Optimal updating magnitude in adaptive flat-distribution sampling
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Drake, Justin A.; Ma, Jianpeng; Pettitt, B. Montgomery
2017-11-01
We present a study on the optimization of the updating magnitude for a class of free energy methods based on flat-distribution sampling, including the Wang-Landau (WL) algorithm and metadynamics. These methods rely on adaptive construction of a bias potential that offsets the potential of mean force by histogram-based updates. The convergence of the bias potential can be improved by decreasing the updating magnitude with an optimal schedule. We show that while the asymptotically optimal schedule for the single-bin updating scheme (commonly used in the WL algorithm) is given by the known inverse-time formula, that for the Gaussian updating scheme (commonly used in metadynamics) is often more complex. We further show that the single-bin updating scheme is optimal for very long simulations, and it can be generalized to a class of bandpass updating schemes that are similarly optimal. These bandpass updating schemes target only a few long-range distribution modes and their optimal schedule is also given by the inverse-time formula. Constructed from orthogonal polynomials, the bandpass updating schemes generalize the WL and Langfeld-Lucini-Rago algorithms as an automatic parameter tuning scheme for umbrella sampling.
Optimal updating magnitude in adaptive flat-distribution sampling.
Zhang, Cheng; Drake, Justin A; Ma, Jianpeng; Pettitt, B Montgomery
2017-11-07
We present a study on the optimization of the updating magnitude for a class of free energy methods based on flat-distribution sampling, including the Wang-Landau (WL) algorithm and metadynamics. These methods rely on adaptive construction of a bias potential that offsets the potential of mean force by histogram-based updates. The convergence of the bias potential can be improved by decreasing the updating magnitude with an optimal schedule. We show that while the asymptotically optimal schedule for the single-bin updating scheme (commonly used in the WL algorithm) is given by the known inverse-time formula, that for the Gaussian updating scheme (commonly used in metadynamics) is often more complex. We further show that the single-bin updating scheme is optimal for very long simulations, and it can be generalized to a class of bandpass updating schemes that are similarly optimal. These bandpass updating schemes target only a few long-range distribution modes and their optimal schedule is also given by the inverse-time formula. Constructed from orthogonal polynomials, the bandpass updating schemes generalize the WL and Langfeld-Lucini-Rago algorithms as an automatic parameter tuning scheme for umbrella sampling.
Barca, E; Castrignanò, A; Buttafuoco, G; De Benedetto, D; Passarella, G
2015-07-01
Soil survey is generally time-consuming, labor-intensive, and costly. Optimization of sampling scheme allows one to reduce the number of sampling points without decreasing or even increasing the accuracy of investigated attribute. Maps of bulk soil electrical conductivity (EC a ) recorded with electromagnetic induction (EMI) sensors could be effectively used to direct soil sampling design for assessing spatial variability of soil moisture. A protocol, using a field-scale bulk EC a survey, has been applied in an agricultural field in Apulia region (southeastern Italy). Spatial simulated annealing was used as a method to optimize spatial soil sampling scheme taking into account sampling constraints, field boundaries, and preliminary observations. Three optimization criteria were used. the first criterion (minimization of mean of the shortest distances, MMSD) optimizes the spreading of the point observations over the entire field by minimizing the expectation of the distance between an arbitrarily chosen point and its nearest observation; the second criterion (minimization of weighted mean of the shortest distances, MWMSD) is a weighted version of the MMSD, which uses the digital gradient of the grid EC a data as weighting function; and the third criterion (mean of average ordinary kriging variance, MAOKV) minimizes mean kriging estimation variance of the target variable. The last criterion utilizes the variogram model of soil water content estimated in a previous trial. The procedures, or a combination of them, were tested and compared in a real case. Simulated annealing was implemented by the software MSANOS able to define or redesign any sampling scheme by increasing or decreasing the original sampling locations. The output consists of the computed sampling scheme, the convergence time, and the cooling law, which can be an invaluable support to the process of sampling design. The proposed approach has found the optimal solution in a reasonable computation time. The use of bulk EC a gradient as an exhaustive variable, known at any node of an interpolation grid, has allowed the optimization of the sampling scheme, distinguishing among areas with different priority levels.
Optimal sampling with prior information of the image geometry in microfluidic MRI.
Han, S H; Cho, H; Paulsen, J L
2015-03-01
Recent advances in MRI acquisition for microscopic flows enable unprecedented sensitivity and speed in a portable NMR/MRI microfluidic analysis platform. However, the application of MRI to microfluidics usually suffers from prolonged acquisition times owing to the combination of the required high resolution and wide field of view necessary to resolve details within microfluidic channels. When prior knowledge of the image geometry is available as a binarized image, such as for microfluidic MRI, it is possible to reduce sampling requirements by incorporating this information into the reconstruction algorithm. The current approach to the design of the partial weighted random sampling schemes is to bias toward the high signal energy portions of the binarized image geometry after Fourier transformation (i.e. in its k-space representation). Although this sampling prescription is frequently effective, it can be far from optimal in certain limiting cases, such as for a 1D channel, or more generally yield inefficient sampling schemes at low degrees of sub-sampling. This work explores the tradeoff between signal acquisition and incoherent sampling on image reconstruction quality given prior knowledge of the image geometry for weighted random sampling schemes, finding that optimal distribution is not robustly determined by maximizing the acquired signal but from interpreting its marginal change with respect to the sub-sampling rate. We develop a corresponding sampling design methodology that deterministically yields a near optimal sampling distribution for image reconstructions incorporating knowledge of the image geometry. The technique robustly identifies optimal weighted random sampling schemes and provides improved reconstruction fidelity for multiple 1D and 2D images, when compared to prior techniques for sampling optimization given knowledge of the image geometry. Copyright © 2015 Elsevier Inc. All rights reserved.
Lommen, Jonathan M; Flassbeck, Sebastian; Behl, Nicolas G R; Niesporek, Sebastian; Bachert, Peter; Ladd, Mark E; Nagel, Armin M
2018-08-01
To investigate and to reduce influences on the determination of the short and long apparent transverse relaxation times ( T2,s*, T2,l*) of 23 Na in vivo with respect to signal sampling. The accuracy of T2* determination was analyzed in simulations for five different sampling schemes. The influence of noise in the parameter fit was investigated for three different models. A dedicated sampling scheme was developed for brain parenchyma by numerically optimizing the parameter estimation. This scheme was compared in vivo to linear sampling at 7T. For the considered sampling schemes, T2,s* / T2,l* exhibit an average bias of 3% / 4% with a variation of 25% / 15% based on simulations with previously published T2* values. The accuracy could be improved with the optimized sampling scheme by strongly averaging the earliest sample. A fitting model with constant noise floor can increase accuracy while additional fitting of a noise term is only beneficial in case of sampling until late echo time > 80 ms. T2* values in white matter were determined to be T2,s* = 5.1 ± 0.8 / 4.2 ± 0.4 ms and T2,l* = 35.7 ± 2.4 / 34.4 ± 1.5 ms using linear/optimized sampling. Voxel-wise T2* determination of 23 Na is feasible in vivo. However, sampling and fitting methods have to be chosen carefully to retrieve accurate results. Magn Reson Med 80:571-584, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.
Park, Jinil; Shin, Taehoon; Yoon, Soon Ho; Goo, Jin Mo; Park, Jang-Yeon
2016-05-01
The purpose of this work was to develop a 3D radial-sampling strategy which maintains uniform k-space sample density after retrospective respiratory gating, and demonstrate its feasibility in free-breathing ultrashort-echo-time lung MRI. A multi-shot, interleaved 3D radial sampling function was designed by segmenting a single-shot trajectory of projection views such that each interleaf samples k-space in an incoherent fashion. An optimal segmentation factor for the interleaved acquisition was derived based on an approximate model of respiratory patterns such that radial interleaves are evenly accepted during the retrospective gating. The optimality of the proposed sampling scheme was tested by numerical simulations and phantom experiments using human respiratory waveforms. Retrospectively, respiratory-gated, free-breathing lung MRI with the proposed sampling strategy was performed in healthy subjects. The simulation yielded the most uniform k-space sample density with the optimal segmentation factor, as evidenced by the smallest standard deviation of the number of neighboring samples as well as minimal side-lobe energy in the point spread function. The optimality of the proposed scheme was also confirmed by minimal image artifacts in phantom images. Human lung images showed that the proposed sampling scheme significantly reduced streak and ring artifacts compared with the conventional retrospective respiratory gating while suppressing motion-related blurring compared with full sampling without respiratory gating. In conclusion, the proposed 3D radial-sampling scheme can effectively suppress the image artifacts due to non-uniform k-space sample density in retrospectively respiratory-gated lung MRI by uniformly distributing gated radial views across the k-space. Copyright © 2016 John Wiley & Sons, Ltd.
Optimal rotated staggered-grid finite-difference schemes for elastic wave modeling in TTI media
NASA Astrophysics Data System (ADS)
Yang, Lei; Yan, Hongyong; Liu, Hong
2015-11-01
The rotated staggered-grid finite-difference (RSFD) is an effective approach for numerical modeling to study the wavefield characteristics in tilted transversely isotropic (TTI) media. But it surfaces from serious numerical dispersion, which directly affects the modeling accuracy. In this paper, we propose two different optimal RSFD schemes based on the sampling approximation (SA) method and the least-squares (LS) method respectively to overcome this problem. We first briefly introduce the RSFD theory, based on which we respectively derive the SA-based RSFD scheme and the LS-based RSFD scheme. Then different forms of analysis are used to compare the SA-based RSFD scheme and the LS-based RSFD scheme with the conventional RSFD scheme, which is based on the Taylor-series expansion (TE) method. The contrast in numerical accuracy analysis verifies the greater accuracy of the two proposed optimal schemes, and indicates that these schemes can effectively widen the wavenumber range with great accuracy compared with the TE-based RSFD scheme. Further comparisons between these two optimal schemes show that at small wavenumbers, the SA-based RSFD scheme performs better, while at large wavenumbers, the LS-based RSFD scheme leads to a smaller error. Finally, the modeling results demonstrate that for the same operator length, the SA-based RSFD scheme and the LS-based RSFD scheme can achieve greater accuracy than the TE-based RSFD scheme, while for the same accuracy, the optimal schemes can adopt shorter difference operators to save computing time.
NASA Technical Reports Server (NTRS)
Khayat, Michael A.; Wilton, Donald R.; Fink, Patrick W.
2007-01-01
Simple and efficient numerical procedures using singularity cancellation methods are presented for evaluating singular and near-singular potential integrals. Four different transformations are compared and the advantages of the Radial-angular transform are demonstrated. A method is then described for optimizing this integration scheme.
Han, Zong-wei; Huang, Wei; Luo, Yun; Zhang, Chun-di; Qi, Da-cheng
2015-03-01
Taking the soil organic matter in eastern Zhongxiang County, Hubei Province, as a research object, thirteen sample sets from different regions were arranged surrounding the road network, the spatial configuration of which was optimized by the simulated annealing approach. The topographic factors of these thirteen sample sets, including slope, plane curvature, profile curvature, topographic wetness index, stream power index and sediment transport index, were extracted by the terrain analysis. Based on the results of optimization, a multiple linear regression model with topographic factors as independent variables was built. At the same time, a multilayer perception model on the basis of neural network approach was implemented. The comparison between these two models was carried out then. The results revealed that the proposed approach was practicable in optimizing soil sampling scheme. The optimal configuration was capable of gaining soil-landscape knowledge exactly, and the accuracy of optimal configuration was better than that of original samples. This study designed a sampling configuration to study the soil attribute distribution by referring to the spatial layout of road network, historical samples, and digital elevation data, which provided an effective means as well as a theoretical basis for determining the sampling configuration and displaying spatial distribution of soil organic matter with low cost and high efficiency.
OLT-centralized sampling frequency offset compensation scheme for OFDM-PON.
Chen, Ming; Zhou, Hui; Zheng, Zhiwei; Deng, Rui; Chen, Qinghui; Peng, Miao; Liu, Cuiwei; He, Jing; Chen, Lin; Tang, Xionggui
2017-08-07
We propose an optical line terminal (OLT)-centralized sampling frequency offset (SFO) compensation scheme for adaptively-modulated OFDM-PON systems. By using the proposed SFO scheme, the phase rotation and inter-symbol interference (ISI) caused by SFOs between OLT and multiple optical network units (ONUs) can be centrally compensated in the OLT, which reduces the complexity of ONUs. Firstly, the optimal fast Fourier transform (FFT) size is identified in the intensity-modulated and direct-detection (IMDD) OFDM system in the presence of SFO. Then, the proposed SFO compensation scheme including phase rotation modulation (PRM) and length-adaptive OFDM frame has been experimentally demonstrated in the downlink transmission of an adaptively modulated optical OFDM with the optimal FFT size. The experimental results show that up to ± 300 ppm SFO can be successfully compensated without introducing any receiver performance penalties.
An, Yongkai; Lu, Wenxi; Cheng, Weiguo
2015-01-01
This paper introduces a surrogate model to identify an optimal exploitation scheme, while the western Jilin province was selected as the study area. A numerical simulation model of groundwater flow was established first, and four exploitation wells were set in the Tongyu county and Qian Gorlos county respectively so as to supply water to Daan county. Second, the Latin Hypercube Sampling (LHS) method was used to collect data in the feasible region for input variables. A surrogate model of the numerical simulation model of groundwater flow was developed using the regression kriging method. An optimization model was established to search an optimal groundwater exploitation scheme using the minimum average drawdown of groundwater table and the minimum cost of groundwater exploitation as multi-objective functions. Finally, the surrogate model was invoked by the optimization model in the process of solving the optimization problem. Results show that the relative error and root mean square error of the groundwater table drawdown between the simulation model and the surrogate model for 10 validation samples are both lower than 5%, which is a high approximation accuracy. The contrast between the surrogate-based simulation optimization model and the conventional simulation optimization model for solving the same optimization problem, shows the former only needs 5.5 hours, and the latter needs 25 days. The above results indicate that the surrogate model developed in this study could not only considerably reduce the computational burden of the simulation optimization process, but also maintain high computational accuracy. This can thus provide an effective method for identifying an optimal groundwater exploitation scheme quickly and accurately. PMID:26264008
Optimal two-phase sampling design for comparing accuracies of two binary classification rules.
Xu, Huiping; Hui, Siu L; Grannis, Shaun
2014-02-10
In this paper, we consider the design for comparing the performance of two binary classification rules, for example, two record linkage algorithms or two screening tests. Statistical methods are well developed for comparing these accuracy measures when the gold standard is available for every unit in the sample, or in a two-phase study when the gold standard is ascertained only in the second phase in a subsample using a fixed sampling scheme. However, these methods do not attempt to optimize the sampling scheme to minimize the variance of the estimators of interest. In comparing the performance of two classification rules, the parameters of primary interest are the difference in sensitivities, specificities, and positive predictive values. We derived the analytic variance formulas for these parameter estimates and used them to obtain the optimal sampling design. The efficiency of the optimal sampling design is evaluated through an empirical investigation that compares the optimal sampling with simple random sampling and with proportional allocation. Results of the empirical study show that the optimal sampling design is similar for estimating the difference in sensitivities and in specificities, and both achieve a substantial amount of variance reduction with an over-sample of subjects with discordant results and under-sample of subjects with concordant results. A heuristic rule is recommended when there is no prior knowledge of individual sensitivities and specificities, or the prevalence of the true positive findings in the study population. The optimal sampling is applied to a real-world example in record linkage to evaluate the difference in classification accuracy of two matching algorithms. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Feng, J.; Bai, L.; Liu, S.; Su, X.; Hu, H.
2012-07-01
In this paper, the MODIS remote sensing data, featured with low-cost, high-timely and moderate/low spatial resolutions, in the North China Plain (NCP) as a study region were firstly used to carry out mixed-pixel spectral decomposition to extract an useful regionalized indicator parameter (RIP) (i.e., an available ratio, that is, fraction/percentage, of winter wheat planting area in each pixel as a regionalized indicator variable (RIV) of spatial sampling) from the initial selected indicators. Then, the RIV values were spatially analyzed, and the spatial structure characteristics (i.e., spatial correlation and variation) of the NCP were achieved, which were further processed to obtain the scalefitting, valid a priori knowledge or information of spatial sampling. Subsequently, founded upon an idea of rationally integrating probability-based and model-based sampling techniques and effectively utilizing the obtained a priori knowledge or information, the spatial sampling models and design schemes and their optimization and optimal selection were developed, as is a scientific basis of improving and optimizing the existing spatial sampling schemes of large-scale cropland remote sensing monitoring. Additionally, by the adaptive analysis and decision strategy the optimal local spatial prediction and gridded system of extrapolation results were able to excellently implement an adaptive report pattern of spatial sampling in accordance with report-covering units in order to satisfy the actual needs of sampling surveys.
NASA Astrophysics Data System (ADS)
Chen, Jing-Bo
2014-06-01
By using low-frequency components of the damped wavefield, Laplace-Fourier-domain full waveform inversion (FWI) can recover a long-wavelength velocity model from the original undamped seismic data lacking low-frequency information. Laplace-Fourier-domain modelling is an important foundation of Laplace-Fourier-domain FWI. Based on the numerical phase velocity and the numerical attenuation propagation velocity, a method for performing Laplace-Fourier-domain numerical dispersion analysis is developed in this paper. This method is applied to an average-derivative optimal scheme. The results show that within the relative error of 1 per cent, the Laplace-Fourier-domain average-derivative optimal scheme requires seven gridpoints per smallest wavelength and smallest pseudo-wavelength for both equal and unequal directional sampling intervals. In contrast, the classical five-point scheme requires 23 gridpoints per smallest wavelength and smallest pseudo-wavelength to achieve the same accuracy. Numerical experiments demonstrate the theoretical analysis.
Selecting registration schemes in case of interstitial lung disease follow-up in CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlachopoulos, Georgios; Korfiatis, Panayiotis; Skiadopoulos, Spyros
Purpose: Primary goal of this study is to select optimal registration schemes in the framework of interstitial lung disease (ILD) follow-up analysis in CT. Methods: A set of 128 multiresolution schemes composed of multiresolution nonrigid and combinations of rigid and nonrigid registration schemes are evaluated, utilizing ten artificially warped ILD follow-up volumes, originating from ten clinical volumetric CT scans of ILD affected patients, to select candidate optimal schemes. Specifically, all combinations of four transformation models (three rigid: rigid, similarity, affine and one nonrigid: third order B-spline), four cost functions (sum-of-square distances, normalized correlation coefficient, mutual information, and normalized mutual information),more » four gradient descent optimizers (standard, regular step, adaptive stochastic, and finite difference), and two types of pyramids (recursive and Gaussian-smoothing) were considered. The selection process involves two stages. The first stage involves identification of schemes with deformation field singularities, according to the determinant of the Jacobian matrix. In the second stage, evaluation methodology is based on distance between corresponding landmark points in both normal lung parenchyma (NLP) and ILD affected regions. Statistical analysis was performed in order to select near optimal registration schemes per evaluation metric. Performance of the candidate registration schemes was verified on a case sample of ten clinical follow-up CT scans to obtain the selected registration schemes. Results: By considering near optimal schemes common to all ranking lists, 16 out of 128 registration schemes were initially selected. These schemes obtained submillimeter registration accuracies in terms of average distance errors 0.18 ± 0.01 mm for NLP and 0.20 ± 0.01 mm for ILD, in case of artificially generated follow-up data. Registration accuracy in terms of average distance error in clinical follow-up data was in the range of 1.985–2.156 mm and 1.966–2.234 mm, for NLP and ILD affected regions, respectively, excluding schemes with statistically significant lower performance (Wilcoxon signed-ranks test, p < 0.05), resulting in 13 finally selected registration schemes. Conclusions: Selected registration schemes in case of ILD CT follow-up analysis indicate the significance of adaptive stochastic gradient descent optimizer, as well as the importance of combined rigid and nonrigid schemes providing high accuracy and time efficiency. The selected optimal deformable registration schemes are equivalent in terms of their accuracy and thus compatible in terms of their clinical outcome.« less
Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hampton, Jerrad; Doostan, Alireza, E-mail: alireza.doostan@colorado.edu
2015-01-01
Sampling orthogonal polynomial bases via Monte Carlo is of interest for uncertainty quantification of models with random inputs, using Polynomial Chaos (PC) expansions. It is known that bounding a probabilistic parameter, referred to as coherence, yields a bound on the number of samples necessary to identify coefficients in a sparse PC expansion via solution to an ℓ{sub 1}-minimization problem. Utilizing results for orthogonal polynomials, we bound the coherence parameter for polynomials of Hermite and Legendre type under their respective natural sampling distribution. In both polynomial bases we identify an importance sampling distribution which yields a bound with weaker dependence onmore » the order of the approximation. For more general orthonormal bases, we propose the coherence-optimal sampling: a Markov Chain Monte Carlo sampling, which directly uses the basis functions under consideration to achieve a statistical optimality among all sampling schemes with identical support. We demonstrate these different sampling strategies numerically in both high-order and high-dimensional, manufactured PC expansions. In addition, the quality of each sampling method is compared in the identification of solutions to two differential equations, one with a high-dimensional random input and the other with a high-order PC expansion. In both cases, the coherence-optimal sampling scheme leads to similar or considerably improved accuracy.« less
Progressive compressive imager
NASA Astrophysics Data System (ADS)
Evladov, Sergei; Levi, Ofer; Stern, Adrian
2012-06-01
We have designed and built a working automatic progressive sampling imaging system based on the vector sensor concept, which utilizes a unique sampling scheme of Radon projections. This sampling scheme makes it possible to progressively add information resulting in tradeoff between compression and the quality of reconstruction. The uniqueness of our sampling is that in any moment of the acquisition process the reconstruction can produce a reasonable version of the image. The advantage of the gradual addition of the samples is seen when the sparsity rate of the object is unknown, and thus the number of needed measurements. We have developed the iterative algorithm OSO (Ordered Sets Optimization) which employs our sampling scheme for creation of nearly uniform distributed sets of samples, which allows the reconstruction of Mega-Pixel images. We present the good quality reconstruction from compressed data ratios of 1:20.
NASA Astrophysics Data System (ADS)
Cao, Jian; Chen, Jing-Bo; Dai, Meng-Xue
2018-01-01
An efficient finite-difference frequency-domain modeling of seismic wave propagation relies on the discrete schemes and appropriate solving methods. The average-derivative optimal scheme for the scalar wave modeling is advantageous in terms of the storage saving for the system of linear equations and the flexibility for arbitrary directional sampling intervals. However, using a LU-decomposition-based direct solver to solve its resulting system of linear equations is very costly for both memory and computational requirements. To address this issue, we consider establishing a multigrid-preconditioned BI-CGSTAB iterative solver fit for the average-derivative optimal scheme. The choice of preconditioning matrix and its corresponding multigrid components is made with the help of Fourier spectral analysis and local mode analysis, respectively, which is important for the convergence. Furthermore, we find that for the computation with unequal directional sampling interval, the anisotropic smoothing in the multigrid precondition may affect the convergence rate of this iterative solver. Successful numerical applications of this iterative solver for the homogenous and heterogeneous models in 2D and 3D are presented where the significant reduction of computer memory and the improvement of computational efficiency are demonstrated by comparison with the direct solver. In the numerical experiments, we also show that the unequal directional sampling interval will weaken the advantage of this multigrid-preconditioned iterative solver in the computing speed or, even worse, could reduce its accuracy in some cases, which implies the need for a reasonable control of directional sampling interval in the discretization.
FDTD simulation of EM wave propagation in 3-D media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, T.; Tripp, A.C.
1996-01-01
A finite-difference, time-domain solution to Maxwell`s equations has been developed for simulating electromagnetic wave propagation in 3-D media. The algorithm allows arbitrary electrical conductivity and permittivity variations within a model. The staggered grid technique of Yee is used to sample the fields. A new optimized second-order difference scheme is designed to approximate the spatial derivatives. Like the conventional fourth-order difference scheme, the optimized second-order scheme needs four discrete values to calculate a single derivative. However, the optimized scheme is accurate over a wider wavenumber range. Compared to the fourth-order scheme, the optimized scheme imposes stricter limitations on the time stepmore » sizes but allows coarser grids. The net effect is that the optimized scheme is more efficient in terms of computation time and memory requirement than the fourth-order scheme. The temporal derivatives are approximated by second-order central differences throughout. The Liao transmitting boundary conditions are used to truncate an open problem. A reflection coefficient analysis shows that this transmitting boundary condition works very well. However, it is subject to instability. A method that can be easily implemented is proposed to stabilize the boundary condition. The finite-difference solution is compared to closed-form solutions for conducting and nonconducting whole spaces and to an integral-equation solution for a 3-D body in a homogeneous half-space. In all cases, the finite-difference solutions are in good agreement with the other solutions. Finally, the use of the algorithm is demonstrated with a 3-D model. Numerical results show that both the magnetic field response and electric field response can be useful for shallow-depth and small-scale investigations.« less
NASA Astrophysics Data System (ADS)
Nottrott, A.; Hoffnagle, J.; Farinas, A.; Rella, C.
2014-12-01
Carbon monoxide (CO) is an urban pollutant generated by internal combustion engines which contributes to the formation of ground level ozone (smog). CO is also an excellent tracer for emissions from mobile combustion sources. In this work we present an optimized spectroscopic sampling scheme that enables enhanced precision CO measurements. The scheme was implemented on the Picarro G2401 Cavity Ring-Down Spectroscopy (CRDS) analyzer which measures CO2, CO, CH4 and H2O at 0.2 Hz. The optimized scheme improved the raw precision of CO measurements by 40% from 5 ppb to 3 ppb. Correlations of measured CO2, CO, CH4 and H2O from an urban tower were partitioned by wind direction and combined with a concentration footprint model for source attribution. The application of a concentration footprint for source attribution has several advantages. The upwind extent of the concentration footprint for a given sensor is much larger than the flux footprint. Measurements of mean concentration at the sensor location can be used to estimate source strength from a concentration footprint, while measurements of the vertical concentration flux are necessary to determine source strength from the flux footprint. Direct measurement of vertical concentration flux requires high frequency temporal sampling and increases the cost and complexity of the measurement system.
Boonstra, Anne M; Stewart, Roy E; Köke, Albère J A; Oosterwijk, René F A; Swaan, Jeannette L; Schreurs, Karlein M G; Schiphorst Preuper, Henrica R
2016-01-01
Objectives: The 0-10 Numeric Rating Scale (NRS) is often used in pain management. The aims of our study were to determine the cut-off points for mild, moderate, and severe pain in terms of pain-related interference with functioning in patients with chronic musculoskeletal pain, to measure the variability of the optimal cut-off points, and to determine the influence of patients' catastrophizing and their sex on these cut-off points. Methods: 2854 patients were included. Pain was assessed by the NRS, functioning by the Pain Disability Index (PDI) and catastrophizing by the Pain Catastrophizing Scale (PCS). Cut-off point schemes were tested using ANOVAs with and without using the PSC scores or sex as co-variates and with the interaction between CP scheme and PCS score and sex, respectively. The variability of the optimal cut-off point schemes was quantified using bootstrapping procedure. Results and conclusion: The study showed that NRS scores ≤ 5 correspond to mild, scores of 6-7 to moderate and scores ≥8 to severe pain in terms of pain-related interference with functioning. Bootstrapping analysis identified this optimal NRS cut-off point scheme in 90% of the bootstrapping samples. The interpretation of the NRS is independent of sex, but seems to depend on catastrophizing. In patients with high catastrophizing tendency, the optimal cut-off point scheme equals that for the total study sample, but in patients with a low catastrophizing tendency, NRS scores ≤ 3 correspond to mild, scores of 4-6 to moderate and scores ≥7 to severe pain in terms of interference with functioning. In these optimal cut-off schemes, NRS scores of 4 and 5 correspond to moderate interference with functioning for patients with low catastrophizing tendency and to mild interference for patients with high catastrophizing tendency. Theoretically one would therefore expect that among the patients with NRS scores 4 and 5 there would be a higher average PDI score for those with low catastrophizing than for those with high catastrophizing. However, we found the opposite. The fact that we did not find the same optimal CP scheme in the subgroups with lower and higher catastrophizing tendency may be due to chance variability.
Boonstra, Anne M.; Stewart, Roy E.; Köke, Albère J. A.; Oosterwijk, René F. A.; Swaan, Jeannette L.; Schreurs, Karlein M. G.; Schiphorst Preuper, Henrica R.
2016-01-01
Objectives: The 0–10 Numeric Rating Scale (NRS) is often used in pain management. The aims of our study were to determine the cut-off points for mild, moderate, and severe pain in terms of pain-related interference with functioning in patients with chronic musculoskeletal pain, to measure the variability of the optimal cut-off points, and to determine the influence of patients’ catastrophizing and their sex on these cut-off points. Methods: 2854 patients were included. Pain was assessed by the NRS, functioning by the Pain Disability Index (PDI) and catastrophizing by the Pain Catastrophizing Scale (PCS). Cut-off point schemes were tested using ANOVAs with and without using the PSC scores or sex as co-variates and with the interaction between CP scheme and PCS score and sex, respectively. The variability of the optimal cut-off point schemes was quantified using bootstrapping procedure. Results and conclusion: The study showed that NRS scores ≤ 5 correspond to mild, scores of 6–7 to moderate and scores ≥8 to severe pain in terms of pain-related interference with functioning. Bootstrapping analysis identified this optimal NRS cut-off point scheme in 90% of the bootstrapping samples. The interpretation of the NRS is independent of sex, but seems to depend on catastrophizing. In patients with high catastrophizing tendency, the optimal cut-off point scheme equals that for the total study sample, but in patients with a low catastrophizing tendency, NRS scores ≤ 3 correspond to mild, scores of 4–6 to moderate and scores ≥7 to severe pain in terms of interference with functioning. In these optimal cut-off schemes, NRS scores of 4 and 5 correspond to moderate interference with functioning for patients with low catastrophizing tendency and to mild interference for patients with high catastrophizing tendency. Theoretically one would therefore expect that among the patients with NRS scores 4 and 5 there would be a higher average PDI score for those with low catastrophizing than for those with high catastrophizing. However, we found the opposite. The fact that we did not find the same optimal CP scheme in the subgroups with lower and higher catastrophizing tendency may be due to chance variability. PMID:27746750
Practical continuous-variable quantum key distribution without finite sampling bandwidth effects.
Li, Huasheng; Wang, Chao; Huang, Peng; Huang, Duan; Wang, Tao; Zeng, Guihua
2016-09-05
In a practical continuous-variable quantum key distribution system, finite sampling bandwidth of the employed analog-to-digital converter at the receiver's side may lead to inaccurate results of pulse peak sampling. Then, errors in the parameters estimation resulted. Subsequently, the system performance decreases and security loopholes are exposed to eavesdroppers. In this paper, we propose a novel data acquisition scheme which consists of two parts, i.e., a dynamic delay adjusting module and a statistical power feedback-control algorithm. The proposed scheme may improve dramatically the data acquisition precision of pulse peak sampling and remove the finite sampling bandwidth effects. Moreover, the optimal peak sampling position of a pulse signal can be dynamically calibrated through monitoring the change of the statistical power of the sampled data in the proposed scheme. This helps to resist against some practical attacks, such as the well-known local oscillator calibration attack.
Advanced overlay: sampling and modeling for optimized run-to-run control
NASA Astrophysics Data System (ADS)
Subramany, Lokesh; Chung, WoongJae; Samudrala, Pavan; Gao, Haiyong; Aung, Nyan; Gomez, Juan Manuel; Gutjahr, Karsten; Park, DongSuk; Snow, Patrick; Garcia-Medina, Miguel; Yap, Lipkong; Demirer, Onur Nihat; Pierson, Bill; Robinson, John C.
2016-03-01
In recent years overlay (OVL) control schemes have become more complicated in order to meet the ever shrinking margins of advanced technology nodes. As a result, this brings up new challenges to be addressed for effective run-to- run OVL control. This work addresses two of these challenges by new advanced analysis techniques: (1) sampling optimization for run-to-run control and (2) bias-variance tradeoff in modeling. The first challenge in a high order OVL control strategy is to optimize the number of measurements and the locations on the wafer, so that the "sample plan" of measurements provides high quality information about the OVL signature on the wafer with acceptable metrology throughput. We solve this tradeoff between accuracy and throughput by using a smart sampling scheme which utilizes various design-based and data-based metrics to increase model accuracy and reduce model uncertainty while avoiding wafer to wafer and within wafer measurement noise caused by metrology, scanner or process. This sort of sampling scheme, combined with an advanced field by field extrapolated modeling algorithm helps to maximize model stability and minimize on product overlay (OPO). Second, the use of higher order overlay models means more degrees of freedom, which enables increased capability to correct for complicated overlay signatures, but also increases sensitivity to process or metrology induced noise. This is also known as the bias-variance trade-off. A high order model that minimizes the bias between the modeled and raw overlay signature on a single wafer will also have a higher variation from wafer to wafer or lot to lot, that is unless an advanced modeling approach is used. In this paper, we characterize the bias-variance trade off to find the optimal scheme. The sampling and modeling solutions proposed in this study are validated by advanced process control (APC) simulations to estimate run-to-run performance, lot-to-lot and wafer-to- wafer model term monitoring to estimate stability and ultimately high volume manufacturing tests to monitor OPO by densely measured OVL data.
Robust and transferable quantification of NMR spectral quality using IROC analysis
NASA Astrophysics Data System (ADS)
Zambrello, Matthew A.; Maciejewski, Mark W.; Schuyler, Adam D.; Weatherby, Gerard; Hoch, Jeffrey C.
2017-12-01
Non-Fourier methods are increasingly utilized in NMR spectroscopy because of their ability to handle nonuniformly-sampled data. However, non-Fourier methods present unique challenges due to their nonlinearity, which can produce nonrandom noise and render conventional metrics for spectral quality such as signal-to-noise ratio unreliable. The lack of robust and transferable metrics (i.e. applicable to methods exhibiting different nonlinearities) has hampered comparison of non-Fourier methods and nonuniform sampling schemes, preventing the identification of best practices. We describe a novel method, in situ receiver operating characteristic analysis (IROC), for characterizing spectral quality based on the Receiver Operating Characteristic curve. IROC utilizes synthetic signals added to empirical data as "ground truth", and provides several robust scalar-valued metrics for spectral quality. This approach avoids problems posed by nonlinear spectral estimates, and provides a versatile quantitative means of characterizing many aspects of spectral quality. We demonstrate applications to parameter optimization in Fourier and non-Fourier spectral estimation, critical comparison of different methods for spectrum analysis, and optimization of nonuniform sampling schemes. The approach will accelerate the discovery of optimal approaches to nonuniform sampling experiment design and non-Fourier spectrum analysis for multidimensional NMR.
Knowledge-based nonuniform sampling in multidimensional NMR.
Schuyler, Adam D; Maciejewski, Mark W; Arthanari, Haribabu; Hoch, Jeffrey C
2011-07-01
The full resolution afforded by high-field magnets is rarely realized in the indirect dimensions of multidimensional NMR experiments because of the time cost of uniformly sampling to long evolution times. Emerging methods utilizing nonuniform sampling (NUS) enable high resolution along indirect dimensions by sampling long evolution times without sampling at every multiple of the Nyquist sampling interval. While the earliest NUS approaches matched the decay of sampling density to the decay of the signal envelope, recent approaches based on coupled evolution times attempt to optimize sampling by choosing projection angles that increase the likelihood of resolving closely-spaced resonances. These approaches employ knowledge about chemical shifts to predict optimal projection angles, whereas prior applications of tailored sampling employed only knowledge of the decay rate. In this work we adapt the matched filter approach as a general strategy for knowledge-based nonuniform sampling that can exploit prior knowledge about chemical shifts and is not restricted to sampling projections. Based on several measures of performance, we find that exponentially weighted random sampling (envelope matched sampling) performs better than shift-based sampling (beat matched sampling). While shift-based sampling can yield small advantages in sensitivity, the gains are generally outweighed by diminished robustness. Our observation that more robust sampling schemes are only slightly less sensitive than schemes highly optimized using prior knowledge about chemical shifts has broad implications for any multidimensional NMR study employing NUS. The results derived from simulated data are demonstrated with a sample application to PfPMT, the phosphoethanolamine methyltransferase of the human malaria parasite Plasmodium falciparum.
[Study on optimal model of hypothetical work injury insurance scheme].
Ye, Chi-yu; Dong, Heng-jin; Wu, Yuan; Duan, Sheng-nan; Liu, Xiao-fang; You, Hua; Hu, Hui-mei; Wang, Lin-hao; Zhang, Xing; Wang, Jing
2013-12-01
To explore an optimal model of hypothetical work injury insurance scheme, which is in line with the wishes of workers, based on the problems in the implementation of work injury insurance in China and to provide useful information for relevant policy makers. Multistage cluster sampling was used to select subjects: first, 9 small, medium, and large enterprises were selected from three cities (counties) in Zhejiang Province, China according to the economic development, transportation, and cooperation; then, 31 workshops were randomly selected from the 9 enterprises. Face-to-face interviews were conducted by trained interviewers using a pre-designed questionnaire among all workers in the 31 workshops. After optimization of hypothetical work injury insurance scheme, the willingness to participate in the scheme increased from 73.87%to 80.96%; the average willingness to pay for the scheme increased from 2.21% (51.77 yuan) to 2.38% of monthly wage (54.93 Yuan); the median willingness to pay for the scheme increased from 1% to 1.2% of monthly wage, but decreased from 35 yuan to 30 yuan. The optimal model of hypothetical work injury insurance scheme covers all national and provincial statutory occupational diseases and work accidents, as well as consultations about occupational diseases. The scheme is supposed to be implemented worldwide by the National Social Security Department, without regional differences. The premium is borne by the state, enterprises, and individuals, and an independent insurance fund is kept in the lifetime personal account for each of insured individuals. The premium is not refunded in any event. Compensation for occupational diseases or work accidents is unrelated to the enterprises of the insured workers but related to the length of insurance. The insurance becomes effective one year after enrollment, while it is put into effect immediately after the occupational disease or accident occurs. The optimal model of hypothetical work injury insurance scheme actually realizes cross-regional mobility of workers, minimizes regional differences, and embodies the fairness. The proposed model will, to some extent, protect the rights and interests of enterprises, as well as the healthy rights and interests of workers when they are unemployed.
Hagen, Wim J H; Wan, William; Briggs, John A G
2017-02-01
Cryo-electron tomography (cryoET) allows 3D structural information to be obtained from cells and other biological samples in their close-to-native state. In combination with subtomogram averaging, detailed structures of repeating features can be resolved. CryoET data is collected as a series of images of the sample from different tilt angles; this is performed by physically rotating the sample in the microscope between each image. The angles at which the images are collected, and the order in which they are collected, together are called the tilt-scheme. Here we describe a "dose-symmetric tilt-scheme" that begins at low tilt and then alternates between increasingly positive and negative tilts. This tilt-scheme maximizes the amount of high-resolution information maintained in the tomogram for subsequent subtomogram averaging, and may also be advantageous for other applications. We describe implementation of the tilt-scheme in combination with further data-collection refinements including setting thresholds on acceptable drift and improving focus accuracy. Requirements for microscope set-up are introduced, and a macro is provided which automates the application of the tilt-scheme within SerialEM. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Designing single- and multiple-shell sampling schemes for diffusion MRI using spherical code.
Cheng, Jian; Shen, Dinggang; Yap, Pew-Thian
2014-01-01
In diffusion MRI (dMRI), determining an appropriate sampling scheme is crucial for acquiring the maximal amount of information for data reconstruction and analysis using the minimal amount of time. For single-shell acquisition, uniform sampling without directional preference is usually favored. To achieve this, a commonly used approach is the Electrostatic Energy Minimization (EEM) method introduced in dMRI by Jones et al. However, the electrostatic energy formulation in EEM is not directly related to the goal of optimal sampling-scheme design, i.e., achieving large angular separation between sampling points. A mathematically more natural approach is to consider the Spherical Code (SC) formulation, which aims to achieve uniform sampling by maximizing the minimal angular difference between sampling points on the unit sphere. Although SC is well studied in the mathematical literature, its current formulation is limited to a single shell and is not applicable to multiple shells. Moreover, SC, or more precisely continuous SC (CSC), currently can only be applied on the continuous unit sphere and hence cannot be used in situations where one or several subsets of sampling points need to be determined from an existing sampling scheme. In this case, discrete SC (DSC) is required. In this paper, we propose novel DSC and CSC methods for designing uniform single-/multi-shell sampling schemes. The DSC and CSC formulations are solved respectively by Mixed Integer Linear Programming (MILP) and a gradient descent approach. A fast greedy incremental solution is also provided for both DSC and CSC. To our knowledge, this is the first work to use SC formulation for designing sampling schemes in dMRI. Experimental results indicate that our methods obtain larger angular separation and better rotational invariance than the generalized EEM (gEEM) method currently used in the Human Connectome Project (HCP).
Narayanan, Vignesh; Jagannathan, Sarangapani
2017-06-08
This paper presents an approximate optimal distributed control scheme for a known interconnected system composed of input affine nonlinear subsystems using event-triggered state and output feedback via a novel hybrid learning scheme. First, the cost function for the overall system is redefined as the sum of cost functions of individual subsystems. A distributed optimal control policy for the interconnected system is developed using the optimal value function of each subsystem. To generate the optimal control policy, forward-in-time, neural networks are employed to reconstruct the unknown optimal value function at each subsystem online. In order to retain the advantages of event-triggered feedback for an adaptive optimal controller, a novel hybrid learning scheme is proposed to reduce the convergence time for the learning algorithm. The development is based on the observation that, in the event-triggered feedback, the sampling instants are dynamic and results in variable interevent time. To relax the requirement of entire state measurements, an extended nonlinear observer is designed at each subsystem to recover the system internal states from the measurable feedback. Using a Lyapunov-based analysis, it is demonstrated that the system states and the observer errors remain locally uniformly ultimately bounded and the control policy converges to a neighborhood of the optimal policy. Simulation results are presented to demonstrate the performance of the developed controller.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Sirui, E-mail: siruitan@hotmail.com; Huang, Lianjie, E-mail: ljh@lanl.gov
For modeling scalar-wave propagation in geophysical problems using finite-difference schemes, optimizing the coefficients of the finite-difference operators can reduce numerical dispersion. Most optimized finite-difference schemes for modeling seismic-wave propagation suppress only spatial but not temporal dispersion errors. We develop a novel optimized finite-difference scheme for numerical scalar-wave modeling to control dispersion errors not only in space but also in time. Our optimized scheme is based on a new stencil that contains a few more grid points than the standard stencil. We design an objective function for minimizing relative errors of phase velocities of waves propagating in all directions within amore » given range of wavenumbers. Dispersion analysis and numerical examples demonstrate that our optimized finite-difference scheme is computationally up to 2.5 times faster than the optimized schemes using the standard stencil to achieve the similar modeling accuracy for a given 2D or 3D problem. Compared with the high-order finite-difference scheme using the same new stencil, our optimized scheme reduces 50 percent of the computational cost to achieve the similar modeling accuracy. This new optimized finite-difference scheme is particularly useful for large-scale 3D scalar-wave modeling and inversion.« less
A Comparison of Two Sampling Strategies to Assess Discomycete Diversity in Wet Tropical Forests
SHARON A. CANTRELL
2004-01-01
Most of the fungal diversity studies that have used a systematic collecting scheme have not included the discomycetes, so optimal sampling methods are not available for this group. In this study, I tested two sampling methods at each sites in the Caribbean National Forest, Puerto Rico and Ebano Verde Reserve, Dominican Republic. For a plot-based sampling method, 10 Ã...
Exploring Sampling in the Detection of Multicategory EEG Signals
Siuly, Siuly; Kabir, Enamul; Wang, Hua; Zhang, Yanchun
2015-01-01
The paper presents a structure based on samplings and machine leaning techniques for the detection of multicategory EEG signals where random sampling (RS) and optimal allocation sampling (OS) are explored. In the proposed framework, before using the RS and OS scheme, the entire EEG signals of each class are partitioned into several groups based on a particular time period. The RS and OS schemes are used in order to have representative observations from each group of each category of EEG data. Then all of the selected samples by the RS from the groups of each category are combined in a one set named RS set. In the similar way, for the OS scheme, an OS set is obtained. Then eleven statistical features are extracted from the RS and OS set, separately. Finally this study employs three well-known classifiers: k-nearest neighbor (k-NN), multinomial logistic regression with a ridge estimator (MLR), and support vector machine (SVM) to evaluate the performance for the RS and OS feature set. The experimental outcomes demonstrate that the RS scheme well represents the EEG signals and the k-NN with the RS is the optimum choice for detection of multicategory EEG signals. PMID:25977705
Optimizing Performance of a Microwave Salinity Mapper: STARRS L-Band Radiometer Enhancements
2007-05-04
Contribution Number NRL/JA/ setts at Amherst, along with Quadrant Engineering Inc. 7330-05-5313. (now ProSensing Inc.) and funding from the National...Thus, sampling schemes development of STARRS by Quadrant Engineering can be optimized for particular applications. STARRS began under Naval Research...performance to be optimized. As we show later, a draw- ture, computed as the mean temperature from four back of this approach not found in analog
Li, Yongbao; Tian, Zhen; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun
2017-01-07
Monte Carlo (MC)-based spot dose calculation is highly desired for inverse treatment planning in proton therapy because of its accuracy. Recent studies on biological optimization have also indicated the use of MC methods to compute relevant quantities of interest, e.g. linear energy transfer. Although GPU-based MC engines have been developed to address inverse optimization problems, their efficiency still needs to be improved. Also, the use of a large number of GPUs in MC calculation is not favorable for clinical applications. The previously proposed adaptive particle sampling (APS) method can improve the efficiency of MC-based inverse optimization by using the computationally expensive MC simulation more effectively. This method is more efficient than the conventional approach that performs spot dose calculation and optimization in two sequential steps. In this paper, we propose a computational library to perform MC-based spot dose calculation on GPU with the APS scheme. The implemented APS method performs a non-uniform sampling of the particles from pencil beam spots during the optimization process, favoring those from the high intensity spots. The library also conducts two computationally intensive matrix-vector operations frequently used when solving an optimization problem. This library design allows a streamlined integration of the MC-based spot dose calculation into an existing proton therapy inverse planning process. We tested the developed library in a typical inverse optimization system with four patient cases. The library achieved the targeted functions by supporting inverse planning in various proton therapy schemes, e.g. single field uniform dose, 3D intensity modulated proton therapy, and distal edge tracking. The efficiency was 41.6 ± 15.3% higher than the use of a GPU-based MC package in a conventional calculation scheme. The total computation time ranged between 2 and 50 min on a single GPU card depending on the problem size.
NASA Astrophysics Data System (ADS)
Li, Yongbao; Tian, Zhen; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun
2017-01-01
Monte Carlo (MC)-based spot dose calculation is highly desired for inverse treatment planning in proton therapy because of its accuracy. Recent studies on biological optimization have also indicated the use of MC methods to compute relevant quantities of interest, e.g. linear energy transfer. Although GPU-based MC engines have been developed to address inverse optimization problems, their efficiency still needs to be improved. Also, the use of a large number of GPUs in MC calculation is not favorable for clinical applications. The previously proposed adaptive particle sampling (APS) method can improve the efficiency of MC-based inverse optimization by using the computationally expensive MC simulation more effectively. This method is more efficient than the conventional approach that performs spot dose calculation and optimization in two sequential steps. In this paper, we propose a computational library to perform MC-based spot dose calculation on GPU with the APS scheme. The implemented APS method performs a non-uniform sampling of the particles from pencil beam spots during the optimization process, favoring those from the high intensity spots. The library also conducts two computationally intensive matrix-vector operations frequently used when solving an optimization problem. This library design allows a streamlined integration of the MC-based spot dose calculation into an existing proton therapy inverse planning process. We tested the developed library in a typical inverse optimization system with four patient cases. The library achieved the targeted functions by supporting inverse planning in various proton therapy schemes, e.g. single field uniform dose, 3D intensity modulated proton therapy, and distal edge tracking. The efficiency was 41.6 ± 15.3% higher than the use of a GPU-based MC package in a conventional calculation scheme. The total computation time ranged between 2 and 50 min on a single GPU card depending on the problem size.
Li, Yongbao; Tian, Zhen; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun
2016-01-01
Monte Carlo (MC)-based spot dose calculation is highly desired for inverse treatment planning in proton therapy because of its accuracy. Recent studies on biological optimization have also indicated the use of MC methods to compute relevant quantities of interest, e.g. linear energy transfer. Although GPU-based MC engines have been developed to address inverse optimization problems, their efficiency still needs to be improved. Also, the use of a large number of GPUs in MC calculation is not favorable for clinical applications. The previously proposed adaptive particle sampling (APS) method can improve the efficiency of MC-based inverse optimization by using the computationally expensive MC simulation more effectively. This method is more efficient than the conventional approach that performs spot dose calculation and optimization in two sequential steps. In this paper, we propose a computational library to perform MC-based spot dose calculation on GPU with the APS scheme. The implemented APS method performs a non-uniform sampling of the particles from pencil beam spots during the optimization process, favoring those from the high intensity spots. The library also conducts two computationally intensive matrix-vector operations frequently used when solving an optimization problem. This library design allows a streamlined integration of the MC-based spot dose calculation into an existing proton therapy inverse planning process. We tested the developed library in a typical inverse optimization system with four patient cases. The library achieved the targeted functions by supporting inverse planning in various proton therapy schemes, e.g. single field uniform dose, 3D intensity modulated proton therapy, and distal edge tracking. The efficiency was 41.6±15.3% higher than the use of a GPU-based MC package in a conventional calculation scheme. The total computation time ranged between 2 and 50 min on a single GPU card depending on the problem size. PMID:27991456
Multiple-copy state discrimination: Thinking globally, acting locally
NASA Astrophysics Data System (ADS)
Higgins, B. L.; Doherty, A. C.; Bartlett, S. D.; Pryde, G. J.; Wiseman, H. M.
2011-05-01
We theoretically investigate schemes to discriminate between two nonorthogonal quantum states given multiple copies. We consider a number of state discrimination schemes as applied to nonorthogonal, mixed states of a qubit. In particular, we examine the difference that local and global optimization of local measurements makes to the probability of obtaining an erroneous result, in the regime of finite numbers of copies N, and in the asymptotic limit as N→∞. Five schemes are considered: optimal collective measurements over all copies, locally optimal local measurements in a fixed single-qubit measurement basis, globally optimal fixed local measurements, locally optimal adaptive local measurements, and globally optimal adaptive local measurements. Here an adaptive measurement is one in which the measurement basis can depend on prior measurement results. For each of these measurement schemes we determine the probability of error (for finite N) and the scaling of this error in the asymptotic limit. In the asymptotic limit, it is known analytically (and we verify numerically) that adaptive schemes have no advantage over the optimal fixed local scheme. Here we show moreover that, in this limit, the most naive scheme (locally optimal fixed local measurements) is as good as any noncollective scheme except for states with less than 2% mixture. For finite N, however, the most sophisticated local scheme (globally optimal adaptive local measurements) is better than any other noncollective scheme for any degree of mixture.
Multiple-copy state discrimination: Thinking globally, acting locally
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higgins, B. L.; Pryde, G. J.; Wiseman, H. M.
2011-05-15
We theoretically investigate schemes to discriminate between two nonorthogonal quantum states given multiple copies. We consider a number of state discrimination schemes as applied to nonorthogonal, mixed states of a qubit. In particular, we examine the difference that local and global optimization of local measurements makes to the probability of obtaining an erroneous result, in the regime of finite numbers of copies N, and in the asymptotic limit as N{yields}{infinity}. Five schemes are considered: optimal collective measurements over all copies, locally optimal local measurements in a fixed single-qubit measurement basis, globally optimal fixed local measurements, locally optimal adaptive local measurements,more » and globally optimal adaptive local measurements. Here an adaptive measurement is one in which the measurement basis can depend on prior measurement results. For each of these measurement schemes we determine the probability of error (for finite N) and the scaling of this error in the asymptotic limit. In the asymptotic limit, it is known analytically (and we verify numerically) that adaptive schemes have no advantage over the optimal fixed local scheme. Here we show moreover that, in this limit, the most naive scheme (locally optimal fixed local measurements) is as good as any noncollective scheme except for states with less than 2% mixture. For finite N, however, the most sophisticated local scheme (globally optimal adaptive local measurements) is better than any other noncollective scheme for any degree of mixture.« less
NASA Astrophysics Data System (ADS)
Wang, Ziyang; Fiorini, Paolo; Leonov, Vladimir; Van Hoof, Chris
2009-09-01
This paper presents the material characterization methods, characterization results and the optimization scheme for polycrystalline Si70%Ge30% (poly-SiGe) from the perspective of its application in a surface micromachined thermopile. Due to its comparative advantages, such as lower thermal conductivity and ease of processing, over other materials, poly-SiGe is chosen to fabricate a surface micromachined thermopile and eventually a wearable thermoelectric generator (TEG) to be used on a human body. To enable optimal design of advanced thermocouple microstructures, poly-SiGe sample materials prepared by two different techniques, namely low-pressure chemical vapor deposition (LPCVD) with in situ doping and rapid thermal chemical vapor deposition (RTCVD) with ion implantation, have been characterized. Relevant material properties, including electrical resistivity, Seebeck coefficient, thermal conductivity and specific contact resistance, have been reported. For the determination of thermal conductivity, a novel surface-micromachined test structure based on the Seebeck effect is designed, fabricated and measured. Compared to the traditional test structures, it is more advantageous for sample materials with a relatively large Seebeck coefficient, such as poly-SiGe. Based on the characterization results, a further optimization scheme is suggested to allow independent respective optimization of the figure of merit and the specific contact resistance.
Rey, Sergio J.; Stephens, Philip A.; Laura, Jason R.
2017-01-01
Large data contexts present a number of challenges to optimal choropleth map classifiers. Application of optimal classifiers to a sample of the attribute space is one proposed solution. The properties of alternative sampling-based classification methods are examined through a series of Monte Carlo simulations. The impacts of spatial autocorrelation, number of desired classes, and form of sampling are shown to have significant impacts on the accuracy of map classifications. Tradeoffs between improved speed of the sampling approaches and loss of accuracy are also considered. The results suggest the possibility of guiding the choice of classification scheme as a function of the properties of large data sets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chi, Y; Li, Y; Tian, Z
2015-06-15
Purpose: Pencil-beam or superposition-convolution type dose calculation algorithms are routinely used in inverse plan optimization for intensity modulated radiation therapy (IMRT). However, due to their limited accuracy in some challenging cases, e.g. lung, the resulting dose may lose its optimality after being recomputed using an accurate algorithm, e.g. Monte Carlo (MC). It is the objective of this study to evaluate the feasibility and advantages of a new method to include MC in the treatment planning process. Methods: We developed a scheme to iteratively perform MC-based beamlet dose calculations and plan optimization. In the MC stage, a GPU-based dose engine wasmore » used and the particle number sampled from a beamlet was proportional to its optimized fluence from the previous step. We tested this scheme in four lung cancer IMRT cases. For each case, the original plan dose, plan dose re-computed by MC, and dose optimized by our scheme were obtained. Clinically relevant dosimetric quantities in these three plans were compared. Results: Although the original plan achieved a satisfactory PDV dose coverage, after re-computing doses using MC method, it was found that the PTV D95% were reduced by 4.60%–6.67%. After re-optimizing these cases with our scheme, the PTV coverage was improved to the same level as in the original plan, while the critical OAR coverages were maintained to clinically acceptable levels. Regarding the computation time, it took on average 144 sec per case using only one GPU card, including both MC-based beamlet dose calculation and treatment plan optimization. Conclusion: The achieved dosimetric gains and high computational efficiency indicate the feasibility and advantages of the proposed MC-based IMRT optimization method. Comprehensive validations in more patient cases are in progress.« less
Comparative study of numerical schemes of TVD3, UNO3-ACM and optimized compact scheme
NASA Technical Reports Server (NTRS)
Lee, Duck-Joo; Hwang, Chang-Jeon; Ko, Duck-Kon; Kim, Jae-Wook
1995-01-01
Three different schemes are employed to solve the benchmark problem. The first one is a conventional TVD-MUSCL (Monotone Upwind Schemes for Conservation Laws) scheme. The second scheme is a UNO3-ACM (Uniformly Non-Oscillatory Artificial Compression Method) scheme. The third scheme is an optimized compact finite difference scheme modified by us: the 4th order Runge Kutta time stepping, the 4th order pentadiagonal compact spatial discretization with the maximum resolution characteristics. The problems of category 1 are solved by using the second (UNO3-ACM) and third (Optimized Compact) schemes. The problems of category 2 are solved by using the first (TVD3) and second (UNO3-ACM) schemes. The problem of category 5 is solved by using the first (TVD3) scheme. It can be concluded from the present calculations that the Optimized Compact scheme and the UN03-ACM show good resolutions for category 1 and category 2 respectively.
Biochemical surface modification of Co-Cr-Mo.
Puleo, D A
1996-01-01
Because of the limited mechanical properties of tissue substitutes formed by culturing cells on polymeric scaffolds, other approaches to tissue engineering must be explored for applications that require complete and immediate ability to bear weight, e.g. total joint replacements. Biochemical surface modification offers a way to partially regulate events at the bone-implant interface to obtain preferred tissue responses. Tresyl chloride, gamma-aminopropyltriethoxysilane (APS) and p-nitrophenyl chloroformate (p-NPC) immobilization schemes were used to couple a model enzyme, trypsin, on bulk samples of Co-Cr-Mo. For comparison, samples were simply adsorbed with protein. The three derivatization schemes resulted in different patterns and levels of activity. Tresyl chloride was not effective in immobilizing active enzyme on Co-Cr-Mo. Aqueous silanization with 12.5% APS resulted in optimal immobilized activity. Activity on samples derivatized with 0.65 mg p-NPC cm-2 was four to five times greater than that on samples simple adsorbed with enzyme or optimally derivatized with APS and was about eight times that on tresylated samples. This work demonstrates that, although different methods have different effectiveness, chemical derivatization can be used to alter the amount and/or stability of biomolecules immobilized on the surface of Co-Cr-Mo.
NASA Astrophysics Data System (ADS)
Alzraiee, Ayman H.; Bau, Domenico A.; Garcia, Luis A.
2013-06-01
Effective sampling of hydrogeological systems is essential in guiding groundwater management practices. Optimal sampling of groundwater systems has previously been formulated based on the assumption that heterogeneous subsurface properties can be modeled using a geostatistical approach. Therefore, the monitoring schemes have been developed to concurrently minimize the uncertainty in the spatial distribution of systems' states and parameters, such as the hydraulic conductivity K and the hydraulic head H, and the uncertainty in the geostatistical model of system parameters using a single objective function that aggregates all objectives. However, it has been shown that the aggregation of possibly conflicting objective functions is sensitive to the adopted aggregation scheme and may lead to distorted results. In addition, the uncertainties in geostatistical parameters affect the uncertainty in the spatial prediction of K and H according to a complex nonlinear relationship, which has often been ineffectively evaluated using a first-order approximation. In this study, we propose a multiobjective optimization framework to assist the design of monitoring networks of K and H with the goal of optimizing their spatial predictions and estimating the geostatistical parameters of the K field. The framework stems from the combination of a data assimilation (DA) algorithm and a multiobjective evolutionary algorithm (MOEA). The DA algorithm is based on the ensemble Kalman filter, a Monte-Carlo-based Bayesian update scheme for nonlinear systems, which is employed to approximate the posterior uncertainty in K, H, and the geostatistical parameters of K obtained by collecting new measurements. Multiple MOEA experiments are used to investigate the trade-off among design objectives and identify the corresponding monitoring schemes. The methodology is applied to design a sampling network for a shallow unconfined groundwater system located in Rocky Ford, Colorado. Results indicate that the effect of uncertainties associated with the geostatistical parameters on the spatial prediction might be significantly alleviated (by up to 80% of the prior uncertainty in K and by 90% of the prior uncertainty in H) by sampling evenly distributed measurements with a spatial measurement density of more than 1 observation per 60 m × 60 m grid block. In addition, exploration of the interaction of objective functions indicates that the ability of head measurements to reduce the uncertainty associated with the correlation scale is comparable to the effect of hydraulic conductivity measurements.
Klinkenberg, Don; Thomas, Ekelijn; Artavia, Francisco F Calvo; Bouma, Annemarie
2011-08-01
Design of surveillance programs to detect infections could benefit from more insight into sampling schemes. We address the effect of sampling schemes for Salmonella Enteritidis surveillance in laying hens. Based on experimental estimates for the transmission rate in flocks, and the characteristics of an egg immunological test, we have simulated outbreaks with various sampling schemes, and with the current boot swab program with a 15-week sampling interval. Declaring a flock infected based on a single positive egg was not possible because test specificity was too low. Thus, a threshold number of positive eggs was defined to declare a flock infected, and, for small sample sizes, eggs from previous samplings had to be included in a cumulative sample to guarantee a minimum flock level specificity. Effectiveness of surveillance was measured by the proportion of outbreaks detected, and by the number of contaminated table eggs brought on the market. The boot swab program detected 90% of the outbreaks, with 75% fewer contaminated eggs compared to no surveillance, whereas the baseline egg program (30 eggs each 15 weeks) detected 86%, with 73% fewer contaminated eggs. We conclude that a larger sample size results in more detected outbreaks, whereas a smaller sampling interval decreases the number of contaminated eggs. Decreasing sample size and interval simultaneously reduces the number of contaminated eggs, but not indefinitely: the advantage of more frequent sampling is counterbalanced by the cumulative sample including less recently laid eggs. Apparently, optimizing surveillance has its limits when test specificity is taken into account. © 2011 Society for Risk Analysis.
Accurate B-spline-based 3-D interpolation scheme for digital volume correlation
NASA Astrophysics Data System (ADS)
Ren, Maodong; Liang, Jin; Wei, Bin
2016-12-01
An accurate and efficient 3-D interpolation scheme, based on sampling theorem and Fourier transform technique, is proposed to reduce the sub-voxel matching error caused by intensity interpolation bias in digital volume correlation. First, the influence factors of the interpolation bias are investigated theoretically using the transfer function of an interpolation filter (henceforth filter) in the Fourier domain. A law that the positional error of a filter can be expressed as a function of fractional position and wave number is found. Then, considering the above factors, an optimized B-spline-based recursive filter, combining B-spline transforms and least squares optimization method, is designed to virtually eliminate the interpolation bias in the process of sub-voxel matching. Besides, given each volumetric image containing different wave number ranges, a Gaussian weighting function is constructed to emphasize or suppress certain of wave number ranges based on the Fourier spectrum analysis. Finally, a novel software is developed and series of validation experiments were carried out to verify the proposed scheme. Experimental results show that the proposed scheme can reduce the interpolation bias to an acceptable level.
Wang, Mingming; Sun, Yuanxiang; Sweetapple, Chris
2017-12-15
Storage is important for flood mitigation and non-point source pollution control. However, to seek a cost-effective design scheme for storage tanks is very complex. This paper presents a two-stage optimization framework to find an optimal scheme for storage tanks using storm water management model (SWMM). The objectives are to minimize flooding, total suspended solids (TSS) load and storage cost. The framework includes two modules: (i) the analytical module, which evaluates and ranks the flooding nodes with the analytic hierarchy process (AHP) using two indicators (flood depth and flood duration), and then obtains the preliminary scheme by calculating two efficiency indicators (flood reduction efficiency and TSS reduction efficiency); (ii) the iteration module, which obtains an optimal scheme using a generalized pattern search (GPS) method based on the preliminary scheme generated by the analytical module. The proposed approach was applied to a catchment in CZ city, China, to test its capability in choosing design alternatives. Different rainfall scenarios are considered to test its robustness. The results demonstrate that the optimal framework is feasible, and the optimization is fast based on the preliminary scheme. The optimized scheme is better than the preliminary scheme for reducing runoff and pollutant loads under a given storage cost. The multi-objective optimization framework presented in this paper may be useful in finding the best scheme of storage tanks or low impact development (LID) controls. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Momoh, James A.; Salkuti, Surender Reddy
2016-06-01
This paper proposes a stochastic optimization technique for solving the Voltage/VAr control problem including the load demand and Renewable Energy Resources (RERs) variation. The RERs often take along some inputs like stochastic behavior. One of the important challenges i. e., Voltage/VAr control is a prime source for handling power system complexity and reliability, hence it is the fundamental requirement for all the utility companies. There is a need for the robust and efficient Voltage/VAr optimization technique to meet the peak demand and reduction of system losses. The voltages beyond the limit may damage costly sub-station devices and equipments at consumer end as well. Especially, the RERs introduces more disturbances and some of the RERs are not even capable enough to meet the VAr demand. Therefore, there is a strong need for the Voltage/VAr control in RERs environment. This paper aims at the development of optimal scheme for Voltage/VAr control involving RERs. In this paper, Latin Hypercube Sampling (LHS) method is used to cover full range of variables by maximally satisfying the marginal distribution. Here, backward scenario reduction technique is used to reduce the number of scenarios effectively and maximally retain the fitting accuracy of samples. The developed optimization scheme is tested on IEEE 24 bus Reliability Test System (RTS) considering the load demand and RERs variation.
Nunes, Rita G; Hajnal, Joseph V
2018-06-01
Point spread function (PSF) mapping enables estimating the displacement fields required for distortion correction of echo planar images. Recently, a highly accelerated approach was introduced for estimating displacements from the phase slope of under-sampled PSF mapping data. Sampling schemes with varying spacing were proposed requiring stepwise phase unwrapping. To avoid unwrapping errors, an alternative approach applying the concept of finite rate of innovation to PSF mapping (FRIP) is introduced, using a pattern search strategy to locate the PSF peak, and the two methods are compared. Fully sampled PSF data was acquired in six subjects at 3.0 T, and distortion maps were estimated after retrospective under-sampling. The two methods were compared for both previously published and newly optimized sampling patterns. Prospectively under-sampled data were also acquired. Shift maps were estimated and deviations relative to the fully sampled reference map were calculated. The best performance was achieved when using FRIP with a previously proposed sampling scheme. The two methods were comparable for the remaining schemes. The displacement field errors tended to be lower as the number of samples or their spacing increased. A robust method for estimating the position of the PSF peak has been introduced.
Last-position elimination-based learning automata.
Zhang, Junqi; Wang, Cheng; Zhou, MengChu
2014-12-01
An update scheme of the state probability vector of actions is critical for learning automata (LA). The most popular is the pursuit scheme that pursues the estimated optimal action and penalizes others. This paper proposes a reverse philosophy that leads to last-position elimination-based learning automata (LELA). The action graded last in terms of the estimated performance is penalized by decreasing its state probability and is eliminated when its state probability becomes zero. All active actions, that is, actions with nonzero state probability, equally share the penalized state probability from the last-position action at each iteration. The proposed LELA is characterized by the relaxed convergence condition for the optimal action, the accelerated step size of the state probability update scheme for the estimated optimal action, and the enriched sampling for the estimated nonoptimal actions. The proof of the ϵ-optimal property for the proposed algorithm is presented. Last-position elimination is a widespread philosophy in the real world and has proved to be also helpful for the update scheme of the learning automaton via the simulations of well-known benchmark environments. In the simulations, two versions of the LELA, using different selection strategies of the last action, are compared with the classical pursuit algorithms Discretized Pursuit Reward-Inaction (DP(RI)) and Discretized Generalized Pursuit Algorithm (DGPA). Simulation results show that the proposed schemes achieve significantly faster convergence and higher accuracy than the classical ones. Specifically, the proposed schemes reduce the interval to find the best parameter for a specific environment in the classical pursuit algorithms. Thus, they can have their parameter tuning easier to perform and can save much more time when applied to a practical case. Furthermore, the convergence curves and the corresponding variance coefficient curves of the contenders are illustrated to characterize their essential differences and verify the analysis results of the proposed algorithms.
X-ray simulations method for the large field of view
NASA Astrophysics Data System (ADS)
Schelokov, I. A.; Grigoriev, M. V.; Chukalina, M. V.; Asadchikov, V. E.
2018-03-01
In the standard approach, X-ray simulation is usually limited to the step of spatial sampling to calculate the convolution of integrals of the Fresnel type. Explicitly the sampling step is determined by the size of the last Fresnel zone in the beam aperture. In other words, the spatial sampling is determined by the precision of integral convolution calculations and is not connected with the space resolution of an optical scheme. In the developed approach the convolution in the normal space is replaced by computations of the shear strain of ambiguity function in the phase space. The spatial sampling is then determined by the space resolution of an optical scheme. The sampling step can differ in various directions because of the source anisotropy. The approach was used to simulate original images in the X-ray Talbot interferometry and showed that the simulation can be applied to optimize the methods of postprocessing.
Optimal Bayesian Adaptive Design for Test-Item Calibration.
van der Linden, Wim J; Ren, Hao
2015-06-01
An optimal adaptive design for test-item calibration based on Bayesian optimality criteria is presented. The design adapts the choice of field-test items to the examinees taking an operational adaptive test using both the information in the posterior distributions of their ability parameters and the current posterior distributions of the field-test parameters. Different criteria of optimality based on the two types of posterior distributions are possible. The design can be implemented using an MCMC scheme with alternating stages of sampling from the posterior distributions of the test takers' ability parameters and the parameters of the field-test items while reusing samples from earlier posterior distributions of the other parameters. Results from a simulation study demonstrated the feasibility of the proposed MCMC implementation for operational item calibration. A comparison of performances for different optimality criteria showed faster calibration of substantial numbers of items for the criterion of D-optimality relative to A-optimality, a special case of c-optimality, and random assignment of items to the test takers.
European consensus conference for external quality assessment in molecular pathology.
van Krieken, J H; Siebers, A G; Normanno, N
2013-08-01
Molecular testing of tumor samples to guide treatment decisions is of increasing importance. Several drugs have been approved for treatment of molecularly defined subgroups of patients, and the number of agents requiring companion diagnostics for their prescription is expected to rapidly increase. The results of such testing directly influence the management of individual patients, with both false-negative and false-positive results being harmful for patients. In this respect, external quality assurance (EQA) programs are essential to guarantee optimal quality of testing. There are several EQA schemes available in Europe, but they vary in scope, size and execution. During a conference held in early 2012, medical oncologists, pathologists, geneticists, molecular biologists, EQA providers and representatives from pharmaceutical industries developed a guideline to harmonize the standards applied by EQA schemes in molecular pathology. The guideline comprises recommendations on the organization of an EQA scheme, defining the criteria for reference laboratories, requirements for EQA test samples and the number of samples that are needed for an EQA scheme. Furthermore, a scoring system is proposed and consequences of poor performance are formulated. Lastly, the contents of an EQA report, communication of the EQA results, EQA databases and participant manual are given.
Granmo, Ole-Christoffer; Oommen, B John; Myrer, Svein Arild; Olsen, Morten Goodwin
2007-02-01
This paper considers the nonlinear fractional knapsack problem and demonstrates how its solution can be effectively applied to two resource allocation problems dealing with the World Wide Web. The novel solution involves a "team" of deterministic learning automata (LA). The first real-life problem relates to resource allocation in web monitoring so as to "optimize" information discovery when the polling capacity is constrained. The disadvantages of the currently reported solutions are explained in this paper. The second problem concerns allocating limited sampling resources in a "real-time" manner with the purpose of estimating multiple binomial proportions. This is the scenario encountered when the user has to evaluate multiple web sites by accessing a limited number of web pages, and the proportions of interest are the fraction of each web site that is successfully validated by an HTML validator. Using the general LA paradigm to tackle both of the real-life problems, the proposed scheme improves a current solution in an online manner through a series of informed guesses that move toward the optimal solution. At the heart of the scheme, a team of deterministic LA performs a controlled random walk on a discretized solution space. Comprehensive experimental results demonstrate that the discretization resolution determines the precision of the scheme, and that for a given precision, the current solution (to both problems) is consistently improved until a nearly optimal solution is found--even for switching environments. Thus, the scheme, while being novel to the entire field of LA, also efficiently handles a class of resource allocation problems previously not addressed in the literature.
NASA Astrophysics Data System (ADS)
Abdul-Majeed, Wameath Sh
This research is dedicated to develop a fully integrated system for heavy metals determination in water samples based on micro fluidic plasma atomizers. Several configurations of dielectric barrier discharge (DBD) atomizer are designed, fabricated and tested toward this target. Finally, a combination of annular and rectangular DBD atomizers has been utilized to develop a scheme for heavy metals determination. The present thesis has combined both theoretical and experimental investigations to fulfil the requirements. Several mathematical studies are implemented to explore the optimal design parameters for best system performance. On the other hand, expanded experimental explorations are conducted to assess the proposed operational approaches. The experiments were designed according to a central composite rotatable design; hence, an empirical model has been produced for each studied case. Moreover, several statistical approaches are adopted to analyse the system performance and to deduce the optimal operational parameters.. The introduction of the examined analyte to the plasma atomizer has been achieved by applying chemical schemes, where the element in the sample has been derivitized by using different kinds of reducing agents to produce vapour species (e.g. hydrides) for a group of nine elements examined in this research individually and simultaneously. Moreover, other derivatization schemes based on photochemical vapour generation assisted by ultrasound irradiation are also investigated. Generally speaking, the detection limits achieved in this research for the examined set of elements (by applying hydroborate scheme) are found to be acceptable in accordance with the standard limits in drinking water. The results of copper compared with the data from other technologies in the literature, showed a competitive detection limit obtained from applying the developed scheme, with an advantage of conducting simultaneous, fully automated, insitu, online- real time analysis as well as a possibility of connecting the proposed device to control loops..
Moderate deviations-based importance sampling for stochastic recursive equations
Dupuis, Paul; Johnson, Dane
2017-11-17
Abstract Subsolutions to the Hamilton–Jacobi–Bellman equation associated with a moderate deviations approximation are used to design importance sampling changes of measure for stochastic recursive equations. Analogous to what has been done for large deviations subsolution-based importance sampling, these schemes are shown to be asymptotically optimal under the moderate deviations scaling. We present various implementations and numerical results to contrast their performance, and also discuss the circumstances under which a moderate deviation scaling might be appropriate.
Moderate deviations-based importance sampling for stochastic recursive equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupuis, Paul; Johnson, Dane
Abstract Subsolutions to the Hamilton–Jacobi–Bellman equation associated with a moderate deviations approximation are used to design importance sampling changes of measure for stochastic recursive equations. Analogous to what has been done for large deviations subsolution-based importance sampling, these schemes are shown to be asymptotically optimal under the moderate deviations scaling. We present various implementations and numerical results to contrast their performance, and also discuss the circumstances under which a moderate deviation scaling might be appropriate.
Critical evaluation of sample pretreatment techniques.
Hyötyläinen, Tuulia
2009-06-01
Sample preparation before chromatographic separation is the most time-consuming and error-prone part of the analytical procedure. Therefore, selecting and optimizing an appropriate sample preparation scheme is a key factor in the final success of the analysis, and the judicious choice of an appropriate procedure greatly influences the reliability and accuracy of a given analysis. The main objective of this review is to critically evaluate the applicability, disadvantages, and advantages of various sample preparation techniques. Particular emphasis is placed on extraction techniques suitable for both liquid and solid samples.
Zhang, Yichuan; Wang, Jiangping
2015-07-01
Rivers serve as a highly valued component in ecosystem and urban infrastructures. River planning should follow basic principles of maintaining or reconstructing the natural landscape and ecological functions of rivers. Optimization of planning scheme is a prerequisite for successful construction of urban rivers. Therefore, relevant studies on optimization of scheme for natural ecology planning of rivers is crucial. In the present study, four planning schemes for Zhaodingpal River in Xinxiang City, Henan Province were included as the objects for optimization. Fourteen factors that influenced the natural ecology planning of urban rivers were selected from five aspects so as to establish the ANP model. The data processing was done using Super Decisions software. The results showed that important degree of scheme 3 was highest. A scientific, reasonable and accurate evaluation of schemes could be made by ANP method on natural ecology planning of urban rivers. This method could be used to provide references for sustainable development and construction of urban rivers. ANP method is also suitable for optimization of schemes for urban green space planning and design.
Zunder, Eli R.; Finck, Rachel; Behbehani, Gregory K.; Amir, El-ad D.; Krishnaswamy, Smita; Gonzalez, Veronica D.; Lorang, Cynthia G.; Bjornson, Zach; Spitzer, Matthew H.; Bodenmiller, Bernd; Fantl, Wendy J.; Pe’er, Dana; Nolan, Garry P.
2015-01-01
SUMMARY Mass-tag cell barcoding (MCB) labels individual cell samples with unique combinatorial barcodes, after which they are pooled for processing and measurement as a single multiplexed sample. The MCB method eliminates variability between samples in antibody staining and instrument sensitivity, reduces antibody consumption, and shortens instrument measurement time. Here, we present an optimized MCB protocol with several improvements over previously described methods. The use of palladium-based labeling reagents expands the number of measurement channels available for mass cytometry and reduces interference with lanthanide-based antibody measurement. An error-detecting combinatorial barcoding scheme allows cell doublets to be identified and removed from the analysis. A debarcoding algorithm that is single cell-based rather than population-based improves the accuracy and efficiency of sample deconvolution. This debarcoding algorithm has been packaged into software that allows rapid and unbiased sample deconvolution. The MCB procedure takes 3–4 h, not including sample acquisition time of ~1 h per million cells. PMID:25612231
Optimal weighting in fNL constraints from large scale structure in an idealised case
NASA Astrophysics Data System (ADS)
Slosar, Anže
2009-03-01
We consider the problem of optimal weighting of tracers of structure for the purpose of constraining the non-Gaussianity parameter fNL. We work within the Fisher matrix formalism expanded around fiducial model with fNL = 0 and make several simplifying assumptions. By slicing a general sample into infinitely many samples with different biases, we derive the analytic expression for the relevant Fisher matrix element. We next consider weighting schemes that construct two effective samples from a single sample of tracers with a continuously varying bias. We show that a particularly simple ansatz for weighting functions can recover all information about fNL in the initial sample that is recoverable using a given bias observable and that simple division into two equal samples is considerably suboptimal when sampling of modes is good, but only marginally suboptimal in the limit where Poisson errors dominate.
Stochastic Resonance in Signal Detection and Human Perception
2006-07-05
learning scheme performing a stochastic gradient ascent on the SNR to determine the optimal noise level based on the samples from the process. Rather than...produce some SR effect in threshold neurons and a new statistically robust learning law was proposed to find the optimal noise level. [McDonnell...Ultimately, we know that it is the brain that responds to a visual stimulus causing neurons to fire. Conceivably if we understood the effect of the noise PDF
Zhou, Zhengwei; Bi, Xiaoming; Wei, Janet; Yang, Hsin-Jung; Dharmakumar, Rohan; Arsanjani, Reza; Bairey Merz, C Noel; Li, Debiao; Sharif, Behzad
2017-02-01
The presence of subendocardial dark-rim artifact (DRA) remains an ongoing challenge in first-pass perfusion (FPP) cardiac magnetic resonance imaging (MRI). We propose a free-breathing FPP imaging scheme with Cartesian sampling that is optimized to minimize the DRA and readily enables near-instantaneous image reconstruction. The proposed FPP method suppresses Gibbs ringing effects-a major underlying factor for the DRA-by "shaping" the underlying point spread function through a two-step process: 1) an undersampled Cartesian sampling scheme that widens the k-space coverage compared to the conventional scheme; and 2) a modified parallel-imaging scheme that incorporates optimized apodization (k-space data filtering) to suppress Gibbs-ringing effects. Healthy volunteer studies (n = 10) were performed to compare the proposed method against the conventional Cartesian technique-both using a saturation-recovery gradient-echo sequence at 3T. Furthermore, FPP imaging studies using the proposed method were performed in infarcted canines (n = 3), and in two symptomatic patients with suspected coronary microvascular dysfunction for assessment of myocardial hypoperfusion. Width of the DRA and the number of DRA-affected myocardial segments were significantly reduced in the proposed method compared to the conventional approach (width: 1.3 vs. 2.9 mm, P < 0.001; number of segments: 2.6 vs. 8.7; P < 0.0001). The number of slices with severe DRA was markedly lower for the proposed method (by 10-fold). The reader-assigned image quality scores were similar (P = 0.2), although the quantified myocardial signal-to-noise ratio was lower for the proposed method (P < 0.05). Animal studies showed that the proposed method can detect subendocardial perfusion defects and patient results were consistent with the gold-standard invasive test. The proposed free-breathing Cartesian FPP imaging method significantly reduces the prevalence of severe DRAs compared to the conventional approach while maintaining similar resolution and image quality. 2 J. Magn. Reson. Imaging 2017;45:542-555. © 2016 International Society for Magnetic Resonance in Medicine.
Intel Xeon Phi accelerated Weather Research and Forecasting (WRF) Goddard microphysics scheme
NASA Astrophysics Data System (ADS)
Mielikainen, J.; Huang, B.; Huang, A. H.-L.
2014-12-01
The Weather Research and Forecasting (WRF) model is a numerical weather prediction system designed to serve both atmospheric research and operational forecasting needs. The WRF development is a done in collaboration around the globe. Furthermore, the WRF is used by academic atmospheric scientists, weather forecasters at the operational centers and so on. The WRF contains several physics components. The most time consuming one is the microphysics. One microphysics scheme is the Goddard cloud microphysics scheme. It is a sophisticated cloud microphysics scheme in the Weather Research and Forecasting (WRF) model. The Goddard microphysics scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. Compared to the earlier microphysics schemes, the Goddard scheme incorporates a large number of improvements. Thus, we have optimized the Goddard scheme code. In this paper, we present our results of optimizing the Goddard microphysics scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The Intel MIC is capable of executing a full operating system and entire programs rather than just kernels as the GPU does. The MIC coprocessor supports all important Intel development tools. Thus, the development environment is one familiar to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. Those optimization techniques are discussed in this paper. The results show that the optimizations improved performance of Goddard microphysics scheme on Xeon Phi 7120P by a factor of 4.7×. In addition, the optimizations reduced the Goddard microphysics scheme's share of the total WRF processing time from 20.0 to 7.5%. Furthermore, the same optimizations improved performance on Intel Xeon E5-2670 by a factor of 2.8× compared to the original code.
A multipopulation PSO based memetic algorithm for permutation flow shop scheduling.
Liu, Ruochen; Ma, Chenlin; Ma, Wenping; Li, Yangyang
2013-01-01
The permutation flow shop scheduling problem (PFSSP) is part of production scheduling, which belongs to the hardest combinatorial optimization problem. In this paper, a multipopulation particle swarm optimization (PSO) based memetic algorithm (MPSOMA) is proposed in this paper. In the proposed algorithm, the whole particle swarm population is divided into three subpopulations in which each particle evolves itself by the standard PSO and then updates each subpopulation by using different local search schemes such as variable neighborhood search (VNS) and individual improvement scheme (IIS). Then, the best particle of each subpopulation is selected to construct a probabilistic model by using estimation of distribution algorithm (EDA) and three particles are sampled from the probabilistic model to update the worst individual in each subpopulation. The best particle in the entire particle swarm is used to update the global optimal solution. The proposed MPSOMA is compared with two recently proposed algorithms, namely, PSO based memetic algorithm (PSOMA) and hybrid particle swarm optimization with estimation of distribution algorithm (PSOEDA), on 29 well-known PFFSPs taken from OR-library, and the experimental results show that it is an effective approach for the PFFSP.
Practical quantum random number generator based on measuring the shot noise of vacuum states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen Yong; Zou Hongxin; Tian Liang
2010-06-15
The shot noise of vacuum states is a kind of quantum noise and is totally random. In this paper a nondeterministic random number generation scheme based on measuring the shot noise of vacuum states is presented and experimentally demonstrated. We use a homodyne detector to measure the shot noise of vacuum states. Considering that the frequency bandwidth of our detector is limited, we derive the optimal sampling rate so that sampling points have the least correlation with each other. We also choose a method to extract random numbers from sampling values, and prove that the influence of classical noise canmore » be avoided with this method so that the detector does not have to be shot-noise limited. The random numbers generated with this scheme have passed ent and diehard tests.« less
Optimized Quasi-Interpolators for Image Reconstruction.
Sacht, Leonardo; Nehab, Diego
2015-12-01
We propose new quasi-interpolators for the continuous reconstruction of sampled images, combining a narrowly supported piecewise-polynomial kernel and an efficient digital filter. In other words, our quasi-interpolators fit within the generalized sampling framework and are straightforward to use. We go against standard practice and optimize for approximation quality over the entire Nyquist range, rather than focusing exclusively on the asymptotic behavior as the sample spacing goes to zero. In contrast to previous work, we jointly optimize with respect to all degrees of freedom available in both the kernel and the digital filter. We consider linear, quadratic, and cubic schemes, offering different tradeoffs between quality and computational cost. Experiments with compounded rotations and translations over a range of input images confirm that, due to the additional degrees of freedom and the more realistic objective function, our new quasi-interpolators perform better than the state of the art, at a similar computational cost.
NASA Astrophysics Data System (ADS)
Mielikainen, Jarno; Huang, Bormin; Huang, Allen
2015-10-01
The Thompson cloud microphysics scheme is a sophisticated cloud microphysics scheme in the Weather Research and Forecasting (WRF) model. The scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. Compared to the earlier microphysics schemes, the Thompson scheme incorporates a large number of improvements. Thus, we have optimized the speed of this important part of WRF. Intel Many Integrated Core (MIC) ushers in a new era of supercomputing speed, performance, and compatibility. It allows the developers to run code at trillions of calculations per second using the familiar programming model. In this paper, we present our results of optimizing the Thompson microphysics scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The coprocessor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. New optimizations for an updated Thompson scheme are discusses in this paper. The optimizations improved the performance of the original Thompson code on Xeon Phi 7120P by a factor of 1.8x. Furthermore, the same optimizations improved the performance of the Thompson on a dual socket configuration of eight core Intel Xeon E5-2670 CPUs by a factor of 1.8x compared to the original Thompson code.
Optimization of the two-sample rank Neyman-Pearson detector
NASA Astrophysics Data System (ADS)
Akimov, P. S.; Barashkov, V. M.
1984-10-01
The development of optimal algorithms concerned with rank considerations in the case of finite sample sizes involves considerable mathematical difficulties. The present investigation provides results related to the design and the analysis of an optimal rank detector based on a utilization of the Neyman-Pearson criteria. The detection of a signal in the presence of background noise is considered, taking into account n observations (readings) x1, x2, ... xn in the experimental communications channel. The computation of the value of the rank of an observation is calculated on the basis of relations between x and the variable y, representing interference. Attention is given to conditions in the absence of a signal, the probability of the detection of an arriving signal, details regarding the utilization of the Neyman-Pearson criteria, the scheme of an optimal rank, multichannel, incoherent detector, and an analysis of the detector.
A review on existing OSSEs and their implications on European marine observation requirements
NASA Astrophysics Data System (ADS)
She, Jun
2017-04-01
Marine observations are essential for understanding marine processes and improving the forecast quality, they are also expensive. It has always been an important issue to optimize sampling schemes of marine observational networks so that the value of marine observations can be maximized and the cost can be lowered. Ocean System Simulation Experiment (OSSE) is an efficient tool in assessing impacts of proposed future sampling schemes on reconstructing and forecasting the ocean and ecosystem conditions. In this study existing OSSE research results from EU projects (such as JERICO, OPEC, SANGOMA, E-AIMS and AtlantOS), institutional studies and review papers are collected and analyzed, according to regions (Arctic, Baltic, N. Atlantic, Mediterranean Sea and Black Sea) and instruments/variables. The preliminary results show that significant gaps for OSSEs in regions and instruments. Among the existing OSSEs, Argo (Bio-Argo and Deep See Argo), gliders and ferrybox are the most often investigated instruments. Although many of the OSSEs are dedicated for very specific monitoring strategies and not sufficiently comprehensive for making solid recommendations for optimizing the existing networks, the detailed findings for future marine observation requirements from the OSSEs will be summarized in the presentation. Recommendations for systematic OSSEs for optimizing European marine observation networks are also given.
Svanevik, Cecilie Smith; Roiha, Irja Sunde; Levsen, Arne; Lunestad, Bjørn Tore
2015-10-01
Microbes play an important role in the degradation of fish products, thus better knowledge of the microbiological conditions throughout the fish production chain may help to optimise product quality and resource utilisation. This paper presents the results of a ten-year spot sampling programme (2005-2014) of the commercially most important pelagic fish species harvested in Norway. Fish-, surface-, and storage water samples were collected from fishing vessels and processing factories. Totally 1,181 samples were assessed with respect to microbiological quality, hygiene and food safety. We introduce a quality and safety assessment scheme for fresh pelagic fish recommending limits for heterotrophic plate counts (HPC), thermos tolerant coliforms, enterococci and Listeria monocytogenes. According to the scheme, in 25 of 41 samplings, sub-optimal conditions were found with respect to quality, whereas in 21 and 9 samplings, samples were not in compliance concerning hygiene and food safety, respectively. The present study has revealed that the quality of pelagic fish can be optimised by improving the hygiene conditions at some critical points at an early phase of the production chain. Thus, the proposed assessment scheme may provide a useful tool for the industry to optimise quality and maintain consumer safety of pelagic fishery products. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Targeted ENO schemes with tailored resolution property for hyperbolic conservation laws
NASA Astrophysics Data System (ADS)
Fu, Lin; Hu, Xiangyu Y.; Adams, Nikolaus A.
2017-11-01
In this paper, we extend the range of targeted ENO (TENO) schemes (Fu et al. (2016) [18]) by proposing an eighth-order TENO8 scheme. A general formulation to construct the high-order undivided difference τK within the weighting strategy is proposed. With the underlying scale-separation strategy, sixth-order accuracy for τK in the smooth solution regions is designed for good performance and robustness. Furthermore, a unified framework to optimize independently the dispersion and dissipation properties of high-order finite-difference schemes is proposed. The new framework enables tailoring of dispersion and dissipation as function of wavenumber. The optimal linear scheme has minimum dispersion error and a dissipation error that satisfies a dispersion-dissipation relation. Employing the optimal linear scheme, a sixth-order TENO8-opt scheme is constructed. A set of benchmark cases involving strong discontinuities and broadband fluctuations is computed to demonstrate the high-resolution properties of the new schemes.
Optimization of sampling pattern and the design of Fourier ptychographic illuminator.
Guo, Kaikai; Dong, Siyuan; Nanda, Pariksheet; Zheng, Guoan
2015-03-09
Fourier ptychography (FP) is a recently developed imaging approach that facilitates high-resolution imaging beyond the cutoff frequency of the employed optics. In the original FP approach, a periodic LED array is used for sample illumination, and therefore, the scanning pattern is a uniform grid in the Fourier space. Such a uniform sampling scheme leads to 3 major problems for FP, namely: 1) it requires a large number of raw images, 2) it introduces the raster grid artefacts in the reconstruction process, and 3) it requires a high-dynamic-range detector. Here, we investigate scanning sequences and sampling patterns to optimize the FP approach. For most biological samples, signal energy is concentrated at low-frequency region, and as such, we can perform non-uniform Fourier sampling in FP by considering the signal structure. In contrast, conventional ptychography perform uniform sampling over the entire real space. To implement the non-uniform Fourier sampling scheme in FP, we have designed and built an illuminator using LEDs mounted on a 3D-printed plastic case. The advantages of this illuminator are threefold in that: 1) it reduces the number of image acquisitions by at least 50% (68 raw images versus 137 in the original FP setup), 2) it departs from the translational symmetry of sampling to solve the raster grid artifact problem, and 3) it reduces the dynamic range of the captured images 6 fold. The results reported in this paper significantly shortened acquisition time and improved quality of FP reconstructions. It may provide new insights for developing Fourier ptychographic imaging platforms and find important applications in digital pathology.
Classification and Evaluation of Coherent Synchronous Sampled-Data Telemetry Systems
NASA Technical Reports Server (NTRS)
Viterbi, Andrew
1961-01-01
This paper analyzes the various types of continuous wave and pulse modulation for the transmission of sampled data over channels perturbed by white gaussian noise. Optimal coherent synchronous detection schemes for all the different modulation methods are shown to belong to one of two general classes: linear synchronous detection and correlation detection. The figures of merit, mean-square signal-to-error ratio and bandwidth occupancy, are determined for each system and compared.
Quantum Optimal Multiple Assignment Scheme for Realizing General Access Structure of Secret Sharing
NASA Astrophysics Data System (ADS)
Matsumoto, Ryutaroh
The multiple assignment scheme is to assign one or more shares to single participant so that any kind of access structure can be realized by classical secret sharing schemes. We propose its quantum version including ramp secret sharing schemes. Then we propose an integer optimization approach to minimize the average share size.
NASA Astrophysics Data System (ADS)
Cordier, G.; Choi, J.; Raguin, L. G.
2008-11-01
Skin microcirculation plays an important role in diseases such as chronic venous insufficiency and diabetes. Magnetic resonance imaging (MRI) can provide quantitative information with a better penetration depth than other noninvasive methods, such as laser Doppler flowmetry or optical coherence tomography. Moreover, successful MRI skin studies have recently been reported. In this article, we investigate three potential inverse models to quantify skin microcirculation using diffusion-weighted MRI (DWI), also known as q-space MRI. The model parameters are estimated based on nonlinear least-squares (NLS). For each of the three models, an optimal DWI sampling scheme is proposed based on D-optimality in order to minimize the size of the confidence region of the NLS estimates and thus the effect of the experimental noise inherent to DWI. The resulting covariance matrices of the NLS estimates are predicted by asymptotic normality and compared to the ones computed by Monte-Carlo simulations. Our numerical results demonstrate the effectiveness of the proposed models and corresponding DWI sampling schemes as compared to conventional approaches.
Energy-Aware Multipath Routing Scheme Based on Particle Swarm Optimization in Mobile Ad Hoc Networks
Robinson, Y. Harold; Rajaram, M.
2015-01-01
Mobile ad hoc network (MANET) is a collection of autonomous mobile nodes forming an ad hoc network without fixed infrastructure. Dynamic topology property of MANET may degrade the performance of the network. However, multipath selection is a great challenging task to improve the network lifetime. We proposed an energy-aware multipath routing scheme based on particle swarm optimization (EMPSO) that uses continuous time recurrent neural network (CTRNN) to solve optimization problems. CTRNN finds the optimal loop-free paths to solve link disjoint paths in a MANET. The CTRNN is used as an optimum path selection technique that produces a set of optimal paths between source and destination. In CTRNN, particle swarm optimization (PSO) method is primly used for training the RNN. The proposed scheme uses the reliability measures such as transmission cost, energy factor, and the optimal traffic ratio between source and destination to increase routing performance. In this scheme, optimal loop-free paths can be found using PSO to seek better link quality nodes in route discovery phase. PSO optimizes a problem by iteratively trying to get a better solution with regard to a measure of quality. The proposed scheme discovers multiple loop-free paths by using PSO technique. PMID:26819966
NASA Astrophysics Data System (ADS)
Bilionis, I.; Koutsourelakis, P. S.
2012-05-01
The present paper proposes an adaptive biasing potential technique for the computation of free energy landscapes. It is motivated by statistical learning arguments and unifies the tasks of biasing the molecular dynamics to escape free energy wells and estimating the free energy function, under the same objective of minimizing the Kullback-Leibler divergence between appropriately selected densities. It offers rigorous convergence diagnostics even though history dependent, non-Markovian dynamics are employed. It makes use of a greedy optimization scheme in order to obtain sparse representations of the free energy function which can be particularly useful in multidimensional cases. It employs embarrassingly parallelizable sampling schemes that are based on adaptive Sequential Monte Carlo and can be readily coupled with legacy molecular dynamics simulators. The sequential nature of the learning and sampling scheme enables the efficient calculation of free energy functions parametrized by the temperature. The characteristics and capabilities of the proposed method are demonstrated in three numerical examples.
Li, Yongbao; Tian, Zhen; Shi, Feng; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun
2015-04-07
Intensity-modulated radiation treatment (IMRT) plan optimization needs beamlet dose distributions. Pencil-beam or superposition/convolution type algorithms are typically used because of their high computational speed. However, inaccurate beamlet dose distributions may mislead the optimization process and hinder the resulting plan quality. To solve this problem, the Monte Carlo (MC) simulation method has been used to compute all beamlet doses prior to the optimization step. The conventional approach samples the same number of particles from each beamlet. Yet this is not the optimal use of MC in this problem. In fact, there are beamlets that have very small intensities after solving the plan optimization problem. For those beamlets, it may be possible to use fewer particles in dose calculations to increase efficiency. Based on this idea, we have developed a new MC-based IMRT plan optimization framework that iteratively performs MC dose calculation and plan optimization. At each dose calculation step, the particle numbers for beamlets were adjusted based on the beamlet intensities obtained through solving the plan optimization problem in the last iteration step. We modified a GPU-based MC dose engine to allow simultaneous computations of a large number of beamlet doses. To test the accuracy of our modified dose engine, we compared the dose from a broad beam and the summed beamlet doses in this beam in an inhomogeneous phantom. Agreement within 1% for the maximum difference and 0.55% for the average difference was observed. We then validated the proposed MC-based optimization schemes in one lung IMRT case. It was found that the conventional scheme required 10(6) particles from each beamlet to achieve an optimization result that was 3% difference in fluence map and 1% difference in dose from the ground truth. In contrast, the proposed scheme achieved the same level of accuracy with on average 1.2 × 10(5) particles per beamlet. Correspondingly, the computation time including both MC dose calculations and plan optimizations was reduced by a factor of 4.4, from 494 to 113 s, using only one GPU card.
Efficiency of exchange schemes in replica exchange
NASA Astrophysics Data System (ADS)
Lingenheil, Martin; Denschlag, Robert; Mathias, Gerald; Tavan, Paul
2009-08-01
In replica exchange simulations a fast diffusion of the replicas through the temperature space maximizes the efficiency of the statistical sampling. Here, we compare the diffusion speed as measured by the round trip rates for four exchange algorithms. We find different efficiency profiles with optimal average acceptance probabilities ranging from 8% to 41%. The best performance is determined by benchmark simulations for the most widely used algorithm, which alternately tries to exchange all even and all odd replica pairs. By analytical mathematics we show that the excellent performance of this exchange scheme is due to the high diffusivity of the underlying random walk.
NASA Astrophysics Data System (ADS)
Huang, Melin; Huang, Bormin; Huang, Allen H.-L.
2015-10-01
The schemes of cumulus parameterization are responsible for the sub-grid-scale effects of convective and/or shallow clouds, and intended to represent vertical fluxes due to unresolved updrafts and downdrafts and compensating motion outside the clouds. Some schemes additionally provide cloud and precipitation field tendencies in the convective column, and momentum tendencies due to convective transport of momentum. The schemes all provide the convective component of surface rainfall. Betts-Miller-Janjic (BMJ) is one scheme to fulfill such purposes in the weather research and forecast (WRF) model. National Centers for Environmental Prediction (NCEP) has tried to optimize the BMJ scheme for operational application. As there are no interactions among horizontal grid points, this scheme is very suitable for parallel computation. With the advantage of Intel Xeon Phi Many Integrated Core (MIC) architecture, efficient parallelization and vectorization essentials, it allows us to optimize the BMJ scheme. If compared to the original code respectively running on one CPU socket (eight cores) and on one CPU core with Intel Xeon E5-2670, the MIC-based optimization of this scheme running on Xeon Phi coprocessor 7120P improves the performance by 2.4x and 17.0x, respectively.
NASA Astrophysics Data System (ADS)
Jin, Juliang; Li, Lei; Wang, Wensheng; Zhang, Ming
2006-10-01
The optimal selection of schemes of water transportation projects is a process of choosing a relatively optimal scheme from a number of schemes of water transportation programming and management projects, which is of importance in both theory and practice in water resource systems engineering. In order to achieve consistency and eliminate the dimensions of fuzzy qualitative and fuzzy quantitative evaluation indexes, to determine the weights of the indexes objectively, and to increase the differences among the comprehensive evaluation index values of water transportation project schemes, a projection pursuit method, named FPRM-PP for short, was developed in this work for selecting the optimal water transportation project scheme based on the fuzzy preference relation matrix. The research results show that FPRM-PP is intuitive and practical, the correction range of the fuzzy preference relation matrix
Multiobjective hyper heuristic scheme for system design and optimization
NASA Astrophysics Data System (ADS)
Rafique, Amer Farhan
2012-11-01
As system design is becoming more and more multifaceted, integrated, and complex, the traditional single objective optimization trends of optimal design are becoming less and less efficient and effective. Single objective optimization methods present a unique optimal solution whereas multiobjective methods present pareto front. The foremost intent is to predict a reasonable distributed pareto-optimal solution set independent of the problem instance through multiobjective scheme. Other objective of application of intended approach is to improve the worthiness of outputs of the complex engineering system design process at the conceptual design phase. The process is automated in order to provide the system designer with the leverage of the possibility of studying and analyzing a large multiple of possible solutions in a short time. This article presents Multiobjective Hyper Heuristic Optimization Scheme based on low level meta-heuristics developed for the application in engineering system design. Herein, we present a stochastic function to manage meta-heuristics (low-level) to augment surety of global optimum solution. Generic Algorithm, Simulated Annealing and Swarm Intelligence are used as low-level meta-heuristics in this study. Performance of the proposed scheme is investigated through a comprehensive empirical analysis yielding acceptable results. One of the primary motives for performing multiobjective optimization is that the current engineering systems require simultaneous optimization of conflicting and multiple. Random decision making makes the implementation of this scheme attractive and easy. Injecting feasible solutions significantly alters the search direction and also adds diversity of population resulting in accomplishment of pre-defined goals set in the proposed scheme.
Isbarn, Hendrik; Briganti, Alberto; De Visschere, Pieter J L; Fütterer, Jurgen J; Ghadjar, Pirus; Giannarini, Gianluca; Ost, Piet; Ploussard, Guillaume; Sooriakumaran, Prasanna; Surcel, Christian I; van Oort, Inge M; Yossepowitch, Ofer; van den Bergh, Roderick C N
2015-04-01
Prostate biopsy (PB) is the gold standard for the diagnosis of prostate cancer (PCa). However, the optimal number of biopsy cores remains debatable. We sought to compare contemporary standard (10-12 cores) vs. saturation (=18 cores) schemes on initial as well as repeat PB. A non-systematic review of the literature was performed from 2000 through 2013. Studies of highest evidence (randomized controlled trials, prospective non-randomized studies, and retrospective reports of high quality) comparing standard vs saturation schemes on initial and repeat PB were evaluated. Outcome measures were overall PCa detection rate, detection rate of insignificant PCa, and procedure-associated morbidity. On initial PB, there is growing evidence that a saturation scheme is associated with a higher PCa detection rate compared to a standard one in men with lower PSA levels (<10 ng/ml), larger prostates (>40 cc), or lower PSA density values (<0.25 ng/ml/cc). However, these cut-offs are not uniform and differ among studies. Detection rates of insignificant PCa do not differ in a significant fashion between standard and saturation biopsies. On repeat PB, PCa detection rate is likewise higher with saturation protocols. Estimates of insignificant PCa vary widely due to differing definitions of insignificant disease. However, the rates of insignificant PCa appear to be comparable for the schemes in patients with only one prior negative biopsy, while saturation biopsy seems to detect more cases of insignificant PCa compared to standard biopsy in men with two or more prior negative biopsies. Very extensive sampling is associated with a high rate of acute urinary retention, whereas other severe adverse events, such as sepsis, appear not to occur more frequently with saturation schemes. Current evidence suggests that saturation schemes are associated with a higher PCa detection rate compared to standard ones on initial PB in men with lower PSA levels or larger prostates, and on repeat PB. Since most data are derived from retrospective studies, other endpoints such as detection rate of insignificant disease - especially on repeat PB - show broad variations throughout the literature and must, thus, be interpreted with caution. Future prospective controlled trials should be conducted to compare extended templates with newer techniques, such as image-guided sampling, in order to optimize PCa diagnostic strategy.
Adaptive sampling of AEM transients
NASA Astrophysics Data System (ADS)
Di Massa, Domenico; Florio, Giovanni; Viezzoli, Andrea
2016-02-01
This paper focuses on the sampling of the electromagnetic transient as acquired by airborne time-domain electromagnetic (TDEM) systems. Typically, the sampling of the electromagnetic transient is done using a fixed number of gates whose width grows logarithmically (log-gating). The log-gating has two main benefits: improving the signal to noise (S/N) ratio at late times, when the electromagnetic signal has amplitudes equal or lower than the natural background noise, and ensuring a good resolution at the early times. However, as a result of fixed time gates, the conventional log-gating does not consider any geological variations in the surveyed area, nor the possibly varying characteristics of the measured signal. We show, using synthetic models, how a different, flexible sampling scheme can increase the resolution of resistivity models. We propose a new sampling method, which adapts the gating on the base of the slope variations in the electromagnetic (EM) transient. The use of such an alternative sampling scheme aims to get more accurate inverse models by extracting the geoelectrical information from the measured data in an optimal way.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Liwei; Qian, Yun; Zhou, Tianjun
2014-10-01
In this study, we calibrated the performance of regional climate model RegCM3 with Massachusetts Institute of Technology (MIT)-Emanuel cumulus parameterization scheme over CORDEX East Asia domain by tuning the selected seven parameters through multiple very fast simulated annealing (MVFSA) sampling method. The seven parameters were selected based on previous studies, which customized the RegCM3 with MIT-Emanuel scheme through three different ways by using the sensitivity experiments. The responses of model results to the seven parameters were investigated. Since the monthly total rainfall is constrained, the simulated spatial pattern of rainfall and the probability density function (PDF) distribution of daily rainfallmore » rates are significantly improved in the optimal simulation. Sensitivity analysis suggest that the parameter “relative humidity criteria” (RH), which has not been considered in the default simulation, has the largest effect on the model results. The responses of total rainfall over different regions to RH were examined. Positive responses of total rainfall to RH are found over northern equatorial western Pacific, which are contributed by the positive responses of explicit rainfall. Followed by an increase of RH, the increases of the low-level convergence and the associated increases in cloud water favor the increase of the explicit rainfall. The identified optimal parameters constrained by the total rainfall have positive effects on the low-level circulation and the surface air temperature. Furthermore, the optimized parameters based on the extreme case are suitable for a normal case and the model’s new version with mixed convection scheme.« less
ERIC Educational Resources Information Center
Jan, Show-Li; Shieh, Gwowen
2017-01-01
Equivalence assessment is becoming an increasingly important topic in many application areas including behavioral and social sciences research. Although there exist more powerful tests, the two one-sided tests (TOST) procedure is a technically transparent and widely accepted method for establishing statistical equivalence. Alternatively, a direct…
Optical realization of optimal symmetric real state quantum cloning machine
NASA Astrophysics Data System (ADS)
Hu, Gui-Yu; Zhang, Wen-Hai; Ye, Liu
2010-01-01
We present an experimentally uniform linear optical scheme to implement the optimal 1→2 symmetric and optimal 1→3 symmetric economical real state quantum cloning machine of the polarization state of the single photon. This scheme requires single-photon sources and two-photon polarization entangled state as input states. It also involves linear optical elements and three-photon coincidence. Then we consider the realistic realization of the scheme by using the parametric down-conversion as photon resources. It is shown that under certain condition, the scheme is feasible by current experimental technology.
A Multipopulation PSO Based Memetic Algorithm for Permutation Flow Shop Scheduling
Liu, Ruochen; Ma, Chenlin; Ma, Wenping; Li, Yangyang
2013-01-01
The permutation flow shop scheduling problem (PFSSP) is part of production scheduling, which belongs to the hardest combinatorial optimization problem. In this paper, a multipopulation particle swarm optimization (PSO) based memetic algorithm (MPSOMA) is proposed in this paper. In the proposed algorithm, the whole particle swarm population is divided into three subpopulations in which each particle evolves itself by the standard PSO and then updates each subpopulation by using different local search schemes such as variable neighborhood search (VNS) and individual improvement scheme (IIS). Then, the best particle of each subpopulation is selected to construct a probabilistic model by using estimation of distribution algorithm (EDA) and three particles are sampled from the probabilistic model to update the worst individual in each subpopulation. The best particle in the entire particle swarm is used to update the global optimal solution. The proposed MPSOMA is compared with two recently proposed algorithms, namely, PSO based memetic algorithm (PSOMA) and hybrid particle swarm optimization with estimation of distribution algorithm (PSOEDA), on 29 well-known PFFSPs taken from OR-library, and the experimental results show that it is an effective approach for the PFFSP. PMID:24453841
Multi-focus image fusion and robust encryption algorithm based on compressive sensing
NASA Astrophysics Data System (ADS)
Xiao, Di; Wang, Lan; Xiang, Tao; Wang, Yong
2017-06-01
Multi-focus image fusion schemes have been studied in recent years. However, little work has been done in multi-focus image transmission security. This paper proposes a scheme that can reduce data transmission volume and resist various attacks. First, multi-focus image fusion based on wavelet decomposition can generate complete scene images and optimize the perception of the human eye. The fused images are sparsely represented with DCT and sampled with structurally random matrix (SRM), which reduces the data volume and realizes the initial encryption. Then the obtained measurements are further encrypted to resist noise and crop attack through combining permutation and diffusion stages. At the receiver, the cipher images can be jointly decrypted and reconstructed. Simulation results demonstrate the security and robustness of the proposed scheme.
Energy Storage Sizing Taking Into Account Forecast Uncertainties and Receding Horizon Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Kyri; Hug, Gabriela; Li, Xin
Energy storage systems (ESS) have the potential to be very beneficial for applications such as reducing the ramping of generators, peak shaving, and balancing not only the variability introduced by renewable energy sources, but also the uncertainty introduced by errors in their forecasts. Optimal usage of storage may result in reduced generation costs and an increased use of renewable energy. However, optimally sizing these devices is a challenging problem. This paper aims to provide the tools to optimally size an ESS under the assumption that it will be operated under a model predictive control scheme and that the forecast ofmore » the renewable energy resources include prediction errors. A two-stage stochastic model predictive control is formulated and solved, where the optimal usage of the storage is simultaneously determined along with the optimal generation outputs and size of the storage. Wind forecast errors are taken into account in the optimization problem via probabilistic constraints for which an analytical form is derived. This allows for the stochastic optimization problem to be solved directly, without using sampling-based approaches, and sizing the storage to account not only for a wide range of potential scenarios, but also for a wide range of potential forecast errors. In the proposed formulation, we account for the fact that errors in the forecast affect how the device is operated later in the horizon and that a receding horizon scheme is used in operation to optimally use the available storage.« less
NASA Astrophysics Data System (ADS)
Alimohammadi, Shahrouz; Cavaglieri, Daniele; Beyhaghi, Pooriya; Bewley, Thomas R.
2016-11-01
This work applies a recently developed Derivative-free optimization algorithm to derive a new mixed implicit-explicit (IMEX) time integration scheme for Computational Fluid Dynamics (CFD) simulations. This algorithm allows imposing a specified order of accuracy for the time integration and other important stability properties in the form of nonlinear constraints within the optimization problem. In this procedure, the coefficients of the IMEX scheme should satisfy a set of constraints simultaneously. Therefore, the optimization process, at each iteration, estimates the location of the optimal coefficients using a set of global surrogates, for both the objective and constraint functions, as well as a model of the uncertainty function of these surrogates based on the concept of Delaunay triangulation. This procedure has been proven to converge to the global minimum of the constrained optimization problem provided the constraints and objective functions are twice differentiable. As a result, a new third-order, low-storage IMEX Runge-Kutta time integration scheme is obtained with remarkably fast convergence. Numerical tests are then performed leveraging the turbulent channel flow simulations to validate the theoretical order of accuracy and stability properties of the new scheme.
NASA Astrophysics Data System (ADS)
Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.
2014-10-01
The Goddard cloud microphysics scheme is a sophisticated cloud microphysics scheme in the Weather Research and Forecasting (WRF) model. The WRF is a widely used weather prediction system in the world. It development is a done in collaborative around the globe. The Goddard microphysics scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. Compared to the earlier microphysics schemes, the Goddard scheme incorporates a large number of improvements. Thus, we have optimized the code of this important part of WRF. In this paper, we present our results of optimizing the Goddard microphysics scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The Intel MIC is capable of executing a full operating system and entire programs rather than just kernels as the GPU do. The MIC coprocessor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. Those optimization techniques are discusses in this paper. The results show that the optimizations improved performance of the original code on Xeon Phi 7120P by a factor of 4.7x. Furthermore, the same optimizations improved performance on a dual socket Intel Xeon E5-2670 system by a factor of 2.8x compared to the original code.
NASA Astrophysics Data System (ADS)
Chen, Wei-Guo; Wan, Xia; Wang, You-Kai
2018-05-01
A top quark mass measurement scheme near the {{t}}\\bar{{{t}}} production threshold in future {{{e}}}+{{{e}}}- colliders, e.g. the Circular Electron Positron Collider (CEPC), is simulated. A {χ }2 fitting method is adopted to determine the number of energy points to be taken and their locations. Our results show that the optimal energy point is located near the largest slope of the cross section v. beam energy plot, and the most efficient scheme is to concentrate all luminosity on this single energy point in the case of one-parameter top mass fitting. This suggests that the so-called data-driven method could be the best choice for future real experimental measurements. Conveniently, the top mass statistical uncertainty can also be calculated directly by the error matrix even without any sampling and fitting. The agreement of the above two optimization methods has been checked. Our conclusion is that by taking 50 fb‑1 total effective integrated luminosity data, the statistical uncertainty of the top potential subtracted mass can be suppressed to about 7 MeV and the total uncertainty is about 30 MeV. This precision will help to identify the stability of the electroweak vacuum at the Planck scale. Supported by National Science Foundation of China (11405102) and the Fundamental Research Funds for the Central Universities of China (GK201603027, GK201803019)
Receiver-Coupling Schemes Based On Optimal-Estimation Theory
NASA Technical Reports Server (NTRS)
Kumar, Rajendra
1992-01-01
Two schemes for reception of weak radio signals conveying digital data via phase modulation provide for mutual coupling of multiple receivers, and coherent combination of outputs of receivers. In both schemes, optimal mutual-coupling weights computed according to Kalman-filter theory, but differ in manner of transmission and combination of outputs of receivers.
Cross-layer Joint Relay Selection and Power Allocation Scheme for Cooperative Relaying System
NASA Astrophysics Data System (ADS)
Zhi, Hui; He, Mengmeng; Wang, Feiyue; Huang, Ziju
2018-03-01
A novel cross-layer joint relay selection and power allocation (CL-JRSPA) scheme over physical layer and data-link layer is proposed for cooperative relaying system in this paper. Our goal is finding the optimal relay selection and power allocation scheme to maximize system achievable rate when satisfying total transmit power constraint in physical layer and statistical delay quality-of-service (QoS) demand in data-link layer. Using the concept of effective capacity (EC), our goal can be formulated into an optimal joint relay selection and power allocation (JRSPA) problem to maximize the EC when satisfying total transmit power limitation. We first solving optimal power allocation (PA) problem with Lagrange multiplier approach, and then solving optimal relay selection (RS) problem. Simulation results demonstrate that CL-JRSPA scheme gets larger EC than other schemes when satisfying delay QoS demand. In addition, the proposed CL-JRSPA scheme achieves the maximal EC when relay located approximately halfway between source and destination, and EC becomes smaller when the QoS exponent becomes larger.
NASA Astrophysics Data System (ADS)
Havasi, Ágnes; Kazemi, Ehsan
2018-04-01
In the modeling of wave propagation phenomena it is necessary to use time integration methods which are not only sufficiently accurate, but also properly describe the amplitude and phase of the propagating waves. It is not clear if amending the developed schemes by extrapolation methods to obtain a high order of accuracy preserves the qualitative properties of these schemes in the perspective of dissipation, dispersion and stability analysis. It is illustrated that the combination of various optimized schemes with Richardson extrapolation is not optimal for minimal dissipation and dispersion errors. Optimized third-order and fourth-order methods are obtained, and it is shown that the proposed methods combined with Richardson extrapolation result in fourth and fifth orders of accuracy correspondingly, while preserving optimality and stability. The numerical applications include the linear wave equation, a stiff system of reaction-diffusion equations and the nonlinear Euler equations with oscillatory initial conditions. It is demonstrated that the extrapolated third-order scheme outperforms the recently developed fourth-order diagonally implicit Runge-Kutta scheme in terms of accuracy and stability.
Mo-Si-B Alloys and Diboride Systems for High Enthalpy Environments: Design and Evaluation
2016-01-15
candidate material species production over a range of test gas enthalpies and pressures for UWM and ISU samples. Year 3: 3.1 Begin FTIR...emission measurements on CO2-laser heated samples at SRI. 3.2 Continue experiments to optimize Si-, B-, and C-species LIF detection schemes in hot gas ...material tests to identify data that can be used to benchmark development of physics-based models of gas -surface interactions. • Employ the
Quantum teleportation scheme by selecting one of multiple output ports
NASA Astrophysics Data System (ADS)
Ishizaka, Satoshi; Hiroshima, Tohya
2009-04-01
The scheme of quantum teleportation, where Bob has multiple (N) output ports and obtains the teleported state by simply selecting one of the N ports, is thoroughly studied. We consider both the deterministic version and probabilistic version of the teleportation scheme aiming to teleport an unknown state of a qubit. Moreover, we consider two cases for each version: (i) the state employed for the teleportation is fixed to a maximally entangled state and (ii) the state is also optimized as well as Alice’s measurement. We analytically determine the optimal protocols for all the four cases and show the corresponding optimal fidelity or optimal success probability. All these protocols can achieve the perfect teleportation in the asymptotic limit of N→∞ . The entanglement properties of the teleportation scheme are also discussed.
Multiple crack detection in 3D using a stable XFEM and global optimization
NASA Astrophysics Data System (ADS)
Agathos, Konstantinos; Chatzi, Eleni; Bordas, Stéphane P. A.
2018-02-01
A numerical scheme is proposed for the detection of multiple cracks in three dimensional (3D) structures. The scheme is based on a variant of the extended finite element method (XFEM) and a hybrid optimizer solution. The proposed XFEM variant is particularly well-suited for the simulation of 3D fracture problems, and as such serves as an efficient solution to the so-called forward problem. A set of heuristic optimization algorithms are recombined into a multiscale optimization scheme. The introduced approach proves effective in tackling the complex inverse problem involved, where identification of multiple flaws is sought on the basis of sparse measurements collected near the structural boundary. The potential of the scheme is demonstrated through a set of numerical case studies of varying complexity.
An Optimized Handover Scheme with Movement Trend Awareness for Body Sensor Networks
Sun, Wen; Zhang, Zhiqiang; Ji, Lianying; Wong, Wai-Choong
2013-01-01
When a body sensor network (BSN) that is linked to the backbone via a wireless network interface moves from one coverage zone to another, a handover is required to maintain network connectivity. This paper presents an optimized handover scheme with movement trend awareness for BSNs. The proposed scheme predicts the future position of a BSN user using the movement trend extracted from the historical position, and adjusts the handover decision accordingly. Handover initiation time is optimized when the unnecessary handover rate is estimated to meet the requirement and the outage probability is minimized. The proposed handover scheme is simulated in a BSN deployment area in a hospital environment in UK. Simulation results show that the proposed scheme reduces the outage probability by 22% as compared with the existing hysteresis-based handover scheme under the constraint of acceptable handover rate. PMID:23736852
Aerodynamic optimization by simultaneously updating flow variables and design parameters
NASA Technical Reports Server (NTRS)
Rizk, M. H.
1990-01-01
The application of conventional optimization schemes to aerodynamic design problems leads to inner-outer iterative procedures that are very costly. An alternative approach is presented based on the idea of updating the flow variable iterative solutions and the design parameter iterative solutions simultaneously. Two schemes based on this idea are applied to problems of correcting wind tunnel wall interference and optimizing advanced propeller designs. The first of these schemes is applicable to a limited class of two-design-parameter problems with an equality constraint. It requires the computation of a single flow solution. The second scheme is suitable for application to general aerodynamic problems. It requires the computation of several flow solutions in parallel. In both schemes, the design parameters are updated as the iterative flow solutions evolve. Computations are performed to test the schemes' efficiency, accuracy, and sensitivity to variations in the computational parameters.
NASA Astrophysics Data System (ADS)
Ye, Liu; Hu, GuiYu; Li, AiXia
2011-01-01
We propose a unified scheme to implement the optimal 1 → 3 economical phase-covariant quantum cloning and optimal 1 → 3 economical real state cloning with superconducting quantum interference devices (SQUIDs) in a cavity. During this process, no transfer of quantum information between the SQUIDs and cavity is required. The cavity field is only virtually excited. The scheme is insensitive to cavity decay. Therefore, the scheme can be experimentally realized in the range of current cavity QED techniques.
Multi-level optimization of a beam-like space truss utilizing a continuum model
NASA Technical Reports Server (NTRS)
Yates, K.; Gurdal, Z.; Thangjitham, S.
1992-01-01
A continuous beam model is developed for approximate analysis of a large, slender, beam-like truss. The model is incorporated in a multi-level optimization scheme for the weight minimization of such trusses. This scheme is tested against traditional optimization procedures for savings in computational cost. Results from both optimization methods are presented for comparison.
Using Intel Xeon Phi to accelerate the WRF TEMF planetary boundary layer scheme
NASA Astrophysics Data System (ADS)
Mielikainen, Jarno; Huang, Bormin; Huang, Allen
2014-05-01
The Weather Research and Forecasting (WRF) model is designed for numerical weather prediction and atmospheric research. The WRF software infrastructure consists of several components such as dynamic solvers and physics schemes. Numerical models are used to resolve the large-scale flow. However, subgrid-scale parameterizations are for an estimation of small-scale properties (e.g., boundary layer turbulence and convection, clouds, radiation). Those have a significant influence on the resolved scale due to the complex nonlinear nature of the atmosphere. For the cloudy planetary boundary layer (PBL), it is fundamental to parameterize vertical turbulent fluxes and subgrid-scale condensation in a realistic manner. A parameterization based on the Total Energy - Mass Flux (TEMF) that unifies turbulence and moist convection components produces a better result that the other PBL schemes. For that reason, the TEMF scheme is chosen as the PBL scheme we optimized for Intel Many Integrated Core (MIC), which ushers in a new era of supercomputing speed, performance, and compatibility. It allows the developers to run code at trillions of calculations per second using the familiar programming model. In this paper, we present our optimization results for TEMF planetary boundary layer scheme. The optimizations that were performed were quite generic in nature. Those optimizations included vectorization of the code to utilize vector units inside each CPU. Furthermore, memory access was improved by scalarizing some of the intermediate arrays. The results show that the optimization improved MIC performance by 14.8x. Furthermore, the optimizations increased CPU performance by 2.6x compared to the original multi-threaded code on quad core Intel Xeon E5-2603 running at 1.8 GHz. Compared to the optimized code running on a single CPU socket the optimized MIC code is 6.2x faster.
A PDE Sensitivity Equation Method for Optimal Aerodynamic Design
NASA Technical Reports Server (NTRS)
Borggaard, Jeff; Burns, John
1996-01-01
The use of gradient based optimization algorithms in inverse design is well established as a practical approach to aerodynamic design. A typical procedure uses a simulation scheme to evaluate the objective function (from the approximate states) and its gradient, then passes this information to an optimization algorithm. Once the simulation scheme (CFD flow solver) has been selected and used to provide approximate function evaluations, there are several possible approaches to the problem of computing gradients. One popular method is to differentiate the simulation scheme and compute design sensitivities that are then used to obtain gradients. Although this black-box approach has many advantages in shape optimization problems, one must compute mesh sensitivities in order to compute the design sensitivity. In this paper, we present an alternative approach using the PDE sensitivity equation to develop algorithms for computing gradients. This approach has the advantage that mesh sensitivities need not be computed. Moreover, when it is possible to use the CFD scheme for both the forward problem and the sensitivity equation, then there are computational advantages. An apparent disadvantage of this approach is that it does not always produce consistent derivatives. However, for a proper combination of discretization schemes, one can show asymptotic consistency under mesh refinement, which is often sufficient to guarantee convergence of the optimal design algorithm. In particular, we show that when asymptotically consistent schemes are combined with a trust-region optimization algorithm, the resulting optimal design method converges. We denote this approach as the sensitivity equation method. The sensitivity equation method is presented, convergence results are given and the approach is illustrated on two optimal design problems involving shocks.
An all-at-once reduced Hessian SQP scheme for aerodynamic design optimization
NASA Technical Reports Server (NTRS)
Feng, Dan; Pulliam, Thomas H.
1995-01-01
This paper introduces a computational scheme for solving a class of aerodynamic design problems that can be posed as nonlinear equality constrained optimizations. The scheme treats the flow and design variables as independent variables, and solves the constrained optimization problem via reduced Hessian successive quadratic programming. It updates the design and flow variables simultaneously at each iteration and allows flow variables to be infeasible before convergence. The solution of an adjoint flow equation is never needed. In addition, a range space basis is chosen so that in a certain sense the 'cross term' ignored in reduced Hessian SQP methods is minimized. Numerical results for a nozzle design using the quasi-one-dimensional Euler equations show that this scheme is computationally efficient and robust. The computational cost of a typical nozzle design is only a fraction more than that of the corresponding analysis flow calculation. Superlinear convergence is also observed, which agrees with the theoretical properties of this scheme. All optimal solutions are obtained by starting far away from the final solution.
Optimal reconstruction of the states in qutrit systems
NASA Astrophysics Data System (ADS)
Yan, Fei; Yang, Ming; Cao, Zhuo-Liang
2010-10-01
Based on mutually unbiased measurements, an optimal tomographic scheme for the multiqutrit states is presented explicitly. Because the reconstruction process of states based on mutually unbiased states is free of information waste, we refer to our scheme as the optimal scheme. By optimal we mean that the number of the required conditional operations reaches the minimum in this tomographic scheme for the states of qutrit systems. Special attention will be paid to how those different mutually unbiased measurements are realized; that is, how to decompose each transformation that connects each mutually unbiased basis with the standard computational basis. It is found that all those transformations can be decomposed into several basic implementable single- and two-qutrit unitary operations. For the three-qutrit system, there exist five different mutually unbiased-bases structures with different entanglement properties, so we introduce the concept of physical complexity to minimize the number of nonlocal operations needed over the five different structures. This scheme is helpful for experimental scientists to realize the most economical reconstruction of quantum states in qutrit systems.
Bellon, Ellen; Ligtenberg, Marjolijn J L; Tejpar, Sabine; Cox, Karen; de Hertogh, Gert; de Stricker, Karin; Edsjö, Anders; Gorgoulis, Vassilis; Höfler, Gerald; Jung, Andreas; Kotsinas, Athanassios; Laurent-Puig, Pierre; López-Ríos, Fernando; Hansen, Tine Plato; Rouleau, Etienne; Vandenberghe, Peter; van Krieken, Johan J M; Dequeker, Elisabeth
2011-01-01
The use of epidermal growth factor receptor-targeting antibodies in metastatic colorectal cancer has been restricted to patients with wild-type KRAS tumors by the European Medicines Agency since 2008, based on data showing a lack of efficacy and potential harm in patients with mutant KRAS tumors. In an effort to ensure optimal, uniform, and reliable community-based KRAS testing throughout Europe, a KRAS external quality assessment (EQA) scheme was set up. The first large assessment round included 59 laboratories from eight different European countries. For each country, one regional scheme organizer prepared and distributed the samples for the participants of their own country. The samples included unstained sections of 10 invasive colorectal carcinomas with known KRAS mutation status. The samples were centrally validated by one of two reference laboratories. The laboratories were allowed to use their own preferred method for histological evaluation, DNA isolation, and mutation analysis. In this study, we analyze the setup of the KRAS scheme. We analyzed the advantages and disadvantages of the regional scheme organization by analyzing the outcome of genotyping results, analysis of tumor percentage, and written reports. We conclude that only 70% of laboratories correctly identified the KRAS mutational status in all samples. Both the false-positive and false-negative results observed negatively affect patient care. Reports of the KRAS test results often lacked essential information. We aim to further expand this program to more laboratories to provide a robust estimate of the quality of KRAS testing in Europe, and provide the basis for remedial measures and harmonization.
Hansen, Halvor S; Daura, Xavier; Hünenberger, Philippe H
2010-09-14
A new method, fragment-based local elevation umbrella sampling (FB-LEUS), is proposed to enhance the conformational sampling in explicit-solvent molecular dynamics (MD) simulations of solvated polymers. The method is derived from the local elevation umbrella sampling (LEUS) method [ Hansen and Hünenberger , J. Comput. Chem. 2010 , 31 , 1 - 23 ], which combines the local elevation (LE) conformational searching and the umbrella sampling (US) conformational sampling approaches into a single scheme. In LEUS, an initial (relatively short) LE build-up (searching) phase is used to construct an optimized (grid-based) biasing potential within a subspace of conformationally relevant degrees of freedom, which is then frozen and used in a (comparatively longer) US sampling phase. This combination dramatically enhances the sampling power of MD simulations but, due to computational and memory costs, is only applicable to relevant subspaces of low dimensionalities. As an attempt to expand the scope of the LEUS approach to solvated polymers with more than a few relevant degrees of freedom, the FB-LEUS scheme involves an US sampling phase that relies on a superposition of low-dimensionality biasing potentials optimized using LEUS at the fragment level. The feasibility of this approach is tested using polyalanine (poly-Ala) and polyvaline (poly-Val) oligopeptides. Two-dimensional biasing potentials are preoptimized at the monopeptide level, and subsequently applied to all dihedral-angle pairs within oligopeptides of 4, 6, 8, or 10 residues. Two types of fragment-based biasing potentials are distinguished: (i) the basin-filling (BF) potentials act so as to "fill" free-energy basins up to a prescribed free-energy level above the global minimum; (ii) the valley-digging (VD) potentials act so as to "dig" valleys between the (four) free-energy minima of the two-dimensional maps, preserving barriers (relative to linearly interpolated free-energy changes) of a prescribed magnitude. The application of these biasing potentials may lead to an impressive enhancement of the searching power (volume of conformational space visited in a given amount of simulation time). However, this increase is largely offset by a deterioration of the statistical efficiency (representativeness of the biased ensemble in terms of the conformational distribution appropriate for the physical ensemble). As a result, it appears difficult to engineer FB-LEUS schemes representing a significant improvement over plain MD, at least for the systems considered here.
Guidance and Control strategies for aerospace vehicles
NASA Technical Reports Server (NTRS)
Hibey, J. L.; Naidu, D. S.; Charalambous, C. D.
1989-01-01
A neighboring optimal guidance scheme was devised for a nonlinear dynamic system with stochastic inputs and perfect measurements as applicable to fuel optimal control of an aeroassisted orbital transfer vehicle. For the deterministic nonlinear dynamic system describing the atmospheric maneuver, a nominal trajectory was determined. Then, a neighboring, optimal guidance scheme was obtained for open loop and closed loop control configurations. Taking modelling uncertainties into account, a linear, stochastic, neighboring optimal guidance scheme was devised. Finally, the optimal trajectory was approximated as the sum of the deterministic nominal trajectory and the stochastic neighboring optimal solution. Numerical results are presented for a typical vehicle. A fuel-optimal control problem in aeroassisted noncoplanar orbital transfer is also addressed. The equations of motion for the atmospheric maneuver are nonlinear and the optimal (nominal) trajectory and control are obtained. In order to follow the nominal trajectory under actual conditions, a neighboring optimum guidance scheme is designed using linear quadratic regulator theory for onboard real-time implementation. One of the state variables is used as the independent variable in reference to the time. The weighting matrices in the performance index are chosen by a combination of a heuristic method and an optimal modal approach. The necessary feedback control law is obtained in order to minimize the deviations from the nominal conditions.
Optimization research of railway passenger transfer scheme based on ant colony algorithm
NASA Astrophysics Data System (ADS)
Ni, Xiang
2018-05-01
The optimization research of railway passenger transfer scheme can provide strong support for railway passenger transport system, and its essence is path search. This paper realized the calculation of passenger transfer scheme for high speed railway when giving the time and stations of departure and arrival. The specific method that used were generating a passenger transfer service network of high-speed railway, establishing optimization model and searching by Ant Colony Algorithm. Finally, making analysis on the scheme from LanZhouxi to BeiJingXi which were based on high-speed railway network of China in 2017. The results showed that the transfer network and model had relatively high practical value and operation efficiency.
Energy management of three-dimensional minimum-time intercept. [for aircraft flight optimization
NASA Technical Reports Server (NTRS)
Kelley, H. J.; Cliff, E. M.; Visser, H. G.
1985-01-01
A real-time computer algorithm to control and optimize aircraft flight profiles is described and applied to a three-dimensional minimum-time intercept mission. The proposed scheme has roots in two well known techniques: singular perturbations and neighboring-optimal guidance. Use of singular-perturbation ideas is made in terms of the assumed trajectory-family structure. A heading/energy family of prestored point-mass-model state-Euler solutions is used as the baseline in this scheme. The next step is to generate a near-optimal guidance law that will transfer the aircraft to the vicinity of this reference family. The control commands fed to the autopilot (bank angle and load factor) consist of the reference controls plus correction terms which are linear combinations of the altitude and path-angle deviations from reference values, weighted by a set of precalculated gains. In this respect the proposed scheme resembles neighboring-optimal guidance. However, in contrast to the neighboring-optimal guidance scheme, the reference control and state variables as well as the feedback gains are stored as functions of energy and heading in the present approach. Some numerical results comparing open-loop optimal and approximate feedback solutions are presented.
Optimal flight trajectories in the presence of windshear, 1984-86
NASA Technical Reports Server (NTRS)
Miele, A.
1986-01-01
Optimal flight trajectories were determined in the presence of windshear and guidance schemes were developed for near optimum flight in a windshear. This is a wind characterized by sharp change in intensity and direction over a relatively small region of space. This problem is important in the takeoff and landing of both civilian airplanes and military airplanes and is key to aircraft saftey. The topics covered in reference to takeoff problems are: equations of motion, problem formulation, algorithms, optimal flight trajectories, advanced guidance schemes, simplified guidance schemes, and piloting strategies.
A Scheme to Smooth Aggregated Traffic from Sensors with Periodic Reports
Oh, Sungmin; Jang, Ju Wook
2017-01-01
The possibility of smoothing aggregated traffic from sensors with varying reporting periods and frame sizes to be carried on an access link is investigated. A straightforward optimization would take O(pn) time, whereas our heuristic scheme takes O(np) time where n, p denote the number of sensors and size of periods, respectively. Our heuristic scheme performs local optimization sensor by sensor, starting with the smallest to largest periods. This is based on an observation that sensors with large offsets have more choices in offsets to avoid traffic peaks than the sensors with smaller periods. A MATLAB simulation shows that our scheme excels the known scheme by M. Grenier et al. in a similar situation (aggregating periodic traffic in a controller area network) for almost all possible permutations. The performance of our scheme is very close to the straightforward optimization, which compares all possible permutations. We expect that our scheme would greatly contribute in smoothing the traffic from an ever-increasing number of IoT sensors to the gateway, reducing the burden on the access link to the Internet. PMID:28273831
A Review of High-Order and Optimized Finite-Difference Methods for Simulating Linear Wave Phenomena
NASA Technical Reports Server (NTRS)
Zingg, David W.
1996-01-01
This paper presents a review of high-order and optimized finite-difference methods for numerically simulating the propagation and scattering of linear waves, such as electromagnetic, acoustic, or elastic waves. The spatial operators reviewed include compact schemes, non-compact schemes, schemes on staggered grids, and schemes which are optimized to produce specific characteristics. The time-marching methods discussed include Runge-Kutta methods, Adams-Bashforth methods, and the leapfrog method. In addition, the following fourth-order fully-discrete finite-difference methods are considered: a one-step implicit scheme with a three-point spatial stencil, a one-step explicit scheme with a five-point spatial stencil, and a two-step explicit scheme with a five-point spatial stencil. For each method studied, the number of grid points per wavelength required for accurate simulation of wave propagation over large distances is presented. Recommendations are made with respect to the suitability of the methods for specific problems and practical aspects of their use, such as appropriate Courant numbers and grid densities. Avenues for future research are suggested.
A Scheme to Smooth Aggregated Traffic from Sensors with Periodic Reports.
Oh, Sungmin; Jang, Ju Wook
2017-03-03
The possibility of smoothing aggregated traffic from sensors with varying reporting periods and frame sizes to be carried on an access link is investigated. A straightforward optimization would take O(pn) time, whereas our heuristic scheme takes O(np) time where n, p denote the number of sensors and size of periods, respectively. Our heuristic scheme performs local optimization sensor by sensor, starting with the smallest to largest periods. This is based on an observation that sensors with large offsets have more choices in offsets to avoid traffic peaks than the sensors with smaller periods. A MATLAB simulation shows that our scheme excels the known scheme by M. Grenier et al. in a similar situation (aggregating periodic traffic in a controller area network) for almost all possible permutations. The performance of our scheme is very close to the straightforward optimization, which compares all possible permutations. We expect that our scheme would greatly contribute in smoothing the traffic from an ever-increasing number of IoT sensors to the gateway, reducing the burden on the access link to the Internet.
NASA Astrophysics Data System (ADS)
Popescu, Mihaela; Shyy, Wei; Garbey, Marc
2005-12-01
In developing suitable numerical techniques for computational aero-acoustics, the dispersion-relation-preserving (DRP) scheme by Tam and co-workers and the optimized prefactored compact (OPC) scheme by Ashcroft and Zhang have shown desirable properties of reducing both dissipative and dispersive errors. These schemes, originally based on the finite difference, attempt to optimize the coefficients for better resolution of short waves with respect to the computational grid while maintaining pre-determined formal orders of accuracy. In the present study, finite volume formulations of both schemes are presented to better handle the nonlinearity and complex geometry encountered in many engineering applications. Linear and nonlinear wave equations, with and without viscous dissipation, have been adopted as the test problems. Highlighting the principal characteristics of the schemes and utilizing linear and nonlinear wave equations with different wavelengths as the test cases, the performance of these approaches is documented. For the linear wave equation, there is no major difference between the DRP and OPC schemes. For the nonlinear wave equations, the finite volume version of both DRP and OPC schemes offers substantially better solutions in regions of high gradient or discontinuity.
Control strategies for planetary rover motion and manipulator control
NASA Technical Reports Server (NTRS)
Trautwein, W.
1973-01-01
An unusual insect-like vehicle designed for planetary surface exploration is made the occasion for a discussion of control concepts in path selection, hazard detection, obstacle negotiation, and soil sampling. A control scheme which actively articulates the pitching motion between a single-loop front module and a dual loop rear module leads to near optimal behavior in soft soil; at the same time the vehicle's front module acts as a reliable tactile forward probe with a detection range much longer than the stopping distance. Some optimal control strategies are discussed, and the photos of a working scale model are displayed.
Improved Compressive Sensing of Natural Scenes Using Localized Random Sampling
Barranca, Victor J.; Kovačič, Gregor; Zhou, Douglas; Cai, David
2016-01-01
Compressive sensing (CS) theory demonstrates that by using uniformly-random sampling, rather than uniformly-spaced sampling, higher quality image reconstructions are often achievable. Considering that the structure of sampling protocols has such a profound impact on the quality of image reconstructions, we formulate a new sampling scheme motivated by physiological receptive field structure, localized random sampling, which yields significantly improved CS image reconstructions. For each set of localized image measurements, our sampling method first randomly selects an image pixel and then measures its nearby pixels with probability depending on their distance from the initially selected pixel. We compare the uniformly-random and localized random sampling methods over a large space of sampling parameters, and show that, for the optimal parameter choices, higher quality image reconstructions can be consistently obtained by using localized random sampling. In addition, we argue that the localized random CS optimal parameter choice is stable with respect to diverse natural images, and scales with the number of samples used for reconstruction. We expect that the localized random sampling protocol helps to explain the evolutionarily advantageous nature of receptive field structure in visual systems and suggests several future research areas in CS theory and its application to brain imaging. PMID:27555464
Optimization of Crew Shielding Requirement in Reactor-Powered Lunar Surface Missions
NASA Technical Reports Server (NTRS)
Barghouty, Abdulnasser F.
2007-01-01
On the surface of the moon -and not only during heightened solar activities- the radiation environment As such that crew protection will be required for missions lasting in excess of six months. This study focuses on estimating the optimized crew shielding requirement for lunar surface missions with a nuclear option. Simple, transport-simulation based dose-depth relations of the three (galactic, solar, and fission) radiation sources am employed in a 1-dimensional optimization scheme. The scheme is developed to estimate the total required mass of lunar-regolith separating reactor from crew. The scheme was applied to both solar maximum and minimum conditions. It is shown that savings of up to 30% in regolith mass can be realized. It is argued, however, that inherent variation and uncertainty -mainly in lunar regolith attenuation properties in addition to the radiation quality factor- can easily defeat this and similar optimization schemes.
Optimization of Crew Shielding Requirement in Reactor-Powered Lunar Surface Missions
NASA Technical Reports Server (NTRS)
Barghouty, A. F.
2007-01-01
On the surface of the moon and not only during heightened solar activities the radiation environment is such that crew protection will be required for missions lasting in excess of six months. This study focuses on estimating the optimized crew shielding requirement for lunar surface missions with a nuclear option. Simple, transport-simulation based dose-depth relations of the three radiation sources (galactic, solar, and fission) are employed in a one-dimensional optimization scheme. The scheme is developed to estimate the total required mass of lunar regolith separating reactor from crew. The scheme was applied to both solar maximum and minimum conditions. It is shown that savings of up to 30% in regolith mass can be realized. It is argued, however, that inherent variation and uncertainty mainly in lunar regolith attenuation properties in addition to the radiation quality factor can easily defeat this and similar optimization schemes.
Optimal Resource Allocation for NOMA-TDMA Scheme with α-Fairness in Industrial Internet of Things.
Sun, Yanjing; Guo, Yiyu; Li, Song; Wu, Dapeng; Wang, Bin
2018-05-15
In this paper, a joint non-orthogonal multiple access and time division multiple access (NOMA-TDMA) scheme is proposed in Industrial Internet of Things (IIoT), which allowed multiple sensors to transmit in the same time-frequency resource block using NOMA. The user scheduling, time slot allocation, and power control are jointly optimized in order to maximize the system α -fair utility under transmit power constraint and minimum rate constraint. The optimization problem is nonconvex because of the fractional objective function and the nonconvex constraints. To deal with the original problem, we firstly convert the objective function in the optimization problem into a difference of two convex functions (D.C.) form, and then propose a NOMA-TDMA-DC algorithm to exploit the global optimum. Numerical results show that the NOMA-TDMA scheme significantly outperforms the traditional orthogonal multiple access scheme in terms of both spectral efficiency and user fairness.
Sequential sampling: a novel method in farm animal welfare assessment.
Heath, C A E; Main, D C J; Mullan, S; Haskell, M J; Browne, W J
2016-02-01
Lameness in dairy cows is an important welfare issue. As part of a welfare assessment, herd level lameness prevalence can be estimated from scoring a sample of animals, where higher levels of accuracy are associated with larger sample sizes. As the financial cost is related to the number of cows sampled, smaller samples are preferred. Sequential sampling schemes have been used for informing decision making in clinical trials. Sequential sampling involves taking samples in stages, where sampling can stop early depending on the estimated lameness prevalence. When welfare assessment is used for a pass/fail decision, a similar approach could be applied to reduce the overall sample size. The sampling schemes proposed here apply the principles of sequential sampling within a diagnostic testing framework. This study develops three sequential sampling schemes of increasing complexity to classify 80 fully assessed UK dairy farms, each with known lameness prevalence. Using the Welfare Quality herd-size-based sampling scheme, the first 'basic' scheme involves two sampling events. At the first sampling event half the Welfare Quality sample size is drawn, and then depending on the outcome, sampling either stops or is continued and the same number of animals is sampled again. In the second 'cautious' scheme, an adaptation is made to ensure that correctly classifying a farm as 'bad' is done with greater certainty. The third scheme is the only scheme to go beyond lameness as a binary measure and investigates the potential for increasing accuracy by incorporating the number of severely lame cows into the decision. The three schemes are evaluated with respect to accuracy and average sample size by running 100 000 simulations for each scheme, and a comparison is made with the fixed size Welfare Quality herd-size-based sampling scheme. All three schemes performed almost as well as the fixed size scheme but with much smaller average sample sizes. For the third scheme, an overall association between lameness prevalence and the proportion of lame cows that were severely lame on a farm was found. However, as this association was found to not be consistent across all farms, the sampling scheme did not prove to be as useful as expected. The preferred scheme was therefore the 'cautious' scheme for which a sampling protocol has also been developed.
X-ray propagation microscopy of biological cells using waveguides as a quasipoint source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giewekemeyer, K.; Krueger, S. P.; Kalbfleisch, S.
2011-02-15
We have used x-ray waveguides as highly confining optical elements for nanoscale imaging of unstained biological cells using the simple geometry of in-line holography. The well-known twin-image problem is effectively circumvented by a simple and fast iterative reconstruction. The algorithm which combines elements of the classical Gerchberg-Saxton scheme and the hybrid-input-output algorithm is optimized for phase-contrast samples, well-justified for imaging of cells at multi-keV photon energies. The experimental scheme allows for a quantitative phase reconstruction from a single holographic image without detailed knowledge of the complex illumination function incident on the sample, as demonstrated for freeze-dried cells of the eukaryoticmore » amoeba Dictyostelium discoideum. The accessible resolution range is explored by simulations, indicating that resolutions on the order of 20 nm are within reach applying illumination times on the order of minutes at present synchrotron sources.« less
Study on construction technology of metro tunnel under a glass curtain wall
NASA Astrophysics Data System (ADS)
Zhang, Jian; Yu, Deqiang
2018-03-01
To ensure the safety of the glass curtain wall building above loess tunnel and get an optimal scheme, an elastic-plastic FEM model is established to simulate three reinforcement schemes based on a tunnel section in Xi’an Metro Line 3. The results show that the settlement value of the optimal scheme is reduced by 69.89% compared with the drainage measures, and the uneven settlement value is reduced by 57.5%. The construction points, technical processes and technical indexes of the optimal scheme are introduced. According to the actual project, the cumulative settlement of the building under construction is 16mm, which meets the control standards. According to the actual project, the cumulative settlement of the glass curtain wall building is 16mm, which meets the control standards. The reinforcement scheme can provide some reference for the design and construction of the metro in loess area.
NASA Astrophysics Data System (ADS)
Lai, Xing-ping; Shan, Peng-fei; Cai, Mei-feng; Ren, Fen-hua; Tan, Wen-hui
2015-01-01
High-steep slope stability and its optimal excavation design in Shuichang open pit iron mine were analyzed based on a large 3D physical simulation technique. An optimal excavation scheme with a relatively steeper slope angle was successfully implemented at the northwest wall between Nos. 4 and 5 exploration lines of Shuichang Iron Mine, taking into account the 3D scale effect. The physico-mechanical properties of rock materials were obtained by laboratory tests conducted on sample cores from exploration drilling directly from the iron mine. A porous rock-like composite material was formed for the model, and the mechanical parameters of the material were assessed experimentally; specifically, the effect of water on the sample was quantitatively determined. We adopted an experimental setup using stiff modular applied static loading to carry out a visual excavation of the slope at a random depth. The setup was equipped with acoustic emission (AE) sensors, and the experiments were monitored by crack optical acquirement, ground penetrating radar, and close-field photogrammetry to investigate the mechanisms of rock-mass destabilization in the high-steep slope. For the complex study area, the model results indicated a clear correlation between the model's destabilization resulting from slope excavation and the collected monitoring information. During the model simulation, the overall angle of the slope increased by 1-6 degrees in different sections. Dramatically, the modeled excavation scheme saved over 80 million tons of rock from extraction, generating enormous economic and ecological benefits.
Multipinhole SPECT helical scan parameters and imaging volume
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Rutao, E-mail: rutaoyao@buffalo.edu; Deng, Xiao; Wei, Qingyang
Purpose: The authors developed SPECT imaging capability on an animal PET scanner using a multiple-pinhole collimator and step-and-shoot helical data acquisition protocols. The objective of this work was to determine the preferred helical scan parameters, i.e., the angular and axial step sizes, and the imaging volume, that provide optimal imaging performance. Methods: The authors studied nine helical scan protocols formed by permuting three rotational and three axial step sizes. These step sizes were chosen around the reference values analytically calculated from the estimated spatial resolution of the SPECT system and the Nyquist sampling theorem. The nine helical protocols were evaluatedmore » by two figures-of-merit: the sampling completeness percentage (SCP) and the root-mean-square (RMS) resolution. SCP was an analytically calculated numerical index based on projection sampling. RMS resolution was derived from the reconstructed images of a sphere-grid phantom. Results: The RMS resolution results show that (1) the start and end pinhole planes of the helical scheme determine the axial extent of the effective field of view (EFOV), and (2) the diameter of the transverse EFOV is adequately calculated from the geometry of the pinhole opening, since the peripheral region beyond EFOV would introduce projection multiplexing and consequent effects. The RMS resolution results of the nine helical scan schemes show optimal resolution is achieved when the axial step size is the half, and the angular step size is about twice the corresponding values derived from the Nyquist theorem. The SCP results agree in general with that of RMS resolution but are less critical in assessing the effects of helical parameters and EFOV. Conclusions: The authors quantitatively validated the effective FOV of multiple pinhole helical scan protocols and proposed a simple method to calculate optimal helical scan parameters.« less
Optimal Control for Quantum Driving of Two-Level Systems
NASA Astrophysics Data System (ADS)
Qi, Xiao-Qiu
2018-01-01
In this paper, the optimal quantum control of two-level systems is studied by the decompositions of SU(2). Using the Pontryagin maximum principle, the minimum time of quantum control is analyzed in detail. The solution scheme of the optimal control function is given in the general case. Finally, two specific cases, which can be applied in many quantum systems, are used to illustrate the scheme, while the corresponding optimal control functions are obtained.
Research on crude oil storage and transportation based on optimization algorithm
NASA Astrophysics Data System (ADS)
Yuan, Xuhua
2018-04-01
At present, the optimization theory and method have been widely used in the optimization scheduling and optimal operation scheme of complex production systems. Based on C++Builder 6 program development platform, the theoretical research results are implemented by computer. The simulation and intelligent decision system of crude oil storage and transportation inventory scheduling are designed. The system includes modules of project management, data management, graphics processing, simulation of oil depot operation scheme. It can realize the optimization of the scheduling scheme of crude oil storage and transportation system. A multi-point temperature measuring system for monitoring the temperature field of floating roof oil storage tank is developed. The results show that by optimizing operating parameters such as tank operating mode and temperature, the total transportation scheduling costs of the storage and transportation system can be reduced by 9.1%. Therefore, this method can realize safe and stable operation of crude oil storage and transportation system.
Optimizing Scheme for Remote Preparation of Four-particle Cluster-like Entangled States
NASA Astrophysics Data System (ADS)
Wang, Dong; Ye, Liu
2011-09-01
Recently, Ma et al. (Opt. Commun. 283:2640, 2010) have proposed a novel scheme for preparing a class of cluster-like entangled states based on a four-particle projective measurement. In this paper, we put forward a new and optimal scheme to realize the remote preparation for this class of cluster-like states with the aid of two bipartite partially entangled channels. Different from the previous scheme, we employ a two-particle projective measurement instead of the four-particle projective measurement during the preparation. Besides, the resource consumptions are computed in our scheme, which include classical communication cost and quantum resource consumptions. Moreover, we have some discussions on the features of our scheme and make some comparisons on resource consumptions and operation complexity between the previous scheme and ours. The results show that our scheme is more economic and feasible compared with the previous.
NASA Technical Reports Server (NTRS)
Vatsa, Veer N.; Carpenter, Mark H.; Lockard, David P.
2009-01-01
Recent experience in the application of an optimized, second-order, backward-difference (BDF2OPT) temporal scheme is reported. The primary focus of the work is on obtaining accurate solutions of the unsteady Reynolds-averaged Navier-Stokes equations over long periods of time for aerodynamic problems of interest. The baseline flow solver under consideration uses a particular BDF2OPT temporal scheme with a dual-time-stepping algorithm for advancing the flow solutions in time. Numerical difficulties are encountered with this scheme when the flow code is run for a large number of time steps, a behavior not seen with the standard second-order, backward-difference, temporal scheme. Based on a stability analysis, slight modifications to the BDF2OPT scheme are suggested. The performance and accuracy of this modified scheme is assessed by comparing the computational results with other numerical schemes and experimental data.
Randomly Sampled-Data Control Systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Han, Kuoruey
1990-01-01
The purpose is to solve the Linear Quadratic Regulator (LQR) problem with random time sampling. Such a sampling scheme may arise from imperfect instrumentation as in the case of sampling jitter. It can also model the stochastic information exchange among decentralized controllers to name just a few. A practical suboptimal controller is proposed with the nice property of mean square stability. The proposed controller is suboptimal in the sense that the control structure is limited to be linear. Because of i. i. d. assumption, this does not seem unreasonable. Once the control structure is fixed, the stochastic discrete optimal control problem is transformed into an equivalent deterministic optimal control problem with dynamics described by the matrix difference equation. The N-horizon control problem is solved using the Lagrange's multiplier method. The infinite horizon control problem is formulated as a classical minimization problem. Assuming existence of solution to the minimization problem, the total system is shown to be mean square stable under certain observability conditions. Computer simulations are performed to illustrate these conditions.
Bellon, Ellen; Ligtenberg, Marjolijn J.L.; Tejpar, Sabine; Cox, Karen; de Hertogh, Gert; de Stricker, Karin; Edsjö, Anders; Gorgoulis, Vassilis; Höfler, Gerald; Jung, Andreas; Kotsinas, Athanassios; Laurent-Puig, Pierre; López-Ríos, Fernando; Hansen, Tine Plato; Rouleau, Etienne; Vandenberghe, Peter; van Krieken, Johan J.M.
2011-01-01
The use of epidermal growth factor receptor–targeting antibodies in metastatic colorectal cancer has been restricted to patients with wild-type KRAS tumors by the European Medicines Agency since 2008, based on data showing a lack of efficacy and potential harm in patients with mutant KRAS tumors. In an effort to ensure optimal, uniform, and reliable community-based KRAS testing throughout Europe, a KRAS external quality assessment (EQA) scheme was set up. The first large assessment round included 59 laboratories from eight different European countries. For each country, one regional scheme organizer prepared and distributed the samples for the participants of their own country. The samples included unstained sections of 10 invasive colorectal carcinomas with known KRAS mutation status. The samples were centrally validated by one of two reference laboratories. The laboratories were allowed to use their own preferred method for histological evaluation, DNA isolation, and mutation analysis. In this study, we analyze the setup of the KRAS scheme. We analyzed the advantages and disadvantages of the regional scheme organization by analyzing the outcome of genotyping results, analysis of tumor percentage, and written reports. We conclude that only 70% of laboratories correctly identified the KRAS mutational status in all samples. Both the false-positive and false-negative results observed negatively affect patient care. Reports of the KRAS test results often lacked essential information. We aim to further expand this program to more laboratories to provide a robust estimate of the quality of KRAS testing in Europe, and provide the basis for remedial measures and harmonization. PMID:21441573
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batiy, V.G.; Stojanov, A.I.; Schmieman, E.
2007-07-01
Methodological approach of optimization of schemes of solid radwaste management of the Object Shelter (Shelter) and ChNPP industrial site during transformation to the ecologically safe system was developed. On the basis of the conducted models researches the ALARA-analysis was carried out for the choice of optimum variant of schemes and technologies of solid radwaste management. The criteria of choice of optimum schemes, which are directed on optimization of doses and financial expenses, minimization of amount of the formed radwaste etc, were developed for realization of this ALARA-analysis. (authors)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang Baolong; Department of Mathematics and Physics, Hefei University, Hefei 230022; Yang Zhen
We propose a scheme for implementing a partial general quantum cloning machine with superconducting quantum-interference devices coupled to a nonresonant cavity. By regulating the time parameters, our system can perform optimal symmetric (asymmetric) universal quantum cloning, optimal symmetric (asymmetric) phase-covariant cloning, and optimal symmetric economical phase-covariant cloning. In the scheme the cavity is only virtually excited, thus, the cavity decay is suppressed during the cloning operations.
NASA Astrophysics Data System (ADS)
McInerney, David; Thyer, Mark; Kavetski, Dmitri; Lerat, Julien; Kuczera, George
2017-03-01
Reliable and precise probabilistic prediction of daily catchment-scale streamflow requires statistical characterization of residual errors of hydrological models. This study focuses on approaches for representing error heteroscedasticity with respect to simulated streamflow, i.e., the pattern of larger errors in higher streamflow predictions. We evaluate eight common residual error schemes, including standard and weighted least squares, the Box-Cox transformation (with fixed and calibrated power parameter λ) and the log-sinh transformation. Case studies include 17 perennial and 6 ephemeral catchments in Australia and the United States, and two lumped hydrological models. Performance is quantified using predictive reliability, precision, and volumetric bias metrics. We find the choice of heteroscedastic error modeling approach significantly impacts on predictive performance, though no single scheme simultaneously optimizes all performance metrics. The set of Pareto optimal schemes, reflecting performance trade-offs, comprises Box-Cox schemes with λ of 0.2 and 0.5, and the log scheme (λ = 0, perennial catchments only). These schemes significantly outperform even the average-performing remaining schemes (e.g., across ephemeral catchments, median precision tightens from 105% to 40% of observed streamflow, and median biases decrease from 25% to 4%). Theoretical interpretations of empirical results highlight the importance of capturing the skew/kurtosis of raw residuals and reproducing zero flows. Paradoxically, calibration of λ is often counterproductive: in perennial catchments, it tends to overfit low flows at the expense of abysmal precision in high flows. The log-sinh transformation is dominated by the simpler Pareto optimal schemes listed above. Recommendations for researchers and practitioners seeking robust residual error schemes for practical work are provided.
Faheem, Muhammad; Heyden, Andreas
2014-08-12
We report the development of a quantum mechanics/molecular mechanics free energy perturbation (QM/MM-FEP) method for modeling chemical reactions at metal-water interfaces. This novel solvation scheme combines planewave density function theory (DFT), periodic electrostatic embedded cluster method (PEECM) calculations using Gaussian-type orbitals, and classical molecular dynamics (MD) simulations to obtain a free energy description of a complex metal-water system. We derive a potential of mean force (PMF) of the reaction system within the QM/MM framework. A fixed-size, finite ensemble of MM conformations is used to permit precise evaluation of the PMF of QM coordinates and its gradient defined within this ensemble. Local conformations of adsorbed reaction moieties are optimized using sequential MD-sampling and QM-optimization steps. An approximate reaction coordinate is constructed using a number of interpolated states and the free energy difference between adjacent states is calculated using the QM/MM-FEP method. By avoiding on-the-fly QM calculations and by circumventing the challenges associated with statistical averaging during MD sampling, a computational speedup of multiple orders of magnitude is realized. The method is systematically validated against the results of ab initio QM calculations and demonstrated for C-C cleavage in double-dehydrogenated ethylene glycol on a Pt (111) model surface.
NASA Astrophysics Data System (ADS)
Kim, Jae-Chang; Moon, Sung-Ki; Kwak, Sangshin
2018-04-01
This paper presents a direct model-based predictive control scheme for voltage source inverters (VSIs) with reduced common-mode voltages (CMVs). The developed method directly finds optimal vectors without using repetitive calculation of a cost function. To adjust output currents with the CMVs in the range of -Vdc/6 to +Vdc/6, the developed method uses voltage vectors, as finite control resources, excluding zero voltage vectors which produce the CMVs in the VSI within ±Vdc/2. In a model-based predictive control (MPC), not using zero voltage vectors increases the output current ripples and the current errors. To alleviate these problems, the developed method uses two non-zero voltage vectors in one sampling step. In addition, the voltage vectors scheduled to be used are directly selected at every sampling step once the developed method calculates the future reference voltage vector, saving the efforts of repeatedly calculating the cost function. And the two non-zero voltage vectors are optimally allocated to make the output current approach the reference current as close as possible. Thus, low CMV, rapid current-following capability and sufficient output current ripple performance are attained by the developed method. The results of a simulation and an experiment verify the effectiveness of the developed method.
Local classifier weighting by quadratic programming.
Cevikalp, Hakan; Polikar, Robi
2008-10-01
It has been widely accepted that the classification accuracy can be improved by combining outputs of multiple classifiers. However, how to combine multiple classifiers with various (potentially conflicting) decisions is still an open problem. A rich collection of classifier combination procedures -- many of which are heuristic in nature -- have been developed for this goal. In this brief, we describe a dynamic approach to combine classifiers that have expertise in different regions of the input space. To this end, we use local classifier accuracy estimates to weight classifier outputs. Specifically, we estimate local recognition accuracies of classifiers near a query sample by utilizing its nearest neighbors, and then use these estimates to find the best weights of classifiers to label the query. The problem is formulated as a convex quadratic optimization problem, which returns optimal nonnegative classifier weights with respect to the chosen objective function, and the weights ensure that locally most accurate classifiers are weighted more heavily for labeling the query sample. Experimental results on several data sets indicate that the proposed weighting scheme outperforms other popular classifier combination schemes, particularly on problems with complex decision boundaries. Hence, the results indicate that local classification-accuracy-based combination techniques are well suited for decision making when the classifiers are trained by focusing on different regions of the input space.
NASA Astrophysics Data System (ADS)
Yang, Lei; Yan, Hongyong; Liu, Hong
2017-03-01
Implicit staggered-grid finite-difference (ISFD) scheme is competitive for its great accuracy and stability, whereas its coefficients are conventionally determined by the Taylor-series expansion (TE) method, leading to a loss in numerical precision. In this paper, we modify the TE method using the minimax approximation (MA), and propose a new optimal ISFD scheme based on the modified TE (MTE) with MA method. The new ISFD scheme takes the advantage of the TE method that guarantees great accuracy at small wavenumbers, and keeps the property of the MA method that keeps the numerical errors within a limited bound at the same time. Thus, it leads to great accuracy for numerical solution of the wave equations. We derive the optimal ISFD coefficients by applying the new method to the construction of the objective function, and using a Remez algorithm to minimize its maximum. Numerical analysis is made in comparison with the conventional TE-based ISFD scheme, indicating that the MTE-based ISFD scheme with appropriate parameters can widen the wavenumber range with high accuracy, and achieve greater precision than the conventional ISFD scheme. The numerical modeling results also demonstrate that the MTE-based ISFD scheme performs well in elastic wave simulation, and is more efficient than the conventional ISFD scheme for elastic modeling.
Rate-distortion optimized tree-structured compression algorithms for piecewise polynomial images.
Shukla, Rahul; Dragotti, Pier Luigi; Do, Minh N; Vetterli, Martin
2005-03-01
This paper presents novel coding algorithms based on tree-structured segmentation, which achieve the correct asymptotic rate-distortion (R-D) behavior for a simple class of signals, known as piecewise polynomials, by using an R-D based prune and join scheme. For the one-dimensional case, our scheme is based on binary-tree segmentation of the signal. This scheme approximates the signal segments using polynomial models and utilizes an R-D optimal bit allocation strategy among the different signal segments. The scheme further encodes similar neighbors jointly to achieve the correct exponentially decaying R-D behavior (D(R) - c(o)2(-c1R)), thus improving over classic wavelet schemes. We also prove that the computational complexity of the scheme is of O(N log N). We then show the extension of this scheme to the two-dimensional case using a quadtree. This quadtree-coding scheme also achieves an exponentially decaying R-D behavior, for the polygonal image model composed of a white polygon-shaped object against a uniform black background, with low computational cost of O(N log N). Again, the key is an R-D optimized prune and join strategy. Finally, we conclude with numerical results, which show that the proposed quadtree-coding scheme outperforms JPEG2000 by about 1 dB for real images, like cameraman, at low rates of around 0.15 bpp.
Four-dimensional MRI using an internal respiratory surrogate derived by dimensionality reduction
NASA Astrophysics Data System (ADS)
Uh, Jinsoo; Ayaz Khan, M.; Hua, Chiaho
2016-11-01
This study aimed to develop a practical and accurate 4-dimensional (4D) magnetic resonance imaging (MRI) method using a non-navigator, image-based internal respiratory surrogate derived by dimensionality reduction (DR). The use of DR has been previously suggested but not implemented for reconstructing 4D MRI, despite its practical advantages. We compared multiple image-acquisition schemes and refined a retrospective-sorting process to optimally implement a DR-derived surrogate. The comparison included an unconventional scheme that acquires paired slices alternately to mitigate the internal surrogate’s dependency on a specific slice location. We introduced ‘target-oriented sorting’, as opposed to conventional binning, to quantify the coherence in retrospectively sorted images, thereby determining the minimal scan time needed for sufficient coherence. This study focused on evaluating the proposed method using digital phantoms which provided unequivocal gold standard. The evaluation indicated that the DR-based respiratory surrogate is highly accurate: the error in amplitude percentile of the surrogate signal was less than 5% with the optimal scheme. Acquiring alternating paired slices was superior to the conventional scheme of acquiring individual slices; the advantage of the unconventional scheme was more pronounced when a substantial phase shift occurred across slice locations. The analysis of coherence across sorted images confirmed the advantage of higher sampling efficiencies in non-navigator respiratory surrogates. We determined that a scan time of 20 s per imaging slice was sufficient to achieve a mean coherence error of less than 1% for the tested respiratory patterns. The clinical applicability of the proposed 4D MRI has been demonstrated with volunteers and patients. The diaphragm motion in 4D MRI was consistent with that in dynamic 2D imaging which was regarded as the gold standard (difference within 1.8 mm on average).
Su, Cheng-Kuan; Tseng, Po-Jen; Chiu, Hsien-Ting; Del Vall, Andrea; Huang, Yu-Fen; Sun, Yuh-Chang
2017-03-01
Probing tumor extracellular metabolites is a vitally important issue in current cancer biology. In this study an analytical system was constructed for the in vivo monitoring of mouse tumor extracellular hydrogen peroxide (H 2 O 2 ), lactate, and glucose by means of microdialysis (MD) sampling and fluorescence determination in conjunction with a smart sequential enzymatic derivatization scheme-involving a loading sequence of fluorogenic reagent/horseradish peroxidase, microdialysate, lactate oxidase, pyruvate, and glucose oxidase-for step-by-step determination of sampled H 2 O 2 , lactate, and glucose in mouse tumor microdialysate. After optimization of the overall experimental parameters, the system's detection limit reached as low as 0.002 mM for H 2 O 2 , 0.058 mM for lactate, and 0.055 mM for glucose, based on 3 μL of microdialysate, suggesting great potential for determining tumor extracellular concentrations of lactate and glucose. Spike analyses of offline-collected mouse tumor microdialysate and monitoring of the basal concentrations of mouse tumor extracellular H 2 O 2 , lactate, and glucose, as well as those after imparting metabolic disturbance through intra-tumor administration of a glucose solution through a prior-implanted cannula, were conducted to demonstrate the system's applicability. Our results evidently indicate that hyphenation of an MD sampling device with an optimized sequential enzymatic derivatization scheme and a fluorescence spectrometer can be used successfully for multi-analyte monitoring of tumor extracellular metabolites in living animals. Copyright © 2016 Elsevier B.V. All rights reserved.
Towards an optimal flow: Density-of-states-informed replica-exchange simulations
Vogel, Thomas; Perez, Danny
2015-11-05
Here we learn that replica exchange (RE) is one of the most popular enhanced-sampling simulations technique in use today. Despite widespread successes, RE simulations can sometimes fail to converge in practical amounts of time, e.g., when sampling around phase transitions, or when a few hard-to-find configurations dominate the statistical averages. We introduce a generalized RE scheme, density-of-states-informed RE, that addresses some of these challenges. The key feature of our approach is to inform the simulation with readily available, but commonly unused, information on the density of states of the system as the RE simulation proceeds. This enables two improvements, namely,more » the introduction of resampling moves that actively move the system towards equilibrium and the continual adaptation of the optimal temperature set. As a consequence of these two innovations, we show that the configuration flow in temperature space is optimized and that the overall convergence of RE simulations can be dramatically accelerated.« less
Lukashin, A V; Fuchs, R
2001-05-01
Cluster analysis of genome-wide expression data from DNA microarray hybridization studies has proved to be a useful tool for identifying biologically relevant groupings of genes and samples. In the present paper, we focus on several important issues related to clustering algorithms that have not yet been fully studied. We describe a simple and robust algorithm for the clustering of temporal gene expression profiles that is based on the simulated annealing procedure. In general, this algorithm guarantees to eventually find the globally optimal distribution of genes over clusters. We introduce an iterative scheme that serves to evaluate quantitatively the optimal number of clusters for each specific data set. The scheme is based on standard approaches used in regular statistical tests. The basic idea is to organize the search of the optimal number of clusters simultaneously with the optimization of the distribution of genes over clusters. The efficiency of the proposed algorithm has been evaluated by means of a reverse engineering experiment, that is, a situation in which the correct distribution of genes over clusters is known a priori. The employment of this statistically rigorous test has shown that our algorithm places greater than 90% genes into correct clusters. Finally, the algorithm has been tested on real gene expression data (expression changes during yeast cell cycle) for which the fundamental patterns of gene expression and the assignment of genes to clusters are well understood from numerous previous studies.
Evaluating noninvasive genetic sampling techniques to estimate large carnivore abundance.
Mumma, Matthew A; Zieminski, Chris; Fuller, Todd K; Mahoney, Shane P; Waits, Lisette P
2015-09-01
Monitoring large carnivores is difficult because of intrinsically low densities and can be dangerous if physical capture is required. Noninvasive genetic sampling (NGS) is a safe and cost-effective alternative to physical capture. We evaluated the utility of two NGS methods (scat detection dogs and hair sampling) to obtain genetic samples for abundance estimation of coyotes, black bears and Canada lynx in three areas of Newfoundland, Canada. We calculated abundance estimates using program capwire, compared sampling costs, and the cost/sample for each method relative to species and study site, and performed simulations to determine the sampling intensity necessary to achieve abundance estimates with coefficients of variation (CV) of <10%. Scat sampling was effective for both coyotes and bears and hair snags effectively sampled bears in two of three study sites. Rub pads were ineffective in sampling coyotes and lynx. The precision of abundance estimates was dependent upon the number of captures/individual. Our simulations suggested that ~3.4 captures/individual will result in a < 10% CV for abundance estimates when populations are small (23-39), but fewer captures/individual may be sufficient for larger populations. We found scat sampling was more cost-effective for sampling multiple species, but suggest that hair sampling may be less expensive at study sites with limited road access for bears. Given the dependence of sampling scheme on species and study site, the optimal sampling scheme is likely to be study-specific warranting pilot studies in most circumstances. © 2015 John Wiley & Sons Ltd.
Rapid Parameterization Schemes for Aircraft Shape Optimization
NASA Technical Reports Server (NTRS)
Li, Wu
2012-01-01
A rapid shape parameterization tool called PROTEUS is developed for aircraft shape optimization. This tool can be applied directly to any aircraft geometry that has been defined in PLOT3D format, with the restriction that each aircraft component must be defined by only one data block. PROTEUS has eight types of parameterization schemes: planform, wing surface, twist, body surface, body scaling, body camber line, shifting/scaling, and linear morphing. These parametric schemes can be applied to two types of components: wing-type surfaces (e.g., wing, canard, horizontal tail, vertical tail, and pylon) and body-type surfaces (e.g., fuselage, pod, and nacelle). These schemes permit the easy setup of commonly used shape modification methods, and each customized parametric scheme can be applied to the same type of component for any configuration. This paper explains the mathematics for these parametric schemes and uses two supersonic configurations to demonstrate the application of these schemes.
NASA Astrophysics Data System (ADS)
Agueh, Max; Diouris, Jean-François; Diop, Magaye; Devaux, François-Olivier; De Vleeschouwer, Christophe; Macq, Benoit
2008-12-01
Based on the analysis of real mobile ad hoc network (MANET) traces, we derive in this paper an optimal wireless JPEG 2000 compliant forward error correction (FEC) rate allocation scheme for a robust streaming of images and videos over MANET. The packet-based proposed scheme has a low complexity and is compliant to JPWL, the 11th part of the JPEG 2000 standard. The effectiveness of the proposed method is evaluated using a wireless Motion JPEG 2000 client/server application; and the ability of the optimal scheme to guarantee quality of service (QoS) to wireless clients is demonstrated.
Studies in integrated line-and packet-switched computer communication systems
NASA Astrophysics Data System (ADS)
Maglaris, B. S.
1980-06-01
The problem of efficiently allocating the bandwidth of a trunk to both types of traffic is handled for various system and traffic models. A performance analysis is carried out both for variable and fixed frame schemes. It is shown that variable frame schemes, adjusting the frame length according to the traffic variations, offer better trunk utilization at the cost of the additional hardware and software complexity needed because of the lack of synchronization. An optimization study on the fixed frame schemes follows. The problem of dynamically allocating the fixed frame to both types of traffic is formulated as a Markovian Decision process. It is shown that the movable boundary scheme, suggested for commercial implementations of integrated multiplexors, offers optimal or near optimal performance and simplicity of implementation. Finally, the behavior of the movable boundary integrated scheme is studied for tandem link connections. Under the assumptions made for the line-switched traffic, the forward allocation technique is found to offer the best alternative among different path set-up strategies.
A new family of high-order compact upwind difference schemes with good spectral resolution
NASA Astrophysics Data System (ADS)
Zhou, Qiang; Yao, Zhaohui; He, Feng; Shen, M. Y.
2007-12-01
This paper presents a new family of high-order compact upwind difference schemes. Unknowns included in the proposed schemes are not only the values of the function but also those of its first and higher derivatives. Derivative terms in the schemes appear only on the upwind side of the stencil. One can calculate all the first derivatives exactly as one solves explicit schemes when the boundary conditions of the problem are non-periodic. When the proposed schemes are applied to periodic problems, only periodic bi-diagonal matrix inversions or periodic block-bi-diagonal matrix inversions are required. Resolution optimization is used to enhance the spectral representation of the first derivative, and this produces a scheme with the highest spectral accuracy among all known compact schemes. For non-periodic boundary conditions, boundary schemes constructed in virtue of the assistant scheme make the schemes not only possess stability for any selective length scale on every point in the computational domain but also satisfy the principle of optimal resolution. Also, an improved shock-capturing method is developed. Finally, both the effectiveness of the new hybrid method and the accuracy of the proposed schemes are verified by executing four benchmark test cases.
Sidler, Dominik; Cristòfol-Clough, Michael; Riniker, Sereina
2017-06-13
Replica-exchange enveloping distribution sampling (RE-EDS) allows the efficient estimation of free-energy differences between multiple end-states from a single molecular dynamics (MD) simulation. In EDS, a reference state is sampled, which can be tuned by two types of parameters, i.e., smoothness parameters(s) and energy offsets, such that all end-states are sufficiently sampled. However, the choice of these parameters is not trivial. Replica exchange (RE) or parallel tempering is a widely applied technique to enhance sampling. By combining EDS with the RE technique, the parameter choice problem could be simplified and the challenge shifted toward an optimal distribution of the replicas in the smoothness-parameter space. The choice of a certain replica distribution can alter the sampling efficiency significantly. In this work, global round-trip time optimization (GRTO) algorithms are tested for the use in RE-EDS simulations. In addition, a local round-trip time optimization (LRTO) algorithm is proposed for systems with slowly adapting environments, where a reliable estimate for the round-trip time is challenging to obtain. The optimization algorithms were applied to RE-EDS simulations of a system of nine small-molecule inhibitors of phenylethanolamine N-methyltransferase (PNMT). The energy offsets were determined using our recently proposed parallel energy-offset (PEOE) estimation scheme. While the multistate GRTO algorithm yielded the best replica distribution for the ligands in water, the multistate LRTO algorithm was found to be the method of choice for the ligands in complex with PNMT. With this, the 36 alchemical free-energy differences between the nine ligands were calculated successfully from a single RE-EDS simulation 10 ns in length. Thus, RE-EDS presents an efficient method for the estimation of relative binding free energies.
Optimized Controller Design for a 12-Pulse Voltage Source Converter Based HVDC System
NASA Astrophysics Data System (ADS)
Agarwal, Ruchi; Singh, Sanjeev
2017-12-01
The paper proposes an optimized controller design scheme for power quality improvement in 12-pulse voltage source converter based high voltage direct current system. The proposed scheme is hybrid combination of golden section search and successive linear search method. The paper aims at reduction of current sensor and optimization of controller. The voltage and current controller parameters are selected for optimization due to its impact on power quality. The proposed algorithm for controller optimizes the objective function which is composed of current harmonic distortion, power factor, and DC voltage ripples. The detailed designs and modeling of the complete system are discussed and its simulation is carried out in MATLAB-Simulink environment. The obtained results are presented to demonstrate the effectiveness of the proposed scheme under different transient conditions such as load perturbation, non-linear load condition, voltage sag condition, and tapped load fault under one phase open condition at both points-of-common coupling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y; UT Southwestern Medical Center, Dallas, TX; Tian, Z
2015-06-15
Purpose: Intensity-modulated proton therapy (IMPT) is increasingly used in proton therapy. For IMPT optimization, Monte Carlo (MC) is desired for spots dose calculations because of its high accuracy, especially in cases with a high level of heterogeneity. It is also preferred in biological optimization problems due to the capability of computing quantities related to biological effects. However, MC simulation is typically too slow to be used for this purpose. Although GPU-based MC engines have become available, the achieved efficiency is still not ideal. The purpose of this work is to develop a new optimization scheme to include GPU-based MC intomore » IMPT. Methods: A conventional approach using MC in IMPT simply calls the MC dose engine repeatedly for each spot dose calculations. However, this is not the optimal approach, because of the unnecessary computations on some spots that turned out to have very small weights after solving the optimization problem. GPU-memory writing conflict occurring at a small beam size also reduces computational efficiency. To solve these problems, we developed a new framework that iteratively performs MC dose calculations and plan optimizations. At each dose calculation step, the particles were sampled from different spots altogether with Metropolis algorithm, such that the particle number is proportional to the latest optimized spot intensity. Simultaneously transporting particles from multiple spots also mitigated the memory writing conflict problem. Results: We have validated the proposed MC-based optimization schemes in one prostate case. The total computation time of our method was ∼5–6 min on one NVIDIA GPU card, including both spot dose calculation and plan optimization, whereas a conventional method naively using the same GPU-based MC engine were ∼3 times slower. Conclusion: A fast GPU-based MC dose calculation method along with a novel optimization workflow is developed. The high efficiency makes it attractive for clinical usages.« less
NASA Astrophysics Data System (ADS)
Liu, Hongcheng; Dong, Peng; Xing, Lei
2017-08-01
{{\\ell }2,1} -minimization-based sparse optimization was employed to solve the beam angle optimization (BAO) in intensity-modulated radiation therapy (IMRT) planning. The technique approximates the exact BAO formulation with efficiently computable convex surrogates, leading to plans that are inferior to those attainable with recently proposed gradient-based greedy schemes. In this paper, we alleviate/reduce the nontrivial inconsistencies between the {{\\ell }2,1} -based formulations and the exact BAO model by proposing a new sparse optimization framework based on the most recent developments in group variable selection. We propose the incorporation of the group-folded concave penalty (gFCP) as a substitution to the {{\\ell }2,1} -minimization framework. The new formulation is then solved by a variation of an existing gradient method. The performance of the proposed scheme is evaluated by both plan quality and the computational efficiency using three IMRT cases: a coplanar prostate case, a coplanar head-and-neck case, and a noncoplanar liver case. Involved in the evaluation are two alternative schemes: the {{\\ell }2,1} -minimization approach and the gradient norm method (GNM). The gFCP-based scheme outperforms both counterpart approaches. In particular, gFCP generates better plans than those obtained using the {{\\ell }2,1} -minimization for all three cases with a comparable computation time. As compared to the GNM, the gFCP improves both the plan quality and computational efficiency. The proposed gFCP-based scheme provides a promising framework for BAO and promises to improve both planning time and plan quality.
Liu, Hongcheng; Dong, Peng; Xing, Lei
2017-07-20
[Formula: see text]-minimization-based sparse optimization was employed to solve the beam angle optimization (BAO) in intensity-modulated radiation therapy (IMRT) planning. The technique approximates the exact BAO formulation with efficiently computable convex surrogates, leading to plans that are inferior to those attainable with recently proposed gradient-based greedy schemes. In this paper, we alleviate/reduce the nontrivial inconsistencies between the [Formula: see text]-based formulations and the exact BAO model by proposing a new sparse optimization framework based on the most recent developments in group variable selection. We propose the incorporation of the group-folded concave penalty (gFCP) as a substitution to the [Formula: see text]-minimization framework. The new formulation is then solved by a variation of an existing gradient method. The performance of the proposed scheme is evaluated by both plan quality and the computational efficiency using three IMRT cases: a coplanar prostate case, a coplanar head-and-neck case, and a noncoplanar liver case. Involved in the evaluation are two alternative schemes: the [Formula: see text]-minimization approach and the gradient norm method (GNM). The gFCP-based scheme outperforms both counterpart approaches. In particular, gFCP generates better plans than those obtained using the [Formula: see text]-minimization for all three cases with a comparable computation time. As compared to the GNM, the gFCP improves both the plan quality and computational efficiency. The proposed gFCP-based scheme provides a promising framework for BAO and promises to improve both planning time and plan quality.
A Class of Prediction-Correction Methods for Time-Varying Convex Optimization
NASA Astrophysics Data System (ADS)
Simonetto, Andrea; Mokhtari, Aryan; Koppel, Alec; Leus, Geert; Ribeiro, Alejandro
2016-09-01
This paper considers unconstrained convex optimization problems with time-varying objective functions. We propose algorithms with a discrete time-sampling scheme to find and track the solution trajectory based on prediction and correction steps, while sampling the problem data at a constant rate of $1/h$, where $h$ is the length of the sampling interval. The prediction step is derived by analyzing the iso-residual dynamics of the optimality conditions. The correction step adjusts for the distance between the current prediction and the optimizer at each time step, and consists either of one or multiple gradient steps or Newton steps, which respectively correspond to the gradient trajectory tracking (GTT) or Newton trajectory tracking (NTT) algorithms. Under suitable conditions, we establish that the asymptotic error incurred by both proposed methods behaves as $O(h^2)$, and in some cases as $O(h^4)$, which outperforms the state-of-the-art error bound of $O(h)$ for correction-only methods in the gradient-correction step. Moreover, when the characteristics of the objective function variation are not available, we propose approximate gradient and Newton tracking algorithms (AGT and ANT, respectively) that still attain these asymptotical error bounds. Numerical simulations demonstrate the practical utility of the proposed methods and that they improve upon existing techniques by several orders of magnitude.
NASA Astrophysics Data System (ADS)
Wang, Li; Li, Chuanghong
2018-02-01
As a sustainable form of ecological structure, green building is widespread concerned and advocated in society increasingly nowadays. In the survey and design phase of preliminary project construction, carrying out the evaluation and selection of green building design scheme, which is in accordance with the scientific and reasonable evaluation index system, can improve the ecological benefits of green building projects largely and effectively. Based on the new Green Building Evaluation Standard which came into effect on January 1, 2015, the evaluation index system of green building design scheme is constructed taking into account the evaluation contents related to the green building design scheme. We organized experts who are experienced in construction scheme optimization to mark and determine the weight of each evaluation index through the AHP method. The correlation degree was calculated between each evaluation scheme and ideal scheme by using multilevel gray relational analysis model and then the optimal scheme was determined. The feasibility and practicability of the evaluation method are verified by introducing examples.
Zhang, Xiaoling; Huang, Kai; Zou, Rui; Liu, Yong; Yu, Yajuan
2013-01-01
The conflict of water environment protection and economic development has brought severe water pollution and restricted the sustainable development in the watershed. A risk explicit interval linear programming (REILP) method was used to solve integrated watershed environmental-economic optimization problem. Interval linear programming (ILP) and REILP models for uncertainty-based environmental economic optimization at the watershed scale were developed for the management of Lake Fuxian watershed, China. Scenario analysis was introduced into model solution process to ensure the practicality and operability of optimization schemes. Decision makers' preferences for risk levels can be expressed through inputting different discrete aspiration level values into the REILP model in three periods under two scenarios. Through balancing the optimal system returns and corresponding system risks, decision makers can develop an efficient industrial restructuring scheme based directly on the window of "low risk and high return efficiency" in the trade-off curve. The representative schemes at the turning points of two scenarios were interpreted and compared to identify a preferable planning alternative, which has the relatively low risks and nearly maximum benefits. This study provides new insights and proposes a tool, which was REILP, for decision makers to develop an effectively environmental economic optimization scheme in integrated watershed management.
Zou, Rui; Liu, Yong; Yu, Yajuan
2013-01-01
The conflict of water environment protection and economic development has brought severe water pollution and restricted the sustainable development in the watershed. A risk explicit interval linear programming (REILP) method was used to solve integrated watershed environmental-economic optimization problem. Interval linear programming (ILP) and REILP models for uncertainty-based environmental economic optimization at the watershed scale were developed for the management of Lake Fuxian watershed, China. Scenario analysis was introduced into model solution process to ensure the practicality and operability of optimization schemes. Decision makers' preferences for risk levels can be expressed through inputting different discrete aspiration level values into the REILP model in three periods under two scenarios. Through balancing the optimal system returns and corresponding system risks, decision makers can develop an efficient industrial restructuring scheme based directly on the window of “low risk and high return efficiency” in the trade-off curve. The representative schemes at the turning points of two scenarios were interpreted and compared to identify a preferable planning alternative, which has the relatively low risks and nearly maximum benefits. This study provides new insights and proposes a tool, which was REILP, for decision makers to develop an effectively environmental economic optimization scheme in integrated watershed management. PMID:24191144
NASA Astrophysics Data System (ADS)
Zhu, Wenlong; Ma, Shoufeng; Tian, Junfang
2017-01-01
This paper investigates the revenue-neutral tradable credit charge and reward scheme without initial credit allocations that can reassign network traffic flow patterns to optimize congestion and emissions. First, we prove the existence of the proposed schemes and further decentralize the minimum emission flow pattern to user equilibrium. Moreover, we design the solving method of the proposed credit scheme for minimum emission problem. Second, we investigate the revenue-neutral tradable credit charge and reward scheme without initial credit allocations for bi-objectives to obtain the Pareto system optimum flow patterns of congestion and emissions; and present the corresponding solutions are located in the polyhedron constituted by some inequalities and equalities system. Last, numerical example based on a simple traffic network is adopted to obtain the proposed credit schemes and verify they are revenue-neutral.
Optimal control of nonlinear continuous-time systems in strict-feedback form.
Zargarzadeh, Hassan; Dierks, Travis; Jagannathan, Sarangapani
2015-10-01
This paper proposes a novel optimal tracking control scheme for nonlinear continuous-time systems in strict-feedback form with uncertain dynamics. The optimal tracking problem is transformed into an equivalent optimal regulation problem through a feedforward adaptive control input that is generated by modifying the standard backstepping technique. Subsequently, a neural network-based optimal control scheme is introduced to estimate the cost, or value function, over an infinite horizon for the resulting nonlinear continuous-time systems in affine form when the internal dynamics are unknown. The estimated cost function is then used to obtain the optimal feedback control input; therefore, the overall optimal control input for the nonlinear continuous-time system in strict-feedback form includes the feedforward plus the optimal feedback terms. It is shown that the estimated cost function minimizes the Hamilton-Jacobi-Bellman estimation error in a forward-in-time manner without using any value or policy iterations. Finally, optimal output feedback control is introduced through the design of a suitable observer. Lyapunov theory is utilized to show the overall stability of the proposed schemes without requiring an initial admissible controller. Simulation examples are provided to validate the theoretical results.
A Lifetime Maximization Relay Selection Scheme in Wireless Body Area Networks.
Zhang, Yu; Zhang, Bing; Zhang, Shi
2017-06-02
Network Lifetime is one of the most important metrics in Wireless Body Area Networks (WBANs). In this paper, a relay selection scheme is proposed under the topology constrains specified in the IEEE 802.15.6 standard to maximize the lifetime of WBANs through formulating and solving an optimization problem where relay selection of each node acts as optimization variable. Considering the diversity of the sensor nodes in WBANs, the optimization problem takes not only energy consumption rate but also energy difference among sensor nodes into account to improve the network lifetime performance. Since it is Non-deterministic Polynomial-hard (NP-hard) and intractable, a heuristic solution is then designed to rapidly address the optimization. The simulation results indicate that the proposed relay selection scheme has better performance in network lifetime compared with existing algorithms and that the heuristic solution has low time complexity with only a negligible performance degradation gap from optimal value. Furthermore, we also conduct simulations based on a general WBAN model to comprehensively illustrate the advantages of the proposed algorithm. At the end of the evaluation, we validate the feasibility of our proposed scheme via an implementation discussion.
Capturing heterogeneity: The role of a study area's extent for estimating mean throughfall
NASA Astrophysics Data System (ADS)
Zimmermann, Alexander; Voss, Sebastian; Metzger, Johanna Clara; Hildebrandt, Anke; Zimmermann, Beate
2016-11-01
The selection of an appropriate spatial extent of a sampling plot is one among several important decisions involved in planning a throughfall sampling scheme. In fact, the choice of the extent may determine whether or not a study can adequately characterize the hydrological fluxes of the studied ecosystem. Previous attempts to optimize throughfall sampling schemes focused on the selection of an appropriate sample size, support, and sampling design, while comparatively little attention has been given to the role of the extent. In this contribution, we investigated the influence of the extent on the representativeness of mean throughfall estimates for three forest ecosystems of varying stand structure. Our study is based on virtual sampling of simulated throughfall fields. We derived these fields from throughfall data sampled in a simply structured forest (young tropical forest) and two heterogeneous forests (old tropical forest, unmanaged mixed European beech forest). We then sampled the simulated throughfall fields with three common extents and various sample sizes for a range of events and for accumulated data. Our findings suggest that the size of the study area should be carefully adapted to the complexity of the system under study and to the required temporal resolution of the throughfall data (i.e. event-based versus accumulated). Generally, event-based sampling in complex structured forests (conditions that favor comparatively long autocorrelations in throughfall) requires the largest extents. For event-based sampling, the choice of an appropriate extent can be as important as using an adequate sample size.
Gálvez, Akemi; Iglesias, Andrés
2013-01-01
Fitting spline curves to data points is a very important issue in many applied fields. It is also challenging, because these curves typically depend on many continuous variables in a highly interrelated nonlinear way. In general, it is not possible to compute these parameters analytically, so the problem is formulated as a continuous nonlinear optimization problem, for which traditional optimization techniques usually fail. This paper presents a new bioinspired method to tackle this issue. In this method, optimization is performed through a combination of two techniques. Firstly, we apply the indirect approach to the knots, in which they are not initially the subject of optimization but precomputed with a coarse approximation scheme. Secondly, a powerful bioinspired metaheuristic technique, the firefly algorithm, is applied to optimization of data parameterization; then, the knot vector is refined by using De Boor's method, thus yielding a better approximation to the optimal knot vector. This scheme converts the original nonlinear continuous optimization problem into a convex optimization problem, solved by singular value decomposition. Our method is applied to some illustrative real-world examples from the CAD/CAM field. Our experimental results show that the proposed scheme can solve the original continuous nonlinear optimization problem very efficiently.
Gálvez, Akemi; Iglesias, Andrés
2013-01-01
Fitting spline curves to data points is a very important issue in many applied fields. It is also challenging, because these curves typically depend on many continuous variables in a highly interrelated nonlinear way. In general, it is not possible to compute these parameters analytically, so the problem is formulated as a continuous nonlinear optimization problem, for which traditional optimization techniques usually fail. This paper presents a new bioinspired method to tackle this issue. In this method, optimization is performed through a combination of two techniques. Firstly, we apply the indirect approach to the knots, in which they are not initially the subject of optimization but precomputed with a coarse approximation scheme. Secondly, a powerful bioinspired metaheuristic technique, the firefly algorithm, is applied to optimization of data parameterization; then, the knot vector is refined by using De Boor's method, thus yielding a better approximation to the optimal knot vector. This scheme converts the original nonlinear continuous optimization problem into a convex optimization problem, solved by singular value decomposition. Our method is applied to some illustrative real-world examples from the CAD/CAM field. Our experimental results show that the proposed scheme can solve the original continuous nonlinear optimization problem very efficiently. PMID:24376380
Fuzzy Adaptive Decentralized Optimal Control for Strict Feedback Nonlinear Large-Scale Systems.
Sun, Kangkang; Sui, Shuai; Tong, Shaocheng
2018-04-01
This paper considers the optimal decentralized fuzzy adaptive control design problem for a class of interconnected large-scale nonlinear systems in strict feedback form and with unknown nonlinear functions. The fuzzy logic systems are introduced to learn the unknown dynamics and cost functions, respectively, and a state estimator is developed. By applying the state estimator and the backstepping recursive design algorithm, a decentralized feedforward controller is established. By using the backstepping decentralized feedforward control scheme, the considered interconnected large-scale nonlinear system in strict feedback form is changed into an equivalent affine large-scale nonlinear system. Subsequently, an optimal decentralized fuzzy adaptive control scheme is constructed. The whole optimal decentralized fuzzy adaptive controller is composed of a decentralized feedforward control and an optimal decentralized control. It is proved that the developed optimal decentralized controller can ensure that all the variables of the control system are uniformly ultimately bounded, and the cost functions are the smallest. Two simulation examples are provided to illustrate the validity of the developed optimal decentralized fuzzy adaptive control scheme.
New Imaging Operation Scheme at VLTI
NASA Astrophysics Data System (ADS)
Haubois, Xavier
2018-04-01
After PIONIER and GRAVITY, MATISSE will soon complete the set of 4 telescope beam combiners at VLTI. Together with recent developments in the image reconstruction algorithms, the VLTI aims to develop its operation scheme to allow optimized and adaptive UV plane coverage. The combination of spectro-imaging instruments, optimized operation framework and image reconstruction algorithms should lead to an increase of the reliability and quantity of the interferometric images. In this contribution, I will present the status of this new scheme as well as possible synergies with other instruments.
NASA Technical Reports Server (NTRS)
Rizk, Magdi H.
1988-01-01
A scheme is developed for solving constrained optimization problems in which the objective function and the constraint function are dependent on the solution of the nonlinear flow equations. The scheme updates the design parameter iterative solutions and the flow variable iterative solutions simultaneously. It is applied to an advanced propeller design problem with the Euler equations used as the flow governing equations. The scheme's accuracy, efficiency and sensitivity to the computational parameters are tested.
Fundamental Limits of Delay and Security in Device-to-Device Communication
2013-01-01
systematic MDS (maximum distance separable) codes and random binning strategies that achieve a Pareto optimal delayreconstruction tradeoff. The erasure MD...file, and a coding scheme based on erasure compression and Slepian-Wolf binning is presented. The coding scheme is shown to provide a Pareto optimal...ble) codes and random binning strategies that achieve a Pareto optimal delay- reconstruction tradeoff. The erasure MD setup is then used to propose a
A Study on a Centralized Under-Voltage Load Shedding Scheme Considering the Load Characteristics
NASA Astrophysics Data System (ADS)
Deng, Jiyu; Liu, Junyong
Under-voltage load shedding is an important measure for maintaining voltage stability.Aiming at the optimal load shedding problem considering the load characteristics,firstly,the traditional under-voltage load shedding scheme based on a static load model may cause the analysis inaccurate is pointed out on the equivalent Thevenin circuit.Then,the dynamic voltage stability margin indicator is derived through local measurement.The derived indicator can reflect the voltage change of the key area in a myopia linear way.Dimensions of the optimal problem will be greatly simplified using this indicator.In the end,mathematical model of the centralized load shedding scheme is built with the indicator considering load characteristics.HSPPSO is introduced to slove the optimal problem.Simulation results on IEEE-39 system show that the proposed scheme display a good adaptability in solving the under-voltage load shedding considering dynamic load characteristics.
Modular and configurable optimal sequence alignment software: Cola.
Zamani, Neda; Sundström, Görel; Höppner, Marc P; Grabherr, Manfred G
2014-01-01
The fundamental challenge in optimally aligning homologous sequences is to define a scoring scheme that best reflects the underlying biological processes. Maximising the overall number of matches in the alignment does not always reflect the patterns by which nucleotides mutate. Efficiently implemented algorithms that can be parameterised to accommodate more complex non-linear scoring schemes are thus desirable. We present Cola, alignment software that implements different optimal alignment algorithms, also allowing for scoring contiguous matches of nucleotides in a nonlinear manner. The latter places more emphasis on short, highly conserved motifs, and less on the surrounding nucleotides, which can be more diverged. To illustrate the differences, we report results from aligning 14,100 sequences from 3' untranslated regions of human genes to 25 of their mammalian counterparts, where we found that a nonlinear scoring scheme is more consistent than a linear scheme in detecting short, conserved motifs. Cola is freely available under LPGL from https://github.com/nedaz/cola.
Sutherland, Devon J; Stearman, G Kim; Wells, Martha J M
2003-01-01
The transport and fate of pesticides applied to ornamental plant nursery crops are not well documented. Methodology for analysis of soil and water runoff samples concomitantly containing the herbicides simazine (1-chloro-4,6-bis(ethylamino)-s-triazine) and 2,4-D ((2,4-dichlorophenoxy)acetic acid) was developed in this research to investigate the potential for runoff and leaching from ornamental nursery plots. Solid-phase extraction was used prior to analysis by gas chromatography and liquid chromatography. Chromatographic results were compared with determination by enzyme-linked immunoassay analysis. The significant analytical contributions of this research include (1) the development of a scheme using chromatographic mode sequencing for the fractionation of simazine and 2,4-D, (2) optimization of the homogeneous derivatization of 2,4-D using the methylating agent boron trifluoride in methanol as an alternative to in situ generation of diazomethane, and (3) the practical application of these techniques to field samples.
NASA Astrophysics Data System (ADS)
Rodriguez-Pretelin, A.; Nowak, W.
2017-12-01
For most groundwater protection management programs, Wellhead Protection Areas (WHPAs) have served as primarily protection measure. In their delineation, the influence of time-varying groundwater flow conditions is often underestimated because steady-state assumptions are commonly made. However, it has been demonstrated that temporary variations lead to significant changes in the required size and shape of WHPAs. Apart from natural transient groundwater drivers (e.g., changes in the regional angle of flow direction and seasonal natural groundwater recharge), anthropogenic causes such as transient pumping rates are of the most influential factors that require larger WHPAs. We hypothesize that WHPA programs that integrate adaptive and optimized pumping-injection management schemes can counter transient effects and thus reduce the additional areal demand in well protection under transient conditions. The main goal of this study is to present a novel management framework that optimizes pumping schemes dynamically, in order to minimize the impact triggered by transient conditions in WHPA delineation. For optimizing pumping schemes, we consider three objectives: 1) to minimize the risk of pumping water from outside a given WHPA, 2) to maximize the groundwater supply and 3) to minimize the involved operating costs. We solve transient groundwater flow through an available transient groundwater and Lagrangian particle tracking model. The optimization problem is formulated as a dynamic programming problem. Two different optimization approaches are explored: I) the first approach aims for single-objective optimization under objective (1) only. The second approach performs multiobjective optimization under all three objectives where compromise pumping rates are selected from the current Pareto front. Finally, we look for WHPA outlines that are as small as possible, yet allow the optimization problem to find the most suitable solutions.
Outcome-Dependent Sampling Design and Inference for Cox's Proportional Hazards Model.
Yu, Jichang; Liu, Yanyan; Cai, Jianwen; Sandler, Dale P; Zhou, Haibo
2016-11-01
We propose a cost-effective outcome-dependent sampling design for the failure time data and develop an efficient inference procedure for data collected with this design. To account for the biased sampling scheme, we derive estimators from a weighted partial likelihood estimating equation. The proposed estimators for regression parameters are shown to be consistent and asymptotically normally distributed. A criteria that can be used to optimally implement the ODS design in practice is proposed and studied. The small sample performance of the proposed method is evaluated by simulation studies. The proposed design and inference procedure is shown to be statistically more powerful than existing alternative designs with the same sample sizes. We illustrate the proposed method with an existing real data from the Cancer Incidence and Mortality of Uranium Miners Study.
A frequency-based window width optimized two-dimensional S-Transform profilometry
NASA Astrophysics Data System (ADS)
Zhong, Min; Chen, Feng; Xiao, Chao
2017-11-01
A new scheme is proposed to as a frequency-based window width optimized two-dimensional S-Transform profilometry, in which parameters pu and pv are introduced to control the width of a two-dimensional Gaussian window. Unlike the standard two-dimensional S-transform using the Gaussian window with window width proportional to the reciprocal local frequency of the tested signal, the size of window width for the optimized two-dimensional S-Transform varies with the pu th (pv th) power of the reciprocal local frequency fx (fy) in x (y) direction. The paper gives a detailed theoretical analysis of optimized two-dimensional S-Transform in fringe analysis as well as the characteristics of the modified Gauss window. Simulations are applied to evaluate the proposed scheme, the results show that the new scheme has better noise reduction ability and can extract phase distribution more precise in comparison with the standard two-dimensional S-transform even though the surface of the measured object varies sharply. Finally, the proposed scheme is demonstrated on three-dimensional surface reconstruction for a complex plastic cat mask to show its effectiveness.
Bayesian Lagrangian Data Assimilation and Drifter Deployment Strategies
NASA Astrophysics Data System (ADS)
Dutt, A.; Lermusiaux, P. F. J.
2017-12-01
Ocean currents transport a variety of natural (e.g. water masses, phytoplankton, zooplankton, sediments, etc.) and man-made materials and other objects (e.g. pollutants, floating debris, search and rescue, etc.). Lagrangian Coherent Structures (LCSs) or the most influential/persistent material lines in a flow, provide a robust approach to characterize such Lagrangian transports and organize classic trajectories. Using the flow-map stochastic advection and a dynamically-orthogonal decomposition, we develop uncertainty prediction schemes for both Eulerian and Lagrangian variables. We then extend our Bayesian Gaussian Mixture Model (GMM)-DO filter to a joint Eulerian-Lagrangian Bayesian data assimilation scheme. The resulting nonlinear filter allows the simultaneous non-Gaussian estimation of Eulerian variables (e.g. velocity, temperature, salinity, etc.) and Lagrangian variables (e.g. drifter/float positions, trajectories, LCSs, etc.). Its results are showcased using a double-gyre flow with a random frequency, a stochastic flow past a cylinder, and realistic ocean examples. We further show how our Bayesian mutual information and adaptive sampling equations provide a rigorous efficient methodology to plan optimal drifter deployment strategies and predict the optimal times, locations, and types of measurements to be collected.
NASA Astrophysics Data System (ADS)
Chang, Ching-Chun; Liu, Yanjun; Nguyen, Son T.
2015-03-01
Data hiding is a technique that embeds information into digital cover data. This technique has been concentrated on the spatial uncompressed domain, and it is considered more challenging to perform in the compressed domain, i.e., vector quantization, JPEG, and block truncation coding (BTC). In this paper, we propose a new data hiding scheme for BTC-compressed images. In the proposed scheme, a dynamic programming strategy was used to search for the optimal solution of the bijective mapping function for LSB substitution. Then, according to the optimal solution, each mean value embeds three secret bits to obtain high hiding capacity with low distortion. The experimental results indicated that the proposed scheme obtained both higher hiding capacity and hiding efficiency than the other four existing schemes, while ensuring good visual quality of the stego-image. In addition, the proposed scheme achieved a low bit rate as original BTC algorithm.
Study on the design schemes of the air-conditioning system in a gymnasium
NASA Astrophysics Data System (ADS)
Zhang, Yujin; Wu, Xinwei; Zhang, Jing; Pan, Zhixin
2017-08-01
In view of designing the air conditioning project for a gymnasium successfully, the cooling and heating source schemes are fully studied by analyzing the surrounding environment and energy conditions of the project, as well as the analysis of the initial investment and operating costs, which indicates the air source heat pump air conditioning system is the best choice for the project. The indoor air conditioning schemes are also studied systematically and the optimization of air conditioning schemes is carried out in each area. The principle of operating conditions for the whole year is followed and the quality of indoor air and energy-saving are ensured by the optimized design schemes, which provide references for the air conditioning system design in the same kinds of building.
NASA Astrophysics Data System (ADS)
Lu, Jiazhen; Yang, Lie
2018-05-01
To achieve accurate and completely autonomous navigation for spacecraft, inertial/celestial integrated navigation gets increasing attention. In this study, a missile-borne inertial/stellar refraction integrated navigation scheme is proposed. Position Dilution of Precision (PDOP) for stellar refraction is introduced and the corresponding equation is derived. Based on the condition when PDOP reaches the minimum value, an optimized observation scheme is proposed. To verify the feasibility of the proposed scheme, numerical simulation is conducted. The results of the Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) are compared and impact factors of navigation accuracy are studied in the simulation. The simulation results indicated that the proposed observation scheme has an accurate positioning performance, and the results of EKF and UKF are similar.
Lu, Jiazhen; Yang, Lie
2018-05-01
To achieve accurate and completely autonomous navigation for spacecraft, inertial/celestial integrated navigation gets increasing attention. In this study, a missile-borne inertial/stellar refraction integrated navigation scheme is proposed. Position Dilution of Precision (PDOP) for stellar refraction is introduced and the corresponding equation is derived. Based on the condition when PDOP reaches the minimum value, an optimized observation scheme is proposed. To verify the feasibility of the proposed scheme, numerical simulation is conducted. The results of the Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) are compared and impact factors of navigation accuracy are studied in the simulation. The simulation results indicated that the proposed observation scheme has an accurate positioning performance, and the results of EKF and UKF are similar.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habib, Hany F; El Hariri, Mohamad; Elsayed, Ahmed
Microgrids’ adaptive protection techniques rely on communication signals from the point of common coupling to ad- just the corresponding relays’ settings for either grid-connected or islanded modes of operation. However, during communication out- ages or in the event of a cyberattack, relays settings are not changed. Thus adaptive protection schemes are rendered unsuc- cessful. Due to their fast response, supercapacitors, which are pre- sent in the microgrid to feed pulse loads, could also be utilized to enhance the resiliency of adaptive protection schemes to communi- cation outages. Proper sizing of the supercapacitors is therefore im- portant in order to maintainmore » a stable system operation and also reg- ulate the protection scheme’s cost. This paper presents a two-level optimization scheme for minimizing the supercapacitor size along with optimizing its controllers’ parameters. The latter will lead to a reduction of the supercapacitor fault current contribution and an increase in that of other AC resources in the microgrid in the ex- treme case of having a fault occurring simultaneously with a pulse load. It was also shown that the size of the supercapacitor can be reduced if the pulse load is temporary disconnected during the transient fault period. Simulations showed that the resulting super- capacitor size and the optimized controller parameters from the proposed two-level optimization scheme were feeding enough fault currents for different types of faults and minimizing the cost of the protection scheme.« less
Approximate optimal guidance for the advanced launch system
NASA Technical Reports Server (NTRS)
Feeley, T. S.; Speyer, J. L.
1993-01-01
A real-time guidance scheme for the problem of maximizing the payload into orbit subject to the equations of motion for a rocket over a spherical, non-rotating earth is presented. An approximate optimal launch guidance law is developed based upon an asymptotic expansion of the Hamilton - Jacobi - Bellman or dynamic programming equation. The expansion is performed in terms of a small parameter, which is used to separate the dynamics of the problem into primary and perturbation dynamics. For the zeroth-order problem the small parameter is set to zero and a closed-form solution to the zeroth-order expansion term of Hamilton - Jacobi - Bellman equation is obtained. Higher-order terms of the expansion include the effects of the neglected perturbation dynamics. These higher-order terms are determined from the solution of first-order linear partial differential equations requiring only the evaluation of quadratures. This technique is preferred as a real-time, on-line guidance scheme to alternative numerical iterative optimization schemes because of the unreliable convergence properties of these iterative guidance schemes and because the quadratures needed for the approximate optimal guidance law can be performed rapidly and by parallel processing. Even if the approximate solution is not nearly optimal, when using this technique the zeroth-order solution always provides a path which satisfies the terminal constraints. Results for two-degree-of-freedom simulations are presented for the simplified problem of flight in the equatorial plane and compared to the guidance scheme generated by the shooting method which is an iterative second-order technique.
On-line estimation of error covariance parameters for atmospheric data assimilation
NASA Technical Reports Server (NTRS)
Dee, Dick P.
1995-01-01
A simple scheme is presented for on-line estimation of covariance parameters in statistical data assimilation systems. The scheme is based on a maximum-likelihood approach in which estimates are produced on the basis of a single batch of simultaneous observations. Simple-sample covariance estimation is reasonable as long as the number of available observations exceeds the number of tunable parameters by two or three orders of magnitude. Not much is known at present about model error associated with actual forecast systems. Our scheme can be used to estimate some important statistical model error parameters such as regionally averaged variances or characteristic correlation length scales. The advantage of the single-sample approach is that it does not rely on any assumptions about the temporal behavior of the covariance parameters: time-dependent parameter estimates can be continuously adjusted on the basis of current observations. This is of practical importance since it is likely to be the case that both model error and observation error strongly depend on the actual state of the atmosphere. The single-sample estimation scheme can be incorporated into any four-dimensional statistical data assimilation system that involves explicit calculation of forecast error covariances, including optimal interpolation (OI) and the simplified Kalman filter (SKF). The computational cost of the scheme is high but not prohibitive; on-line estimation of one or two covariance parameters in each analysis box of an operational bozed-OI system is currently feasible. A number of numerical experiments performed with an adaptive SKF and an adaptive version of OI, using a linear two-dimensional shallow-water model and artificially generated model error are described. The performance of the nonadaptive versions of these methods turns out to depend rather strongly on correct specification of model error parameters. These parameters are estimated under a variety of conditions, including uniformly distributed model error and time-dependent model error statistics.
Quantum money with nearly optimal error tolerance
NASA Astrophysics Data System (ADS)
Amiri, Ryan; Arrazola, Juan Miguel
2017-06-01
We present a family of quantum money schemes with classical verification which display a number of benefits over previous proposals. Our schemes are based on hidden matching quantum retrieval games and they tolerate noise up to 23 % , which we conjecture reaches 25 % asymptotically as the dimension of the underlying hidden matching states is increased. Furthermore, we prove that 25 % is the maximum tolerable noise for a wide class of quantum money schemes with classical verification, meaning our schemes are almost optimally noise tolerant. We use methods in semidefinite programming to prove security in a substantially different manner to previous proposals, leading to two main advantages: first, coin verification involves only a constant number of states (with respect to coin size), thereby allowing for smaller coins; second, the reusability of coins within our scheme grows linearly with the size of the coin, which is known to be optimal. Last, we suggest methods by which the coins in our protocol could be implemented using weak coherent states and verified using existing experimental techniques, even in the presence of detector inefficiencies.
Consensus Classification Using Non-Optimized Classifiers.
Brownfield, Brett; Lemos, Tony; Kalivas, John H
2018-04-03
Classifying samples into categories is a common problem in analytical chemistry and other fields. Classification is usually based on only one method, but numerous classifiers are available with some being complex, such as neural networks, and others are simple, such as k nearest neighbors. Regardless, most classification schemes require optimization of one or more tuning parameters for best classification accuracy, sensitivity, and specificity. A process not requiring exact selection of tuning parameter values would be useful. To improve classification, several ensemble approaches have been used in past work to combine classification results from multiple optimized single classifiers. The collection of classifications for a particular sample are then combined by a fusion process such as majority vote to form the final classification. Presented in this Article is a method to classify a sample by combining multiple classification methods without specifically classifying the sample by each method, that is, the classification methods are not optimized. The approach is demonstrated on three analytical data sets. The first is a beer authentication set with samples measured on five instruments, allowing fusion of multiple instruments by three ways. The second data set is composed of textile samples from three classes based on Raman spectra. This data set is used to demonstrate the ability to classify simultaneously with different data preprocessing strategies, thereby reducing the need to determine the ideal preprocessing method, a common prerequisite for accurate classification. The third data set contains three wine cultivars for three classes measured at 13 unique chemical and physical variables. In all cases, fusion of nonoptimized classifiers improves classification. Also presented are atypical uses of Procrustes analysis and extended inverted signal correction (EISC) for distinguishing sample similarities to respective classes.
Optimization and Control of Cyber-Physical Vehicle Systems
Bradley, Justin M.; Atkins, Ella M.
2015-01-01
A cyber-physical system (CPS) is composed of tightly-integrated computation, communication and physical elements. Medical devices, buildings, mobile devices, robots, transportation and energy systems can benefit from CPS co-design and optimization techniques. Cyber-physical vehicle systems (CPVSs) are rapidly advancing due to progress in real-time computing, control and artificial intelligence. Multidisciplinary or multi-objective design optimization maximizes CPS efficiency, capability and safety, while online regulation enables the vehicle to be responsive to disturbances, modeling errors and uncertainties. CPVS optimization occurs at design-time and at run-time. This paper surveys the run-time cooperative optimization or co-optimization of cyber and physical systems, which have historically been considered separately. A run-time CPVS is also cooperatively regulated or co-regulated when cyber and physical resources are utilized in a manner that is responsive to both cyber and physical system requirements. This paper surveys research that considers both cyber and physical resources in co-optimization and co-regulation schemes with applications to mobile robotic and vehicle systems. Time-varying sampling patterns, sensor scheduling, anytime control, feedback scheduling, task and motion planning and resource sharing are examined. PMID:26378541
Optimization and Control of Cyber-Physical Vehicle Systems.
Bradley, Justin M; Atkins, Ella M
2015-09-11
A cyber-physical system (CPS) is composed of tightly-integrated computation, communication and physical elements. Medical devices, buildings, mobile devices, robots, transportation and energy systems can benefit from CPS co-design and optimization techniques. Cyber-physical vehicle systems (CPVSs) are rapidly advancing due to progress in real-time computing, control and artificial intelligence. Multidisciplinary or multi-objective design optimization maximizes CPS efficiency, capability and safety, while online regulation enables the vehicle to be responsive to disturbances, modeling errors and uncertainties. CPVS optimization occurs at design-time and at run-time. This paper surveys the run-time cooperative optimization or co-optimization of cyber and physical systems, which have historically been considered separately. A run-time CPVS is also cooperatively regulated or co-regulated when cyber and physical resources are utilized in a manner that is responsive to both cyber and physical system requirements. This paper surveys research that considers both cyber and physical resources in co-optimization and co-regulation schemes with applications to mobile robotic and vehicle systems. Time-varying sampling patterns, sensor scheduling, anytime control, feedback scheduling, task and motion planning and resource sharing are examined.
Near-optimal protocols in complex nonequilibrium transformations
Gingrich, Todd R.; Rotskoff, Grant M.; Crooks, Gavin E.; ...
2016-08-29
The development of sophisticated experimental means to control nanoscale systems has motivated efforts to design driving protocols that minimize the energy dissipated to the environment. Computational models are a crucial tool in this practical challenge. In this paper, we describe a general method for sampling an ensemble of finite-time, nonequilibrium protocols biased toward a low average dissipation. In addition, we show that this scheme can be carried out very efficiently in several limiting cases. As an application, we sample the ensemble of low-dissipation protocols that invert the magnetization of a 2D Ising model and explore how the diversity of themore » protocols varies in response to constraints on the average dissipation. In this example, we find that there is a large set of protocols with average dissipation close to the optimal value, which we argue is a general phenomenon.« less
Gaussian process surrogates for failure detection: A Bayesian experimental design approach
NASA Astrophysics Data System (ADS)
Wang, Hongqiao; Lin, Guang; Li, Jinglai
2016-05-01
An important task of uncertainty quantification is to identify the probability of undesired events, in particular, system failures, caused by various sources of uncertainties. In this work we consider the construction of Gaussian process surrogates for failure detection and failure probability estimation. In particular, we consider the situation that the underlying computer models are extremely expensive, and in this setting, determining the sampling points in the state space is of essential importance. We formulate the problem as an optimal experimental design for Bayesian inferences of the limit state (i.e., the failure boundary) and propose an efficient numerical scheme to solve the resulting optimization problem. In particular, the proposed limit-state inference method is capable of determining multiple sampling points at a time, and thus it is well suited for problems where multiple computer simulations can be performed in parallel. The accuracy and performance of the proposed method is demonstrated by both academic and practical examples.
NASA Astrophysics Data System (ADS)
Fang, Bao-Long; Yang, Zhen; Ye, Liu
2009-05-01
We propose a scheme for implementing a partial general quantum cloning machine with superconducting quantum-interference devices coupled to a nonresonant cavity. By regulating the time parameters, our system can perform optimal symmetric (asymmetric) universal quantum cloning, optimal symmetric (asymmetric) phase-covariant cloning, and optimal symmetric economical phase-covariant cloning. In the scheme the cavity is only virtually excited, thus, the cavity decay is suppressed during the cloning operations.
NASA Astrophysics Data System (ADS)
Boonyaritdachochai, Panida; Boonchuay, Chanwit; Ongsakul, Weerakorn
2010-06-01
This paper proposes an optimal power redispatching approach for congestion management in deregulated electricity market. Generator sensitivity is considered to indicate the redispatched generators. It can reduce the number of participating generators. The power adjustment cost and total redispatched power are minimized by particle swarm optimization with time varying acceleration coefficients (PSO-TVAC). The IEEE 30-bus and IEEE 118-bus systems are used to illustrate the proposed approach. Test results show that the proposed optimization scheme provides the lowest adjustment cost and redispatched power compared to the other schemes. The proposed approach is useful for the system operator to manage the transmission congestion.
NASA Technical Reports Server (NTRS)
Chuang, C.-H.; Goodson, Troy D.; Ledsinger, Laura A.
1995-01-01
This report describes current work in the numerical computation of multiple burn, fuel-optimal orbit transfers and presents an analysis of the second variation for extremal multiple burn orbital transfers as well as a discussion of a guidance scheme which may be implemented for such transfers. The discussion of numerical computation focuses on the use of multivariate interpolation to aid the computation in the numerical optimization. The second variation analysis includes the development of the conditions for the examination of both fixed and free final time transfers. Evaluations for fixed final time are presented for extremal one, two, and three burn solutions of the first variation. The free final time problem is considered for an extremal two burn solution. In addition, corresponding changes of the second variation formulation over thrust arcs and coast arcs are included. The guidance scheme discussed is an implicit scheme which implements a neighboring optimal feedback guidance strategy to calculate both thrust direction and thrust on-off times.
Distribution path robust optimization of electric vehicle with multiple distribution centers
Hao, Wei; He, Ruichun; Jia, Xiaoyan; Pan, Fuquan; Fan, Jing; Xiong, Ruiqi
2018-01-01
To identify electrical vehicle (EV) distribution paths with high robustness, insensitivity to uncertainty factors, and detailed road-by-road schemes, optimization of the distribution path problem of EV with multiple distribution centers and considering the charging facilities is necessary. With the minimum transport time as the goal, a robust optimization model of EV distribution path with adjustable robustness is established based on Bertsimas’ theory of robust discrete optimization. An enhanced three-segment genetic algorithm is also developed to solve the model, such that the optimal distribution scheme initially contains all road-by-road path data using the three-segment mixed coding and decoding method. During genetic manipulation, different interlacing and mutation operations are carried out on different chromosomes, while, during population evolution, the infeasible solution is naturally avoided. A part of the road network of Xifeng District in Qingyang City is taken as an example to test the model and the algorithm in this study, and the concrete transportation paths are utilized in the final distribution scheme. Therefore, more robust EV distribution paths with multiple distribution centers can be obtained using the robust optimization model. PMID:29518169
Chen, Xi; Xu, Yixuan; Liu, Anfeng
2017-04-19
High transmission reliability, energy efficiency, and long lifetime are pivotal issues for wireless body area networks (WBANs. However, these performance metrics are not independent of each other, making it hard to obtain overall improvements through optimizing one single aspect. Therefore, a Cross Layer Design Optimal (CLDO) scheme is proposed to simultaneously optimize transmission reliability, energy efficiency, and lifetime of WBANs from several layers. Firstly, due to the fact that the transmission power of nodes directly influences the reliability of links, the optimized transmission power of different nodes is deduced, which is able to maximize energy efficiency in theory under the premise that requirements on delay and jitter are fulfilled. Secondly, a relay decision algorithm is proposed to choose optimized relay nodes. Using this algorithm, nodes will choose relay nodes that ensure a balance of network energy consumption, provided that all nodes transmit with optimized transmission power and the same packet size. Thirdly, the energy consumption of nodes is still unbalanced even with optimized transmission power because of their different locations in the topology of the network. In addition, packet size also has an impact on final performance metrics. Therefore, a synthesized cross layer method for optimization is proposed. With this method, the transmission power of nodes with more residual energy will be enhanced while suitable packet size is determined for different links in the network, leading to further improvements in the WBAN system. Both our comprehensive theoretical analysis and experimental results indicate that the performance of our proposed scheme is better than reported in previous studies. Relative to the relay selection and power control game (RSPCG) scheme, the CLDO scheme can enhance transmission reliability by more than 44.6% and prolong the lifetime by as much as 33.2%.
Chen, Xi; Xu, Yixuan; Liu, Anfeng
2017-01-01
High transmission reliability, energy efficiency, and long lifetime are pivotal issues for wireless body area networks (WBANs). However, these performance metrics are not independent of each other, making it hard to obtain overall improvements through optimizing one single aspect. Therefore, a Cross Layer Design Optimal (CLDO) scheme is proposed to simultaneously optimize transmission reliability, energy efficiency, and lifetime of WBANs from several layers. Firstly, due to the fact that the transmission power of nodes directly influences the reliability of links, the optimized transmission power of different nodes is deduced, which is able to maximize energy efficiency in theory under the premise that requirements on delay and jitter are fulfilled. Secondly, a relay decision algorithm is proposed to choose optimized relay nodes. Using this algorithm, nodes will choose relay nodes that ensure a balance of network energy consumption, provided that all nodes transmit with optimized transmission power and the same packet size. Thirdly, the energy consumption of nodes is still unbalanced even with optimized transmission power because of their different locations in the topology of the network. In addition, packet size also has an impact on final performance metrics. Therefore, a synthesized cross layer method for optimization is proposed. With this method, the transmission power of nodes with more residual energy will be enhanced while suitable packet size is determined for different links in the network, leading to further improvements in the WBAN system. Both our comprehensive theoretical analysis and experimental results indicate that the performance of our proposed scheme is better than reported in previous studies. Relative to the relay selection and power control game (RSPCG) scheme, the CLDO scheme can enhance transmission reliability by more than 44.6% and prolong the lifetime by as much as 33.2%. PMID:28422062
NASA Astrophysics Data System (ADS)
Cai, Fu; Ming, Huiqing; Mi, Na; Xie, Yanbing; Zhang, Yushu; Li, Rongping
2017-04-01
As root water uptake (RWU) is an important link in the water and heat exchange between plants and ambient air, improving its parameterization is key to enhancing the performance of land surface model simulations. Although different types of RWU functions have been adopted in land surface models, there is no evidence as to which scheme most applicable to maize farmland ecosystems. Based on the 2007-09 data collected at the farmland ecosystem field station in Jinzhou, the RWU function in the Common Land Model (CoLM) was optimized with scheme options in light of factors determining whether roots absorb water from a certain soil layer ( W x ) and whether the baseline cumulative root efficiency required for maximum plant transpiration ( W c ) is reached. The sensibility of the parameters of the optimization scheme was investigated, and then the effects of the optimized RWU function on water and heat flux simulation were evaluated. The results indicate that the model simulation was not sensitive to W x but was significantly impacted by W c . With the original model, soil humidity was somewhat underestimated for precipitation-free days; soil temperature was simulated with obvious interannual and seasonal differences and remarkable underestimations for the maize late-growth stage; and sensible and latent heat fluxes were overestimated and underestimated, respectively, for years with relatively less precipitation, and both were simulated with high accuracy for years with relatively more precipitation. The optimized RWU process resulted in a significant improvement of CoLM's performance in simulating soil humidity, temperature, sensible heat, and latent heat, for dry years. In conclusion, the optimized RWU scheme available for the CoLM model is applicable to the simulation of water and heat flux for maize farmland ecosystems in arid areas.
Optimal scan strategy for mega-pixel and kilo-gray-level OLED-on-silicon microdisplay.
Ji, Yuan; Ran, Feng; Ji, Weigui; Xu, Meihua; Chen, Zhangjing; Jiang, Yuxi; Shen, Weixin
2012-06-10
The digital pixel driving scheme makes the organic light-emitting diode (OLED) microdisplays more immune to the pixel luminance variations and simplifies the circuit architecture and design flow compared to the analog pixel driving scheme. Additionally, it is easily applied in full digital systems. However, the data bottleneck becomes a notable problem as the number of pixels and gray levels grow dramatically. This paper will discuss the digital driving ability to achieve kilogray-levels for megapixel displays. The optimal scan strategy is proposed for creating ultra high gray levels and increasing light efficiency and contrast ratio. Two correction schemes are discussed to improve the gray level linearity. A 1280×1024×3 OLED-on-silicon microdisplay, with 4096 gray levels, is designed based on the optimal scan strategy. The circuit driver is integrated in the silicon backplane chip in the 0.35 μm 3.3 V-6 V dual voltage one polysilicon layer, four metal layers (1P4M) complementary metal-oxide semiconductor (CMOS) process with custom top metal. The design aspects of the optimal scan controller are also discussed. The test results show the gray level linearity of the correction schemes for the optimal scan strategy is acceptable by the human eye.
Experimental investigation on ignition schemes of partially covered cavities in a supersonic flow
NASA Astrophysics Data System (ADS)
Cai, Zun; Sun, Mingbo; Wang, Hongbo; Wang, Zhenguo
2016-04-01
In this study, ignition schemes of the partially covered cavity in a scramjet combustor were investigated under inflow conditions of Ma=2.1 with stagnation pressure P0=0.7 Mpa and stagnation temperature T0=947 K. It reveals that the ignition scheme of the partially covered cavity has a great impact on the ignition and flame stabilization process. There always exists an optimized global equivalence ratio of a fixed ignition scheme, and the optimized global equivalence ratio of ignition in the partially covered cavity is lower than that of the uncovered cavity. For tandem dual-cavities, ignition in the partially covered cavity could be enhanced with the optimization of global equivalence ratio. However, ignition in the partially covered cavity would be exacerbated with further increasing the global equivalence ratio. The global equivalence ratio and the jet penetration height have a strong coupling with the combustion flow-field. For multi-cavities, it is assured that fuel injection on the opposite side could hardly be ignited after ignition in the partially covered cavity even with the optimized global equivalence ratio. It is possible to realize ignition enhancement in the partially covered cavity with the optimization of global equivalence ratio, but it is not beneficial for thrust increment during the steady combustion process.
Adaptive control of stochastic linear systems with unknown parameters. M.S. Thesis
NASA Technical Reports Server (NTRS)
Ku, R. T.
1972-01-01
The problem of optimal control of linear discrete-time stochastic dynamical system with unknown and, possibly, stochastically varying parameters is considered on the basis of noisy measurements. It is desired to minimize the expected value of a quadratic cost functional. Since the simultaneous estimation of the state and plant parameters is a nonlinear filtering problem, the extended Kalman filter algorithm is used. Several qualitative and asymptotic properties of the open loop feedback optimal control and the enforced separation scheme are discussed. Simulation results via Monte Carlo method show that, in terms of the performance measure, for stable systems the open loop feedback optimal control system is slightly better than the enforced separation scheme, while for unstable systems the latter scheme is far better.
Xu, Lingwei; Zhang, Hao; Gulliver, T. Aaron
2016-01-01
The outage probability (OP) performance of multiple-relay incremental-selective decode-and-forward (ISDF) relaying mobile-to-mobile (M2M) sensor networks with transmit antenna selection (TAS) over N-Nakagami fading channels is investigated. Exact closed-form OP expressions for both optimal and suboptimal TAS schemes are derived. The power allocation problem is formulated to determine the optimal division of transmit power between the broadcast and relay phases. The OP performance under different conditions is evaluated via numerical simulation to verify the analysis. These results show that the optimal TAS scheme has better OP performance than the suboptimal scheme. Further, the power allocation parameter has a significant influence on the OP performance. PMID:26907282
Product code optimization for determinate state LDPC decoding in robust image transmission.
Thomos, Nikolaos; Boulgouris, Nikolaos V; Strintzis, Michael G
2006-08-01
We propose a novel scheme for error-resilient image transmission. The proposed scheme employs a product coder consisting of low-density parity check (LDPC) codes and Reed-Solomon codes in order to deal effectively with bit errors. The efficiency of the proposed scheme is based on the exploitation of determinate symbols in Tanner graph decoding of LDPC codes and a novel product code optimization technique based on error estimation. Experimental evaluation demonstrates the superiority of the proposed system in comparison to recent state-of-the-art techniques for image transmission.
Jan, Show-Li; Shieh, Gwowen
2016-08-31
The 2 × 2 factorial design is widely used for assessing the existence of interaction and the extent of generalizability of two factors where each factor had only two levels. Accordingly, research problems associated with the main effects and interaction effects can be analyzed with the selected linear contrasts. To correct for the potential heterogeneity of variance structure, the Welch-Satterthwaite test is commonly used as an alternative to the t test for detecting the substantive significance of a linear combination of mean effects. This study concerns the optimal allocation of group sizes for the Welch-Satterthwaite test in order to minimize the total cost while maintaining adequate power. The existing method suggests that the optimal ratio of sample sizes is proportional to the ratio of the population standard deviations divided by the square root of the ratio of the unit sampling costs. Instead, a systematic approach using optimization technique and screening search is presented to find the optimal solution. Numerical assessments revealed that the current allocation scheme generally does not give the optimal solution. Alternatively, the suggested approaches to power and sample size calculations give accurate and superior results under various treatment and cost configurations. The proposed approach improves upon the current method in both its methodological soundness and overall performance. Supplementary algorithms are also developed to aid the usefulness and implementation of the recommended technique in planning 2 × 2 factorial designs.
NASA Astrophysics Data System (ADS)
Rokhzadi, Arman; Mohammadian, Abdolmajid; Charron, Martin
2018-01-01
The objective of this paper is to develop an optimized implicit-explicit (IMEX) Runge-Kutta scheme for atmospheric applications focusing on stability and accuracy. Following the common terminology, the proposed method is called IMEX-SSP2(2,3,2), as it has second-order accuracy and is composed of diagonally implicit two-stage and explicit three-stage parts. This scheme enjoys the Strong Stability Preserving (SSP) property for both parts. This new scheme is applied to nonhydrostatic compressible Boussinesq equations in two different arrangements, including (i) semiimplicit and (ii) Horizontally Explicit-Vertically Implicit (HEVI) forms. The new scheme preserves the SSP property for larger regions of absolute monotonicity compared to the well-studied scheme in the same class. In addition, numerical tests confirm that the IMEX-SSP2(2,3,2) improves the maximum stable time step as well as the level of accuracy and computational cost compared to other schemes in the same class. It is demonstrated that the A-stability property as well as satisfying "second-stage order" and stiffly accurate conditions lead the proposed scheme to better performance than existing schemes for the applications examined herein.
A two-objective optimization scheme for high-OSNR and low-power-consuming all-optical networks
NASA Astrophysics Data System (ADS)
Abedifar, Vahid; Mirjalili, Seyed Mohammad; Eshghi, Mohammad
2015-01-01
In all-optical networks the ASE noise of the utilized optical power amplifiers is a major impairment, making the OSNR to be the dominant parameter in QoS. In this paper, a two-objective optimization scheme using Multi-Objective Particle Swarm Optimization (MOPSO) is proposed to reach the maximum OSNR for all channels while the optical power consumed by EDFAs and lasers is minimized. Two scenarios are investigated: Scenario 1 and Scenario 2. The former scenario optimizes the gain values of a predefined number of EDFAs in physical links. The gain values may be different from each other. The latter scenario optimizes the gains value of EDFAs (which is supposed to be identical in each physical link) in addition to the number of EDFAs for each physical link. In both scenarios, the launch powers of the lasers are also taken into account during optimization process. Two novel encoding methods are proposed to uniquely represent the problem solutions. Two virtual demand sets are considered for evaluation of the performance of the proposed optimization scheme. The simulations results are described for both scenarios and both virtual demands.
NASA Astrophysics Data System (ADS)
Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.
2014-10-01
Purdue-Lin scheme is a relatively sophisticated microphysics scheme in the Weather Research and Forecasting (WRF) model. The scheme includes six classes of hydro meteors: water vapor, cloud water, raid, cloud ice, snow and graupel. The scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. In this paper, we accelerate the Purdue Lin scheme using Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi is a high performance coprocessor consists of up to 61 cores. The Xeon Phi is connected to a CPU via the PCI Express (PICe) bus. In this paper, we will discuss in detail the code optimization issues encountered while tuning the Purdue-Lin microphysics Fortran code for Xeon Phi. In particularly, getting a good performance required utilizing multiple cores, the wide vector operations and make efficient use of memory. The results show that the optimizations improved performance of the original code on Xeon Phi 5110P by a factor of 4.2x. Furthermore, the same optimizations improved performance on Intel Xeon E5-2603 CPU by a factor of 1.2x compared to the original code.
Antenna Allocation in MIMO Radar with Widely Separated Antennas for Multi-Target Detection
Gao, Hao; Wang, Jian; Jiang, Chunxiao; Zhang, Xudong
2014-01-01
In this paper, we explore a new resource called multi-target diversity to optimize the performance of multiple input multiple output (MIMO) radar with widely separated antennas for detecting multiple targets. In particular, we allocate antennas of the MIMO radar to probe different targets simultaneously in a flexible manner based on the performance metric of relative entropy. Two antenna allocation schemes are proposed. In the first scheme, each antenna is allocated to illuminate a proper target over the entire illumination time, so that the detection performance of each target is guaranteed. The problem is formulated as a minimum makespan scheduling problem in the combinatorial optimization framework. Antenna allocation is implemented through a branch-and-bound algorithm and an enhanced factor 2 algorithm. In the second scheme, called antenna-time allocation, each antenna is allocated to illuminate different targets with different illumination time. Both antenna allocation and time allocation are optimized based on illumination probabilities. Over a large range of transmitted power, target fluctuations and target numbers, both of the proposed antenna allocation schemes outperform the scheme without antenna allocation. Moreover, the antenna-time allocation scheme achieves a more robust detection performance than branch-and-bound algorithm and the enhanced factor 2 algorithm when the target number changes. PMID:25350505
Antenna allocation in MIMO radar with widely separated antennas for multi-target detection.
Gao, Hao; Wang, Jian; Jiang, Chunxiao; Zhang, Xudong
2014-10-27
In this paper, we explore a new resource called multi-target diversity to optimize the performance of multiple input multiple output (MIMO) radar with widely separated antennas for detecting multiple targets. In particular, we allocate antennas of the MIMO radar to probe different targets simultaneously in a flexible manner based on the performance metric of relative entropy. Two antenna allocation schemes are proposed. In the first scheme, each antenna is allocated to illuminate a proper target over the entire illumination time, so that the detection performance of each target is guaranteed. The problem is formulated as a minimum makespan scheduling problem in the combinatorial optimization framework. Antenna allocation is implemented through a branch-and-bound algorithm and an enhanced factor 2 algorithm. In the second scheme, called antenna-time allocation, each antenna is allocated to illuminate different targets with different illumination time. Both antenna allocation and time allocation are optimized based on illumination probabilities. Over a large range of transmitted power, target fluctuations and target numbers, both of the proposed antenna allocation schemes outperform the scheme without antenna allocation. Moreover, the antenna-time allocation scheme achieves a more robust detection performance than branch-and-bound algorithm and the enhanced factor 2 algorithm when the target number changes.
The solution of the optimization problem of small energy complexes using linear programming methods
NASA Astrophysics Data System (ADS)
Ivanin, O. A.; Director, L. B.
2016-11-01
Linear programming methods were used for solving the optimization problem of schemes and operation modes of distributed generation energy complexes. Applicability conditions of simplex method, applied to energy complexes, including installations of renewable energy (solar, wind), diesel-generators and energy storage, considered. The analysis of decomposition algorithms for various schemes of energy complexes was made. The results of optimization calculations for energy complexes, operated autonomously and as a part of distribution grid, are presented.
On the solution of evolution equations based on multigrid and explicit iterative methods
NASA Astrophysics Data System (ADS)
Zhukov, V. T.; Novikova, N. D.; Feodoritova, O. B.
2015-08-01
Two schemes for solving initial-boundary value problems for three-dimensional parabolic equations are studied. One is implicit and is solved using the multigrid method, while the other is explicit iterative and is based on optimal properties of the Chebyshev polynomials. In the explicit iterative scheme, the number of iteration steps and the iteration parameters are chosen as based on the approximation and stability conditions, rather than on the optimization of iteration convergence to the solution of the implicit scheme. The features of the multigrid scheme include the implementation of the intergrid transfer operators for the case of discontinuous coefficients in the equation and the adaptation of the smoothing procedure to the spectrum of the difference operators. The results produced by these schemes as applied to model problems with anisotropic discontinuous coefficients are compared.
NASA Astrophysics Data System (ADS)
Kim, Hojin; Li, Ruijiang; Lee, Rena; Xing, Lei
2015-03-01
Conventional VMAT optimizes aperture shapes and weights at uniformly sampled stations, which is a generalization of the concept of a control point. Recently, rotational station parameter optimized radiation therapy (SPORT) has been proposed to improve the plan quality by inserting beams to the regions that demand additional intensity modulations, thus formulating non-uniform beam sampling. This work presents a new rotational SPORT planning strategy based on reweighted total-variation (TV) minimization (min.), using beam’s-eye-view dosimetrics (BEVD) guided beam selection. The convex programming based reweighted TV min. assures the simplified fluence-map, which facilitates single-aperture selection at each station for single-arc delivery. For the rotational arc treatment planning and non-uniform beam angle setting, the mathematical model needs to be modified by additional penalty term describing the fluence-map similarity and by determination of appropriate angular weighting factors. The proposed algorithm with additional penalty term is capable of achieving more efficient and deliverable plans adaptive to the conventional VMAT and SPORT planning schemes by reducing the dose delivery time about 5 to 10 s in three clinical cases (one prostate and two head-and-neck (HN) cases with a single and multiple targets). The BEVD guided beam selection provides effective and yet easy calculating methodology to select angles for denser, non-uniform angular sampling in SPORT planning. Our BEVD guided SPORT treatment schemes improve the dose sparing to femoral heads in the prostate and brainstem, parotid glands and oral cavity in the two HN cases, where the mean dose reduction of those organs ranges from 0.5 to 2.5 Gy. Also, it increases the conformation number assessing the dose conformity to the target from 0.84, 0.75 and 0.74 to 0.86, 0.79 and 0.80 in the prostate and two HN cases, while preserving the delivery efficiency, relative to conventional single-arc VMAT plans.
Optimizing a dynamical decoupling protocol for solid-state electronic spin ensembles in diamond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farfurnik, D.; Jarmola, A.; Pham, L. M.
2015-08-24
In this study, we demonstrate significant improvements of the spin coherence time of a dense ensemble of nitrogen-vacancy (NV) centers in diamond through optimized dynamical decoupling (DD). Cooling the sample down to 77 K suppresses longitudinal spin relaxation T 1 effects and DD microwave pulses are used to increase the transverse coherence time T 2 from ~0.7ms up to ~30ms. Furthermore, we extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. Following a theoretical and experimental characterization of pulse and detuning errors, we compare the performance of various DD protocols. We also identify that themore » optimal control scheme for preserving an arbitrary spin state is a recursive protocol, the concatenated version of the XY8 pulse sequence. The improved spin coherence might have an immediate impact on improvements of the sensitivities of ac magnetometry. Moreover, the protocol can be used on denser diamond samples to increase coherence times up to NV-NV interaction time scales, a major step towards the creation of quantum collective NV spin states.« less
Steinberg, David M.; Fine, Jason; Chappell, Rick
2009-01-01
Important properties of diagnostic methods are their sensitivity, specificity, and positive and negative predictive values (PPV and NPV). These methods are typically assessed via case–control samples, which include one cohort of cases known to have the disease and a second control cohort of disease-free subjects. Such studies give direct estimates of sensitivity and specificity but only indirect estimates of PPV and NPV, which also depend on the disease prevalence in the tested population. The motivating example arises in assay testing, where usage is contemplated in populations with known prevalences. Further instances include biomarker development, where subjects are selected from a population with known prevalence and assessment of PPV and NPV is crucial, and the assessment of diagnostic imaging procedures for rare diseases, where case–control studies may be the only feasible designs. We develop formulas for optimal allocation of the sample between the case and control cohorts and for computing sample size when the goal of the study is to prove that the test procedure exceeds pre-stated bounds for PPV and/or NPV. Surprisingly, the optimal sampling schemes for many purposes are highly unbalanced, even when information is desired on both PPV and NPV. PMID:18556677
Batch Mode Reinforcement Learning based on the Synthesis of Artificial Trajectories
Fonteneau, Raphael; Murphy, Susan A.; Wehenkel, Louis; Ernst, Damien
2013-01-01
In this paper, we consider the batch mode reinforcement learning setting, where the central problem is to learn from a sample of trajectories a policy that satisfies or optimizes a performance criterion. We focus on the continuous state space case for which usual resolution schemes rely on function approximators either to represent the underlying control problem or to represent its value function. As an alternative to the use of function approximators, we rely on the synthesis of “artificial trajectories” from the given sample of trajectories, and show that this idea opens new avenues for designing and analyzing algorithms for batch mode reinforcement learning. PMID:24049244
Guo, Hua; Zheng, Yandong; Zhang, Xiyong; Li, Zhoujun
2016-01-01
In resource-constrained wireless networks, resources such as storage space and communication bandwidth are limited. To guarantee secure communication in resource-constrained wireless networks, group keys should be distributed to users. The self-healing group key distribution (SGKD) scheme is a promising cryptographic tool, which can be used to distribute and update the group key for the secure group communication over unreliable wireless networks. Among all known SGKD schemes, exponential arithmetic based SGKD (E-SGKD) schemes reduce the storage overhead to constant, thus is suitable for the the resource-constrained wireless networks. In this paper, we provide a new mechanism to achieve E-SGKD schemes with backward secrecy. We first propose a basic E-SGKD scheme based on a known polynomial-based SGKD, where it has optimal storage overhead while having no backward secrecy. To obtain the backward secrecy and reduce the communication overhead, we introduce a novel approach for message broadcasting and self-healing. Compared with other E-SGKD schemes, our new E-SGKD scheme has the optimal storage overhead, high communication efficiency and satisfactory security. The simulation results in Zigbee-based networks show that the proposed scheme is suitable for the resource-restrained wireless networks. Finally, we show the application of our proposed scheme. PMID:27136550
Xun-Ping, W; An, Z
2017-07-27
Objective To optimize and simplify the survey method of Oncomelania hupensis snails in marshland endemic regions of schistosomiasis, so as to improve the precision, efficiency and economy of the snail survey. Methods A snail sampling strategy (Spatial Sampling Scenario of Oncomelania based on Plant Abundance, SOPA) which took the plant abundance as auxiliary variable was explored and an experimental study in a 50 m×50 m plot in a marshland in the Poyang Lake region was performed. Firstly, the push broom surveyed data was stratified into 5 layers by the plant abundance data; then, the required numbers of optimal sampling points of each layer through Hammond McCullagh equation were calculated; thirdly, every sample point in the line with the Multiple Directional Interpolation (MDI) placement scheme was pinpointed; and finally, the comparison study among the outcomes of the spatial random sampling strategy, the traditional systematic sampling method, the spatial stratified sampling method, Sandwich spatial sampling and inference and SOPA was performed. Results The method (SOPA) proposed in this study had the minimal absolute error of 0.213 8; and the traditional systematic sampling method had the largest estimate, and the absolute error was 0.924 4. Conclusion The snail sampling strategy (SOPA) proposed in this study obtains the higher estimation accuracy than the other four methods.
NASA Astrophysics Data System (ADS)
Rahnamay Naeini, M.; Sadegh, M.; AghaKouchak, A.; Hsu, K. L.; Sorooshian, S.; Yang, T.
2017-12-01
Meta-Heuristic optimization algorithms have gained a great deal of attention in a wide variety of fields. Simplicity and flexibility of these algorithms, along with their robustness, make them attractive tools for solving optimization problems. Different optimization methods, however, hold algorithm-specific strengths and limitations. Performance of each individual algorithm obeys the "No-Free-Lunch" theorem, which means a single algorithm cannot consistently outperform all possible optimization problems over a variety of problems. From users' perspective, it is a tedious process to compare, validate, and select the best-performing algorithm for a specific problem or a set of test cases. In this study, we introduce a new hybrid optimization framework, entitled Shuffled Complex-Self Adaptive Hybrid EvoLution (SC-SAHEL), which combines the strengths of different evolutionary algorithms (EAs) in a parallel computing scheme, and allows users to select the most suitable algorithm tailored to the problem at hand. The concept of SC-SAHEL is to execute different EAs as separate parallel search cores, and let all participating EAs to compete during the course of the search. The newly developed SC-SAHEL algorithm is designed to automatically select, the best performing algorithm for the given optimization problem. This algorithm is rigorously effective in finding the global optimum for several strenuous benchmark test functions, and computationally efficient as compared to individual EAs. We benchmark the proposed SC-SAHEL algorithm over 29 conceptual test functions, and two real-world case studies - one hydropower reservoir model and one hydrological model (SAC-SMA). Results show that the proposed framework outperforms individual EAs in an absolute majority of the test problems, and can provide competitive results to the fittest EA algorithm with more comprehensive information during the search. The proposed framework is also flexible for merging additional EAs, boundary-handling techniques, and sampling schemes, and has good potential to be used in Water-Energy system optimal operation and management.
NASA Astrophysics Data System (ADS)
Poirier, Vincent
Mesh deformation schemes play an important role in numerical aerodynamic optimization. As the aerodynamic shape changes, the computational mesh must adapt to conform to the deformed geometry. In this work, an extension to an existing fast and robust Radial Basis Function (RBF) mesh movement scheme is presented. Using a reduced set of surface points to define the mesh deformation increases the efficiency of the RBF method; however, at the cost of introducing errors into the parameterization by not recovering the exact displacement of all surface points. A secondary mesh movement is implemented, within an adjoint-based optimization framework, to eliminate these errors. The proposed scheme is tested within a 3D Euler flow by reducing the pressure drag while maintaining lift of a wing-body configured Boeing-747 and an Onera-M6 wing. As well, an inverse pressure design is executed on the Onera-M6 wing and an inverse span loading case is presented for a wing-body configured DLR-F6 aircraft.
Outcome-Dependent Sampling Design and Inference for Cox’s Proportional Hazards Model
Yu, Jichang; Liu, Yanyan; Cai, Jianwen; Sandler, Dale P.; Zhou, Haibo
2016-01-01
We propose a cost-effective outcome-dependent sampling design for the failure time data and develop an efficient inference procedure for data collected with this design. To account for the biased sampling scheme, we derive estimators from a weighted partial likelihood estimating equation. The proposed estimators for regression parameters are shown to be consistent and asymptotically normally distributed. A criteria that can be used to optimally implement the ODS design in practice is proposed and studied. The small sample performance of the proposed method is evaluated by simulation studies. The proposed design and inference procedure is shown to be statistically more powerful than existing alternative designs with the same sample sizes. We illustrate the proposed method with an existing real data from the Cancer Incidence and Mortality of Uranium Miners Study. PMID:28090134
Open-Source Programming for Automated Generation of Graphene Raman Spectral Maps
NASA Astrophysics Data System (ADS)
Vendola, P.; Blades, M.; Pierre, W.; Jedlicka, S.; Rotkin, S. V.
Raman microscopy is a useful tool for studying the structural characteristics of graphene deposited onto substrates. However, extracting useful information from the Raman spectra requires data processing and 2D map generation. An existing home-built confocal Raman microscope was optimized for graphene samples and programmed to automatically generate Raman spectral maps across a specified area. In particular, an open source data collection scheme was generated to allow the efficient collection and analysis of the Raman spectral data for future use. NSF ECCS-1509786.
[Multi-mathematical modelings for compatibility optimization of Jiangzhi granules].
Yang, Ming; Zhang, Li; Ge, Yingli; Lu, Yanliu; Ji, Guang
2011-12-01
To investigate into the method of "multi activity index evaluation and combination optimized of mult-component" for Chinese herbal formulas. According to the scheme of uniform experimental design, efficacy experiment, multi index evaluation, least absolute shrinkage, selection operator (LASSO) modeling, evolutionary optimization algorithm, validation experiment, we optimized the combination of Jiangzhi granules based on the activity indexes of blood serum ALT, ALT, AST, TG, TC, HDL, LDL and TG level of liver tissues, ratio of liver tissue to body. Analytic hierarchy process (AHP) combining with criteria importance through intercriteria correlation (CRITIC) for multi activity index evaluation was more reasonable and objective, it reflected the information of activity index's order and objective sample data. LASSO algorithm modeling could accurately reflect the relationship between different combination of Jiangzhi granule and the activity comprehensive indexes. The optimized combination of Jiangzhi granule showed better values of the activity comprehensive indexed than the original formula after the validation experiment. AHP combining with CRITIC can be used for multi activity index evaluation and LASSO algorithm, it is suitable for combination optimized of Chinese herbal formulas.
The optimization on flow scheme of helium liquefier with genetic algorithm
NASA Astrophysics Data System (ADS)
Wang, H. R.; Xiong, L. Y.; Peng, N.; Liu, L. Q.
2017-01-01
There are several ways to organize the flow scheme of the helium liquefiers, such as arranging the expanders in parallel (reverse Brayton stage) or in series (modified Brayton stages). In this paper, the inlet mass flow and temperatures of expanders in Collins cycle are optimized using genetic algorithm (GA). Results show that maximum liquefaction rate can be obtained when the system is working at the optimal parameters. However, the reliability of the system is not well due to high wheel speed of the first turbine. Study shows that the scheme in which expanders are arranged in series with heat exchangers between them has higher operation reliability but lower plant efficiency when working at the same situation. Considering both liquefaction rate and system stability, another flow scheme is put forward hoping to solve the dilemma. The three configurations are compared from different aspects, they are respectively economic cost, heat exchanger size, system reliability and exergy efficiency. In addition, the effect of heat capacity ratio on heat transfer efficiency is discussed. A conclusion of choosing liquefier configuration is given in the end, which is meaningful for the optimal design of helium liquefier.
Hoan, Tran-Nhut-Khai; Hiep, Vu-Van; Koo, In-Soo
2016-03-31
This paper considers cognitive radio networks (CRNs) utilizing multiple time-slotted primary channels in which cognitive users (CUs) are powered by energy harvesters. The CUs are under the consideration that hardware constraints on radio devices only allow them to sense and transmit on one channel at a time. For a scenario where the arrival of harvested energy packets and the battery capacity are finite, we propose a scheme to optimize (i) the channel-sensing schedule (consisting of finding the optimal action (silent or active) and sensing order of channels) and (ii) the optimal transmission energy set corresponding to the channels in the sensing order for the operation of the CU in order to maximize the expected throughput of the CRN over multiple time slots. Frequency-switching delay, energy-switching cost, correlation in spectrum occupancy across time and frequency and errors in spectrum sensing are also considered in this work. The performance of the proposed scheme is evaluated via simulation. The simulation results show that the throughput of the proposed scheme is greatly improved, in comparison to related schemes in the literature. The collision ratio on the primary channels is also investigated.
Zhang, Senlin; Chen, Huayan; Liu, Meiqin; Zhang, Qunfei
2017-11-07
Target tracking is one of the broad applications of underwater wireless sensor networks (UWSNs). However, as a result of the temporal and spatial variability of acoustic channels, underwater acoustic communications suffer from an extremely limited bandwidth. In order to reduce network congestion, it is important to shorten the length of the data transmitted from local sensors to the fusion center by quantization. Although quantization can reduce bandwidth cost, it also brings about bad tracking performance as a result of information loss after quantization. To solve this problem, this paper proposes an optimal quantization-based target tracking scheme. It improves the tracking performance of low-bit quantized measurements by minimizing the additional covariance caused by quantization. The simulation demonstrates that our scheme performs much better than the conventional uniform quantization-based target tracking scheme and the increment of the data length affects our scheme only a little. Its tracking performance improves by only 4.4% from 2- to 3-bit, which means our scheme weakly depends on the number of data bits. Moreover, our scheme also weakly depends on the number of participate sensors, and it can work well in sparse sensor networks. In a 6 × 6 × 6 sensor network, compared with 4 × 4 × 4 sensor networks, the number of participant sensors increases by 334.92%, while the tracking accuracy using 1-bit quantized measurements improves by only 50.77%. Overall, our optimal quantization-based target tracking scheme can achieve the pursuit of data-efficiency, which fits the requirements of low-bandwidth UWSNs.
Pennacchio, Francesco; Vanacore, Giovanni M; Mancini, Giulia F; Oppermann, Malte; Jayaraman, Rajeswari; Musumeci, Pietro; Baum, Peter; Carbone, Fabrizio
2017-07-01
Ultrafast electron diffraction is a powerful technique to investigate out-of-equilibrium atomic dynamics in solids with high temporal resolution. When diffraction is performed in reflection geometry, the main limitation is the mismatch in group velocity between the overlapping pump light and the electron probe pulses, which affects the overall temporal resolution of the experiment. A solution already available in the literature involved pulse front tilt of the pump beam at the sample, providing a sub-picosecond time resolution. However, in the reported optical scheme, the tilted pulse is characterized by a temporal chirp of about 1 ps at 1 mm away from the centre of the beam, which limits the investigation of surface dynamics in large crystals. In this paper, we propose an optimal tilting scheme designed for a radio-frequency-compressed ultrafast electron diffraction setup working in reflection geometry with 30 keV electron pulses containing up to 10 5 electrons/pulse. To characterize our scheme, we performed optical cross-correlation measurements, obtaining an average temporal width of the tilted pulse lower than 250 fs. The calibration of the electron-laser temporal overlap was obtained by monitoring the spatial profile of the electron beam when interacting with the plasma optically induced at the apex of a copper needle (plasma lensing effect). Finally, we report the first time-resolved results obtained on graphite, where the electron-phonon coupling dynamics is observed, showing an overall temporal resolution in the sub-500 fs regime. The successful implementation of this configuration opens the way to directly probe structural dynamics of low-dimensional systems in the sub-picosecond regime, with pulsed electrons.
Pennacchio, Francesco; Vanacore, Giovanni M.; Mancini, Giulia F.; Oppermann, Malte; Jayaraman, Rajeswari; Musumeci, Pietro; Baum, Peter; Carbone, Fabrizio
2017-01-01
Ultrafast electron diffraction is a powerful technique to investigate out-of-equilibrium atomic dynamics in solids with high temporal resolution. When diffraction is performed in reflection geometry, the main limitation is the mismatch in group velocity between the overlapping pump light and the electron probe pulses, which affects the overall temporal resolution of the experiment. A solution already available in the literature involved pulse front tilt of the pump beam at the sample, providing a sub-picosecond time resolution. However, in the reported optical scheme, the tilted pulse is characterized by a temporal chirp of about 1 ps at 1 mm away from the centre of the beam, which limits the investigation of surface dynamics in large crystals. In this paper, we propose an optimal tilting scheme designed for a radio-frequency-compressed ultrafast electron diffraction setup working in reflection geometry with 30 keV electron pulses containing up to 105 electrons/pulse. To characterize our scheme, we performed optical cross-correlation measurements, obtaining an average temporal width of the tilted pulse lower than 250 fs. The calibration of the electron-laser temporal overlap was obtained by monitoring the spatial profile of the electron beam when interacting with the plasma optically induced at the apex of a copper needle (plasma lensing effect). Finally, we report the first time-resolved results obtained on graphite, where the electron-phonon coupling dynamics is observed, showing an overall temporal resolution in the sub-500 fs regime. The successful implementation of this configuration opens the way to directly probe structural dynamics of low-dimensional systems in the sub-picosecond regime, with pulsed electrons. PMID:28713841
Design of Multishell Sampling Schemes with Uniform Coverage in Diffusion MRI
Caruyer, Emmanuel; Lenglet, Christophe; Sapiro, Guillermo; Deriche, Rachid
2017-01-01
Purpose In diffusion MRI, a technique known as diffusion spectrum imaging reconstructs the propagator with a discrete Fourier transform, from a Cartesian sampling of the diffusion signal. Alternatively, it is possible to directly reconstruct the orientation distribution function in q-ball imaging, providing so-called high angular resolution diffusion imaging. In between these two techniques, acquisitions on several spheres in q-space offer an interesting trade-off between the angular resolution and the radial information gathered in diffusion MRI. A careful design is central in the success of multishell acquisition and reconstruction techniques. Methods The design of acquisition in multishell is still an open and active field of research, however. In this work, we provide a general method to design multishell acquisition with uniform angular coverage. This method is based on a generalization of electrostatic repulsion to multishell. Results We evaluate the impact of our method using simulations, on the angular resolution in one and two bundles of fiber configurations. Compared to more commonly used radial sampling, we show that our method improves the angular resolution, as well as fiber crossing discrimination. Discussion We propose a novel method to design sampling schemes with optimal angular coverage and show the positive impact on angular resolution in diffusion MRI. PMID:23625329
NASA Astrophysics Data System (ADS)
Sisodia, Mitali; Shukla, Abhishek; Thapliyal, Kishore; Pathak, Anirban
2017-12-01
An explicit scheme (quantum circuit) is designed for the teleportation of an n-qubit quantum state. It is established that the proposed scheme requires an optimal amount of quantum resources, whereas larger amount of quantum resources have been used in a large number of recently reported teleportation schemes for the quantum states which can be viewed as special cases of the general n-qubit state considered here. A trade-off between our knowledge about the quantum state to be teleported and the amount of quantum resources required for the same is observed. A proof-of-principle experimental realization of the proposed scheme (for a 2-qubit state) is also performed using 5-qubit superconductivity-based IBM quantum computer. The experimental results show that the state has been teleported with high fidelity. Relevance of the proposed teleportation scheme has also been discussed in the context of controlled, bidirectional, and bidirectional controlled state teleportation.
Towards information-optimal simulation of partial differential equations.
Leike, Reimar H; Enßlin, Torsten A
2018-03-01
Most simulation schemes for partial differential equations (PDEs) focus on minimizing a simple error norm of a discretized version of a field. This paper takes a fundamentally different approach; the discretized field is interpreted as data providing information about a real physical field that is unknown. This information is sought to be conserved by the scheme as the field evolves in time. Such an information theoretic approach to simulation was pursued before by information field dynamics (IFD). In this paper we work out the theory of IFD for nonlinear PDEs in a noiseless Gaussian approximation. The result is an action that can be minimized to obtain an information-optimal simulation scheme. It can be brought into a closed form using field operators to calculate the appearing Gaussian integrals. The resulting simulation schemes are tested numerically in two instances for the Burgers equation. Their accuracy surpasses finite-difference schemes on the same resolution. The IFD scheme, however, has to be correctly informed on the subgrid correlation structure. In certain limiting cases we recover well-known simulation schemes like spectral Fourier-Galerkin methods. We discuss implications of the approximations made.
Han, Dahai; Gu, Yanjie; Zhang, Min
2017-08-10
An optimized scheme of pulse symmetrical position-orthogonal space-time block codes (PSP-OSTBC) is proposed and applied with m-pulse positions modulation (m-PPM) without the use of a complex decoding algorithm in an optical multi-input multi-output (MIMO) ultraviolet (UV) communication system. The proposed scheme breaks through the limitation of the traditional Alamouti code and is suitable for high-order m-PPM in a UV scattering channel, verified by both simulation experiments and field tests with specific parameters. The performances of 1×1, 2×1, and 2×2 PSP-OSTBC systems with 4-PPM are compared experimentally as the optimal tradeoff between modification and coding in practical application. Meanwhile, the feasibility of the proposed scheme for 8-PPM is examined by a simulation experiment as well. The results suggest that the proposed scheme makes the system insensitive to the influence of path loss with a larger channel capacity, and a higher diversity gain and coding gain with a simple decoding algorithm will be achieved by employing the orthogonality of m-PPM in an optical-MIMO-based ultraviolet scattering channel.
NASA Astrophysics Data System (ADS)
Yang, B.; Qian, Y.; Lin, G.; Leung, R.; Zhang, Y.
2011-12-01
The current tuning process of parameters in global climate models is often performed subjectively or treated as an optimization procedure to minimize model biases based on observations. While the latter approach may provide more plausible values for a set of tunable parameters to approximate the observed climate, the system could be forced to an unrealistic physical state or improper balance of budgets through compensating errors over different regions of the globe. In this study, the Weather Research and Forecasting (WRF) model was used to provide a more flexible framework to investigate a number of issues related uncertainty quantification (UQ) and parameter tuning. The WRF model was constrained by reanalysis of data over the Southern Great Plains (SGP), where abundant observational data from various sources was available for calibration of the input parameters and validation of the model results. Focusing on five key input parameters in the new Kain-Fritsch (KF) convective parameterization scheme used in WRF as an example, the purpose of this study was to explore the utility of high-resolution observations for improving simulations of regional patterns and evaluate the transferability of UQ and parameter tuning across physical processes, spatial scales, and climatic regimes, which have important implications to UQ and parameter tuning in global and regional models. A stochastic important-sampling algorithm, Multiple Very Fast Simulated Annealing (MVFSA) was employed to efficiently sample the input parameters in the KF scheme based on a skill score so that the algorithm progressively moved toward regions of the parameter space that minimize model errors. The results based on the WRF simulations with 25-km grid spacing over the SGP showed that the precipitation bias in the model could be significantly reduced when five optimal parameters identified by the MVFSA algorithm were used. The model performance was found to be sensitive to downdraft- and entrainment-related parameters and consumption time of Convective Available Potential Energy (CAPE). Simulated convective precipitation decreased as the ratio of downdraft to updraft flux increased. Larger CAPE consumption time resulted in less convective but more stratiform precipitation. The simulation using optimal parameters obtained by constraining only precipitation generated positive impact on the other output variables, such as temperature and wind. By using the optimal parameters obtained at 25-km simulation, both the magnitude and spatial pattern of simulated precipitation were improved at 12-km spatial resolution. The optimal parameters identified from the SGP region also improved the simulation of precipitation when the model domain was moved to another region with a different climate regime (i.e., the North America monsoon region). These results suggest that benefits of optimal parameters determined through vigorous mathematical procedures such as the MVFSA process are transferable across processes, spatial scales, and climatic regimes to some extent. This motivates future studies to further assess the strategies for UQ and parameter optimization at both global and regional scales.
NASA Astrophysics Data System (ADS)
Qian, Y.; Yang, B.; Lin, G.; Leung, R.; Zhang, Y.
2012-04-01
The current tuning process of parameters in global climate models is often performed subjectively or treated as an optimization procedure to minimize model biases based on observations. The latter approach may provide more plausible values for a set of tunable parameters to approximate the observed climate, the system could be forced to an unrealistic physical state or improper balance of budgets through compensating errors over different regions of the globe. In this study, the Weather Research and Forecasting (WRF) model was used to provide a more flexible framework to investigate a number of issues related uncertainty quantification (UQ) and parameter tuning. The WRF model was constrained by reanalysis of data over the Southern Great Plains (SGP), where abundant observational data from various sources was available for calibration of the input parameters and validation of the model results. Focusing on five key input parameters in the new Kain-Fritsch (KF) convective parameterization scheme used in WRF as an example, the purpose of this study was to explore the utility of high-resolution observations for improving simulations of regional patterns and evaluate the transferability of UQ and parameter tuning across physical processes, spatial scales, and climatic regimes, which have important implications to UQ and parameter tuning in global and regional models. A stochastic important-sampling algorithm, Multiple Very Fast Simulated Annealing (MVFSA) was employed to efficiently sample the input parameters in the KF scheme based on a skill score so that the algorithm progressively moved toward regions of the parameter space that minimize model errors. The results based on the WRF simulations with 25-km grid spacing over the SGP showed that the precipitation bias in the model could be significantly reduced when five optimal parameters identified by the MVFSA algorithm were used. The model performance was found to be sensitive to downdraft- and entrainment-related parameters and consumption time of Convective Available Potential Energy (CAPE). Simulated convective precipitation decreased as the ratio of downdraft to updraft flux increased. Larger CAPE consumption time resulted in less convective but more stratiform precipitation. The simulation using optimal parameters obtained by constraining only precipitation generated positive impact on the other output variables, such as temperature and wind. By using the optimal parameters obtained at 25-km simulation, both the magnitude and spatial pattern of simulated precipitation were improved at 12-km spatial resolution. The optimal parameters identified from the SGP region also improved the simulation of precipitation when the model domain was moved to another region with a different climate regime (i.e., the North America monsoon region). These results suggest that benefits of optimal parameters determined through vigorous mathematical procedures such as the MVFSA process are transferable across processes, spatial scales, and climatic regimes to some extent. This motivates future studies to further assess the strategies for UQ and parameter optimization at both global and regional scales.
NASA Astrophysics Data System (ADS)
Yang, B.; Qian, Y.; Lin, G.; Leung, R.; Zhang, Y.
2012-03-01
The current tuning process of parameters in global climate models is often performed subjectively or treated as an optimization procedure to minimize model biases based on observations. While the latter approach may provide more plausible values for a set of tunable parameters to approximate the observed climate, the system could be forced to an unrealistic physical state or improper balance of budgets through compensating errors over different regions of the globe. In this study, the Weather Research and Forecasting (WRF) model was used to provide a more flexible framework to investigate a number of issues related uncertainty quantification (UQ) and parameter tuning. The WRF model was constrained by reanalysis of data over the Southern Great Plains (SGP), where abundant observational data from various sources was available for calibration of the input parameters and validation of the model results. Focusing on five key input parameters in the new Kain-Fritsch (KF) convective parameterization scheme used in WRF as an example, the purpose of this study was to explore the utility of high-resolution observations for improving simulations of regional patterns and evaluate the transferability of UQ and parameter tuning across physical processes, spatial scales, and climatic regimes, which have important implications to UQ and parameter tuning in global and regional models. A stochastic importance sampling algorithm, Multiple Very Fast Simulated Annealing (MVFSA) was employed to efficiently sample the input parameters in the KF scheme based on a skill score so that the algorithm progressively moved toward regions of the parameter space that minimize model errors. The results based on the WRF simulations with 25-km grid spacing over the SGP showed that the precipitation bias in the model could be significantly reduced when five optimal parameters identified by the MVFSA algorithm were used. The model performance was found to be sensitive to downdraft- and entrainment-related parameters and consumption time of Convective Available Potential Energy (CAPE). Simulated convective precipitation decreased as the ratio of downdraft to updraft flux increased. Larger CAPE consumption time resulted in less convective but more stratiform precipitation. The simulation using optimal parameters obtained by constraining only precipitation generated positive impact on the other output variables, such as temperature and wind. By using the optimal parameters obtained at 25-km simulation, both the magnitude and spatial pattern of simulated precipitation were improved at 12-km spatial resolution. The optimal parameters identified from the SGP region also improved the simulation of precipitation when the model domain was moved to another region with a different climate regime (i.e. the North America monsoon region). These results suggest that benefits of optimal parameters determined through vigorous mathematical procedures such as the MVFSA process are transferable across processes, spatial scales, and climatic regimes to some extent. This motivates future studies to further assess the strategies for UQ and parameter optimization at both global and regional scales.
Secure Distributed Detection under Energy Constraint in IoT-Oriented Sensor Networks.
Zhang, Guomei; Sun, Hao
2016-12-16
We study the secure distributed detection problems under energy constraint for IoT-oriented sensor networks. The conventional channel-aware encryption (CAE) is an efficient physical-layer secure distributed detection scheme in light of its energy efficiency, good scalability and robustness over diverse eavesdropping scenarios. However, in the CAE scheme, it remains an open problem of how to optimize the key thresholds for the estimated channel gain, which are used to determine the sensor's reporting action. Moreover, the CAE scheme does not jointly consider the accuracy of local detection results in determining whether to stay dormant for a sensor. To solve these problems, we first analyze the error probability and derive the optimal thresholds in the CAE scheme under a specified energy constraint. These results build a convenient mathematic framework for our further innovative design. Under this framework, we propose a hybrid secure distributed detection scheme. Our proposal can satisfy the energy constraint by keeping some sensors inactive according to the local detection confidence level, which is characterized by likelihood ratio. In the meanwhile, the security is guaranteed through randomly flipping the local decisions forwarded to the fusion center based on the channel amplitude. We further optimize the key parameters of our hybrid scheme, including two local decision thresholds and one channel comparison threshold. Performance evaluation results demonstrate that our hybrid scheme outperforms the CAE under stringent energy constraints, especially in the high signal-to-noise ratio scenario, while the security is still assured.
Secure Distributed Detection under Energy Constraint in IoT-Oriented Sensor Networks
Zhang, Guomei; Sun, Hao
2016-01-01
We study the secure distributed detection problems under energy constraint for IoT-oriented sensor networks. The conventional channel-aware encryption (CAE) is an efficient physical-layer secure distributed detection scheme in light of its energy efficiency, good scalability and robustness over diverse eavesdropping scenarios. However, in the CAE scheme, it remains an open problem of how to optimize the key thresholds for the estimated channel gain, which are used to determine the sensor’s reporting action. Moreover, the CAE scheme does not jointly consider the accuracy of local detection results in determining whether to stay dormant for a sensor. To solve these problems, we first analyze the error probability and derive the optimal thresholds in the CAE scheme under a specified energy constraint. These results build a convenient mathematic framework for our further innovative design. Under this framework, we propose a hybrid secure distributed detection scheme. Our proposal can satisfy the energy constraint by keeping some sensors inactive according to the local detection confidence level, which is characterized by likelihood ratio. In the meanwhile, the security is guaranteed through randomly flipping the local decisions forwarded to the fusion center based on the channel amplitude. We further optimize the key parameters of our hybrid scheme, including two local decision thresholds and one channel comparison threshold. Performance evaluation results demonstrate that our hybrid scheme outperforms the CAE under stringent energy constraints, especially in the high signal-to-noise ratio scenario, while the security is still assured. PMID:27999282
An Efficient Offloading Scheme For MEC System Considering Delay and Energy Consumption
NASA Astrophysics Data System (ADS)
Sun, Yanhua; Hao, Zhe; Zhang, Yanhua
2018-01-01
With the increasing numbers of mobile devices, mobile edge computing (MEC) which provides cloud computing capabilities proximate to mobile devices in 5G networks has been envisioned as a promising paradigm to enhance users experience. In this paper, we investigate a joint consideration of delay and energy consumption offloading scheme (JCDE) for MEC system in 5G heterogeneous networks. An optimization is formulated to minimize the delay as well as energy consumption of the offloading system, which the delay and energy consumption of transmitting and calculating tasks are taken into account. We adopt an iterative greedy algorithm to solve the optimization problem. Furthermore, simulations were carried out to validate the utility and effectiveness of our proposed scheme. The effect of parameter variations on the system is analysed as well. Numerical results demonstrate delay and energy efficiency promotion of our proposed scheme compared with another paper’s scheme.
No-go theorem for iterations of unknown quantum gates
NASA Astrophysics Data System (ADS)
Soleimanifar, Mehdi; Karimipour, Vahid
2016-01-01
We propose a no-go theorem by proving the impossibility of constructing a deterministic quantum circuit that iterates a unitary oracle by calling it only once. Different schemes are provided to bypass this result and to approximately realize the iteration. The optimal scheme is also studied. An interesting observation is that for a large number of iterations, a trivial strategy like using the identity channel has the optimal performance, and preprocessing, postprocessing, or using resources like entanglement does not help at all. Intriguingly, the number of iterations, when being large enough, does not affect the performance of the proposed schemes.
Aerodynamic design optimization via reduced Hessian SQP with solution refining
NASA Technical Reports Server (NTRS)
Feng, Dan; Pulliam, Thomas H.
1995-01-01
An all-at-once reduced Hessian Successive Quadratic Programming (SQP) scheme has been shown to be efficient for solving aerodynamic design optimization problems with a moderate number of design variables. This paper extends this scheme to allow solution refining. In particular, we introduce a reduced Hessian refining technique that is critical for making a smooth transition of the Hessian information from coarse grids to fine grids. Test results on a nozzle design using quasi-one-dimensional Euler equations show that through solution refining the efficiency and the robustness of the all-at-once reduced Hessian SQP scheme are significantly improved.
Rizvi, Sanam Shahla; Chung, Tae-Sun
2010-01-01
Flash memory has become a more widespread storage medium for modern wireless devices because of its effective characteristics like non-volatility, small size, light weight, fast access speed, shock resistance, high reliability and low power consumption. Sensor nodes are highly resource constrained in terms of limited processing speed, runtime memory, persistent storage, communication bandwidth and finite energy. Therefore, for wireless sensor networks supporting sense, store, merge and send schemes, an efficient and reliable file system is highly required with consideration of sensor node constraints. In this paper, we propose a novel log structured external NAND flash memory based file system, called Proceeding to Intelligent service oriented memorY Allocation for flash based data centric Sensor devices in wireless sensor networks (PIYAS). This is the extended version of our previously proposed PIYA [1]. The main goals of the PIYAS scheme are to achieve instant mounting and reduced SRAM space by keeping memory mapping information to a very low size of and to provide high query response throughput by allocation of memory to the sensor data by network business rules. The scheme intelligently samples and stores the raw data and provides high in-network data availability by keeping the aggregate data for a longer period of time than any other scheme has done before. We propose effective garbage collection and wear-leveling schemes as well. The experimental results show that PIYAS is an optimized memory management scheme allowing high performance for wireless sensor networks.
Lü, Xiaoshu; Takala, Esa-Pekka; Toppila, Esko; Marjanen, Ykä; Kaila-Kangas, Leena; Lu, Tao
2017-08-01
Exposure to whole-body vibration (WBV) presents an occupational health risk and several safety standards obligate to measure WBV. The high cost of direct measurements in large epidemiological studies raises the question of the optimal sampling for estimating WBV exposures given by a large variation in exposure levels in real worksites. This paper presents a new approach to addressing this problem. A daily exposure to WBV was recorded for 9-24 days among 48 all-terrain vehicle drivers. Four data-sets based on root mean squared recordings were obtained from the measurement. The data were modelled using semi-variogram with spectrum analysis and the optimal sampling scheme was derived. The optimum sampling period was 140 min apart. The result was verified and validated in terms of its accuracy and statistical power. Recordings of two to three hours are probably needed to get a sufficiently unbiased daily WBV exposure estimate in real worksites. The developed model is general enough that is applicable to other cumulative exposures or biosignals. Practitioner Summary: Exposure to whole-body vibration (WBV) presents an occupational health risk and safety standards obligate to measure WBV. However, direct measurements can be expensive. This paper presents a new approach to addressing this problem. The developed model is general enough that is applicable to other cumulative exposures or biosignals.
Receding horizon online optimization for torque control of gasoline engines.
Kang, Mingxin; Shen, Tielong
2016-11-01
This paper proposes a model-based nonlinear receding horizon optimal control scheme for the engine torque tracking problem. The controller design directly employs the nonlinear model exploited based on mean-value modeling principle of engine systems without any linearizing reformation, and the online optimization is achieved by applying the Continuation/GMRES (generalized minimum residual) approach. Several receding horizon control schemes are designed to investigate the effects of the integral action and integral gain selection. Simulation analyses and experimental validations are implemented to demonstrate the real-time optimization performance and control effects of the proposed torque tracking controllers. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Optimal implicit 2-D finite differences to model wave propagation in poroelastic media
NASA Astrophysics Data System (ADS)
Itzá, Reymundo; Iturrarán-Viveros, Ursula; Parra, Jorge O.
2016-08-01
Numerical modeling of seismic waves in heterogeneous porous reservoir rocks is an important tool for the interpretation of seismic surveys in reservoir engineering. We apply globally optimal implicit staggered-grid finite differences (FD) to model 2-D wave propagation in heterogeneous poroelastic media at a low-frequency range (<10 kHz). We validate the numerical solution by comparing it to an analytical-transient solution obtaining clear seismic wavefields including fast P and slow P and S waves (for a porous media saturated with fluid). The numerical dispersion and stability conditions are derived using von Neumann analysis, showing that over a wide range of porous materials the Courant condition governs the stability and this optimal implicit scheme improves the stability of explicit schemes. High-order explicit FD can be replaced by some lower order optimal implicit FD so computational cost will not be as expensive while maintaining the accuracy. Here, we compute weights for the optimal implicit FD scheme to attain an accuracy of γ = 10-8. The implicit spatial differentiation involves solving tridiagonal linear systems of equations through Thomas' algorithm.
Duan, Litian; Wang, Zizhong John; Duan, Fu
2016-11-16
In the multiple-reader environment (MRE) of radio frequency identification (RFID) system, multiple readers are often scheduled to interrogate the randomized tags via operating at different time slots or frequency channels to decrease the signal interferences. Based on this, a Geometric Distribution-based Multiple-reader Scheduling Optimization Algorithm using Artificial Immune System (GD-MRSOA-AIS) is proposed to fairly and optimally schedule the readers operating from the viewpoint of resource allocations. GD-MRSOA-AIS is composed of two parts, where a geometric distribution function combined with the fairness consideration is first introduced to generate the feasible scheduling schemes for reader operation. After that, artificial immune system (including immune clone, immune mutation and immune suppression) quickly optimize these feasible ones as the optimal scheduling scheme to ensure that readers are fairly operating with larger effective interrogation range and lower interferences. Compared with the state-of-the-art algorithm, the simulation results indicate that GD-MRSOA-AIS could efficiently schedules the multiple readers operating with a fairer resource allocation scheme, performing in larger effective interrogation range.
Duan, Litian; Wang, Zizhong John; Duan, Fu
2016-01-01
In the multiple-reader environment (MRE) of radio frequency identification (RFID) system, multiple readers are often scheduled to interrogate the randomized tags via operating at different time slots or frequency channels to decrease the signal interferences. Based on this, a Geometric Distribution-based Multiple-reader Scheduling Optimization Algorithm using Artificial Immune System (GD-MRSOA-AIS) is proposed to fairly and optimally schedule the readers operating from the viewpoint of resource allocations. GD-MRSOA-AIS is composed of two parts, where a geometric distribution function combined with the fairness consideration is first introduced to generate the feasible scheduling schemes for reader operation. After that, artificial immune system (including immune clone, immune mutation and immune suppression) quickly optimize these feasible ones as the optimal scheduling scheme to ensure that readers are fairly operating with larger effective interrogation range and lower interferences. Compared with the state-of-the-art algorithm, the simulation results indicate that GD-MRSOA-AIS could efficiently schedules the multiple readers operating with a fairer resource allocation scheme, performing in larger effective interrogation range. PMID:27854342
PSO-tuned PID controller for coupled tank system via priority-based fitness scheme
NASA Astrophysics Data System (ADS)
Jaafar, Hazriq Izzuan; Hussien, Sharifah Yuslinda Syed; Selamat, Nur Asmiza; Abidin, Amar Faiz Zainal; Aras, Mohd Shahrieel Mohd; Nasir, Mohamad Na'im Mohd; Bohari, Zul Hasrizal
2015-05-01
The industrial applications of Coupled Tank System (CTS) are widely used especially in chemical process industries. The overall process is require liquids to be pumped, stored in the tank and pumped again to another tank. Nevertheless, the level of liquid in tank need to be controlled and flow between two tanks must be regulated. This paper presents development of an optimal PID controller for controlling the desired liquid level of the CTS. Two method of Particle Swarm Optimization (PSO) algorithm will be tested in optimizing the PID controller parameters. These two methods of PSO are standard Particle Swarm Optimization (PSO) and Priority-based Fitness Scheme in Particle Swarm Optimization (PFPSO). Simulation is conducted within Matlab environment to verify the performance of the system in terms of settling time (Ts), steady state error (SSE) and overshoot (OS). It has been demonstrated that implementation of PSO via Priority-based Fitness Scheme (PFPSO) for this system is potential technique to control the desired liquid level and improve the system performances compared with standard PSO.
Qarri, Flora; Lazo, Pranvera; Bekteshi, Lirim; Stafilov, Trajce; Frontasyeva, Marina; Harmens, Harry
2015-02-01
The atmospheric deposition of heavy metals in Albania was investigated by using a carpet-forming moss species (Hypnum cupressiforme) as bioindicator. Sampling was done in the dry seasons of autumn 2010 and summer 2011. Two different sampling schemes are discussed in this paper: a random sampling scheme with 62 sampling sites distributed over the whole territory of Albania and systematic sampling scheme with 44 sampling sites distributed over the same territory. Unwashed, dried samples were totally digested by using microwave digestion, and the concentrations of metal elements were determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES) and AAS (Cd and As). Twelve elements, such as conservative and trace elements (Al and Fe and As, Cd, Cr, Cu, Ni, Mn, Pb, V, Zn, and Li), were measured in moss samples. Li as typical lithogenic element is also included. The results reflect local emission points. The median concentrations and statistical parameters of elements were discussed by comparing two sampling schemes. The results of both sampling schemes are compared with the results of other European countries. Different levels of the contamination valuated by the respective contamination factor (CF) of each element are obtained for both sampling schemes, while the local emitters identified like iron-chromium metallurgy and cement industry, oil refinery, mining industry, and transport have been the same for both sampling schemes. In addition, the natural sources, from the accumulation of these metals in mosses caused by metal-enriched soil, associated with wind blowing soils were pointed as another possibility of local emitting factors.
Why sampling scheme matters: the effect of sampling scheme on landscape genetic results
Michael K. Schwartz; Kevin S. McKelvey
2008-01-01
There has been a recent trend in genetic studies of wild populations where researchers have changed their sampling schemes from sampling pre-defined populations to sampling individuals uniformly across landscapes. This reflects the fact that many species under study are continuously distributed rather than clumped into obvious "populations". Once individual...
The optimal dynamic immunization under a controlled heterogeneous node-based SIRS model
NASA Astrophysics Data System (ADS)
Yang, Lu-Xing; Draief, Moez; Yang, Xiaofan
2016-05-01
Dynamic immunizations, under which the state of the propagation network of electronic viruses can be changed by adjusting the control measures, are regarded as an alternative to static immunizations. This paper addresses the optimal dynamical immunization under the widely accepted SIRS assumption. First, based on a controlled heterogeneous node-based SIRS model, an optimal control problem capturing the optimal dynamical immunization is formulated. Second, the existence of an optimal dynamical immunization scheme is shown, and the corresponding optimality system is derived. Next, some numerical examples are given to show that an optimal immunization strategy can be worked out by numerically solving the optimality system, from which it is found that the network topology has a complex impact on the optimal immunization strategy. Finally, the difference between a payoff and the minimum payoff is estimated in terms of the deviation of the corresponding immunization strategy from the optimal immunization strategy. The proposed optimal immunization scheme is justified, because it can achieve a low level of infections at a low cost.
Reducing acquisition times in multidimensional NMR with a time-optimized Fourier encoding algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhiyong; Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, Fujian 361005; Smith, Pieter E. S.
Speeding up the acquisition of multidimensional nuclear magnetic resonance (NMR) spectra is an important topic in contemporary NMR, with central roles in high-throughput investigations and analyses of marginally stable samples. A variety of fast NMR techniques have been developed, including methods based on non-uniform sampling and Hadamard encoding, that overcome the long sampling times inherent to schemes based on fast-Fourier-transform (FFT) methods. Here, we explore the potential of an alternative fast acquisition method that leverages a priori knowledge, to tailor polychromatic pulses and customized time delays for an efficient Fourier encoding of the indirect domain of an NMR experiment. Bymore » porting the encoding of the indirect-domain to the excitation process, this strategy avoids potential artifacts associated with non-uniform sampling schemes and uses a minimum number of scans equal to the number of resonances present in the indirect dimension. An added convenience is afforded by the fact that a usual 2D FFT can be used to process the generated data. Acquisitions of 2D heteronuclear correlation NMR spectra on quinine and on the anti-inflammatory drug isobutyl propionic phenolic acid illustrate the new method's performance. This method can be readily automated to deal with complex samples such as those occurring in metabolomics, in in-cell as well as in in vivo NMR applications, where speed and temporal stability are often primary concerns.« less
Robot-Arm Dynamic Control by Computer
NASA Technical Reports Server (NTRS)
Bejczy, Antal K.; Tarn, Tzyh J.; Chen, Yilong J.
1987-01-01
Feedforward and feedback schemes linearize responses to control inputs. Method for control of robot arm based on computed nonlinear feedback and state tranformations to linearize system and decouple robot end-effector motions along each of cartesian axes augmented with optimal scheme for correction of errors in workspace. Major new feature of control method is: optimal error-correction loop directly operates on task level and not on joint-servocontrol level.
On the Likely Utility of Hybrid Weights Optimized for Variances in Hybrid Error Covariance Models
NASA Astrophysics Data System (ADS)
Satterfield, E.; Hodyss, D.; Kuhl, D.; Bishop, C. H.
2017-12-01
Because of imperfections in ensemble data assimilation schemes, one cannot assume that the ensemble covariance is equal to the true error covariance of a forecast. Previous work demonstrated how information about the distribution of true error variances given an ensemble sample variance can be revealed from an archive of (observation-minus-forecast, ensemble-variance) data pairs. Here, we derive a simple and intuitively compelling formula to obtain the mean of this distribution of true error variances given an ensemble sample variance from (observation-minus-forecast, ensemble-variance) data pairs produced by a single run of a data assimilation system. This formula takes the form of a Hybrid weighted average of the climatological forecast error variance and the ensemble sample variance. Here, we test the extent to which these readily obtainable weights can be used to rapidly optimize the covariance weights used in Hybrid data assimilation systems that employ weighted averages of static covariance models and flow-dependent ensemble based covariance models. Univariate data assimilation and multi-variate cycling ensemble data assimilation are considered. In both cases, it is found that our computationally efficient formula gives Hybrid weights that closely approximate the optimal weights found through the simple but computationally expensive process of testing every plausible combination of weights.
Bandwidth reduction for video-on-demand broadcasting using secondary content insertion
NASA Astrophysics Data System (ADS)
Golynski, Alexander; Lopez-Ortiz, Alejandro; Poirier, Guillaume; Quimper, Claude-Guy
2005-01-01
An optimal broadcasting scheme under the presence of secondary content (i.e. advertisements) is proposed. The proposed scheme works both for movies encoded in a Constant Bit Rate (CBR) or a Variable Bit Rate (VBR) format. It is shown experimentally that secondary content in movies can make Video-on-Demand (VoD) broadcasting systems more efficient. An efficient algorithm is given to compute the optimal broadcasting schedule with secondary content, which in particular significantly improves over the best previously known algorithm for computing the optimal broadcasting schedule without secondary content.
Sparse Learning with Stochastic Composite Optimization.
Zhang, Weizhong; Zhang, Lijun; Jin, Zhongming; Jin, Rong; Cai, Deng; Li, Xuelong; Liang, Ronghua; He, Xiaofei
2017-06-01
In this paper, we study Stochastic Composite Optimization (SCO) for sparse learning that aims to learn a sparse solution from a composite function. Most of the recent SCO algorithms have already reached the optimal expected convergence rate O(1/λT), but they often fail to deliver sparse solutions at the end either due to the limited sparsity regularization during stochastic optimization (SO) or due to the limitation in online-to-batch conversion. Even when the objective function is strongly convex, their high probability bounds can only attain O(√{log(1/δ)/T}) with δ is the failure probability, which is much worse than the expected convergence rate. To address these limitations, we propose a simple yet effective two-phase Stochastic Composite Optimization scheme by adding a novel powerful sparse online-to-batch conversion to the general Stochastic Optimization algorithms. We further develop three concrete algorithms, OptimalSL, LastSL and AverageSL, directly under our scheme to prove the effectiveness of the proposed scheme. Both the theoretical analysis and the experiment results show that our methods can really outperform the existing methods at the ability of sparse learning and at the meantime we can improve the high probability bound to approximately O(log(log(T)/δ)/λT).
NASA Astrophysics Data System (ADS)
Feyen, Luc; Gorelick, Steven M.
2005-03-01
We propose a framework that combines simulation optimization with Bayesian decision analysis to evaluate the worth of hydraulic conductivity data for optimal groundwater resources management in ecologically sensitive areas. A stochastic simulation optimization management model is employed to plan regionally distributed groundwater pumping while preserving the hydroecological balance in wetland areas. Because predictions made by an aquifer model are uncertain, groundwater supply systems operate below maximum yield. Collecting data from the groundwater system can potentially reduce predictive uncertainty and increase safe water production. The price paid for improvement in water management is the cost of collecting the additional data. Efficient data collection using Bayesian decision analysis proceeds in three stages: (1) The prior analysis determines the optimal pumping scheme and profit from water sales on the basis of known information. (2) The preposterior analysis estimates the optimal measurement locations and evaluates whether each sequential measurement will be cost-effective before it is taken. (3) The posterior analysis then revises the prior optimal pumping scheme and consequent profit, given the new information. Stochastic simulation optimization employing a multiple-realization approach is used to determine the optimal pumping scheme in each of the three stages. The cost of new data must not exceed the expected increase in benefit obtained in optimal groundwater exploitation. An example based on groundwater management practices in Florida aimed at wetland protection showed that the cost of data collection more than paid for itself by enabling a safe and reliable increase in production.
A simple language to script and simulate breeding schemes: the breeding scheme language
USDA-ARS?s Scientific Manuscript database
It is difficult for plant breeders to determine an optimal breeding strategy given that the problem involves many factors, such as target trait genetic architecture and breeding resource availability. There are many possible breeding schemes for each breeding program. Although simulation study may b...
Guidance trajectories for aeroassisted orbital transfer
NASA Technical Reports Server (NTRS)
Miele, A.
1990-01-01
Research on aerobraking guidance schemes is presented. The intent is to produce aerobraking guidance trajectories exhibiting many of the desirable characteristics of optimal aerobraking trajectories. Both one-control schemes and two-control schemes are studied. The research is in the interest of aeroassisted flight experiment vehicles (AFE) and aeroassisted orbital transfer (AOT) vehicles.
NASA Astrophysics Data System (ADS)
Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.
2015-10-01
Next-generation mesoscale numerical weather prediction system, the Weather Research and Forecasting (WRF) model, is a designed for dual use for forecasting and research. WRF offers multiple physics options that can be combined in any way. One of the physics options is radiance computation. The major source for energy for the earth's climate is solar radiation. Thus, it is imperative to accurately model horizontal and vertical distribution of the heating. Goddard solar radiative transfer model includes the absorption duo to water vapor,ozone, ozygen, carbon dioxide, clouds and aerosols. The model computes the interactions among the absorption and scattering by clouds, aerosols, molecules and surface. Finally, fluxes are integrated over the entire longwave spectrum.In this paper, we present our results of optimizing the Goddard longwave radiative transfer scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The coprocessor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. Those optimization techniques are discusses in this paper. The optimizations improved the performance of the original Goddard longwave radiative transfer scheme on Xeon Phi 7120P by a factor of 2.2x. Furthermore, the same optimizations improved the performance of the Goddard longwave radiative transfer scheme on a dual socket configuration of eight core Intel Xeon E5-2670 CPUs by a factor of 2.1x compared to the original Goddard longwave radiative transfer scheme code.
On the optimization of discrete structures with aeroelastic constraints
NASA Technical Reports Server (NTRS)
Mcintosh, S. C., Jr.; Ashley, H.
1978-01-01
The paper deals with the problem of dynamic structural optimization where constraints relating to flutter of a wing (or other dynamic aeroelastic performance) are imposed along with conditions of a more conventional nature such as those relating to stress under load, deflection, minimum dimensions of structural elements, etc. The discussion is limited to a flutter problem for a linear system with a finite number of degrees of freedom and a single constraint involving aeroelastic stability, and the structure motion is assumed to be a simple harmonic time function. Three search schemes are applied to the minimum-weight redesign of a particular wing: the first scheme relies on the method of feasible directions, while the other two are derived from necessary conditions for a local optimum so that they can be referred to as optimality-criteria schemes. The results suggest that a heuristic redesign algorithm involving an optimality criterion may be best suited for treating multiple constraints with large numbers of design variables.
PAPR reduction in CO-OFDM systems using IPTS and modified clipping and filtering
NASA Astrophysics Data System (ADS)
Tong, Zheng-rong; Hu, Ya-nong; Zhang, Wei-hua
2018-05-01
Aiming at the problem of the peak to average power ratio ( PAPR) in coherent optical orthogonal frequency division multiplexing (CO-OFDM), a hybrid PAPR reduction technique of the CO-OFDM system by combining iterative partial transmit sequence (IPTS) scheme with modified clipping and filtering (MCF) is proposed. The simulation results show that at the complementary cumulative distribution function ( CCDF) of 10-4, the PAPR of proposed scheme is optimized by 1.86 dB and 2.13 dB compared with those of IPTS and CF schemes, respectively. Meanwhile, when the bit error rate ( BER) is 10-3, the optical signal to noise ratio ( OSNR) are optimized by 1.57 dB and 0.66 dB compared with those of CF and IPTS-CF schemes, respectively.
Narayanan, Vignesh; Jagannathan, Sarangapani
2017-09-07
In this paper, a distributed control scheme for an interconnected system composed of uncertain input affine nonlinear subsystems with event triggered state feedback is presented by using a novel hybrid learning scheme-based approximate dynamic programming with online exploration. First, an approximate solution to the Hamilton-Jacobi-Bellman equation is generated with event sampled neural network (NN) approximation and subsequently, a near optimal control policy for each subsystem is derived. Artificial NNs are utilized as function approximators to develop a suite of identifiers and learn the dynamics of each subsystem. The NN weight tuning rules for the identifier and event-triggering condition are derived using Lyapunov stability theory. Taking into account, the effects of NN approximation of system dynamics and boot-strapping, a novel NN weight update is presented to approximate the optimal value function. Finally, a novel strategy to incorporate exploration in online control framework, using identifiers, is introduced to reduce the overall cost at the expense of additional computations during the initial online learning phase. System states and the NN weight estimation errors are regulated and local uniformly ultimately bounded results are achieved. The analytical results are substantiated using simulation studies.
Fractional Gaussian model in global optimization
NASA Astrophysics Data System (ADS)
Dimri, V. P.; Srivastava, R. P.
2009-12-01
Earth system is inherently non-linear and it can be characterized well if we incorporate no-linearity in the formulation and solution of the problem. General tool often used for characterization of the earth system is inversion. Traditionally inverse problems are solved using least-square based inversion by linearizing the formulation. The initial model in such inversion schemes is often assumed to follow posterior Gaussian probability distribution. It is now well established that most of the physical properties of the earth follow power law (fractal distribution). Thus, the selection of initial model based on power law probability distribution will provide more realistic solution. We present a new method which can draw samples of posterior probability density function very efficiently using fractal based statistics. The application of the method has been demonstrated to invert band limited seismic data with well control. We used fractal based probability density function which uses mean, variance and Hurst coefficient of the model space to draw initial model. Further this initial model is used in global optimization inversion scheme. Inversion results using initial models generated by our method gives high resolution estimates of the model parameters than the hitherto used gradient based liner inversion method.
NASA Astrophysics Data System (ADS)
David, McInerney; Mark, Thyer; Dmitri, Kavetski; George, Kuczera
2017-04-01
This study provides guidance to hydrological researchers which enables them to provide probabilistic predictions of daily streamflow with the best reliability and precision for different catchment types (e.g. high/low degree of ephemerality). Reliable and precise probabilistic prediction of daily catchment-scale streamflow requires statistical characterization of residual errors of hydrological models. It is commonly known that hydrological model residual errors are heteroscedastic, i.e. there is a pattern of larger errors in higher streamflow predictions. Although multiple approaches exist for representing this heteroscedasticity, few studies have undertaken a comprehensive evaluation and comparison of these approaches. This study fills this research gap by evaluating 8 common residual error schemes, including standard and weighted least squares, the Box-Cox transformation (with fixed and calibrated power parameter, lambda) and the log-sinh transformation. Case studies include 17 perennial and 6 ephemeral catchments in Australia and USA, and two lumped hydrological models. We find the choice of heteroscedastic error modelling approach significantly impacts on predictive performance, though no single scheme simultaneously optimizes all performance metrics. The set of Pareto optimal schemes, reflecting performance trade-offs, comprises Box-Cox schemes with lambda of 0.2 and 0.5, and the log scheme (lambda=0, perennial catchments only). These schemes significantly outperform even the average-performing remaining schemes (e.g., across ephemeral catchments, median precision tightens from 105% to 40% of observed streamflow, and median biases decrease from 25% to 4%). Theoretical interpretations of empirical results highlight the importance of capturing the skew/kurtosis of raw residuals and reproducing zero flows. Recommendations for researchers and practitioners seeking robust residual error schemes for practical work are provided.
A classification scheme for risk assessment methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stamp, Jason Edwin; Campbell, Philip LaRoche
2004-08-01
This report presents a classification scheme for risk assessment methods. This scheme, like all classification schemes, provides meaning by imposing a structure that identifies relationships. Our scheme is based on two orthogonal aspects--level of detail, and approach. The resulting structure is shown in Table 1 and is explained in the body of the report. Each cell in the Table represent a different arrangement of strengths and weaknesses. Those arrangements shift gradually as one moves through the table, each cell optimal for a particular situation. The intention of this report is to enable informed use of the methods so that amore » method chosen is optimal for a situation given. This report imposes structure on the set of risk assessment methods in order to reveal their relationships and thus optimize their usage.We present a two-dimensional structure in the form of a matrix, using three abstraction levels for the rows and three approaches for the columns. For each of the nine cells in the matrix we identify the method type by name and example. The matrix helps the user understand: (1) what to expect from a given method, (2) how it relates to other methods, and (3) how best to use it. Each cell in the matrix represent a different arrangement of strengths and weaknesses. Those arrangements shift gradually as one moves through the table, each cell optimal for a particular situation. The intention of this report is to enable informed use of the methods so that a method chosen is optimal for a situation given. The matrix, with type names in the cells, is introduced in Table 2 on page 13 below. Unless otherwise stated we use the word 'method' in this report to refer to a 'risk assessment method', though often times we use the full phrase. The use of the terms 'risk assessment' and 'risk management' are close enough that we do not attempt to distinguish them in this report. The remainder of this report is organized as follows. In Section 2 we provide context for this report--what a 'method' is and where it fits. In Section 3 we present background for our classification scheme--what other schemes we have found, the fundamental nature of methods and their necessary incompleteness. In Section 4 we present our classification scheme in the form of a matrix, then we present an analogy that should provide an understanding of the scheme, concluding with an explanation of the two dimensions and the nine types in our scheme. In Section 5 we present examples of each of our classification types. In Section 6 we present conclusions.« less
A New Scheme for the Design of Hilbert Transform Pairs of Biorthogonal Wavelet Bases
NASA Astrophysics Data System (ADS)
Shi, Hongli; Luo, Shuqian
2010-12-01
In designing the Hilbert transform pairs of biorthogonal wavelet bases, it has been shown that the requirements of the equal-magnitude responses and the half-sample phase offset on the lowpass filters are the necessary and sufficient condition. In this paper, the relationship between the phase offset and the vanishing moment difference of biorthogonal scaling filters is derived, which implies a simple way to choose the vanishing moments so that the phase response requirement can be satisfied structurally. The magnitude response requirement is approximately achieved by a constrained optimization procedure, where the objective function and constraints are all expressed in terms of the auxiliary filters of scaling filters rather than the scaling filters directly. Generally, the calculation burden in the design implementation will be less than that of the current schemes. The integral of magnitude response difference between the primal and dual scaling filters has been chosen as the objective function, which expresses the magnitude response requirements in the whole frequency range. Two design examples illustrate that the biorthogonal wavelet bases designed by the proposed scheme are very close to Hilbert transform pairs.
NASA Astrophysics Data System (ADS)
Pakpahan, Eka K. A.; Iskandar, Bermawi P.
2015-12-01
Mining industry is characterized by a high operational revenue, and hence high availability of heavy equipment used in mining industry is a critical factor to ensure the revenue target. To maintain high avaliability of the heavy equipment, the equipment's owner hires an agent to perform maintenance action. Contract is then used to control the relationship between the two parties involved. The traditional contracts such as fixed price, cost plus or penalty based contract studied is unable to push agent's performance to exceed target, and this in turn would lead to a sub-optimal result (revenue). This research deals with designing maintenance contract compensation schemes. The scheme should induce agent to select the highest possible maintenance effort level, thereby pushing agent's performance and achieve maximum utility for both parties involved. Principal agent theory is used as a modeling approach due to its ability to simultaneously modeled owner and agent decision making process. Compensation schemes considered in this research includes fixed price, cost sharing and revenue sharing. The optimal decision is obtained using a numerical method. The results show that if both parties are risk neutral, then there are infinite combination of fixed price, cost sharing and revenue sharing produced the same optimal solution. The combination of fixed price and cost sharing contract results in the optimal solution when the agent is risk averse, while the optimal combination of fixed price and revenue sharing contract is obtained when agent is risk averse. When both parties are risk averse, the optimal compensation scheme is a combination of fixed price, cost sharing and revenue sharing.
Quantum Communication Using Coherent Rejection Sampling
NASA Astrophysics Data System (ADS)
Anshu, Anurag; Devabathini, Vamsi Krishna; Jain, Rahul
2017-09-01
Compression of a message up to the information it carries is key to many tasks involved in classical and quantum information theory. Schumacher [B. Schumacher, Phys. Rev. A 51, 2738 (1995), 10.1103/PhysRevA.51.2738] provided one of the first quantum compression schemes and several more general schemes have been developed ever since [M. Horodecki, J. Oppenheim, and A. Winter, Commun. Math. Phys. 269, 107 (2007); , 10.1007/s00220-006-0118-xI. Devetak and J. Yard, Phys. Rev. Lett. 100, 230501 (2008); , 10.1103/PhysRevLett.100.230501A. Abeyesinghe, I. Devetak, P. Hayden, and A. Winter, Proc. R. Soc. A 465, 2537 (2009), 10.1098/rspa.2009.0202]. However, the one-shot characterization of these quantum tasks is still under development, and often lacks a direct connection with analogous classical tasks. Here we show a new technique for the compression of quantum messages with the aid of entanglement. We devise a new tool that we call the convex split lemma, which is a coherent quantum analogue of the widely used rejection sampling procedure in classical communication protocols. As a consequence, we exhibit new explicit protocols with tight communication cost for quantum state merging, quantum state splitting, and quantum state redistribution (up to a certain optimization in the latter case). We also present a port-based teleportation scheme which uses a fewer number of ports in the presence of information about input.
Optimization of a middle atmosphere diagnostic scheme
NASA Astrophysics Data System (ADS)
Akmaev, Rashid A.
1997-06-01
A new assimilative diagnostic scheme based on the use of a spectral model was recently tested on the CIRA-86 empirical model. It reproduced the observed climatology with an annual global rms temperature deviation of 3.2 K in the 15-110 km layer. The most important new component of the scheme is that the zonal forcing necessary to maintain the observed climatology is diagnosed from empirical data and subsequently substituted into the simulation model at the prognostic stage of the calculation in an annual cycle mode. The simulation results are then quantitatively compared with the empirical model, and the above mentioned rms temperature deviation provides an objective measure of the `distance' between the two climatologies. This quantitative criterion makes it possible to apply standard optimization procedures to the whole diagnostic scheme and/or the model itself. The estimates of the zonal drag have been improved in this study by introducing a nudging (Newtonian-cooling) term into the thermodynamic equation at the diagnostic stage. A proper optimal adjustment of the strength of this term makes it possible to further reduce the rms temperature deviation of simulations down to approximately 2.7 K. These results suggest that direct optimization can successfully be applied to atmospheric model parameter identification problems of moderate dimensionality.
Sensorless optimal sinusoidal brushless direct current for hard disk drives
NASA Astrophysics Data System (ADS)
Soh, C. S.; Bi, C.
2009-04-01
Initiated by the availability of digital signal processors and emergence of new applications, market demands for permanent magnet synchronous motors have been surging. As its back-emf is sinusoidal, the drive current should also be sinusoidal for reducing the torque ripple. However, in applications like hard disk drives, brushless direct current (BLDC) drive is adopted instead of sinusoidal drive for simplification. The adoption, however, comes at the expense of increased harmonics, losses, torque pulsations, and acoustics. In this paper, we propose a sensorless optimal sinusoidal BLDC drive. First and foremost, the derivation for an optimal sinusoidal drive is presented, and a power angle control scheme is proposed to achieve an optimal sinusoidal BLDC. The scheme maintains linear relationship between the motor speed and drive voltage. In an attempt to execute the sensorless drive, an innovative power angle measurement scheme is devised, which takes advantage of the freewheeling diodes and measures the power angle through the detection of diode voltage drops. The objectives as laid out will be presented and discussed in this paper, supported by derivations, simulations, and experimental results. The proposed scheme is straightforward, brings about the benefits of sensorless sinusoidal drive, negates the need for current sensors by utilizing the freewheeling diodes, and does not incur additional cost.
NASA Astrophysics Data System (ADS)
Rajabi, Mohammad Mahdi; Ataie-Ashtiani, Behzad; Janssen, Hans
2015-02-01
The majority of literature regarding optimized Latin hypercube sampling (OLHS) is devoted to increasing the efficiency of these sampling strategies through the development of new algorithms based on the combination of innovative space-filling criteria and specialized optimization schemes. However, little attention has been given to the impact of the initial design that is fed into the optimization algorithm, on the efficiency of OLHS strategies. Previous studies, as well as codes developed for OLHS, have relied on one of the following two approaches for the selection of the initial design in OLHS: (1) the use of random points in the hypercube intervals (random LHS), and (2) the use of midpoints in the hypercube intervals (midpoint LHS). Both approaches have been extensively used, but no attempt has been previously made to compare the efficiency and robustness of their resulting sample designs. In this study we compare the two approaches and show that the space-filling characteristics of OLHS designs are sensitive to the initial design that is fed into the optimization algorithm. It is also illustrated that the space-filling characteristics of OLHS designs based on midpoint LHS are significantly better those based on random LHS. The two approaches are compared by incorporating their resulting sample designs in Monte Carlo simulation (MCS) for uncertainty propagation analysis, and then, by employing the sample designs in the selection of the training set for constructing non-intrusive polynomial chaos expansion (NIPCE) meta-models which subsequently replace the original full model in MCSs. The analysis is based on two case studies involving numerical simulation of density dependent flow and solute transport in porous media within the context of seawater intrusion in coastal aquifers. We show that the use of midpoint LHS as the initial design increases the efficiency and robustness of the resulting MCSs and NIPCE meta-models. The study also illustrates that this relative improvement decreases with increasing number of sample points and input parameter dimensions. Since the computational time and efforts for generating the sample designs in the two approaches are identical, the use of midpoint LHS as the initial design in OLHS is thus recommended.
Minimax Estimation of Functionals of Discrete Distributions
Jiao, Jiantao; Venkat, Kartik; Han, Yanjun; Weissman, Tsachy
2017-01-01
We propose a general methodology for the construction and analysis of essentially minimax estimators for a wide class of functionals of finite dimensional parameters, and elaborate on the case of discrete distributions, where the support size S is unknown and may be comparable with or even much larger than the number of observations n. We treat the respective regions where the functional is nonsmooth and smooth separately. In the nonsmooth regime, we apply an unbiased estimator for the best polynomial approximation of the functional whereas, in the smooth regime, we apply a bias-corrected version of the maximum likelihood estimator (MLE). We illustrate the merit of this approach by thoroughly analyzing the performance of the resulting schemes for estimating two important information measures: 1) the entropy H(P)=∑i=1S−pilnpi and 2) Fα(P)=∑i=1Spiα, α > 0. We obtain the minimax L2 rates for estimating these functionals. In particular, we demonstrate that our estimator achieves the optimal sample complexity n ≍ S/ln S for entropy estimation. We also demonstrate that the sample complexity for estimating Fα(P), 0 < α < 1, is n ≍ S1/α/ln S, which can be achieved by our estimator but not the MLE. For 1 < α < 3/2, we show the minimax L2 rate for estimating Fα(P) is (n ln n)−2(α−1) for infinite support size, while the maximum L2 rate for the MLE is n−2(α−1). For all the above cases, the behavior of the minimax rate-optimal estimators with n samples is essentially that of the MLE (plug-in rule) with n ln n samples, which we term “effective sample size enlargement.” We highlight the practical advantages of our schemes for the estimation of entropy and mutual information. We compare our performance with various existing approaches, and demonstrate that our approach reduces running time and boosts the accuracy. Moreover, we show that the minimax rate-optimal mutual information estimator yielded by our framework leads to significant performance boosts over the Chow–Liu algorithm in learning graphical models. The wide use of information measure estimation suggests that the insights and estimators obtained in this paper could be broadly applicable. PMID:29375152
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, M; Rockhill, J; Phillips, M
Purpose: To investigate a spatiotemporally optimal radiotherapy prescription scheme and its potential benefit for glioblastoma (GBM) patients using the proliferation and invasion (PI) glioma model. Methods: Standard prescription for GBM was assumed to deliver 46Gy in 23 fractions to GTV1+2cm margin and additional 14Gy in 7 fractions to GTV2+2cm margin. We simulated the tumor proliferation and invasion in 2D according to the PI glioma model with a moving velocity of 0.029(slow-move), 0.079(average-move), and 0.13(fast-move) mm/day for GTV2 with a radius of 1 and 2cm. For each tumor, the margin around GTV1 and GTV2 was varied to 0–6 cm and 1–3more » cm respectively. Total dose to GTV1 was constrained such that the equivalent uniform dose (EUD) to normal brain equals EUD with the standard prescription. A non-stationary dose policy, where the fractional dose varies, was investigated to estimate the temporal effect of the radiation dose. The efficacy of an optimal prescription scheme was evaluated by tumor cell-surviving fraction (SF), EUD, and the expected survival time. Results: Optimal prescription for the slow-move tumors was to use 3.0(small)-3.5(large) cm margins to GTV1, and 1.5cm margin to GTV2. For the average- and fast-move tumors, it was optimal to use 6.0cm margin for GTV1 suggesting that whole brain therapy is optimal, and then 1.5cm (average-move) and 1.5–3.0cm (fast-move, small-large) margins for GTV2. It was optimal to deliver the boost sequentially using a linearly decreasing fractional dose for all tumors. Optimal prescription led to 0.001–0.465% of the tumor SF resulted from using the standard prescription, and increased tumor EUD by 25.3–49.3% and the estimated survival time by 7.6–22.2 months. Conclusion: It is feasible to optimize a prescription scheme depending on the individual tumor characteristics. A personalized prescription scheme could potentially increase tumor EUD and the expected survival time significantly without increasing EUD to normal brain.« less
Secure Multiuser Communications in Wireless Sensor Networks with TAS and Cooperative Jamming
Yang, Maoqiang; Zhang, Bangning; Huang, Yuzhen; Yang, Nan; Guo, Daoxing; Gao, Bin
2016-01-01
In this paper, we investigate the secure transmission in wireless sensor networks (WSNs) consisting of one multiple-antenna base station (BS), multiple single-antenna legitimate users, one single-antenna eavesdropper and one multiple-antenna cooperative jammer. In an effort to reduce the scheduling complexity and extend the battery lifetime of the sensor nodes, the switch-and-stay combining (SSC) scheduling scheme is exploited over the sensor nodes. Meanwhile, transmit antenna selection (TAS) is employed at the BS and cooperative jamming (CJ) is adopted at the jammer node, aiming at achieving a satisfactory secrecy performance. Moreover, depending on whether the jammer node has the global channel state information (CSI) of both the legitimate channel and the eavesdropper’s channel, it explores a zero-forcing beamforming (ZFB) scheme or a null-space artificial noise (NAN) scheme to confound the eavesdropper while avoiding the interference to the legitimate user. Building on this, we propose two novel hybrid secure transmission schemes, termed TAS-SSC-ZFB and TAS-SSC-NAN, for WSNs. We then derive the exact closed-form expressions for the secrecy outage probability and the effective secrecy throughput of both schemes to characterize the secrecy performance. Using these closed-form expressions, we further determine the optimal switching threshold and obtain the optimal power allocation factor between the BS and jammer node for both schemes to minimize the secrecy outage probability, while the optimal secrecy rate is decided to maximize the effective secrecy throughput for both schemes. Numerical results are provided to verify the theoretical analysis and illustrate the impact of key system parameters on the secrecy performance. PMID:27845753
Self-tuning control of attitude and momentum management for the Space Station
NASA Technical Reports Server (NTRS)
Shieh, L. S.; Sunkel, J. W.; Yuan, Z. Z.; Zhao, X. M.
1992-01-01
This paper presents a hybrid state-space self-tuning design methodology using dual-rate sampling for suboptimal digital adaptive control of attitude and momentum management for the Space Station. This new hybrid adaptive control scheme combines an on-line recursive estimation algorithm for indirectly identifying the parameters of a continuous-time system from the available fast-rate sampled data of the inputs and states and a controller synthesis algorithm for indirectly finding the slow-rate suboptimal digital controller from the designed optimal analog controller. The proposed method enables the development of digitally implementable control algorithms for the robust control of Space Station Freedom with unknown environmental disturbances and slowly time-varying dynamics.
Calibrating SALT: a sampling scheme to improve estimates of suspended sediment yield
Robert B. Thomas
1986-01-01
Abstract - SALT (Selection At List Time) is a variable probability sampling scheme that provides unbiased estimates of suspended sediment yield and its variance. SALT performs better than standard schemes which are estimate variance. Sampling probabilities are based on a sediment rating function which promotes greater sampling intensity during periods of high...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ying-Jie, E-mail: qfyingjie@iphy.ac.cn; Institute of Physics, Chinese Academy of Sciences, Beijing, 100190; Han, Wei
In this paper, we propose a scheme to enhance trapping of entanglement of two qubits in the environment of a photonic band gap material. Our entanglement trapping promotion scheme makes use of combined weak measurements and quantum measurement reversals. The optimal promotion of entanglement trapping can be acquired with a reasonable finite success probability by adjusting measurement strengths. - Highlights: • Propose a scheme to enhance entanglement trapping in photonic band gap material. • Weak measurement and its reversal are performed locally on individual qubits. • Obtain an optimal condition for maximizing the concurrence of entanglement trapping. • Entanglement suddenmore » death can be prevented by weak measurement in photonic band gap.« less
Power Allocation and Outage Probability Analysis for SDN-based Radio Access Networks
NASA Astrophysics Data System (ADS)
Zhao, Yongxu; Chen, Yueyun; Mai, Zhiyuan
2018-01-01
In this paper, performance of Access network Architecture based SDN (Software Defined Network) is analyzed with respect to the power allocation issue. A power allocation scheme PSO-PA (Particle Swarm Optimization-power allocation) algorithm is proposed, the proposed scheme is subjected to constant total power with the objective of minimizing system outage probability. The entire access network resource configuration is controlled by the SDN controller, then it sends the optimized power distribution factor to the base station source node (SN) and the relay node (RN). Simulation results show that the proposed scheme reduces the system outage probability at a low complexity.
2014-02-01
idle waiting for the wavefront to reach it. To overcome this, Reeve et al. (2001) 3 developed a scheme in analogy to the red-black Gauss - Seidel iterative ...understandable procedure calls. Parallelization of the SIMPLE iterative scheme with SIP used a red-black scheme similar to the red-black Gauss - Seidel ...scheme, the SIMPLE method, for pressure-velocity coupling. The result is a slowing convergence of the outer iterations . The red-black scheme excites a 2
NASA Astrophysics Data System (ADS)
Chen, Zhou; Tong, Qiu-Nan; Zhang, Cong-Cong; Hu, Zhan
2015-04-01
Identification of acetone and its two isomers, and the control of their ionization and dissociation processes are performed using a dual-mass-spectrometer scheme. The scheme employs two sets of time of flight mass spectrometers to simultaneously acquire the mass spectra of two different molecules under the irradiation of identically shaped femtosecond laser pulses. The optimal laser pulses are found using closed-loop learning method based on a genetic algorithm. Compared with the mass spectra of the two isomers that are obtained with the transform limited pulse, those obtained under the irradiation of the optimal laser pulse show large differences and the various reaction pathways of the two molecules are selectively controlled. The experimental results demonstrate that the scheme is quite effective and useful in studies of two molecules having common mass peaks, which makes a traditional single mass spectrometer unfeasible. Project supported by the National Basic Research Program of China (Grant No. 2013CB922200) and the National Natural Science Foundation of China (Grant No. 11374124).
Topology optimization for design of segmented permanent magnet arrays with ferromagnetic materials
NASA Astrophysics Data System (ADS)
Lee, Jaewook; Yoon, Minho; Nomura, Tsuyoshi; Dede, Ercan M.
2018-03-01
This paper presents multi-material topology optimization for the co-design of permanent magnet segments and iron material. Specifically, a co-design methodology is proposed to find an optimal border of permanent magnet segments, a pattern of magnetization directions, and an iron shape. A material interpolation scheme is proposed for material property representation among air, permanent magnet, and iron materials. In this scheme, the permanent magnet strength and permeability are controlled by density design variables, and permanent magnet magnetization directions are controlled by angle design variables. In addition, a scheme to penalize intermediate magnetization direction is proposed to achieve segmented permanent magnet arrays with discrete magnetization directions. In this scheme, permanent magnet strength is controlled depending on magnetization direction, and consequently the final permanent magnet design converges into permanent magnet segments having target discrete directions. To validate the effectiveness of the proposed approach, three design examples are provided. The examples include the design of a dipole Halbach cylinder, magnetic system with arbitrarily-shaped cavity, and multi-objective problem resembling a magnetic refrigeration device.
NASA Astrophysics Data System (ADS)
Darazi, R.; Gouze, A.; Macq, B.
2009-01-01
Reproducing a natural and real scene as we see in the real world everyday is becoming more and more popular. Stereoscopic and multi-view techniques are used for this end. However due to the fact that more information are displayed requires supporting technologies such as digital compression to ensure the storage and transmission of the sequences. In this paper, a new scheme for stereo image coding is proposed. The original left and right images are jointly coded. The main idea is to optimally exploit the existing correlation between the two images. This is done by the design of an efficient transform that reduces the existing redundancy in the stereo image pair. This approach was inspired by Lifting Scheme (LS). The novelty in our work is that the prediction step is been replaced by an hybrid step that consists in disparity compensation followed by luminance correction and an optimized prediction step. The proposed scheme can be used for lossless and for lossy coding. Experimental results show improvement in terms of performance and complexity compared to recently proposed methods.
A guidance law for hypersonic descent to a point
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisler, G.R.; Hull, D.G.
1992-05-01
A neighboring external control problem is formulated for a hypersonic glider to execute a maximum-terminal-velocity descent to a stationary target. The resulting two-part, feedback control scheme initially solves a nonlinear algebraic problem to generate a nominal trajectory to the target altitude. Secondly, a neighboring optimal path computation about the nominal provides a lift and side-force perturbations necessary to achieve the target downrange and crossrange. On-line feedback simulations of the proposed scheme and a form of proportional navigation are compared with an off-line parameter optimization method. The neighboring optimal terminal velocity compares very well with the parameter optimization solution and ismore » far superior to proportional navigation. 8 refs.« less
A guidance law for hypersonic descent to a point
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisler, G.R.; Hull, D.G.
1992-01-01
A neighboring external control problem is formulated for a hypersonic glider to execute a maximum-terminal-velocity descent to a stationary target. The resulting two-part, feedback control scheme initially solves a nonlinear algebraic problem to generate a nominal trajectory to the target altitude. Secondly, a neighboring optimal path computation about the nominal provides a lift and side-force perturbations necessary to achieve the target downrange and crossrange. On-line feedback simulations of the proposed scheme and a form of proportional navigation are compared with an off-line parameter optimization method. The neighboring optimal terminal velocity compares very well with the parameter optimization solution and ismore » far superior to proportional navigation. 8 refs.« less
Time cycle analysis and simulation of material flow in MOX process layout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, S.; Saraswat, A.; Danny, K.M.
The (U,Pu)O{sub 2} MOX fuel is the driver fuel for the upcoming PFBR (Prototype Fast Breeder Reactor). The fuel has around 30% PuO{sub 2}. The presence of high percentages of reprocessed PuO{sub 2} necessitates the design of optimized fuel fabrication process line which will address both production need as well as meet regulatory norms regarding radiological safety criteria. The powder pellet route has highly unbalanced time cycle. This difficulty can be overcome by optimizing process layout in terms of equipment redundancy and scheduling of input powder batches. Different schemes are tested before implementing in the process line with the helpmore » of a software. This software simulates the material movement through the optimized process layout. The different material processing schemes have been devised and validity of the schemes are tested with the software. Schemes in which production batches are meeting at any glove box location are considered invalid. A valid scheme ensures adequate spacing between the production batches and at the same time it meets the production target. This software can be further improved by accurately calculating material movement time through glove box train. One important factor is considering material handling time with automation systems in place.« less
Convergence Analysis of the Graph Allen-Cahn Scheme
2016-02-01
CONVERGENCE ANALYSIS OF THE GRAPH ALLEN-CAHN SCHEME ∗ XIYANG LUO† AND ANDREA L. BERTOZZI† Abstract. Graph partitioning problems have a wide range of...optimization, convergence and monotonicity are shown for a class of schemes under a graph-independent timestep restriction. We also analyze the effects of...spectral truncation, a common technique used to save computational cost. Convergence of the scheme with spectral truncation is also proved under a
NASA Astrophysics Data System (ADS)
Khehra, Baljit Singh; Pharwaha, Amar Partap Singh
2017-04-01
Ductal carcinoma in situ (DCIS) is one type of breast cancer. Clusters of microcalcifications (MCCs) are symptoms of DCIS that are recognized by mammography. Selection of robust features vector is the process of selecting an optimal subset of features from a large number of available features in a given problem domain after the feature extraction and before any classification scheme. Feature selection reduces the feature space that improves the performance of classifier and decreases the computational burden imposed by using many features on classifier. Selection of an optimal subset of features from a large number of available features in a given problem domain is a difficult search problem. For n features, the total numbers of possible subsets of features are 2n. Thus, selection of an optimal subset of features problem belongs to the category of NP-hard problems. In this paper, an attempt is made to find the optimal subset of MCCs features from all possible subsets of features using genetic algorithm (GA), particle swarm optimization (PSO) and biogeography-based optimization (BBO). For simulation, a total of 380 benign and malignant MCCs samples have been selected from mammogram images of DDSM database. A total of 50 features extracted from benign and malignant MCCs samples are used in this study. In these algorithms, fitness function is correct classification rate of classifier. Support vector machine is used as a classifier. From experimental results, it is also observed that the performance of PSO-based and BBO-based algorithms to select an optimal subset of features for classifying MCCs as benign or malignant is better as compared to GA-based algorithm.
A boosted optimal linear learner for retinal vessel segmentation
NASA Astrophysics Data System (ADS)
Poletti, E.; Grisan, E.
2014-03-01
Ocular fundus images provide important information about retinal degeneration, which may be related to acute pathologies or to early signs of systemic diseases. An automatic and quantitative assessment of vessel morphological features, such as diameters and tortuosity, can improve clinical diagnosis and evaluation of retinopathy. At variance with available methods, we propose a data-driven approach, in which the system learns a set of optimal discriminative convolution kernels (linear learner). The set is progressively built based on an ADA-boost sample weighting scheme, providing seamless integration between linear learner estimation and classification. In order to capture the vessel appearance changes at different scales, the kernels are estimated on a pyramidal decomposition of the training samples. The set is employed as a rotating bank of matched filters, whose response is used by the boosted linear classifier to provide a classification of each image pixel into the two classes of interest (vessel/background). We tested the approach fundus images available from the DRIVE dataset. We show that the segmentation performance yields an accuracy of 0.94.
NASA Astrophysics Data System (ADS)
Li, Xiaohui; Sun, Zhenping; Cao, Dongpu; Liu, Daxue; He, Hangen
2017-03-01
This study proposes a novel integrated local trajectory planning and tracking control (ILTPTC) framework for autonomous vehicles driving along a reference path with obstacles avoidance. For this ILTPTC framework, an efficient state-space sampling-based trajectory planning scheme is employed to smoothly follow the reference path. A model-based predictive path generation algorithm is applied to produce a set of smooth and kinematically-feasible paths connecting the initial state with the sampling terminal states. A velocity control law is then designed to assign a speed value at each of the points along the generated paths. An objective function considering both safety and comfort performance is carefully formulated for assessing the generated trajectories and selecting the optimal one. For accurately tracking the optimal trajectory while overcoming external disturbances and model uncertainties, a combined feedforward and feedback controller is developed. Both simulation analyses and vehicle testing are performed to verify the effectiveness of the proposed ILTPTC framework, and future research is also briefly discussed.
Sampling design for spatially distributed hydrogeologic and environmental processes
Christakos, G.; Olea, R.A.
1992-01-01
A methodology for the design of sampling networks over space is proposed. The methodology is based on spatial random field representations of nonhomogeneous natural processes, and on optimal spatial estimation techniques. One of the most important results of random field theory for physical sciences is its rationalization of correlations in spatial variability of natural processes. This correlation is extremely important both for interpreting spatially distributed observations and for predictive performance. The extent of site sampling and the types of data to be collected will depend on the relationship of subsurface variability to predictive uncertainty. While hypothesis formulation and initial identification of spatial variability characteristics are based on scientific understanding (such as knowledge of the physics of the underlying phenomena, geological interpretations, intuition and experience), the support offered by field data is statistically modelled. This model is not limited by the geometric nature of sampling and covers a wide range in subsurface uncertainties. A factorization scheme of the sampling error variance is derived, which possesses certain atttactive properties allowing significant savings in computations. By means of this scheme, a practical sampling design procedure providing suitable indices of the sampling error variance is established. These indices can be used by way of multiobjective decision criteria to obtain the best sampling strategy. Neither the actual implementation of the in-situ sampling nor the solution of the large spatial estimation systems of equations are necessary. The required values of the accuracy parameters involved in the network design are derived using reference charts (readily available for various combinations of data configurations and spatial variability parameters) and certain simple yet accurate analytical formulas. Insight is gained by applying the proposed sampling procedure to realistic examples related to sampling problems in two dimensions. ?? 1992.
Xu, Yixuan; Chen, Xi; Liu, Anfeng; Hu, Chunhua
2017-01-01
Using mobile vehicles as “data mules” to collect data generated by a huge number of sensing devices that are widely spread across smart city is considered to be an economical and effective way of obtaining data about smart cities. However, currently most research focuses on the feasibility of the proposed methods instead of their final performance. In this paper, a latency and coverage optimized data collection (LCODC) scheme is proposed to collect data on smart cities through opportunistic routing. Compared with other schemes, the efficiency of data collection is improved since the data flow in LCODC scheme consists of not only vehicle to device transmission (V2D), but also vehicle to vehicle transmission (V2V). Besides, through data mining on patterns hidden in the smart city, waste and redundancy in the utilization of public resources are mitigated, leading to the easy implementation of our scheme. In detail, no extra supporting device is needed in the LCODC scheme to facilitate data transmission. A large-scale and real-world dataset on Beijing is used to evaluate the LCODC scheme. Results indicate that with very limited costs, the LCODC scheme enables the average latency to decrease from several hours to around 12 min with respect to schemes where V2V transmission is disabled while the coverage rate is able to reach over 30%. PMID:28420218
Xu, Yixuan; Chen, Xi; Liu, Anfeng; Hu, Chunhua
2017-04-18
Using mobile vehicles as "data mules" to collect data generated by a huge number of sensing devices that are widely spread across smart city is considered to be an economical and effective way of obtaining data about smart cities. However, currently most research focuses on the feasibility of the proposed methods instead of their final performance. In this paper, a latency and coverage optimized data collection (LCODC) scheme is proposed to collect data on smart cities through opportunistic routing. Compared with other schemes, the efficiency of data collection is improved since the data flow in LCODC scheme consists of not only vehicle to device transmission (V2D), but also vehicle to vehicle transmission (V2V). Besides, through data mining on patterns hidden in the smart city, waste and redundancy in the utilization of public resources are mitigated, leading to the easy implementation of our scheme. In detail, no extra supporting device is needed in the LCODC scheme to facilitate data transmission. A large-scale and real-world dataset on Beijing is used to evaluate the LCODC scheme. Results indicate that with very limited costs, the LCODC scheme enables the average latency to decrease from several hours to around 12 min with respect to schemes where V2V transmission is disabled while the coverage rate is able to reach over 30%.
Recent developments in the structural design and optimization of ITER neutral beam manifold
NASA Astrophysics Data System (ADS)
Chengzhi, CAO; Yudong, PAN; Zhiwei, XIA; Bo, LI; Tao, JIANG; Wei, LI
2018-02-01
This paper describes a new design of the neutral beam manifold based on a more optimized support system. A proposed alternative scheme has presented to replace the former complex manifold supports and internal pipe supports in the final design phase. Both the structural reliability and feasibility were confirmed with detailed analyses. Comparative analyses between two typical types of manifold support scheme were performed. All relevant results of mechanical analyses for typical operation scenarios and fault conditions are presented. Future optimization activities are described, which will give useful information for a refined setting of components in the next phase.
The controlled growth method - A tool for structural optimization
NASA Technical Reports Server (NTRS)
Hajela, P.; Sobieszczanski-Sobieski, J.
1981-01-01
An adaptive design variable linking scheme in a NLP based optimization algorithm is proposed and evaluated for feasibility of application. The present scheme, based on an intuitive effectiveness measure for each variable, differs from existing methodology in that a single dominant variable controls the growth of all others in a prescribed optimization cycle. The proposed method is implemented for truss assemblies and a wing box structure for stress, displacement and frequency constraints. Substantial reduction in computational time, even more so for structures under multiple load conditions, coupled with a minimal accompanying loss in accuracy, vindicates the algorithm.
Liu, Yan-Jun; Tong, Shaocheng
2016-11-01
In this paper, we propose an optimal control scheme-based adaptive neural network design for a class of unknown nonlinear discrete-time systems. The controlled systems are in a block-triangular multi-input-multi-output pure-feedback structure, i.e., there are both state and input couplings and nonaffine functions to be included in every equation of each subsystem. The design objective is to provide a control scheme, which not only guarantees the stability of the systems, but also achieves optimal control performance. The main contribution of this paper is that it is for the first time to achieve the optimal performance for such a class of systems. Owing to the interactions among subsystems, making an optimal control signal is a difficult task. The design ideas are that: 1) the systems are transformed into an output predictor form; 2) for the output predictor, the ideal control signal and the strategic utility function can be approximated by using an action network and a critic network, respectively; and 3) an optimal control signal is constructed with the weight update rules to be designed based on a gradient descent method. The stability of the systems can be proved based on the difference Lyapunov method. Finally, a numerical simulation is given to illustrate the performance of the proposed scheme.
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.
2011-01-01
Increases in computing resources have allowed for the utilization of high-resolution weather forecast models capable of resolving cloud microphysical and precipitation processes among varying numbers of hydrometeor categories. Several microphysics schemes are currently available within the Weather Research and Forecasting (WRF) model, ranging from single-moment predictions of precipitation content to double-moment predictions that include a prediction of particle number concentrations. Each scheme incorporates several assumptions related to the size distribution, shape, and fall speed relationships of ice crystals in order to simulate cold-cloud processes and resulting precipitation. Field campaign data offer a means of evaluating the assumptions present within each scheme. The Canadian CloudSat/CALIPSO Validation Project (C3VP) represented collaboration among the CloudSat, CALIPSO, and NASA Global Precipitation Measurement mission communities, to observe cold season precipitation processes relevant to forecast model evaluation and the eventual development of satellite retrievals of cloud properties and precipitation rates. During the C3VP campaign, widespread snowfall occurred on 22 January 2007, sampled by aircraft and surface instrumentation that provided particle size distributions, ice water content, and fall speed estimations along with traditional surface measurements of temperature and precipitation. In this study, four single-moment and two double-moment microphysics schemes were utilized to generate hypothetical WRF forecasts of the event, with C3VP data used in evaluation of their varying assumptions. Schemes that incorporate flexibility in size distribution parameters and density assumptions are shown to be preferable to fixed constants, and that a double-moment representation of the snow category may be beneficial when representing the effects of aggregation. These results may guide forecast centers in optimal configurations of their forecast models for winter weather and identify best practices present within these various schemes.
NASA Astrophysics Data System (ADS)
Huang, Melin; Huang, Bormin; Huang, Allen H.
2014-10-01
For weather forecasting and research, the Weather Research and Forecasting (WRF) model has been developed, consisting of several components such as dynamic solvers and physical simulation modules. WRF includes several Land- Surface Models (LSMs). The LSMs use atmospheric information, the radiative and precipitation forcing from the surface layer scheme, the radiation scheme, and the microphysics/convective scheme all together with the land's state variables and land-surface properties, to provide heat and moisture fluxes over land and sea-ice points. The WRF 5-layer thermal diffusion simulation is an LSM based on the MM5 5-layer soil temperature model with an energy budget that includes radiation, sensible, and latent heat flux. The WRF LSMs are very suitable for massively parallel computation as there are no interactions among horizontal grid points. The features, efficient parallelization and vectorization essentials, of Intel Many Integrated Core (MIC) architecture allow us to optimize this WRF 5-layer thermal diffusion scheme. In this work, we present the results of the computing performance on this scheme with Intel MIC architecture. Our results show that the MIC-based optimization improved the performance of the first version of multi-threaded code on Xeon Phi 5110P by a factor of 2.1x. Accordingly, the same CPU-based optimizations improved the performance on Intel Xeon E5- 2603 by a factor of 1.6x as compared to the first version of multi-threaded code.
Multistatic Array Sampling Scheme for Fast Near-Field Image Reconstruction
2016-01-01
1 Multistatic Array Sampling Scheme for Fast Near-Field Image Reconstruction William F. Moulder, James D. Krieger, Denise T. Maurais-Galejs, Huy...described and validated experimentally with the formation of high quality microwave images. It is further shown that the scheme is more than two orders of... scheme (wherein transmitters and receivers are co-located) which require NTNR transmit-receive elements to achieve the same sampling. The second
Optimization of Compton-suppression and summing schemes for the TIGRESS HPGe detector array
NASA Astrophysics Data System (ADS)
Schumaker, M. A.; Svensson, C. E.; Andreoiu, C.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Boston, A. J.; Chakrawarthy, R. S.; Churchman, R.; Drake, T. E.; Finlay, P.; Garrett, P. E.; Grinyer, G. F.; Hackman, G.; Hyland, B.; Jones, B.; Maharaj, R.; Morton, A. C.; Pearson, C. J.; Phillips, A. A.; Sarazin, F.; Scraggs, H. C.; Smith, M. B.; Valiente-Dobón, J. J.; Waddington, J. C.; Watters, L. M.
2007-04-01
Methods of optimizing the performance of an array of Compton-suppressed, segmented HPGe clover detectors have been developed which rely on the physical position sensitivity of both the HPGe crystals and the Compton-suppression shields. These relatively simple analysis procedures promise to improve the precision of experiments with the TRIUMF-ISAC Gamma-Ray Escape-Suppressed Spectrometer (TIGRESS). Suppression schemes will improve the efficiency and peak-to-total ratio of TIGRESS for high γ-ray multiplicity events by taking advantage of the 20-fold segmentation of the Compton-suppression shields, while the use of different summing schemes will improve results for a wide range of experimental conditions. The benefits of these methods are compared for many γ-ray energies and multiplicities using a GEANT4 simulation, and the optimal physical configuration of the TIGRESS array under each set of conditions is determined.
NASA Astrophysics Data System (ADS)
Xuan, Hejun; Wang, Yuping; Xu, Zhanqi; Hao, Shanshan; Wang, Xiaoli
2017-11-01
Virtualization technology can greatly improve the efficiency of the networks by allowing the virtual optical networks to share the resources of the physical networks. However, it will face some challenges, such as finding the efficient strategies for virtual nodes mapping, virtual links mapping and spectrum assignment. It is even more complex and challenging when the physical elastic optical networks using multi-core fibers. To tackle these challenges, we establish a constrained optimization model to determine the optimal schemes of optical network mapping, core allocation and spectrum assignment. To solve the model efficiently, tailor-made encoding scheme, crossover and mutation operators are designed. Based on these, an efficient genetic algorithm is proposed to obtain the optimal schemes of the virtual nodes mapping, virtual links mapping, core allocation. The simulation experiments are conducted on three widely used networks, and the experimental results show the effectiveness of the proposed model and algorithm.
Experimental research of UWB over fiber system employing 128-QAM and ISFA-optimized scheme
NASA Astrophysics Data System (ADS)
He, Jing; Xiang, Changqing; Long, Fengting; Chen, Zuo
2018-05-01
In this paper, an optimized intra-symbol frequency-domain averaging (ISFA) scheme is proposed and experimentally demonstrated in intensity-modulation and direct-detection (IMDD) multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband over fiber (UWBoF) system. According to the channel responses of three MB-OFDM UWB sub-bands, the optimal ISFA window size for each sub-band is investigated. After 60-km standard single mode fiber (SSMF) transmission, the experimental results show that, at the bit error rate (BER) of 3.8 × 10-3, the receiver sensitivity of 128-quadrature amplitude modulation (QAM) can be improved by 1.9 dB using the proposed enhanced ISFA combined with training sequence (TS)-based channel estimation scheme, compared with the conventional TS-based channel estimation. Moreover, the spectral efficiency (SE) is up to 5.39 bit/s/Hz.
On the placement of active members in adaptive truss structures for vibration control
NASA Technical Reports Server (NTRS)
Lu, L.-Y.; Utku, S.; Wada, B. K.
1992-01-01
The problem of optimal placement of active members which are used for vibration control in adaptive truss structures is investigated. The control scheme is based on the method of eigenvalue assignment as a means of shaping the transient response of the controlled adaptive structures, and the minimization of required control action is considered as the optimization criterion. To this end, a performance index which measures the control strokes of active members is formulated in an efficient way. In order to reduce the computation burden, particularly for the case where the locations of active members have to be selected from a large set of available sites, several heuristic searching schemes are proposed for obtaining the near-optimal locations. The proposed schemes significantly reduce the computational complexity of placing multiple active members to the order of that when a single active member is placed.
Optimal wavelets for biomedical signal compression.
Nielsen, Mogens; Kamavuako, Ernest Nlandu; Andersen, Michael Midtgaard; Lucas, Marie-Françoise; Farina, Dario
2006-07-01
Signal compression is gaining importance in biomedical engineering due to the potential applications in telemedicine. In this work, we propose a novel scheme of signal compression based on signal-dependent wavelets. To adapt the mother wavelet to the signal for the purpose of compression, it is necessary to define (1) a family of wavelets that depend on a set of parameters and (2) a quality criterion for wavelet selection (i.e., wavelet parameter optimization). We propose the use of an unconstrained parameterization of the wavelet for wavelet optimization. A natural performance criterion for compression is the minimization of the signal distortion rate given the desired compression rate. For coding the wavelet coefficients, we adopted the embedded zerotree wavelet coding algorithm, although any coding scheme may be used with the proposed wavelet optimization. As a representative example of application, the coding/encoding scheme was applied to surface electromyographic signals recorded from ten subjects. The distortion rate strongly depended on the mother wavelet (for example, for 50% compression rate, optimal wavelet, mean+/-SD, 5.46+/-1.01%; worst wavelet 12.76+/-2.73%). Thus, optimization significantly improved performance with respect to previous approaches based on classic wavelets. The algorithm can be applied to any signal type since the optimal wavelet is selected on a signal-by-signal basis. Examples of application to ECG and EEG signals are also reported.
Planning Framework for Mesolevel Optimization of Urban Runoff Control Schemes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Qianqian; Blohm, Andrew; Liu, Bo
A planning framework is developed to optimize runoff control schemes at scales relevant for regional planning at an early stage. The framework employs less sophisticated modeling approaches to allow a practical application in developing regions with limited data sources and computing capability. The methodology contains three interrelated modules: (1)the geographic information system (GIS)-based hydrological module, which aims at assessing local hydrological constraints and potential for runoff control according to regional land-use descriptions; (2)the grading module, which is built upon the method of fuzzy comprehensive evaluation. It is used to establish a priority ranking system to assist the allocation of runoffmore » control targets at the subdivision level; and (3)the genetic algorithm-based optimization module, which is included to derive Pareto-based optimal solutions for mesolevel allocation with multiple competing objectives. The optimization approach describes the trade-off between different allocation plans and simultaneously ensures that all allocation schemes satisfy the minimum requirement on runoff control. Our results highlight the importance of considering the mesolevel allocation strategy in addition to measures at macrolevels and microlevels in urban runoff management. (C) 2016 American Society of Civil Engineers.« less
Conjugate gradient heat bath for ill-conditioned actions.
Ceriotti, Michele; Bussi, Giovanni; Parrinello, Michele
2007-08-01
We present a method for performing sampling from a Boltzmann distribution of an ill-conditioned quadratic action. This method is based on heat-bath thermalization along a set of conjugate directions, generated via a conjugate-gradient procedure. The resulting scheme outperforms local updates for matrices with very high condition number, since it avoids the slowing down of modes with lower eigenvalue, and has some advantages over the global heat-bath approach, compared to which it is more stable and allows for more freedom in devising case-specific optimizations.
Analysis models for the estimation of oceanic fields
NASA Technical Reports Server (NTRS)
Carter, E. F.; Robinson, A. R.
1987-01-01
A general model for statistically optimal estimates is presented for dealing with scalar, vector and multivariate datasets. The method deals with anisotropic fields and treats space and time dependence equivalently. Problems addressed include the analysis, or the production of synoptic time series of regularly gridded fields from irregular and gappy datasets, and the estimate of fields by compositing observations from several different instruments and sampling schemes. Technical issues are discussed, including the convergence of statistical estimates, the choice of representation of the correlations, the influential domain of an observation, and the efficiency of numerical computations.
Genetic and economic evaluation of Japanese Black (Wagyu) cattle breeding schemes.
Kahi, A K; Hirooka, H
2005-09-01
Deterministic simulation was used to evaluate 10 breeding schemes for genetic gain and profitability and in the context of maximizing returns from investment in Japanese Black cattle breeding. A breeding objective that integrated the cow-calf and feedlot segments was considered. Ten breeding schemes that differed in the records available for use as selection criteria were defined. The schemes ranged from one that used carcass traits currently available to Japanese Black cattle breeders (Scheme 1) to one that also included linear measurements and male and female reproduction traits (Scheme 10). The latter scheme represented the highest level of performance recording. In all breeding schemes, sires were chosen from the proportion selected during the first selection stage (performance testing), modeling a two-stage selection process. The effect on genetic gain and profitability of varying test capacity and number of progeny per sire and of ultrasound scanning of live animals was examined for all breeding schemes. Breeding schemes that selected young bulls during performance testing based on additional individual traits and information on carcass traits from their relatives generated additional genetic gain and profitability. Increasing test capacity resulted in an increase in genetic gain in all schemes. Profitability was optimal in Scheme 2 (a scheme similar to Scheme 1, but selection of young bulls also was based on information on carcass traits from their relatives) to 10 when 900 to 1,000 places were available for performance testing. Similarly, as the number of progeny used in the selection of sires increased, genetic gain first increased sharply and then gradually in all schemes. Profit was optimal across all breeding schemes when sires were selected based on information from 150 to 200 progeny. Additional genetic gain and profitability were generated in each breeding scheme with ultrasound scanning of live animals for carcass traits. Ultrasound scanning of live animals was more important than the addition of any other traits in the selection criteria. These results may be used to provide guidance to Japanese Black cattle breeders.
NASA Astrophysics Data System (ADS)
Kong, Weijing; Wan, Yuhang; Du, Kun; Zhao, Wenhui; Wang, Shuang; Zheng, Zheng
2016-11-01
The reflected intensity change of the Bloch-surface-wave (BSW) resonance influenced by the loss of a truncated onedimensional photonic crystal structure is numerically analyzed and studied in order to enhance the sensitivity of the Bloch-surface-wave-based sensors. The finite truncated one-dimensional photonic crystal structure is designed to be able to excite BSW mode for water (n=1.33) as the external medium and for p-polarized plane wave incident light. The intensity interrogation scheme which can be operated on a typical Kretschmann prism-coupling configuration by measuring the reflected intensity change of the resonance dip is investigated to optimize the sensitivity. A figure of merit (FOM) is introduced to measure the performance of the one-dimensional photonic crystal multilayer structure under the scheme. The detection sensitivities are calculated under different device parameters with a refractive index change corresponding to different solutions of glycerol in de-ionized (DI)-water. The results show that the intensity sensitivity curve varies similarly with the FOM curve and the sensitivity of the Bloch-surface-wave sensor is greatly affected by the device loss, where an optimized loss value can be got. For the low-loss BSW devices, the intensity interrogation sensing sensitivity may drop sharply from the optimal value. On the other hand, the performance of the detection scheme is less affected by the higher device loss. This observation is in accordance with BSW experimental sensing demonstrations as well. The results obtained could be useful for improving the performance of the Bloch-surface-wave sensors for the investigated sensing scheme.
Dispersion-relation-preserving finite difference schemes for computational acoustics
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.; Webb, Jay C.
1993-01-01
Time-marching dispersion-relation-preserving (DRP) schemes can be constructed by optimizing the finite difference approximations of the space and time derivatives in wave number and frequency space. A set of radiation and outflow boundary conditions compatible with the DRP schemes is constructed, and a sequence of numerical simulations is conducted to test the effectiveness of the DRP schemes and the radiation and outflow boundary conditions. Close agreement with the exact solutions is obtained.
Enhanced ICP for the Registration of Large-Scale 3D Environment Models: An Experimental Study
Han, Jianda; Yin, Peng; He, Yuqing; Gu, Feng
2016-01-01
One of the main applications of mobile robots is the large-scale perception of the outdoor environment. One of the main challenges of this application is fusing environmental data obtained by multiple robots, especially heterogeneous robots. This paper proposes an enhanced iterative closest point (ICP) method for the fast and accurate registration of 3D environmental models. First, a hierarchical searching scheme is combined with the octree-based ICP algorithm. Second, an early-warning mechanism is used to perceive the local minimum problem. Third, a heuristic escape scheme based on sampled potential transformation vectors is used to avoid local minima and achieve optimal registration. Experiments involving one unmanned aerial vehicle and one unmanned surface vehicle were conducted to verify the proposed technique. The experimental results were compared with those of normal ICP registration algorithms to demonstrate the superior performance of the proposed method. PMID:26891298
Shape analysis modeling for character recognition
NASA Astrophysics Data System (ADS)
Khan, Nadeem A. M.; Hegt, Hans A.
1998-10-01
Optimal shape modeling of character-classes is crucial for achieving high performance on recognition of mixed-font, hand-written or (and) poor quality text. A novel scheme is presented in this regard focusing on constructing such structural models that can be hierarchically examined. These models utilize a certain `well-thought' set of shape primitives. They are simplified enough to ignore the inter- class variations in font-type or writing style yet retaining enough details for discrimination between the samples of the similar classes. Thus the number of models per class required can be kept minimal without sacrificing the recognition accuracy. In this connection a flexible multi- stage matching scheme exploiting the proposed modeling is also described. This leads to a system which is robust against various distortions and degradation including those related to cases of touching and broken characters. Finally, we present some examples and test results as a proof-of- concept demonstrating the validity and the robustness of the approach.
Effect of different sampling schemes on the spatial placement of conservation reserves in Utah, USA
Bassett, S.D.; Edwards, T.C.
2003-01-01
We evaluated the effect of three different sampling schemes used to organize spatially explicit biological information had on the spatial placement of conservation reserves in Utah, USA. The three sampling schemes consisted of a hexagon representation developed by the EPA/EMAP program (statistical basis), watershed boundaries (ecological), and the current county boundaries of Utah (socio-political). Four decision criteria were used to estimate effects, including amount of area, length of edge, lowest number of contiguous reserves, and greatest number of terrestrial vertebrate species covered. A fifth evaluation criterion was the effect each sampling scheme had on the ability of the modeled conservation reserves to cover the six major ecoregions found in Utah. Of the three sampling schemes, county boundaries covered the greatest number of species, but also created the longest length of edge and greatest number of reserves. Watersheds maximized species coverage using the least amount of area. Hexagons and watersheds provide the least amount of edge and fewest number of reserves. Although there were differences in area, edge and number of reserves among the sampling schemes, all three schemes covered all the major ecoregions in Utah and their inclusive biodiversity. ?? 2003 Elsevier Science Ltd. All rights reserved.
40 CFR 761.316 - Interpreting PCB concentration measurements resulting from this sampling scheme.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Interpreting PCB concentration measurements resulting from this sampling scheme. 761.316 Section 761.316 Protection of Environment... scheme. (a) For an individual sample taken from an approximately 1 meter square portion of the entire...
Städler, Thomas; Haubold, Bernhard; Merino, Carlos; Stephan, Wolfgang; Pfaffelhuber, Peter
2009-01-01
Using coalescent simulations, we study the impact of three different sampling schemes on patterns of neutral diversity in structured populations. Specifically, we are interested in two summary statistics based on the site frequency spectrum as a function of migration rate, demographic history of the entire substructured population (including timing and magnitude of specieswide expansions), and the sampling scheme. Using simulations implementing both finite-island and two-dimensional stepping-stone spatial structure, we demonstrate strong effects of the sampling scheme on Tajima's D (DT) and Fu and Li's D (DFL) statistics, particularly under specieswide (range) expansions. Pooled samples yield average DT and DFL values that are generally intermediate between those of local and scattered samples. Local samples (and to a lesser extent, pooled samples) are influenced by local, rapid coalescence events in the underlying coalescent process. These processes result in lower proportions of external branch lengths and hence lower proportions of singletons, explaining our finding that the sampling scheme affects DFL more than it does DT. Under specieswide expansion scenarios, these effects of spatial sampling may persist up to very high levels of gene flow (Nm > 25), implying that local samples cannot be regarded as being drawn from a panmictic population. Importantly, many data sets on humans, Drosophila, and plants contain signatures of specieswide expansions and effects of sampling scheme that are predicted by our simulation results. This suggests that validating the assumption of panmixia is crucial if robust demographic inferences are to be made from local or pooled samples. However, future studies should consider adopting a framework that explicitly accounts for the genealogical effects of population subdivision and empirical sampling schemes. PMID:19237689
Dictionary Indexing of Electron Channeling Patterns.
Singh, Saransh; De Graef, Marc
2017-02-01
The dictionary-based approach to the indexing of diffraction patterns is applied to electron channeling patterns (ECPs). The main ingredients of the dictionary method are introduced, including the generalized forward projector (GFP), the relevant detector model, and a scheme to uniformly sample orientation space using the "cubochoric" representation. The GFP is used to compute an ECP "master" pattern. Derivative free optimization algorithms, including the Nelder-Mead simplex and the bound optimization by quadratic approximation are used to determine the correct detector parameters and to refine the orientation obtained from the dictionary approach. The indexing method is applied to poly-silicon and shows excellent agreement with the calibrated values. Finally, it is shown that the method results in a mean disorientation error of 1.0° with 0.5° SD for a range of detector parameters.
Deterministic multidimensional nonuniform gap sampling.
Worley, Bradley; Powers, Robert
2015-12-01
Born from empirical observations in nonuniformly sampled multidimensional NMR data relating to gaps between sampled points, the Poisson-gap sampling method has enjoyed widespread use in biomolecular NMR. While the majority of nonuniform sampling schemes are fully randomly drawn from probability densities that vary over a Nyquist grid, the Poisson-gap scheme employs constrained random deviates to minimize the gaps between sampled grid points. We describe a deterministic gap sampling method, based on the average behavior of Poisson-gap sampling, which performs comparably to its random counterpart with the additional benefit of completely deterministic behavior. We also introduce a general algorithm for multidimensional nonuniform sampling based on a gap equation, and apply it to yield a deterministic sampling scheme that combines burst-mode sampling features with those of Poisson-gap schemes. Finally, we derive a relationship between stochastic gap equations and the expectation value of their sampling probability densities. Copyright © 2015 Elsevier Inc. All rights reserved.
Difference equation state approximations for nonlinear hereditary control problems
NASA Technical Reports Server (NTRS)
Rosen, I. G.
1982-01-01
Discrete approximation schemes for the solution of nonlinear hereditary control problems are constructed. The methods involve approximation by a sequence of optimal control problems in which the original infinite dimensional state equation has been approximated by a finite dimensional discrete difference equation. Convergence of the state approximations is argued using linear semigroup theory and is then used to demonstrate that solutions to the approximating optimal control problems in some sense approximate solutions to the original control problem. Two schemes, one based upon piecewise constant approximation, and the other involving spline functions are discussed. Numerical results are presented, analyzed and used to compare the schemes to other available approximation methods for the solution of hereditary control problems.
A self-optimizing scheme for energy balanced routing in Wireless Sensor Networks using SensorAnt.
Shamsan Saleh, Ahmed M; Ali, Borhanuddin Mohd; Rasid, Mohd Fadlee A; Ismail, Alyani
2012-01-01
Planning of energy-efficient protocols is critical for Wireless Sensor Networks (WSNs) because of the constraints on the sensor nodes' energy. The routing protocol should be able to provide uniform power dissipation during transmission to the sink node. In this paper, we present a self-optimization scheme for WSNs which is able to utilize and optimize the sensor nodes' resources, especially the batteries, to achieve balanced energy consumption across all sensor nodes. This method is based on the Ant Colony Optimization (ACO) metaheuristic which is adopted to enhance the paths with the best quality function. The assessment of this function depends on multi-criteria metrics such as the minimum residual battery power, hop count and average energy of both route and network. This method also distributes the traffic load of sensor nodes throughout the WSN leading to reduced energy usage, extended network life time and reduced packet loss. Simulation results show that our scheme performs much better than the Energy Efficient Ant-Based Routing (EEABR) in terms of energy consumption, balancing and efficiency.
NASA Astrophysics Data System (ADS)
Wang, Shengling; Cui, Yong; Koodli, Rajeev; Hou, Yibin; Huang, Zhangqin
Due to the dynamics of topology and resources, Call Admission Control (CAC) plays a significant role for increasing resource utilization ratio and guaranteeing users' QoS requirements in wireless/mobile networks. In this paper, a dynamic multi-threshold CAC scheme is proposed to serve multi-class service in a wireless/mobile network. The thresholds are renewed at the beginning of each time interval to react to the changing mobility rate and network load. To find suitable thresholds, a reward-penalty model is designed, which provides different priorities between different service classes and call types through different reward/penalty policies according to network load and average call arrival rate. To speed up the running time of CAC, an Optimized Genetic Algorithm (OGA) is presented, whose components such as encoding, population initialization, fitness function and mutation etc., are all optimized in terms of the traits of the CAC problem. The simulation demonstrates that the proposed CAC scheme outperforms the similar schemes, which means the optimization is realized. Finally, the simulation shows the efficiency of OGA.
Reliability Constrained Priority Load Shedding for Aerospace Power System Automation
NASA Technical Reports Server (NTRS)
Momoh, James A.; Zhu, Jizhong; Kaddah, Sahar S.; Dolce, James L. (Technical Monitor)
2000-01-01
The need for improving load shedding on board the space station is one of the goals of aerospace power system automation. To accelerate the optimum load-shedding functions, several constraints must be involved. These constraints include congestion margin determined by weighted probability contingency, component/system reliability index, generation rescheduling. The impact of different faults and indices for computing reliability were defined before optimization. The optimum load schedule is done based on priority, value and location of loads. An optimization strategy capable of handling discrete decision making, such as Everett optimization, is proposed. We extended Everett method to handle expected congestion margin and reliability index as constraints. To make it effective for real time load dispatch process, a rule-based scheme is presented in the optimization method. It assists in selecting which feeder load to be shed, the location of the load, the value, priority of the load and cost benefit analysis of the load profile is included in the scheme. The scheme is tested using a benchmark NASA system consisting of generators, loads and network.
Optimal block cosine transform image coding for noisy channels
NASA Technical Reports Server (NTRS)
Vaishampayan, V.; Farvardin, N.
1986-01-01
The two dimensional block transform coding scheme based on the discrete cosine transform was studied extensively for image coding applications. While this scheme has proven to be efficient in the absence of channel errors, its performance degrades rapidly over noisy channels. A method is presented for the joint source channel coding optimization of a scheme based on the 2-D block cosine transform when the output of the encoder is to be transmitted via a memoryless design of the quantizers used for encoding the transform coefficients. This algorithm produces a set of locally optimum quantizers and the corresponding binary code assignment for the assumed transform coefficient statistics. To determine the optimum bit assignment among the transform coefficients, an algorithm was used based on the steepest descent method, which under certain convexity conditions on the performance of the channel optimized quantizers, yields the optimal bit allocation. Comprehensive simulation results for the performance of this locally optimum system over noisy channels were obtained and appropriate comparisons against a reference system designed for no channel error were rendered.
NASA Astrophysics Data System (ADS)
Miller, V. M.; Semiatin, S. L.; Szczepanski, C.; Pilchak, A. L.
2018-06-01
The ability to predict the evolution of crystallographic texture during hot work of titanium alloys in the α + β temperature regime is greatly significant to numerous engineering disciplines; however, research efforts are complicated by the rapid changes in phase volume fractions and flow stresses with temperature in addition to topological considerations. The viscoplastic self-consistent (VPSC) polycrystal plasticity model is employed to simulate deformation in the two phase field. Newly developed parameter selection schemes utilizing automated optimization based on two different error metrics are considered. In the first optimization scheme, which is commonly used in the literature, the VPSC parameters are selected based on the quality of fit between experiment and simulated flow curves at six hot-working temperatures. Under the second newly developed scheme, parameters are selected to minimize the difference between the simulated and experimentally measured α textures after accounting for the β → α transformation upon cooling. It is demonstrated that both methods result in good qualitative matches for the experimental α phase texture, but texture-based optimization results in a substantially better quantitative orientation distribution function match.
Brock, Guy N; Shaffer, John R; Blakesley, Richard E; Lotz, Meredith J; Tseng, George C
2008-01-10
Gene expression data frequently contain missing values, however, most down-stream analyses for microarray experiments require complete data. In the literature many methods have been proposed to estimate missing values via information of the correlation patterns within the gene expression matrix. Each method has its own advantages, but the specific conditions for which each method is preferred remains largely unclear. In this report we describe an extensive evaluation of eight current imputation methods on multiple types of microarray experiments, including time series, multiple exposures, and multiple exposures x time series data. We then introduce two complementary selection schemes for determining the most appropriate imputation method for any given data set. We found that the optimal imputation algorithms (LSA, LLS, and BPCA) are all highly competitive with each other, and that no method is uniformly superior in all the data sets we examined. The success of each method can also depend on the underlying "complexity" of the expression data, where we take complexity to indicate the difficulty in mapping the gene expression matrix to a lower-dimensional subspace. We developed an entropy measure to quantify the complexity of expression matrixes and found that, by incorporating this information, the entropy-based selection (EBS) scheme is useful for selecting an appropriate imputation algorithm. We further propose a simulation-based self-training selection (STS) scheme. This technique has been used previously for microarray data imputation, but for different purposes. The scheme selects the optimal or near-optimal method with high accuracy but at an increased computational cost. Our findings provide insight into the problem of which imputation method is optimal for a given data set. Three top-performing methods (LSA, LLS and BPCA) are competitive with each other. Global-based imputation methods (PLS, SVD, BPCA) performed better on mcroarray data with lower complexity, while neighbour-based methods (KNN, OLS, LSA, LLS) performed better in data with higher complexity. We also found that the EBS and STS schemes serve as complementary and effective tools for selecting the optimal imputation algorithm.
NASA Astrophysics Data System (ADS)
Trujillo Bueno, J.; Fabiani Bendicho, P.
1995-12-01
Iterative schemes based on Gauss-Seidel (G-S) and optimal successive over-relaxation (SOR) iteration are shown to provide a dramatic increase in the speed with which non-LTE radiation transfer (RT) problems can be solved. The convergence rates of these new RT methods are identical to those of upper triangular nonlocal approximate operator splitting techniques, but the computing time per iteration and the memory requirements are similar to those of a local operator splitting method. In addition to these properties, both methods are particularly suitable for multidimensional geometry, since they neither require the actual construction of nonlocal approximate operators nor the application of any matrix inversion procedure. Compared with the currently used Jacobi technique, which is based on the optimal local approximate operator (see Olson, Auer, & Buchler 1986), the G-S method presented here is faster by a factor 2. It gives excellent smoothing of the high-frequency error components, which makes it the iterative scheme of choice for multigrid radiative transfer. This G-S method can also be suitably combined with standard acceleration techniques to achieve even higher performance. Although the convergence rate of the optimal SOR scheme developed here for solving non-LTE RT problems is much higher than G-S, the computing time per iteration is also minimal, i.e., virtually identical to that of a local operator splitting method. While the conventional optimal local operator scheme provides the converged solution after a total CPU time (measured in arbitrary units) approximately equal to the number n of points per decade of optical depth, the time needed by this new method based on the optimal SOR iterations is only √n/2√2. This method is competitive with those that result from combining the above-mentioned Jacobi and G-S schemes with the best acceleration techniques. Contrary to what happens with the local operator splitting strategy currently in use, these novel methods remain effective even under extreme non-LTE conditions in very fine grids.
NASA Technical Reports Server (NTRS)
Scott, Robert C.; Pototzky, Anthony S.; Perry, Boyd, III
1991-01-01
Two matched filter theory based schemes are described and illustrated for obtaining maximized and time correlated gust loads for a nonlinear aircraft. The first scheme is computationally fast because it uses a simple 1-D search procedure to obtain its answers. The second scheme is computationally slow because it uses a more complex multi-dimensional search procedure to obtain its answers, but it consistently provides slightly higher maximum loads than the first scheme. Both schemes are illustrated with numerical examples involving a nonlinear control system.
NASA Technical Reports Server (NTRS)
Scott, Robert C.; Perry, Boyd, III; Pototzky, Anthony S.
1991-01-01
This paper describes and illustrates two matched-filter-theory based schemes for obtaining maximized and time-correlated gust-loads for a nonlinear airplane. The first scheme is computationally fast because it uses a simple one-dimensional search procedure to obtain its answers. The second scheme is computationally slow because it uses a more complex multidimensional search procedure to obtain its answers, but it consistently provides slightly higher maximum loads than the first scheme. Both schemes are illustrated with numerical examples involving a nonlinear control system.
Optimal sample sizes for the design of reliability studies: power consideration.
Shieh, Gwowen
2014-09-01
Intraclass correlation coefficients are used extensively to measure the reliability or degree of resemblance among group members in multilevel research. This study concerns the problem of the necessary sample size to ensure adequate statistical power for hypothesis tests concerning the intraclass correlation coefficient in the one-way random-effects model. In view of the incomplete and problematic numerical results in the literature, the approximate sample size formula constructed from Fisher's transformation is reevaluated and compared with an exact approach across a wide range of model configurations. These comprehensive examinations showed that the Fisher transformation method is appropriate only under limited circumstances, and therefore it is not recommended as a general method in practice. For advance design planning of reliability studies, the exact sample size procedures are fully described and illustrated for various allocation and cost schemes. Corresponding computer programs are also developed to implement the suggested algorithms.
Perthold, Jan Walther; Oostenbrink, Chris
2018-05-17
Enveloping distribution sampling (EDS) is an efficient approach to calculate multiple free-energy differences from a single molecular dynamics (MD) simulation. However, the construction of an appropriate reference-state Hamiltonian that samples all states efficiently is not straightforward. We propose a novel approach for the construction of the EDS reference-state Hamiltonian, related to a previously described procedure to smoothen energy landscapes. In contrast to previously suggested EDS approaches, our reference-state Hamiltonian preserves local energy minima of the combined end-states. Moreover, we propose an intuitive, robust and efficient parameter optimization scheme to tune EDS Hamiltonian parameters. We demonstrate the proposed method with established and novel test systems and conclude that our approach allows for the automated calculation of multiple free-energy differences from a single simulation. Accelerated EDS promises to be a robust and user-friendly method to compute free-energy differences based on solid statistical mechanics.
DeGregorio, Nicole; Iyengar, Srinivasan S
2018-01-09
We present two sampling measures to gauge critical regions of potential energy surfaces. These sampling measures employ (a) the instantaneous quantum wavepacket density, an approximation to the (b) potential surface, its (c) gradients, and (d) a Shannon information theory based expression that estimates the local entropy associated with the quantum wavepacket. These four criteria together enable a directed sampling of potential surfaces that appears to correctly describe the local oscillation frequencies, or the local Nyquist frequency, of a potential surface. The sampling functions are then utilized to derive a tessellation scheme that discretizes the multidimensional space to enable efficient sampling of potential surfaces. The sampled potential surface is then combined with four different interpolation procedures, namely, (a) local Hermite curve interpolation, (b) low-pass filtered Lagrange interpolation, (c) the monomial symmetrization approximation (MSA) developed by Bowman and co-workers, and (d) a modified Shepard algorithm. The sampling procedure and the fitting schemes are used to compute (a) potential surfaces in highly anharmonic hydrogen-bonded systems and (b) study hydrogen-transfer reactions in biogenic volatile organic compounds (isoprene) where the transferring hydrogen atom is found to demonstrate critical quantum nuclear effects. In the case of isoprene, the algorithm discussed here is used to derive multidimensional potential surfaces along a hydrogen-transfer reaction path to gauge the effect of quantum-nuclear degrees of freedom on the hydrogen-transfer process. Based on the decreased computational effort, facilitated by the optimal sampling of the potential surfaces through the use of sampling functions discussed here, and the accuracy of the associated potential surfaces, we believe the method will find great utility in the study of quantum nuclear dynamics problems, of which application to hydrogen-transfer reactions and hydrogen-bonded systems is demonstrated here.
Rapid evaluation of high-performance systems
NASA Astrophysics Data System (ADS)
Forbes, G. W.; Ruoff, J.
2017-11-01
System assessment for design often involves averages, such as rms wavefront error, that are estimated by ray tracing through a sample of points within the pupil. Novel general-purpose sampling and weighting schemes are presented and it is also shown that optical design can benefit from tailored versions of these schemes. It turns out that the type of Gaussian quadrature that has long been recognized for efficiency in this domain requires about 40-50% more ray tracing to attain comparable accuracy to generic versions of the new schemes. Even greater efficiency gains can be won, however, by tailoring such sampling schemes to the optical context where azimuthal variation in the wavefront is generally weaker than the radial variation. These new schemes are special cases of what is known in the mathematical world as cubature. Our initial results also led to the consideration of simpler sampling configurations that approximate the newfound cubature schemes. We report on the practical application of a selection of such schemes and make observations that aid in the discovery of novel cubature schemes relevant to optical design of systems with circular pupils.
Design of a Variational Multiscale Method for Turbulent Compressible Flows
NASA Technical Reports Server (NTRS)
Diosady, Laslo Tibor; Murman, Scott M.
2013-01-01
A spectral-element framework is presented for the simulation of subsonic compressible high-Reynolds-number flows. The focus of the work is maximizing the efficiency of the computational schemes to enable unsteady simulations with a large number of spatial and temporal degrees of freedom. A collocation scheme is combined with optimized computational kernels to provide a residual evaluation with computational cost independent of order of accuracy up to 16th order. The optimized residual routines are used to develop a low-memory implicit scheme based on a matrix-free Newton-Krylov method. A preconditioner based on the finite-difference diagonalized ADI scheme is developed which maintains the low memory of the matrix-free implicit solver, while providing improved convergence properties. Emphasis on low memory usage throughout the solver development is leveraged to implement a coupled space-time DG solver which may offer further efficiency gains through adaptivity in both space and time.
Optimal control of large space structures via generalized inverse matrix
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Fang, Xiaowen
1987-01-01
Independent Modal Space Control (IMSC) is a control scheme that decouples the space structure into n independent second-order subsystems according to n controlled modes and controls each mode independently. It is well-known that the IMSC eliminates control and observation spillover caused when the conventional coupled modal control scheme is employed. The independent control of each mode requires that the number of actuators be equal to the number of modelled modes, which is very high for a faithful modeling of large space structures. A control scheme is proposed that allows one to use a reduced number of actuators to control all modeled modes suboptimally. In particular, the method of generalized inverse matrices is employed to implement the actuators such that the eigenvalues of the closed-loop system are as closed as possible to those specified by the optimal IMSC. Computer simulation of the proposed control scheme on a simply supported beam is given.
A Suboptimal Power-Saving Transmission Scheme in Multiple Component Carrier Networks
NASA Astrophysics Data System (ADS)
Chung, Yao-Liang; Tsai, Zsehong
Power consumption due to transmissions in base stations (BSs) has been a major contributor to communication-related CO2 emissions. A power optimization model is developed in this study with respect to radio resource allocation and activation in a multiple Component Carrier (CC) environment. We formulate and solve the power-minimization problem of the BS transceivers for multiple-CC networks with carrier aggregation, while maintaining the overall system and respective users' utilities above minimum levels. The optimized power consumption based on this model can be viewed as a lower bound of that of other algorithms employed in practice. A suboptimal scheme with low computation complexity is proposed. Numerical results show that the power consumption of our scheme is much better than that of the conventional one in which all CCs are always active, if both schemes maintain the same required utilities.
A Novel, Simplified Scheme for Plastics Identification: "JCE" Classroom Activity 104
ERIC Educational Resources Information Center
Harris, Mary E.; Walker, Barbara
2010-01-01
In this Activity, students identify samples of seven types of recyclable plastic by using a flowchart scheme. The flowchart procedure includes making density comparisons of the plastic samples in water and alcohol and observing physical changes of plastic samples subjected to boiling water temperatures and exposure to acetone. This scheme is…
Parametric optimization of optical signal detectors employing the direct photodetection scheme
NASA Astrophysics Data System (ADS)
Kirakosiants, V. E.; Loginov, V. A.
1984-08-01
The problem of optimization of the optical signal detection scheme parameters is addressed using the concept of a receiver with direct photodetection. An expression is derived which accurately approximates the field of view (FOV) values obtained by a direct computer minimization of the probability of missing a signal; optimum values of the receiver FOV were found for different atmospheric conditions characterized by the number of coherence spots and the intensity fluctuations of a plane wave. It is further pointed out that the criterion presented can be possibly used for parametric optimization of detectors operating in accordance with the Neumann-Pearson criterion.
Linear triangular optimization technique and pricing scheme in residential energy management systems
NASA Astrophysics Data System (ADS)
Anees, Amir; Hussain, Iqtadar; AlKhaldi, Ali Hussain; Aslam, Muhammad
2018-06-01
This paper presents a new linear optimization algorithm for power scheduling of electric appliances. The proposed system is applied in a smart home community, in which community controller acts as a virtual distribution company for the end consumers. We also present a pricing scheme between community controller and its residential users based on real-time pricing and likely block rates. The results of the proposed optimization algorithm demonstrate that by applying the anticipated technique, not only end users can minimise the consumption cost, but it can also reduce the power peak to an average ratio which will be beneficial for the utilities as well.
2015-03-01
2.5.5 Availability Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.6 Simulation Environments...routing scheme can prove problematic. Two prominent proactive protocols, 7 Destination-Sequenced Distance-Vector (DSDV) and Optimized Link State...distributed file management systems such as Tahoe- LAFS as part of its replication scheme . Altman and De Pellegrini [4] examine the impact of FEC and
NASA Astrophysics Data System (ADS)
Yin, Xunqiang; Shi, Junqiang; Qiao, Fangli
2018-05-01
Due to the high cost of ocean observation system, the scientific design of observation network becomes much important. The current network of the high frequency radar system in the Gulf of Thailand has been studied using a three-dimensional coastal ocean model. At first, the observations from current radars have been assimilated into this coastal model and the forecast results have improved due to the data assimilation. But the results also show that further optimization of the observing network is necessary. And then, a series of experiments were carried out to assess the performance of the existing high frequency ground wave radar surface current observation system. The simulated surface current data in three regions were assimilated sequentially using an efficient ensemble Kalman filter data assimilation scheme. The experimental results showed that the coastal surface current observation system plays a positive role in improving the numerical simulation of the currents. Compared with the control experiment without assimilation, the simulation precision of surface and subsurface current had been improved after assimilated the surface currents observed at current networks. However, the improvement for three observing regions was quite different and current observing network in the Gulf of Thailand is not effective and a further optimization is required. Based on these evaluations, a manual scheme has been designed by discarding the redundant and inefficient locations and adding new stations where the performance after data assimilation is still low. For comparison, an objective scheme based on the idea of data assimilation has been obtained. Results show that all the two schemes of observing network perform better than the original network and optimal scheme-based data assimilation is much superior to the manual scheme that based on the evaluation of original observing network in the Gulf of Thailand. The distributions of the optimal network of radars could be a useful guidance for future design of observing system in this region.
A Secure and Privacy-Preserving Navigation Scheme Using Spatial Crowdsourcing in Fog-Based VANETs
Wang, Lingling; Liu, Guozhu; Sun, Lijun
2017-01-01
Fog-based VANETs (Vehicular ad hoc networks) is a new paradigm of vehicular ad hoc networks with the advantages of both vehicular cloud and fog computing. Real-time navigation schemes based on fog-based VANETs can promote the scheme performance efficiently. In this paper, we propose a secure and privacy-preserving navigation scheme by using vehicular spatial crowdsourcing based on fog-based VANETs. Fog nodes are used to generate and release the crowdsourcing tasks, and cooperatively find the optimal route according to the real-time traffic information collected by vehicles in their coverage areas. Meanwhile, the vehicle performing the crowdsourcing task can get a reasonable reward. The querying vehicle can retrieve the navigation results from each fog node successively when entering its coverage area, and follow the optimal route to the next fog node until it reaches the desired destination. Our scheme fulfills the security and privacy requirements of authentication, confidentiality and conditional privacy preservation. Some cryptographic primitives, including the Elgamal encryption algorithm, AES, randomized anonymous credentials and group signatures, are adopted to achieve this goal. Finally, we analyze the security and the efficiency of the proposed scheme. PMID:28338620
A Secure and Privacy-Preserving Navigation Scheme Using Spatial Crowdsourcing in Fog-Based VANETs.
Wang, Lingling; Liu, Guozhu; Sun, Lijun
2017-03-24
Fog-based VANETs (Vehicular ad hoc networks) is a new paradigm of vehicular ad hoc networks with the advantages of both vehicular cloud and fog computing. Real-time navigation schemes based on fog-based VANETs can promote the scheme performance efficiently. In this paper, we propose a secure and privacy-preserving navigation scheme by using vehicular spatial crowdsourcing based on fog-based VANETs. Fog nodes are used to generate and release the crowdsourcing tasks, and cooperatively find the optimal route according to the real-time traffic information collected by vehicles in their coverage areas. Meanwhile, the vehicle performing the crowdsourcing task can get a reasonable reward. The querying vehicle can retrieve the navigation results from each fog node successively when entering its coverage area, and follow the optimal route to the next fog node until it reaches the desired destination. Our scheme fulfills the security and privacy requirements of authentication, confidentiality and conditional privacy preservation. Some cryptographic primitives, including the Elgamal encryption algorithm, AES, randomized anonymous credentials and group signatures, are adopted to achieve this goal. Finally, we analyze the security and the efficiency of the proposed scheme.
NASA Astrophysics Data System (ADS)
Kavetski, Dmitri; Clark, Martyn P.
2010-10-01
Despite the widespread use of conceptual hydrological models in environmental research and operations, they remain frequently implemented using numerically unreliable methods. This paper considers the impact of the time stepping scheme on model analysis (sensitivity analysis, parameter optimization, and Markov chain Monte Carlo-based uncertainty estimation) and prediction. It builds on the companion paper (Clark and Kavetski, 2010), which focused on numerical accuracy, fidelity, and computational efficiency. Empirical and theoretical analysis of eight distinct time stepping schemes for six different hydrological models in 13 diverse basins demonstrates several critical conclusions. (1) Unreliable time stepping schemes, in particular, fixed-step explicit methods, suffer from troublesome numerical artifacts that severely deform the objective function of the model. These deformations are not rare isolated instances but can arise in any model structure, in any catchment, and under common hydroclimatic conditions. (2) Sensitivity analysis can be severely contaminated by numerical errors, often to the extent that it becomes dominated by the sensitivity of truncation errors rather than the model equations. (3) Robust time stepping schemes generally produce "better behaved" objective functions, free of spurious local optima, and with sufficient numerical continuity to permit parameter optimization using efficient quasi Newton methods. When implemented within a multistart framework, modern Newton-type optimizers are robust even when started far from the optima and provide valuable diagnostic insights not directly available from evolutionary global optimizers. (4) Unreliable time stepping schemes lead to inconsistent and biased inferences of the model parameters and internal states. (5) Even when interactions between hydrological parameters and numerical errors provide "the right result for the wrong reason" and the calibrated model performance appears adequate, unreliable time stepping schemes make the model unnecessarily fragile in predictive mode, undermining validation assessments and operational use. Erroneous or misleading conclusions of model analysis and prediction arising from numerical artifacts in hydrological models are intolerable, especially given that robust numerics are accepted as mainstream in other areas of science and engineering. We hope that the vivid empirical findings will encourage the conceptual hydrological community to close its Pandora's box of numerical problems, paving the way for more meaningful model application and interpretation.
Yang, Ben; Zhang, Yaocun; Qian, Yun; ...
2014-03-26
Reasonably modeling the magnitude, south-north gradient and seasonal propagation of precipitation associated with the East Asian Summer Monsoon (EASM) is a challenging task in the climate community. In this study we calibrate five key parameters in the Kain-Fritsch convection scheme in the WRF model using an efficient importance-sampling algorithm to improve the EASM simulation. We also examine the impacts of the improved EASM precipitation on other physical process. Our results suggest similar model sensitivity and values of optimized parameters across years with different EASM intensities. By applying the optimal parameters, the simulated precipitation and surface energy features are generally improved.more » The parameters related to downdraft, entrainment coefficients and CAPE consumption time (CCT) can most sensitively affect the precipitation and atmospheric features. Larger downdraft coefficient or CCT decrease the heavy rainfall frequency, while larger entrainment coefficient delays the convection development but build up more potential for heavy rainfall events, causing a possible northward shift of rainfall distribution. The CCT is the most sensitive parameter over wet region and the downdraft parameter plays more important roles over drier northern region. Long-term simulations confirm that by using the optimized parameters the precipitation distributions are better simulated in both weak and strong EASM years. Due to more reasonable simulated precipitation condensational heating, the monsoon circulations are also improved. Lastly, by using the optimized parameters the biases in the retreating (beginning) of Mei-yu (northern China rainfall) simulated by the standard WRF model are evidently reduced and the seasonal and sub-seasonal variations of the monsoon precipitation are remarkably improved.« less
Optimized two- and three-colour laser pulses for the intense terahertz wave generation
NASA Astrophysics Data System (ADS)
Zhang, Lei; Wang, Guo-Li; Zhou, Xiao-Xin
2016-11-01
Based on the photocurrent model, we perform a theoretical study on the optimization of terahertz (THz) wave emission from argon gas irradiated by the two- and three-colour laser fields. To obtain stronger THz radiation for the given conditions, a genetic algorithm method is applied to search for the optimum laser parameters. For the two-colour field, our optimizations reveal two types of optimal scheme, and each one dominates the THz generation in different regions of intensity ratio for a given total laser intensity. One scheme is the combination of a fundamental laser pulse and its second harmonic, while the other is the fundamental pulse with its fourth harmonic. For each scheme, the optimal intensity ratio and phase delay are obtained. For the three-colour case, our optimization shows that the excellent waveform for the strongest THz radiation is composed of a fundamental laser pulse, and its second, third harmonics, with appropriate intensity ratio and carrier-envelope phase. Such a 3-colour field can generate strong THz radiation comparable with a 10-colour sawtooth wave [Martínez et al., Phys. Rev. Lett. 114, 183901 (2015)]. The physical mechanisms for the enhancement of THz wave emission in gases are also discussed in detail. Our results give helpful guidance for intense THz generation with tabletop femtosecond laser device in experiment.
Multi-GPU hybrid programming accelerated three-dimensional phase-field model in binary alloy
NASA Astrophysics Data System (ADS)
Zhu, Changsheng; Liu, Jieqiong; Zhu, Mingfang; Feng, Li
2018-03-01
In the process of dendritic growth simulation, the computational efficiency and the problem scales have extremely important influence on simulation efficiency of three-dimensional phase-field model. Thus, seeking for high performance calculation method to improve the computational efficiency and to expand the problem scales has a great significance to the research of microstructure of the material. A high performance calculation method based on MPI+CUDA hybrid programming model is introduced. Multi-GPU is used to implement quantitative numerical simulations of three-dimensional phase-field model in binary alloy under the condition of multi-physical processes coupling. The acceleration effect of different GPU nodes on different calculation scales is explored. On the foundation of multi-GPU calculation model that has been introduced, two optimization schemes, Non-blocking communication optimization and overlap of MPI and GPU computing optimization, are proposed. The results of two optimization schemes and basic multi-GPU model are compared. The calculation results show that the use of multi-GPU calculation model can improve the computational efficiency of three-dimensional phase-field obviously, which is 13 times to single GPU, and the problem scales have been expanded to 8193. The feasibility of two optimization schemes is shown, and the overlap of MPI and GPU computing optimization has better performance, which is 1.7 times to basic multi-GPU model, when 21 GPUs are used.
The anatomy of choice: active inference and agency.
Friston, Karl; Schwartenbeck, Philipp; Fitzgerald, Thomas; Moutoussis, Michael; Behrens, Timothy; Dolan, Raymond J
2013-01-01
This paper considers agency in the setting of embodied or active inference. In brief, we associate a sense of agency with prior beliefs about action and ask what sorts of beliefs underlie optimal behavior. In particular, we consider prior beliefs that action minimizes the Kullback-Leibler (KL) divergence between desired states and attainable states in the future. This allows one to formulate bounded rationality as approximate Bayesian inference that optimizes a free energy bound on model evidence. We show that constructs like expected utility, exploration bonuses, softmax choice rules and optimism bias emerge as natural consequences of this formulation. Previous accounts of active inference have focused on predictive coding and Bayesian filtering schemes for minimizing free energy. Here, we consider variational Bayes as an alternative scheme that provides formal constraints on the computational anatomy of inference and action-constraints that are remarkably consistent with neuroanatomy. Furthermore, this scheme contextualizes optimal decision theory and economic (utilitarian) formulations as pure inference problems. For example, expected utility theory emerges as a special case of free energy minimization, where the sensitivity or inverse temperature (of softmax functions and quantal response equilibria) has a unique and Bayes-optimal solution-that minimizes free energy. This sensitivity corresponds to the precision of beliefs about behavior, such that attainable goals are afforded a higher precision or confidence. In turn, this means that optimal behavior entails a representation of confidence about outcomes that are under an agent's control.
Evaluation of world's largest social welfare scheme: An assessment using non-parametric approach.
Singh, Sanjeet
2016-08-01
Mahatma Gandhi National Rural Employment Guarantee Act (MGNREGA) is the world's largest social welfare scheme in India for the poverty alleviation through rural employment generation. This paper aims to evaluate and rank the performance of the states in India under MGNREGA scheme. A non-parametric approach, Data Envelopment Analysis (DEA) is used to calculate the overall technical, pure technical, and scale efficiencies of states in India. The sample data is drawn from the annual official reports published by the Ministry of Rural Development, Government of India. Based on three selected input parameters (expenditure indicators) and five output parameters (employment generation indicators), I apply both input and output oriented DEA models to estimate how well the states utilize their resources and generate outputs during the financial year 2013-14. The relative performance evaluation has been made under the assumption of constant returns and also under variable returns to scale to assess the impact of scale on performance. The results indicate that the main source of inefficiency is both technical and managerial practices adopted. 11 states are overall technically efficient and operate at the optimum scale whereas 18 states are pure technical or managerially efficient. It has been found that for some states it necessary to alter scheme size to perform at par with the best performing states. For inefficient states optimal input and output targets along with the resource savings and output gains are calculated. Analysis shows that if all inefficient states operate at optimal input and output levels, on an average 17.89% of total expenditure and a total amount of $780million could have been saved in a single year. Most of the inefficient states perform poorly when it comes to the participation of women and disadvantaged sections (SC&ST) in the scheme. In order to catch up with the performance of best performing states, inefficient states on an average need to enhance women participation by 133%. In addition, the states are also ranked using the cross efficiency approach and results are analyzed. State of Tamil Nadu occupies the top position followed by Puducherry, Punjab, and Rajasthan in the ranking list. To the best of my knowledge, this is the first pan-India level study to evaluate and rank the performance of MGNREGA scheme quantitatively and so comprehensively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Optimization of municipal solid waste collection and transportation routes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Swapan, E-mail: swapan2009sajal@gmail.com; Bhattacharyya, Bidyut Kr., E-mail: bidyut53@yahoo.co.in
2015-09-15
Graphical abstract: Display Omitted - Highlights: • Profitable integrated solid waste management system. • Optimal municipal waste collection scheme between the sources and waste collection centres. • Optimal path calculation between waste collection centres and transfer stations. • Optimal waste routing between the transfer stations and processing plants. - Abstract: Optimization of municipal solid waste (MSW) collection and transportation through source separation becomes one of the major concerns in the MSW management system design, due to the fact that the existing MSW management systems suffer by the high collection and transportation cost. Generally, in a city different waste sources scattermore » throughout the city in heterogeneous way that increase waste collection and transportation cost in the waste management system. Therefore, a shortest waste collection and transportation strategy can effectively reduce waste collection and transportation cost. In this paper, we propose an optimal MSW collection and transportation scheme that focus on the problem of minimizing the length of each waste collection and transportation route. We first formulize the MSW collection and transportation problem into a mixed integer program. Moreover, we propose a heuristic solution for the waste collection and transportation problem that can provide an optimal way for waste collection and transportation. Extensive simulations and real testbed results show that the proposed solution can significantly improve the MSW performance. Results show that the proposed scheme is able to reduce more than 30% of the total waste collection path length.« less
Risk neutral second best toll pricing.
DOT National Transportation Integrated Search
2011-08-01
We propose a risk-neutral second best toll pricing scheme to account for the possible no uniqueness : of user equilibrium solutions. The scheme is designed to optimize for the expected objective value : as the UE solution varies within the solution s...
Multi-objective optimization of radiotherapy: distributed Q-learning and agent-based simulation
NASA Astrophysics Data System (ADS)
Jalalimanesh, Ammar; Haghighi, Hamidreza Shahabi; Ahmadi, Abbas; Hejazian, Hossein; Soltani, Madjid
2017-09-01
Radiotherapy (RT) is among the regular techniques for the treatment of cancerous tumours. Many of cancer patients are treated by this manner. Treatment planning is the most important phase in RT and it plays a key role in therapy quality achievement. As the goal of RT is to irradiate the tumour with adequately high levels of radiation while sparing neighbouring healthy tissues as much as possible, it is a multi-objective problem naturally. In this study, we propose an agent-based model of vascular tumour growth and also effects of RT. Next, we use multi-objective distributed Q-learning algorithm to find Pareto-optimal solutions for calculating RT dynamic dose. We consider multiple objectives and each group of optimizer agents attempt to optimise one of them, iteratively. At the end of each iteration, agents compromise the solutions to shape the Pareto-front of multi-objective problem. We propose a new approach by defining three schemes of treatment planning created based on different combinations of our objectives namely invasive, conservative and moderate. In invasive scheme, we enforce killing cancer cells and pay less attention about irradiation effects on normal cells. In conservative scheme, we take more care of normal cells and try to destroy cancer cells in a less stressed manner. The moderate scheme stands in between. For implementation, each of these schemes is handled by one agent in MDQ-learning algorithm and the Pareto optimal solutions are discovered by the collaboration of agents. By applying this methodology, we could reach Pareto treatment plans through building different scenarios of tumour growth and RT. The proposed multi-objective optimisation algorithm generates robust solutions and finds the best treatment plan for different conditions.
Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes
NASA Astrophysics Data System (ADS)
Don, Wai-Sun; Borges, Rafael
2013-10-01
In the reconstruction step of (2r-1) order weighted essentially non-oscillatory conservative finite difference schemes (WENO) for solving hyperbolic conservation laws, nonlinear weights αk and ωk, such as the WENO-JS weights by Jiang et al. and the WENO-Z weights by Borges et al., are designed to recover the formal (2r-1) order (optimal order) of the upwinded central finite difference scheme when the solution is sufficiently smooth. The smoothness of the solution is determined by the lower order local smoothness indicators βk in each substencil. These nonlinear weight formulations share two important free parameters in common: the power p, which controls the amount of numerical dissipation, and the sensitivity ε, which is added to βk to avoid a division by zero in the denominator of αk. However, ε also plays a role affecting the order of accuracy of WENO schemes, especially in the presence of critical points. It was recently shown that, for any design order (2r-1), ε should be of Ω(Δx2) (Ω(Δxm) means that ε⩾CΔxm for some C independent of Δx, as Δx→0) for the WENO-JS scheme to achieve the optimal order, regardless of critical points. In this paper, we derive an alternative proof of the sufficient condition using special properties of βk. Moreover, it is unknown if the WENO-Z scheme should obey the same condition on ε. Here, using same special properties of βk, we prove that in fact the optimal order of the WENO-Z scheme can be guaranteed with a much weaker condition ε=Ω(Δxm), where m(r,p)⩾2 is the optimal sensitivity order, regardless of critical points. Both theoretical results are confirmed numerically on smooth functions with arbitrary order of critical points. This is a highly desirable feature, as illustrated with the Lax problem and the Mach 3 shock-density wave interaction of one dimensional Euler equations, for a smaller ε allows a better essentially non-oscillatory shock capturing as it does not over-dominate over the size of βk. We also show that numerical oscillations can be further attenuated by increasing the power parameter 2⩽p⩽r-1, at the cost of increased numerical dissipation. Compact formulas of βk for WENO schemes are also presented.
Nangia, Shikha; Jasper, Ahren W; Miller, Thomas F; Truhlar, Donald G
2004-02-22
The most widely used algorithm for Monte Carlo sampling of electronic transitions in trajectory surface hopping (TSH) calculations is the so-called anteater algorithm, which is inefficient for sampling low-probability nonadiabatic events. We present a new sampling scheme (called the army ants algorithm) for carrying out TSH calculations that is applicable to systems with any strength of coupling. The army ants algorithm is a form of rare event sampling whose efficiency is controlled by an input parameter. By choosing a suitable value of the input parameter the army ants algorithm can be reduced to the anteater algorithm (which is efficient for strongly coupled cases), and by optimizing the parameter the army ants algorithm may be efficiently applied to systems with low-probability events. To demonstrate the efficiency of the army ants algorithm, we performed atom-diatom scattering calculations on a model system involving weakly coupled electronic states. Fully converged quantum mechanical calculations were performed, and the probabilities for nonadiabatic reaction and nonreactive deexcitation (quenching) were found to be on the order of 10(-8). For such low-probability events the anteater sampling scheme requires a large number of trajectories ( approximately 10(10)) to obtain good statistics and converged semiclassical results. In contrast by using the new army ants algorithm converged results were obtained by running 10(5) trajectories. Furthermore, the results were found to be in excellent agreement with the quantum mechanical results. Sampling errors were estimated using the bootstrap method, which is validated for use with the army ants algorithm. (c) 2004 American Institute of Physics.
Single-step CE for miniaturized and easy-to-use system.
Ono, Koichi; Kaneda, Shohei; Fujii, Teruo
2013-03-01
We developed a novel single-step capillary electrophoresis (SSCE) scheme for miniaturized and easy to use system by using a microchannel chip, which was made from the hydrophilic material polymethyl methacrylate (PMMA), equipped with a capillary stop valve. Taking the surface tension property of liquids into consideration, the capillary effect was used to introduce liquids and control capillary stop valves in a partial barrier structure in the wall of the microchannel. Through the combined action of stop valves and air vents, both sample plug formation for electrophoresis and sample injection into a separation channel were successfully performed in a single step. To optimize SSCE, different stop valve structures were evaluated using actual microchannel chips and the finite element method with the level set method. A partial barrier structure at the bottom of the channel functioned efficiently as a stop valve. The stability of stop valve was confirmed by a shock test, which was performed by dropping the microchannel chip to a floor. Sample plug deformation could be reduced by minimizing the size of the side partial barrier. By dissolving hydroxyl ethyl cellulose and using it as the sample solution, the EOF and adsorption of the sample into the PMMA microchannel were successfully reduced. Using this method, a 100-bp DNA ladder was concentrated; good separation was observed within 1 min. At a separation length of 5 mm, the signal was approximately 20-fold higher than a signal of original sample solution by field-amplified sample stacking effect. All operations, including liquid introduction and sample separation, can be completed within 2 min by using the SSCE scheme. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A hybrid framework for coupling arbitrary summation-by-parts schemes on general meshes
NASA Astrophysics Data System (ADS)
Lundquist, Tomas; Malan, Arnaud; Nordström, Jan
2018-06-01
We develop a general interface procedure to couple both structured and unstructured parts of a hybrid mesh in a non-collocated, multi-block fashion. The target is to gain optimal computational efficiency in fluid dynamics simulations involving complex geometries. While guaranteeing stability, the proposed procedure is optimized for accuracy and requires minimal algorithmic modifications to already existing schemes. Initial numerical investigations confirm considerable efficiency gains compared to non-hybrid calculations of up to an order of magnitude.
André, Nuno Sequeira; Habel, Kai; Louchet, Hadrien; Richter, André
2013-11-04
We report experimental validations of an adaptive 2nd order Volterra equalization scheme for cost effective IMDD OFDM systems. This equalization scheme was applied to both uplink and downlink transmission. Downlink settings were optimized for maximum bitrate where we achieved 34 Gb/s over 10 km of SSMF using an EML with 10 GHz bandwidth. For the uplink, maximum reach was optimized achieving 14 Gb/s using a low-cost DML with 2.5 GHz bandwidth.
Investigation of the influence of sampling schemes on quantitative dynamic fluorescence imaging
Dai, Yunpeng; Chen, Xueli; Yin, Jipeng; Wang, Guodong; Wang, Bo; Zhan, Yonghua; Nie, Yongzhan; Wu, Kaichun; Liang, Jimin
2018-01-01
Dynamic optical data from a series of sampling intervals can be used for quantitative analysis to obtain meaningful kinetic parameters of probe in vivo. The sampling schemes may affect the quantification results of dynamic fluorescence imaging. Here, we investigate the influence of different sampling schemes on the quantification of binding potential (BP) with theoretically simulated and experimentally measured data. Three groups of sampling schemes are investigated including the sampling starting point, sampling sparsity, and sampling uniformity. In the investigation of the influence of the sampling starting point, we further summarize two cases by considering the missing timing sequence between the probe injection and sampling starting time. Results show that the mean value of BP exhibits an obvious growth trend with an increase in the delay of the sampling starting point, and has a strong correlation with the sampling sparsity. The growth trend is much more obvious if throwing the missing timing sequence. The standard deviation of BP is inversely related to the sampling sparsity, and independent of the sampling uniformity and the delay of sampling starting time. Moreover, the mean value of BP obtained by uniform sampling is significantly higher than that by using the non-uniform sampling. Our results collectively suggest that a suitable sampling scheme can help compartmental modeling of dynamic fluorescence imaging provide more accurate results and simpler operations. PMID:29675325
Quantum Communication Using Coherent Rejection Sampling.
Anshu, Anurag; Devabathini, Vamsi Krishna; Jain, Rahul
2017-09-22
Compression of a message up to the information it carries is key to many tasks involved in classical and quantum information theory. Schumacher [B. Schumacher, Phys. Rev. A 51, 2738 (1995)PLRAAN1050-294710.1103/PhysRevA.51.2738] provided one of the first quantum compression schemes and several more general schemes have been developed ever since [M. Horodecki, J. Oppenheim, and A. Winter, Commun. Math. Phys. 269, 107 (2007); CMPHAY0010-361610.1007/s00220-006-0118-xI. Devetak and J. Yard, Phys. Rev. Lett. 100, 230501 (2008); PRLTAO0031-900710.1103/PhysRevLett.100.230501A. Abeyesinghe, I. Devetak, P. Hayden, and A. Winter, Proc. R. Soc. A 465, 2537 (2009)PRLAAZ1364-502110.1098/rspa.2009.0202]. However, the one-shot characterization of these quantum tasks is still under development, and often lacks a direct connection with analogous classical tasks. Here we show a new technique for the compression of quantum messages with the aid of entanglement. We devise a new tool that we call the convex split lemma, which is a coherent quantum analogue of the widely used rejection sampling procedure in classical communication protocols. As a consequence, we exhibit new explicit protocols with tight communication cost for quantum state merging, quantum state splitting, and quantum state redistribution (up to a certain optimization in the latter case). We also present a port-based teleportation scheme which uses a fewer number of ports in the presence of information about input.
Su, Cheng-Kuan; Tseng, Po-Jen; Lin, Meng-Han; Chiu, Hsien-Ting; del Vall, Andrea; Huang, Yu-Fen; Sun, Yuh-Chang
2015-07-10
The extravasation of administered nano-drug carriers is a critical process for determining their distributions in target and non-target organs, as well as their pharmaceutical efficacies and side effects. To evaluate the extravasation behavior of gold nanoparticles (AuNPs), currently the most popular drug delivery system, in a mouse tumor model, in this study we employed push-pull perfusion (PPP) as a means of continuously sampling tumor extracellular AuNPs. To facilitate quantification of the extravasated AuNPs through inductively coupled plasma mass spectrometry, we also developed a novel online open-tubular fractionation scheme to allow interference-free determination of the sampled extracellular AuNPs from the coexisting biological matrix. After optimizing the flow-through volume and flow rate of this proposed fractionation scheme, we found that (i) the system's temporal resolution was 7.5h(-1), (ii) the stability presented by the coefficient of variation was less than 10% (6-h continuous measurement), and (iii) the detection limits for the administered AuNPs were in the range 0.057-0.068μgL(-1). Following an intravenous dosage of AuNPs (0.3mgkg(-1) body weight), in vivo acquired profiles indicated that the pegylated AuNPs (PEG-AuNPs) had greater tendency toward extravasating into the tumor extracellular space. We also observed that the accumulation of nanoparticles in the whole tumor tissues was higher for PEG-AuNPs than for non-pegylated ones. Overall, pegylation appears to promote the extravasation and accumulation of AuNPs for nano-drug delivery applications. Copyright © 2015 Elsevier B.V. All rights reserved.
An evaluation of soil sampling for 137Cs using various field-sampling volumes.
Nyhan, J W; White, G C; Schofield, T G; Trujillo, G
1983-05-01
The sediments from a liquid effluent receiving area at the Los Alamos National Laboratory and soils from an intensive study area in the fallout pathway of Trinity were sampled for 137Cs using 25-, 500-, 2500- and 12,500-cm3 field sampling volumes. A highly replicated sampling program was used to determine mean concentrations and inventories of 137Cs at each site, as well as estimates of spatial, aliquoting, and counting variance components of the radionuclide data. The sampling methods were also analyzed as a function of soil size fractions collected in each field sampling volume and of the total cost of the program for a given variation in the radionuclide survey results. Coefficients of variation (CV) of 137Cs inventory estimates ranged from 0.063 to 0.14 for Mortandad Canyon sediments, whereas CV values for Trinity soils were observed from 0.38 to 0.57. Spatial variance components of 137Cs concentration data were usually found to be larger than either the aliquoting or counting variance estimates and were inversely related to field sampling volume at the Trinity intensive site. Subsequent optimization studies of the sampling schemes demonstrated that each aliquot should be counted once, and that only 2-4 aliquots out of as many as 30 collected need be assayed for 137Cs. The optimization studies showed that as sample costs increased to 45 man-hours of labor per sample, the variance of the mean 137Cs concentration decreased dramatically, but decreased very little with additional labor.
Furlanello, Cesare; Serafini, Maria; Merler, Stefano; Jurman, Giuseppe
2003-11-06
We describe the E-RFE method for gene ranking, which is useful for the identification of markers in the predictive classification of array data. The method supports a practical modeling scheme designed to avoid the construction of classification rules based on the selection of too small gene subsets (an effect known as the selection bias, in which the estimated predictive errors are too optimistic due to testing on samples already considered in the feature selection process). With E-RFE, we speed up the recursive feature elimination (RFE) with SVM classifiers by eliminating chunks of uninteresting genes using an entropy measure of the SVM weights distribution. An optimal subset of genes is selected according to a two-strata model evaluation procedure: modeling is replicated by an external stratified-partition resampling scheme, and, within each run, an internal K-fold cross-validation is used for E-RFE ranking. Also, the optimal number of genes can be estimated according to the saturation of Zipf's law profiles. Without a decrease of classification accuracy, E-RFE allows a speed-up factor of 100 with respect to standard RFE, while improving on alternative parametric RFE reduction strategies. Thus, a process for gene selection and error estimation is made practical, ensuring control of the selection bias, and providing additional diagnostic indicators of gene importance.
NASA Astrophysics Data System (ADS)
Pansing, Craig W.; Hua, Hong; Rolland, Jannick P.
2005-08-01
Head-mounted display (HMD) technologies find a variety of applications in the field of 3D virtual and augmented environments, 3D scientific visualization, as well as wearable displays. While most of the current HMDs use head pose to approximate line of sight, we propose to investigate approaches and designs for integrating eye tracking capability into HMDs from a low-level system design perspective and to explore schemes for optimizing system performance. In this paper, we particularly propose to optimize the illumination scheme, which is a critical component in designing an eye tracking-HMD (ET-HMD) integrated system. An optimal design can improve not only eye tracking accuracy, but also robustness. Using LightTools, we present the simulation of a complete eye illumination and imaging system using an eye model along with multiple near infrared LED (IRLED) illuminators and imaging optics, showing the irradiance variation of the different eye structures. The simulation of dark pupil effects along with multiple 1st-order Purkinje images will be presented. A parametric analysis is performed to investigate the relationships between the IRLED configurations and the irradiance distribution at the eye, and a set of optimal configuration parameters is recommended. The analysis will be further refined by actual eye image acquisition and processing.
Törnros, Tobias; Dorn, Helen; Reichert, Markus; Ebner-Priemer, Ulrich; Salize, Hans-Joachim; Tost, Heike; Meyer-Lindenberg, Andreas; Zipf, Alexander
2016-11-21
Self-reporting is a well-established approach within the medical and psychological sciences. In order to avoid recall bias, i.e. past events being remembered inaccurately, the reports can be filled out on a smartphone in real-time and in the natural environment. This is often referred to as ambulatory assessment and the reports are usually triggered at regular time intervals. With this sampling scheme, however, rare events (e.g. a visit to a park or recreation area) are likely to be missed. When addressing the correlation between mood and the environment, it may therefore be beneficial to include participant locations within the ambulatory assessment sampling scheme. Based on the geographical coordinates, the database query system then decides if a self-report should be triggered or not. We simulated four different ambulatory assessment sampling schemes based on movement data (coordinates by minute) from 143 voluntary participants tracked for seven consecutive days. Two location-based sampling schemes incorporating the environmental characteristics (land use and population density) at each participant's location were introduced and compared to a time-based sampling scheme triggering a report on the hour as well as to a sampling scheme incorporating physical activity. We show that location-based sampling schemes trigger a report less often, but we obtain more unique trigger positions and a greater spatial spread in comparison to sampling strategies based on time and distance. Additionally, the location-based methods trigger significantly more often at rarely visited types of land use and less often outside the study region where no underlying environmental data are available.
[The utility boiler low NOx combustion optimization based on ANN and simulated annealing algorithm].
Zhou, Hao; Qian, Xinping; Zheng, Ligang; Weng, Anxin; Cen, Kefa
2003-11-01
With the developing restrict environmental protection demand, more attention was paid on the low NOx combustion optimizing technology for its cheap and easy property. In this work, field experiments on the NOx emissions characteristics of a 600 MW coal-fired boiler were carried out, on the base of the artificial neural network (ANN) modeling, the simulated annealing (SA) algorithm was employed to optimize the boiler combustion to achieve a low NOx emissions concentration, and the combustion scheme was obtained. Two sets of SA parameters were adopted to find a better SA scheme, the result show that the parameters of T0 = 50 K, alpha = 0.6 can lead to a better optimizing process. This work can give the foundation of the boiler low NOx combustion on-line control technology.
A Scheme to Optimize Flow Routing and Polling Switch Selection of Software Defined Networks.
Chen, Huan; Li, Lemin; Ren, Jing; Wang, Yang; Zhao, Yangming; Wang, Xiong; Wang, Sheng; Xu, Shizhong
2015-01-01
This paper aims at minimizing the communication cost for collecting flow information in Software Defined Networks (SDN). Since flow-based information collecting method requires too much communication cost, and switch-based method proposed recently cannot benefit from controlling flow routing, jointly optimize flow routing and polling switch selection is proposed to reduce the communication cost. To this end, joint optimization problem is formulated as an Integer Linear Programming (ILP) model firstly. Since the ILP model is intractable in large size network, we also design an optimal algorithm for the multi-rooted tree topology and an efficient heuristic algorithm for general topology. According to extensive simulations, it is found that our method can save up to 55.76% communication cost compared with the state-of-the-art switch-based scheme.
Ensemble Manifold Rank Preserving for Acceleration-Based Human Activity Recognition.
Tao, Dapeng; Jin, Lianwen; Yuan, Yuan; Xue, Yang
2016-06-01
With the rapid development of mobile devices and pervasive computing technologies, acceleration-based human activity recognition, a difficult yet essential problem in mobile apps, has received intensive attention recently. Different acceleration signals for representing different activities or even a same activity have different attributes, which causes troubles in normalizing the signals. We thus cannot directly compare these signals with each other, because they are embedded in a nonmetric space. Therefore, we present a nonmetric scheme that retains discriminative and robust frequency domain information by developing a novel ensemble manifold rank preserving (EMRP) algorithm. EMRP simultaneously considers three aspects: 1) it encodes the local geometry using the ranking order information of intraclass samples distributed on local patches; 2) it keeps the discriminative information by maximizing the margin between samples of different classes; and 3) it finds the optimal linear combination of the alignment matrices to approximate the intrinsic manifold lied in the data. Experiments are conducted on the South China University of Technology naturalistic 3-D acceleration-based activity dataset and the naturalistic mobile-devices based human activity dataset to demonstrate the robustness and effectiveness of the new nonmetric scheme for acceleration-based human activity recognition.
Methods of Reverberation Mapping. I. Time-lag Determination by Measures of Randomness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chelouche, Doron; Pozo-Nuñez, Francisco; Zucker, Shay, E-mail: doron@sci.haifa.ac.il, E-mail: francisco.pozon@gmail.com, E-mail: shayz@post.tau.ac.il
A class of methods for measuring time delays between astronomical time series is introduced in the context of quasar reverberation mapping, which is based on measures of randomness or complexity of the data. Several distinct statistical estimators are considered that do not rely on polynomial interpolations of the light curves nor on their stochastic modeling, and do not require binning in correlation space. Methods based on von Neumann’s mean-square successive-difference estimator are found to be superior to those using other estimators. An optimized von Neumann scheme is formulated, which better handles sparsely sampled data and outperforms current implementations of discretemore » correlation function methods. This scheme is applied to existing reverberation data of varying quality, and consistency with previously reported time delays is found. In particular, the size–luminosity relation of the broad-line region in quasars is recovered with a scatter comparable to that obtained by other works, yet with fewer assumptions made concerning the process underlying the variability. The proposed method for time-lag determination is particularly relevant for irregularly sampled time series, and in cases where the process underlying the variability cannot be adequately modeled.« less
Effects of subsampling of passive acoustic recordings on acoustic metrics.
Thomisch, Karolin; Boebel, Olaf; Zitterbart, Daniel P; Samaran, Flore; Van Parijs, Sofie; Van Opzeeland, Ilse
2015-07-01
Passive acoustic monitoring is an important tool in marine mammal studies. However, logistics and finances frequently constrain the number and servicing schedules of acoustic recorders, requiring a trade-off between deployment periods and sampling continuity, i.e., the implementation of a subsampling scheme. Optimizing such schemes to each project's specific research questions is desirable. This study investigates the impact of subsampling on the accuracy of two common metrics, acoustic presence and call rate, for different vocalization patterns (regimes) of baleen whales: (1) variable vocal activity, (2) vocalizations organized in song bouts, and (3) vocal activity with diel patterns. To this end, above metrics are compared for continuous and subsampled data subject to different sampling strategies, covering duty cycles between 50% and 2%. The results show that a reduction of the duty cycle impacts negatively on the accuracy of both acoustic presence and call rate estimates. For a given duty cycle, frequent short listening periods improve accuracy of daily acoustic presence estimates over few long listening periods. Overall, subsampling effects are most pronounced for low and/or temporally clustered vocal activity. These findings illustrate the importance of informed decisions when applying subsampling strategies to passive acoustic recordings or analyses for a given target species.
NASA Astrophysics Data System (ADS)
Simone, Gabriele; Cordone, Roberto; Serapioni, Raul Paolo; Lecca, Michela
2017-05-01
Retinex theory estimates the human color sensation at any observed point by correcting its color based on the spatial arrangement of the colors in proximate regions. We revise two recent path-based, edge-aware Retinex implementations: Termite Retinex (TR) and Energy-driven Termite Retinex (ETR). As the original Retinex implementation, TR and ETR scan the neighborhood of any image pixel by paths and rescale their chromatic intensities by intensity levels computed by reworking the colors of the pixels on the paths. Our interest in TR and ETR is due to their unique, content-based scanning scheme, which uses the image edges to define the paths and exploits a swarm intelligence model for guiding the spatial exploration of the image. The exploration scheme of ETR has been showed to be particularly effective: its paths are local minima of an energy functional, designed to favor the sampling of image pixels highly relevant to color sensation. Nevertheless, since its computational complexity makes ETR poorly practicable, here we present a light version of it, named Light Energy-driven TR, and obtained from ETR by implementing a modified, optimized minimization procedure and by exploiting parallel computing.
A data acquisition protocol for a reactive wireless sensor network monitoring application.
Aderohunmu, Femi A; Brunelli, Davide; Deng, Jeremiah D; Purvis, Martin K
2015-04-30
Limiting energy consumption is one of the primary aims for most real-world deployments of wireless sensor networks. Unfortunately, attempts to optimize energy efficiency are often in conflict with the demand for network reactiveness to transmit urgent messages. In this article, we propose SWIFTNET: a reactive data acquisition scheme. It is built on the synergies arising from a combination of the data reduction methods and energy-efficient data compression schemes. Particularly, it combines compressed sensing, data prediction and adaptive sampling strategies. We show how this approach dramatically reduces the amount of unnecessary data transmission in the deployment for environmental monitoring and surveillance networks. SWIFTNET targets any monitoring applications that require high reactiveness with aggressive data collection and transmission. To test the performance of this method, we present a real-world testbed for a wildfire monitoring as a use-case. The results from our in-house deployment testbed of 15 nodes have proven to be favorable. On average, over 50% communication reduction when compared with a default adaptive prediction method is achieved without any loss in accuracy. In addition, SWIFTNET is able to guarantee reactiveness by adjusting the sampling interval from 5 min up to 15 s in our application domain.
A Data Acquisition Protocol for a Reactive Wireless Sensor Network Monitoring Application
Aderohunmu, Femi A.; Brunelli, Davide; Deng, Jeremiah D.; Purvis, Martin K.
2015-01-01
Limiting energy consumption is one of the primary aims for most real-world deployments of wireless sensor networks. Unfortunately, attempts to optimize energy efficiency are often in conflict with the demand for network reactiveness to transmit urgent messages. In this article, we propose SWIFTNET: a reactive data acquisition scheme. It is built on the synergies arising from a combination of the data reduction methods and energy-efficient data compression schemes. Particularly, it combines compressed sensing, data prediction and adaptive sampling strategies. We show how this approach dramatically reduces the amount of unnecessary data transmission in the deployment for environmental monitoring and surveillance networks. SWIFTNET targets any monitoring applications that require high reactiveness with aggressive data collection and transmission. To test the performance of this method, we present a real-world testbed for a wildfire monitoring as a use-case. The results from our in-house deployment testbed of 15 nodes have proven to be favorable. On average, over 50% communication reduction when compared with a default adaptive prediction method is achieved without any loss in accuracy. In addition, SWIFTNET is able to guarantee reactiveness by adjusting the sampling interval from 5 min up to 15 s in our application domain. PMID:25942642
Advanced GF(32) nonbinary LDPC coded modulation with non-uniform 9-QAM outperforming star 8-QAM.
Liu, Tao; Lin, Changyu; Djordjevic, Ivan B
2016-06-27
In this paper, we first describe a 9-symbol non-uniform signaling scheme based on Huffman code, in which different symbols are transmitted with different probabilities. By using the Huffman procedure, prefix code is designed to approach the optimal performance. Then, we introduce an algorithm to determine the optimal signal constellation sets for our proposed non-uniform scheme with the criterion of maximizing constellation figure of merit (CFM). The proposed nonuniform polarization multiplexed signaling 9-QAM scheme has the same spectral efficiency as the conventional 8-QAM. Additionally, we propose a specially designed GF(32) nonbinary quasi-cyclic LDPC code for the coded modulation system based on the 9-QAM non-uniform scheme. Further, we study the efficiency of our proposed non-uniform 9-QAM, combined with nonbinary LDPC coding, and demonstrate by Monte Carlo simulation that the proposed GF(23) nonbinary LDPC coded 9-QAM scheme outperforms nonbinary LDPC coded uniform 8-QAM by at least 0.8dB.
NASA Astrophysics Data System (ADS)
Sakai, K.; Watabe, D.; Minamidani, T.; Zhang, G. S.
2012-10-01
According to Godunov theorem for numerical calculations of advection equations, there exist no higher-order schemes with constant positive difference coefficients in a family of polynomial schemes with an accuracy exceeding the first-order. We propose a third-order computational scheme for numerical fluxes to guarantee the non-negative difference coefficients of resulting finite difference equations for advection-diffusion equations in a semi-conservative form, in which there exist two kinds of numerical fluxes at a cell surface and these two fluxes are not always coincident in non-uniform velocity fields. The present scheme is optimized so as to minimize truncation errors for the numerical fluxes while fulfilling the positivity condition of the difference coefficients which are variable depending on the local Courant number and diffusion number. The feature of the present optimized scheme consists in keeping the third-order accuracy anywhere without any numerical flux limiter. We extend the present method into multi-dimensional equations. Numerical experiments for advection-diffusion equations showed nonoscillatory solutions.
Difference equation state approximations for nonlinear hereditary control problems
NASA Technical Reports Server (NTRS)
Rosen, I. G.
1984-01-01
Discrete approximation schemes for the solution of nonlinear hereditary control problems are constructed. The methods involve approximation by a sequence of optimal control problems in which the original infinite dimensional state equation has been approximated by a finite dimensional discrete difference equation. Convergence of the state approximations is argued using linear semigroup theory and is then used to demonstrate that solutions to the approximating optimal control problems in some sense approximate solutions to the original control problem. Two schemes, one based upon piecewise constant approximation, and the other involving spline functions are discussed. Numerical results are presented, analyzed and used to compare the schemes to other available approximation methods for the solution of hereditary control problems. Previously announced in STAR as N83-33589
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mundt, Michael; Kuemmel, Stephan
2006-08-15
The integral equation for the time-dependent optimized effective potential (TDOEP) in time-dependent density-functional theory is transformed into a set of partial-differential equations. These equations only involve occupied Kohn-Sham orbitals and orbital shifts resulting from the difference between the exchange-correlation potential and the orbital-dependent potential. Due to the success of an analog scheme in the static case, a scheme that propagates orbitals and orbital shifts in real time is a natural candidate for an exact solution of the TDOEP equation. We investigate the numerical stability of such a scheme. An approximation beyond the Krieger-Li-Iafrate approximation for the time-dependent exchange-correlation potential ismore » analyzed.« less
Optical Implementation of the Optimal Universal and Phase-Covariant Quantum Cloning Machines
NASA Astrophysics Data System (ADS)
Ye, Liu; Song, Xue-Ke; Yang, Jie; Yang, Qun; Ma, Yang-Cheng
Quantum cloning relates to the security of quantum computation and quantum communication. In this paper, firstly we propose a feasible unified scheme to implement optimal 1 → 2 universal, 1 → 2 asymmetric and symmetric phase-covariant cloning, and 1 → 2 economical phase-covariant quantum cloning machines only via a beam splitter. Then 1 → 3 economical phase-covariant quantum cloning machines also can be realized by adding another beam splitter in context of linear optics. The scheme is based on the interference of two photons on a beam splitter with different splitting ratios for vertical and horizontal polarization components. It is shown that under certain condition, the scheme is feasible by current experimental technology.
Fourth order scheme for wavelet based solution of Black-Scholes equation
NASA Astrophysics Data System (ADS)
Finěk, Václav
2017-12-01
The present paper is devoted to the numerical solution of the Black-Scholes equation for pricing European options. We apply the Crank-Nicolson scheme with Richardson extrapolation for time discretization and Hermite cubic spline wavelets with four vanishing moments for space discretization. This scheme is the fourth order accurate both in time and in space. Computational results indicate that the Crank-Nicolson scheme with Richardson extrapolation significantly decreases the amount of computational work. We also numerically show that optimal convergence rate for the used scheme is obtained without using startup procedure despite the data irregularities in the model.
GLOBAL SOLUTIONS TO FOLDED CONCAVE PENALIZED NONCONVEX LEARNING
Liu, Hongcheng; Yao, Tao; Li, Runze
2015-01-01
This paper is concerned with solving nonconvex learning problems with folded concave penalty. Despite that their global solutions entail desirable statistical properties, there lack optimization techniques that guarantee global optimality in a general setting. In this paper, we show that a class of nonconvex learning problems are equivalent to general quadratic programs. This equivalence facilitates us in developing mixed integer linear programming reformulations, which admit finite algorithms that find a provably global optimal solution. We refer to this reformulation-based technique as the mixed integer programming-based global optimization (MIPGO). To our knowledge, this is the first global optimization scheme with a theoretical guarantee for folded concave penalized nonconvex learning with the SCAD penalty (Fan and Li, 2001) and the MCP penalty (Zhang, 2010). Numerical results indicate a significant outperformance of MIPGO over the state-of-the-art solution scheme, local linear approximation, and other alternative solution techniques in literature in terms of solution quality. PMID:27141126
NASA Astrophysics Data System (ADS)
Zhu, Meng-Zheng; Ye, Liu
2015-04-01
An efficient scheme is proposed to implement a quantum cloning machine in separate cavities based on a hybrid interaction between electron-spin systems placed in the cavities and an optical coherent pulse. The coefficient of the output state for the present cloning machine is just the direct product of two trigonometric functions, which ensures that different types of quantum cloning machine can be achieved readily in the same framework by appropriately adjusting the rotated angles. The present scheme can implement optimal one-to-two symmetric (asymmetric) universal quantum cloning, optimal symmetric (asymmetric) phase-covariant cloning, optimal symmetric (asymmetric) real-state cloning, optimal one-to-three symmetric economical real-state cloning, and optimal symmetric cloning of qubits given by an arbitrary axisymmetric distribution. In addition, photon loss of the qubus beams during the transmission and decoherence effects caused by such a photon loss are investigated.
NASA Astrophysics Data System (ADS)
Chen, Z.; Chen, J.; Zheng, X.; Jiang, F.; Zhang, S.; Ju, W.; Yuan, W.; Mo, G.
2014-12-01
In this study, we explore the feasibility of optimizing ecosystem photosynthetic and respiratory parameters from the seasonal variation pattern of the net carbon flux. An optimization scheme is proposed to estimate two key parameters (Vcmax and Q10) by exploiting the seasonal variation in the net ecosystem carbon flux retrieved by an atmospheric inversion system. This scheme is implemented to estimate Vcmax and Q10 of the Boreal Ecosystem Productivity Simulator (BEPS) to improve its NEP simulation in the Boreal North America (BNA) region. Simultaneously, in-situ NEE observations at six eddy covariance sites are used to evaluate the NEE simulations. The results show that the performance of the optimized BEPS is superior to that of the BEPS with the default parameter values. These results have the implication on using atmospheric CO2 data for optimizing ecosystem parameters through atmospheric inversion or data assimilation techniques.
NASA Astrophysics Data System (ADS)
Gu, Hui; Zhu, Hongxia; Cui, Yanfeng; Si, Fengqi; Xue, Rui; Xi, Han; Zhang, Jiayu
2018-06-01
An integrated combustion optimization scheme is proposed for the combined considering the restriction in coal-fired boiler combustion efficiency and outlet NOx emissions. Continuous attribute discretization and reduction techniques are handled as optimization preparation by E-Cluster and C_RED methods, in which the segmentation numbers don't need to be provided in advance and can be continuously adapted with data characters. In order to obtain results of multi-objections with clustering method for mixed data, a modified K-prototypes algorithm is then proposed. This algorithm can be divided into two stages as K-prototypes algorithm for clustering number self-adaptation and clustering for multi-objective optimization, respectively. Field tests were carried out at a 660 MW coal-fired boiler to provide real data as a case study for controllable attribute discretization and reduction in boiler system and obtaining optimization parameters considering [ maxηb, minyNOx ] multi-objective rule.
Optimal Sensor Allocation for Fault Detection and Isolation
NASA Technical Reports Server (NTRS)
Azam, Mohammad; Pattipati, Krishna; Patterson-Hine, Ann
2004-01-01
Automatic fault diagnostic schemes rely on various types of sensors (e.g., temperature, pressure, vibration, etc) to measure the system parameters. Efficacy of a diagnostic scheme is largely dependent on the amount and quality of information available from these sensors. The reliability of sensors, as well as the weight, volume, power, and cost constraints, often makes it impractical to monitor a large number of system parameters. An optimized sensor allocation that maximizes the fault diagnosibility, subject to specified weight, volume, power, and cost constraints is required. Use of optimal sensor allocation strategies during the design phase can ensure better diagnostics at a reduced cost for a system incorporating a high degree of built-in testing. In this paper, we propose an approach that employs multiple fault diagnosis (MFD) and optimization techniques for optimal sensor placement for fault detection and isolation (FDI) in complex systems. Keywords: sensor allocation, multiple fault diagnosis, Lagrangian relaxation, approximate belief revision, multidimensional knapsack problem.
Microscopy illumination engineering using a low-cost liquid crystal display.
Guo, Kaikai; Bian, Zichao; Dong, Siyuan; Nanda, Pariksheet; Wang, Ying Min; Zheng, Guoan
2015-02-01
Illumination engineering is critical for obtaining high-resolution, high-quality images in microscope settings. In a typical microscope, the condenser lens provides sample illumination that is uniform and free from glare. The associated condenser diaphragm can be manually adjusted to obtain the optimal illumination numerical aperture. In this paper, we report a programmable condenser lens for active illumination control. In our prototype setup, we used a $15 liquid crystal display as a transparent spatial light modulator and placed it at the back focal plane of the condenser lens. By setting different binary patterns on the display, we can actively control the illumination and the spatial coherence of the microscope platform. We demonstrated the use of such a simple scheme for multimodal imaging, including bright-field microscopy, darkfield microscopy, phase-contrast microscopy, polarization microscopy, 3D tomographic imaging, and super-resolution Fourier ptychographic imaging. The reported illumination engineering scheme is cost-effective and compatible with most existing platforms. It enables a turnkey solution with high flexibility for researchers in various communities. From the engineering point-of-view, the reported illumination scheme may also provide new insights for the development of multimodal microscopy and Fourier ptychographic imaging.
On the optimality of a universal noiseless coder
NASA Technical Reports Server (NTRS)
Yeh, Pen-Shu; Rice, Robert F.; Miller, Warner H.
1993-01-01
Rice developed a universal noiseless coding structure that provides efficient performance over an extremely broad range of source entropy. This is accomplished by adaptively selecting the best of several easily implemented variable length coding algorithms. Variations of such noiseless coders have been used in many NASA applications. Custom VLSI coder and decoder modules capable of processing over 50 million samples per second have been fabricated and tested. In this study, the first of the code options used in this module development is shown to be equivalent to a class of Huffman code under the Humblet condition, for source symbol sets having a Laplacian distribution. Except for the default option, other options are shown to be equivalent to the Huffman codes of a modified Laplacian symbol set, at specified symbol entropy values. Simulation results are obtained on actual aerial imagery over a wide entropy range, and they confirm the optimality of the scheme. Comparison with other known techniques are performed on several widely used images and the results further validate the coder's optimality.
Chance-Constrained AC Optimal Power Flow: Reformulations and Efficient Algorithms
Roald, Line Alnaes; Andersson, Goran
2017-08-29
Higher levels of renewable electricity generation increase uncertainty in power system operation. To ensure secure system operation, new tools that account for this uncertainty are required. Here, in this paper, we adopt a chance-constrained AC optimal power flow formulation, which guarantees that generation, power flows and voltages remain within their bounds with a pre-defined probability. We then discuss different chance-constraint reformulations and solution approaches for the problem. Additionally, we first discuss an analytical reformulation based on partial linearization, which enables us to obtain a tractable representation of the optimization problem. We then provide an efficient algorithm based on an iterativemore » solution scheme which alternates between solving a deterministic AC OPF problem and assessing the impact of uncertainty. This more flexible computational framework enables not only scalable implementations, but also alternative chance-constraint reformulations. In particular, we suggest two sample based reformulations that do not require any approximation or relaxation of the AC power flow equations.« less
Improved Scheme of Modified Gaussian Deconvolution for Reflectance Spectra of Lunar Soils
NASA Technical Reports Server (NTRS)
Hiroi, T.; Pieters, C. M.; Noble, S. K.
2000-01-01
In our continuing effort for deconvolving reflectance spectra of lunar soils using the modified Gaussian model, a new scheme has been developed, including a new form of continuum. All the parameters are optimized with certain constraints.
Practical scheme for optimal measurement in quantum interferometric devices
NASA Astrophysics Data System (ADS)
Takeoka, Masahiro; Ban, Masashi; Sasaki, Masahide
2003-06-01
We apply a Kennedy-type detection scheme, which was originally proposed for a binary communications system, to interferometric sensing devices. We show that the minimum detectable perturbation of the proposed system reaches the ultimate precision bound which is predicted by quantum Neyman-Pearson hypothesis testing. To provide concrete examples, we apply our interferometric scheme to phase shift detection by using coherent and squeezed probe fields.
An economical state-dependent telecloning for a multiparticle GHZ state
NASA Astrophysics Data System (ADS)
Meng, Fan-Xu; Yu, Xu-Tao; Zhang, Zai-Chen
2018-03-01
The scheme for a 1-3 economical state-dependent telecloning of a multiparticle GHZ state is proposed. It shows that every one of spatially separated three receivers obtains one copy which is dependent on original state. Fidelity can hit to the optimal fidelity 5/6. Meantime, we also propose a 1-3 asymmetric economical telecloning of a particular multiparticle GHZ state by parameterizing coefficients of state in the channel. The three fidelities can reach the best match that is the same as the symmetric case. Furthermore, the above two schemes can be generalized into the case of 1-M(M=2k+1,k>0) telecloning of a multiparticle GHZ state. Satisfying some certain conditions, optimal fidelities with 1/2+(M+1)/4M can be obtained. As without ancilla in the channel, the number of entangled particles is less than one in current schemes and fidelities can be optimal if the original state is an equatorial state.
On the optimality of code options for a universal noiseless coder
NASA Technical Reports Server (NTRS)
Yeh, Pen-Shu; Rice, Robert F.; Miller, Warner
1991-01-01
A universal noiseless coding structure was developed that provides efficient performance over an extremely broad range of source entropy. This is accomplished by adaptively selecting the best of several easily implemented variable length coding algorithms. Custom VLSI coder and decoder modules capable of processing over 20 million samples per second are currently under development. The first of the code options used in this module development is shown to be equivalent to a class of Huffman code under the Humblet condition, other options are shown to be equivalent to the Huffman codes of a modified Laplacian symbol set, at specified symbol entropy values. Simulation results are obtained on actual aerial imagery, and they confirm the optimality of the scheme. On sources having Gaussian or Poisson distributions, coder performance is also projected through analysis and simulation.
Using an Adjoint Approach to Eliminate Mesh Sensitivities in Computational Design
NASA Technical Reports Server (NTRS)
Nielsen, Eric J.; Park, Michael A.
2006-01-01
An algorithm for efficiently incorporating the effects of mesh sensitivities in a computational design framework is introduced. The method is based on an adjoint approach and eliminates the need for explicit linearizations of the mesh movement scheme with respect to the geometric parameterization variables, an expense that has hindered practical large-scale design optimization using discrete adjoint methods. The effects of the mesh sensitivities can be accounted for through the solution of an adjoint problem equivalent in cost to a single mesh movement computation, followed by an explicit matrix-vector product scaling with the number of design variables and the resolution of the parameterized surface grid. The accuracy of the implementation is established and dramatic computational savings obtained using the new approach are demonstrated using several test cases. Sample design optimizations are also shown.
Using an Adjoint Approach to Eliminate Mesh Sensitivities in Computational Design
NASA Technical Reports Server (NTRS)
Nielsen, Eric J.; Park, Michael A.
2005-01-01
An algorithm for efficiently incorporating the effects of mesh sensitivities in a computational design framework is introduced. The method is based on an adjoint approach and eliminates the need for explicit linearizations of the mesh movement scheme with respect to the geometric parameterization variables, an expense that has hindered practical large-scale design optimization using discrete adjoint methods. The effects of the mesh sensitivities can be accounted for through the solution of an adjoint problem equivalent in cost to a single mesh movement computation, followed by an explicit matrix-vector product scaling with the number of design variables and the resolution of the parameterized surface grid. The accuracy of the implementation is established and dramatic computational savings obtained using the new approach are demonstrated using several test cases. Sample design optimizations are also shown.
NASA Astrophysics Data System (ADS)
Yun, Wanying; Lu, Zhenzhou; Jiang, Xian
2018-06-01
To efficiently execute the variance-based global sensitivity analysis, the law of total variance in the successive intervals without overlapping is proved at first, on which an efficient space-partition sampling-based approach is subsequently proposed in this paper. Through partitioning the sample points of output into different subsets according to different inputs, the proposed approach can efficiently evaluate all the main effects concurrently by one group of sample points. In addition, there is no need for optimizing the partition scheme in the proposed approach. The maximum length of subintervals is decreased by increasing the number of sample points of model input variables in the proposed approach, which guarantees the convergence condition of the space-partition approach well. Furthermore, a new interpretation on the thought of partition is illuminated from the perspective of the variance ratio function. Finally, three test examples and one engineering application are employed to demonstrate the accuracy, efficiency and robustness of the proposed approach.
NASA Astrophysics Data System (ADS)
Bonacker, Esther; Gibali, Aviv; Küfer, Karl-Heinz; Süss, Philipp
2017-04-01
Multicriteria optimization problems occur in many real life applications, for example in cancer radiotherapy treatment and in particular in intensity modulated radiation therapy (IMRT). In this work we focus on optimization problems with multiple objectives that are ranked according to their importance. We solve these problems numerically by combining lexicographic optimization with our recently proposed level set scheme, which yields a sequence of auxiliary convex feasibility problems; solved here via projection methods. The projection enables us to combine the newly introduced superiorization methodology with multicriteria optimization methods to speed up computation while guaranteeing convergence of the optimization. We demonstrate our scheme with a simple 2D academic example (used in the literature) and also present results from calculations on four real head neck cases in IMRT (Radiation Oncology of the Ludwig-Maximilians University, Munich, Germany) for two different choices of superiorization parameter sets suited to yield fast convergence for each case individually or robust behavior for all four cases.
Fault-tolerant locomotion of the hexapod robot.
Yang, J M; Kim, J H
1998-01-01
In this paper, we propose a scheme for fault detection and tolerance of the hexapod robot locomotion on even terrain. The fault stability margin is defined to represent potential stability which a gait can have in case a sudden fault event occurs to one leg. Based on this, the fault-tolerant quadruped periodic gaits of the hexapod walking over perfectly even terrain are derived. It is demonstrated that the derived quadruped gait is the optimal one the hexapod can have maintaining fault stability margin nonnegative and a geometric condition should be satisfied for the optimal locomotion. By this scheme, when one leg is in failure, the hexapod robot has the modified tripod gait to continue the optimal locomotion.
Production optimization of sucker rod pumping wells producing viscous oil in Boscan field, Venezuela
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guirados, C.; Sandoval, J.; Rivas, O.
1995-12-31
Boscan field is located in the western coast of Maracaibo lake and is operated by Maraven S.A., affiliate of Petroleos de Venezuela S.A. It has 315 active wells, 252 of which are produced with sucker rod pumping. Other artificial lift methods currently applied in this field are hydraulic (piston) pumping (39 wells) and ESP (24 wells). This paper presents the results of the production optimization of two sucker rod pumping wells of Boscan field producing viscous oil. This optimization has been possible due to the development of a new production scheme and the application of system analysis in completion design.more » The new production scheme involves the utilization of a subsurface stuffing box assembly and a slotted housing, both designed and patented by Intevep S.A., affiliate of Petroleos de Venezuela S.A. The completion design method and software used in the optimization study were also developed by Intevep S.A. The new production scheme and design method proved to be effective in preventing the causes of the above mentioned problems, allowing the increase of oil production under better operating conditions.« less
Scheduling policies of intelligent sensors and sensor/actuators in flexible structures
NASA Astrophysics Data System (ADS)
Demetriou, Michael A.; Potami, Raffaele
2006-03-01
In this note, we revisit the problem of actuator/sensor placement in large civil infrastructures and flexible space structures within the context of spatial robustness. The positioning of these devices becomes more important in systems employing wireless sensor and actuator networks (WSAN) for improved control performance and for rapid failure detection. The ability of the sensing and actuating devices to possess the property of spatial robustness results in reduced control energy and therefore the spatial distribution of disturbances is integrated into the location optimization measures. In our studies, the structure under consideration is a flexible plate clamped at all sides. First, we consider the case of sensor placement and the optimization scheme attempts to produce those locations that minimize the effects of the spatial distribution of disturbances on the state estimation error; thus the sensor locations produce state estimators with minimized disturbance-to-error transfer function norms. A two-stage optimization procedure is employed whereby one first considers the open loop system and the spatial distribution of disturbances is found that produces the maximal effects on the entire open loop state. Once this "worst" spatial distribution of disturbances is found, the optimization scheme subsequently finds the locations that produce state estimators with minimum transfer function norms. In the second part, we consider the collocated actuator/sensor pairs and the optimization scheme produces those locations that result in compensators with the smallest norms of the disturbance-to-state transfer functions. Going a step further, an intelligent control scheme is presented which, at each time interval, activates a subset of the actuator/sensor pairs in order provide robustness against spatiotemporally moving disturbances and minimize power consumption by keeping some sensor/actuators in sleep mode.
Robust Face Recognition via Multi-Scale Patch-Based Matrix Regression.
Gao, Guangwei; Yang, Jian; Jing, Xiaoyuan; Huang, Pu; Hua, Juliang; Yue, Dong
2016-01-01
In many real-world applications such as smart card solutions, law enforcement, surveillance and access control, the limited training sample size is the most fundamental problem. By making use of the low-rank structural information of the reconstructed error image, the so-called nuclear norm-based matrix regression has been demonstrated to be effective for robust face recognition with continuous occlusions. However, the recognition performance of nuclear norm-based matrix regression degrades greatly in the face of the small sample size problem. An alternative solution to tackle this problem is performing matrix regression on each patch and then integrating the outputs from all patches. However, it is difficult to set an optimal patch size across different databases. To fully utilize the complementary information from different patch scales for the final decision, we propose a multi-scale patch-based matrix regression scheme based on which the ensemble of multi-scale outputs can be achieved optimally. Extensive experiments on benchmark face databases validate the effectiveness and robustness of our method, which outperforms several state-of-the-art patch-based face recognition algorithms.
Non-parametric early seizure detection in an animal model of temporal lobe epilepsy
NASA Astrophysics Data System (ADS)
Talathi, Sachin S.; Hwang, Dong-Uk; Spano, Mark L.; Simonotto, Jennifer; Furman, Michael D.; Myers, Stephen M.; Winters, Jason T.; Ditto, William L.; Carney, Paul R.
2008-03-01
The performance of five non-parametric, univariate seizure detection schemes (embedding delay, Hurst scale, wavelet scale, nonlinear autocorrelation and variance energy) were evaluated as a function of the sampling rate of EEG recordings, the electrode types used for EEG acquisition, and the spatial location of the EEG electrodes in order to determine the applicability of the measures in real-time closed-loop seizure intervention. The criteria chosen for evaluating the performance were high statistical robustness (as determined through the sensitivity and the specificity of a given measure in detecting a seizure) and the lag in seizure detection with respect to the seizure onset time (as determined by visual inspection of the EEG signal by a trained epileptologist). An optimality index was designed to evaluate the overall performance of each measure. For the EEG data recorded with microwire electrode array at a sampling rate of 12 kHz, the wavelet scale measure exhibited better overall performance in terms of its ability to detect a seizure with high optimality index value and high statistics in terms of sensitivity and specificity.
Optimal eavesdropping in cryptography with three-dimensional quantum states.
Bruss, D; Macchiavello, C
2002-03-25
We study optimal eavesdropping in quantum cryptography with three-dimensional systems, and show that this scheme is more secure against symmetric attacks than protocols using two-dimensional states. We generalize the according eavesdropping transformation to arbitrary dimensions, and discuss the connection with optimal quantum cloning.
Counterfactual quantum key distribution with high efficiency
NASA Astrophysics Data System (ADS)
Sun, Ying; Wen, Qiao-Yan
2010-11-01
In a counterfactual quantum key distribution scheme, a secret key can be generated merely by transmitting the split vacuum pulses of single particles. We improve the efficiency of the first quantum key distribution scheme based on the counterfactual phenomenon. This scheme not only achieves the same security level as the original one but also has higher efficiency. We also analyze how to achieve the optimal efficiency under various conditions.
Counterfactual quantum key distribution with high efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Ying; Beijing Electronic Science and Technology Institute, Beijing 100070; Wen Qiaoyan
2010-11-15
In a counterfactual quantum key distribution scheme, a secret key can be generated merely by transmitting the split vacuum pulses of single particles. We improve the efficiency of the first quantum key distribution scheme based on the counterfactual phenomenon. This scheme not only achieves the same security level as the original one but also has higher efficiency. We also analyze how to achieve the optimal efficiency under various conditions.
Raja, Muhammad Asif Zahoor; Zameer, Aneela; Khan, Aziz Ullah; Wazwaz, Abdul Majid
2016-01-01
In this study, a novel bio-inspired computing approach is developed to analyze the dynamics of nonlinear singular Thomas-Fermi equation (TFE) arising in potential and charge density models of an atom by exploiting the strength of finite difference scheme (FDS) for discretization and optimization through genetic algorithms (GAs) hybrid with sequential quadratic programming. The FDS procedures are used to transform the TFE differential equations into a system of nonlinear equations. A fitness function is constructed based on the residual error of constituent equations in the mean square sense and is formulated as the minimization problem. Optimization of parameters for the system is carried out with GAs, used as a tool for viable global search integrated with SQP algorithm for rapid refinement of the results. The design scheme is applied to solve TFE for five different scenarios by taking various step sizes and different input intervals. Comparison of the proposed results with the state of the art numerical and analytical solutions reveals that the worth of our scheme in terms of accuracy and convergence. The reliability and effectiveness of the proposed scheme are validated through consistently getting optimal values of statistical performance indices calculated for a sufficiently large number of independent runs to establish its significance.
Hybrid Quantum-Classical Approach to Quantum Optimal Control.
Li, Jun; Yang, Xiaodong; Peng, Xinhua; Sun, Chang-Pu
2017-04-14
A central challenge in quantum computing is to identify more computational problems for which utilization of quantum resources can offer significant speedup. Here, we propose a hybrid quantum-classical scheme to tackle the quantum optimal control problem. We show that the most computationally demanding part of gradient-based algorithms, namely, computing the fitness function and its gradient for a control input, can be accomplished by the process of evolution and measurement on a quantum simulator. By posing queries to and receiving answers from the quantum simulator, classical computing devices update the control parameters until an optimal control solution is found. To demonstrate the quantum-classical scheme in experiment, we use a seven-qubit nuclear magnetic resonance system, on which we have succeeded in optimizing state preparation without involving classical computation of the large Hilbert space evolution.
A Scheme to Optimize Flow Routing and Polling Switch Selection of Software Defined Networks
Chen, Huan; Li, Lemin; Ren, Jing; Wang, Yang; Zhao, Yangming; Wang, Xiong; Wang, Sheng; Xu, Shizhong
2015-01-01
This paper aims at minimizing the communication cost for collecting flow information in Software Defined Networks (SDN). Since flow-based information collecting method requires too much communication cost, and switch-based method proposed recently cannot benefit from controlling flow routing, jointly optimize flow routing and polling switch selection is proposed to reduce the communication cost. To this end, joint optimization problem is formulated as an Integer Linear Programming (ILP) model firstly. Since the ILP model is intractable in large size network, we also design an optimal algorithm for the multi-rooted tree topology and an efficient heuristic algorithm for general topology. According to extensive simulations, it is found that our method can save up to 55.76% communication cost compared with the state-of-the-art switch-based scheme. PMID:26690571
The anatomy of choice: active inference and agency
Friston, Karl; Schwartenbeck, Philipp; FitzGerald, Thomas; Moutoussis, Michael; Behrens, Timothy; Dolan, Raymond J.
2013-01-01
This paper considers agency in the setting of embodied or active inference. In brief, we associate a sense of agency with prior beliefs about action and ask what sorts of beliefs underlie optimal behavior. In particular, we consider prior beliefs that action minimizes the Kullback–Leibler (KL) divergence between desired states and attainable states in the future. This allows one to formulate bounded rationality as approximate Bayesian inference that optimizes a free energy bound on model evidence. We show that constructs like expected utility, exploration bonuses, softmax choice rules and optimism bias emerge as natural consequences of this formulation. Previous accounts of active inference have focused on predictive coding and Bayesian filtering schemes for minimizing free energy. Here, we consider variational Bayes as an alternative scheme that provides formal constraints on the computational anatomy of inference and action—constraints that are remarkably consistent with neuroanatomy. Furthermore, this scheme contextualizes optimal decision theory and economic (utilitarian) formulations as pure inference problems. For example, expected utility theory emerges as a special case of free energy minimization, where the sensitivity or inverse temperature (of softmax functions and quantal response equilibria) has a unique and Bayes-optimal solution—that minimizes free energy. This sensitivity corresponds to the precision of beliefs about behavior, such that attainable goals are afforded a higher precision or confidence. In turn, this means that optimal behavior entails a representation of confidence about outcomes that are under an agent's control. PMID:24093015
Optimization study on multiple train formation scheme of urban rail transit
NASA Astrophysics Data System (ADS)
Xia, Xiaomei; Ding, Yong; Wen, Xin
2018-05-01
The new organization method, represented by the mixed operation of multi-marshalling trains, can adapt to the characteristics of the uneven distribution of passenger flow, but the research on this aspect is still not perfect enough. This paper introduced the passenger sharing rate and congestion penalty coefficient with different train formations. On this basis, this paper established an optimization model with the minimum passenger cost and operation cost as objective, and operation frequency and passenger demand as constraint. The ideal point method is used to solve this model. Compared with the fixed marshalling operation model, the overall cost of this scheme saves 9.24% and 4.43% respectively. This result not only validates the validity of the model, but also illustrate the advantages of the multiple train formations scheme.
Adaptive quantization-parameter clip scheme for smooth quality in H.264/AVC.
Hu, Sudeng; Wang, Hanli; Kwong, Sam
2012-04-01
In this paper, we investigate the issues over the smooth quality and the smooth bit rate during rate control (RC) in H.264/AVC. An adaptive quantization-parameter (Q(p)) clip scheme is proposed to optimize the quality smoothness while keeping the bit-rate fluctuation at an acceptable level. First, the frame complexity variation is studied by defining a complexity ratio between two nearby frames. Second, the range of the generated bits is analyzed to prevent the encoder buffer from overflow and underflow. Third, based on the safe range of the generated bits, an optimal Q(p) clip range is developed to reduce the quality fluctuation. Experimental results demonstrate that the proposed Q(p) clip scheme can achieve excellent performance in quality smoothness and buffer regulation.
Optimal estimation for the satellite attitude using star tracker measurements
NASA Technical Reports Server (NTRS)
Lo, J. T.-H.
1986-01-01
An optimal estimation scheme is presented, which determines the satellite attitude using the gyro readings and the star tracker measurements of a commonly used satellite attitude measuring unit. The scheme is mainly based on the exponential Fourier densities that have the desirable closure property under conditioning. By updating a finite and fixed number of parameters, the conditional probability density, which is an exponential Fourier density, is recursively determined. Simulation results indicate that the scheme is more accurate and robust than extended Kalman filtering. It is believed that this approach is applicable to many other attitude measuring units. As no linearization and approximation are necessary in the approach, it is ideal for systems involving high levels of randomness and/or low levels of observability and systems for which accuracy is of overriding importance.
Best Hiding Capacity Scheme for Variable Length Messages Using Particle Swarm Optimization
NASA Astrophysics Data System (ADS)
Bajaj, Ruchika; Bedi, Punam; Pal, S. K.
Steganography is an art of hiding information in such a way that prevents the detection of hidden messages. Besides security of data, the quantity of data that can be hidden in a single cover medium, is also very important. We present a secure data hiding scheme with high embedding capacity for messages of variable length based on Particle Swarm Optimization. This technique gives the best pixel positions in the cover image, which can be used to hide the secret data. In the proposed scheme, k bits of the secret message are substituted into k least significant bits of the image pixel, where k varies from 1 to 4 depending on the message length. The proposed scheme is tested and results compared with simple LSB substitution, uniform 4-bit LSB hiding (with PSO) for the test images Nature, Baboon, Lena and Kitty. The experimental study confirms that the proposed method achieves high data hiding capacity and maintains imperceptibility and minimizes the distortion between the cover image and the obtained stego image.
Optimal design of mixed-media packet-switching networks - Routing and capacity assignment
NASA Technical Reports Server (NTRS)
Huynh, D.; Kuo, F. F.; Kobayashi, H.
1977-01-01
This paper considers a mixed-media packet-switched computer communication network which consists of a low-delay terrestrial store-and-forward subnet combined with a low-cost high-bandwidth satellite subnet. We show how to route traffic via ground and/or satellite links by means of static, deterministic procedures and assign capacities to channels subject to a given linear cost such that the network average delay is minimized. Two operational schemes for this network model are investigated: one is a scheme in which the satellite channel is used as a slotted ALOHA channel; the other is a new multiaccess scheme we propose in which whenever a channel collision occurs, retransmission of the involved packets will route through ground links to their destinations. The performance of both schemes is evaluated and compared in terms of cost and average packet delay tradeoffs for some examples. The results offer guidelines for the design and optimal utilization of mixed-media networks.
NASA Astrophysics Data System (ADS)
Prasertwattana, Kanit; Shimizu, Yoshiaki; Chiadamrong, Navee
This paper studied the material ordering and inventory control of supply chain systems. The effect of controlling policies is analyzed under three different configurations of the supply chain systems, and the formulated problem has been solved by using an evolutional optimization method known as Differential Evolution (DE). The numerical results show that the coordinating policy with the incentive scheme outperforms the other policies and can improve the performance of the overall system as well as all members under the concept of supply chain management.
Caballero-Díaz, Encarnación; Simonet, Bartolomé; Valcárcel, Miguel
2013-10-21
A novel method for the determination of atrazine, using liquid-liquid extraction assisted by a nanoparticles film formed in situ and composed of organic solvent stabilized-carbon nanoparticles, is described. The presence of nanoparticles located at the liquid-liquid interface reinforced the extraction of analyte from matrix prior to capillary electrophoresis (CE) analysis. Some influential experimental variables were optimized in order to enhance the extraction efficiency. The developed procedure confirmed that carbon nanoparticles, especially multi-walled carbon nanotubes, are suitable to be used in sample treatment processes introducing new mechanisms of interaction with the analyte. The application of the proposed preconcentration method followed by CE detection enabled the determination of atrazine in spiked river water providing acceptable RSD values (11.6%) and good recoveries (about 87.0-92.0%). Additionally, a similar extraction scheme was tested in soil matrices with a view to further applications in real soil samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ray -Bing; Wang, Weichung; Jeff Wu, C. F.
A numerical method, called OBSM, was recently proposed which employs overcomplete basis functions to achieve sparse representations. While the method can handle non-stationary response without the need of inverting large covariance matrices, it lacks the capability to quantify uncertainty in predictions. We address this issue by proposing a Bayesian approach which first imposes a normal prior on the large space of linear coefficients, then applies the MCMC algorithm to generate posterior samples for predictions. From these samples, Bayesian credible intervals can then be obtained to assess prediction uncertainty. A key application for the proposed method is the efficient construction ofmore » sequential designs. Several sequential design procedures with different infill criteria are proposed based on the generated posterior samples. As a result, numerical studies show that the proposed schemes are capable of solving problems of positive point identification, optimization, and surrogate fitting.« less
Chen, Ray -Bing; Wang, Weichung; Jeff Wu, C. F.
2017-04-12
A numerical method, called OBSM, was recently proposed which employs overcomplete basis functions to achieve sparse representations. While the method can handle non-stationary response without the need of inverting large covariance matrices, it lacks the capability to quantify uncertainty in predictions. We address this issue by proposing a Bayesian approach which first imposes a normal prior on the large space of linear coefficients, then applies the MCMC algorithm to generate posterior samples for predictions. From these samples, Bayesian credible intervals can then be obtained to assess prediction uncertainty. A key application for the proposed method is the efficient construction ofmore » sequential designs. Several sequential design procedures with different infill criteria are proposed based on the generated posterior samples. As a result, numerical studies show that the proposed schemes are capable of solving problems of positive point identification, optimization, and surrogate fitting.« less
Counterfactual quantum cloning without transmitting any physical particles
NASA Astrophysics Data System (ADS)
Guo, Qi; Zhai, Shuqin; Cheng, Liu-Yong; Wang, Hong-Fu; Zhang, Shou
2017-11-01
We propose a counterfactual 1 →2 economical phase-covariant cloning scheme. Compared with the existing protocols using flying qubits, the main difference of the presented scheme is that the cloning can be achieved without transmitting the photon between the two parties. In addition, this counterfactual scheme does not need to construct controlled quantum gates to perform joint logical operations between the cloned qubit and the blank copy. We also numerically evaluate the performance of the present scheme in the practical experiment, which shows this cloning scheme can be implemented with a high success of probability and the fidelity is close to the optimal value in the ideal asymptotic limit.
Quantification of soil water retention parameters using multi-section TDR-waveform analysis
NASA Astrophysics Data System (ADS)
Baviskar, S. M.; Heimovaara, T. J.
2017-06-01
Soil water retention parameters are important for describing flow in variably saturated soils. TDR is one of the standard methods used for determining water content in soil samples. In this study, we present an approach to estimate water retention parameters of a sample which is initially saturated and subjected to an incremental decrease in boundary head causing it to drain in a multi-step fashion. TDR waveforms are measured along the height of the sample at assumed different hydrostatic conditions at daily interval. The cumulative discharge outflow drained from the sample is also recorded. The saturated water content is obtained using volumetric analysis after the final step involved in multi-step drainage. The equation obtained by coupling the unsaturated parametric function and the apparent dielectric permittivity is fitted to a TDR wave propagation forward model. The unsaturated parametric function is used to spatially interpolate the water contents along TDR probe. The cumulative discharge outflow data is fitted with cumulative discharge estimated using the unsaturated parametric function. The weight of water inside the sample estimated at the first and final boundary head in multi-step drainage is fitted with the corresponding weights calculated using unsaturated parametric function. A Bayesian optimization scheme is used to obtain optimized water retention parameters for these different objective functions. This approach can be used for samples with long heights and is especially suitable for characterizing sands with a uniform particle size distribution at low capillary heads.
Zhu, Wensheng; Yuan, Ying; Zhang, Jingwen; Zhou, Fan; Knickmeyer, Rebecca C; Zhu, Hongtu
2017-02-01
The aim of this paper is to systematically evaluate a biased sampling issue associated with genome-wide association analysis (GWAS) of imaging phenotypes for most imaging genetic studies, including the Alzheimer's Disease Neuroimaging Initiative (ADNI). Specifically, the original sampling scheme of these imaging genetic studies is primarily the retrospective case-control design, whereas most existing statistical analyses of these studies ignore such sampling scheme by directly correlating imaging phenotypes (called the secondary traits) with genotype. Although it has been well documented in genetic epidemiology that ignoring the case-control sampling scheme can produce highly biased estimates, and subsequently lead to misleading results and suspicious associations, such findings are not well documented in imaging genetics. We use extensive simulations and a large-scale imaging genetic data analysis of the Alzheimer's Disease Neuroimaging Initiative (ADNI) data to evaluate the effects of the case-control sampling scheme on GWAS results based on some standard statistical methods, such as linear regression methods, while comparing it with several advanced statistical methods that appropriately adjust for the case-control sampling scheme. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yi, Cancan; Lv, Yong; Xiao, Han; Ke, Ke; Yu, Xun
2017-12-01
For laser-induced breakdown spectroscopy (LIBS) quantitative analysis technique, baseline correction is an essential part for the LIBS data preprocessing. As the widely existing cases, the phenomenon of baseline drift is generated by the fluctuation of laser energy, inhomogeneity of sample surfaces and the background noise, which has aroused the interest of many researchers. Most of the prevalent algorithms usually need to preset some key parameters, such as the suitable spline function and the fitting order, thus do not have adaptability. Based on the characteristics of LIBS, such as the sparsity of spectral peaks and the low-pass filtered feature of baseline, a novel baseline correction and spectral data denoising method is studied in this paper. The improved technology utilizes convex optimization scheme to form a non-parametric baseline correction model. Meanwhile, asymmetric punish function is conducted to enhance signal-noise ratio (SNR) of the LIBS signal and improve reconstruction precision. Furthermore, an efficient iterative algorithm is applied to the optimization process, so as to ensure the convergence of this algorithm. To validate the proposed method, the concentration analysis of Chromium (Cr),Manganese (Mn) and Nickel (Ni) contained in 23 certified high alloy steel samples is assessed by using quantitative models with Partial Least Squares (PLS) and Support Vector Machine (SVM). Because there is no prior knowledge of sample composition and mathematical hypothesis, compared with other methods, the method proposed in this paper has better accuracy in quantitative analysis, and fully reflects its adaptive ability.
One size fits all? An assessment tool for solid waste management at local and national levels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broitman, Dani, E-mail: danib@techunix.technion.ac.il; Ayalon, Ofira; Kan, Iddo
2012-10-15
Highlights: Black-Right-Pointing-Pointer Waste management schemes are generally implemented at national or regional level. Black-Right-Pointing-Pointer Local conditions characteristics and constraints are often neglected. Black-Right-Pointing-Pointer We developed an economic model able to compare multi-level waste management options. Black-Right-Pointing-Pointer A detailed test case with real economic data and a best-fit scenario is described. Black-Right-Pointing-Pointer Most efficient schemes combine clear National directives with local level flexibility. - Abstract: As environmental awareness rises, integrated solid waste management (WM) schemes are increasingly being implemented all over the world. The different WM schemes usually address issues such as landfilling restrictions (mainly due to methane emissions and competingmore » land use), packaging directives and compulsory recycling goals. These schemes are, in general, designed at a national or regional level, whereas local conditions and constraints are sometimes neglected. When national WM top-down policies, in addition to setting goals, also dictate the methods by which they are to be achieved, local authorities lose their freedom to optimize their operational WM schemes according to their specific characteristics. There are a myriad of implementation options at the local level, and by carrying out a bottom-up approach the overall national WM system will be optimal on economic and environmental scales. This paper presents a model for optimizing waste strategies at a local level and evaluates this effect at a national level. This is achieved by using a waste assessment model which enables us to compare both the economic viability of several WM options at the local (single municipal authority) level, and aggregated results for regional or national levels. A test case based on various WM approaches in Israel (several implementations of mixed and separated waste) shows that local characteristics significantly influence WM costs, and therefore the optimal scheme is one under which each local authority is able to implement its best-fitting mechanism, given that national guidelines are kept. The main result is that strict national/regional WM policies may be less efficient, unless some type of local flexibility is implemented. Our model is designed both for top-down and bottom-up assessment, and can be easily adapted for a wide range of WM option comparisons at different levels.« less
NASA Astrophysics Data System (ADS)
Lima, E. A.; Bruno, A. C.; Carvalho, H. R.; Weiss, B. P.
2014-10-01
Scanning magnetic microscopy is a new methodology for mapping magnetic fields with high spatial resolution and field sensitivity. An important goal has been to develop high-performance instruments that do not require cryogenic technology due to its high cost, complexity, and limitation on sensor-to-sample distance. Here we report the development of a low-cost scanning magnetic microscope based on commercial room-temperature magnetic tunnel junction (MTJ) sensors that typically achieves spatial resolution better than 7 µm. By comparing different bias and detection schemes, optimal performance was obtained when biasing the MTJ sensor with a modulated current at 1.0 kHz in a Wheatstone bridge configuration while using a lock-in amplifier in conjunction with a low-noise custom-made preamplifier. A precision horizontal (x-y) scanning stage comprising two coupled nanopositioners controls the position of the sample and a linear actuator adjusts the sensor-to-sample distance. We obtained magnetic field sensitivities better than 150 nT/Hz1/2 between 0.1 and 10 Hz, which is a critical frequency range for scanning magnetic microscopy. This corresponds to a magnetic moment sensitivity of 10-14 A m2, a factor of 100 better than achievable with typical commercial superconducting moment magnetometers. It also represents an improvement in sensitivity by a factor between 10 and 30 compared to similar scanning MTJ microscopes based on conventional bias-detection schemes. To demonstrate the capabilities of the instrument, two polished thin sections of representative geological samples were scanned along with a synthetic sample containing magnetic microparticles. The instrument is usable for a diversity of applications that require mapping of samples at room temperature to preserve magnetic properties or viability, including paleomagnetism and rock magnetism, nondestructive evaluation of materials, and biological assays.
NASA Astrophysics Data System (ADS)
Petersen, D.; Naveed, P.; Ragheb, A.; Niedieker, D.; El-Mashtoly, S. F.; Brechmann, T.; Kötting, C.; Schmiegel, W. H.; Freier, E.; Pox, C.; Gerwert, K.
2017-06-01
Endoscopy plays a major role in early recognition of cancer which is not externally accessible and therewith in increasing the survival rate. Raman spectroscopic fiber-optical approaches can help to decrease the impact on the patient, increase objectivity in tissue characterization, reduce expenses and provide a significant time advantage in endoscopy. In gastroenterology an early recognition of malign and precursor lesions is relevant. Instantaneous and precise differentiation between adenomas as precursor lesions for cancer and hyperplastic polyps on the one hand and between high and low-risk alterations on the other hand is important. Raman fiber-optical measurements of colon biopsy samples taken during colonoscopy were carried out during a clinical study, and samples of adenocarcinoma (22), tubular adenomas (141), hyperplastic polyps (79) and normal tissue (101) from 151 patients were analyzed. This allows us to focus on the bioinformatic analysis and to set stage for Raman endoscopic measurements. Since spectral differences between normal and cancerous biopsy samples are small, special care has to be taken in data analysis. Using a leave-one-patient-out cross-validation scheme, three different outlier identification methods were investigated to decrease the influence of systematic errors, like a residual risk in misplacement of the sample and spectral dilution of marker bands (esp. cancerous tissue) and therewith optimize the experimental design. Furthermore other validations methods like leave-one-sample-out and leave-one-spectrum-out cross-validation schemes were compared with leave-one-patient-out cross-validation. High-risk lesions were differentiated from low-risk lesions with a sensitivity of 79%, specificity of 74% and an accuracy of 77%, cancer and normal tissue with a sensitivity of 79%, specificity of 83% and an accuracy of 81%. Additionally applied outlier identification enabled us to improve the recognition of neoplastic biopsy samples.
Van Broeck, Bianca; Timmers, Maarten; Ramael, Steven; Bogert, Jennifer; Shaw, Leslie M; Mercken, Marc; Slemmon, John; Van Nueten, Luc; Engelborghs, Sebastiaan; Streffer, Johannes Rolf
2016-05-19
Cerebrospinal fluid (CSF) amyloid-beta (Aβ) peptides are predictive biomarkers for Alzheimer's disease and are proposed as pharmacodynamic markers for amyloid-lowering therapies. However, frequent sampling results in fluctuating CSF Aβ levels that have a tendency to increase compared with baseline. The impact of sampling frequency, volume, catheterization procedure, and ibuprofen pretreatment on CSF Aβ levels using continuous sampling over 36 h was assessed. In this open-label biomarker study, healthy participants (n = 18; either sex, age 55-85 years) were randomized into one of three cohorts (n = 6/cohort; high-frequency sampling). In all cohorts except cohort 2 (sampling started 6 h post catheterization), sampling through lumbar catheterization started immediately post catheterization. Cohort 3 received ibuprofen (800 mg) before catheterization. Following interim data review, an additional cohort 4 (n = 6) with an optimized sampling scheme (low-frequency and lower volume) was included. CSF Aβ(1-37), Aβ(1-38), Aβ(1-40), and Aβ(1-42) levels were analyzed. Increases and fluctuations in mean CSF Aβ levels occurred in cohorts 1-3 at times of high-frequency sampling. Some outliers were observed (cohorts 2 and 3) with an extreme pronunciation of this effect. Cohort 4 demonstrated minimal fluctuation of CSF Aβ both on a group and an individual level. Intersubject variability in CSF Aβ profiles over time was observed in all cohorts. CSF Aβ level fluctuation upon catheterization primarily depends on the sampling frequency and volume, but not on the catheterization procedure or inflammatory reaction. An optimized low-frequency sampling protocol minimizes or eliminates fluctuation of CSF Aβ levels, which will improve the capability of accurately measuring the pharmacodynamic read-out for amyloid-lowering therapies. ClinicalTrials.gov NCT01436188 . Registered 15 September 2011.
Optimized diffusion gradient orientation schemes for corrupted clinical DTI data sets.
Dubois, J; Poupon, C; Lethimonnier, F; Le Bihan, D
2006-08-01
A method is proposed for generating schemes of diffusion gradient orientations which allow the diffusion tensor to be reconstructed from partial data sets in clinical DT-MRI, should the acquisition be corrupted or terminated before completion because of patient motion. A general energy-minimization electrostatic model was developed in which the interactions between orientations are weighted according to their temporal order during acquisition. In this report, two corruption scenarios were specifically considered for generating relatively uniform schemes of 18 and 60 orientations, with useful subsets of 6 and 15 orientations. The sets and subsets were compared to conventional sets through their energy, condition number and rotational invariance. Schemes of 18 orientations were tested on a volunteer. The optimized sets were similar to uniform sets in terms of energy, condition number and rotational invariance, whether the complete set or only a subset was considered. Diffusion maps obtained in vivo were close to those for uniform sets whatever the acquisition time was. This was not the case with conventional schemes, whose subset uniformity was insufficient. With the proposed approach, sets of orientations responding to several corruption scenarios can be generated, which is potentially useful for imaging uncooperative patients or infants.
Efficient Network Coding-Based Loss Recovery for Reliable Multicast in Wireless Networks
NASA Astrophysics Data System (ADS)
Chi, Kaikai; Jiang, Xiaohong; Ye, Baoliu; Horiguchi, Susumu
Recently, network coding has been applied to the loss recovery of reliable multicast in wireless networks [19], where multiple lost packets are XOR-ed together as one packet and forwarded via single retransmission, resulting in a significant reduction of bandwidth consumption. In this paper, we first prove that maximizing the number of lost packets for XOR-ing, which is the key part of the available network coding-based reliable multicast schemes, is actually a complex NP-complete problem. To address this limitation, we then propose an efficient heuristic algorithm for finding an approximately optimal solution of this optimization problem. Furthermore, we show that the packet coding principle of maximizing the number of lost packets for XOR-ing sometimes cannot fully exploit the potential coding opportunities, and we then further propose new heuristic-based schemes with a new coding principle. Simulation results demonstrate that the heuristic-based schemes have very low computational complexity and can achieve almost the same transmission efficiency as the current coding-based high-complexity schemes. Furthermore, the heuristic-based schemes with the new coding principle not only have very low complexity, but also slightly outperform the current high-complexity ones.
Li, Ning; Cao, Chao; Wang, Cong
2017-06-15
Supporting simultaneous access of machine-type devices is a critical challenge in machine-to-machine (M2M) communications. In this paper, we propose an optimal scheme to dynamically adjust the Access Class Barring (ACB) factor and the number of random access channel (RACH) resources for clustered machine-to-machine (M2M) communications, in which Delay-Sensitive (DS) devices coexist with Delay-Tolerant (DT) ones. In M2M communications, since delay-sensitive devices share random access resources with delay-tolerant devices, reducing the resources consumed by delay-sensitive devices means that there will be more resources available to delay-tolerant ones. Our goal is to optimize the random access scheme, which can not only satisfy the requirements of delay-sensitive devices, but also take the communication quality of delay-tolerant ones into consideration. We discuss this problem from the perspective of delay-sensitive services by adjusting the resource allocation and ACB scheme for these devices dynamically. Simulation results show that our proposed scheme realizes good performance in satisfying the delay-sensitive services as well as increasing the utilization rate of the random access resources allocated to them.
Access to anti-cancer drugs in India: is there a need to revise reimbursement policies?
Haitsma, Gertruud; Patel, Himanshu; Gurumurthy, Parthasarathi; Postma, Maarten J
2018-06-01
The aim of this study was to examine the access of Indian cancer patients to optimum cancer care under selected government schemes by reviewing reimbursement schemes for cancer care in India. All cancer care reimbursement schemes in India were identified and three highly utilized schemes (VAS, RAS, CMCHS) were selected. Quality of breast, colorectal, lung, head & neck, and gastric cancer care was reviewed with respect to NCCN guidelines. Direct medical costs and shortage of budget in reimbursed amounts were calculated for each listed chemotherapy regimen. Medical oncology practice following the schemes' formularies is inferior to recommendations by the NCCN guidelines. Innovative treatment (targeted therapies) like trastuzumab, pertuzumab (breast), bevacizumab, cetuximab, panitumumab (colorectal), erlotinib, gefitinib, crizotinib, and nivolumab (lung) are either not reimbursed (VAS, CMCHS) or partially reimbursed (RAS). Average shortage of budget was found to be 43% (breast), 55% (colorectal), 74% (lung), 7% (head & neck), and 51% (gastric cancer). Policy makers should consider addition of newer treatments, exclusion of sub-optimal treatments, increments in per patient budget and optimization of supportive care, which may contribute to improvements in survival and quality of life for Indian cancer patients.
Consensus-based distributed cooperative learning from closed-loop neural control systems.
Chen, Weisheng; Hua, Shaoyong; Zhang, Huaguang
2015-02-01
In this paper, the neural tracking problem is addressed for a group of uncertain nonlinear systems where the system structures are identical but the reference signals are different. This paper focuses on studying the learning capability of neural networks (NNs) during the control process. First, we propose a novel control scheme called distributed cooperative learning (DCL) control scheme, by establishing the communication topology among adaptive laws of NN weights to share their learned knowledge online. It is further proved that if the communication topology is undirected and connected, all estimated weights of NNs can converge to small neighborhoods around their optimal values over a domain consisting of the union of all state orbits. Second, as a corollary it is shown that the conclusion on the deterministic learning still holds in the decentralized adaptive neural control scheme where, however, the estimated weights of NNs just converge to small neighborhoods of the optimal values along their own state orbits. Thus, the learned controllers obtained by DCL scheme have the better generalization capability than ones obtained by decentralized learning method. A simulation example is provided to verify the effectiveness and advantages of the control schemes proposed in this paper.
Optimal feedback scheme and universal time scaling for Hamiltonian parameter estimation.
Yuan, Haidong; Fung, Chi-Hang Fred
2015-09-11
Time is a valuable resource and it is expected that a longer time period should lead to better precision in Hamiltonian parameter estimation. However, recent studies in quantum metrology have shown that in certain cases more time may even lead to worse estimations, which puts this intuition into question. In this Letter we show that by including feedback controls this intuition can be restored. By deriving asymptotically optimal feedback controls we quantify the maximal improvement feedback controls can provide in Hamiltonian parameter estimation and show a universal time scaling for the precision limit under the optimal feedback scheme. Our study reveals an intriguing connection between noncommutativity in the dynamics and the gain of feedback controls in Hamiltonian parameter estimation.
Liu, Tao; Djordjevic, Ivan B
2014-12-29
In this paper, we first describe an optimal signal constellation design algorithm suitable for the coherent optical channels dominated by the linear phase noise. Then, we modify this algorithm to be suitable for the nonlinear phase noise dominated channels. In optimization procedure, the proposed algorithm uses the cumulative log-likelihood function instead of the Euclidian distance. Further, an LDPC coded modulation scheme is proposed to be used in combination with signal constellations obtained by proposed algorithm. Monte Carlo simulations indicate that the LDPC-coded modulation schemes employing the new constellation sets, obtained by our new signal constellation design algorithm, outperform corresponding QAM constellations significantly in terms of transmission distance and have better nonlinearity tolerance.
Optimal parameter estimation with a fixed rate of abstention
NASA Astrophysics Data System (ADS)
Gendra, B.; Ronco-Bonvehi, E.; Calsamiglia, J.; Muñoz-Tapia, R.; Bagan, E.
2013-07-01
The problems of optimally estimating a phase, a direction, and the orientation of a Cartesian frame (or trihedron) with general pure states are addressed. Special emphasis is put on estimation schemes that allow for inconclusive answers or abstention. It is shown that such schemes enable drastic improvements, up to the extent of attaining the Heisenberg limit in some cases, and the required amount of abstention is quantified. A general mathematical framework to deal with the asymptotic limit of many qubits or large angular momentum is introduced and used to obtain analytical results for all the relevant cases under consideration. Parameter estimation with abstention is also formulated as a semidefinite programming problem, for which very efficient numerical optimization techniques exist.
NASA Astrophysics Data System (ADS)
Hosseini-Bioki, M. M.; Rashidinejad, M.; Abdollahi, A.
2013-11-01
Load shedding is a crucial issue in power systems especially under restructured electricity environment. Market-driven load shedding in reregulated power systems associated with security as well as reliability is investigated in this paper. A technoeconomic multi-objective function is introduced to reveal an optimal load shedding scheme considering maximum social welfare. The proposed optimization problem includes maximum GENCOs and loads' profits as well as maximum loadability limit under normal and contingency conditions. Particle swarm optimization (PSO) as a heuristic optimization technique, is utilized to find an optimal load shedding scheme. In a market-driven structure, generators offer their bidding blocks while the dispatchable loads will bid their price-responsive demands. An independent system operator (ISO) derives a market clearing price (MCP) while rescheduling the amount of generating power in both pre-contingency and post-contingency conditions. The proposed methodology is developed on a 3-bus system and then is applied to a modified IEEE 30-bus test system. The obtained results show the effectiveness of the proposed methodology in implementing the optimal load shedding satisfying social welfare by maintaining voltage stability margin (VSM) through technoeconomic analyses.
NASA Astrophysics Data System (ADS)
Qiang, Wei
2011-12-01
We describe a sampling scheme for the two-dimensional (2D) solid state NMR experiments, which can be readily applied to the sensitivity-limited samples. The sampling scheme utilizes continuous, non-uniform sampling profile for the indirect dimension, i.e. the acquisition number decreases as a function of the evolution time ( t1) in the indirect dimension. For a beta amyloid (Aβ) fibril sample, we observed overall 40-50% signal enhancement by measuring the cross peak volume, while the cross peak linewidths remained comparable to the linewidths obtained by regular sampling and processing strategies. Both the linear and Gaussian decay functions for the acquisition numbers result in similar percentage of increment in signal. In addition, we demonstrated that this sampling approach can be applied with different dipolar recoupling approaches such as radiofrequency assisted diffusion (RAD) and finite-pulse radio-frequency-driven recoupling (fpRFDR). This sampling scheme is especially suitable for the sensitivity-limited samples which require long signal averaging for each t1 point, for instance the biological membrane proteins where only a small fraction of the sample is isotopically labeled.
Analysis of sensitivity to different parameterization schemes for a subtropical cyclone
NASA Astrophysics Data System (ADS)
Quitián-Hernández, L.; Fernández-González, S.; González-Alemán, J. J.; Valero, F.; Martín, M. L.
2018-05-01
A sensitivity analysis to diverse WRF model physical parameterization schemes is carried out during the lifecycle of a Subtropical cyclone (STC). STCs are low-pressure systems that share tropical and extratropical characteristics, with hybrid thermal structures. In October 2014, a STC made landfall in the Canary Islands, causing widespread damage from strong winds and precipitation there. The system began to develop on October 18 and its effects lasted until October 21. Accurate simulation of this type of cyclone continues to be a major challenge because of its rapid intensification and unique characteristics. In the present study, several numerical simulations were performed using the WRF model to do a sensitivity analysis of its various parameterization schemes for the development and intensification of the STC. The combination of parameterization schemes that best simulated this type of phenomenon was thereby determined. In particular, the parameterization combinations that included the Tiedtke cumulus schemes had the most positive effects on model results. Moreover, concerning STC track validation, optimal results were attained when the STC was fully formed and all convective processes stabilized. Furthermore, to obtain the parameterization schemes that optimally categorize STC structure, a verification using Cyclone Phase Space is assessed. Consequently, the combination of parameterizations including the Tiedtke cumulus schemes were again the best in categorizing the cyclone's subtropical structure. For strength validation, related atmospheric variables such as wind speed and precipitable water were analyzed. Finally, the effects of using a deterministic or probabilistic approach in simulating intense convective phenomena were evaluated.
NASA Astrophysics Data System (ADS)
Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.-L.
2015-05-01
Intel Many Integrated Core (MIC) ushers in a new era of supercomputing speed, performance, and compatibility. It allows the developers to run code at trillions of calculations per second using the familiar programming model. In this paper, we present our results of optimizing the updated Goddard shortwave radiation Weather Research and Forecasting (WRF) scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The co-processor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of Xeon Phi will require using some novel optimization techniques. Those optimization techniques are discusses in this paper. The results show that the optimizations improved performance of the original code on Xeon Phi 7120P by a factor of 1.3x.
Coalescent: an open-science framework for importance sampling in coalescent theory.
Tewari, Susanta; Spouge, John L
2015-01-01
Background. In coalescent theory, computer programs often use importance sampling to calculate likelihoods and other statistical quantities. An importance sampling scheme can exploit human intuition to improve statistical efficiency of computations, but unfortunately, in the absence of general computer frameworks on importance sampling, researchers often struggle to translate new sampling schemes computationally or benchmark against different schemes, in a manner that is reliable and maintainable. Moreover, most studies use computer programs lacking a convenient user interface or the flexibility to meet the current demands of open science. In particular, current computer frameworks can only evaluate the efficiency of a single importance sampling scheme or compare the efficiencies of different schemes in an ad hoc manner. Results. We have designed a general framework (http://coalescent.sourceforge.net; language: Java; License: GPLv3) for importance sampling that computes likelihoods under the standard neutral coalescent model of a single, well-mixed population of constant size over time following infinite sites model of mutation. The framework models the necessary core concepts, comes integrated with several data sets of varying size, implements the standard competing proposals, and integrates tightly with our previous framework for calculating exact probabilities. For a given dataset, it computes the likelihood and provides the maximum likelihood estimate of the mutation parameter. Well-known benchmarks in the coalescent literature validate the accuracy of the framework. The framework provides an intuitive user interface with minimal clutter. For performance, the framework switches automatically to modern multicore hardware, if available. It runs on three major platforms (Windows, Mac and Linux). Extensive tests and coverage make the framework reliable and maintainable. Conclusions. In coalescent theory, many studies of computational efficiency consider only effective sample size. Here, we evaluate proposals in the coalescent literature, to discover that the order of efficiency among the three importance sampling schemes changes when one considers running time as well as effective sample size. We also describe a computational technique called "just-in-time delegation" available to improve the trade-off between running time and precision by constructing improved importance sampling schemes from existing ones. Thus, our systems approach is a potential solution to the "2(8) programs problem" highlighted by Felsenstein, because it provides the flexibility to include or exclude various features of similar coalescent models or importance sampling schemes.
Statistical inference for the additive hazards model under outcome-dependent sampling.
Yu, Jichang; Liu, Yanyan; Sandler, Dale P; Zhou, Haibo
2015-09-01
Cost-effective study design and proper inference procedures for data from such designs are always of particular interests to study investigators. In this article, we propose a biased sampling scheme, an outcome-dependent sampling (ODS) design for survival data with right censoring under the additive hazards model. We develop a weighted pseudo-score estimator for the regression parameters for the proposed design and derive the asymptotic properties of the proposed estimator. We also provide some suggestions for using the proposed method by evaluating the relative efficiency of the proposed method against simple random sampling design and derive the optimal allocation of the subsamples for the proposed design. Simulation studies show that the proposed ODS design is more powerful than other existing designs and the proposed estimator is more efficient than other estimators. We apply our method to analyze a cancer study conducted at NIEHS, the Cancer Incidence and Mortality of Uranium Miners Study, to study the risk of radon exposure to cancer.
Statistical inference for the additive hazards model under outcome-dependent sampling
Yu, Jichang; Liu, Yanyan; Sandler, Dale P.; Zhou, Haibo
2015-01-01
Cost-effective study design and proper inference procedures for data from such designs are always of particular interests to study investigators. In this article, we propose a biased sampling scheme, an outcome-dependent sampling (ODS) design for survival data with right censoring under the additive hazards model. We develop a weighted pseudo-score estimator for the regression parameters for the proposed design and derive the asymptotic properties of the proposed estimator. We also provide some suggestions for using the proposed method by evaluating the relative efficiency of the proposed method against simple random sampling design and derive the optimal allocation of the subsamples for the proposed design. Simulation studies show that the proposed ODS design is more powerful than other existing designs and the proposed estimator is more efficient than other estimators. We apply our method to analyze a cancer study conducted at NIEHS, the Cancer Incidence and Mortality of Uranium Miners Study, to study the risk of radon exposure to cancer. PMID:26379363
Drechsler, Martin
2017-02-01
Auctions have been proposed as alternatives to payments for environmental services when spatial interactions and costs are better known to landowners than to the conservation agency (asymmetric information). Recently, an auction scheme was proposed that delivers optimal conservation in the sense that social welfare is maximized. I examined the social welfare and the budget efficiency delivered by this scheme, where social welfare represents the difference between the monetized ecological benefit and the conservation cost incurred to the landowners and budget efficiency is defined as maximizing the ecological benefit for a given conservation budget. For the analysis, I considered a stylized landscape with land patches that can be used for agriculture or conservation. The ecological benefit was measured by an objective function that increases with increasing number and spatial aggregation of conserved land patches. I compared the social welfare and the budget efficiency of the auction scheme with an agglomeration payment, a policy scheme that considers spatial interactions and that was proposed recently. The auction delivered a higher level of social welfare than the agglomeration payment. However, the agglomeration payment was more efficient budgetarily than the auction, so the comparative performances of the 2 schemes depended on the chosen policy criterion-social welfare or budget efficiency. Both policy criteria are relevant for conservation. Which one should be chosen depends on the problem at hand, for example, whether social preferences should be taken into account in the decision of how much money to invest in conservation or whether the available conservation budget is strictly limited. © 2016 Society for Conservation Biology.
NASA Technical Reports Server (NTRS)
Barker, L. Keith; Mckinney, William S., Jr.
1989-01-01
The Laboratory Telerobotic Manipulator (LTM) is a seven-degree-of-freedom robot arm. Two of the arms were delivered to Langley Research Center for ground-based research to assess the use of redundant degree-of-freedom robot arms in space operations. Resolved-rate control equations for the LTM are derived. The equations are based on a scheme developed at the Oak Ridge National Laboratory for computing optimized joint angle rates in real time. The optimized joint angle rates actually represent a trade-off, as the hand moves, between small rates (least-squares solution) and those rates which work toward satisfying a specified performance criterion of joint angles. In singularities where the optimization scheme cannot be applied, alternate control equations are devised. The equations developed were evaluated using a real-time computer simulation to control a 3-D graphics model of the LTM.
NASA Technical Reports Server (NTRS)
Hrinda, Glenn A.; Nguyen, Duc T.
2008-01-01
A technique for the optimization of stability constrained geometrically nonlinear shallow trusses with snap through behavior is demonstrated using the arc length method and a strain energy density approach within a discrete finite element formulation. The optimization method uses an iterative scheme that evaluates the design variables' performance and then updates them according to a recursive formula controlled by the arc length method. A minimum weight design is achieved when a uniform nonlinear strain energy density is found in all members. This minimal condition places the design load just below the critical limit load causing snap through of the structure. The optimization scheme is programmed into a nonlinear finite element algorithm to find the large strain energy at critical limit loads. Examples of highly nonlinear trusses found in literature are presented to verify the method.
NASA Astrophysics Data System (ADS)
Liu, Derong; Huang, Yuzhu; Wang, Ding; Wei, Qinglai
2013-09-01
In this paper, an observer-based optimal control scheme is developed for unknown nonlinear systems using adaptive dynamic programming (ADP) algorithm. First, a neural-network (NN) observer is designed to estimate system states. Then, based on the observed states, a neuro-controller is constructed via ADP method to obtain the optimal control. In this design, two NN structures are used: a three-layer NN is used to construct the observer which can be applied to systems with higher degrees of nonlinearity and without a priori knowledge of system dynamics, and a critic NN is employed to approximate the value function. The optimal control law is computed using the critic NN and the observer NN. Uniform ultimate boundedness of the closed-loop system is guaranteed. The actor, critic, and observer structures are all implemented in real-time, continuously and simultaneously. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control scheme.
Free-form reticulated shell structures searched for maximum buckling strength
NASA Astrophysics Data System (ADS)
Takiuchi, Yuji; Kato, Shiro; Nakazawa, Shoji
2017-10-01
In this paper, a scheme of shape optimization is proposed for maximum buckling strength of free-form steel reticulated shells. In order to discuss the effectiveness of objective functions with respect to maximizing buckling strength, several different optimizations are applied to shallow steel single layer reticulated shells targeting rigidly jointed tubular members. The objective functions to be compared are linear buckling load, strain energy, initial yield load, and elasto-plastic buckling strength evaluated based on Modified Dunkerley Formula. With respect to obtained free-forms based on the four optimization schemes, both of their elastic buckling and elasto-plastic buckling behaviour are investigated and compared considering geometrical imperfections. As a result, it is concluded that the first and fourth optimization methods are effective from a viewpoint of buckling strength. And the relation between generalized slenderness ratio and appropriate objective function applied in buckling strength maximization is made clear.
Workflow of the Grover algorithm simulation incorporating CUDA and GPGPU
NASA Astrophysics Data System (ADS)
Lu, Xiangwen; Yuan, Jiabin; Zhang, Weiwei
2013-09-01
The Grover quantum search algorithm, one of only a few representative quantum algorithms, can speed up many classical algorithms that use search heuristics. No true quantum computer has yet been developed. For the present, simulation is one effective means of verifying the search algorithm. In this work, we focus on the simulation workflow using a compute unified device architecture (CUDA). Two simulation workflow schemes are proposed. These schemes combine the characteristics of the Grover algorithm and the parallelism of general-purpose computing on graphics processing units (GPGPU). We also analyzed the optimization of memory space and memory access from this perspective. We implemented four programs on CUDA to evaluate the performance of schemes and optimization. Through experimentation, we analyzed the organization of threads suited to Grover algorithm simulations, compared the storage costs of the four programs, and validated the effectiveness of optimization. Experimental results also showed that the distinguished program on CUDA outperformed the serial program of libquantum on a CPU with a speedup of up to 23 times (12 times on average), depending on the scale of the simulation.
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Rosen, I. G.
1985-01-01
In the optimal linear quadratic regulator problem for finite dimensional systems, the method known as an alpha-shift can be used to produce a closed-loop system whose spectrum lies to the left of some specified vertical line; that is, a closed-loop system with a prescribed degree of stability. This paper treats the extension of the alpha-shift to hereditary systems. As infinite dimensions, the shift can be accomplished by adding alpha times the identity to the open-loop semigroup generator and then solving an optimal regulator problem. However, this approach does not work with a new approximation scheme for hereditary control problems recently developed by Kappel and Salamon. Since this scheme is among the best to date for the numerical solution of the linear regulator problem for hereditary systems, an alternative method for shifting the closed-loop spectrum is needed. An alpha-shift technique that can be used with the Kappel-Salamon approximation scheme is developed. Both the continuous-time and discrete-time problems are considered. A numerical example which demonstrates the feasibility of the method is included.
NASA Technical Reports Server (NTRS)
Krasteva, Denitza T.
1998-01-01
Multidisciplinary design optimization (MDO) for large-scale engineering problems poses many challenges (e.g., the design of an efficient concurrent paradigm for global optimization based on disciplinary analyses, expensive computations over vast data sets, etc.) This work focuses on the application of distributed schemes for massively parallel architectures to MDO problems, as a tool for reducing computation time and solving larger problems. The specific problem considered here is configuration optimization of a high speed civil transport (HSCT), and the efficient parallelization of the embedded paradigm for reasonable design space identification. Two distributed dynamic load balancing techniques (random polling and global round robin with message combining) and two necessary termination detection schemes (global task count and token passing) were implemented and evaluated in terms of effectiveness and scalability to large problem sizes and a thousand processors. The effect of certain parameters on execution time was also inspected. Empirical results demonstrated stable performance and effectiveness for all schemes, and the parametric study showed that the selected algorithmic parameters have a negligible effect on performance.
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Rosen, I. G.
1987-01-01
In the optimal linear quadratic regulator problem for finite dimensional systems, the method known as an alpha-shift can be used to produce a closed-loop system whose spectrum lies to the left of some specified vertical line; that is, a closed-loop system with a prescribed degree of stability. This paper treats the extension of the alpha-shift to hereditary systems. As infinite dimensions, the shift can be accomplished by adding alpha times the identity to the open-loop semigroup generator and then solving an optimal regulator problem. However, this approach does not work with a new approximation scheme for hereditary control problems recently developed by Kappel and Salamon. Since this scheme is among the best to date for the numerical solution of the linear regulator problem for hereditary systems, an alternative method for shifting the closed-loop spectrum is needed. An alpha-shift technique that can be used with the Kappel-Salamon approximation scheme is developed. Both the continuous-time and discrete-time problems are considered. A numerical example which demonstrates the feasibility of the method is included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhan, Fei; Tao, Ye; Zhao, Haifeng
Time-resolved X-ray absorption spectroscopy (TR-XAS), based on the laser-pump/X-ray-probe method, is powerful in capturing the change of the geometrical and electronic structure of the absorbing atom upon excitation. TR-XAS data analysis is generally performed on the laser-on minus laser-off difference spectrum. Here, a new analysis scheme is presented for the TR-XAS difference fitting in both the extended X-ray absorption fine-structure (EXAFS) and the X-ray absorption near-edge structure (XANES) regions.R-space EXAFS difference fitting could quickly provide the main quantitative structure change of the first shell. The XANES fitting part introduces a global non-derivative optimization algorithm and optimizes the local structure changemore » in a flexible way where both the core XAS calculation package and the search method in the fitting shell are changeable. The scheme was applied to the TR-XAS difference analysis of Fe(phen) 3spin crossover complex and yielded reliable distance change and excitation population.« less
Saravanan, Chandra; Shao, Yihan; Baer, Roi; Ross, Philip N; Head-Gordon, Martin
2003-04-15
A sparse matrix multiplication scheme with multiatom blocks is reported, a tool that can be very useful for developing linear-scaling methods with atom-centered basis functions. Compared to conventional element-by-element sparse matrix multiplication schemes, efficiency is gained by the use of the highly optimized basic linear algebra subroutines (BLAS). However, some sparsity is lost in the multiatom blocking scheme because these matrix blocks will in general contain negligible elements. As a result, an optimal block size that minimizes the CPU time by balancing these two effects is recovered. In calculations on linear alkanes, polyglycines, estane polymers, and water clusters the optimal block size is found to be between 40 and 100 basis functions, where about 55-75% of the machine peak performance was achieved on an IBM RS6000 workstation. In these calculations, the blocked sparse matrix multiplications can be 10 times faster than a standard element-by-element sparse matrix package. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 618-622, 2003
Optimally Distributed Kalman Filtering with Data-Driven Communication †
Dormann, Katharina
2018-01-01
For multisensor data fusion, distributed state estimation techniques that enable a local processing of sensor data are the means of choice in order to minimize storage and communication costs. In particular, a distributed implementation of the optimal Kalman filter has recently been developed. A significant disadvantage of this algorithm is that the fusion center needs access to each node so as to compute a consistent state estimate, which requires full communication each time an estimate is requested. In this article, different extensions of the optimally distributed Kalman filter are proposed that employ data-driven transmission schemes in order to reduce communication expenses. As a first relaxation of the full-rate communication scheme, it can be shown that each node only has to transmit every second time step without endangering consistency of the fusion result. Also, two data-driven algorithms are introduced that even allow for lower transmission rates, and bounds are derived to guarantee consistent fusion results. Simulations demonstrate that the data-driven distributed filtering schemes can outperform a centralized Kalman filter that requires each measurement to be sent to the center node. PMID:29596392
Zhan, Fei; Tao, Ye; Zhao, Haifeng
2017-07-01
Time-resolved X-ray absorption spectroscopy (TR-XAS), based on the laser-pump/X-ray-probe method, is powerful in capturing the change of the geometrical and electronic structure of the absorbing atom upon excitation. TR-XAS data analysis is generally performed on the laser-on minus laser-off difference spectrum. Here, a new analysis scheme is presented for the TR-XAS difference fitting in both the extended X-ray absorption fine-structure (EXAFS) and the X-ray absorption near-edge structure (XANES) regions. R-space EXAFS difference fitting could quickly provide the main quantitative structure change of the first shell. The XANES fitting part introduces a global non-derivative optimization algorithm and optimizes the local structure change in a flexible way where both the core XAS calculation package and the search method in the fitting shell are changeable. The scheme was applied to the TR-XAS difference analysis of Fe(phen) 3 spin crossover complex and yielded reliable distance change and excitation population.
LHCb trigger streams optimization
NASA Astrophysics Data System (ADS)
Derkach, D.; Kazeev, N.; Neychev, R.; Panin, A.; Trofimov, I.; Ustyuzhanin, A.; Vesterinen, M.
2017-10-01
The LHCb experiment stores around 1011 collision events per year. A typical physics analysis deals with a final sample of up to 107 events. Event preselection algorithms (lines) are used for data reduction. Since the data are stored in a format that requires sequential access, the lines are grouped into several output file streams, in order to increase the efficiency of user analysis jobs that read these data. The scheme efficiency heavily depends on the stream composition. By putting similar lines together and balancing the stream sizes it is possible to reduce the overhead. We present a method for finding an optimal stream composition. The method is applied to a part of the LHCb data (Turbo stream) on the stage where it is prepared for user physics analysis. This results in an expected improvement of 15% in the speed of user analysis jobs, and will be applied on data to be recorded in 2017.
NASA Astrophysics Data System (ADS)
Zhou, Naiyun; Gao, Yi
2017-03-01
This paper presents a fully automatic approach to grade intermediate prostate malignancy with hematoxylin and eosin-stained whole slide images. Deep learning architectures such as convolutional neural networks have been utilized in the domain of histopathology for automated carcinoma detection and classification. However, few work show its power in discriminating intermediate Gleason patterns, due to sporadic distribution of prostate glands on stained surgical section samples. We propose optimized hematoxylin decomposition on localized images, followed by convolutional neural network to classify Gleason patterns 3+4 and 4+3 without handcrafted features or gland segmentation. Crucial glands morphology and structural relationship of nuclei are extracted twice in different color space by the multi-scale strategy to mimic pathologists' visual examination. Our novel classification scheme evaluated on 169 whole slide images yielded a 70.41% accuracy and corresponding area under the receiver operating characteristic curve of 0.7247.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, F.; Banks, J. W.; Henshaw, W. D.
We describe a new partitioned approach for solving conjugate heat transfer (CHT) problems where the governing temperature equations in different material domains are time-stepped in a implicit manner, but where the interface coupling is explicit. The new approach, called the CHAMP scheme (Conjugate Heat transfer Advanced Multi-domain Partitioned), is based on a discretization of the interface coupling conditions using a generalized Robin (mixed) condition. The weights in the Robin condition are determined from the optimization of a condition derived from a local stability analysis of the coupling scheme. The interface treatment combines ideas from optimized-Schwarz methods for domain-decomposition problems togethermore » with the interface jump conditions and additional compatibility jump conditions derived from the governing equations. For many problems (i.e. for a wide range of material properties, grid-spacings and time-steps) the CHAMP algorithm is stable and second-order accurate using no sub-time-step iterations (i.e. a single implicit solve of the temperature equation in each domain). In extreme cases (e.g. very fine grids with very large time-steps) it may be necessary to perform one or more sub-iterations. Each sub-iteration generally increases the range of stability substantially and thus one sub-iteration is likely sufficient for the vast majority of practical problems. The CHAMP algorithm is developed first for a model problem and analyzed using normal-mode the- ory. The theory provides a mechanism for choosing optimal parameters in the mixed interface condition. A comparison is made to the classical Dirichlet-Neumann (DN) method and, where applicable, to the optimized- Schwarz (OS) domain-decomposition method. For problems with different thermal conductivities and dif- fusivities, the CHAMP algorithm outperforms the DN scheme. For domain-decomposition problems with uniform conductivities and diffusivities, the CHAMP algorithm performs better than the typical OS scheme with one grid-cell overlap. Lastly, the CHAMP scheme is also developed for general curvilinear grids and CHT ex- amples are presented using composite overset grids that confirm the theory and demonstrate the effectiveness of the approach.« less
NASA Astrophysics Data System (ADS)
Harshan, S.; Roth, M.; Velasco, E.
2014-12-01
Forecasting of the urban weather and climate is of great importance as our cities become more populated and considering the combined effects of global warming and local land use changes which make urban inhabitants more vulnerable to e.g. heat waves and flash floods. In meso/global scale models, urban parameterization schemes are used to represent the urban effects. However, these schemes require a large set of input parameters related to urban morphological and thermal properties. Obtaining all these parameters through direct measurements are usually not feasible. A number of studies have reported on parameter estimation and sensitivity analysis to adjust and determine the most influential parameters for land surface schemes in non-urban areas. Similar work for urban areas is scarce, in particular studies on urban parameterization schemes in tropical cities have so far not been reported. In order to address above issues, the town energy balance (TEB) urban parameterization scheme (part of the SURFEX land surface modeling system) was subjected to a sensitivity and optimization/parameter estimation experiment at a suburban site in, tropical Singapore. The sensitivity analysis was carried out as a screening test to identify the most sensitive or influential parameters. Thereafter, an optimization/parameter estimation experiment was performed to calibrate the input parameter. The sensitivity experiment was based on the "improved Sobol's global variance decomposition method" . The analysis showed that parameters related to road, roof and soil moisture have significant influence on the performance of the model. The optimization/parameter estimation experiment was performed using the AMALGM (a multi-algorithm genetically adaptive multi-objective method) evolutionary algorithm. The experiment showed a remarkable improvement compared to the simulations using the default parameter set. The calibrated parameters from this optimization experiment can be used for further model validation studies to identify inherent deficiencies in model physics.
A new sampling scheme for tropical forest monitoring using satellite imagery
Frederic Achard; Tim Richards; Javier Gallego
2000-01-01
At the global level, a sampling scheme for tropical forest change assessment, using high resolution satellite images, has been defined using sampling units independent of any particular satellite sensor. For this purpose, a sampling frame has been chosen a hexagonal tessellation of 3,600 km².
Homodyning and heterodyning the quantum phase
NASA Technical Reports Server (NTRS)
Dariano, Giacomo M.; Macchiavello, C.; Paris, M. G. A.
1994-01-01
The double-homodyne and the heterodyne detection schemes for phase shifts between two synchronous modes of the electromagnetic field are analyzed in the framework of quantum estimation theory. The probability operator-valued measures (POM's) of the detectors are evaluated and compared with the ideal one in the limit of strong local reference oscillator. The present operational approach leads to a reasonable definition of phase measurement, whose sensitivity is actually related to the output r.m.s. noise of the photodetector. We emphasize that the simple-homodyne scheme does not correspond to a proper phase-shift measurements as it is just a zero-point detector. The sensitivity of all detection schemes are optimized at fixed energy with respect to the input state of radiation. It is shown that the optimal sensitivity can be actually achieved using suited squeezed states.
NASA Astrophysics Data System (ADS)
Zhang, Jinfang; Yan, Xiaoqing; Wang, Hongfu
2018-02-01
With the rapid development of renewable energy in Northwest China, curtailment phenomena is becoming more and more serve owing to lack of adjustment ability and enough transmission capacity. Based on the existing HVDC projects, exploring the hybrid transmission mode associated with thermal power and renewable power will be necessary and important. This paper has proposed a method on optimal thermal power and renewable energy combination for HVDC lines, based on multi-scheme comparison. Having established the mathematic model for electric power balance in time series mode, ten different schemes have been picked for figuring out the suitable one by test simulation. By the proposed related discriminated principle, including generation device utilization hours, renewable energy electricity proportion and curtailment level, the recommendation scheme has been found. The result has also validated the efficiency of the method.
New optimization scheme to obtain interaction potentials for oxide glasses
NASA Astrophysics Data System (ADS)
Sundararaman, Siddharth; Huang, Liping; Ispas, Simona; Kob, Walter
2018-05-01
We propose a new scheme to parameterize effective potentials that can be used to simulate atomic systems such as oxide glasses. As input data for the optimization, we use the radial distribution functions of the liquid and the vibrational density of state of the glass, both obtained from ab initio simulations, as well as experimental data on the pressure dependence of the density of the glass. For the case of silica, we find that this new scheme facilitates finding pair potentials that are significantly more accurate than the previous ones even if the functional form is the same, thus demonstrating that even simple two-body potentials can be superior to more complex three-body potentials. We have tested the new potential by calculating the pressure dependence of the elastic moduli and found a good agreement with the corresponding experimental data.
NASA Technical Reports Server (NTRS)
Milman, Mark H.
1988-01-01
The fundamental control synthesis issue of establishing a priori convergence rates of approximation schemes for feedback controllers for a class of distributed parameter systems is addressed within the context of hereditary schemes. Specifically, a factorization approach is presented for deriving approximations to the optimal feedback gains for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the controls, trajectories and feedback kernels. Two algorithms are derived from the basic approximation scheme, including a fast algorithm, in the time-invariant case. A numerical example is also considered.
Numerical approach of collision avoidance and optimal control on robotic manipulators
NASA Technical Reports Server (NTRS)
Wang, Jyhshing Jack
1990-01-01
Collision-free optimal motion and trajectory planning for robotic manipulators are solved by a method of sequential gradient restoration algorithm. Numerical examples of a two degree-of-freedom (DOF) robotic manipulator are demonstrated to show the excellence of the optimization technique and obstacle avoidance scheme. The obstacle is put on the midway, or even further inward on purpose, of the previous no-obstacle optimal trajectory. For the minimum-time purpose, the trajectory grazes by the obstacle and the minimum-time motion successfully avoids the obstacle. The minimum-time is longer for the obstacle avoidance cases than the one without obstacle. The obstacle avoidance scheme can deal with multiple obstacles in any ellipsoid forms by using artificial potential fields as penalty functions via distance functions. The method is promising in solving collision-free optimal control problems for robotics and can be applied to any DOF robotic manipulators with any performance indices and mobile robots as well. Since this method generates optimum solution based on Pontryagin Extremum Principle, rather than based on assumptions, the results provide a benchmark against which any optimization techniques can be measured.
Jung, Goo-Eun; Noh, Hanaul; Shin, Yong Kyun; Kahng, Se-Jong; Baik, Ku Youn; Kim, Hong-Bae; Cho, Nam-Joon; Cho, Sang-Joon
2015-07-07
Scanning ion conductance microscopy (SICM) is an increasingly useful nanotechnology tool for non-contact, high resolution imaging of live biological specimens such as cellular membranes. In particular, approach-retract-scanning (ARS) mode enables fast probing of delicate biological structures by rapid and repeated approach/retraction of a nano-pipette tip. For optimal performance, accurate control of the tip position is a critical issue. Herein, we present a novel closed-loop control strategy for the ARS mode that achieves higher operating speeds with increased stability. The algorithm differs from that of most conventional (i.e., constant velocity) approach schemes as it includes a deceleration phase near the sample surface, which is intended to minimize the possibility of contact with the surface. Analysis of the ion current and tip position demonstrates that the new mode is able to operate at approach speeds of up to 250 μm s(-1). As a result of the improved stability, SICM imaging with the new approach scheme enables significantly improved, high resolution imaging of subtle features of fixed and live cells (e.g., filamentous structures & membrane edges). Taken together, the results suggest that optimization of the tip approach speed can substantially improve SICM imaging performance, further enabling SICM to become widely adopted as a general and versatile research tool for biological studies at the nanoscale level.
Factorizable Schemes for the Equations of Fluid Flow
NASA Technical Reports Server (NTRS)
Sidilkover, David
1999-01-01
We present an upwind high-resolution factorizable (UHF) discrete scheme for the compressible Euler equations that allows to distinguish between full-potential and advection factors at the discrete level. The scheme approximates equations in their general conservative form and is related to the family of genuinely multidimensional upwind schemes developed previously and demonstrated to have good shock-capturing capabilities. A unique property of this scheme is that in addition to the aforementioned features it is also factorizable, i.e., it allows to distinguish between full-potential and advection factors at the discrete level. The latter property facilitates the construction of optimally efficient multigrid solvers. This is done through a relaxation procedure that utilizes the factorizability property.
NASA Astrophysics Data System (ADS)
Di, Zhenhua; Duan, Qingyun; Wang, Chen; Ye, Aizhong; Miao, Chiyuan; Gong, Wei
2018-03-01
Forecasting skills of the complex weather and climate models have been improved by tuning the sensitive parameters that exert the greatest impact on simulated results based on more effective optimization methods. However, whether the optimal parameter values are still work when the model simulation conditions vary, which is a scientific problem deserving of study. In this study, a highly-effective optimization method, adaptive surrogate model-based optimization (ASMO), was firstly used to tune nine sensitive parameters from four physical parameterization schemes of the Weather Research and Forecasting (WRF) model to obtain better summer precipitation forecasting over the Greater Beijing Area in China. Then, to assess the applicability of the optimal parameter values, simulation results from the WRF model with default and optimal parameter values were compared across precipitation events, boundary conditions, spatial scales, and physical processes in the Greater Beijing Area. The summer precipitation events from 6 years were used to calibrate and evaluate the optimal parameter values of WRF model. Three boundary data and two spatial resolutions were adopted to evaluate the superiority of the calibrated optimal parameters to default parameters under the WRF simulations with different boundary conditions and spatial resolutions, respectively. Physical interpretations of the optimal parameters indicating how to improve precipitation simulation results were also examined. All the results showed that the optimal parameters obtained by ASMO are superior to the default parameters for WRF simulations for predicting summer precipitation in the Greater Beijing Area because the optimal parameters are not constrained by specific precipitation events, boundary conditions, and spatial resolutions. The optimal values of the nine parameters were determined from 127 parameter samples using the ASMO method, which showed that the ASMO method is very highly-efficient for optimizing WRF model parameters.
Parametric Amplification For Detecting Weak Optical Signals
NASA Technical Reports Server (NTRS)
Hemmati, Hamid; Chen, Chien; Chakravarthi, Prakash
1996-01-01
Optical-communication receivers of proposed type implement high-sensitivity scheme of optical parametric amplification followed by direct detection for reception of extremely weak signals. Incorporates both optical parametric amplification and direct detection into optimized design enhancing effective signal-to-noise ratios during reception in photon-starved (photon-counting) regime. Eliminates need for complexity of heterodyne detection scheme and partly overcomes limitations imposed on older direct-detection schemes by noise generated in receivers and by limits on quantum efficiencies of photodetectors.
Soft-Decision Decoding of Binary Linear Block Codes Based on an Iterative Search Algorithm
NASA Technical Reports Server (NTRS)
Lin, Shu; Kasami, Tadao; Moorthy, H. T.
1997-01-01
This correspondence presents a suboptimum soft-decision decoding scheme for binary linear block codes based on an iterative search algorithm. The scheme uses an algebraic decoder to iteratively generate a sequence of candidate codewords one at a time using a set of test error patterns that are constructed based on the reliability information of the received symbols. When a candidate codeword is generated, it is tested based on an optimality condition. If it satisfies the optimality condition, then it is the most likely (ML) codeword and the decoding stops. If it fails the optimality test, a search for the ML codeword is conducted in a region which contains the ML codeword. The search region is determined by the current candidate codeword and the reliability of the received symbols. The search is conducted through a purged trellis diagram for the given code using the Viterbi algorithm. If the search fails to find the ML codeword, a new candidate is generated using a new test error pattern, and the optimality test and search are renewed. The process of testing and search continues until either the MEL codeword is found or all the test error patterns are exhausted and the decoding process is terminated. Numerical results show that the proposed decoding scheme achieves either practically optimal performance or a performance only a fraction of a decibel away from the optimal maximum-likelihood decoding with a significant reduction in decoding complexity compared with the Viterbi decoding based on the full trellis diagram of the codes.
NASA Astrophysics Data System (ADS)
Dai, C.; Qin, X. S.; Chen, Y.; Guo, H. C.
2018-06-01
A Gini-coefficient based stochastic optimization (GBSO) model was developed by integrating the hydrological model, water balance model, Gini coefficient and chance-constrained programming (CCP) into a general multi-objective optimization modeling framework for supporting water resources allocation at a watershed scale. The framework was advantageous in reflecting the conflicting equity and benefit objectives for water allocation, maintaining the water balance of watershed, and dealing with system uncertainties. GBSO was solved by the non-dominated sorting Genetic Algorithms-II (NSGA-II), after the parameter uncertainties of the hydrological model have been quantified into the probability distribution of runoff as the inputs of CCP model, and the chance constraints were converted to the corresponding deterministic versions. The proposed model was applied to identify the Pareto optimal water allocation schemes in the Lake Dianchi watershed, China. The optimal Pareto-front results reflected the tradeoff between system benefit (αSB) and Gini coefficient (αG) under different significance levels (i.e. q) and different drought scenarios, which reveals the conflicting nature of equity and efficiency in water allocation problems. A lower q generally implies a lower risk of violating the system constraints and a worse drought intensity scenario corresponds to less available water resources, both of which would lead to a decreased system benefit and a less equitable water allocation scheme. Thus, the proposed modeling framework could help obtain the Pareto optimal schemes under complexity and ensure that the proposed water allocation solutions are effective for coping with drought conditions, with a proper tradeoff between system benefit and water allocation equity.
An Improved Evolutionary Programming with Voting and Elitist Dispersal Scheme
NASA Astrophysics Data System (ADS)
Maity, Sayan; Gunjan, Kumar; Das, Swagatam
Although initially conceived for evolving finite state machines, Evolutionary Programming (EP), in its present form, is largely used as a powerful real parameter optimizer. For function optimization, EP mainly relies on its mutation operators. Over past few years several mutation operators have been proposed to improve the performance of EP on a wide variety of numerical benchmarks. However, unlike real-coded GAs, there has been no fitness-induced bias in parent selection for mutation in EP. That means the i-th population member is selected deterministically for mutation and creation of the i-th offspring in each generation. In this article we present an improved EP variant called Evolutionary Programming with Voting and Elitist Dispersal (EPVE). The scheme encompasses a voting process which not only gives importance to best solutions but also consider those solutions which are converging fast. By introducing Elitist Dispersal Scheme we maintain the elitism by keeping the potential solutions intact and other solutions are perturbed accordingly, so that those come out of the local minima. By applying these two techniques we can be able to explore those regions which have not been explored so far that may contain optima. Comparison with the recent and best-known versions of EP over 25 benchmark functions from the CEC (Congress on Evolutionary Computation) 2005 test-suite for real parameter optimization reflects the superiority of the new scheme in terms of final accuracy, speed, and robustness.
Phase averaging method for the modeling of the multiprobe and cutaneous cryosurgery
NASA Astrophysics Data System (ADS)
E Shilnikov, K.; Kudryashov, N. A.; Y Gaiur, I.
2017-12-01
In this paper we consider the problem of planning and optimization of the cutaneous and multiprobe cryosurgery operations. An explicit scheme based on the finite volume approximation of phase averaged Pennes bioheat transfer model is applied. The flux relaxation method is used for the stability improvement of scheme. Skin tissue is considered as strongly inhomogeneous media. Computerized planning tool is tested on model cryotip-based and cutaneous cryosurgery problems. For the case of cutaneous cryosurgery the method of an additional freezing element mounting is studied as an approach to optimize the cellular necrosis front propagation.
NASA Astrophysics Data System (ADS)
Ren, Danping; Wu, Shanshan; Zhang, Lijing
2016-09-01
In view of the characteristics of the global control and flexible monitor of software-defined networks (SDN), we proposes a new optical access network architecture dedicated to Wavelength Division Multiplexing-Passive Optical Network (WDM-PON) systems based on SDN. The network coding (NC) technology is also applied into this architecture to enhance the utilization of wavelength resource and reduce the costs of light source. Simulation results show that this scheme can optimize the throughput of the WDM-PON network, greatly reduce the system time delay and energy consumption.
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Rosen, I. G.
1986-01-01
An abstract approximation framework is developed for the finite and infinite time horizon discrete-time linear-quadratic regulator problem for systems whose state dynamics are described by a linear semigroup of operators on an infinite dimensional Hilbert space. The schemes included the framework yield finite dimensional approximations to the linear state feedback gains which determine the optimal control law. Convergence arguments are given. Examples involving hereditary and parabolic systems and the vibration of a flexible beam are considered. Spline-based finite element schemes for these classes of problems, together with numerical results, are presented and discussed.
Transmission congestion management in the electricity market
NASA Astrophysics Data System (ADS)
Chen, Yue
2018-04-01
In this paper we mainly discuss how to optimize the arrangement to decrease the loss of each line when the power generation side of the system transmission congestion occurs in a safe and economical manner. We respectively set the adjust model if the transmission can be eliminated which can calculate the best scheme and safety margin model when transmission cannot be eliminated which is a multi-objective planning problem. We solve the two models on the condition of the load power demands are 982.4MW and 1052.8 MW by Lingo and get the optimal management scheme.
A sensitivity equation approach to shape optimization in fluid flows
NASA Technical Reports Server (NTRS)
Borggaard, Jeff; Burns, John
1994-01-01
A sensitivity equation method to shape optimization problems is applied. An algorithm is developed and tested on a problem of designing optimal forebody simulators for a 2D, inviscid supersonic flow. The algorithm uses a BFGS/Trust Region optimization scheme with sensitivities computed by numerically approximating the linear partial differential equations that determine the flow sensitivities. Numerical examples are presented to illustrate the method.
NASA Astrophysics Data System (ADS)
Tsou, Haiping; Yan, Tsun-Yee
1999-04-01
This paper describes an extended-source spatial acquisition and tracking scheme for planetary optical communications. This scheme uses the Sun-lit Earth image as the beacon signal, which can be computed according to the current Sun-Earth-Probe angle from a pre-stored Earth image or a received snapshot taken by other Earth-orbiting satellite. Onboard the spacecraft, the reference image is correlated in the transform domain with the received image obtained from a detector array, which is assumed to have each of its pixels corrupted by an independent additive white Gaussian noise. The coordinate of the ground station is acquired and tracked, respectively, by an open-loop acquisition algorithm and a closed-loop tracking algorithm derived from the maximum likelihood criterion. As shown in the paper, the optimal spatial acquisition requires solving two nonlinear equations, or iteratively solving their linearized variants, to estimate the coordinate when translation in the relative positions of onboard and ground transceivers is considered. Similar assumption of linearization leads to the closed-loop spatial tracking algorithm in which the loop feedback signals can be derived from the weighted transform-domain correlation. Numerical results using a sample Sun-lit Earth image demonstrate that sub-pixel resolutions can be achieved by this scheme in a high disturbance environment.
A pyramid scheme for three-dimensional diffusion equations on polyhedral meshes
NASA Astrophysics Data System (ADS)
Wang, Shuai; Hang, Xudeng; Yuan, Guangwei
2017-12-01
In this paper, a new cell-centered finite volume scheme is proposed for three-dimensional diffusion equations on polyhedral meshes, which is called as pyramid scheme (P-scheme). The scheme is designed for polyhedral cells with nonplanar cell-faces. The normal flux on a nonplanar cell-face is discretized on a planar face, which is determined by a simple optimization procedure. The resulted discrete form of the normal flux involves only cell-centered and cell-vertex unknowns, and is free from face-centered unknowns. In the case of hexahedral meshes with skewed nonplanar cell-faces, a quite simple expression is obtained for the discrete normal flux. Compared with the second order accurate O-scheme [31], the P-scheme is more robust and the discretization cost is reduced remarkably. Numerical results are presented to show the performance of the P-scheme on various kinds of distorted meshes. In particular, the P-scheme is shown to be second order accurate.
NASA Astrophysics Data System (ADS)
Xia, Minggang; Liang, Chunping; Hu, Ruixue; Cheng, Zhaofang; Liu, Shiru; Zhang, Shengli
2018-05-01
It is imperative and highly desirable to buffer the stress in flexible electronic devices. In this study, we designed and fabricated lamellate poly(dimethylsiloxane) (PDMS) samples with gradient elastic moduli, motivated by the protection of the pomelo pulp by its skin, followed by the measurements of their elastic moduli. We demonstrated that the electrical and fatigue performances of a Ag-nanowire thin film device on the PDMS substrate with a gradient elastic modulus are significantly better than those of a device on a substrate with a monolayer PDMS. This study provides a robust scheme to effectively protect flexible electronic devices.
Matching soil salinization and cropping systems in communally managed irrigation schemes
NASA Astrophysics Data System (ADS)
Malota, Mphatso; Mchenga, Joshua
2018-03-01
Occurrence of soil salinization in irrigation schemes can be a good indicator to introduce high salt tolerant crops in irrigation schemes. This study assessed the level of soil salinization in a communally managed 233 ha Nkhate irrigation scheme in the Lower Shire Valley region of Malawi. Soil samples were collected within the 0-0.4 m soil depth from eight randomly selected irrigation blocks. Irrigation water samples were also collected from five randomly selected locations along the Nkhate River which supplies irrigation water to the scheme. Salinity of both the soil and the irrigation water samples was determined using an electrical conductivity (EC) meter. Analysis of the results indicated that even for very low salinity tolerant crops (ECi < 2 dS/m), the irrigation water was suitable for irrigation purposes. However, root-zone soil salinity profiles depicted that leaching of salts was not adequate and that the leaching requirement for the scheme needs to be relooked and always be adhered to during irrigation operation. The study concluded that the crop system at the scheme needs to be adjusted to match with prevailing soil and irrigation water salinity levels.
An optimized network for phosphorus load monitoring for Lake Okeechobee, Florida
Gain, W.S.
1997-01-01
Phosphorus load data were evaluated for Lake Okeechobee, Florida, for water years 1982 through 1991. Standard errors for load estimates were computed from available phosphorus concentration and daily discharge data. Components of error were associated with uncertainty in concentration and discharge data and were calculated for existing conditions and for 6 alternative load-monitoring scenarios for each of 48 distinct inflows. Benefit-cost ratios were computed for each alternative monitoring scenario at each site by dividing estimated reductions in load uncertainty by the 5-year average costs of each scenario in 1992 dollars. Absolute and marginal benefit-cost ratios were compared in an iterative optimization scheme to determine the most cost-effective combination of discharge and concentration monitoring scenarios for the lake. If the current (1992) discharge-monitoring network around the lake is maintained, the water-quality sampling at each inflow site twice each year is continued, and the nature of loading remains the same, the standard error of computed mean-annual load is estimated at about 98 metric tons per year compared to an absolute loading rate (inflows and outflows) of 530 metric tons per year. This produces a relative uncertainty of nearly 20 percent. The standard error in load can be reduced to about 20 metric tons per year (4 percent) by adopting an optimized set of monitoring alternatives at a cost of an additional $200,000 per year. The final optimized network prescribes changes to improve both concentration and discharge monitoring. These changes include the addition of intensive sampling with automatic samplers at 11 sites, the initiation of event-based sampling by observers at another 5 sites, the continuation of periodic sampling 12 times per year at 1 site, the installation of acoustic velocity meters to improve discharge gaging at 9 sites, and the improvement of a discharge rating at 1 site.
Retrieval of volcanic SO2 from HIRS/2 using optimal estimation
NASA Astrophysics Data System (ADS)
Miles, Georgina M.; Siddans, Richard; Grainger, Roy G.; Prata, Alfred J.; Fisher, Bradford; Krotkov, Nickolay
2017-07-01
We present an optimal-estimation (OE) retrieval scheme for stratospheric sulfur dioxide from the High-Resolution Infrared Radiation Sounder 2 (HIRS/2) instruments on the NOAA and MetOp platforms, an infrared radiometer that has been operational since 1979. This algorithm is an improvement upon a previous method based on channel brightness temperature differences, which demonstrated the potential for monitoring volcanic SO2 using HIRS/2. The Prata method is fast but of limited accuracy. This algorithm uses an optimal-estimation retrieval approach yielding increased accuracy for only moderate computational cost. This is principally achieved by fitting the column water vapour and accounting for its interference in the retrieval of SO2. A cloud and aerosol model is used to evaluate the sensitivity of the scheme to the presence of ash and water/ice cloud. This identifies that cloud or ash above 6 km limits the accuracy of the water vapour fit, increasing the error in the SO2 estimate. Cloud top height is also retrieved. The scheme is applied to a case study event, the 1991 eruption of Cerro Hudson in Chile. The total erupted mass of SO2 is estimated to be 2300 kT ± 600 kT. This confirms it as one of the largest events since the 1991 eruption of Pinatubo, and of comparable scale to the Northern Hemisphere eruption of Kasatochi in 2008. This retrieval method yields a minimum mass per unit area detection limit of 3 DU, which is slightly less than that for the Total Ozone Mapping Spectrometer (TOMS), the only other instrument capable of monitoring SO2 from 1979 to 1996. We show an initial comparison to TOMS for part of this eruption, with broadly consistent results. Operating in the infrared (IR), HIRS has the advantage of being able to measure both during the day and at night, and there have frequently been multiple HIRS instruments operated simultaneously for better than daily sampling. If applied to all data from the series of past and future HIRS instruments, this method presents the opportunity to produce a comprehensive and consistent volcanic SO2 time series spanning over 40 years.
A novel fully automatic scheme for fiducial marker-based alignment in electron tomography.
Han, Renmin; Wang, Liansan; Liu, Zhiyong; Sun, Fei; Zhang, Fa
2015-12-01
Although the topic of fiducial marker-based alignment in electron tomography (ET) has been widely discussed for decades, alignment without human intervention remains a difficult problem. Specifically, the emergence of subtomogram averaging has increased the demand for batch processing during tomographic reconstruction; fully automatic fiducial marker-based alignment is the main technique in this process. However, the lack of an accurate method for detecting and tracking fiducial markers precludes fully automatic alignment. In this paper, we present a novel, fully automatic alignment scheme for ET. Our scheme has two main contributions: First, we present a series of algorithms to ensure a high recognition rate and precise localization during the detection of fiducial markers. Our proposed solution reduces fiducial marker detection to a sampling and classification problem and further introduces an algorithm to solve the parameter dependence of marker diameter and marker number. Second, we propose a novel algorithm to solve the tracking of fiducial markers by reducing the tracking problem to an incomplete point set registration problem. Because a global optimization of a point set registration occurs, the result of our tracking is independent of the initial image position in the tilt series, allowing for the robust tracking of fiducial markers without pre-alignment. The experimental results indicate that our method can achieve an accurate tracking, almost identical to the current best one in IMOD with half automatic scheme. Furthermore, our scheme is fully automatic, depends on fewer parameters (only requires a gross value of the marker diameter) and does not require any manual interaction, providing the possibility of automatic batch processing of electron tomographic reconstruction. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Maglevanny, I. I.; Smolar, V. A.
2016-01-01
We introduce a new technique of interpolation of the energy-loss function (ELF) in solids sampled by empirical optical spectra. Finding appropriate interpolation methods for ELFs poses several challenges. The sampled ELFs are usually very heterogeneous, can originate from various sources thus so called "data gaps" can appear, and significant discontinuities and multiple high outliers can be present. As a result an interpolation based on those data may not perform well at predicting reasonable physical results. Reliable interpolation tools, suitable for ELF applications, should therefore satisfy several important demands: accuracy and predictive power, robustness and computational efficiency, and ease of use. We examined the effect on the fitting quality due to different interpolation schemes with emphasis on ELF mesh optimization procedures and we argue that the optimal fitting should be based on preliminary log-log scaling data transforms by which the non-uniformity of sampled data distribution may be considerably reduced. The transformed data are then interpolated by local monotonicity preserving Steffen spline. The result is a piece-wise smooth fitting curve with continuous first-order derivatives that passes through all data points without spurious oscillations. Local extrema can occur only at grid points where they are given by the data, but not in between two adjacent grid points. It is found that proposed technique gives the most accurate results and also that its computational time is short. Thus, it is feasible using this simple method to address practical problems associated with interaction between a bulk material and a moving electron. A compact C++ implementation of our algorithm is also presented.
Quantum optimal control with automatic differentiation using graphics processors
NASA Astrophysics Data System (ADS)
Leung, Nelson; Abdelhafez, Mohamed; Chakram, Srivatsan; Naik, Ravi; Groszkowski, Peter; Koch, Jens; Schuster, David
We implement quantum optimal control based on automatic differentiation and harness the acceleration afforded by graphics processing units (GPUs). Automatic differentiation allows us to specify advanced optimization criteria and incorporate them into the optimization process with ease. We will describe efficient techniques to optimally control weakly anharmonic systems that are commonly encountered in circuit QED, including coupled superconducting transmon qubits and multi-cavity circuit QED systems. These systems allow for a rich variety of control schemes that quantum optimal control is well suited to explore.
Andréfouët, S; Wantiez, L
2010-01-01
Since 1972, the UNESCO "World Heritage Convention" offers an international canvas for conservation and management that targets areas of high cultural and environmental significance. To support the designation of areas within the 36.000 km(2) of New Caledonia coral reefs and lagoons as a World Heritage Site, the natural value and diversity of the proposed zones needed to be demonstrated. To exhaustively identify each configuration of shallow habitats, high resolution remote sensing images were used to select the sampling sites. This optimal scheme resulted in the selection of nearly 1300 sampling sites, and was then simplified to render its application realistic. In the final sampling plan, only the most common or the most remarkable coral zones were selected. Following this selection, in situ habitat and fish surveys were conducted in 2006-2008 in five large areas spanning a 600 km-long latitudinal gradient. Habitats were described using line-intercept transects in parallel with underwater visual census of indicator and commercial coral reef fish species. We report here on the results achieved in terms of: (i) the actual diversity of coral habitats captured by the remote sensing based sampling strategy, (ii) the different reef fish communities captured from the different sites, and (iii) how well they represent New Caledonia diversity. We discuss the possible generalization of this scheme to other sites, in the context of World Heritage Site selection and for other large-scale conservation planning activities. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Optimization of White-Matter-Nulled Magnetization Prepared Rapid Gradient Echo (MP-RAGE) Imaging
Saranathan, Manojkumar; Tourdias, Thomas; Bayram, Ersin; Ghanouni, Pejman; Rutt, Brian K.
2014-01-01
Purpose To optimize the white-matter-nulled (WMn) Magnetization Prepared Rapid Gradient Echo (MP-RAGE) sequence at 7T, with comparisons to 3T. Methods Optimal parameters for maximising SNR efficiency were derived. The effect of flip angle and TR on image blurring was modeled using simulations and validated in vivo. A novel 2D-centric radial fan beam (RFB) k-space segmentation scheme was used to shorten scan times and improve parallel imaging. Healthy subjects as well as patients with multiple sclerosis and tremor were scanned using the optimized protocols. Results Inversion repetition times (TS) of 4.5s and 6s were found to yield the highest SNR efficiency for WMn MP-RAGE at 3T and 7T, respectively. Blurring was more sensitive to flip in WMn than in CSFn MP-RAGE and relatively insensitive to TR for both regimes. The 2D RFB scheme had 19% and 47% higher thalamic SNR and SNR efficiency than the 1D centric scheme for WMn MP-RAGE. Compared to 3T, SNR and SNR efficiency were higher for the 7T WMn regime by 56% and 41% respectively. MS lesions in the cortex and thalamus as well as thalamic subnuclei in tremor patients were clearly delineated using WMn MP-RAGE. Conclusion Optimization and new view ordering enabled MP-RAGE imaging with 0.8–1 mm3 isotropic spatial resolution in scan times of 5 minutes with whole brain coverage. PMID:24889754
NASA Astrophysics Data System (ADS)
Chen, Duan; Chen, Qiuwen; Li, Ruonan; Blanckaert, Koen; Cai, Desuo
2014-06-01
Ecologically-friendly reservoir operation procedures aim to conserve key ecosystem properties in the rivers, while minimizing the sacrifice of socioeconomic interests. This study focused on the Jinping cascaded reservoirs as a case study. An optimization model was developed to explore a balance between the ecological flow requirement (EFR) of a target fish species ( Schizothorax chongi) in the dewatered natural channel section, and annual power production. The EFR for the channel was determined by the Tennant method and a fish habitat model, respectively. The optimization model was solved by using an adaptive real-coded genetic algorithm. Several operation scenarios corresponding to the ecological flow series were evaluated using the optimization model. Through comparisons, an optimal operational scheme, which combines relatively low power production loss with a preferred ecological flow regime in the dewatered channel, is proposed for the cascaded reservoirs. Under the recommended scheme, the discharge into the Dahewan river reach in the dry season ranges from 36 to 50 m3/s. This will enable at least 50% of the target fish habitats in the channel to be conserved, at a cost of only 2.5% annual power production loss. The study demonstrates that the use of EFRs is an efficient approach to the optimization of reservoir operation in an ecologically friendly way. Similar modeling, for other important fish species and ecosystem functions, supplemented by field validation of results, is needed in order to secure the long-term conservation of the affected river ecosystem.
Cheng, Zhongtao; Liu, Dong; Zhou, Yudi; Yang, Yongying; Luo, Jing; Zhang, Yupeng; Shen, Yibing; Liu, Chong; Bai, Jian; Wang, Kaiwei; Su, Lin; Yang, Liming
2016-09-01
A general resonant frequency locking scheme for a field-widened Michelson interferometer (FWMI), which is intended as a spectral discriminator in a high-spectral-resolution lidar, is proposed based on optimal multi-harmonics heterodyning. By transferring the energy of a reference laser to multi-harmonics of different orders generated by optimal electro-optic phase modulation, the heterodyne signal of these multi-harmonics through the FWMI can reveal the resonant frequency drift of the interferometer very sensitively within a large frequency range. This approach can overcome the locking difficulty induced by the low finesse of the FWMI, thus contributing to excellent locking accuracy and lock acquisition range without any constraint on the interferometer itself. The theoretical and experimental results are presented to verify the performance of this scheme.
NASA Astrophysics Data System (ADS)
Swinburne, Thomas D.; Perez, Danny
2018-05-01
A massively parallel method to build large transition rate matrices from temperature-accelerated molecular dynamics trajectories is presented. Bayesian Markov model analysis is used to estimate the expected residence time in the known state space, providing crucial uncertainty quantification for higher-scale simulation schemes such as kinetic Monte Carlo or cluster dynamics. The estimators are additionally used to optimize where exploration is performed and the degree of temperature acceleration on the fly, giving an autonomous, optimal procedure to explore the state space of complex systems. The method is tested against exactly solvable models and used to explore the dynamics of C15 interstitial defects in iron. Our uncertainty quantification scheme allows for accurate modeling of the evolution of these defects over timescales of several seconds.
Optimal control of fast and high-fidelity quantum state transfer in spin-1/2 chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiong-Peng; Shao, Bin, E-mail: sbin610@bit.edu.cn; Hu, Shuai
Spin chains are promising candidates for quantum communication and computation. Using quantum optimal control (OC) theory based on the Krotov method, we present a protocol to perform quantum state transfer with fast and high fidelity by only manipulating the boundary spins in a quantum spin-1/2 chain. The achieved speed is about one order of magnitude faster than that is possible in the Lyapunov control case for comparable fidelities. Additionally, it has a fundamental limit for OC beyond which optimization is not possible. The controls are exerted only on the couplings between the boundary spins and their neighbors, so that themore » scheme has good scalability. We also demonstrate that the resulting OC scheme is robust against disorder in the chain.« less
NASA Technical Reports Server (NTRS)
Lynnes, Chris
2014-01-01
Three current search engines are queried for ozone data at the GES DISC. The results range from sub-optimal to counter-intuitive. We propose a method to fix dataset search by implementing a robust relevancy ranking scheme. The relevancy ranking scheme is based on several heuristics culled from more than 20 years of helping users select datasets.
High-Fidelity Real-Time Trajectory Optimization for Reusable Launch Vehicles
2006-12-01
6.20 Max DR Yawing Moment History. ...............................................................270 Figure 6.21 Snapshot from MATLAB “Profile...Propagation using “ode45” (Euler Angles)...........................................330 Figure 6.114 Interpolated Elevon Controls using Various MATLAB ...Schemes.................332 Figure 6.115 Interpolated Flap Controls using Various MATLAB Schemes.....................333 Figure 6.116 Interpolated
Optimal variable flip angle schemes for dynamic acquisition of exchanging hyperpolarized substrates
NASA Astrophysics Data System (ADS)
Xing, Yan; Reed, Galen D.; Pauly, John M.; Kerr, Adam B.; Larson, Peder E. Z.
2013-09-01
In metabolic MRI with hyperpolarized contrast agents, the signal levels vary over time due to T1 decay, T2 decay following RF excitations, and metabolic conversion. Efficient usage of the nonrenewable hyperpolarized magnetization requires specialized RF pulse schemes. In this work, we introduce two novel variable flip angle schemes for dynamic hyperpolarized MRI in which the flip angle is varied between excitations and between metabolites. These were optimized to distribute the magnetization relatively evenly throughout the acquisition by accounting for T1 decay, prior RF excitations, and metabolic conversion. Simulation results are presented to confirm the flip angle designs and evaluate the variability of signal dynamics across typical ranges of T1 and metabolic conversion. They were implemented using multiband spectral-spatial RF pulses to independently modulate the flip angle at various chemical shift frequencies. With these schemes we observed increased SNR of [1-13C]lactate generated from [1-13C]pyruvate, particularly at later time points. This will allow for improved characterization of tissue perfusion and metabolic profiles in dynamic hyperpolarized MRI.
A Selective Encryption Algorithm Based on AES for Medical Information.
Oh, Ju-Young; Yang, Dong-Il; Chon, Ki-Hwan
2010-03-01
The transmission of medical information is currently a daily routine. Medical information needs efficient, robust and secure encryption modes, but cryptography is primarily a computationally intensive process. Towards this direction, we design a selective encryption scheme for critical data transmission. We expand the advandced encrytion stanard (AES)-Rijndael with five criteria: the first is the compression of plain data, the second is the variable size of the block, the third is the selectable round, the fourth is the optimization of software implementation and the fifth is the selective function of the whole routine. We have tested our selective encryption scheme by C(++) and it was compiled with Code::Blocks using a MinGW GCC compiler. The experimental results showed that our selective encryption scheme achieves a faster execution speed of encryption/decryption. In future work, we intend to use resource optimization to enhance the round operations, such as SubByte/InvSubByte, by exploiting similarities between encryption and decryption. As encryption schemes become more widely used, the concept of hardware and software co-design is also a growing new area of interest.
A Selective Encryption Algorithm Based on AES for Medical Information
Oh, Ju-Young; Chon, Ki-Hwan
2010-01-01
Objectives The transmission of medical information is currently a daily routine. Medical information needs efficient, robust and secure encryption modes, but cryptography is primarily a computationally intensive process. Towards this direction, we design a selective encryption scheme for critical data transmission. Methods We expand the advandced encrytion stanard (AES)-Rijndael with five criteria: the first is the compression of plain data, the second is the variable size of the block, the third is the selectable round, the fourth is the optimization of software implementation and the fifth is the selective function of the whole routine. We have tested our selective encryption scheme by C++ and it was compiled with Code::Blocks using a MinGW GCC compiler. Results The experimental results showed that our selective encryption scheme achieves a faster execution speed of encryption/decryption. In future work, we intend to use resource optimization to enhance the round operations, such as SubByte/InvSubByte, by exploiting similarities between encryption and decryption. Conclusions As encryption schemes become more widely used, the concept of hardware and software co-design is also a growing new area of interest. PMID:21818420
DNS of Supersonic Turbulent Flows in a DLR Scramjet Intake
NASA Astrophysics Data System (ADS)
Li, Xinliang; Yu, Changping
2014-11-01
Direct numerical simulation (DNS) of supersonic/hypersonic flow through a DLR scramjet intake GK01 is performed. The free stream Mach numbers are 3, 5 and 7, and the angle of attack is zero degree. The DNS cases are performed by using an optimized MP scheme with adaptive dissipation (OMP-AD) developed by the authors, and the blow-and-suction perturbations near the leading edge are used to trigger the transition. To stabilize the simulation, locally non-linear flittering is used in high-Mach-number case. The transition, separation, and shock-turbulent boundary layer interaction are studied by using both flow visualization and statistical analysis. A new method, OMP-AD, is also addressed in this paper. The OMP-AD scheme is developed by using joint MP method and optimized technique, and the coefficients in the scheme are flexible to show low dissipation in the smoothing region, and to show high robust (but high dissipation) in the large gradient region. Numerical tests show that the OMP-AD is more robust than the original MP schemes, and the numerical dissipation of OMP-AD is very low.
Energy-optimal path planning by stochastic dynamically orthogonal level-set optimization
NASA Astrophysics Data System (ADS)
Subramani, Deepak N.; Lermusiaux, Pierre F. J.
2016-04-01
A stochastic optimization methodology is formulated for computing energy-optimal paths from among time-optimal paths of autonomous vehicles navigating in a dynamic flow field. Based on partial differential equations, the methodology rigorously leverages the level-set equation that governs time-optimal reachability fronts for a given relative vehicle-speed function. To set up the energy optimization, the relative vehicle-speed and headings are considered to be stochastic and new stochastic Dynamically Orthogonal (DO) level-set equations are derived. Their solution provides the distribution of time-optimal reachability fronts and corresponding distribution of time-optimal paths. An optimization is then performed on the vehicle's energy-time joint distribution to select the energy-optimal paths for each arrival time, among all stochastic time-optimal paths for that arrival time. Numerical schemes to solve the reduced stochastic DO level-set equations are obtained, and accuracy and efficiency considerations are discussed. These reduced equations are first shown to be efficient at solving the governing stochastic level-sets, in part by comparisons with direct Monte Carlo simulations. To validate the methodology and illustrate its accuracy, comparisons with semi-analytical energy-optimal path solutions are then completed. In particular, we consider the energy-optimal crossing of a canonical steady front and set up its semi-analytical solution using a energy-time nested nonlinear double-optimization scheme. We then showcase the inner workings and nuances of the energy-optimal path planning, considering different mission scenarios. Finally, we study and discuss results of energy-optimal missions in a wind-driven barotropic quasi-geostrophic double-gyre ocean circulation.
Gradient optimization of finite projected entangled pair states
NASA Astrophysics Data System (ADS)
Liu, Wen-Yuan; Dong, Shao-Jun; Han, Yong-Jian; Guo, Guang-Can; He, Lixin
2017-05-01
Projected entangled pair states (PEPS) methods have been proven to be powerful tools to solve strongly correlated quantum many-body problems in two dimensions. However, due to the high computational scaling with the virtual bond dimension D , in a practical application, PEPS are often limited to rather small bond dimensions, which may not be large enough for some highly entangled systems, for instance, frustrated systems. Optimization of the ground state using the imaginary time evolution method with a simple update scheme may go to a larger bond dimension. However, the accuracy of the rough approximation to the environment of the local tensors is questionable. Here, we demonstrate that by combining the imaginary time evolution method with a simple update, Monte Carlo sampling techniques and gradient optimization will offer an efficient method to calculate the PEPS ground state. By taking advantage of massive parallel computing, we can study quantum systems with larger bond dimensions up to D =10 without resorting to any symmetry. Benchmark tests of the method on the J1-J2 model give impressive accuracy compared with exact results.
Perdikaris, Paris; Karniadakis, George Em
2016-05-01
We present a computational framework for model inversion based on multi-fidelity information fusion and Bayesian optimization. The proposed methodology targets the accurate construction of response surfaces in parameter space, and the efficient pursuit to identify global optima while keeping the number of expensive function evaluations at a minimum. We train families of correlated surrogates on available data using Gaussian processes and auto-regressive stochastic schemes, and exploit the resulting predictive posterior distributions within a Bayesian optimization setting. This enables a smart adaptive sampling procedure that uses the predictive posterior variance to balance the exploration versus exploitation trade-off, and is a key enabler for practical computations under limited budgets. The effectiveness of the proposed framework is tested on three parameter estimation problems. The first two involve the calibration of outflow boundary conditions of blood flow simulations in arterial bifurcations using multi-fidelity realizations of one- and three-dimensional models, whereas the last one aims to identify the forcing term that generated a particular solution to an elliptic partial differential equation. © 2016 The Author(s).
The theory of variational hybrid quantum-classical algorithms
NASA Astrophysics Data System (ADS)
McClean, Jarrod R.; Romero, Jonathan; Babbush, Ryan; Aspuru-Guzik, Alán
2016-02-01
Many quantum algorithms have daunting resource requirements when compared to what is available today. To address this discrepancy, a quantum-classical hybrid optimization scheme known as ‘the quantum variational eigensolver’ was developed (Peruzzo et al 2014 Nat. Commun. 5 4213) with the philosophy that even minimal quantum resources could be made useful when used in conjunction with classical routines. In this work we extend the general theory of this algorithm and suggest algorithmic improvements for practical implementations. Specifically, we develop a variational adiabatic ansatz and explore unitary coupled cluster where we establish a connection from second order unitary coupled cluster to universal gate sets through a relaxation of exponential operator splitting. We introduce the concept of quantum variational error suppression that allows some errors to be suppressed naturally in this algorithm on a pre-threshold quantum device. Additionally, we analyze truncation and correlated sampling in Hamiltonian averaging as ways to reduce the cost of this procedure. Finally, we show how the use of modern derivative free optimization techniques can offer dramatic computational savings of up to three orders of magnitude over previously used optimization techniques.
Perdikaris, Paris; Karniadakis, George Em
2016-01-01
We present a computational framework for model inversion based on multi-fidelity information fusion and Bayesian optimization. The proposed methodology targets the accurate construction of response surfaces in parameter space, and the efficient pursuit to identify global optima while keeping the number of expensive function evaluations at a minimum. We train families of correlated surrogates on available data using Gaussian processes and auto-regressive stochastic schemes, and exploit the resulting predictive posterior distributions within a Bayesian optimization setting. This enables a smart adaptive sampling procedure that uses the predictive posterior variance to balance the exploration versus exploitation trade-off, and is a key enabler for practical computations under limited budgets. The effectiveness of the proposed framework is tested on three parameter estimation problems. The first two involve the calibration of outflow boundary conditions of blood flow simulations in arterial bifurcations using multi-fidelity realizations of one- and three-dimensional models, whereas the last one aims to identify the forcing term that generated a particular solution to an elliptic partial differential equation. PMID:27194481
Wittmann, Christoffer; Andersen, Ulrik L; Takeoka, Masahiro; Sych, Denis; Leuchs, Gerd
2010-03-12
We experimentally demonstrate a new measurement scheme for the discrimination of two coherent states. The measurement scheme is based on a displacement operation followed by a photon-number-resolving detector, and we show that it outperforms the standard homodyne detector which we, in addition, prove to be optimal within all Gaussian operations including conditional dynamics. We also show that the non-Gaussian detector is superior to the homodyne detector in a continuous variable quantum key distribution scheme.
A second order derivative scheme based on Bregman algorithm class
NASA Astrophysics Data System (ADS)
Campagna, Rosanna; Crisci, Serena; Cuomo, Salvatore; Galletti, Ardelio; Marcellino, Livia
2016-10-01
The algorithms based on the Bregman iterative regularization are known for efficiently solving convex constraint optimization problems. In this paper, we introduce a second order derivative scheme for the class of Bregman algorithms. Its properties of convergence and stability are investigated by means of numerical evidences. Moreover, we apply the proposed scheme to an isotropic Total Variation (TV) problem arising out of the Magnetic Resonance Image (MRI) denoising. Experimental results confirm that our algorithm has good performance in terms of denoising quality, effectiveness and robustness.
NASA Astrophysics Data System (ADS)
Bhardwaj, Manish; McCaughan, Leon; Olkhovets, Anatoli; Korotky, Steven K.
2006-12-01
We formulate an analytic framework for the restoration performance of path-based restoration schemes in planar mesh networks. We analyze various switch architectures and signaling schemes and model their total restoration interval. We also evaluate the network global expectation value of the time to restore a demand as a function of network parameters. We analyze a wide range of nominally capacity-optimal planar mesh networks and find our analytic model to be in good agreement with numerical simulation data.
NASA Astrophysics Data System (ADS)
Edjlali, Ehsan; Bérubé-Lauzière, Yves
2018-01-01
We present the first Lq -Lp optimization scheme for fluorescence tomographic imaging. This is then applied to small animal imaging. Fluorescence tomography is an ill-posed, and in full generality, a nonlinear problem that seeks to image the 3D concentration distribution of a fluorescent agent inside a biological tissue. Standard candidates for regularization to deal with the ill-posedness of the image reconstruction problem include L1 and L2 regularization. In this work, a general Lq -Lp regularization framework (Lq discrepancy function - Lp regularization term) is introduced for fluorescence tomographic imaging. A method to calculate the gradient for this general framework is developed which allows evaluating the performance of different cost functions/regularization schemes in solving the fluorescence tomographic problem. The simplified spherical harmonics approximation is used to accurately model light propagation inside the tissue. Furthermore, a multigrid mesh is utilized to decrease the dimension of the inverse problem and reduce the computational cost of the solution. The inverse problem is solved iteratively using an lm-BFGS quasi-Newton optimization method. The simulations are performed under different scenarios of noisy measurements. These are carried out on the Digimouse numerical mouse model with the kidney being the target organ. The evaluation of the reconstructed images is performed both qualitatively and quantitatively using several metrics including QR, RMSE, CNR, and TVE under rigorous conditions. The best reconstruction results under different scenarios are obtained with an L1.5 -L1 scheme with premature termination of the optimization process. This is in contrast to approaches commonly found in the literature relying on L2 -L2 schemes.
2014-01-01
Background Performance measures are often neglected during the transition period of national health insurance scheme implementation in many low and middle income countries. These measurements evaluate the extent to which various aspects of the schemes meet their key objectives. This study assesses the implementation of a health insurance scheme using optimal resource use domains and examines possible factors that influence each domain, according to providers’ perspectives. Methods A retrospective, cross-sectional survey was done between August and December 2010 in Kaduna state, and 466 health care provider personnel were interviewed. Optimal-resource-use was defined in four domains: provider payment mechanism (capitation and fee-for-service payment methods), benefit package, administrative efficiency, and active monitoring mechanism. Logistic regression analysis was used to identify provider factors that may influence each domain. Results In the provider payment mechanism domain, capitation payment method (95%) performed better than fee-for-service payment method (62%). Benefit package domain performed strongly (97%), while active monitoring mechanism performed weakly (37%). In the administrative efficiency domain, both promptness of referral system (80%) and prompt arrival of funds (93%) performed well. At the individual level, providers with fewer enrolees encountered difficulties with reimbursement. Other factors significantly influenced each of the optimal-resource-use domains. Conclusions Fee-for-service payment method and claims review, in the provider payment and active monitoring mechanisms, respectively, performed weakly according to the providers’ (at individual-level) perspectives. A short-fall on the supply-side of health insurance could lead to a direct or indirect adverse effect on the demand-side of the scheme. Capitation payment per enrolees should be revised to conform to economic circumstances. Performance indicators and providers’ characteristics and experiences associated with resource use can assist policy makers to monitor and evaluate health insurance implementation. PMID:24628889