with our QOC approach offers two clear advantages: a direct analysis of the sequence of events occurring during the driven dynamics, and its reproducibility in the laboratory with current laser technologies.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall'Arno, Michele; ICFO-Institut de Ciencies Fotoniques, E-08860 Castelldefels; Quit Group, Dipartimento di Fisica, via Bassi 6, I-27100 Pavia

    We address the problem of quantum reading of optical memories, namely the retrieving of classical information stored in the optical properties of a media with minimum energy. We present optimal strategies for ambiguous and unambiguous quantum reading of unitary optical memories, namely when one's task is to minimize the probability of errors in the retrieved information and when perfect retrieving of information is achieved probabilistically, respectively. A comparison of the optimal strategy with coherent probes and homodyne detection shows that the former saves orders of magnitude of energy when achieving the same performances. Experimental proposals for quantum reading which aremore » feasible with present quantum optical technology are reported.« less

  18. Achieving minimum-error discrimination of an arbitrary set of laser-light pulses

    NASA Astrophysics Data System (ADS)

    da Silva, Marcus P.; Guha, Saikat; Dutton, Zachary

    2013-05-01

    Laser light is widely used for communication and sensing applications, so the optimal discrimination of coherent states—the quantum states of light emitted by an ideal laser—has immense practical importance. Due to fundamental limits imposed by quantum mechanics, such discrimination has a finite minimum probability of error. While concrete optical circuits for the optimal discrimination between two coherent states are well known, the generalization to larger sets of coherent states has been challenging. In this paper, we show how to achieve optimal discrimination of any set of coherent states using a resource-efficient quantum computer. Our construction leverages a recent result on discriminating multicopy quantum hypotheses [Blume-Kohout, Croke, and Zwolak, arXiv:1201.6625]. As illustrative examples, we analyze the performance of discriminating a ternary alphabet and show how the quantum circuit of a receiver designed to discriminate a binary alphabet can be reused in discriminating multimode hypotheses. Finally, we show that our result can be used to achieve the quantum limit on the rate of classical information transmission on a lossy optical channel, which is known to exceed the Shannon rate of all conventional optical receivers.

  19. Optimized decoy state QKD for underwater free space communication

    NASA Astrophysics Data System (ADS)

    Lopes, Minal; Sarwade, Nisha

    Quantum cryptography (QC) is envisioned as a solution for global key distribution through fiber optic, free space and underwater optical communication due to its unconditional security. In view of this, this paper investigates underwater free space quantum key distribution (QKD) model for enhanced transmission distance, secret key rates and security. It is reported that secure underwater free space QKD is feasible in the clearest ocean water with the sifted key rates up to 207kbps. This paper extends this work by testing performance of optimized decoy state QKD protocol with underwater free space communication model. The attenuation of photons, quantum bit error rate and the sifted key generation rate of underwater quantum communication is obtained with vector radiative transfer theory and Monte Carlo method. It is observed from the simulations that optimized decoy state QKD evidently enhances the underwater secret key transmission distance as well as secret key rates.

  20. Adiabatic quantum optimization for associative memory recall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seddiqi, Hadayat; Humble, Travis S.

    Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are storedmore » in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.« less

  1. Nonreciprocal signal routing in an active quantum network

    NASA Astrophysics Data System (ADS)

    Metelmann, A.; Türeci, H. E.

    2018-04-01

    As superconductor quantum technologies are moving towards large-scale integrated circuits, a robust and flexible approach to routing photons at the quantum level becomes a critical problem. Active circuits, which contain parametrically driven elements selectively embedded in the circuit, offer a viable solution. Here, we present a general strategy for routing nonreciprocally quantum signals between two sites of a given lattice of oscillators, implementable with existing superconducting circuit components. Our approach makes use of a dual lattice of overdamped oscillators linking the nodes of the main lattice. Solutions for spatially selective driving of the lattice elements can be found, which optimally balance coherent and dissipative hopping of microwave photons to nonreciprocally route signals between two given nodes. In certain lattices these optimal solutions are obtained at the exceptional point of the dynamical matrix of the network. We also demonstrate that signal and noise transmission characteristics can be separately optimized.

  2. Adiabatic Quantum Optimization for Associative Memory Recall

    NASA Astrophysics Data System (ADS)

    Seddiqi, Hadayat; Humble, Travis

    2014-12-01

    Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.

  3. QMCPACK: an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids

    NASA Astrophysics Data System (ADS)

    Kim, Jeongnim; Baczewski, Andrew D.; Beaudet, Todd D.; Benali, Anouar; Chandler Bennett, M.; Berrill, Mark A.; Blunt, Nick S.; Josué Landinez Borda, Edgar; Casula, Michele; Ceperley, David M.; Chiesa, Simone; Clark, Bryan K.; Clay, Raymond C., III; Delaney, Kris T.; Dewing, Mark; Esler, Kenneth P.; Hao, Hongxia; Heinonen, Olle; Kent, Paul R. C.; Krogel, Jaron T.; Kylänpää, Ilkka; Li, Ying Wai; Lopez, M. Graham; Luo, Ye; Malone, Fionn D.; Martin, Richard M.; Mathuriya, Amrita; McMinis, Jeremy; Melton, Cody A.; Mitas, Lubos; Morales, Miguel A.; Neuscamman, Eric; Parker, William D.; Pineda Flores, Sergio D.; Romero, Nichols A.; Rubenstein, Brenda M.; Shea, Jacqueline A. R.; Shin, Hyeondeok; Shulenburger, Luke; Tillack, Andreas F.; Townsend, Joshua P.; Tubman, Norm M.; Van Der Goetz, Brett; Vincent, Jordan E.; ChangMo Yang, D.; Yang, Yubo; Zhang, Shuai; Zhao, Luning

    2018-05-01

    QMCPACK is an open source quantum Monte Carlo package for ab initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater–Jastrow type trial wavefunctions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary-field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performance computing architectures, including multicore central processing unit and graphical processing unit systems. We detail the program’s capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://qmcpack.org.

  4. QMCPACK: an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids.

    PubMed

    Kim, Jeongnim; Baczewski, Andrew T; Beaudet, Todd D; Benali, Anouar; Bennett, M Chandler; Berrill, Mark A; Blunt, Nick S; Borda, Edgar Josué Landinez; Casula, Michele; Ceperley, David M; Chiesa, Simone; Clark, Bryan K; Clay, Raymond C; Delaney, Kris T; Dewing, Mark; Esler, Kenneth P; Hao, Hongxia; Heinonen, Olle; Kent, Paul R C; Krogel, Jaron T; Kylänpää, Ilkka; Li, Ying Wai; Lopez, M Graham; Luo, Ye; Malone, Fionn D; Martin, Richard M; Mathuriya, Amrita; McMinis, Jeremy; Melton, Cody A; Mitas, Lubos; Morales, Miguel A; Neuscamman, Eric; Parker, William D; Pineda Flores, Sergio D; Romero, Nichols A; Rubenstein, Brenda M; Shea, Jacqueline A R; Shin, Hyeondeok; Shulenburger, Luke; Tillack, Andreas F; Townsend, Joshua P; Tubman, Norm M; Van Der Goetz, Brett; Vincent, Jordan E; Yang, D ChangMo; Yang, Yubo; Zhang, Shuai; Zhao, Luning

    2018-05-16

    QMCPACK is an open source quantum Monte Carlo package for ab initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wavefunctions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary-field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performance computing architectures, including multicore central processing unit and graphical processing unit systems. We detail the program's capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://qmcpack.org.

  5. Adiabatic quantum optimization for associative memory recall

    DOE PAGES

    Seddiqi, Hadayat; Humble, Travis S.

    2014-12-22

    Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are storedmore » in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Lin; Chen Yixin

    We show that no universal quantum cloning machine exists that can broadcast an arbitrary mixed qubit with a constant fidelity. Based on this result, we investigate the dependent quantum cloner in the sense that some parameter of the input qubit {rho}{sub s}({theta},{omega},{lambda}) is regarded as constant in the fidelity. For the case of constant {omega}, we establish the 1{yields}2 optimal symmetric dependent cloner with a fidelity 1/2. It is also shown that the 1{yields}M optimal quantum cloning machine for pure qubits is also optimal for mixed qubits, when {lambda} is the unique parameter in the fidelity. For general N{yields}M broadcastingmore » of mixed qubits, the situation is very different.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spagnolo, Nicolo; Consorzio Interuniversitario per le Scienze Fisiche della Materia, piazzale Aldo Moro 5, I-00185 Roma; Sciarrino, Fabio

    We show that the quantum states generated by universal optimal quantum cloning of a single photon represent a universal set of quantum superpositions resilient to decoherence. We adopt the Bures distance as a tool to investigate the persistence of quantum coherence of these quantum states. According to this analysis, the process of universal cloning realizes a class of quantum superpositions that exhibits a covariance property in lossy configuration over the complete set of polarization states in the Bloch sphere.

  8. Performance Analysis and Optimization of the Winnow Secret Key Reconciliation Protocol

    DTIC Science & Technology

    2011-06-01

    use in a quantum key system can be defined in two ways :  The number of messages passed between Alice and Bob  The...classical and quantum environment. Post- quantum cryptography , which is generally used to describe classical quantum -resilient protocols, includes...composed of a one- way quantum channel and a two - way classical channel. Owing to the physics of the channel, the quantum channel is subject to

  9. The analytical approach to optimization of active region structure of quantum dot laser

    NASA Astrophysics Data System (ADS)

    Korenev, V. V.; Savelyev, A. V.; Zhukov, A. E.; Omelchenko, A. V.; Maximov, M. V.

    2014-10-01

    Using the analytical approach introduced in our previous papers we analyse the possibilities of optimization of size and structure of active region of semiconductor quantum dot lasers emitting via ground-state optical transitions. It is shown that there are optimal length' dispersion and number of QD layers in laser active region which allow one to obtain lasing spectrum of a given width at minimum injection current. Laser efficiency corresponding to the injection current optimized by the cavity length is practically equal to its maximum value.

  10. Injection current minimization of InAs/InGaAs quantum dot laser by optimization of its active region and reflectivity of laser cavity edges

    NASA Astrophysics Data System (ADS)

    Korenev, V. V.; Savelyev, A. V.; Zhukov, A. E.; Maximov, M. V.

    2015-11-01

    The ways to optimize key parameters of active region and edge reflectivity of edge- emitting semiconductor quantum dot laser are provided. It is shown that in the case of optimal cavity length and sufficiently large dispersion lasing spectrum of a given width can be obtained at injection current up to an order of magnitude lower in comparison to non-optimized sample. The influence of internal loss and edge reflection is also studied in details.

  11. Quantum Parameter Estimation: From Experimental Design to Constructive Algorithm

    NASA Astrophysics Data System (ADS)

    Yang, Le; Chen, Xi; Zhang, Ming; Dai, Hong-Yi

    2017-11-01

    In this paper we design the following two-step scheme to estimate the model parameter ω 0 of the quantum system: first we utilize the Fisher information with respect to an intermediate variable v=\\cos ({ω }0t) to determine an optimal initial state and to seek optimal parameters of the POVM measurement operators; second we explore how to estimate ω 0 from v by choosing t when a priori information knowledge of ω 0 is available. Our optimal initial state can achieve the maximum quantum Fisher information. The formulation of the optimal time t is obtained and the complete algorithm for parameter estimation is presented. We further explore how the lower bound of the estimation deviation depends on the a priori information of the model. Supported by the National Natural Science Foundation of China under Grant Nos. 61273202, 61673389, and 61134008

  12. Quantum annealing with all-to-all connected nonlinear oscillators

    PubMed Central

    Puri, Shruti; Andersen, Christian Kraglund; Grimsmo, Arne L.; Blais, Alexandre

    2017-01-01

    Quantum annealing aims at solving combinatorial optimization problems mapped to Ising interactions between quantum spins. Here, with the objective of developing a noise-resilient annealer, we propose a paradigm for quantum annealing with a scalable network of two-photon-driven Kerr-nonlinear resonators. Each resonator encodes an Ising spin in a robust degenerate subspace formed by two coherent states of opposite phases. A fully connected optimization problem is mapped to local fields driving the resonators, which are connected with only local four-body interactions. We describe an adiabatic annealing protocol in this system and analyse its performance in the presence of photon loss. Numerical simulations indicate substantial resilience to this noise channel, leading to a high success probability for quantum annealing. Finally, we propose a realistic circuit QED implementation of this promising platform for implementing a large-scale quantum Ising machine. PMID:28593952

  13. Optimality of Gaussian attacks in continuous-variable quantum cryptography.

    PubMed

    Navascués, Miguel; Grosshans, Frédéric; Acín, Antonio

    2006-11-10

    We analyze the asymptotic security of the family of Gaussian modulated quantum key distribution protocols for continuous-variables systems. We prove that the Gaussian unitary attack is optimal for all the considered bounds on the key rate when the first and second momenta of the canonical variables involved are known by the honest parties.

  14. Single-photon quantum key distribution in the presence of loss

    NASA Astrophysics Data System (ADS)

    Curty, Marcos; Moroder, Tobias

    2007-05-01

    We investigate two-way and one-way single-photon quantum key distribution (QKD) protocols in the presence of loss introduced by the quantum channel. Our analysis is based on a simple precondition for secure QKD in each case. In particular, the legitimate users need to prove that there exists no separable state (in the case of two-way QKD), or that there exists no quantum state having a symmetric extension (one-way QKD), that is compatible with the available measurements results. We show that both criteria can be formulated as a convex optimization problem known as a semidefinite program, which can be efficiently solved. Moreover, we prove that the solution to the dual optimization corresponds to the evaluation of an optimal witness operator that belongs to the minimal verification set of them for the given two-way (or one-way) QKD protocol. A positive expectation value of this optimal witness operator states that no secret key can be distilled from the available measurements results. We apply such analysis to several well-known single-photon QKD protocols under losses.

  15. On-demand semiconductor source of 780-nm single photons with controlled temporal wave packets

    NASA Astrophysics Data System (ADS)

    Béguin, Lucas; Jahn, Jan-Philipp; Wolters, Janik; Reindl, Marcus; Huo, Yongheng; Trotta, Rinaldo; Rastelli, Armando; Ding, Fei; Schmidt, Oliver G.; Treutlein, Philipp; Warburton, Richard J.

    2018-05-01

    We report on a fast, bandwidth-tunable single-photon source based on an epitaxial GaAs quantum dot. Exploiting spontaneous spin-flip Raman transitions, single photons at 780 nm are generated on demand with tailored temporal profiles of durations exceeding the intrinsic quantum dot lifetime by up to three orders of magnitude. Second-order correlation measurements show a low multiphoton emission probability [g2(0 ) ˜0.10 -0.15 ] at a generation rate up to 10 MHz. We observe Raman photons with linewidths as low as 200 MHz, which is narrow compared to the 1.1-GHz linewidth measured in resonance fluorescence. The generation of such narrow-band single photons with controlled temporal shapes at the rubidium wavelength is a crucial step towards the development of an optimized hybrid semiconductor-atom interface.

  16. Quantum correlation properties in Matrix Product States of finite-number spin rings

    NASA Astrophysics Data System (ADS)

    Zhu, Jing-Min; He, Qi-Kai

    2018-02-01

    The organization and structure of quantum correlation (QC) of quantum spin-chains are very rich and complex. Hence the depiction and measures about the QC of finite-number spin rings deserved to be investigated intensively by using Matrix Product States(MPSs) in addition to the case with infinite-number. Here the dependencies of the geometric quantum discord(GQD) of two spin blocks on the total spin number, the spacing spin number and the environment parameter are presented in detail. We also compare the GQD with the total correlation(TC) and the classical correlation(CC) and illustrate its characteristics. Predictably, our findings may provide the potential of designing the optimal QC experimental detection proposals and pave the way for the designation of optimal quantum information processing schemes.

  17. Quantum connectivity optimization algorithms for entanglement source deployment in a quantum multi-hop network

    NASA Astrophysics Data System (ADS)

    Zou, Zhen-Zhen; Yu, Xu-Tao; Zhang, Zai-Chen

    2018-04-01

    At first, the entanglement source deployment problem is studied in a quantum multi-hop network, which has a significant influence on quantum connectivity. Two optimization algorithms are introduced with limited entanglement sources in this paper. A deployment algorithm based on node position (DNP) improves connectivity by guaranteeing that all overlapping areas of the distribution ranges of the entanglement sources contain nodes. In addition, a deployment algorithm based on an improved genetic algorithm (DIGA) is implemented by dividing the region into grids. From the simulation results, DNP and DIGA improve quantum connectivity by 213.73% and 248.83% compared to random deployment, respectively, and the latter performs better in terms of connectivity. However, DNP is more flexible and adaptive to change, as it stops running when all nodes are covered.

  18. Microscopic heat engine and control of work fluctuations

    NASA Astrophysics Data System (ADS)

    Xiao, Gaoyang

    In this thesis, we study novel behaviors of microscopic work and heat in systems involving few degrees of freedom. We firstly report that a quantum Carnot cycle should consist of two isothermal processes and two mechanical adiabatic processes if we want to maximize its heat-to-work conversion efficiency. We then find that the efficiency can be further optimized, and it is generally system specific, lower than the Carnot efficiency, and dependent upon both temperatures of the cold and hot reservoirs. We then move on to the studies the fluctuations of microscopic work. We find a principle of minimal work fluctuations related to the Jarzynski equality. In brief, an adiabatic process without energy level crossing yields the minimal fluctuations in exponential work, given a thermally isolated system initially prepared at thermal equilibrium. Finally, we investigate an optimal control approach to suppress the work fluctuations and accelerate the adiabatic processes. This optimal control approach can apply to wide variety of systems even when we do not have full knowledge of the systems.

  19. Necessary and sufficient optimality conditions for classical simulations of quantum communication processes

    NASA Astrophysics Data System (ADS)

    Montina, Alberto; Wolf, Stefan

    2014-07-01

    We consider the process consisting of preparation, transmission through a quantum channel, and subsequent measurement of quantum states. The communication complexity of the channel is the minimal amount of classical communication required for classically simulating it. Recently, we reduced the computation of this quantity to a convex minimization problem with linear constraints. Every solution of the constraints provides an upper bound on the communication complexity. In this paper, we derive the dual maximization problem of the original one. The feasible points of the dual constraints, which are inequalities, give lower bounds on the communication complexity, as illustrated with an example. The optimal values of the two problems turn out to be equal (zero duality gap). By this property, we provide necessary and sufficient conditions for optimality in terms of a set of equalities and inequalities. We use these conditions and two reasonable but unproven hypotheses to derive the lower bound n ×2n -1 for a noiseless quantum channel with capacity equal to n qubits. This lower bound can have interesting consequences in the context of the recent debate on the reality of the quantum state.

  20. Continuous-variable quantum key distribution with a leakage from state preparation

    NASA Astrophysics Data System (ADS)

    Derkach, Ivan; Usenko, Vladyslav C.; Filip, Radim

    2017-12-01

    We address side-channel leakage in a trusted preparation station of continuous-variable quantum key distribution with coherent and squeezed states. We consider two different scenarios: multimode Gaussian modulation, directly accessible to an eavesdropper, or side-channel loss of the signal states prior to the modulation stage. We show the negative impact of excessive modulation on both the coherent- and squeezed-state protocols. The impact is more pronounced for squeezed-state protocols and may require optimization of squeezing in the case of noisy quantum channels. Further, we demonstrate that the coherent-state protocol is immune to side-channel signal state leakage prior to modulation, while the squeezed-state protocol is vulnerable to such attacks, becoming more sensitive to the noise in the channel. In the general case of noisy quantum channels the signal squeezing can be optimized to provide best performance of the protocol in the presence of side-channel leakage prior to modulation. Our results demonstrate that leakage from the trusted source in continuous-variable quantum key distribution should not be underestimated and squeezing optimization is needed to overcome coherent state protocols.

  1. WavePacket: A Matlab package for numerical quantum dynamics. I: Closed quantum systems and discrete variable representations

    NASA Astrophysics Data System (ADS)

    Schmidt, Burkhard; Lorenz, Ulf

    2017-04-01

    WavePacket is an open-source program package for the numerical simulation of quantum-mechanical dynamics. It can be used to solve time-independent or time-dependent linear Schrödinger and Liouville-von Neumann-equations in one or more dimensions. Also coupled equations can be treated, which allows to simulate molecular quantum dynamics beyond the Born-Oppenheimer approximation. Optionally accounting for the interaction with external electric fields within the semiclassical dipole approximation, WavePacket can be used to simulate experiments involving tailored light pulses in photo-induced physics or chemistry. The graphical capabilities allow visualization of quantum dynamics 'on the fly', including Wigner phase space representations. Being easy to use and highly versatile, WavePacket is well suited for the teaching of quantum mechanics as well as for research projects in atomic, molecular and optical physics or in physical or theoretical chemistry. The present Part I deals with the description of closed quantum systems in terms of Schrödinger equations. The emphasis is on discrete variable representations for spatial discretization as well as various techniques for temporal discretization. The upcoming Part II will focus on open quantum systems and dimension reduction; it also describes the codes for optimal control of quantum dynamics. The present work introduces the MATLAB version of WavePacket 5.2.1 which is hosted at the Sourceforge platform, where extensive Wiki-documentation as well as worked-out demonstration examples can be found.

  2. Optimal control of laser-induced spin-orbit mediated ultrafast demagnetization

    NASA Astrophysics Data System (ADS)

    Elliott, P.; Krieger, K.; Dewhurst, J. K.; Sharma, S.; Gross, E. K. U.

    2016-01-01

    Laser induced ultrafast demagnetization is the process whereby the magnetic moment of a ferromagnetic material is seen to drop significantly on a timescale of 10-100 s of femtoseconds due to the application of a strong laser pulse. If this phenomenon can be harnessed for future technology, it offers the possibility for devices operating at speeds several orders of magnitude faster than at present. A key component to successful transfer of such a process to technology is the controllability of the process, i.e. that it can be tuned in order to overcome the practical and physical limitations imposed on the system. In this paper, we demonstrate that the spin-orbit mediated form of ultrafast demagnetization recently investigated (Krieger et al 2015 J. Chem. Theory Comput. 11 4870) by ab initio time-dependent density functional theory (TDDFT) can be controlled. To do so we use quantum optimal control theory (OCT) to couple our TDDFT simulations to the optimization machinery of OCT. We show that a laser pulse can be found which maximizes the loss of moment within a given time interval while subject to several practical and physical constraints. Furthermore we also include a constraint on the fluence of the laser pulses and find the optimal pulse that combines significant demagnetization with a desire for less powerful pulses. These calculations demonstrate optimal control is possible for spin-orbit mediated ultrafast demagnetization and lays the foundation for future optimizations/simulations which can incorporate even more constraints.

  3. Selecting the optimal synthesis parameters of InP/CdxZn1-xSe quantum dots for a hybrid remote phosphor white LED for general lighting applications.

    PubMed

    Ryckaert, Jana; Correia, António; Tessier, Mickael D; Dupont, Dorian; Hens, Zeger; Hanselaer, Peter; Meuret, Youri

    2017-11-27

    Quantum dots can be used in white LEDs for lighting applications to fill the spectral gaps in the combined emission spectrum of the blue pumping LED and a broad band phosphor, in order to improve the source color rendering properties. Because quantum dots are low scattering materials, their use can also reduce the amount of backscattered light which can increase the overall efficiency of the white LED. The absorption spectrum and narrow emission spectrum of quantum dots can be easily tuned by altering their synthesis parameters. Due to the re-absorption events between the different luminescent materials and the light interaction with the LED package, determining the optimal quantum dot properties is a highly non-trivial task. In this paper we propose a methodology to select the optimal quantum dot to be combined with a broad band phosphor in order to realize a white LED with optimal luminous efficacy and CRI. The methodology is based on accurate and efficient simulations using the extended adding-doubling approach that take into account all the optical interactions. The method is elaborated for the specific case of a hybrid, remote phosphor white LED with YAG:Ce phosphor in combination with InP/CdxZn 1-x Se type quantum dots. The absorption and emission spectrum of the quantum dots are generated in function of three synthesis parameters (core size, shell size and cadmium fraction) by a semi-empirical 'quantum dot model' to include the continuous tunability of these spectra. The sufficiently fast simulations allow to scan the full parameter space consisting of these synthesis parameters and luminescent material concentrations in terms of CRI and efficacy. A conclusive visualization of the final performance allows to make a well-considered trade-off between these performance parameters. For the hybrid white remote phosphor LED with YAG:Ce and InP/CdxZn 1-x Se quantum dots a CRI Ra = 90 (with R9>50) and an overall efficacy of 110 lm/W is found.

  4. Optical storage with electromagnetically induced transparency in cold atoms at a high optical depth

    NASA Astrophysics Data System (ADS)

    Zhang, Shanchao; Zhou, Shuyu; Liu, Chang; Chen, J. F.; Wen, Jianming; Loy, M. M. T.; Wong, G. K. L.; Du, Shengwang

    2012-06-01

    We report experimental demonstration of efficient optical storage with electromagnetically induced transparency (EIT) in a dense cold ^85Rb atomic ensemble trapped in a two-dimensional magneto-optical trap. By varying the optical depth (OD) from 0 to 140, we observe that the optimal storage efficiency for coherent optical pulses has a saturation value of 50% as OD > 50. Our result is consistent with that obtained from hot vapor cell experiments which suggest that a four-wave mixing nonlinear process degrades the EIT storage coherence and efficiency. We apply this EIT quantum memory for narrow-band single photons with controllable waveforms, and obtain an optimal storage efficiency of 49±3% for single-photon wave packets. This is the highest single-photon storage efficiency reported up to today and brings the EIT atomic quantum memory close to practical application because an efficiency of above 50% is necessary to operate the memory within non-cloning regime and beat the classical limit.

  5. Efficient Raman sideband cooling of trapped ions to their motional ground state

    NASA Astrophysics Data System (ADS)

    Che, H.; Deng, K.; Xu, Z. T.; Yuan, W. H.; Zhang, J.; Lu, Z. H.

    2017-07-01

    Efficient cooling of trapped ions is a prerequisite for various applications of the ions in precision spectroscopy, quantum information, and coherence control. Raman sideband cooling is an effective method to cool the ions to their motional ground state. We investigate both numerically and experimentally the optimization of Raman sideband cooling strategies and propose an efficient one, which can simplify the experimental setup as well as reduce the number of cooling pulses. Several cooling schemes are tested and compared through numerical simulations. The simulation result shows that the fixed-width pulses and varied-width pulses have almost the same efficiency for both the first-order and the second-order Raman sideband cooling. The optimized strategy is verified experimentally. A single 25Mg+ ion is trapped in a linear Paul trap and Raman sideband cooled, and the achieved average vibrational quantum numbers under different cooling strategies are evaluated. A good agreement between the experimental result and the simulation result is obtained.

  6. Experimental realization of quantum cheque using a five-qubit quantum computer

    NASA Astrophysics Data System (ADS)

    Behera, Bikash K.; Banerjee, Anindita; Panigrahi, Prasanta K.

    2017-12-01

    Quantum cheques could be a forgery-free way to make transaction in a quantum networked banking system with perfect security against any no-signalling adversary. Here, we demonstrate the implementation of quantum cheque, proposed by Moulick and Panigrahi (Quantum Inf Process 15:2475-2486, 2016), using the five-qubit IBM quantum computer. Appropriate single qubit, CNOT and Fredkin gates are used in an optimized configuration. The accuracy of implementation is checked and verified through quantum state tomography by comparing results from the theoretical and experimental density matrices.

  7. Computing quantum hashing in the model of quantum branching programs

    NASA Astrophysics Data System (ADS)

    Ablayev, Farid; Ablayev, Marat; Vasiliev, Alexander

    2018-02-01

    We investigate the branching program complexity of quantum hashing. We consider a quantum hash function that maps elements of a finite field into quantum states. We require that this function is preimage-resistant and collision-resistant. We consider two complexity measures for Quantum Branching Programs (QBP): a number of qubits and a number of compu-tational steps. We show that the quantum hash function can be computed efficiently. Moreover, we prove that such QBP construction is optimal. That is, we prove lower bounds that match the constructed quantum hash function computation.

  8. Long distance quantum communication with quantum Reed-Solomon codes

    NASA Astrophysics Data System (ADS)

    Muralidharan, Sreraman; Zou, Chang-Ling; Li, Linshu; Jiang, Liang; Jianggroup Team

    We study the construction of quantum Reed Solomon codes from classical Reed Solomon codes and show that they achieve the capacity of quantum erasure channel for multi-level quantum systems. We extend the application of quantum Reed Solomon codes to long distance quantum communication, investigate the local resource overhead needed for the functioning of one-way quantum repeaters with these codes, and numerically identify the parameter regime where these codes perform better than the known quantum polynomial codes and quantum parity codes . Finally, we discuss the implementation of these codes into time-bin photonic states of qubits and qudits respectively, and optimize the performance for one-way quantum repeaters.

  9. Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution.

    PubMed

    García-Patrón, Raúl; Cerf, Nicolas J

    2006-11-10

    A fully general approach to the security analysis of continuous-variable quantum key distribution (CV-QKD) is presented. Provided that the quantum channel is estimated via the covariance matrix of the quadratures, Gaussian attacks are shown to be optimal against all collective eavesdropping strategies. The proof is made strikingly simple by combining a physical model of measurement, an entanglement-based description of CV-QKD, and a recent powerful result on the extremality of Gaussian states [M. M. Wolf, Phys. Rev. Lett. 96, 080502 (2006)10.1103/PhysRevLett.96.080502].

  10. Engineering integrated photonics for heralded quantum gates

    NASA Astrophysics Data System (ADS)

    Meany, Thomas; Biggerstaff, Devon N.; Broome, Matthew A.; Fedrizzi, Alessandro; Delanty, Michael; Steel, M. J.; Gilchrist, Alexei; Marshall, Graham D.; White, Andrew G.; Withford, Michael J.

    2016-06-01

    Scaling up linear-optics quantum computing will require multi-photon gates which are compact, phase-stable, exhibit excellent quantum interference, and have success heralded by the detection of ancillary photons. We investigate the design, fabrication and characterisation of the optimal known gate scheme which meets these requirements: the Knill controlled-Z gate, implemented in integrated laser-written waveguide arrays. We show device performance to be less sensitive to phase variations in the circuit than to small deviations in the coupler reflectivity, which are expected given the tolerance values of the fabrication method. The mode fidelity is also shown to be less sensitive to reflectivity and phase errors than the process fidelity. Our best device achieves a fidelity of 0.931 ± 0.001 with the ideal 4 × 4 unitary circuit and a process fidelity of 0.680 ± 0.005 with the ideal computational-basis process.

  11. Adiabatic photo-steering theory in topological insulators.

    PubMed

    Inoue, Jun-Ichi

    2014-12-01

    Feasible external control of material properties is a crucial issue in condensed matter physics. A new approach to achieving this aim, named adiabatic photo-steering, is reviewed. The core principle of this scheme is that several material constants are effectively turned into externally tunable variables by irradiation of monochromatic laser light. Two-dimensional topological insulators are selected as the optimal systems that exhibit a prominent change in their properties following the application of this method. Two specific examples of photo-steered quantum phenomena, which reflect topological aspects of the electronic systems at hand, are presented. One is the integer quantum Hall effect described by the Haldane model, and the other is the quantum spin Hall effect described by the Kane-Mele model. The topological quantities associated with these phenomena are the conventional Chern number and spin Chern number, respectively. A recent interesting idea, time-reversal symmetry breaking via a temporary periodic external stimulation, is also discussed.

  12. Adiabatic photo-steering theory in topological insulators

    NASA Astrophysics Data System (ADS)

    Inoue, Jun-ichi

    2014-12-01

    Feasible external control of material properties is a crucial issue in condensed matter physics. A new approach to achieving this aim, named adiabatic photo-steering, is reviewed. The core principle of this scheme is that several material constants are effectively turned into externally tunable variables by irradiation of monochromatic laser light. Two-dimensional topological insulators are selected as the optimal systems that exhibit a prominent change in their properties following the application of this method. Two specific examples of photo-steered quantum phenomena, which reflect topological aspects of the electronic systems at hand, are presented. One is the integer quantum Hall effect described by the Haldane model, and the other is the quantum spin Hall effect described by the Kane-Mele model. The topological quantities associated with these phenomena are the conventional Chern number and spin Chern number, respectively. A recent interesting idea, time-reversal symmetry breaking via a temporary periodic external stimulation, is also discussed.

  13. Engineering integrated photonics for heralded quantum gates

    PubMed Central

    Meany, Thomas; Biggerstaff, Devon N.; Broome, Matthew A.; Fedrizzi, Alessandro; Delanty, Michael; Steel, M. J.; Gilchrist, Alexei; Marshall, Graham D.; White, Andrew G.; Withford, Michael J.

    2016-01-01

    Scaling up linear-optics quantum computing will require multi-photon gates which are compact, phase-stable, exhibit excellent quantum interference, and have success heralded by the detection of ancillary photons. We investigate the design, fabrication and characterisation of the optimal known gate scheme which meets these requirements: the Knill controlled-Z gate, implemented in integrated laser-written waveguide arrays. We show device performance to be less sensitive to phase variations in the circuit than to small deviations in the coupler reflectivity, which are expected given the tolerance values of the fabrication method. The mode fidelity is also shown to be less sensitive to reflectivity and phase errors than the process fidelity. Our best device achieves a fidelity of 0.931 ± 0.001 with the ideal 4 × 4 unitary circuit and a process fidelity of 0.680 ± 0.005 with the ideal computational-basis process. PMID:27282928

  14. Engineering integrated photonics for heralded quantum gates.

    PubMed

    Meany, Thomas; Biggerstaff, Devon N; Broome, Matthew A; Fedrizzi, Alessandro; Delanty, Michael; Steel, M J; Gilchrist, Alexei; Marshall, Graham D; White, Andrew G; Withford, Michael J

    2016-06-10

    Scaling up linear-optics quantum computing will require multi-photon gates which are compact, phase-stable, exhibit excellent quantum interference, and have success heralded by the detection of ancillary photons. We investigate the design, fabrication and characterisation of the optimal known gate scheme which meets these requirements: the Knill controlled-Z gate, implemented in integrated laser-written waveguide arrays. We show device performance to be less sensitive to phase variations in the circuit than to small deviations in the coupler reflectivity, which are expected given the tolerance values of the fabrication method. The mode fidelity is also shown to be less sensitive to reflectivity and phase errors than the process fidelity. Our best device achieves a fidelity of 0.931 ± 0.001 with the ideal 4 × 4 unitary circuit and a process fidelity of 0.680 ± 0.005 with the ideal computational-basis process.

  15. Effects of Energy Dissipation on the Parametric Excitation of a Coupled Qubit-Cavity System

    NASA Astrophysics Data System (ADS)

    Remizov, S. V.; Zhukov, A. A.; Shapiro, D. S.; Pogosov, W. V.; Lozovik, Yu. E.

    2018-06-01

    We consider a parametrically driven system of a qubit coupled to a cavity taking into account different channels of energy dissipation. We focus on the periodic modulation of a single parameter of this hybrid system, which is the coupling constant between the two subsystems. Such a modulation is possible within the superconducting realization of qubit-cavity coupled systems, characterized by an outstanding degree of tunability and flexibility. Our major result is that energy dissipation in the cavity can enhance population of the excited state of the qubit in the steady state, while energy dissipation in the qubit subsystem can enhance the number of photons generated from vacuum. We find optimal parameters for the realization of such dissipation-induced amplification of quantum effects. Our results might be of importance for the full control of quantum states of coupled systems as well as for the storage and engineering of quantum states.

  16. Effects of Energy Dissipation on the Parametric Excitation of a Coupled Qubit-Cavity System

    NASA Astrophysics Data System (ADS)

    Remizov, S. V.; Zhukov, A. A.; Shapiro, D. S.; Pogosov, W. V.; Lozovik, Yu. E.

    2018-02-01

    We consider a parametrically driven system of a qubit coupled to a cavity taking into account different channels of energy dissipation. We focus on the periodic modulation of a single parameter of this hybrid system, which is the coupling constant between the two subsystems. Such a modulation is possible within the superconducting realization of qubit-cavity coupled systems, characterized by an outstanding degree of tunability and flexibility. Our major result is that energy dissipation in the cavity can enhance population of the excited state of the qubit in the steady state, while energy dissipation in the qubit subsystem can enhance the number of photons generated from vacuum. We find optimal parameters for the realization of such dissipation-induced amplification of quantum effects. Our results might be of importance for the full control of quantum states of coupled systems as well as for the storage and engineering of quantum states.

  17. Emergence of electron coherence and two-color all-optical switching in MoS2 based on spatial self-phase modulation

    PubMed Central

    Wu, Yanling; Wu, Qiong; Sun, Fei; Cheng, Cai; Meng, Sheng; Zhao, Jimin

    2015-01-01

    Generating electron coherence in quantum materials is essential in optimal control of many-body interactions and correlations. In a multidomain system this signifies nonlocal coherence and emergence of collective phenomena, particularly in layered 2D quantum materials possessing novel electronic structures and high carrier mobilities. Here we report nonlocal ac electron coherence induced in dispersed MoS2 flake domains, using coherent spatial self-phase modulation (SSPM). The gap-dependent nonlinear dielectric susceptibility χ(3) measured is surprisingly large, where direct interband transition and two-photon SSPM are responsible for excitations above and below the bandgap, respectively. A wind-chime model is proposed to account for the emergence of the ac electron coherence. Furthermore, all-optical switching is achieved based on SSPM, especially with two-color intraband coherence, demonstrating that electron coherence generation is a ubiquitous property of layered quantum materials. PMID:26351696

  18. Quantum Optimal Multiple Assignment Scheme for Realizing General Access Structure of Secret Sharing

    NASA Astrophysics Data System (ADS)

    Matsumoto, Ryutaroh

    The multiple assignment scheme is to assign one or more shares to single participant so that any kind of access structure can be realized by classical secret sharing schemes. We propose its quantum version including ramp secret sharing schemes. Then we propose an integer optimization approach to minimize the average share size.

  19. Compiling quantum circuits to realistic hardware architectures using temporal planners

    NASA Astrophysics Data System (ADS)

    Venturelli, Davide; Do, Minh; Rieffel, Eleanor; Frank, Jeremy

    2018-04-01

    To run quantum algorithms on emerging gate-model quantum hardware, quantum circuits must be compiled to take into account constraints on the hardware. For near-term hardware, with only limited means to mitigate decoherence, it is critical to minimize the duration of the circuit. We investigate the application of temporal planners to the problem of compiling quantum circuits to newly emerging quantum hardware. While our approach is general, we focus on compiling to superconducting hardware architectures with nearest neighbor constraints. Our initial experiments focus on compiling Quantum Alternating Operator Ansatz (QAOA) circuits whose high number of commuting gates allow great flexibility in the order in which the gates can be applied. That freedom makes it more challenging to find optimal compilations but also means there is a greater potential win from more optimized compilation than for less flexible circuits. We map this quantum circuit compilation problem to a temporal planning problem, and generated a test suite of compilation problems for QAOA circuits of various sizes to a realistic hardware architecture. We report compilation results from several state-of-the-art temporal planners on this test set. This early empirical evaluation demonstrates that temporal planning is a viable approach to quantum circuit compilation.

  20. Exact Identification of a Quantum Change Point

    NASA Astrophysics Data System (ADS)

    Sentís, Gael; Calsamiglia, John; Muñoz-Tapia, Ramon

    2017-10-01

    The detection of change points is a pivotal task in statistical analysis. In the quantum realm, it is a new primitive where one aims at identifying the point where a source that supposedly prepares a sequence of particles in identical quantum states starts preparing a mutated one. We obtain the optimal procedure to identify the change point with certainty—naturally at the price of having a certain probability of getting an inconclusive answer. We obtain the analytical form of the optimal probability of successful identification for any length of the particle sequence. We show that the conditional success probabilities of identifying each possible change point show an unexpected oscillatory behavior. We also discuss local (online) protocols and compare them with the optimal procedure.

  1. Exact Identification of a Quantum Change Point.

    PubMed

    Sentís, Gael; Calsamiglia, John; Muñoz-Tapia, Ramon

    2017-10-06

    The detection of change points is a pivotal task in statistical analysis. In the quantum realm, it is a new primitive where one aims at identifying the point where a source that supposedly prepares a sequence of particles in identical quantum states starts preparing a mutated one. We obtain the optimal procedure to identify the change point with certainty-naturally at the price of having a certain probability of getting an inconclusive answer. We obtain the analytical form of the optimal probability of successful identification for any length of the particle sequence. We show that the conditional success probabilities of identifying each possible change point show an unexpected oscillatory behavior. We also discuss local (online) protocols and compare them with the optimal procedure.

  2. Difficulty of distinguishing product states locally

    NASA Astrophysics Data System (ADS)

    Croke, Sarah; Barnett, Stephen M.

    2017-01-01

    Nonlocality without entanglement is a rather counterintuitive phenomenon in which information may be encoded entirely in product (unentangled) states of composite quantum systems in such a way that local measurement of the subsystems is not enough for optimal decoding. For simple examples of pure product states, the gap in performance is known to be rather small when arbitrary local strategies are allowed. Here we restrict to local strategies readily achievable with current technology: those requiring neither a quantum memory nor joint operations. We show that even for measurements on pure product states, there can be a large gap between such strategies and theoretically optimal performance. Thus, even in the absence of entanglement, physically realizable local strategies can be far from optimal for extracting quantum information.

  3. Non-Markovian optimal sideband cooling

    NASA Astrophysics Data System (ADS)

    Triana, Johan F.; Pachon, Leonardo A.

    2018-04-01

    Optimal control theory is applied to sideband cooling of nano-mechanical resonators. The formulation described here makes use of exact results derived by means of the path-integral approach of quantum dynamics, so that no approximation is invoked. It is demonstrated that the intricate interplay between time-dependent fields and structured thermal bath may lead to improve results of the sideband cooling by an order of magnitude. Cooling is quantified by means of the mean number of phonons of the mechanical modes as well as by the von Neumann entropy. Potencial extension to non-linear systems, by means of semiclassical methods, is briefly discussed.

  4. Entropic uncertainty relations in the Heisenberg XXZ model and its controlling via filtering operations

    NASA Astrophysics Data System (ADS)

    Ming, Fei; Wang, Dong; Shi, Wei-Nan; Huang, Ai-Jun; Sun, Wen-Yang; Ye, Liu

    2018-04-01

    The uncertainty principle is recognized as an elementary ingredient of quantum theory and sets up a significant bound to predict outcome of measurement for a couple of incompatible observables. In this work, we develop dynamical features of quantum memory-assisted entropic uncertainty relations (QMA-EUR) in a two-qubit Heisenberg XXZ spin chain with an inhomogeneous magnetic field. We specifically derive the dynamical evolutions of the entropic uncertainty with respect to the measurement in the Heisenberg XXZ model when spin A is initially correlated with quantum memory B. It has been found that the larger coupling strength J of the ferromagnetism ( J < 0 ) and the anti-ferromagnetism ( J > 0 ) chains can effectively degrade the measuring uncertainty. Besides, it turns out that the higher temperature can induce the inflation of the uncertainty because the thermal entanglement becomes relatively weak in this scenario, and there exists a distinct dynamical behavior of the uncertainty when an inhomogeneous magnetic field emerges. With the growing magnetic field | B | , the variation of the entropic uncertainty will be non-monotonic. Meanwhile, we compare several different optimized bounds existing with the initial bound proposed by Berta et al. and consequently conclude Adabi et al.'s result is optimal. Moreover, we also investigate the mixedness of the system of interest, dramatically associated with the uncertainty. Remarkably, we put forward a possible physical interpretation to explain the evolutionary phenomenon of the uncertainty. Finally, we take advantage of a local filtering operation to steer the magnitude of the uncertainty. Therefore, our explorations may shed light on the entropic uncertainty under the Heisenberg XXZ model and hence be of importance to quantum precision measurement over solid state-based quantum information processing.

  5. Optimum testing of multiple hypotheses in quantum detection theory

    NASA Technical Reports Server (NTRS)

    Yuen, H. P.; Kennedy, R. S.; Lax, M.

    1975-01-01

    The problem of specifying the optimum quantum detector in multiple hypotheses testing is considered for application to optical communications. The quantum digital detection problem is formulated as a linear programming problem on an infinite-dimensional space. A necessary and sufficient condition is derived by the application of a general duality theorem specifying the optimum detector in terms of a set of linear operator equations and inequalities. Existence of the optimum quantum detector is also established. The optimality of commuting detection operators is discussed in some examples. The structure and performance of the optimal receiver are derived for the quantum detection of narrow-band coherent orthogonal and simplex signals. It is shown that modal photon counting is asymptotically optimum in the limit of a large signaling alphabet and that the capacity goes to infinity in the absence of a bandwidth limitation.

  6. Recall Performance for Content-Addressable Memory Using Adiabatic Quantum Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imam, Neena; Humble, Travis S.; McCaskey, Alex

    A content-addressable memory (CAM) stores key-value associations such that the key is recalled by providing its associated value. While CAM recall is traditionally performed using recurrent neural network models, we show how to solve this problem using adiabatic quantum optimization. Our approach maps the recurrent neural network to a commercially available quantum processing unit by taking advantage of the common underlying Ising spin model. We then assess the accuracy of the quantum processor to store key-value associations by quantifying recall performance against an ensemble of problem sets. We observe that different learning rules from the neural network community influence recallmore » accuracy but performance appears to be limited by potential noise in the processor. The strong connection established between quantum processors and neural network problems supports the growing intersection of these two ideas.« less

  7. Optimizing Adiabaticity in a Trapped-Ion Quantum Simulator

    NASA Astrophysics Data System (ADS)

    Richerme, Phil; Senko, Crystal; Korenblit, Simcha; Smith, Jacob; Lee, Aaron; Monroe, Christopher

    2013-05-01

    Trapped-ion quantum simulators are a leading platform for the study of interacting spin systems, such as fully-connected Ising models with transverse and axial fields. Phonon-mediated spin-dependent optical dipole forces act globally on a linear chain of trapped Yb-171+ ions to generate the spin-spin couplings, with the form and range of such couplings controlled by laser frequencies and trap voltages. The spins are initially prepared along an effective transverse magnetic field, which is large compared to the Ising couplings and slowly ramped down during the quantum simulation. The system remains in the ground state throughout the evolution if the ramp is adiabatic, and the spin ordering is directly measured by state-dependent fluorescence imaging of the ions onto a camera. Two techniques can improve the identification of the ground state at the end of simulations that are unavoidably diabatic. First, we show an optimized ramp protocol that gives a maximal probability of measuring the true ground state given a finite ramp time. Second, we show that no spin ordering is more prevalent than the ground state(s), even for non-adiabatic ramps. This work is supported by grants from the U.S. Army Research Office with funding from the DARPA OLE program, IARPA, and the MURI program; and the NSF Physics Frontier Center at JQI.

  8. Universality of optimal measurements

    NASA Astrophysics Data System (ADS)

    Tarrach, Rolf; Vidal, Guifré

    1999-11-01

    We present optimal and minimal measurements on identical copies of an unknown state of a quantum bit when the quality of measuring strategies is quantified with the gain of information (Kullback-or mutual information-of probability distributions). We also show that the maximal gain of information occurs, among isotropic priors, when the state is known to be pure. Universality of optimal measurements follows from our results: using the fidelity or the gain of information, two different figures of merits, leads to exactly the same conclusions for isotropic distributions. We finally investigate the optimal capacity of N copies of an unknown state as a quantum channel of information.

  9. Waveguide and active region structure optimization for low-divergence InAs/InGaAs quantum dot comb lasers

    NASA Astrophysics Data System (ADS)

    Korenev, Vladimir V.; Savelyev, Artem V.; Zhukov, Alexey E.; Maximov, Mikhail V.; Omelchenko, Alexander V.

    2015-05-01

    Ways to improve beam divergence and energy consumption of quantum dot lasers emitting via the ground-state optical transitions by optimization of the key parameters of laser active region are discussed. It is shown that there exist an optimal cavity length, dispersion of inhomogeneous broadening and number of QD layers in active region allowing to obtain lasing spectrum of a given width at minimum injection current. The planar dielectric waveguide of the laser is optimized by analytical means for a better trade-off between high Γ-factor and low beam divergence.

  10. Dissipative Quantum Control of a Spin Chain

    NASA Astrophysics Data System (ADS)

    Morigi, Giovanna; Eschner, Jürgen; Cormick, Cecilia; Lin, Yiheng; Leibfried, Dietrich; Wineland, David J.

    2015-11-01

    A protocol is discussed for preparing a spin chain in a generic many-body state in the asymptotic limit of tailored nonunitary dynamics. The dynamics require the spectral resolution of the target state, optimized coherent pulses, engineered dissipation, and feedback. As an example, we discuss the preparation of an entangled antiferromagnetic state, and argue that the procedure can be applied to chains of trapped ions or Rydberg atoms.

  11. Quantum tomography of near-unitary processes in high-dimensional quantum systems

    NASA Astrophysics Data System (ADS)

    Lysne, Nathan; Sosa Martinez, Hector; Jessen, Poul; Baldwin, Charles; Kalev, Amir; Deutsch, Ivan

    2016-05-01

    Quantum Tomography (QT) is often considered the ideal tool for experimental debugging of quantum devices, capable of delivering complete information about quantum states (QST) or processes (QPT). In practice, the protocols used for QT are resource intensive and scale poorly with system size. In this situation, a well behaved model system with access to large state spaces (qudits) can serve as a useful platform for examining the tradeoffs between resource cost and accuracy inherent in QT. In past years we have developed one such experimental testbed, consisting of the electron-nuclear spins in the electronic ground state of individual Cs atoms. Our available toolkit includes high fidelity state preparation, complete unitary control, arbitrary orthogonal measurements, and accurate and efficient QST in Hilbert space dimensions up to d = 16. Using these tools, we have recently completed a comprehensive study of QPT in 4, 7 and 16 dimensions. Our results show that QPT of near-unitary processes is quite feasible if one chooses optimal input states and efficient QST on the outputs. We further show that for unitary processes in high dimensional spaces, one can use informationally incomplete QPT to achieve high-fidelity process reconstruction (90% in d = 16) with greatly reduced resource requirements.

  12. Fair loss-tolerant quantum coin flipping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berlin, Guido; Brassard, Gilles; Bussieres, Felix

    Coin flipping is a cryptographic primitive in which two spatially separated players, who do not trust each other, wish to establish a common random bit. If we limit ourselves to classical communication, this task requires either assumptions on the computational power of the players or it requires them to send messages to each other with sufficient simultaneity to force their complete independence. Without such assumptions, all classical protocols are so that one dishonest player has complete control over the outcome. If we use quantum communication, on the other hand, protocols have been introduced that limit the maximal bias that dishonestmore » players can produce. However, those protocols would be very difficult to implement in practice because they are susceptible to realistic losses on the quantum channel between the players or in their quantum memory and measurement apparatus. In this paper, we introduce a quantum protocol and we prove that it is completely impervious to loss. The protocol is fair in the sense that either player has the same probability of success in cheating attempts at biasing the outcome of the coin flip. We also give explicit and optimal cheating strategies for both players.« less

  13. Optimal Quantum Spatial Search on Random Temporal Networks

    NASA Astrophysics Data System (ADS)

    Chakraborty, Shantanav; Novo, Leonardo; Di Giorgio, Serena; Omar, Yasser

    2017-12-01

    To investigate the performance of quantum information tasks on networks whose topology changes in time, we study the spatial search algorithm by continuous time quantum walk to find a marked node on a random temporal network. We consider a network of n nodes constituted by a time-ordered sequence of Erdös-Rényi random graphs G (n ,p ), where p is the probability that any two given nodes are connected: After every time interval τ , a new graph G (n ,p ) replaces the previous one. We prove analytically that, for any given p , there is always a range of values of τ for which the running time of the algorithm is optimal, i.e., O (√{n }), even when search on the individual static graphs constituting the temporal network is suboptimal. On the other hand, there are regimes of τ where the algorithm is suboptimal even when each of the underlying static graphs are sufficiently connected to perform optimal search on them. From this first study of quantum spatial search on a time-dependent network, it emerges that the nontrivial interplay between temporality and connectivity is key to the algorithmic performance. Moreover, our work can be extended to establish high-fidelity qubit transfer between any two nodes of the network. Overall, our findings show that one can exploit temporality to achieve optimal quantum information tasks on dynamical random networks.

  14. Effective optimization using sample persistence: A case study on quantum annealers and various Monte Carlo optimization methods

    NASA Astrophysics Data System (ADS)

    Karimi, Hamed; Rosenberg, Gili; Katzgraber, Helmut G.

    2017-10-01

    We present and apply a general-purpose, multistart algorithm for improving the performance of low-energy samplers used for solving optimization problems. The algorithm iteratively fixes the value of a large portion of the variables to values that have a high probability of being optimal. The resulting problems are smaller and less connected, and samplers tend to give better low-energy samples for these problems. The algorithm is trivially parallelizable since each start in the multistart algorithm is independent, and could be applied to any heuristic solver that can be run multiple times to give a sample. We present results for several classes of hard problems solved using simulated annealing, path-integral quantum Monte Carlo, parallel tempering with isoenergetic cluster moves, and a quantum annealer, and show that the success metrics and the scaling are improved substantially. When combined with this algorithm, the quantum annealer's scaling was substantially improved for native Chimera graph problems. In addition, with this algorithm the scaling of the time to solution of the quantum annealer is comparable to the Hamze-de Freitas-Selby algorithm on the weak-strong cluster problems introduced by Boixo et al. Parallel tempering with isoenergetic cluster moves was able to consistently solve three-dimensional spin glass problems with 8000 variables when combined with our method, whereas without our method it could not solve any.

  15. Adiabatic quantum computation with neutral atoms via the Rydberg blockade

    NASA Astrophysics Data System (ADS)

    Goyal, Krittika; Deutsch, Ivan

    2011-05-01

    We study a trapped-neutral-atom implementation of the adiabatic model of quantum computation whereby the Hamiltonian of a set of interacting qubits is changed adiabatically so that its ground state evolves to the desired output of the algorithm. We employ the ``Rydberg blockade interaction,'' which previously has been used to implement two-qubit entangling gates in the quantum circuit model. Here it is employed via off-resonant virtual dressing of the excited levels, so that atoms always remain in the ground state. The resulting dressed-Rydberg interaction is insensitive to the distance between the atoms within a certain blockade radius, making this process robust to temperature and vibrational fluctuations. Single qubit interactions are implemented with global microwaves and atoms are locally addressed with light shifts. With these ingredients, we study a protocol to implement the two-qubit Quadratic Unconstrained Binary Optimization (QUBO) problem. We model atom trapping, addressing, coherent evolution, and decoherence. We also explore collective control of the many-atom system and generalize the QUBO problem to multiple qubits. We study a trapped-neutral-atom implementation of the adiabatic model of quantum computation whereby the Hamiltonian of a set of interacting qubits is changed adiabatically so that its ground state evolves to the desired output of the algorithm. We employ the ``Rydberg blockade interaction,'' which previously has been used to implement two-qubit entangling gates in the quantum circuit model. Here it is employed via off-resonant virtual dressing of the excited levels, so that atoms always remain in the ground state. The resulting dressed-Rydberg interaction is insensitive to the distance between the atoms within a certain blockade radius, making this process robust to temperature and vibrational fluctuations. Single qubit interactions are implemented with global microwaves and atoms are locally addressed with light shifts. With these ingredients, we study a protocol to implement the two-qubit Quadratic Unconstrained Binary Optimization (QUBO) problem. We model atom trapping, addressing, coherent evolution, and decoherence. We also explore collective control of the many-atom system and generalize the QUBO problem to multiple qubits. We acknowledge funding from the AQUARIUS project, Sandia National Laboratories

  16. Non-commuting two-local Hamiltonians for quantum error suppression

    NASA Astrophysics Data System (ADS)

    Jiang, Zhang; Rieffel, Eleanor G.

    2017-04-01

    Physical constraints make it challenging to implement and control many-body interactions. For this reason, designing quantum information processes with Hamiltonians consisting of only one- and two-local terms is a worthwhile challenge. Enabling error suppression with two-local Hamiltonians is particularly challenging. A no-go theorem of Marvian and Lidar (Phys Rev Lett 113(26):260504, 2014) demonstrates that, even allowing particles with high Hilbert space dimension, it is impossible to protect quantum information from single-site errors by encoding in the ground subspace of any Hamiltonian containing only commuting two-local terms. Here, we get around this no-go result by encoding in the ground subspace of a Hamiltonian consisting of non-commuting two-local terms arising from the gauge operators of a subsystem code. Specifically, we show how to protect stored quantum information against single-qubit errors using a Hamiltonian consisting of sums of the gauge generators from Bacon-Shor codes (Bacon in Phys Rev A 73(1):012340, 2006) and generalized-Bacon-Shor code (Bravyi in Phys Rev A 83(1):012320, 2011). Our results imply that non-commuting two-local Hamiltonians have more error-suppressing power than commuting two-local Hamiltonians. While far from providing full fault tolerance, this approach improves the robustness achievable in near-term implementable quantum storage and adiabatic quantum computations, reducing the number of higher-order terms required to encode commonly used adiabatic Hamiltonians such as the Ising Hamiltonians common in adiabatic quantum optimization and quantum annealing.

  17. SU-F-BRD-13: Quantum Annealing Applied to IMRT Beamlet Intensity Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazareth, D; Spaans, J

    Purpose: We report on the first application of quantum annealing (QA) to the process of beamlet intensity optimization for IMRT. QA is a new technology, which employs novel hardware and software techniques to address various discrete optimization problems in many fields. Methods: We apply the D-Wave Inc. proprietary hardware, which natively exploits quantum mechanical effects for improved optimization. The new QA algorithm, running on this hardware, is most similar to simulated annealing, but relies on natural processes to directly minimize the free energy of a system. A simple quantum system is slowly evolved into a classical system, representing the objectivemore » function. To apply QA to IMRT-type optimization, two prostate cases were considered. A reduced number of beamlets were employed, due to the current QA hardware limitation of ∼500 binary variables. The beamlet dose matrices were computed using CERR, and an objective function was defined based on typical clinical constraints, including dose-volume objectives. The objective function was discretized, and the QA method was compared to two standard optimization Methods: simulated annealing and Tabu search, run on a conventional computing cluster. Results: Based on several runs, the average final objective function value achieved by the QA was 16.9 for the first patient, compared with 10.0 for Tabu and 6.7 for the SA. For the second patient, the values were 70.7 for the QA, 120.0 for Tabu, and 22.9 for the SA. The QA algorithm required 27–38% of the time required by the other two methods. Conclusion: In terms of objective function value, the QA performance was similar to Tabu but less effective than the SA. However, its speed was 3–4 times faster than the other two methods. This initial experiment suggests that QA-based heuristics may offer significant speedup over conventional clinical optimization methods, as quantum annealing hardware scales to larger sizes.« less

  18. QMCPACK : an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids

    DOE PAGES

    Kim, Jeongnim; Baczewski, Andrew T.; Beaudet, Todd D.; ...

    2018-04-19

    QMCPACK is an open source quantum Monte Carlo package for ab-initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wave functions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performancemore » computing architectures, including multicore central processing unit (CPU) and graphical processing unit (GPU) systems. We detail the program’s capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://www.qmcpack.org.« less

  19. Optimal single-shot strategies for discrimination of quantum measurements

    NASA Astrophysics Data System (ADS)

    Sedlák, Michal; Ziman, Mário

    2014-11-01

    We study discrimination of m quantum measurements in the scenario when the unknown measurement with n outcomes can be used only once. We show that ancilla-assisted discrimination procedures provide a nontrivial advantage over simple (ancilla-free) schemes for perfect distinguishability and we prove that inevitably m ≤n . We derive necessary and sufficient conditions of perfect distinguishability of general binary measurements. We show that the optimization of the discrimination of projective qubit measurements and their mixtures with white noise is equivalent to the discrimination of specific quantum states. In particular, the optimal protocol for discrimination of projective qubit measurements with fixed failure rate (exploiting maximally entangled test state) is described. While minimum-error discrimination of two projective qubit measurements can be realized without any need of entanglement, we show that discrimination of three projective qubit measurements requires a bipartite probe state. Moreover, when the measurements are not projective, the non-maximally entangled test states can outperform the maximally entangled ones. Finally, we rephrase the unambiguous discrimination of measurements as quantum key distribution protocol.

  20. QMCPACK : an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jeongnim; Baczewski, Andrew T.; Beaudet, Todd D.

    QMCPACK is an open source quantum Monte Carlo package for ab-initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wave functions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performancemore » computing architectures, including multicore central processing unit (CPU) and graphical processing unit (GPU) systems. We detail the program’s capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://www.qmcpack.org.« less

  1. Matrix Results and Techniques in Quantum Information Science and Related Topics

    NASA Astrophysics Data System (ADS)

    Pelejo, Diane Christine

    In this dissertation, we present several matrix-related problems and results motivated by quantum information theory. Some background material of quantum information science will be discussed in chapter 1, while chapter 7 gives a summary of results and concluding remarks. In chapter 2, we look at 2n x 2 n unitary matrices, which describe operations on a closed n-qubit system. We define a set of simple quantum gates, called controlled single qubit gates, and their associated operational cost. We then present a recurrence scheme to decompose a general 2n x 2n unitary matrix to the product of no more than 2n-12n-1 single qubit gates with small number of controls. In chapter 3, we address the problem of finding a specific element phi among a given set of quantum channels S that will produce the optimal value of a scalar function D(rho 1,phi(rho2)), on two fixed quantum states rho 1 and rho2. Some of the functions we considered for D(·,·) are the trace distance, quantum fidelity and quantum relative entropy. We discuss the optimal solution when S is the set of unitary quantum channels, the set of mixed unitary channels, the set of unital quantum channels, and the set of all quantum channels. In chapter 4, we focus on the spectral properties of qubit-qudit bipartite states with a maximally mixed qudit subsystem. More specifically, given positive numbers a1 ≥ ... ≥ a 2n ≥ 0, we want to determine if there exist a 2n x 2n density matrix rho having eigenvalues a1,..., a2n and satisfying tr 1(rho)=1/n In. This problem is a special case of the more general quantum marginal problem. We give the minimal necessary and sufficient conditions on a1,..., a2n for n ≤ 6 and state some observations on general values of n.. In chapter 5, we discuss the numerical method of alternating projections and illustrate its usefulness in: (a) constructing a quantum channel, if it exists, such that phi(rho(1))=sigma(1),...,phi(rho (k))=sigma(k) for given rho (1),...,rho(k) ∈ Dn and sigma(1),...,sigma (k) ∈ Dm, (b) constructing a multipartite state rho having a prescribed set of reduced states rho1,..., rhor on r of its subsystems, (c) constructing a multipartite staterho having prescribed reduced states and additional properties such as having prescribed eigenvalues, prescribed rank or low von Neuman entropy; and (d) determining if a square matrix A can be written as a product of two positive semidefinite contractions. In chapter 6, we examine the shape of the Minkowski product of convex subsets K1 and K2 of C given by K1K 2 = {ab: a ∈ K1, b ∈ K2}, which has applications in the study of the product numerical range and quantum error-correction. In Karol, it was conjectured that K1K 2 is star-shaped when K1 and K2 are convex. We give counterexamples to show that this conjecture does not hold in general but we show that the set K 1K2 is star-shaped if K 1 is a line segment or a circular disk.

  2. Polarization entangled cluster state generation in a lithium niobate chip

    NASA Astrophysics Data System (ADS)

    Szep, Attila; Kim, Richard; Shin, Eunsung; Fanto, Michael L.; Osman, Joseph; Alsing, Paul M.

    2016-10-01

    We present a design of a quantum information processing C-phase (Controlled-phase) gate applicable for generating cluster states that has a form of integrated photonic circuits assembled with cascaded directional couplers on a Ti in-diffused Lithium Niobate (Ti-LN) platform where directional couplers as the integrated optical analogue of bulk beam splitters are used as fundamental building blocks. Based on experimentally optimized fabrication parameters of Ti-LN optical waveguides operating at an 810nm wavelength, an integrated Ti-LN quantum C-phase gate is designed and simulated. Our proposed C-phase gate consists of three tunable directional couplers cascaded together with having different weighted switching ratios for providing a tool of routing vertically- and horizontally-polarized photons independently. Its operation mechanism relies on selectively controlling the optical coupling of orthogonally polarized modes via the change in the index of refraction, and its operation is confirmed by the BPM simulation.

  3. Controllable quantum dynamics of inhomogeneous nitrogen-vacancy center ensembles coupled to superconducting resonators

    PubMed Central

    Song, Wan-lu; Yang, Wan-li; Yin, Zhang-qi; Chen, Chang-yong; Feng, Mang

    2016-01-01

    We explore controllable quantum dynamics of a hybrid system, which consists of an array of mutually coupled superconducting resonators (SRs) with each containing a nitrogen-vacancy center spin ensemble (NVE) in the presence of inhomogeneous broadening. We focus on a three-site model, which compared with the two-site case, shows more complicated and richer dynamical behavior, and displays a series of damped oscillations under various experimental situations, reflecting the intricate balance and competition between the NVE-SR collective coupling and the adjacent-site photon hopping. Particularly, we find that the inhomogeneous broadening of the spin ensemble can suppress the population transfer between the SR and the local NVE. In this context, although the inhomogeneous broadening of the spin ensemble diminishes entanglement among the NVEs, optimal entanglement, characterized by averaging the lower bound of concurrence, could be achieved through accurately adjusting the tunable parameters. PMID:27627994

  4. Optimal cloning of arbitrary mirror-symmetric distributions on the Bloch sphere: a proposal for practical photonic realization

    NASA Astrophysics Data System (ADS)

    Bartkiewicz, Karol; Miranowicz, Adam

    2012-02-01

    We study state-dependent quantum cloning that can outperform universal cloning (UC). This is possible by using some a priori information on a given quantum state to be cloned. Specifically, we propose a generalization and optical implementation of quantum optimal mirror phase-covariant cloning, which refers to optimal cloning of sets of qubits of known modulus of the expectation value of Pauli's Z operator. Our results can be applied to cloning of an arbitrary mirror-symmetric distribution of qubits on the Bloch sphere including in special cases UC and phase-covariant cloning. We show that the cloning is optimal by adapting our former optimality proof for axisymmetric cloning (Bartkiewicz and Miranowicz 2010 Phys. Rev. A 82 042330). Moreover, we propose an optical realization of the optimal mirror phase-covariant 1→2 cloning of a qubit, for which the mean probability of successful cloning varies from 1/6 to 1/3 depending on prior information on the set of qubits to be cloned. The qubits are represented by polarization states of photons generated by the type-I spontaneous parametric down-conversion. The scheme is based on the interference of two photons on an unbalanced polarization-dependent beam splitter with different splitting ratios for vertical and horizontal polarization components and the additional application of feedforward by means of Pockels cells. The experimental feasibility of the proposed setup is carefully studied including various kinds of imperfections and losses. Moreover, we briefly describe two possible cryptographic applications of the optimal mirror phase-covariant cloning corresponding to state discrimination (or estimation) and secure quantum teleportation.

  5. Work extraction and thermodynamics for individual quantum systems

    NASA Astrophysics Data System (ADS)

    Skrzypczyk, Paul; Short, Anthony J.; Popescu, Sandu

    2014-06-01

    Thermodynamics is traditionally concerned with systems comprised of a large number of particles. Here we present a framework for extending thermodynamics to individual quantum systems, including explicitly a thermal bath and work-storage device (essentially a ‘weight’ that can be raised or lowered). We prove that the second law of thermodynamics holds in our framework, and gives a simple protocol to extract the optimal amount of work from the system, equal to its change in free energy. Our results apply to any quantum system in an arbitrary initial state, in particular including non-equilibrium situations. The optimal protocol is essentially reversible, similar to classical Carnot cycles, and indeed, we show that it can be used to construct a quantum Carnot engine.

  6. Work extraction and thermodynamics for individual quantum systems.

    PubMed

    Skrzypczyk, Paul; Short, Anthony J; Popescu, Sandu

    2014-06-27

    Thermodynamics is traditionally concerned with systems comprised of a large number of particles. Here we present a framework for extending thermodynamics to individual quantum systems, including explicitly a thermal bath and work-storage device (essentially a 'weight' that can be raised or lowered). We prove that the second law of thermodynamics holds in our framework, and gives a simple protocol to extract the optimal amount of work from the system, equal to its change in free energy. Our results apply to any quantum system in an arbitrary initial state, in particular including non-equilibrium situations. The optimal protocol is essentially reversible, similar to classical Carnot cycles, and indeed, we show that it can be used to construct a quantum Carnot engine.

  7. Rigidity of the magic pentagram game

    NASA Astrophysics Data System (ADS)

    Kalev, Amir; Miller, Carl A.

    2018-01-01

    A game is rigid if a near-optimal score guarantees, under the sole assumption of the validity of quantum mechanics, that the players are using an approximately unique quantum strategy. Rigidity has a vital role in quantum cryptography as it permits a strictly classical user to trust behavior in the quantum realm. This property can be traced back as far as 1998 (Mayers and Yao) and has been proved for multiple classes of games. In this paper we prove ridigity for the magic pentagram game, a simple binary constraint satisfaction game involving two players, five clauses and ten variables. We show that all near-optimal strategies for the pentagram game are approximately equivalent to a unique strategy involving real Pauli measurements on three maximally-entangled qubit pairs.

  8. Multistate and multihypothesis discrimination with open quantum systems

    NASA Astrophysics Data System (ADS)

    Kiilerich, Alexander Holm; Mølmer, Klaus

    2018-05-01

    We show how an upper bound for the ability to discriminate any number N of candidates for the Hamiltonian governing the evolution of an open quantum system may be calculated by numerically efficient means. Our method applies an effective master-equation analysis to evaluate the pairwise overlaps between candidate full states of the system and its environment pertaining to the Hamiltonians. These overlaps are then used to construct an N -dimensional representation of the states. The optimal positive-operator valued measure (POVM) and the corresponding probability of assigning a false hypothesis may subsequently be evaluated by phrasing optimal discrimination of multiple nonorthogonal quantum states as a semidefinite programming problem. We provide three realistic examples of multihypothesis testing with open quantum systems.

  9. Rigidity of the magic pentagram game.

    PubMed

    Kalev, Amir; Miller, Carl A

    2018-01-01

    A game is rigid if a near-optimal score guarantees, under the sole assumption of the validity of quantum mechanics, that the players are using an approximately unique quantum strategy. Rigidity has a vital role in quantum cryptography as it permits a strictly classical user to trust behavior in the quantum realm. This property can be traced back as far as 1998 (Mayers and Yao) and has been proved for multiple classes of games. In this paper we prove ridigity for the magic pentagram game, a simple binary constraint satisfaction game involving two players, five clauses and ten variables. We show that all near-optimal strategies for the pentagram game are approximately equivalent to a unique strategy involving real Pauli measurements on three maximally-entangled qubit pairs.

  10. A subgradient approach for constrained binary optimization via quantum adiabatic evolution

    NASA Astrophysics Data System (ADS)

    Karimi, Sahar; Ronagh, Pooya

    2017-08-01

    Outer approximation method has been proposed for solving the Lagrangian dual of a constrained binary quadratic programming problem via quantum adiabatic evolution in the literature. This should be an efficient prescription for solving the Lagrangian dual problem in the presence of an ideally noise-free quantum adiabatic system. However, current implementations of quantum annealing systems demand methods that are efficient at handling possible sources of noise. In this paper, we consider a subgradient method for finding an optimal primal-dual pair for the Lagrangian dual of a constrained binary polynomial programming problem. We then study the quadratic stable set (QSS) problem as a case study. We see that this method applied to the QSS problem can be viewed as an instance-dependent penalty-term approach that avoids large penalty coefficients. Finally, we report our experimental results of using the D-Wave 2X quantum annealer and conclude that our approach helps this quantum processor to succeed more often in solving these problems compared to the usual penalty-term approaches.

  11. Boosting quantum annealer performance via sample persistence

    NASA Astrophysics Data System (ADS)

    Karimi, Hamed; Rosenberg, Gili

    2017-07-01

    We propose a novel method for reducing the number of variables in quadratic unconstrained binary optimization problems, using a quantum annealer (or any sampler) to fix the value of a large portion of the variables to values that have a high probability of being optimal. The resulting problems are usually much easier for the quantum annealer to solve, due to their being smaller and consisting of disconnected components. This approach significantly increases the success rate and number of observations of the best known energy value in samples obtained from the quantum annealer, when compared with calling the quantum annealer without using it, even when using fewer annealing cycles. Use of the method results in a considerable improvement in success metrics even for problems with high-precision couplers and biases, which are more challenging for the quantum annealer to solve. The results are further enhanced by applying the method iteratively and combining it with classical pre-processing. We present results for both Chimera graph-structured problems and embedded problems from a real-world application.

  12. Simple expression for the quantum Fisher information matrix

    NASA Astrophysics Data System (ADS)

    Šafránek, Dominik

    2018-04-01

    Quantum Fisher information matrix (QFIM) is a cornerstone of modern quantum metrology and quantum information geometry. Apart from optimal estimation, it finds applications in description of quantum speed limits, quantum criticality, quantum phase transitions, coherence, entanglement, and irreversibility. We derive a surprisingly simple formula for this quantity, which, unlike previously known general expression, does not require diagonalization of the density matrix, and is provably at least as efficient. With a minor modification, this formula can be used to compute QFIM for any finite-dimensional density matrix. Because of its simplicity, it could also shed more light on the quantum information geometry in general.

  13. Hybrid quantum-classical hierarchy for mitigation of decoherence and determination of excited states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClean, Jarrod R.; Kimchi-Schwartz, Mollie E.; Carter, Jonathan

    Using quantum devices supported by classical computational resources is a promising approach to quantum-enabled computation. One powerful example of such a hybrid quantum-classical approach optimized for classically intractable eigenvalue problems is the variational quantum eigensolver, built to utilize quantum resources for the solution of eigenvalue problems and optimizations with minimal coherence time requirements by leveraging classical computational resources. These algorithms have been placed as leaders among the candidates for the first to achieve supremacy over classical computation. Here, we provide evidence for the conjecture that variational approaches can automatically suppress even nonsystematic decoherence errors by introducing an exactly solvable channelmore » model of variational state preparation. Moreover, we develop a more general hierarchy of measurement and classical computation that allows one to obtain increasingly accurate solutions by leveraging additional measurements and classical resources. In conclusion, we demonstrate numerically on a sample electronic system that this method both allows for the accurate determination of excited electronic states as well as reduces the impact of decoherence, without using any additional quantum coherence time or formal error-correction codes.« less

  14. Error regions in quantum state tomography: computational complexity caused by geometry of quantum states

    NASA Astrophysics Data System (ADS)

    Suess, Daniel; Rudnicki, Łukasz; maciel, Thiago O.; Gross, David

    2017-09-01

    The outcomes of quantum mechanical measurements are inherently random. It is therefore necessary to develop stringent methods for quantifying the degree of statistical uncertainty about the results of quantum experiments. For the particularly relevant task of quantum state tomography, it has been shown that a significant reduction in uncertainty can be achieved by taking the positivity of quantum states into account. However—the large number of partial results and heuristics notwithstanding—no efficient general algorithm is known that produces an optimal uncertainty region from experimental data, while making use of the prior constraint of positivity. Here, we provide a precise formulation of this problem and show that the general case is NP-hard. Our result leaves room for the existence of efficient approximate solutions, and therefore does not in itself imply that the practical task of quantum uncertainty quantification is intractable. However, it does show that there exists a non-trivial trade-off between optimality and computational efficiency for error regions. We prove two versions of the result: one for frequentist and one for Bayesian statistics.

  15. Optimal attacks on qubit-based Quantum Key Recycling

    NASA Astrophysics Data System (ADS)

    Leermakers, Daan; Škorić, Boris

    2018-03-01

    Quantum Key Recycling (QKR) is a quantum cryptographic primitive that allows one to reuse keys in an unconditionally secure way. By removing the need to repeatedly generate new keys, it improves communication efficiency. Škorić and de Vries recently proposed a QKR scheme based on 8-state encoding (four bases). It does not require quantum computers for encryption/decryption but only single-qubit operations. We provide a missing ingredient in the security analysis of this scheme in the case of noisy channels: accurate upper bounds on the required amount of privacy amplification. We determine optimal attacks against the message and against the key, for 8-state encoding as well as 4-state and 6-state conjugate coding. We provide results in terms of min-entropy loss as well as accessible (Shannon) information. We show that the Shannon entropy analysis for 8-state encoding reduces to the analysis of quantum key distribution, whereas 4-state and 6-state suffer from additional leaks that make them less effective. From the optimal attacks we compute the required amount of privacy amplification and hence the achievable communication rate (useful information per qubit) of qubit-based QKR. Overall, 8-state encoding yields the highest communication rates.

  16. Continuous-variable phase estimation with unitary and random linear disturbance

    NASA Astrophysics Data System (ADS)

    Delgado de Souza, Douglas; Genoni, Marco G.; Kim, M. S.

    2014-10-01

    We address the problem of continuous-variable quantum phase estimation in the presence of linear disturbance at the Hamiltonian level by means of Gaussian probe states. In particular we discuss both unitary and random disturbance by considering the parameter which characterizes the unwanted linear term present in the Hamiltonian as fixed (unitary disturbance) or random with a given probability distribution (random disturbance). We derive the optimal input Gaussian states at fixed energy, maximizing the quantum Fisher information over the squeezing angle and the squeezing energy fraction, and we discuss the scaling of the quantum Fisher information in terms of the output number of photons, nout. We observe that, in the case of unitary disturbance, the optimal state is a squeezed vacuum state and the quadratic scaling is conserved. As regards the random disturbance, we observe that the optimal squeezing fraction may not be equal to one and, for any nonzero value of the noise parameter, the quantum Fisher information scales linearly with the average number of photons. Finally, we discuss the performance of homodyne measurement by comparing the achievable precision with the ultimate limit imposed by the quantum Cramér-Rao bound.

  17. Systematic Dimensionality Reduction for Quantum Walks: Optimal Spatial Search and Transport on Non-Regular Graphs

    PubMed Central

    Novo, Leonardo; Chakraborty, Shantanav; Mohseni, Masoud; Neven, Hartmut; Omar, Yasser

    2015-01-01

    Continuous time quantum walks provide an important framework for designing new algorithms and modelling quantum transport and state transfer problems. Often, the graph representing the structure of a problem contains certain symmetries that confine the dynamics to a smaller subspace of the full Hilbert space. In this work, we use invariant subspace methods, that can be computed systematically using the Lanczos algorithm, to obtain the reduced set of states that encompass the dynamics of the problem at hand without the specific knowledge of underlying symmetries. First, we apply this method to obtain new instances of graphs where the spatial quantum search algorithm is optimal: complete graphs with broken links and complete bipartite graphs, in particular, the star graph. These examples show that regularity and high-connectivity are not needed to achieve optimal spatial search. We also show that this method considerably simplifies the calculation of quantum transport efficiencies. Furthermore, we observe improved efficiencies by removing a few links from highly symmetric graphs. Finally, we show that this reduction method also allows us to obtain an upper bound for the fidelity of a single qubit transfer on an XY spin network. PMID:26330082

  18. Mechanisms in adaptive feedback control: photoisomerization in a liquid.

    PubMed

    Hoki, Kunihito; Brumer, Paul

    2005-10-14

    The underlying mechanism for Adaptive Feedback Control in the experimental photoisomerization of 3,3'-diethyl-2,2'-thiacyanine iodide (NK88) in methanol is exposed theoretically. With given laboratory limitations on laser output, the complicated electric fields are shown to achieve their targets in qualitatively simple ways. Further, control over the cis population without laser limitations reveals an incoherent pump-dump scenario as the optimal isomerization strategy. In neither case are there substantial contributions from quantum multiple-path interference or from nuclear wave packet coherence. Environmentally induced decoherence is shown to justify the use of a simplified theoretical model.

  19. Engineered Quasi-Phase Matching for Nonlinear Quantum Optics in Waveguides

    NASA Astrophysics Data System (ADS)

    Van Camp, Mackenzie A.

    Entanglement is the hallmark of quantum mechanics. Quantum entanglement--putting two or more identical particles into a non-factorable state--has been leveraged for applications ranging from quantum computation and encryption to high-precision metrology. Entanglement is a practical engineering resource and a tool for sidestepping certain limitations of classical measurement and communication. Engineered nonlinear optical waveguides are an enabling technology for generating entangled photon pairs and manipulating the state of single photons. This dissertation reports on: i) frequency conversion of single photons from the mid-infrared to 843nm as a tool for incorporating quantum memories in quantum networks, ii) the design, fabrication, and test of a prototype broadband source of polarization and frequency entangled photons; and iii) a roadmap for further investigations of this source, including applications in quantum interferometry and high-precision optical metrology. The devices presented herein are quasi-phase-matched lithium niobate waveguides. Lithium niobate is a second-order nonlinear optical material and can mediate optical energy conversion to different wavelengths. This nonlinear effect is the basis of both quantum frequency conversion and entangled photon generation, and is enhanced by i) confining light in waveguides to increase conversion efficiency, and ii) quasi-phase matching, a technique for engineering the second-order nonlinear response by locally altering the direction of a material's polarization vector. Waveguides are formed by diffusing titanium into a lithium niobate wafer. Quasi-phase matching is achieved by electric field poling, with multiple stages of process development and optimization to fabricate the delicate structures necessary for broadband entangled photon generation. The results presented herein update and optimize past fabrication techniques, demonstrate novel optical devices, and propose future avenues for device development. Quantum frequency conversion from 1848nm to 843nm is demonstrated for the first time, with >75% single-photon conversion efficiency. A new electric field poling methodology is presented, combining elements from multiple historical techniques with a new fast-feedback control system. This poling technique is used to fabricate the first chirped-and-apodized Type-II quasi-phase-matched structures in titanium-diffused lithium niobate waveguides, culminating in a measured phasematching spectrum that is predominantly Gaussian ( R2 = 0.80), nearly eight times broader than the unchirped spectrum, and agrees well with simulations.

  20. Dependence of Laminar Flow Fluctuation on Indium Composition in In0.07GaAs/GaAs Quantum Wells for 940-nm Infrared Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Kwang; Lee, Hyung-Joo; An, Won-Chan; Kim, Hong-Gun; Kwac, Lee-Ku

    2018-05-01

    The effect of laminar flow fluctuation on the indium composition of In0.07GaAs quantum wells was investigated in order to obtain a higher output power from infrared lighting-emitting diodes (IR-LEDs) having a 940-nm wavelength. By controlling the injection pressure, we obtained various laminar flow conditions. Through subsequent photoluminescence (PL) and X-ray diffraction (XRD) measurements, a noticeable improvement in the optical and the crystalline characteristics of the In0.07GaAs quantum wells was observed at an optimum laminar flow. This result could be attributed to a reduction of non-crystallization in InGaAs quantum wells that had their indium composition improved via the optimized laminar flow. Overall, a significantly improved output power (11.2 mW) was obtained from a 940-nm IR-LED chip fabricated at an optimum laminar flow of 500 sccm, and a remarkable increase of approximately 250% was displayed compared to a conventional chip (3.9 mW) fabricated at a laminar flow of 100 sccm.

  1. Construction of mutually unbiased bases with cyclic symmetry for qubit systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seyfarth, Ulrich; Ranade, Kedar S.

    2011-10-15

    For the complete estimation of arbitrary unknown quantum states by measurements, the use of mutually unbiased bases has been well established in theory and experiment for the past 20 years. However, most constructions of these bases make heavy use of abstract algebra and the mathematical theory of finite rings and fields, and no simple and generally accessible construction is available. This is particularly true in the case of a system composed of several qubits, which is arguably the most important case in quantum information science and quantum computation. In this paper, we close this gap by providing a simple andmore » straightforward method for the construction of mutually unbiased bases in the case of a qubit register. We show that our construction is also accessible to experiments, since only Hadamard and controlled-phase gates are needed, which are available in most practical realizations of a quantum computer. Moreover, our scheme possesses the optimal scaling possible, i.e., the number of gates scales only linearly in the number of qubits.« less

  2. Optimization design of the tuning method for FBG spectroscopy based on the numerical analysis of all-fiber Raman temperature lidar

    NASA Astrophysics Data System (ADS)

    Wang, Li; Wang, Jun; Bao, Dong; Yang, Rong; Yan, Qing; Gao, Fei; Hua, Dengxin

    2018-01-01

    All fiber Raman temperature lidar for space borne platform has been proposed for profiling of the temperature with high accuracy. Fiber Bragg grating (FBG) is proposed as the spectroscopic system of Raman lidar because of good wavelength selectivity, high spectral resolution and high out-of-band rejection rate. Two sets of FBGs at visible wavelength 532 nm as Raman spectroscopy system are designed for extracting the rotational Raman spectra of atmospheric molecules, which intensities depend on the atmospheric temperature. The optimization design of the tuning method of an all-fiber rotational Raman spectroscopy system is analyzed and tested for estimating the potential temperature inversion error caused by the instability of FBG. The cantilever structure with temperature control device is designed to realize the tuning and stabilization of the central wavelengths of FBGs. According to numerical calculation of FBG and finite element analysis of the cantilever structure, the center wavelength offset of FBG is 11.03 nm/°C with the temperature change in the spectroscopy system. By experimental observation, the center wavelength offset of surface-bonded FBG is 9.80 nm/°C with temperature changing when subjected to certain strain for the high quantum number channel, while 10.01 nm/°C for the low quantum number channel. The tunable wavelength range of FBG is from 528.707 nm to 529.014 nm for the high quantum number channel and from 530.226 nm to 530.547 nm for the low quantum number channel. The temperature control accuracy of the FBG spectroscopy system is up to 0.03 °C, the corresponding potential atmospheric temperature inversion error is 0.04 K based on the numerical analysis of all-fiber Raman temperature lidar. The fine tuning and stabilization of the FBG wavelength realize the elaborate spectroscope of Raman lidar system. The conclusion is of great significance for the application of FBG spectroscopy system for space-borne platform Raman lidar.

  3. Quantum versus simulated annealing in wireless interference network optimization.

    PubMed

    Wang, Chi; Chen, Huo; Jonckheere, Edmond

    2016-05-16

    Quantum annealing (QA) serves as a specialized optimizer that is able to solve many NP-hard problems and that is believed to have a theoretical advantage over simulated annealing (SA) via quantum tunneling. With the introduction of the D-Wave programmable quantum annealer, a considerable amount of effort has been devoted to detect and quantify quantum speedup. While the debate over speedup remains inconclusive as of now, instead of attempting to show general quantum advantage, here, we focus on a novel real-world application of D-Wave in wireless networking-more specifically, the scheduling of the activation of the air-links for maximum throughput subject to interference avoidance near network nodes. In addition, D-Wave implementation is made error insensitive by a novel Hamiltonian extra penalty weight adjustment that enlarges the gap and substantially reduces the occurrence of interference violations resulting from inevitable spin bias and coupling errors. The major result of this paper is that quantum annealing benefits more than simulated annealing from this gap expansion process, both in terms of ST99 speedup and network queue occupancy. It is the hope that this could become a real-word application niche where potential benefits of quantum annealing could be objectively assessed.

  4. Quantum Error Correction for Minor Embedded Quantum Annealing

    NASA Astrophysics Data System (ADS)

    Vinci, Walter; Paz Silva, Gerardo; Mishra, Anurag; Albash, Tameem; Lidar, Daniel

    2015-03-01

    While quantum annealing can take advantage of the intrinsic robustness of adiabatic dynamics, some form of quantum error correction (QEC) is necessary in order to preserve its advantages over classical computation. Moreover, realistic quantum annealers are subject to a restricted connectivity between qubits. Minor embedding techniques use several physical qubits to represent a single logical qubit with a larger set of interactions, but necessarily introduce new types of errors (whenever the physical qubits corresponding to the same logical qubit disagree). We present a QEC scheme where a minor embedding is used to generate a 8 × 8 × 2 cubic connectivity out of the native one and perform experiments on a D-Wave quantum annealer. Using a combination of optimized encoding and decoding techniques, our scheme enables the D-Wave device to solve minor embedded hard instances at least as well as it would on a native implementation. Our work is a proof-of-concept that minor embedding can be advantageously implemented in order to increase both the robustness and the connectivity of a programmable quantum annealer. Applied in conjunction with decoding techniques, this paves the way toward scalable quantum annealing with applications to hard optimization problems.

  5. Quantum versus simulated annealing in wireless interference network optimization

    PubMed Central

    Wang, Chi; Chen, Huo; Jonckheere, Edmond

    2016-01-01

    Quantum annealing (QA) serves as a specialized optimizer that is able to solve many NP-hard problems and that is believed to have a theoretical advantage over simulated annealing (SA) via quantum tunneling. With the introduction of the D-Wave programmable quantum annealer, a considerable amount of effort has been devoted to detect and quantify quantum speedup. While the debate over speedup remains inconclusive as of now, instead of attempting to show general quantum advantage, here, we focus on a novel real-world application of D-Wave in wireless networking—more specifically, the scheduling of the activation of the air-links for maximum throughput subject to interference avoidance near network nodes. In addition, D-Wave implementation is made error insensitive by a novel Hamiltonian extra penalty weight adjustment that enlarges the gap and substantially reduces the occurrence of interference violations resulting from inevitable spin bias and coupling errors. The major result of this paper is that quantum annealing benefits more than simulated annealing from this gap expansion process, both in terms of ST99 speedup and network queue occupancy. It is the hope that this could become a real-word application niche where potential benefits of quantum annealing could be objectively assessed. PMID:27181056

  6. Quantum versus simulated annealing in wireless interference network optimization

    NASA Astrophysics Data System (ADS)

    Wang, Chi; Chen, Huo; Jonckheere, Edmond

    2016-05-01

    Quantum annealing (QA) serves as a specialized optimizer that is able to solve many NP-hard problems and that is believed to have a theoretical advantage over simulated annealing (SA) via quantum tunneling. With the introduction of the D-Wave programmable quantum annealer, a considerable amount of effort has been devoted to detect and quantify quantum speedup. While the debate over speedup remains inconclusive as of now, instead of attempting to show general quantum advantage, here, we focus on a novel real-world application of D-Wave in wireless networking—more specifically, the scheduling of the activation of the air-links for maximum throughput subject to interference avoidance near network nodes. In addition, D-Wave implementation is made error insensitive by a novel Hamiltonian extra penalty weight adjustment that enlarges the gap and substantially reduces the occurrence of interference violations resulting from inevitable spin bias and coupling errors. The major result of this paper is that quantum annealing benefits more than simulated annealing from this gap expansion process, both in terms of ST99 speedup and network queue occupancy. It is the hope that this could become a real-word application niche where potential benefits of quantum annealing could be objectively assessed.

  7. Peptide-coated semiconductor quantum dots and their applications in biological imaging of single molecules in live cells and organisms

    NASA Astrophysics Data System (ADS)

    Pinaud, Fabien Florent

    2007-12-01

    A new surface chemistry has been developed for the solubilization and biofunctionalization of inorganic semiconductor nanocrystals fluorescent probes, also known as quantum dots. This chemistry is based on the surface coating of quantum dots with custom-designed polycysteine peptides and yields water-soluble, small, monodispersed and colloidally stable probes that remain bright and photostable in complex biological milieus. This peptide coating strategy was successfully tested on several types of core and core-shell quantum dots emitting from the visible (e.g. CdSe/ZnS) to the NIR spectrum range (e.g. CdTe/CdSe/ZnS). By taking advantage of the versatile physico-chemical properties of peptides, a peptide "toolkit" was designed and employed to impart several biological functions to individual quantum dots and control their biochemical activity at the nanometer scale. These biofunctionalized peptide-coated quantum dots were exploited in very diverse biological applications. Near-infrared emitting quantum dot probes were engineered with optimized blood circulation and biodistribution properties for in vivo animal imaging. Visible emitting quantum dots were used for single molecule tracking of raft-associated GPI-anchored proteins in live cells. This last application revealed the presence of discrete and non-caveolar lipid microdomains capable of impeding free lateral diffusions in the plasma membrane of Hela cells. Imaging and tracking of peptide-coated quantum dots provided the first direct evidence that microdomains having the composition and behavior expected for lipid rafts can induce molecular compartmentalization in the membrane of living cells.

  8. OPS laser EPI design for different wavelengths

    NASA Astrophysics Data System (ADS)

    Moloney, J. V.; Hader, J.; Li, H.; Kaneda, Y.; Wang, T. S.; Yarborough, M.; Koch, S. W.; Stolz, W.; Kunert, B.; Bueckers, C.; Chaterjee, S.; Hardesty, G.

    2009-02-01

    Design of optimized semiconductor optically-pumped semiconductor lasers (OPSLs) depends on many ingredients starting from the quantum wells, barrier and cladding layers all the way through to the resonant-periodic gain (RPG) and high reflectivity Bragg mirror (DBR) making up the OPSL active mirror. Accurate growth of the individual layers making up the RPG region is critical if performance degradation due to cavity misalignment is to be avoided. Optimization of the RPG+DBR structure requires knowledge of the heat generation and heating sinking of the active mirror. Nonlinear Control Strategies SimuLaseTM software, based on rigorous many-body calculations of the semiconductor optical response, allows for quantum well and barrier optimization by correlating low intensity photoluminescence spectra computed for the design, with direct experimentally measured wafer-level edge and surface PL spectra. Consequently, an OPSL device optimization procedure ideally requires a direct iterative interaction between designer and grower. In this article, we discuss the application of the many-body microscopic approach to OPSL devices lasing at 850nm, 1040nm and 2μm. The latter device involves and application of the many-body approach to mid-IR OPSLs based on antimonide materials. Finally we will present results on based on structural modifications of the epitaxial structure and/or novel material combinations that offer the potential to extend OPSL technology to new wavelength ranges.

  9. Continuous-variable quantum probes for structured environments

    NASA Astrophysics Data System (ADS)

    Bina, Matteo; Grasselli, Federico; Paris, Matteo G. A.

    2018-01-01

    We address parameter estimation for structured environments and suggest an effective estimation scheme based on continuous-variables quantum probes. In particular, we investigate the use of a single bosonic mode as a probe for Ohmic reservoirs, and obtain the ultimate quantum limits to the precise estimation of their cutoff frequency. We assume the probe prepared in a Gaussian state and determine the optimal working regime, i.e., the conditions for the maximization of the quantum Fisher information in terms of the initial preparation, the reservoir temperature, and the interaction time. Upon investigating the Fisher information of feasible measurements, we arrive at a remarkable simple result: homodyne detection of canonical variables allows one to achieve the ultimate quantum limit to precision under suitable, mild, conditions. Finally, upon exploiting a perturbative approach, we find the invariant sweet spots of the (tunable) characteristic frequency of the probe, able to drive the probe towards the optimal working regime.

  10. High Sensitivity Optically Pumped Quantum Magnetometer

    PubMed Central

    Tiporlini, Valentina; Alameh, Kamal

    2013-01-01

    Quantum magnetometers based on optical pumping can achieve sensitivity as high as what SQUID-based devices can attain. In this paper, we discuss the principle of operation and the optimal design of an optically pumped quantum magnetometer. The ultimate intrinsic sensitivity is calculated showing that optimal performance of the magnetometer is attained with an optical pump power of 20 μW and an operation temperature of 48°C. Results show that the ultimate intrinsic sensitivity of the quantum magnetometer that can be achieved is 327 fT/Hz1/2 over a bandwidth of 26 Hz and that this sensitivity drops to 130 pT/Hz1/2 in the presence of environmental noise. The quantum magnetometer is shown to be capable of detecting a sinusoidal magnetic field of amplitude as low as 15 pT oscillating at 25 Hz. PMID:23766716

  11. A Study on the Applications of Quantum Optical Coherence to Nano-Optics

    NASA Astrophysics Data System (ADS)

    Hakami, Jabir Wali

    Optically controlled dipole-dipole interaction at submicrometers and subwavelength scales leads to many interesting phenomenon and remarkable potential applications in quantum optics, condensed matter physics, and today's micro-devices. In this dissertation, we study the applications of quantum optical coherence to nano-optics in the following systems and aspects. On the one hand, chiral metamaterials has been previously reported as excellent candidates to realize both attractive and repulsive Casimir forces, where the existence of a repulsive Casimir force depends upon the strength of the chirality. On the other hand, nanoscale integration of metal nanoparticles and semiconductors is particularly interesting because the strengths of both materials are combined in such a hybrid system. In the first part of this work, we proposed a technical scheme to coherently control of the Casimir interaction energy with two identical chirality mediums. We took explicit caution regarding the requirements of passivity and causal response of the materials, since these requirements are essential for the application of the Lifshitz formula. The rare-earth metals' atomic species, for instance, dysprosium, is proposed as an applicable medium for the forthcoming studies of possible experimental implementation of our technique. Secondly, we fully investigated the coherent control of the quantum optical properties of spontaneous emission spectra of a semiconductor quantum dot coupled to a metallic nanoparticle. The properties of the spontaneous emission spectra of such a system are studied in detail with and without involving the coherent field. The Rabi splitting effect in the spectrum emitted by the quantum dot under particular conditions is predicted for different sizes of the metal nanoparticles. We show that the spontaneous emission spectra of the transition coupled to surface plasmons may be further modified by adjusting the external coherent control on the adjacent transitions. In the third part, we propose a robust protocol to study the entanglement generation in a hybrid structure consisting of two quantum dots in the proximity of a metallic nanoshell. The entanglement arises impulsively due to common coupling to the plasmonic nanostructure, without demanding postselective measurement or mediating the dissipative environment. The long-lived entangled states can be created deterministically by optimizing the shell thickness as well as the ratio of the distances between the quantum dots and the surface of the shell. The loss of the system is greatly reduced even when the quantum dots are ultraclose to the shell, which signifies a slow decay rate of the coherence information and longtime entanglement preservation.

  12. Coherent quantum control of internal conversion: {S}_{2}\\;\\leftrightarrow \\;{S}_{1} in pyrazine via {S}_{0}\\;\\to \\;{S}_{2}/{S}_{1} weak field excitation

    NASA Astrophysics Data System (ADS)

    Grinev, Timur; Shapiro, Moshe; Brumer, Paul

    2015-09-01

    Coherent control of internal conversion (IC) between the first (S1) and second (S2) singlet excited electronic states in pyrazine, where the S2 state is populated from the ground singlet electronic state S0 by weak field excitation, is examined. Control is implemented by shaping the laser which excites S2. Excitation and IC are considered simultaneously, using the recently introduced resonance-based control approach. Highly successful control is achieved by optimizing both the amplitude and phase profiles of the laser spectrum. The dependence of control on the properties of resonances in S2 is demonstrated.

  13. Exact and Optimal Quantum Mechanics/Molecular Mechanics Boundaries.

    PubMed

    Sun, Qiming; Chan, Garnet Kin-Lic

    2014-09-09

    Motivated by recent work in density matrix embedding theory, we define exact link orbitals that capture all quantum mechanical (QM) effects across arbitrary quantum mechanics/molecular mechanics (QM/MM) boundaries. Exact link orbitals are rigorously defined from the full QM solution, and their number is equal to the number of orbitals in the primary QM region. Truncating the exact set yields a smaller set of link orbitals optimal with respect to reproducing the primary region density matrix. We use the optimal link orbitals to obtain insight into the limits of QM/MM boundary treatments. We further analyze the popular general hybrid orbital (GHO) QM/MM boundary across a test suite of molecules. We find that GHOs are often good proxies for the most important optimal link orbital, although there is little detailed correlation between the detailed GHO composition and optimal link orbital valence weights. The optimal theory shows that anions and cations cannot be described by a single link orbital. However, expanding to include the second most important optimal link orbital in the boundary recovers an accurate description. The second optimal link orbital takes the chemically intuitive form of a donor or acceptor orbital for charge redistribution, suggesting that optimal link orbitals can be used as interpretative tools for electron transfer. We further find that two optimal link orbitals are also sufficient for boundaries that cut across double bonds. Finally, we suggest how to construct "approximately" optimal link orbitals for practical QM/MM calculations.

  14. Bandwidth-limited control and ringdown suppression in high-Q resonators.

    PubMed

    Borneman, Troy W; Cory, David G

    2012-12-01

    We describe how the transient behavior of a tuned and matched resonator circuit and a ringdown suppression pulse may be integrated into an optimal control theory (OCT) pulse-design algorithm to derive control sequences with limited ringdown that perform a desired quantum operation in the presence of resonator distortions of the ideal waveform. Inclusion of ringdown suppression in numerical pulse optimizations significantly reduces spectrometer deadtime when using high quality factor (high-Q) resonators, leading to increased signal-to-noise ratio (SNR) and sensitivity of inductive measurements. To demonstrate the method, we experimentally measure the free-induction decay of an inhomogeneously broadened solid-state free radical spin system at high Q. The measurement is enabled by using a numerically optimized bandwidth-limited OCT pulse, including ringdown suppression, robust to variations in static and microwave field strengths. We also discuss the applications of pulse design in high-Q resonators to universal control of anisotropic-hyperfine coupled electron-nuclear spin systems via electron-only modulation even when the bandwidth of the resonator is significantly smaller than the hyperfine coupling strength. These results demonstrate how limitations imposed by linear response theory may be vastly exceeded when using a sufficiently accurate system model to optimize pulses of high complexity. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Optimal subsystem approach to multi-qubit quantum state discrimination and experimental investigation

    NASA Astrophysics Data System (ADS)

    Xue, ShiChuan; Wu, JunJie; Xu, Ping; Yang, XueJun

    2018-02-01

    Quantum computing is a significant computing capability which is superior to classical computing because of its superposition feature. Distinguishing several quantum states from quantum algorithm outputs is often a vital computational task. In most cases, the quantum states tend to be non-orthogonal due to superposition; quantum mechanics has proved that perfect outcomes could not be achieved by measurements, forcing repetitive measurement. Hence, it is important to determine the optimum measuring method which requires fewer repetitions and a lower error rate. However, extending current measurement approaches mainly aiming at quantum cryptography to multi-qubit situations for quantum computing confronts challenges, such as conducting global operations which has considerable costs in the experimental realm. Therefore, in this study, we have proposed an optimum subsystem method to avoid these difficulties. We have provided an analysis of the comparison between the reduced subsystem method and the global minimum error method for two-qubit problems; the conclusions have been verified experimentally. The results showed that the subsystem method could effectively discriminate non-orthogonal two-qubit states, such as separable states, entangled pure states, and mixed states; the cost of the experimental process had been significantly reduced, in most circumstances, with acceptable error rate. We believe the optimal subsystem method is the most valuable and promising approach for multi-qubit quantum computing applications.

  16. Enhancement of ultracold molecule formation by local control in the nanosecond regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carini, J. L.; Kallush, S.; Kosloff, R.

    2015-02-01

    We describe quantum simulations of ultracold 87Rb 2 molecule formation using photoassociation (PA) with nanosecond-time-scale pulses of frequency chirped light. In particular, we compare the case of a linear chirp to one where the frequency evolution is optimized by local control (LC) of the phase, and find that LC can provide a significant enhancement. The resulting optimal frequency evolution corresponds to a rapid jump from the PA absorption resonance to a downward transition to a bound level of the lowest triplet state. We also consider the case of two frequencies and investigate interference effects. The assumed chirp parameters should bemore » achievable with nanosecond pulse shaping techniques and are predicted to provide a significant enhancement over recent experiments with linear chirps.« less

  17. Practical recipes for the model order reduction, dynamical simulation and compressive sampling of large-scale open quantum systems

    NASA Astrophysics Data System (ADS)

    Sidles, John A.; Garbini, Joseph L.; Harrell, Lee E.; Hero, Alfred O.; Jacky, Jonathan P.; Malcomb, Joseph R.; Norman, Anthony G.; Williamson, Austin M.

    2009-06-01

    Practical recipes are presented for simulating high-temperature and nonequilibrium quantum spin systems that are continuously measured and controlled. The notion of a spin system is broadly conceived, in order to encompass macroscopic test masses as the limiting case of large-j spins. The simulation technique has three stages: first the deliberate introduction of noise into the simulation, then the conversion of that noise into an equivalent continuous measurement and control process, and finally, projection of the trajectory onto state-space manifolds having reduced dimensionality and possessing a Kähler potential of multilinear algebraic form. These state-spaces can be regarded as ruled algebraic varieties upon which a projective quantum model order reduction (MOR) is performed. The Riemannian sectional curvature of ruled Kählerian varieties is analyzed, and proved to be non-positive upon all sections that contain a rule. These manifolds are shown to contain Slater determinants as a special case and their identity with Grassmannian varieties is demonstrated. The resulting simulation formalism is used to construct a positive P-representation for the thermal density matrix. Single-spin detection by magnetic resonance force microscopy (MRFM) is simulated, and the data statistics are shown to be those of a random telegraph signal with additive white noise. Larger-scale spin-dust models are simulated, having no spatial symmetry and no spatial ordering; the high-fidelity projection of numerically computed quantum trajectories onto low dimensionality Kähler state-space manifolds is demonstrated. The reconstruction of quantum trajectories from sparse random projections is demonstrated, the onset of Donoho-Stodden breakdown at the Candès-Tao sparsity limit is observed, a deterministic construction for sampling matrices is given and methods for quantum state optimization by Dantzig selection are given.

  18. Rapid Optimization of External Quantum Efficiency of Thin Film Solar Cells Using Surrogate Modeling of Absorptivity.

    PubMed

    Kaya, Mine; Hajimirza, Shima

    2018-05-25

    This paper uses surrogate modeling for very fast design of thin film solar cells with improved solar-to-electricity conversion efficiency. We demonstrate that the wavelength-specific optical absorptivity of a thin film multi-layered amorphous-silicon-based solar cell can be modeled accurately with Neural Networks and can be efficiently approximated as a function of cell geometry and wavelength. Consequently, the external quantum efficiency can be computed by averaging surrogate absorption and carrier recombination contributions over the entire irradiance spectrum in an efficient way. Using this framework, we optimize a multi-layer structure consisting of ITO front coating, metallic back-reflector and oxide layers for achieving maximum efficiency. Our required computation time for an entire model fitting and optimization is 5 to 20 times less than the best previous optimization results based on direct Finite Difference Time Domain (FDTD) simulations, therefore proving the value of surrogate modeling. The resulting optimization solution suggests at least 50% improvement in the external quantum efficiency compared to bare silicon, and 25% improvement compared to a random design.

  19. Optimization of topological quantum algorithms using Lattice Surgery is hard

    NASA Astrophysics Data System (ADS)

    Herr, Daniel; Nori, Franco; Devitt, Simon

    The traditional method for computation in the surface code or the Raussendorf model is the creation of holes or ''defects'' within the encoded lattice of qubits which are manipulated via topological braiding to enact logic gates. However, this is not the only way to achieve universal, fault-tolerant computation. In this work we turn attention to the Lattice Surgery representation, which realizes encoded logic operations without destroying the intrinsic 2D nearest-neighbor interactions sufficient for braided based logic and achieves universality without using defects for encoding information. In both braided and lattice surgery logic there are open questions regarding the compilation and resource optimization of quantum circuits. Optimization in braid-based logic is proving to be difficult to define and the classical complexity associated with this problem has yet to be determined. In the context of lattice surgery based logic, we can introduce an optimality condition, which corresponds to a circuit with lowest amount of physical qubit requirements, and prove that the complexity of optimizing the geometric (lattice surgery) representation of a quantum circuit is NP-hard.

  20. Laser pulses for coherent xuv Raman excitation

    NASA Astrophysics Data System (ADS)

    Greenman, Loren; Koch, Christiane P.; Whaley, K. Birgitta

    2015-07-01

    We combine multichannel electronic structure theory with quantum optimal control to derive femtosecond-time-scale Raman pulse sequences that coherently populate a valence excited state. For a neon atom, Raman target populations of up to 13% are obtained. Superpositions of the ground and valence Raman states with a controllable relative phase are found to be reachable with up to 4.5% population and arbitrary phase control facilitated by the pump pulse carrier-envelope phase. Analysis of the optimized pulse structure reveals a sequential mechanism in which the valence excitation is reached via a fast (femtosecond) population transfer through an intermediate resonance state in the continuum rather than avoiding intermediate-state population with simultaneous or counterintuitive (stimulated Raman adiabatic passage) pulse sequences. Our results open a route to coupling valence excitations and core-hole excitations in molecules and aggregates that locally address specific atoms and represent an initial step towards realization of multidimensional spectroscopy in the xuv and x-ray regimes.

  1. Relating quantum privacy and quantum coherence: an operational approach.

    PubMed

    Devetak, I; Winter, A

    2004-08-20

    Given many realizations of a state or a channel as a resource, two parties can generate a secret key as well as entanglement. We describe protocols to perform the secret key distillation (as it turns out, with optimal rate). Then we show how to achieve optimal entanglement generation rates by "coherent" implementation of a class of secret key agreement protocols, proving the long-conjectured "hashing inequality."

  2. Quantum cryptography: Security criteria reexamined

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaszlikowski, Dagomir; Liang, Y.C.; Englert, Berthold-Georg

    2004-09-01

    We find that the generally accepted security criteria are flawed for a whole class of protocols for quantum cryptography. This is so because a standard assumption of the security analysis, namely that the so-called square-root measurement is optimal for eavesdropping purposes, is not true in general. There are rather large parameter regimes in which the optimal measurement extracts substantially more information than the square-root measurement.

  3. Quantum control of coherent π -electron ring currents in polycyclic aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Mineo, Hirobumi; Fujimura, Yuichi

    2017-12-01

    We present results for quantum optimal control (QOC) of the coherent π electron ring currents in polycyclic aromatic hydrocarbons (PAHs). Since PAHs consist of a number of condensed benzene rings, in principle, there exist various coherent ring patterns. These include the ring current localized to a designated benzene ring, the perimeter ring current that flows along the edge of the PAH, and the middle ring current of PAHs having an odd number of benzene rings such as anthracene. In the present QOC treatment, the best target wavefunction for generation of the ring current through a designated path is determined by a Lagrange multiplier method. The target function is integrated into the ordinary QOC theory. To demonstrate the applicability of the QOC procedure, we took naphthalene and anthracene as the simplest examples of linear PAHs. The mechanisms of ring current generation were clarified by analyzing the temporal evolutions of the electronic excited states after coherent excitation by UV pulses or (UV+IR) pulses as well as those of electric fields of the optimal laser pulses. Time-dependent simulations of the perimeter ring current and middle ring current of anthracene, which are induced by analytical electric fields of UV pulsed lasers, were performed to reproduce the QOC results.

  4. Towards Implementation of a Generalized Architecture for High-Level Quantum Programming Language

    NASA Astrophysics Data System (ADS)

    Ameen, El-Mahdy M.; Ali, Hesham A.; Salem, Mofreh M.; Badawy, Mahmoud

    2017-08-01

    This paper investigates a novel architecture to the problem of quantum computer programming. A generalized architecture for a high-level quantum programming language has been proposed. Therefore, the programming evolution from the complicated quantum-based programming to the high-level quantum independent programming will be achieved. The proposed architecture receives the high-level source code and, automatically transforms it into the equivalent quantum representation. This architecture involves two layers which are the programmer layer and the compilation layer. These layers have been implemented in the state of the art of three main stages; pre-classification, classification, and post-classification stages respectively. The basic building block of each stage has been divided into subsequent phases. Each phase has been implemented to perform the required transformations from one representation to another. A verification process was exposed using a case study to investigate the ability of the compiler to perform all transformation processes. Experimental results showed that the efficacy of the proposed compiler achieves a correspondence correlation coefficient about R ≈ 1 between outputs and the targets. Also, an obvious achievement has been utilized with respect to the consumed time in the optimization process compared to other techniques. In the online optimization process, the consumed time has increased exponentially against the amount of accuracy needed. However, in the proposed offline optimization process has increased gradually.

  5. Comparison of the Liaison® Calprotectin kit with a well established point of care test (Quantum Blue - Bühlmann-Alere®) in terms of analytical performances and ability to detect relapses amongst a Crohn population in follow-up.

    PubMed

    Delefortrie, Quentin; Schatt, Patricia; Grimmelprez, Alexandre; Gohy, Patrick; Deltour, Didier; Collard, Geneviève; Vankerkhoven, Patrick

    2016-02-01

    Although colonoscopy associated with histopathological sampling remains the gold standard in the diagnostic and follow-up of inflammatory bowel disease (IBD), calprotectin is becoming an essential biomarker in gastroenterology. The aim of this work is to compare a newly developed kit (Liaison® Calprotectin - Diasorin®) and its two distinct extraction protocols (weighing and extraction device protocol) with a well established point of care test (Quantum Blue® - Bühlmann-Alere®) in terms of analytical performances and ability to detect relapses amongst a Crohn's population in follow-up. Stool specimens were collected over a six month period and were composed of control and Crohn's patients. Amongst the Crohn's population disease activity (active vs quiescent) was evaluated by gastroenterologists. A significant difference was found between all three procedures in terms of calprotectin measurements (weighing protocol=30.3μg/g (median); stool extraction device protocol=36.9μg/g (median); Quantum Blue® (median)=63; Friedman test, P value=0.05). However, a good correlation was found between both extraction methods coupled with the Liaison® analyzer and between the Quantum Blue® (weighing protocol/extraction device protocol Rs=0.844, P=0.01; Quantum Blue®/extraction device protocol Rs=0.708, P=0.01; Quantum Blue®/weighing protocol, Rs=0.808, P=0.01). Finally, optimal cut-offs (and associated negative predictive values - NPV) for detecting relapses were in accordance with above results (Quantum Blue® 183.5μg/g and NPV of 100%>extraction device protocol+Liaison® analyzer 124.5μg/g and NPV of 93.5%>weighing protocol+Liaison® analyzer 106.5μg/g and NPV of 95%). Although all three methods correlated well and had relatively good NPV in terms of detecting relapses amongst a Crohn's population in follow-up, the lack of any international standard is the origin of different optimal cut-offs between the three procedures. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  6. Optimal Diabatic Dynamics of Majoarana-based Topological Qubits

    NASA Astrophysics Data System (ADS)

    Seradjeh, Babak; Rahmani, Armin; Franz, Marcel

    In topological quantum computing, unitary operations on qubits are performed by adiabatic braiding of non-Abelian quasiparticles such as Majorana zero modes and are protected from local environmental perturbations. This scheme requires slow operations. By using the Pontryagin's maximum principle, here we show the same quantum gates can be implemented in much shorter times through optimal diabatic pulses. While our fast diabatic gates no not enjoy topological protection, they provide significant practical advantages due to their optimal speed and remarkable robustness to calibration errors and noise. NSERC, CIfAR, NSF DMR- 1350663, BSF 2014345.

  7. Optimal Control of Objects on the Micro- and Nano-Scale by Electrokinetic and Electromagnetic Manipulation: for Bio-Sample Preparation, Quantum Information Devices and Magnetic Drug Delivery

    DTIC Science & Technology

    2010-01-01

    property variations. The system described here is a simple 4-electrode microfluidic device made of polydimethylsiloxane PDMS [50-53] which is reversibly...through the fluid and heat it.) A more detailed description and analysis of the physics of electroosmotic actuation can be found in [46, 83] In...a control algorithm on a standard personal computer. The micro-fluidic device is made out of a soft polymer ( polydimethylsiloxane (PDMS)) and is

  8. Communications: quantum teleportation across the Danube.

    PubMed

    Ursin, Rupert; Jennewein, Thomas; Aspelmeyer, Markus; Kaltenbaek, Rainer; Lindenthal, Michael; Walther, Philip; Zeilinger, Anton

    2004-08-19

    Efficient long-distance quantum teleportation is crucial for quantum communication and quantum networking schemes. Here we describe the high-fidelity teleportation of photons over a distance of 600 metres across the River Danube in Vienna, with the optimal efficiency that can be achieved using linear optics. Our result is a step towards the implementation of a quantum repeater, which will enable pure entanglement to be shared between distant parties in a public environment and eventually on a worldwide scale.

  9. SeaQuaKE: Sea-Optimized Quantum Key Exchange

    DTIC Science & Technology

    2014-08-01

    which is led by Applied Communications Sciences under the ONR Free Space Optical Quantum Key Distribution Special Notice (13-SN-0004 under ONRBAA13...aerosol model scenarios. 15. SUBJECT TERMS Quantum communications, free - space optical communications 16. SECURITY CLASSIFICATION OF: 17...SeaQuaKE) project, which is led by Applied Communications Sciences under the ONR Free Space Optical Quantum Key Distribution Special Notice (13-SN

  10. SeaQuaKE: Sea-optimized Quantum Key Exchange

    DTIC Science & Technology

    2014-06-01

    is led by Applied Communications Sciences under the ONR Free Space Optical Quantum Key Distribution Special Notice (13-SN-0004 under ONRBAA13-001...In addition, we discuss our initial progress towards the free - space quantum channel model and planning for the experimental validation effort. 15...SUBJECT TERMS Quantum communications, free - space optical communications 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as

  11. Pure sources and efficient detectors for optical quantum information processing

    NASA Astrophysics Data System (ADS)

    Zielnicki, Kevin

    Over the last sixty years, classical information theory has revolutionized the understanding of the nature of information, and how it can be quantified and manipulated. Quantum information processing extends these lessons to quantum systems, where the properties of intrinsic uncertainty and entanglement fundamentally defy classical explanation. This growing field has many potential applications, including computing, cryptography, communication, and metrology. As inherently mobile quantum particles, photons are likely to play an important role in any mature large-scale quantum information processing system. However, the available methods for producing and detecting complex multi-photon states place practical limits on the feasibility of sophisticated optical quantum information processing experiments. In a typical quantum information protocol, a source first produces an interesting or useful quantum state (or set of states), perhaps involving superposition or entanglement. Then, some manipulations are performed on this state, perhaps involving quantum logic gates which further manipulate or entangle the intial state. Finally, the state must be detected, obtaining some desired measurement result, e.g., for secure communication or computationally efficient factoring. The work presented here concerns the first and last stages of this process as they relate to photons: sources and detectors. Our work on sources is based on the need for optimized non-classical states of light delivered at high rates, particularly of single photons in a pure quantum state. We seek to better understand the properties of spontaneous parameteric downconversion (SPDC) sources of photon pairs, and in doing so, produce such an optimized source. We report an SPDC source which produces pure heralded single photons with little or no spectral filtering, allowing a significant rate enhancement. Our work on detectors is based on the need to reliably measure single-photon states. We have focused on optimizing the detection efficiency of visible light photon counters (VLPCs), a single-photon detection technology that is also capable of resolving photon number states. We report a record-breaking quantum efficiency of 91 +/- 3% observed with our detection system. Both sources and detectors are independently interesting physical systems worthy of study, but together they promise to enable entire new classes and applications of information based on quantum mechanics.

  12. Time-Resolved Quantum Cascade Laser Absorption Spectroscopy of Pulsed Plasma Assisted Chemical Vapor Deposition Processes Containing BCl3

    NASA Astrophysics Data System (ADS)

    Lang, Norbert; Hempel, Frank; Strämke, Siegfried; Röpcke, Jürgen

    2011-08-01

    In situ measurements are reported giving insight into the plasma chemical conversion of the precursor BCl3 in industrial applications of boriding plasmas. For the online monitoring of its ground state concentration, quantum cascade laser absorption spectroscopy (QCLAS) in the mid-infrared spectral range was applied in a plasma assisted chemical vapor deposition (PACVD) reactor. A compact quantum cascade laser measurement and control system (Q-MACS) was developed to allow a flexible and completely dust-sealed optical coupling to the reactor chamber of an industrial plasma surface modification system. The process under the study was a pulsed DC plasma with periodically injected BCl3 at 200 Pa. A synchronization of the Q-MACS with the process control unit enabled an insight into individual process cycles with a sensitivity of 10-6 cm-1·Hz-1/2. Different fragmentation rates of the precursor were found during an individual process cycle. The detected BCl3 concentrations were in the order of 1014 molecules·cm-3. The reported results of in situ monitoring with QCLAS demonstrate the potential for effective optimization procedures in industrial PACVD processes.

  13. Design framework for entanglement-distribution switching networks

    NASA Astrophysics Data System (ADS)

    Drost, Robert J.; Brodsky, Michael

    2016-09-01

    The distribution of quantum entanglement appears to be an important component of applications of quantum communications and networks. The ability to centralize the sourcing of entanglement in a quantum network can provide for improved efficiency and enable a variety of network structures. A necessary feature of an entanglement-sourcing network node comprising several sources of entangled photons is the ability to reconfigurably route the generated pairs of photons to network neighbors depending on the desired entanglement sharing of the network users at a given time. One approach to such routing is the use of a photonic switching network. The requirements for an entanglement distribution switching network are less restrictive than for typical conventional applications, leading to design freedom that can be leveraged to optimize additional criteria. In this paper, we present a mathematical framework defining the requirements of an entanglement-distribution switching network. We then consider the design of such a switching network using a number of 2 × 2 crossbar switches, addressing the interconnection of these switches and efficient routing algorithms. In particular, we define a worst-case loss metric and consider 6 × 6, 8 × 8, and 10 × 10 network designs that optimize both this metric and the number of crossbar switches composing the network. We pay particular attention to the 10 × 10 network, detailing novel results proving the optimality of the proposed design. These optimized network designs have great potential for use in practical quantum networks, thus advancing the concept of quantum networks toward reality.

  14. Optimal estimation of entanglement in optical qubit systems

    NASA Astrophysics Data System (ADS)

    Brida, Giorgio; Degiovanni, Ivo P.; Florio, Angela; Genovese, Marco; Giorda, Paolo; Meda, Alice; Paris, Matteo G. A.; Shurupov, Alexander P.

    2011-05-01

    We address the experimental determination of entanglement for systems made of a pair of polarization qubits. We exploit quantum estimation theory to derive optimal estimators, which are then implemented to achieve ultimate bound to precision. In particular, we present a set of experiments aimed at measuring the amount of entanglement for states belonging to different families of pure and mixed two-qubit two-photon states. Our scheme is based on visibility measurements of quantum correlations and achieves the ultimate precision allowed by quantum mechanics in the limit of Poissonian distribution of coincidence counts. Although optimal estimation of entanglement does not require the full tomography of the states we have also performed state reconstruction using two different sets of tomographic projectors and explicitly shown that they provide a less precise determination of entanglement. The use of optimal estimators also allows us to compare and statistically assess the different noise models used to describe decoherence effects occurring in the generation of entanglement.

  15. Implementation of quantum game theory simulations using Python

    NASA Astrophysics Data System (ADS)

    Madrid S., A.

    2013-05-01

    This paper provides some examples about quantum games simulated in Python's programming language. The quantum games have been developed with the Sympy Python library, which permits solving quantum problems in a symbolic form. The application of these methods of quantum mechanics to game theory gives us more possibility to achieve results not possible before. To illustrate the results of these methods, in particular, there have been simulated the quantum battle of the sexes, the prisoner's dilemma and card games. These solutions are able to exceed the classic bottle neck and obtain optimal quantum strategies. In this form, python demonstrated that is possible to do more advanced and complicated quantum games algorithms.

  16. Optimal and secure measurement protocols for quantum sensor networks

    NASA Astrophysics Data System (ADS)

    Eldredge, Zachary; Foss-Feig, Michael; Gross, Jonathan A.; Rolston, S. L.; Gorshkov, Alexey V.

    2018-04-01

    Studies of quantum metrology have shown that the use of many-body entangled states can lead to an enhancement in sensitivity when compared with unentangled states. In this paper, we quantify the metrological advantage of entanglement in a setting where the measured quantity is a linear function of parameters individually coupled to each qubit. We first generalize the Heisenberg limit to the measurement of nonlocal observables in a quantum network, deriving a bound based on the multiparameter quantum Fisher information. We then propose measurement protocols that can make use of Greenberger-Horne-Zeilinger (GHZ) states or spin-squeezed states and show that in the case of GHZ states the protocol is optimal, i.e., it saturates our bound. We also identify nanoscale magnetic resonance imaging as a promising setting for this technology.

  17. Nonequilibrium Energy Transfer at Nanoscale: A Unified Theory from Weak to Strong Coupling

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Ren, Jie; Cao, Jianshu

    2015-07-01

    Unraveling the microscopic mechanism of quantum energy transfer across two-level systems provides crucial insights to the optimal design and potential applications of low-dimensional nanodevices. Here, we study the non-equilibrium spin-boson model as a minimal prototype and develop a fluctuation-decoupled quantum master equation approach that is valid ranging from the weak to the strong system-bath coupling regime. The exact expression of energy flux is analytically established, which dissects the energy transfer as multiple boson processes with even and odd parity. Our analysis provides a unified interpretation of several observations, including coherence-enhanced heat flux and negative differential thermal conductance. The results will have broad implications for the fine control of energy transfer in nano-structural devices.

  18. Toggle switch from optical bistability to multistability via an elliptically polarized field

    NASA Astrophysics Data System (ADS)

    Yan, Xiang-An; Ren, Bo-Quan; Wang, Li-Qiang; Liu, Yao-Wu; Yu, Hua-Wa

    2017-06-01

    In this paper, we propose a scheme for manipulating the behavior of optical bistability (OB) and optical multistability (OM) in an N-type four-level atomic system. In the scheme, quantum interference is optimized by the left-handed and the right-handed fields of an elliptically polarized field (EPF). The threshold and the hysteresis cycle shape of OB and OM can be controlled by modulating the intensity of the EPF. Especially, the transition from OB to OM or vice versa can also be easily realized by proper tuning the phase difference between the left-handed and right-handed polarized fields under the optimal intensity of the EPF.

  19. OPTOELECTRONICS, FIBER OPTICS, AND OTHER ASPECTS OF QUANTUM ELECTRONICS: Integrated-optical spectrum analyzer based on Ti:LiNbO3 with an optimized system of interdigital transducers and spherical geodesic lenses

    NASA Astrophysics Data System (ADS)

    Golovanova, T. M.; Gryaznov, Yu M.; Dianov, Evgenii M.; Dobryakova, N. G.; Kiselev, A. V.; Prokhorov, A. M.; Shcherbakov, E. A.

    1989-08-01

    An investigation was made of the parameters of an integrated-optical spectrum analyzer consisting of a Ti:LiNbO3 crystal and a semiconductor laser with a built-in microobjective, spherical geodesic lenses, and an optimized system of interdigital (opposed-comb) transducers. The characteristics of this spectrum analyzer were as follows: the band of operating frequencies was 181 MHz (at the 3 dB level); the resolution was 2.8 MHz; the signal/noise ratio (under a control voltage of 4 V) was 20 dB.

  20. Statistical speed of quantum states: Generalized quantum Fisher information and Schatten speed

    NASA Astrophysics Data System (ADS)

    Gessner, Manuel; Smerzi, Augusto

    2018-02-01

    We analyze families of measures for the quantum statistical speed which include as special cases the quantum Fisher information, the trace speed, i.e., the quantum statistical speed obtained from the trace distance, and more general quantifiers obtained from the family of Schatten norms. These measures quantify the statistical speed under generic quantum evolutions and are obtained by maximizing classical measures over all possible quantum measurements. We discuss general properties, optimal measurements, and upper bounds on the speed of separable states. We further provide a physical interpretation for the trace speed by linking it to an analog of the quantum Cramér-Rao bound for median-unbiased quantum phase estimation.

  1. Quantum-state comparison and discrimination

    NASA Astrophysics Data System (ADS)

    Hayashi, A.; Hashimoto, T.; Horibe, M.

    2018-05-01

    We investigate the performance of discrimination strategy in the comparison task of known quantum states. In the discrimination strategy, one infers whether or not two quantum systems are in the same state on the basis of the outcomes of separate discrimination measurements on each system. In some cases with more than two possible states, the optimal strategy in minimum-error comparison is that one should infer the two systems are in different states without any measurement, implying that the discrimination strategy performs worse than the trivial "no-measurement" strategy. We present a sufficient condition for this phenomenon to happen. For two pure states with equal prior probabilities, we determine the optimal comparison success probability with an error margin, which interpolates the minimum-error and unambiguous comparison. We find that the discrimination strategy is not optimal except for the minimum-error case.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo

    We analyze quantum algorithms for cloning of a quantum measurement. Our aim is to mimic two uses of a device performing an unknown von Neumann measurement with a single use of the device. When the unknown device has to be used before the bipartite state to be measured is available we talk about 1{yields}2 learning of the measurement, otherwise the task is called 1{yields}2 cloning of a measurement. We perform the optimization for both learning and cloning for arbitrary dimension d of the Hilbert space. For 1{yields}2 cloning we also propose a simple quantum network that achieves the optimal fidelity.more » The optimal fidelity for 1{yields}2 learning just slightly outperforms the estimate and prepare strategy in which one first estimates the unknown measurement and depending on the result suitably prepares the duplicate.« less

  3. Quantum optimization for training support vector machines.

    PubMed

    Anguita, Davide; Ridella, Sandro; Rivieccio, Fabio; Zunino, Rodolfo

    2003-01-01

    Refined concepts, such as Rademacher estimates of model complexity and nonlinear criteria for weighting empirical classification errors, represent recent and promising approaches to characterize the generalization ability of Support Vector Machines (SVMs). The advantages of those techniques lie in both improving the SVM representation ability and yielding tighter generalization bounds. On the other hand, they often make Quadratic-Programming algorithms no longer applicable, and SVM training cannot benefit from efficient, specialized optimization techniques. The paper considers the application of Quantum Computing to solve the problem of effective SVM training, especially in the case of digital implementations. The presented research compares the behavioral aspects of conventional and enhanced SVMs; experiments in both a synthetic and real-world problems support the theoretical analysis. At the same time, the related differences between Quadratic-Programming and Quantum-based optimization techniques are considered.

  4. Optimal Verification of Entangled States with Local Measurements

    NASA Astrophysics Data System (ADS)

    Pallister, Sam; Linden, Noah; Montanaro, Ashley

    2018-04-01

    Consider the task of verifying that a given quantum device, designed to produce a particular entangled state, does indeed produce that state. One natural approach would be to characterize the output state by quantum state tomography, or alternatively, to perform some kind of Bell test, tailored to the state of interest. We show here that neither approach is optimal among local verification strategies for 2-qubit states. We find the optimal strategy in this case and show that quadratically fewer total measurements are needed to verify to within a given fidelity than in published results for quantum state tomography, Bell test, or fidelity estimation protocols. We also give efficient verification protocols for any stabilizer state. Additionally, we show that requiring that the strategy be constructed from local, nonadaptive, and noncollective measurements only incurs a constant-factor penalty over a strategy without these restrictions.

  5. Enhancing quantum annealing performance for the molecular similarity problem

    NASA Astrophysics Data System (ADS)

    Hernandez, Maritza; Aramon, Maliheh

    2017-05-01

    Quantum annealing is a promising technique which leverages quantum mechanics to solve hard optimization problems. Considerable progress has been made in the development of a physical quantum annealer, motivating the study of methods to enhance the efficiency of such a solver. In this work, we present a quantum annealing approach to measure similarity among molecular structures. Implementing real-world problems on a quantum annealer is challenging due to hardware limitations such as sparse connectivity, intrinsic control error, and limited precision. In order to overcome the limited connectivity, a problem must be reformulated using minor-embedding techniques. Using a real data set, we investigate the performance of a quantum annealer in solving the molecular similarity problem. We provide experimental evidence that common practices for embedding can be replaced by new alternatives which mitigate some of the hardware limitations and enhance its performance. Common practices for embedding include minimizing either the number of qubits or the chain length and determining the strength of ferromagnetic couplers empirically. We show that current criteria for selecting an embedding do not improve the hardware's performance for the molecular similarity problem. Furthermore, we use a theoretical approach to determine the strength of ferromagnetic couplers. Such an approach removes the computational burden of the current empirical approaches and also results in hardware solutions that can benefit from simple local classical improvement. Although our results are limited to the problems considered here, they can be generalized to guide future benchmarking studies.

  6. Simple proof that Gaussian attacks are optimal among collective attacks against continuous-variable quantum key distribution with a Gaussian modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leverrier, Anthony; Grangier, Philippe; Laboratoire Charles Fabry, Institut d'Optique, CNRS, University Paris-Sud, Campus Polytechnique, RD 128, F-91127 Palaiseau Cedex

    2010-06-15

    In this article, we give a simple proof of the fact that the optimal collective attacks against continuous-variable quantum key distribution with a Gaussian modulation are Gaussian attacks. Our proof, which makes use of symmetry properties of the protocol in phase space, is particularly relevant for the finite-key analysis of the protocol and therefore for practical applications.

  7. An accurate homogenized tissue phantom for broad spectrum autofluorescence studies: a tool for optimizing quantum dot-based contrast agents

    NASA Astrophysics Data System (ADS)

    Roy, Mathieu; Wilson, Brian C.

    2008-02-01

    We are investigating the use of ZnS-capped CdSe quantum dot (QD) bioconjugates combined with fluorescence endoscopy for improved early cancer detection in the esophagus, colon and lung. A major challenge in using fluorescent contrast agents in vivo is to extract the relevant signal from the tissue autofluorescence (AF). The present studies are aimed at maximizing the QD signal to AF background ratio (SBR) to facilitate detection. These contrast optimization studies require optical phantoms that simulate tissue autofluorescence, absorption and scattering over the entire visible spectrum, while allowing us to control the optical thickness. We present an optical phantom made of fresh homogenized tissue diluted in water. The homogenized tissue is poured into a clear polymer tank designed to hold a QD-loaded silica capillary in its center. Because of the non-linear effects of absorption and scattering on measured autofluorescence, direct comparison between results obtained using tissue phantoms of different concentration is not possible. We introduce mathematical models that make it possible to perform measurements on diluted tissue homogenates and subsequently extrapolate the results to intact (non-diluted) tissue. Finally, we present preliminary QD contrast data showing that the 380-420 nm spectral window is optimal for surface QD imaging.

  8. Integrating machine learning to achieve an automatic parameter prediction for practical continuous-variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Liu, Weiqi; Huang, Peng; Peng, Jinye; Fan, Jianping; Zeng, Guihua

    2018-02-01

    For supporting practical quantum key distribution (QKD), it is critical to stabilize the physical parameters of signals, e.g., the intensity, phase, and polarization of the laser signals, so that such QKD systems can achieve better performance and practical security. In this paper, an approach is developed by integrating a support vector regression (SVR) model to optimize the performance and practical security of the QKD system. First, a SVR model is learned to precisely predict the time-along evolutions of the physical parameters of signals. Second, such predicted time-along evolutions are employed as feedback to control the QKD system for achieving the optimal performance and practical security. Finally, our proposed approach is exemplified by using the intensity evolution of laser light and a local oscillator pulse in the Gaussian modulated coherent state QKD system. Our experimental results have demonstrated three significant benefits of our SVR-based approach: (1) it can allow the QKD system to achieve optimal performance and practical security, (2) it does not require any additional resources and any real-time monitoring module to support automatic prediction of the time-along evolutions of the physical parameters of signals, and (3) it is applicable to any measurable physical parameter of signals in the practical QKD system.

  9. An Adaptive Cultural Algorithm with Improved Quantum-behaved Particle Swarm Optimization for Sonar Image Detection.

    PubMed

    Wang, Xingmei; Hao, Wenqian; Li, Qiming

    2017-12-18

    This paper proposes an adaptive cultural algorithm with improved quantum-behaved particle swarm optimization (ACA-IQPSO) to detect the underwater sonar image. In the population space, to improve searching ability of particles, iterative times and the fitness value of particles are regarded as factors to adaptively adjust the contraction-expansion coefficient of the quantum-behaved particle swarm optimization algorithm (QPSO). The improved quantum-behaved particle swarm optimization algorithm (IQPSO) can make particles adjust their behaviours according to their quality. In the belief space, a new update strategy is adopted to update cultural individuals according to the idea of the update strategy in shuffled frog leaping algorithm (SFLA). Moreover, to enhance the utilization of information in the population space and belief space, accept function and influence function are redesigned in the new communication protocol. The experimental results show that ACA-IQPSO can obtain good clustering centres according to the grey distribution information of underwater sonar images, and accurately complete underwater objects detection. Compared with other algorithms, the proposed ACA-IQPSO has good effectiveness, excellent adaptability, a powerful searching ability and high convergence efficiency. Meanwhile, the experimental results of the benchmark functions can further demonstrate that the proposed ACA-IQPSO has better searching ability, convergence efficiency and stability.

  10. Fundamental Quantum 1/F Noise in Ultrasmall Semiconductor Devices and Their Optimal Design Principles

    DTIC Science & Technology

    1988-05-31

    Hooge parameter. 2. 1 / f Noise of the Recombination Current Generated in the Depletion Region The quantum i/ f ...theory. There are two forms of quantum 11f noise . In the first place C~ and Cn4 p n to quantum 1 / f noise theory. This would yield Hooge parameters S...Fundamental Quantum 1 / f Noise in Ultrasmall S~ iodcrD’vesadOtm.Dsgn P in. 12. PERSONAL AUTHOR(S) Handel, Peter H. (Princioal investiaat r) 13a. TYPE

  11. Realizing various approximate quantum cloning with XY-type exchange interactions of flux qubits

    NASA Astrophysics Data System (ADS)

    Li, Na; Ye, Liu

    2014-03-01

    In this paper, we realize all kinds of 1 → 2 approximate quantum cloning, including optimal 1 → 2 symmetric (or asymmetric) universal quantum cloning (UQC) and phase-covariant cloning (PCC), symmetric economical phase-covariant cloning (EPCC) and real state quantum cloning, with the XY-type exchange interactions of the flux qubits which are coupled by dc superconducting quantum interference devices (SQUIDs). It is shown that our schemes can be realized with the current experimental technology.

  12. Proceedings of the Quantum Computation for Physical Modeling Workshop 2004. Held in North Falmouth, MA on 12-15 September 2004

    DTIC Science & Technology

    2005-10-01

    late the difficulty of some basic 1-bit and n-bit quantum and classical operations in an simple unconstrained scenario. KEY WORDS: Time evolution... quantum circuit and design are presented for an optimized entangling probe attacking the BB84 Protocol of quantum key distribution (QKD) and yielding...unambiguous, at least some of the time. It follows that the BB84 (Bennett-Brassard 1984) proto- col of quantum key distribution has a vulnerability similar to

  13. Adiabatic quantum computing with spin qubits hosted by molecules.

    PubMed

    Yamamoto, Satoru; Nakazawa, Shigeaki; Sugisaki, Kenji; Sato, Kazunobu; Toyota, Kazuo; Shiomi, Daisuke; Takui, Takeji

    2015-01-28

    A molecular spin quantum computer (MSQC) requires electron spin qubits, which pulse-based electron spin/magnetic resonance (ESR/MR) techniques can afford to manipulate for implementing quantum gate operations in open shell molecular entities. Importantly, nuclear spins, which are topologically connected, particularly in organic molecular spin systems, are client qubits, while electron spins play a role of bus qubits. Here, we introduce the implementation for an adiabatic quantum algorithm, suggesting the possible utilization of molecular spins with optimized spin structures for MSQCs. We exemplify the utilization of an adiabatic factorization problem of 21, compared with the corresponding nuclear magnetic resonance (NMR) case. Two molecular spins are selected: one is a molecular spin composed of three exchange-coupled electrons as electron-only qubits and the other an electron-bus qubit with two client nuclear spin qubits. Their electronic spin structures are well characterized in terms of the quantum mechanical behaviour in the spin Hamiltonian. The implementation of adiabatic quantum computing/computation (AQC) has, for the first time, been achieved by establishing ESR/MR pulse sequences for effective spin Hamiltonians in a fully controlled manner of spin manipulation. The conquered pulse sequences have been compared with the NMR experiments and shown much faster CPU times corresponding to the interaction strength between the spins. Significant differences are shown in rotational operations and pulse intervals for ESR/MR operations. As a result, we suggest the advantages and possible utilization of the time-evolution based AQC approach for molecular spin quantum computers and molecular spin quantum simulators underlain by sophisticated ESR/MR pulsed spin technology.

  14. Enhancement of optical Kerr effect in quantum-cascade lasers with multiple resonance levels.

    PubMed

    Bai, Jing; Citrin, D S

    2008-08-18

    In this paper, we investigated the optical Kerr lensing effect in quantum-cascade lasers with multiple resonance levels. The Kerr refractive index n2 is obtained through the third-order susceptibility at the fundamental frequency chi(3)( omega; omega, omega,-omega). Resonant two-photon processes are found to have almost equal contributions to chi(3)( omega; omega, omega,-omega) as the single-photon processes, which result in the predicted enhancement of the positive nonlinear (Kerr) refractive index, and thus may enhance mode-locking of quantum-cascade lasers. Moreover, we also demonstrate an isospectral optimization strategy for further improving n2 through the band-structure design, in order to boost the multimode performance of quantum-cascade lasers. Simulation results show that the optimized stepwise multiple-quantum-well structure has n2 approximately 10-8 cm2/W, a twofold enhancement over the original flat quantum-well structure. This leads to a refractive-index change (delta)n of about 0.01, which is at the upper bound of those reported for typical Kerr medium. This stronger Kerr refractive index may be important for quantum-cascade lasers ultimately to demonstrate self-mode-locking.

  15. General method for extracting the quantum efficiency of dispersive qubit readout in circuit QED

    NASA Astrophysics Data System (ADS)

    Bultink, C. C.; Tarasinski, B.; Haandbæk, N.; Poletto, S.; Haider, N.; Michalak, D. J.; Bruno, A.; DiCarlo, L.

    2018-02-01

    We present and demonstrate a general three-step method for extracting the quantum efficiency of dispersive qubit readout in circuit QED. We use active depletion of post-measurement photons and optimal integration weight functions on two quadratures to maximize the signal-to-noise ratio of the non-steady-state homodyne measurement. We derive analytically and demonstrate experimentally that the method robustly extracts the quantum efficiency for arbitrary readout conditions in the linear regime. We use the proven method to optimally bias a Josephson traveling-wave parametric amplifier and to quantify different noise contributions in the readout amplification chain.

  16. Quantum cost optimized design of 4-bit reversible universal shift register using reduced number of logic gate

    NASA Astrophysics Data System (ADS)

    Maity, H.; Biswas, A.; Bhattacharjee, A. K.; Pal, A.

    In this paper, we have proposed the design of quantum cost (QC) optimized 4-bit reversible universal shift register (RUSR) using reduced number of reversible logic gates. The proposed design is very useful in quantum computing due to its low QC, less no. of reversible logic gate and less delay. The QC, no. of gates, garbage outputs (GOs) are respectively 64, 8 and 16 for proposed work. The improvement of proposed work is also presented. The QC is 5.88% to 70.9% improved, no. of gate is 60% to 83.33% improved with compared to latest reported result.

  17. Photonic quantum simulator for unbiased phase covariant cloning

    NASA Astrophysics Data System (ADS)

    Knoll, Laura T.; López Grande, Ignacio H.; Larotonda, Miguel A.

    2018-01-01

    We present the results of a linear optics photonic implementation of a quantum circuit that simulates a phase covariant cloner, using two different degrees of freedom of a single photon. We experimentally simulate the action of two mirrored 1→ 2 cloners, each of them biasing the cloned states into opposite regions of the Bloch sphere. We show that by applying a random sequence of these two cloners, an eavesdropper can mitigate the amount of noise added to the original input state and therefore, prepare clones with no bias, but with the same individual fidelity, masking its presence in a quantum key distribution protocol. Input polarization qubit states are cloned into path qubit states of the same photon, which is identified as a potential eavesdropper in a quantum key distribution protocol. The device has the flexibility to produce mirrored versions that optimally clone states on either the northern or southern hemispheres of the Bloch sphere, as well as to simulate optimal and non-optimal cloning machines by tuning the asymmetry on each of the cloning machines.

  18. Passive states as optimal inputs for single-jump lossy quantum channels

    NASA Astrophysics Data System (ADS)

    De Palma, Giacomo; Mari, Andrea; Lloyd, Seth; Giovannetti, Vittorio

    2016-06-01

    The passive states of a quantum system minimize the average energy among all the states with a given spectrum. We prove that passive states are the optimal inputs of single-jump lossy quantum channels. These channels arise from a weak interaction of the quantum system of interest with a large Markovian bath in its ground state, such that the interaction Hamiltonian couples only consecutive energy eigenstates of the system. We prove that the output generated by any input state ρ majorizes the output generated by the passive input state ρ0 with the same spectrum of ρ . Then, the output generated by ρ can be obtained applying a random unitary operation to the output generated by ρ0. This is an extension of De Palma et al. [IEEE Trans. Inf. Theory 62, 2895 (2016)], 10.1109/TIT.2016.2547426, where the same result is proved for one-mode bosonic Gaussian channels. We also prove that for finite temperature this optimality property can fail already in a two-level system, where the best input is a coherent superposition of the two energy eigenstates.

  19. Quantum money with nearly optimal error tolerance

    NASA Astrophysics Data System (ADS)

    Amiri, Ryan; Arrazola, Juan Miguel

    2017-06-01

    We present a family of quantum money schemes with classical verification which display a number of benefits over previous proposals. Our schemes are based on hidden matching quantum retrieval games and they tolerate noise up to 23 % , which we conjecture reaches 25 % asymptotically as the dimension of the underlying hidden matching states is increased. Furthermore, we prove that 25 % is the maximum tolerable noise for a wide class of quantum money schemes with classical verification, meaning our schemes are almost optimally noise tolerant. We use methods in semidefinite programming to prove security in a substantially different manner to previous proposals, leading to two main advantages: first, coin verification involves only a constant number of states (with respect to coin size), thereby allowing for smaller coins; second, the reusability of coins within our scheme grows linearly with the size of the coin, which is known to be optimal. Last, we suggest methods by which the coins in our protocol could be implemented using weak coherent states and verified using existing experimental techniques, even in the presence of detector inefficiencies.

  20. Optimization of the highly strained InGaAs/GaAs quantum well lasers grown by MOVPE

    NASA Astrophysics Data System (ADS)

    Su, Y. K.; Chen, W. C.; Wan, C. T.; Yu, H. C.; Chuang, R. W.; Tsai, M. C.; Cheng, K. Y.; Hu, C.; Tsau, Seth

    2008-07-01

    In this article, we study the highly compressive-strained InGaAs/GaAs quantum wells and the broad-area lasers grown by MOVPE. Several epitaxial parameters were optimized, including the growth temperature, pressure and group V to group III (V/III) ratio. Grown with the optimized epitaxial parameters, the highly strained In 0.39Ga 0.61As/GaAs lasers could be continuously operated at 1.22 μm and their threshold current density Jth was 140 A/cm 2. To the best of our knowledge, the demonstrated InGaAs QW laser has the lowest threshold current per quantum well (Jth/QW) of 46.7 A/cm 2. The fitted characteristic temperature ( T0) was 146.2 K, indicating the good electron confinement ability. Furthermore, by lowering the growth temperature down to 475 °C and the TBAs/III ratio to 5, the emission wavelength of the In 0.42Ga 0.58As/GaAs quantum wells was as long as 1245 nm and FWHM was 43 meV.

Top