NASA Astrophysics Data System (ADS)
Huang, Jyh-Jaan; Löwemark, Ludvig; Chang, Queenie; Lin, Tzu-Yu; Chen, Huei-Fen; Song, Sheng-Rong; Wei, Kuo-Yen
2016-04-01
X-ray fluorescence (XRF) core-scanning is a fast and nondestructive technique to assess elemental variations of unprocessed sediments. However, although the exposure time of XRF-scanning directly affects the scanning counts and total measurement time, only a few studies have considered the influence of exposure time during the scan. How to select an optimal exposure time to achieve reliable results and reduce the total measurement time is an important issue. To address this question, six geological reference materials from the Geological Survey of Japan (JLK-1, JMS-1, JMS-2, JSD-1, JSD-2, and JSD-3) were scanned by the Itrax-XRF core scanner using the Mo- and the Cr-tube with different exposure times to allow a comparison of scanning counts with absolute concentrations. The regression lines and correlation coefficients of elements that are generally used in paleoenvironmental studies were examined for the different exposure times and X-ray tubes. The results show that for those elements with relatively high concentrations or high detectability, the correlation coefficients are higher than 0.90 for all exposure times. In contrast, for the low detectability or low concentration elements, the correlation coefficients are relatively low, and improve little with increased exposure time. Therefore, we suggest that the influence of different exposure times is insignificant for the accuracy of the measurements. Thus, caution must be taken when interpreting the results of elements with low detectability, even when the exposure times are long and scanning counts are reasonably high.
NASA Astrophysics Data System (ADS)
Carlier, T.; Ferrer, L.; Necib, H.; Bodet-Milin, C.; Rousseau, C.; Kraeber-Bodéré, F.
2014-10-01
The injected activity and the acquisition time per bed position for 18F-FDG PET scans are usually optimized by using metrics obtained from phantom experiments. However, optimal activity and time duration can significantly vary from a phantom set-up and from patient to patient. An approach using a patient-specific noise equivalent count rate (NECR) modelling has been previously proposed for optimizing clinical scanning protocols. We propose using the clinical NECR on a large population as a function of the body mass index (BMI) for deriving the optimal injected activity and acquisition duration per bed position. The relationship between the NEC and the signal-to-noise ratio (SNR) was assessed both in a phantom and in a clinical setting. 491 consecutive patients were retrospectively evaluated and divided into 4 BMI subgroups. Two criteria were used to optimize the injected activity and the time per bed position was adjusted using the NECR value while keeping the total acquisition time constant. Finally, the relationship between NEC and SNR was investigated using an anthropomorphic phantom and a population of 507 other patients. While the first dose regimen suggested a unique injected activity (665 MBq) regardless of the BMI, the second dose regimen proposed a variable activity and a total acquisition time according to the BMI. The NEC improvement was around 35% as compared with the local current injection rule. Variable time per bed position was derived according to BMI and anatomical region. NEC and number of true events were found to be highly correlated with SNR for the phantom set-up and partially confirmed in the patient study for the BMI subgroup under 28 kg m-2 suggesting that for the scanner, the nonlinear reconstruction algorithm used in this study and BMI < 28 kg m-2, NEC, or the number of true events linearly correlated with SNR2.
Ranallo, F; Szczykutowicz, T
2014-06-01
Purpose: To provide correct guidance in the proper selection of pitch and rotation time for optimal CT imaging with multi-slice scanners. Methods: There exists a widespread misconception concerning the role of pitch in patient dose with modern multi-slice scanners, particularly with the use of mA modulation techniques. We investigated the relationship of pitch and rotation time to image quality, dose, and scan duration, with CT scanners from different manufacturers in a way that clarifies this misconception. This source of this misconception may concern the role of pitch in single slice CT scanners. Results: We found that the image noise and dose are generally independent of the selected effective mAs (mA*time/ pitch) with manual mA technique settings and are generally independent of the selected pitch and /or rotation time with automatic mA modulation techniques. However we did find that on certain scanners the use of a pitch just above 0.5 provided images of equal image noise at a lower dose compared to the use of a pitch just below 1.0. Conclusion: The misconception that the use of a lower pitch over-irradiates patients by wasting dose is clearly false. The use of a lower pitch provides images of equal or better image quality at the same patient dose, whether using manual mA or automatic mA modulation techniques. By decreasing the pitch and the rotation times by equal amounts, both helical and patient motion artifacts can be reduced without affecting the exam time. The use of lower helical pitch also allows better scanning of larger patients by allowing a greater scan effective mAs, if the exam time can be extended. The one caution with the use of low pitch is not related to patient dose, but to the length of the scan time if the rotation time is not set short enough. Partial Research funding from GE HealthCare.
Nakajima, Reiko; Abe, Koichiro; Momose, Mitsuru; Fukushima, Kenji; Matsuo, Yuka; Kimura, Ken; Kondo, Chisato; Sakai, Shuji
2017-02-01
(11)C-Methionine (MET) positron emission tomography (PET) imaging is a valuable technique for the evaluation of primary and recurrent brain tumors. Many studies have used MET-PET for data acquisition starting at 20 min after the tracer injection, while others have used scan initiation times at 5-15 min postinjection. No previous studies have identified the best acquisition timing during MET-PET imaging for suspected recurrent brain tumors. Here we sought to determine the optimal scan initiating timing after MET administration for the detection of recurrent brain tumors. Twenty-three consecutive patients with suspected recurrent brain tumors underwent MET-PET examinations. Brain PET images were reconstructed from the four serial data sets (10-15, 15-20, 20-25, and 25-30 min postinjection) that were obtained using the list-mode acquisition technique. We determined the maximal standardized uptake values (SUVmax) of the target lesions and the target-to-normal-tissue ratios (TNRs), calculated as the SUVmax to the SUVmean of a region of interest placed on the normal contralateral frontal cortex. Target lesions without significant MET uptake were excluded. Thirty-one lesions from 23 patients were enrolled. There were no significant differences in MET SUVmax or TNR values among the PET images that were reconstructed with the data extracted from the four phases postinjection. The MET uptake in the suspected recurrent brain tumors was comparable among all data extraction time phases from 10 to 30 min postinjection. The scan initiation time of MET-PET at 10 min after the injection is allowable for the detection of recurrent brain tumors. The registration identification number of the original study is 1002.
SAR and scan-time optimized 3D whole-brain double inversion recovery imaging at 7T.
Pracht, Eberhard D; Feiweier, Thorsten; Ehses, Philipp; Brenner, Daniel; Roebroeck, Alard; Weber, Bernd; Stöcker, Tony
2017-09-14
The aim of this project was to implement an ultra-high field (UHF) optimized double inversion recovery (DIR) sequence for gray matter (GM) imaging, enabling whole brain coverage in short acquisition times ( ≈5 min, image resolution 1 mm(3) ). A 3D variable flip angle DIR turbo spin echo (TSE) sequence was optimized for UHF application. We implemented an improved, fast, and specific absorption rate (SAR) efficient TSE imaging module, utilizing improved reordering. The DIR preparation was tailored to UHF application. Additionally, fat artifacts were minimized by employing water excitation instead of fat saturation. GM images, covering the whole brain, were acquired in 7 min scan time at 1 mm isotropic resolution. SAR issues were overcome by using a dedicated flip angle calculation considering SAR and SNR efficiency. Furthermore, UHF related artifacts were minimized. The suggested sequence is suitable to generate GM images with whole-brain coverage at UHF. Due to the short total acquisition times and overall robustness, this approach can potentially enable DIR application in a routine setting and enhance lesion detection in neurological diseases. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Deligianni, X; Bieri, O; Elke, R; Wischer, T; Egelhof, T
2015-12-01
Magnetic resonance imaging (MRI) of soft tissues after total hip arthroplasty is of clinical interest for the diagnosis of various pathologies that are usually invisible with other imaging modalities. As a result, considerable effort has been put into the development of metal artifact reduction MRI strategies, such as slice encoding for metal artifact correction (SEMAC). Generally, the degree of metal artifact reduction with SEMAC directly relates to the overall time spent for acquisition, but there is no specific consensus about the most efficient sequence setup depending on the implant material. The aim of this article is to suggest material-tailored SEMAC protocol settings. Five of the most common total hip prostheses (1. Revision prosthesis (S-Rom), 2. Titanium alloy, 3. Müller type (CoNiCRMo alloy), 4. Old Charnley prosthesis (Exeter/Stryker), 5. MS-30 stem (stainless-steel)) were scanned on a 1.5 T MRI clinical scanner with a SEMAC sequence with a range of artifact-resolving slice encoding steps (SES: 2-23) along the slice direction (yielding a total variable scan time ranging from 1 to 10 min). The reduction of the artifact volume in comparison with maximal artifact suppression was evaluated both quantitatively and qualitatively in order to establish a recommended number of steps for each case. The number of SES that reduced the artifact volume below approximately 300 mm(3) ranged from 3 to 13, depending on the material. Our results showed that although 3 SES steps can be sufficient for artifact reduction for titanium prostheses, at least 11 SES should be used for prostheses made of materials such as certain alloys of stainless steel. Tailoring SES to the implant material and to the desired degree of metal artifact reduction represents a simple tool for workflow optimization of SEMAC imaging near total hip arthroplasty in a clinical setting. Five of the most common total hip prostheses have been investigated in vitro. Tailored SEMAC protocols - in terms of
Soman, Salil; Holdsworth, Samantha J; Skare, Stefan; Andre, Jalal B; Van, Anh T; Aksoy, Murat; Bammer, Roland; Rosenberg, Jarrett; Barnes, Patrick D; Yeom, Kristen W
2015-01-01
Diffusion tensor imaging (DTI) is useful for multiple clinical applications, but its routine implementation for children may be difficult due to long scan times. This study evaluates the impact of decreasing the number of DTI acquisitions (NEX) on interpretability of pediatric brain DTI. 15 children with MRI-visible neuropathologies were imaged at 3T using our motion-corrected, parallel imaging- accelerated DT-EPI technique with 3 NEX (scan time 8.25 min). Using these acquisitions, NEX = 1 (scan time 2.75 min) and NEX = 2 (scan time 5.5 min) images were simulated. Two neuroradiologists scored diffusion-weighted images (DWI), apparent diffusion coefficient (ADC), fractional anisotropy (FA), and first eigenvector color-encoded (EV) images from each NEX for perceived SNR, lesion conspicuity and clinical confidence. ROI FA/ADC and image SNR values were also compared across NEX. NEX = 2 perceived SNR, lesion conspicuity, and clinical confidence were not inferior to NEX = 3 images. NEX = 1 images showed comparable lesion conspicuity and clinical confidence as NEX = 3, but inferior perceived SNR. FA and ADC ROI measurements demonstrated no significant difference across NEX. The greatest SNR increase was seen between NEX = 1 and NEX = 2. Reducing NEX to shorten imaging time may impact clinical utility in a manner that does not directly correspond with SNR changes. Copyright © 2014 by the American Society of Neuroimaging.
Irvine, D M; Cole, A J; Hanna, G G; McGarry, C K
2015-01-01
Objective: The aim of this study was to identify sources of anatomical misrepresentation owing to the location of camera mounting, tumour motion velocity and image processing artefacts in order to optimize the four-dimensional CT (4DCT) scan protocol and improve geometrical–temporal accuracy. Methods: A phantom with an imaging insert was driven with a sinusoidal superior–inferior motion of varying amplitude and period for 4DCT scanning. The length of a high-density cube within the insert was measured using treatment planning software to determine the accuracy of its spatial representation. Scan parameters were varied, including the tube rotation period and the cine time between reconstructed images. A CT image quality phantom was used to measure various image quality signatures under the scan parameters tested. Results: No significant difference in spatial accuracy was found for 4DCT scans carried out using the wall- or couch-mounted camera for sinusoidal target motion. Greater spatial accuracy was found for 4DCT scans carried out using a tube rotation speed of 0.5 s rather than 1.0 s. The reduction in image quality when using a faster rotation speed was not enough to require an increase in patient dose. Conclusion: The 4DCT accuracy may be increased by optimizing scan parameters, including choosing faster tube rotation speeds. Peak misidentification in the recorded breathing trace may lead to spatial artefacts, and this risk can be reduced by using a couch-mounted infrared camera. Advances in knowledge: This study explicitly shows that 4DCT scan accuracy is improved by scanning with a faster CT tube rotation speed. PMID:25470359
Shirasaka, Takashi; Hiwatashi, Akio; Yamashita, Koji; Kondo, Masatoshi; Hamasaki, Hiroshi; Shimomiya, Yamato; Nakamura, Yasuhiko; Funama, Yoshinori; Honda, Hiroshi
2017-02-01
A 320-row multidetector CT (MDCT) is expected for a good artery-vein separation in terms of temporal resolution. However, a shortened scan duration may lead to insufficient vascular enhancement. We assessed the optimal scan timing for the artery-vein separation at whole-brain CT angiography (CTA) when bolus tracking was used at 320-row MDCT. We analyzed 60 patients, who underwent whole-brain four-dimensional CTA. Difference in CT attenuation between the internal carotid artery (ICA) and the superior sagittal sinus (Datt) was calculated in each phase. Using a visual evaluation score for the depiction of arteries and veins, we calculated the difference between the mean score for the intracranial arteries and the mean score for the veins (Dscore). We assessed the time at which the maximum Datt and Dscore were simultaneously observed. The maximum Datt was observed at 6.0 s and 8.0 s in the arterial-dominant phase and at 16.0 s and 18.0 s in the venous-dominant phase after the contrast media arrival time at the ICA (Taa). The maximum Dscore was observed at 6.0 s and 8.0 s in the arterial-dominant phase and at 16.0 s in the venous-dominant phase after the Taa. There were no statistically significant differences in Datt (p = 0.375) or Dscore (p = 0.139) between these scan timings. The optimal scan timing for artery-vein separation at whole-brain CTA was 6.0 s or 8.0 s for the arteries and 16.0 s for the veins after the Taa. Advances in knowledge: Optimal scan timing allowed us to visualize intracranial arteries or veins with minimal superimposition.
Baxa, Jan; Vendiš, Tomáš; Moláček, Jiří; Stěpánková, Lucie; Flohr, Thomas; Schmidt, Bernhard; Korporaal, Johannes G; Ferda, Jiří
2014-03-01
To verify the technical feasibility of low contrast volume (40 mL) run-off CT angiography (run-off CTA) with the individual scan time optimization based on double-level test bolus technique. A prospective study of 92 consecutive patients who underwent run-off CTA performed with 40 mL of contrast medium (injection rate of 6 mL/s) and optimized scan times on a second generation of dual-source CT. Individual optimized scan times were calculated from aortopopliteal transit times obtained on the basis of double-level test bolus technique--the single injection of 10 mL test bolus and dynamic acquisitions in two levels (abdominal aorta and popliteal arteries). Intraluminal attenuation (HU) was measured in 6 levels (aorta, iliac, femoral and popliteal arteries, middle and distal lower-legs) and subjective quality (3-point score) was assessed. Relations of image quality, test bolus parameters and arterial circulation involvement were analyzed. High mean attenuation (HU) values (468; 437; 442; 440; 342; 274) and quality score in all monitored levels was achieved. In 91 patients (0.99) the sufficient diagnostic quality (score 1-2) in aorta, iliac and femoral arteries was determined. A total of 6 patients (0.07) were not evaluable in distal lower-legs. Only the weak indirect correlation of image quality and test-bolus parameters was proved in iliac, femoral and popliteal levels (r values: -0.263, -0.298 and -0.254). The statistically significant difference of the test-bolus parameters and image quality was proved in patients with occlusive and aneurysmal disease. We proved the technical feasibility and sufficient quality of run-off CTA with low volume of contrast medium and optimized scan time according to aortopopliteal transit time calculated from double-level test bolus. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Shidahara, Miho; Watabe, Hiroshi; Kim, Kyeong Min; Kudomi, Nobuyuki; Ito, Hiroshi; Iida, Hidehiro
2008-10-01
Regional cerebral blood flow (CBF), cerebral blood volume, oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO2) can be estimated from C15O, H(2)15O, and 15O2 tracers and positron emission tomography (PET) using an autoradiographic (ARG) method. Our objective in this study was to optimize the scan time for 15O2 gas study for accurate estimation of OEF and CMRO2. We evaluated statistical noise in OEF by varying the scan time and error caused by the tissue heterogeneity in estimated OEF and CMRO2 using computer simulations. The characteristics of statistical noise were investigated by signal-to-noise (S/N) ratio from repeated tissue time activity curves with noise, which were generated using measured averaged arterial input function and assuming CBF=20, 50, and 80 (ml/100 g per minute). Error caused by tissue heterogeneity was also investigated by estimated OEF and CMRO2 from tissue time activity curve with mixture of gray and white matter varying fraction of mixture. In the simulations, three conditions were assumed (i) CBF in gray and white matter (CBFg and CBFw) was 80 and 20, OEF in gray and white matter (Eg and Ew) was 0.4 and 0.3, (ii) CBFg and CBFw decreased by 50%, and Eg and Ew increased by 50% when compared with conditions (i) and (iii). CBFg and CBFw decreased by 80%, and Eg and Ew increased by 50% when compared with condition (i). The longer scan time produced the better S/N ratio of estimated OEF value from three CBF values (20, 50, and 80). Errors of estimated OEF for three conditions owing to tissue heterogeneity decreased, as scan time took longer. Meanwhile in the case of CMRO2, 3 min of scan time was desirable. The optimal scan time of 15O2 inhalation study with the ARG method was concluded to be 3 min from taking into account for maintaining the S/N ratio and the quantification of accurate OEF and CMRO2.
Demonstration of scan path optimization in proton therapy
Kang, Joanne H.; Wilkens, Jan J.; Oelfke, Uwe
2007-09-15
A three-dimensional (3D) intensity modulated proton therapy treatment plan to be delivered by magnetic scanning may comprise thousands of discrete beam positions. This research presents the minimization of the total scan path length by application of a fast simulated annealing (FSA) optimization algorithm. Treatment plans for clinical prostate and head and neck cases were sequenced for continuous raster scanning in two ways, and the resulting scan path lengths were compared: (1) A simple back-and-forth, top-to-bottom (zigzag) succession, and (2) an optimized path produced as a solution of the FSA algorithm. Using a first approximation of the scanning dynamics, the delivery times for the scan sequences before and after path optimization were calculated for comparison. In these clinical examples, the FSA optimization shortened the total scan path length for the 3D target volumes by approximately 13%-56%. The number of extraneous spilled particles was correspondingly reduced by about 13%-54% due to the more efficient scanning maps that eliminated multiple crossings through regions of zero fluence. The relative decrease in delivery time due to path length minimization was estimated to be less than 1%, due to both a high scanning speed and time requirements that could not be altered by optimization (e.g., time required to change the beam energy). In a preliminary consideration of application to rescanning techniques, the decrease in delivery time was estimated to be 4%-20%.
Dong, Jie; Wang, Dawei; Ma, Zhenshen; Deng, Guodong; Wang, Lanhua; Zhang, Jiandong
2017-03-01
The aim of the study was evaluate the 3.0 T magnetic resonance (MR) perfusion imaging scanning time window following contrast injection for differentiating benign and malignant breast lesions and to determine the optimum scanning time window for increased scanner usage efficiency and reduced diagnostic adverse risk factors. A total of 52 women with breast abnormalities were selected for conventional MR imaging and T1 dynamic-enhanced imaging. Quantitative parameters [volume transfer constant (Ktrans), rate constant (Kep) and extravascular extracellular volume fraction (Ve)] were calculated at phases 10, 20, 30, 40 and 50, which represented time windows at 5, 10, 15, 20 and 25 min, respectively, following injection of contrast agent. The association of the parameters at different phases with benign and malignant tumor diagnosis was analyzed. MR perfusion imaging was verified as an effective modality in the diagnosis of breast malignancies and the best scanning time window was identified: i) Values of Ktrans and Kep at all phases were statistically significant in differentiating benign and malignant tumors (P<0.05), while the value of Ve had statistical significance only at stage 10, but not at any other stages (P>0.05); ii) values of Ve in benign tumors increased with phase number, but achieved no obvious changes at different phases in malignant tumors; iii) the optimum scanning time window of breast perfusion imaging with 3.0 T MR was between phases 10 and 30 (i.e., between 5 and 15 min after contrast agent injection). The variation trend of Ve values at different phases may serve as a diagnostic reference for differentiating benign and malignant breast abnormalities. The most efficient scanning time window was indicated to be 5 min after contrast injection, based on the observation that the Ve value only had statistical significance in diagnosis at stage 10. However, the optimal scanning time window is from 5 to 15 min following the injection of contrast agent
Lidar arc scan uncertainty reduction through scanning geometry optimization
NASA Astrophysics Data System (ADS)
Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.; Brown, Gareth.
2016-04-01
Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annual energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30 % of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. Large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.
NASA Astrophysics Data System (ADS)
Gramatikov, Boris I.; Irsch, Kristina; Guyton, David
2014-10-01
While validating our newly developed vision screener based on a double-pass retinal scanning system, we noticed that in all patients the signals from the retina were significantly higher when measurements were performed within a certain time interval referenced to the initial moment when the lights were dimmed and the test subject was asked to fixate on a target. This appeared to be most likely attributable to pupil size dynamics and triggered the present study, whose aim was to assess the pupillary "lights-off" response while fixating on a target in the presence of an accommodative effort. We found that pupil size increases in the first 60 to 70 s after turning off the room lights, and then it decreases toward the baseline in an exponential decay. Our results suggest that there is an optimal time window during which pupil size is expected to be maximal, that is during the second minute after dimming the room lights. During this time, window retinal diagnostic instruments based on double-pass measurement technology should deliver an optimal signal-to-noise ratio. We also propose a mathematical model that can be used to approximate the behavior of the normalized pupil size.
Gramatikov, Boris I; Irsch, Kristina; Guyton, David
2014-01-01
While validating our newly developed vision screener based on a double-pass retinal scanning system, we noticed that in all patients the signals from the retina were significantly higher when measurements were performed within a certain time interval referenced to the initial moment when the lights were dimmed and the test subject was asked to fixate on a target. This appeared to be most likely attributable to pupil size dynamics and triggered the present study, whose aim was to assess the pupillary “lights-off” response while fixating on a target in the presence of an accommodative effort. We found that pupil size increases in the first 60 to 70 s after turning off the room lights, and then it decreases toward the baseline in an exponential decay. Our results suggest that there is an optimal time window during which pupil size is expected to be maximal, that is during the second minute after dimming the room lights. During this time, window retinal diagnostic instruments based on double-pass measurement technology should deliver an optimal signal-to-noise ratio. We also propose a mathematical model that can be used to approximate the behavior of the normalized pupil size.
Heuristic optimization of the scanning path of particle therapy beams.
Pardo, J; Donetti, M; Bourhaleb, F; Ansarinejad, A; Attili, A; Cirio, R; Garella, M A; Giordanengo, S; Givehchi, N; La Rosa, A; Marchetto, F; Monaco, V; Pecka, A; Peroni, C; Russo, G; Sacchi, R
2009-06-01
Quasidiscrete scanning is a delivery strategy for proton and ion beam therapy in which the beam is turned off when a slice is finished and a new energy must be set but not during the scanning between consecutive spots. Different scanning paths lead to different dose distributions due to the contribution of the unintended transit dose between spots. In this work an algorithm to optimize the scanning path for quasidiscrete scanned beams is presented. The classical simulated annealing algorithm is used. It is a heuristic algorithm frequently used in combinatorial optimization problems, which allows us to obtain nearly optimal solutions in acceptable running times. A study focused on the best choice of operational parameters on which the algorithm performance depends is presented. The convergence properties of the algorithm have been further improved by using the next-neighbor algorithm to generate the starting paths. Scanning paths for two clinical treatments have been optimized. The optimized paths are found to be shorter than the back-and-forth, top-to-bottom (zigzag) paths generally provided by the treatment planning systems. The gamma method has been applied to quantify the improvement achieved on the dose distribution. Results show a reduction of the transit dose when the optimized paths are used. The benefit is clear especially when the fluence per spot is low, as in the case of repainting. The minimization of the transit dose can potentially allow the use of higher beam intensities, thus decreasing the treatment time. The algorithm implemented for this work can optimize efficiently the scanning path of quasidiscrete scanned particle beams. Optimized scanning paths decrease the transit dose and lead to better dose distributions.
Effects of Optimizing the Scan-Path on Scanning Keyboards with QWERTY-Layout for English Text.
Sandnes, Frode Eika; Medola, Fausto Orsi
2017-01-01
Scanning keyboards can be essential tools for individuals with reduced motor function. However, most research addresses layout optimization. Learning new layouts is time-consuming. This study explores the familiar QWERTY layout with alternative scanning paths intended for English text. The results show that carefully designed scan-paths can help QWERTY nearly match optimized layouts in performance.
Lidar arc scan uncertainty reduction through scanning geometry optimization
Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.; ...
2016-04-13
Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annualmore » energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30% of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. As a result, large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.« less
Optimal Computed Tomographic Perfusion Scan Duration for Assessment of Acute Stroke Lesion Volumes.
Kasasbeh, Aimen S; Christensen, Søren; Straka, Matus; Mishra, Nishant; Mlynash, Michael; Bammer, Roland; Albers, Gregory W; Lansberg, Maarten G
2016-12-01
The minimal scan duration needed to obtain reliable lesion volumes with computed tomographic perfusion (CTP) has not been well established in the literature. We retrospectively assessed the impact of gradual truncation of the scan duration on acute ischemic lesion volume measurements. For each scan, we identified its optimal scan time, defined as the shortest scan duration that yields measurements of the ischemic lesion volumes similar to those obtained with longer scanning, and the relative height of the fitted venous output function at its optimal scan time. We analyzed 70 computed tomographic perfusion scans of acute stroke patients. An optimal scan time could not be determined in 11 scans (16%). For the other 59 scans, the median optimal scan time was 32.7 seconds (90th percentile 52.6 seconds; 100th percentile 68.9 seconds), and the median relative height of the fitted venous output function at the optimal scan times was 0.39 (90th percentile 0.02; 100th percentile 0.00). On the basis of a linear model, the optimal scan time was T0 plus 1.6 times the width of the venous output function (P<0.001; R(2)=0.49). This study shows how the optimal duration of a computed tomographic perfusion scan relates to the arrival time and width of the contrast bolus. This knowledge can be used to optimize computed tomographic perfusion scan protocols and to determine whether a scan is of sufficient duration. Provided a baseline (T0) of 10 seconds, a total scan duration of 60 to 70 seconds, which includes the entire downslope of the venous output function in most patients, is recommended. © 2016 American Heart Association, Inc.
Optimization of confocal scanning laser ophthalmoscope design.
LaRocca, Francesco; Dhalla, Al-Hafeez; Kelly, Michael P; Farsiu, Sina; Izatt, Joseph A
2013-07-01
Confocal scanning laser ophthalmoscopy (cSLO) enables high-resolution and high-contrast imaging of the retina by employing spatial filtering for scattered light rejection. However, to obtain optimized image quality, one must design the cSLO around scanner technology limitations and minimize the effects of ocular aberrations and imaging artifacts. We describe a cSLO design methodology resulting in a simple, relatively inexpensive, and compact lens-based cSLO design optimized to balance resolution and throughput for a 20-deg field of view (FOV) with minimal imaging artifacts. We tested the imaging capabilities of our cSLO design with an experimental setup from which we obtained fast and high signal-to-noise ratio (SNR) retinal images. At lower FOVs, we were able to visualize parafoveal cone photoreceptors and nerve fiber bundles even without the use of adaptive optics. Through an experiment comparing our optimized cSLO design to a commercial cSLO system, we show that our design demonstrates a significant improvement in both image quality and resolution.
Statistical image quantification toward optimal scan fusion and change quantification
NASA Astrophysics Data System (ADS)
Potesil, Vaclav; Zhou, Xiang Sean
2007-03-01
Recent advance of imaging technology has brought new challenges and opportunities for automatic and quantitative analysis of medical images. With broader accessibility of more imaging modalities for more patients, fusion of modalities/scans from one time point and longitudinal analysis of changes across time points have become the two most critical differentiators to support more informed, more reliable and more reproducible diagnosis and therapy decisions. Unfortunately, scan fusion and longitudinal analysis are both inherently plagued with increased levels of statistical errors. A lack of comprehensive analysis by imaging scientists and a lack of full awareness by physicians pose potential risks in clinical practice. In this paper, we discuss several key error factors affecting imaging quantification, studying their interactions, and introducing a simulation strategy to establish general error bounds for change quantification across time. We quantitatively show that image resolution, voxel anisotropy, lesion size, eccentricity, and orientation are all contributing factors to quantification error; and there is an intricate relationship between voxel anisotropy and lesion shape in affecting quantification error. Specifically, when two or more scans are to be fused at feature level, optimal linear fusion analysis reveals that scans with voxel anisotropy aligned with lesion elongation should receive a higher weight than other scans. As a result of such optimal linear fusion, we will achieve a lower variance than naïve averaging. Simulated experiments are used to validate theoretical predictions. Future work based on the proposed simulation methods may lead to general guidelines and error lower bounds for quantitative image analysis and change detection.
Design of optimal fast scanning trajectory for the mechanical scanner of measurement instruments.
Ju, Bing-Feng; Bai, Xiaolong; Chen, Jian; Ge, Yaozheng
2014-01-01
This paper focuses on the design of the optimal scanning mode for the family of scanning probe microscopes. Based on different values of the maximum acceleration (deceleration) rate and maximum speed of X- and Y- axes of the mechanical scanner encountered in practice due to different mechanical design and loads, the design procedure of the optimal fast scanning mode is presented, which is found to be sensitive to the specific parameters of the scanning motion. By utilizing the simultaneous motion of the two axes, the fast raster scanning mode proposed can improve the scanning efficiency by 29% when comparing with the conventional raster (CR) scanning mode, if the scanning speeds of both axes are identical. In addition, the optimal fast mode provided by us has no effects on the image accuracy such as image degradation, image distortion when the efficiency is evaluated. No further difficulties are introduced to the control of the mechanical scanner and the data acquisition process. This optimal scanning mode is useful when the response time of the probe is very fast (such as ultrasonic probe in scanning acoustic microscope (SAM)), and the main limitations are due to the mechanical scanner. By applying different loads for both axes, the experiments with different scanning areas and scanning modes are conducted in a self-developed SAM. Experimental results coincide with the theoretical analysis and confirm the validation of our proposed optimal fast scanning mode and its superiority over the CR scanning mode.
Scanning-time evaluation of Digimarc Barcode
NASA Astrophysics Data System (ADS)
Gerlach, Rebecca; Pinard, Dan; Weaver, Matt; Alattar, Adnan
2015-03-01
This paper presents a speed comparison between the use of Digimarc® Barcodes and the Universal Product Code (UPC) for customer checkout at point of sale (POS). The recently introduced Digimarc Barcode promises to increase the speed of scanning packaged goods at POS. When this increase is exploited by workforce optimization systems, the retail industry could potentially save billions of dollars. The Digimarc Barcode is based on Digimarc's watermarking technology, and it is imperceptible, very robust, and does not require any special ink, material, or printing processes. Using an image-based scanner, a checker can quickly scan consumer packaged goods (CPG) embedded with the Digimarc Barcode without the need to reorient the packages with respect to the scanner. Faster scanning of packages saves money and enhances customer satisfaction. It reduces the length of the queues at checkout, reduces the cost of cashier labor, and makes self-checkout more convenient. This paper quantifies the increase in POS scanning rates resulting from the use of the Digimarc Barcode versus the traditional UPC. It explains the testing methodology, describes the experimental setup, and analyzes the obtained results. It concludes that the Digimarc Barcode increases number of items per minute (IPM) scanned at least 50% over traditional UPC.
Fast optimization and dose calculation in scanned ion beam therapy.
Hild, S; Graeff, C; Trautmann, J; Kraemer, M; Zink, K; Durante, M; Bert, C
2014-07-01
Particle therapy (PT) has advantages over photon irradiation on static tumors. An increased biological effectiveness and active target conformal dose shaping are strong arguments for PT. However, the sensitivity to changes of internal geometry complicates the use of PT for moving organs. In case of interfractionally moving objects adaptive radiotherapy (ART) concepts known from intensity modulated radiotherapy (IMRT) can be adopted for PT treatments. One ART strategy is to optimize a new treatment plan based on daily image data directly before a radiation fraction is delivered [treatment replanning (TRP)]. Optimizing treatment plans for PT using a scanned beam is a time consuming problem especially for particles other than protons where the biological effective dose has to be calculated. For the purpose of TRP, fast optimization and fast dose calculation have been implemented into the GSI in-house treatment planning system (TPS) TRiP98. This work reports about the outcome of a code analysis that resulted in optimization of the calculation processes as well as implementation of routines supporting parallel execution of the code. To benchmark the new features, the calculation time for therapy treatment planning has been studied. Compared to the original version of the TPS, calculation times for treatment planning (optimization and dose calculation) have been improved by a factor of 10 with code optimization. The parallelization of the TPS resulted in a speedup factor of 12 and 5.5 for the original version and the code optimized version, respectively. Hence the total speedup of the new implementation of the authors' TPS yielded speedup factors up to 55. The improved TPS is capable of completing treatment planning for ion beam therapy of a prostate irradiation considering organs at risk in this has been overseen in the review process. Also see below 6 min.
Fast optimization and dose calculation in scanned ion beam therapy
Hild, S.; Graeff, C.; Trautmann, J.; Kraemer, M.; Zink, K.; Durante, M.; Bert, C.
2014-07-15
Purpose: Particle therapy (PT) has advantages over photon irradiation on static tumors. An increased biological effectiveness and active target conformal dose shaping are strong arguments for PT. However, the sensitivity to changes of internal geometry complicates the use of PT for moving organs. In case of interfractionally moving objects adaptive radiotherapy (ART) concepts known from intensity modulated radiotherapy (IMRT) can be adopted for PT treatments. One ART strategy is to optimize a new treatment plan based on daily image data directly before a radiation fraction is delivered [treatment replanning (TRP)]. Optimizing treatment plans for PT using a scanned beam is a time consuming problem especially for particles other than protons where the biological effective dose has to be calculated. For the purpose of TRP, fast optimization and fast dose calculation have been implemented into the GSI in-house treatment planning system (TPS) TRiP98. Methods: This work reports about the outcome of a code analysis that resulted in optimization of the calculation processes as well as implementation of routines supporting parallel execution of the code. To benchmark the new features, the calculation time for therapy treatment planning has been studied. Results: Compared to the original version of the TPS, calculation times for treatment planning (optimization and dose calculation) have been improved by a factor of 10 with code optimization. The parallelization of the TPS resulted in a speedup factor of 12 and 5.5 for the original version and the code optimized version, respectively. Hence the total speedup of the new implementation of the authors' TPS yielded speedup factors up to 55. Conclusions: The improved TPS is capable of completing treatment planning for ion beam therapy of a prostate irradiation considering organs at risk in this has been overseen in the review process. Also see below 6 min.
Yamada, Takahiro; Miyamoto, Naoki; Matsuura, Taeko; Takao, Seishin; Fujii, Yusuke; Matsuzaki, Yuka; Koyano, Hidenori; Umezawa, Masumi; Nihongi, Hideaki; Shimizu, Shinichi; Shirato, Hiroki; Umegaki, Kikuo
2016-07-01
To find the optimum parameter of a new beam control function installed in a synchrotron-based proton therapy system. A function enabling multiple gated irradiation in the flat top phase has been installed in a real-time-image gated proton beam therapy (RGPT) system. This function is realized by a waiting timer that monitors the elapsed time from the last gate-off signal in the flat top phase. The gated irradiation efficiency depends on the timer value, Tw. To find the optimum Tw value, gated irradiation efficiency was evaluated for each configurable Tw value. 271 gate signal data sets from 58 patients were used for the simulation. The highest mean efficiency 0.52 was obtained in TW=0.2s. The irradiation efficiency was approximately 21% higher than at TW=0s, which corresponds to ordinary synchrotron operation. The irradiation efficiency was improved in 154 (57%) of the 271 cases. The irradiation efficiency was reduced in 117 cases because the TW value was insufficient or the function introduced an unutilized wait time for the next gate-on signal in the flat top phase. In the actual treatment of a patient with a hepatic tumor at Tw=0.2s, 4.48GyE irradiation was completed within 250s. In contrast, the treatment time of ordinary synchrotron operation was estimated to be 420s. The results suggest that the multiple gated-irradiation function has potential to improve the gated irradiation efficiency and to reduce the treatment time. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Optimization of transmission and emission scan duration in 3D whole-body PET
Beyer, T.; Kinahan, P.E.; Townsend, D.W.
1996-12-31
Whole-body PET imaging is being increasingly used to identify and localize malignant disease remote from the site of the primary tumor. Patients are typically scanned at multiple contiguous bed positions over an axial length of 75-100 cm. For oncology patients, the total scan duration should not exceed about an hour and therefore only 5-10 minutes of imaging can be performed at each bed position. To minimize the total scan duration, the transmission scan is often omitted and the emission scan reconstructed without attenuation correction. However, whole-body scans reconstructed without attenuation correction can lead to incorrect diagnosis, particularly for tumors located deep within the body. We have performed a series of torso phantom measurements to investigate the optimal partition of scan time between the emission and transmission scans for a fixed total scan duration. We find that a transmission fraction of about 0.4 is optimal for a 5 min and 10 min total acquisition time per bed position. The optimal partition depends on the way the attenuation correction factors are calculated and on the reconstruction algorithm.
Optimal lens design and use in laser-scanning microscopy
Negrean, Adrian; Mansvelder, Huibert D.
2014-01-01
In laser-scanning microscopy often an off-the-shelf achromatic doublet is used as a scan lens which can reduce the available diffraction-limited field-of-view (FOV) by a factor of 3 and introduce chromatic aberrations that are scan angle dependent. Here we present several simple lens designs of superior quality that fully make use of high-NA low-magnification objectives, offering diffraction-limited imaging over a large FOV and wavelength range. We constructed a two-photon laser-scanning microscope with optimized custom lenses which had a near diffraction limit point-spread-function (PSF) with less than 3.6% variation over a 400 µm FOV and less than 0.5 µm lateral color between 750 and 1050 nm. PMID:24877017
2009-11-01
Systems and Applications Meeting, 16-19 Nov 2009, Santa Ana Pueblo , NM 14. ABSTRACT see report 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17...filter (MF) to drive multiple instances of spawned filters (SF) and fixed-epoch smoothers ( FES ). The MF is designed to map all GPS carrier-phase...with all serial correlations and all cross-correlations accounted for. Each SF runs forward with time while the FES linearly maps measurement
PREFACE: Time-resolved scanning tunnelling microscopy Time-resolved scanning tunnelling microscopy
NASA Astrophysics Data System (ADS)
Zandvliet, Harold J. W.; Lin, Nian
2010-07-01
Scanning tunnelling microscopy has revolutionized our ability to image, manipulate, and investigate solid surfaces on the length scale of individual atoms and molecules. The strength of this technique lies in its imaging capabilities, since for many scientists 'seeing is believing'. However, scanning tunnelling microscopy also suffers from a severe limitation, namely its poor time resolution. Recording a scanning tunnelling microscopy image typically requires a few tens of seconds for a conventional scanning tunnelling microscope to a fraction of a second for a specially designed fast scanning tunnelling microscope. Designing and building such a fast scanning tunnelling microscope is a formidable task in itself and therefore, only a limited number of these microscopes have been built [1]. There is, however, another alternative route to significantly enhance the time resolution of a scanning tunnelling microscope. In this alternative method, the tunnelling current is measured as a function of time with the feedback loop switched off. The time resolution is determined by the bandwidth of the IV converter rather than the cut-off frequency of the feedback electronics. Such an approach requires a stable microscope and goes, of course, at the expense of spatial information. In this issue, we have collected a set of papers that gives an impression of the current status of this rapidly emerging field [2]. One of the very first attempts to extract information from tunnel current fluctuations was reported by Tringides' group in the mid-1990s [3]. They showed that the collective diffusion coefficient can be extracted from the autocorrelation of the time-dependent tunnelling current fluctuations produced by atom motion in and out of the tunnelling junction. In general, current-time traces provide direct information on switching/conformation rates and distributions of residence times. In the case where these processes are thermally induced it is rather straightforward to map
Optimization of Designs for Nanotube-based Scanning Probes
NASA Technical Reports Server (NTRS)
Harik, V. M.; Gates, T. S.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
Optimization of designs for nanotube-based scanning probes, which may be used for high-resolution characterization of nanostructured materials, is examined. Continuum models to analyze the nanotube deformations are proposed to help guide selection of the optimum probe. The limitations on the use of these models that must be accounted for before applying to any design problem are presented. These limitations stem from the underlying assumptions and the expected range of nanotube loading, end conditions, and geometry. Once the limitations are accounted for, the key model parameters along with the appropriate classification of nanotube structures may serve as a basis for the design optimization of nanotube-based probe tips.
Optimal z-axis scanning parameters for gynecologic cytology specimens
Donnelly, Amber D.; Mukherjee, Maheswari S.; Lyden, Elizabeth R.; Bridge, Julia A.; Lele, Subodh M.; Wright, Najia; McGaughey, Mary F.; Culberson, Alicia M.; Horn, Adam J.; Wedel, Whitney R.; Radio, Stanley J.
2013-01-01
Background: The use of virtual microscopy (VM) in clinical cytology has been limited due to the inability to focus through three dimensional (3D) cell clusters with a single focal plane (2D images). Limited information exists regarding the optimal scanning parameters for 3D scanning. Aims: The purpose of this study was to determine the optimal number of the focal plane levels and the optimal scanning interval to digitize gynecological (GYN) specimens prepared on SurePath™ glass slides while maintaining a manageable file size. Subjects and Methods: The iScanCoreo Au scanner (Ventana, AZ, USA) was used to digitize 192 SurePath™ glass slides at three focal plane levels at 1 μ interval. The digitized virtual images (VI) were annotated using BioImagene's Image Viewer. Five participants interpreted the VI and recorded the focal plane level at which they felt confident and later interpreted the corresponding glass slide specimens using light microscopy (LM). The participants completed a survey about their experiences. Inter-rater agreement and concordance between the VI and the glass slide specimens were evaluated. Results: This study determined an overall high intra-rater diagnostic concordance between glass and VI (89-97%), however, the inter-rater agreement for all cases was higher for LM (94%) compared with VM (82%). Survey results indicate participants found low grade dysplasia and koilocytes easy to diagnose using three focal plane levels, the image enhancement tool was useful and focusing through the cells helped with interpretation; however, the participants found VI with hyperchromatic crowded groups challenging to interpret. Participants reported they prefer using LM over VM. This study supports using three focal plane levels and 1 μ interval to expand the use of VM in GYN cytology. Conclusion: Future improvements in technology and appropriate training should make this format a more preferable and practical option in clinical cytology. PMID:24524004
Heuristically optimal path scanning for high-speed multiphoton circuit imaging
Sadovsky, Alexander J.; Kruskal, Peter B.; Kimmel, Joseph M.; Ostmeyer, Jared; Neubauer, Florian B.
2011-01-01
Population dynamics of patterned neuronal firing are fundamental to information processing in the brain. Multiphoton microscopy in combination with calcium indicator dyes allows circuit dynamics to be imaged with single-neuron resolution. However, the temporal resolution of fluorescent measures is constrained by the imaging frequency imposed by standard raster scanning techniques. As a result, traditional raster scans limit the ability to detect the relative timing of action potentials in the imaged neuronal population. To maximize the speed of fluorescence measures from large populations of neurons using a standard multiphoton laser scanning microscope (MPLSM) setup, we have developed heuristically optimal path scanning (HOPS). HOPS optimizes the laser travel path length, and thus the temporal resolution of neuronal fluorescent measures, using standard galvanometer scan mirrors. Minimizing the scan path alone is insufficient for prolonged high-speed imaging of neuronal populations. Path stability and the signal-to-noise ratio become increasingly important factors as scan rates increase. HOPS addresses this by characterizing the scan mirror galvanometers to achieve prolonged path stability. In addition, the neuronal dwell time is optimized to sharpen the detection of action potentials while maximizing scan rate. The combination of shortest path calculation and minimization of mirror positioning time allows us to optically monitor a population of neurons in a field of view at high rates with single-spike resolution, ∼125 Hz for 50 neurons and ∼8.5 Hz for 1,000 neurons. Our approach introduces an accessible method for rapid imaging of large neuronal populations using traditional MPLSMs, facilitating new insights into neuronal circuit dynamics. PMID:21715667
Optimization and applications of an excitation-scanning hyperspectral imaging system
NASA Astrophysics Data System (ADS)
Mayes, Sam A.; Klomkaew, Phiwat; Leavesley, Silas J.; Rich, Thomas C.
2017-02-01
Currently, the majority of microscopic and endoscopic technologies utilize white light illumination. For a number of applications, hyper-spectral imaging can be shown to have significant improvements over standard white-light imaging techniques. This is true for both microscopy and in vivo imaging. However, hyperspectral imaging methods have suffered from slow application times. Often, minutes are required to gather a full imaging stack. Here we will describe the system and evaluate optimizations and applications of a novel excitation-scanning hyperspectral imaging system. We have developed and are optimizing a novel approach called excitation-scanning hyperspectral imaging that provides an order of magnitude increased signal strength. Optimization of the light path, optical components and illumination sources have allowed us to achieve high speed image acquisition. This high speed allows for potential live video acquisition. This excitation-scanning hyperspectral imaging technology has potential to impact a range of applications. The current system allows triggering of up to 16 wavelengths at less than 1 millisecond per image using digital strobing. Analog intensity control is also provided for a fully customizable excitation profile. A significant advantage of excitation scanning hyperspectral imaging is can identify multiple targets simultaneously in real time. We are optimizing the system to compare sensitivity and specificity of excitation-scanning hyperspectral imaging with pathology techniques. Finally, we are exploring utilizing this technology to measure cAMP distribution in three dimensions within a cell.
Optimization of the imaging response of scanning microwave microscopy measurements
Sardi, G. M.; Lucibello, A.; Proietti, E.; Marcelli, R.; Kasper, M.; Gramse, G.; Kienberger, F.
2015-07-20
In this work, we present the analytical modeling and preliminary experimental results for the choice of the optimal frequencies when performing amplitude and phase measurements with a scanning microwave microscope. In particular, the analysis is related to the reflection mode operation of the instrument, i.e., the acquisition of the complex reflection coefficient data, usually referred as S{sub 11}. The studied configuration is composed of an atomic force microscope with a microwave matched nanometric cantilever probe tip, connected by a λ/2 coaxial cable resonator to a vector network analyzer. The set-up is provided by Keysight Technologies. As a peculiar result, the optimal frequencies, where the maximum sensitivity is achieved, are different for the amplitude and for the phase signals. The analysis is focused on measurements of dielectric samples, like semiconductor devices, textile pieces, and biological specimens.
Zhang, Liansheng; Long, Qian; Liu, Yongbin; Zhang, Jie; Feng, Zhihua
2016-07-01
The thermal effect is one of the most important factors that influence the accuracy of nanoscale measurement and the surface topography of samples in scanning probe microscopes (SPMs). We propose a method called correlation-steered scanning, which is capable of overcoming three-dimensional thermal drifts in real time for ultra-long time scanned images. The image is scanned band by band with overlapping parts between adjacent bands. The vertical drift can be considered as linear and can thus be eliminated together with the tilt of the sample by applying the flattening method. Each band is artificially divided into several blocks for conveniently calculating lateral drifts on the basis of the overlapping area of adjacent bands through digital image correlation. The calculated lateral drifts are compensated to steer the scanning of the subsequent blocks, thus ensuring that all bands are parallel to one another. Experimental results proved that images scanned by the proposed method exhibited less distortions than those obtained from the traditional raster scanning method. The nanoscale measurement results based on the image obtained by the proposed method also showed high accuracy, with an error of less than 1.5%. By scanning as many bands as needed, the correlation-steered scanning method can obtain a highly precise SPM image of an ultra-large area.
Optimal alignment of mirror based pentaprisms for scanning deflectometric devices
Barber, Samuel K.; Geckeler, Ralf D.; Yashchuk, Valeriy V.; Gubarev, Mikhail V.; Buchheim, Jana; Siewert, Frank; Zeschke, Thomas
2011-03-04
In the recent work [Proc. of SPIE 7801, 7801-2/1-12 (2010), Opt. Eng. 50(5) (2011), in press], we have reported on improvement of the Developmental Long Trace Profiler (DLTP), a slope measuring profiler available at the Advanced Light Source Optical Metrology Laboratory, achieved by replacing the bulk pentaprism with a mirror based pentaprism (MBPP). An original experimental procedure for optimal mutual alignment of the MBPP mirrors has been suggested and verified with numerical ray tracing simulations. It has been experimentally shown that the optimally aligned MBPP allows the elimination of systematic errors introduced by inhomogeneity of the optical material and fabrication imperfections of the bulk pentaprism. In the present article, we provide the analytical derivation and verification of easily executed optimal alignment algorithms for two different designs of mirror based pentaprisms. We also provide an analytical description for the mechanism for reduction of the systematic errors introduced by a typical high quality bulk pentaprism. It is also shown that residual misalignments of an MBPP introduce entirely negligible systematic errors in surface slope measurements with scanning deflectometric devices.
Scanning laser ophthalmoscopy: optimized testing strategies for psychophysics
NASA Astrophysics Data System (ADS)
Van de Velde, Frans J.
1996-12-01
Retinal function can be evaluated with the scanning laser ophthalmoscope (SLO). the main advantage is a precise localization of the psychophysical stimulus on the retina. Four alternative forced choice (4AFC) and parameter estimation by sequential testing (PEST) are classic adaptive algorithms that have been optimized for use with the SLO, and combined with strategies to correct for small eye movements. Efficient calibration procedures are essential for quantitative microperimetry. These techniques measure precisely visual acuity and retinal sensitivity at distinct locations on the retina. A combined 632 nm and IR Maxwellian view illumination provides a maximal transmittance through the ocular media and has a animal interference with xanthophyll or hemoglobin. Future modifications of the instrument include the possibility of binocular evaluation, Maxwellian view control, fundus tracking using normalized gray-scale correlation, and microphotocoagulation. The techniques are useful in low vision rehabilitation and the application of laser to the retina.
Timing to Block Scanning Malwares by Using Combinatorics Proliferation Model
NASA Astrophysics Data System (ADS)
Omote, Kazumasa; Shimoyama, Takeshi; Torii, Satoru
One of the worst threats present in an enterprise network is the propagation of "scanning malware" (e.g., scanning worms and bots). It is important to prevent such scanning malware from spreading within an enterprise network. It is especially important to suppress scanning malware infection to less than a few infected hosts. We estimated the timing of containment software to block "scanning malware" in a homogeneous enterprise network. The "combinatorics proliferation model", based on discrete mathematics, developed in this study derives a threshold that gives the number of the packets sent by a victim that must not be exceeded in order to suppress the number of infected hosts to less than a few. This model can appropriately express the early state under which an infection started. The result from our model fits very well to the result of computer simulation using a typical existing scanning malware and an actual network.
Optimizing the Temporal Resolution of Fast-Scan Cyclic Voltammetry
2012-01-01
Electrochemical detection with carbon-fiber microelectrodes has become an established method to monitor directly the release of dopamine from neurons and its uptake by the dopamine transporter. With constant potential amperometry (CPA), the measured current provides a real time view of the rapid concentration changes, but the method lacks chemical identification of the monitored species and markedly increases the difficulty of signal calibration. Monitoring with fast-scan cyclic voltammetry (FSCV) allows species identification and concentration measurements but often exhibits a delayed response time due to the time-dependent adsorption/desorption of electroactive species at the electrode. We sought to improve the temporal resolution of FSCV to make it more comparable to CPA by increasing the waveform repetition rate from 10 to 60 Hz with uncoated carbon-fiber electrodes. The faster acquisition led to diminished time delays of the recordings that tracked more closely with CPA measurements. The measurements reveal that FSCV at 10 Hz underestimates the normal rate of dopamine uptake by about 18%. However, FSCV collection at 10 and 60 Hz provide identical results when a dopamine transporter (DAT) blocker such as cocaine is bath applied. To verify further the utility of this method, we used transgenic mice that overexpress DAT. After accounting for the slight adsorption delay time, FSCV at 60 Hz adequately monitored the increased uptake rate that arose from overexpression of DAT and, again, was similar to CPA results. Furthermore, the utility of collecting data at 60 Hz was verified in an anesthetized rat by using a higher scan rate (2400 V/s) to increase sensitivity and the overall signal. PMID:22708011
Optimal handling of dimercaptosuccinic acid for quantitative renal scanning
Taylor, A. Jr.; Lallone, R.L.; Hagan, P.L.
1980-12-01
Methods of optimizing quantitative renal imaging with Tc-99m dimercaptosuccinic acid (DMSA) were investigated. Rats were injected with DMSA (one kit per rat) and sacrificed at 0.5, 2.0, and 24 hr after injection. Fifty percent of the injected dose localized in the kidneys at 0.5, 2, and 24 hr after injection while background activity peaked at 0.5 hr and then declined to give substantially higher kidney-to-background ratios at 24 hr. Delayed scanning should increase the accuracy of clinical studies in patients with low kidney-to-background ratios at 1 to 2 hr. After injection of DMSA, 1 ml of air was introduced into the reaction vials and incubated 20 min. Kidney uptake decreased from 50 to 40% and liver uptake increased from 7.5 to 17%. If multiple doses must be drawn from a single vial, air should not be introduced, and the doses should be drawn together and administered immediately to minimize radiopharmaceutical deterioration.
Visual optimality and stability analysis of 3DCT scan positions.
Amirkhanov, Artem; Heinzl, Christoph; Reiter, Michael; Gröller, Eduard
2010-01-01
Industrial cone-beam X-Ray computed tomography (CT) systems often face problems due to artifacts caused by a bad placement of the specimen on the rotary plate. This paper presents a visual-analysis tool for CT systems, which provides a simulation-based preview and estimates artifacts and deviations of a specimen's placement using the corresponding 3D geometrical surface model as input. The presented tool identifies potentially good or bad placements of a specimen and regions of a specimen, which cause the major portion of artefacts. The tool can be used for a preliminary analysis of the specimen before CT scanning, in order to determine the optimal way of placing the object. The analysis includes: penetration lengths, placement stability and an investigation in Radon space. Novel visualization techniques are applied to the simulation data. A stability widget is presented for determining the placement parameters' robustness. The performance and the comparison of results provided by the tool compared with real world data is demonstrated using two specimens.
Cylindrical optic figuring dwell time optimization
NASA Astrophysics Data System (ADS)
Waluschka, Eugene
2000-11-01
The Constellation-X, grazing incidence, x-ray telescope may be fabricated from replicated segments. A series of mandrels will serve as the 'masters' in the replication processes. Diamond turning (milling) followed by abrasive figuring followed by a super polishing are the steps currently envisioned in making just one (of many) mandrel. The abrasive figuring of a mandrel is accomplished by moving a grinding tool along a helical path on this almost cylindrical surface. The measurement of the surface is, however, performed along 'axial' scan lines which intercept this helical path. This approach to figuring and measuring permits a relatively simple scheme to be implemented for the determination of the optimal dwell times of the figuring tool. These optimal dwell times are determined by a deconvolution which approaches the problem in a linear programming context and uses the Simplex Method. The approach maximizes the amount of material removed at any point subject to inequality constraints. The effects of using these 'optimum' dwell times is to significantly improve the tools effectiveness at removing the higher spatial frequencies while staying (strictly) within the bounds and constraints imposed by the hardware. In addition, the ringing at the edges of the optic, frequently present in deconvolution problems, is completely eliminated.
Optimization of galvanometer scanning for optical coherence tomography.
Duma, Virgil-Florin; Tankam, Patrice; Huang, Jinxin; Won, Jungeun; Rolland, Jannick P
2015-06-10
We study experimentally the effective duty cycle of galvanometer-based scanners (GSs) with regard to three main parameters of the scanning process: theoretical/imposed duty cycle (of the input signal), scan frequency, and scan amplitude. Sawtooth and triangular input signals for the device are considered. The effects of the mechanical inertia of the oscillatory element of the GS are analyzed and their consequences are discussed in the context of optical coherence tomography (OCT) imaging. When the theoretical duty cycle and the scan amplitude are increased to the limit, the saturation of the device is demonstrated for a useful range of scan frequencies by direct measurement of the position of the galvomirror. Investigations of OCT imaging of large samples also validate this saturation, as examplified by the gaps/blurred portions obtained between neighboring images when using both triangular and sawtooth scanning at high scan frequencies. For this latter aspect, the necessary overlap between neighboring B-scans, and therefore between the corresponding volumetric reconstructions of the sample, are evaluated and implemented with regard to the same parameters of the scanning process. OCT images that are free of these artifacts are thus obtained.
Improved Real-Time Scan Matching Using Corner Features
NASA Astrophysics Data System (ADS)
Mohamed, H. A.; Moussa, A. M.; Elhabiby, M. M.; El-Sheimy, N.; Sesay, Abu B.
2016-06-01
The automation of unmanned vehicle operation has gained a lot of research attention, in the last few years, because of its numerous applications. The vehicle localization is more challenging in indoor environments where absolute positioning measurements (e.g. GPS) are typically unavailable. Laser range finders are among the most widely used sensors that help the unmanned vehicles to localize themselves in indoor environments. Typically, automatic real-time matching of the successive scans is performed either explicitly or implicitly by any localization approach that utilizes laser range finders. Many accustomed approaches such as Iterative Closest Point (ICP), Iterative Matching Range Point (IMRP), Iterative Dual Correspondence (IDC), and Polar Scan Matching (PSM) handles the scan matching problem in an iterative fashion which significantly affects the time consumption. Furthermore, the solution convergence is not guaranteed especially in cases of sharp maneuvers or fast movement. This paper proposes an automated real-time scan matching algorithm where the matching process is initialized using the detected corners. This initialization step aims to increase the convergence probability and to limit the number of iterations needed to reach convergence. The corner detection is preceded by line extraction from the laser scans. To evaluate the probability of line availability in indoor environments, various data sets, offered by different research groups, have been tested and the mean numbers of extracted lines per scan for these data sets are ranging from 4.10 to 8.86 lines of more than 7 points. The set of all intersections between extracted lines are detected as corners regardless of the physical intersection of these line segments in the scan. To account for the uncertainties of the detected corners, the covariance of the corners is estimated using the extracted lines variances. The detected corners are used to estimate the transformation parameters between the
Optimal scan strategies for future CMB satellite experiments
NASA Astrophysics Data System (ADS)
Wallis, Christopher G. R.; Brown, Michael L.; Battye, Richard A.; Delabrouille, Jacques
2017-04-01
The B-mode polarization power spectrum in the cosmic microwave background (CMB) is about four orders of magnitude fainter than the CMB temperature power spectrum. Any instrumental imperfections that couple temperature fluctuations to B-mode polarization must therefore be carefully controlled and/or removed. We investigate the role that a scan strategy can have in mitigating certain common systematics by averaging systematic errors down with many crossing angles. We present approximate analytic forms for the error on the recovered B-mode power spectrum that would result from differential gain, differential pointing and differential ellipticity for the case where two detector pairs are used in a polarization experiment. We use these analytic predictions to search the parameter space of common satellite scan strategies in order to identify those features of a scan strategy that have most impact in mitigating systematic effects. As an example, we go on to identify a scan strategy suitable for the CMB satellite proposed for the European Space Agency M5 call, considering the practical considerations of fuel requirement, data rate and the relative orientation of the telescope to the earth. Having chosen a scan strategy we then go on to investigate the suitability of the scan strategy.
Millimeter-wave electronically scanned reflectarray optimization and analysis
NASA Astrophysics Data System (ADS)
Hedden, Abigail S.; Dietlein, Charles R.; Wikner, David A.
2012-06-01
The development of millimeter-wave scanning reflectarrays and phased arrays provides an important path to enabling electronic scanning capabilities at high frequencies. This technology could be used to eliminate the mechanical scanners that are currently used with radar imaging systems. In this work, we analyze properties of wafer-scale two-dimensional rectangular lattice arrays that can be used with a confocal imager for 220 GHz electronic scanning of meter-sized fields of regard at 50 m. Applications include covert imaging of hidden anomalies. We examine tradeoffs between overall system size and array complexity and analyze properties of reflectarrays compatible with a system design that was chosen based on these considerations. The effects of phase quantization are considered in detail for arrays with 1- and 2- bit phase shifters and the results are compared in terms of impacts to image quality. Beam pointing accuracy, main beam energy fraction, and the number and intensity of quantization lobes that appear over the scan ranges of interest are compared. Our results indicate that arrays with 1- and 2-bit phase quantization achieve similar main beam energy efficiencies over the desired scan range. Without restricting the scan range, 1-bit phase quantization is insufficient, resulting in maximum errors that are comparable to the required minimum scan angle. Two-bit phase quantization is preferable, resulting in pointing angle errors of at most 15 % of the diffraction-limited beam-size. Both 1- and 2-bit phase quantization cases result in lobes appearing above our threshold, indicating that spurious returns are a problem that will require further attention.
Optimizing Lidar Scanning Strategies for Wind Energy Measurements (Invited)
NASA Astrophysics Data System (ADS)
Newman, J. F.; Bonin, T. A.; Klein, P.; Wharton, S.; Chilson, P. B.
2013-12-01
Environmental concerns and rising fossil fuel prices have prompted rapid development in the renewable energy sector. Wind energy, in particular, has become increasingly popular in the United States. However, the intermittency of available wind energy makes it difficult to integrate wind energy into the power grid. Thus, the expansion and successful implementation of wind energy requires accurate wind resource assessments and wind power forecasts. The actual power produced by a turbine is affected by the wind speeds and turbulence levels experienced across the turbine rotor disk. Because of the range of measurement heights required for wind power estimation, remote sensing devices (e.g., lidar) are ideally suited for these purposes. However, the volume averaging inherent in remote sensing technology produces turbulence estimates that are different from those estimated by a sonic anemometer mounted on a standard meteorological tower. In addition, most lidars intended for wind energy purposes utilize a standard Doppler beam-swinging or Velocity-Azimuth Display technique to estimate the three-dimensional wind vector. These scanning strategies are ideal for measuring mean wind speeds but are likely inadequate for measuring turbulence. In order to examine the impact of different lidar scanning strategies on turbulence measurements, a WindCube lidar, a scanning Halo lidar, and a scanning Galion lidar were deployed at the Southern Great Plains Atmospheric Radiation Measurement (ARM) site in Summer 2013. Existing instrumentation at the ARM site, including a 60-m meteorological tower and an additional scanning Halo lidar, were used in conjunction with the deployed lidars to evaluate several user-defined scanning strategies. For part of the experiment, all three scanning lidars were pointed at approximately the same point in space and a tri-Doppler analysis was completed to calculate the three-dimensional wind vector every 1 second. In another part of the experiment, one of
Kenneth Krebs, John Svoboda
2009-11-01
SCAN+ is a software application specifically designed to control the positioning of a gamma spectrometer by a two dimensional translation system above spent fuel bundles located in a sealed spent fuel cask. The gamma spectrometer collects gamma spectrum information for the purpose of spent fuel cask fuel loading verification. SCAN+ performs manual and automatic gamma spectrometer positioning functions as-well-as exercising control of the gamma spectrometer data acquisitioning functions. Cask configuration files are used to determine the positions of spent fuel bundles. Cask scanning files are used to determine the desired scan paths for scanning a spent fuel cask allowing for automatic unattended cask scanning that may take several hours.
S.A. Bowe; R.L. Smith; D. Earl Kline; Philip A. Araman
2002-01-01
A nationwide survey of advanced scanning and optimizing technology in the hardwood sawmill industry was conducted in the fall of 1999. Three specific hardwood sawmill technologies were examined that included current edger-optimizer systems, future edger-optimizer systems, and future automated grading systems. The objectives of the research were to determine differences...
[Simulation study of scan timing in three-dimensional contrast-enhanced MR angiography].
Ohkubo, Masaki; Ohgoshi, Yukio; Inoue, Tomoko; Naito, Kenichi; Yagishita, Yuhko; Tsai, Du-Yih
2002-05-01
In our study of three-dimensional contrast-enhanced MR angiography, we performed a computer simulation to quantitatively investigate vessel visibility according to scan timing. To construct the simulated MR images, we varied the position (scan timing) and range (enhancement-duration) of k-space data assumed to be acquired during contrast enhancement. In the present study, either the sequential or centric phase-encoding order in k(y) and k(z) on k-space was assumed to be used. When scan timing was shifted from the optimal timing, the visibility of thick vessels decreased, and the signal intensity in thin vessels was higher than that in thick vessels. We found that the appropriate setting of scan timing was an important factor in the visibility of thick vessels. Meanwhile, we also noted that extending the enhancement-duration (or shortening the scan time) could increase the visibility of thin vessels. Our results and the simple technique used for simulation are considered to be useful for the study of three-dimensional contrast-enhanced MR angiography.
Time-resolved scanning electron microscopy with polarization analysis
Frömter, Robert Oepen, Hans Peter; Kloodt, Fabian; Rößler, Stefan; Frauen, Axel; Staeck, Philipp; Cavicchia, Demetrio R.; Bocklage, Lars; Röbisch, Volker; Quandt, Eckhard
2016-04-04
We demonstrate the feasibility of investigating periodically driven magnetization dynamics in a scanning electron microscope with polarization analysis based on spin-polarized low-energy electron diffraction. With the present setup, analyzing the time structure of the scattering events, we obtain a temporal resolution of 700 ps, which is demonstrated by means of imaging the field-driven 100 MHz gyration of the vortex in a soft-magnetic FeCoSiB square. Owing to the efficient intrinsic timing scheme, high-quality movies, giving two components of the magnetization simultaneously, can be recorded on the time scale of hours.
Optimizing noise for defect analysis with through-focus scanning optical microscopy
Attota, Ravikiran; Kramar, John
2017-01-01
Through-focus scanning optical microscopy (TSOM) shows promise for patterned defect analysis, but it is important to minimize total system noise. TSOM is a three-dimensional shape metrology method that can achieve sub-nanometer measurement sensitivity by analyzing sets of images acquired through-focus using a conventional optical microscope. Here we present a systematic noise-analysis study for optimizing data collection and data processing parameters for TSOM and then demonstrate how the optimized parameters affect defect analysis. We show that the best balance between signal-to-noise performance and acquisition time can be achieved by judicious spatial averaging. Correct background-signal subtraction of the imaging-system inhomogeneities is also critical, as well as careful alignment of the constituent images used in differential TSOM analysis. PMID:28663666
Pixel timing correction in time-lapsed calcium imaging using point scanning microscopy.
Boiroux, Dimitri; Oke, Yoshihiko; Miwakeichi, Fumikazu; Oku, Yoshitaka
2014-11-30
In point scanning imaging, data are acquired by sequentially scanning each pixel of a predetermined area. This way of scanning leads to time delays between pixels, especially for lower scanning speed or large scanned areas. Therefore, experiments are often performed at lower framerates in order to ensure a sufficient signal-to-noise ratio, even though framerates above 30 frames per second are technically feasible. For these framerates, we suggest that it becomes crucial to correct the time delay between image pixels prior to analyses. In this paper, we apply temporal interpolation (or pixel timing correction) for calcium imaging in two-photon microscopy as an example of fluorescence imaging. We present and compare three interpolation methods (linear, Lanczos and cubic B-spline). We test these methods on a simulated network of coupled bursting neurons at different framerates. In this network, we introduce a time delay to simulate a scanning by point scanning microscopy. We also assess these methods on actual microscopic calcium imaging movies recorded at usual framerates. Our numerical results suggest that point scanning microscopy imaging introduces statistically significant time delays between image pixels at low frequency. However, we demonstrate that pixel timing correction compensates for these time delays, regardless of the used interpolation method.
Time optimal paths for high speed maneuvering
Reister, D.B.; Lenhart, S.M.
1993-01-01
Recent theoretical results have completely solved the problem of determining the minimum length path for a vehicle with a minimum turning radius moving from an initial configuration to a final configuration. Time optimal paths for a constant speed vehicle are a subset of the minimum length paths. This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed vehicle. The time optimal paths consist of sequences of axes of circles and straight lines. The maximum principle introduces concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature of the time optimal paths. We explore the properties of the optimal paths and present some experimental results for a mobile robot following an optimal path.
Wang Shijun; Yao Jianhua; Liu Jiamin; Petrick, Nicholas; Van Uitert, Robert L.; Periaswamy, Senthil; Summers, Ronald M.
2009-12-15
Purpose: In computed tomographic colonography (CTC), a patient will be scanned twice--Once supine and once prone--to improve the sensitivity for polyp detection. To assist radiologists in CTC reading, in this paper we propose an automated method for colon registration from supine and prone CTC scans. Methods: We propose a new colon centerline registration method for prone and supine CTC scans using correlation optimized warping (COW) and canonical correlation analysis (CCA) based on the anatomical structure of the colon. Four anatomical salient points on the colon are first automatically distinguished. Then correlation optimized warping is applied to the segments defined by the anatomical landmarks to improve the global registration based on local correlation of segments. The COW method was modified by embedding canonical correlation analysis to allow multiple features along the colon centerline to be used in our implementation. Results: We tested the COW algorithm on a CTC data set of 39 patients with 39 polyps (19 training and 20 test cases) to verify the effectiveness of the proposed COW registration method. Experimental results on the test set show that the COW method significantly reduces the average estimation error in a polyp location between supine and prone scans by 67.6%, from 46.27{+-}52.97 to 14.98 mm{+-}11.41 mm, compared to the normalized distance along the colon centerline algorithm (p<0.01). Conclusions: The proposed COW algorithm is more accurate for the colon centerline registration compared to the normalized distance along the colon centerline method and the dynamic time warping method. Comparison results showed that the feature combination of z-coordinate and curvature achieved lowest registration error compared to the other feature combinations used by COW. The proposed method is tolerant to centerline errors because anatomical landmarks help prevent the propagation of errors across the entire colon centerline.
Real-time color B-scan ultrasonography.
Bronson, N R; Pickering, N C
1975-09-01
The development and early clinical results of a real-time color B-scan ultrasonoscope are described. This instrument uses color to display detailed echo amplitude information more quantitatively than is possible with gray scale. With real time, dynamic changes are seen during the examination. Conversion of the amplitude information into binary coded decimal code permits separation into ten color steps and also eliminates "blooming" of the cathode ray tube, as seen in black and white. Integrated circuitry is used, providing a portable, relatively inexpensive unit. Early clinical work in ophthalmology is illustrated.
Scanning SQUID sampler with 40-ps time resolution.
Cui, Zheng; Kirtley, John R; Wang, Yihua; Kratz, Philip A; Rosenberg, Aaron J; Watson, Christopher A; Gibson, Gerald W; Ketchen, Mark B; Moler, Kathryn A
2017-08-01
Scanning Superconducting QUantum Interference Device (SQUID) microscopy provides valuable information about magnetic properties of materials and devices. The magnetic flux response of the SQUID is often linearized with a flux-locked feedback loop, which limits the response time to microseconds or longer. In this work, we present the design, fabrication, and characterization of a novel scanning SQUID sampler with a 40-ps time resolution and linearized response to periodically triggered signals. Other design features include a micron-scale pickup loop for the detection of local magnetic flux, a field coil to apply a local magnetic field to the sample, and a modulation coil to operate the SQUID sampler in a flux-locked loop to linearize the flux response. The entire sampler device is fabricated on a 2 mm × 2 mm chip and can be scanned over macroscopic planar samples. The flux noise at 4.2 K with 100 kHz repetition rate and 1 s of averaging is of order 1 mΦ0. This SQUID sampler will be useful for imaging dynamics in magnetic and superconducting materials and devices.
Scanning SQUID sampler with 40-ps time resolution
NASA Astrophysics Data System (ADS)
Cui, Zheng; Kirtley, John R.; Wang, Yihua; Kratz, Philip A.; Rosenberg, Aaron J.; Watson, Christopher A.; Gibson, Gerald W.; Ketchen, Mark B.; Moler, Kathryn. A.
2017-08-01
Scanning Superconducting QUantum Interference Device (SQUID) microscopy provides valuable information about magnetic properties of materials and devices. The magnetic flux response of the SQUID is often linearized with a flux-locked feedback loop, which limits the response time to microseconds or longer. In this work, we present the design, fabrication, and characterization of a novel scanning SQUID sampler with a 40-ps time resolution and linearized response to periodically triggered signals. Other design features include a micron-scale pickup loop for the detection of local magnetic flux, a field coil to apply a local magnetic field to the sample, and a modulation coil to operate the SQUID sampler in a flux-locked loop to linearize the flux response. The entire sampler device is fabricated on a 2 mm × 2 mm chip and can be scanned over macroscopic planar samples. The flux noise at 4.2 K with 100 kHz repetition rate and 1 s of averaging is of order 1 mΦ0. This SQUID sampler will be useful for imaging dynamics in magnetic and superconducting materials and devices.
Image reconstruction and optimization using a terahertz scanned imaging system
NASA Astrophysics Data System (ADS)
Yıldırım, İhsan Ozan; Özkan, Vedat A.; Idikut, Fırat; Takan, Taylan; Şahin, Asaf B.; Altan, Hakan
2014-10-01
Due to the limited number of array detection architectures in the millimeter wave to terahertz region of the electromagnetic spectrum, imaging schemes with scan architectures are typically employed. In these configurations the interplay between the frequencies used to illuminate the scene and the optics used play an important role in the quality of the formed image. Using a multiplied Schottky-diode based terahertz transceiver operating at 340 GHz, in a stand-off detection scheme; the effect of image quality of a metal target was assessed based on the scanning speed of the galvanometer mirrors as well as the optical system that was constructed. Background effects such as leakage on the receiver were minimized by conditioning the signal at the output of the transceiver. Then, the image of the target was simulated based on known parameters of the optical system and the measured images were compared to the simulation. By using an image quality index based on χ2 algorithm the simulated and measured images were found to be in good agreement with a value of χ2 = 0 .14. The measurements as shown here will aid in the future development of larger stand-off imaging systems that work in the terahertz frequency range.
Kalra, Mannudeep K; Naz, Nausheen; Rizzo, Stefania M R; Blake, Michael A
2005-01-01
As multi-detector-row computed tomography (CT) technology evolves, manifold applications of CT scanning have been adopted in clinical practice and optimization of scanning protocols to comply with an "as low as reasonably achievable" radiation dose have become more complex. Automatic exposure control techniques, which have been recently introduced on most state-of-the-art CT equipment, aid in radiation dose optimization at a selected image quality. The present article reviews the fundamentals of automatic exposure control techniques in CT, along with the scanning protocols and associated radiation dose reduction.
Optimal time lags in panel studies.
Dormann, Christian; Griffin, Mark A
2015-12-01
Cross-lagged regression coefficients are frequently used to test hypotheses in panel designs. However, these coefficients have particular properties making them difficult to interpret. In particular, cross-lagged regression coefficients may vary, depending on the respective time lags between different sets of measurement occasions. This article introduces the concept of an optimal time lag. Further, it is demonstrated that optimal time lags in panel studies are related to the stabilities of the variables investigated, and that in unidirectional systems, they may be unrelated to the size of possible true effects. The results presented also suggest that optimal time lags for panel designs are usually quite short. Implications are (a) that interpreting cross-lagged regression coefficients requires taking the time lag between measurement occasions into account, and (b) that in much research, far shorter time lags than those frequently found in the literature are justifiable, and we call for more "shortitudinal" studies in the future. (c) 2015 APA, all rights reserved).
Time-optimal control of rolling bodies
NASA Astrophysics Data System (ADS)
Perantoni, Giacomo; Limebeer, David J. N.
2013-11-01
The brachistochrone problem is usually solved in classical mechanics courses using the calculus of variations, although it is quintessentially an optimal control problem. In this paper, we address the classical brachistochrone problem and two vehicle-relevant generalisations from an optimal control perspective. We use optimal control arguments to derive closed-form solutions for both the optimal trajectory and the minimum achievable transit time for these generalisations. We then study optimal control problems involving a steerable disc rolling between prescribed points on the interior surface of a hemisphere. The effects of boundary and control constraints are examined. For three-dimensional problems of this type, which involve rolling bodies and nonholonomic constraints, numerical solutions are used.
Inaccuracy, Uncertainty and the Space-Time Permutation Scan Statistic
Malizia, Nicholas
2013-01-01
The space-time permutation scan statistic (STPSS) is designed to identify hot (and cool) spots of space-time interaction within patterns of spatio-temporal events. While the method has been adopted widely in practice, there has been little consideration of the effect inaccurate and/or incomplete input data may have on its results. Given the pervasiveness of inaccuracy, uncertainty and incompleteness within spatio-temporal datasets and the popularity of the method, this issue warrants further investigation. Here, a series of simulation experiments using both synthetic and real-world data are carried out to better understand how deficiencies in the spatial and temporal accuracy as well as the completeness of the input data may affect results of the STPSS. The findings, while specific to the parameters employed here, reveal a surprising robustness of the method's results in the face of these deficiencies. As expected, the experiments illustrate that greater degradation of input data quality leads to greater variability in the results. Additionally, they show that weaker signals of space-time interaction are those most affected by the introduced deficiencies. However, in stark contrast to previous investigations into the impact of these input data problems on global tests of space-time interaction, this local metric is revealed to be only minimally affected by the degree of inaccuracy and incompleteness introduced in these experiments. PMID:23408930
Inaccuracy, uncertainty and the space-time permutation scan statistic.
Malizia, Nicholas
2013-01-01
The space-time permutation scan statistic (STPSS) is designed to identify hot (and cool) spots of space-time interaction within patterns of spatio-temporal events. While the method has been adopted widely in practice, there has been little consideration of the effect inaccurate and/or incomplete input data may have on its results. Given the pervasiveness of inaccuracy, uncertainty and incompleteness within spatio-temporal datasets and the popularity of the method, this issue warrants further investigation. Here, a series of simulation experiments using both synthetic and real-world data are carried out to better understand how deficiencies in the spatial and temporal accuracy as well as the completeness of the input data may affect results of the STPSS. The findings, while specific to the parameters employed here, reveal a surprising robustness of the method's results in the face of these deficiencies. As expected, the experiments illustrate that greater degradation of input data quality leads to greater variability in the results. Additionally, they show that weaker signals of space-time interaction are those most affected by the introduced deficiencies. However, in stark contrast to previous investigations into the impact of these input data problems on global tests of space-time interaction, this local metric is revealed to be only minimally affected by the degree of inaccuracy and incompleteness introduced in these experiments.
Run-to-Run Optimization Control Within Exact Inverse Framework for Scan Tracking.
Yeoh, Ivan L; Reinhall, Per G; Berg, Martin C; Chizeck, Howard J; Seibel, Eric J
2017-09-01
A run-to-run optimization controller uses a reduced set of measurement parameters, in comparison to more general feedback controllers, to converge to the best control point for a repetitive process. A new run-to-run optimization controller is presented for the scanning fiber device used for image acquisition and display. This controller utilizes very sparse measurements to estimate a system energy measure and updates the input parameterizations iteratively within a feedforward with exact-inversion framework. Analysis, simulation, and experimental investigations on the scanning fiber device demonstrate improved scan accuracy over previous methods and automatic controller adaptation to changing operating temperature. A specific application example and quantitative error analyses are provided of a scanning fiber endoscope that maintains high image quality continuously across a 20 °C temperature rise without interruption of the 56 Hz video.
Optimal Consumption When Consumption Takes Time
ERIC Educational Resources Information Center
Miller, Norman C.
2009-01-01
A classic article by Gary Becker (1965) showed that when it takes time to consume, the first order conditions for optimal consumption require the marginal rate of substitution between any two goods to equal their relative full costs. These include the direct money price and the money value of the time needed to consume each good. This important…
Optimal arrangements of scanning heads for self-calibration of angle encoders
NASA Astrophysics Data System (ADS)
Jiao, Yang; Dong, Zeguang; Ding, Ye; Liu, Pinkuan
2017-10-01
The calibration of the angle encoder is necessary to improve the accuracy of angle measurement in precision rotating devices. Due to the characteristics of in situ calibration of encoders, self-calibration methods depending on special arrangements of multiple scanning heads have been widely used. Conventional works usually arrange the scanning heads in a regularly distributed way, generally involving too many scanning heads, especially when more high order Fourier components of the encoder error are calibrated. This paper presents an optimization-based arrangement method for self-calibration of angle encoders. Fourier approaches are used to determine the error of encoder from the angle differences measured between scanning heads. The relations between detectable Fourier components of the error and angular intervals of the heads are obtained from the properties of transfer functions. The optimal arrangements for two and three scanning heads, including the adjustment tolerances of the heads with the range of tested Fourier orders, are presented. The results of simulations and experiments demonstrate that the proposed optimal schemes can realize the same performance of calibration but with fewer scanning heads, compared to the conventional methods.
Optimized Volumetric Scanning for X-Ray Array Sources
Lehman, S K; Foudray, A M; Wang, A; Kallman, J S; Martz, H
2009-09-29
Non-destructive evaluation (NDE) is the science and technology of determining non-invasively the internal structure of manufactured parts, objects, and materials. NDE application areas include medicine, industrial manufacturing, military, homeland security, and airport luggage screening. X-ray measurement systems are most widely used because of their ability to image through a wide range of material densities (from human tissue in medical applications to the dense materials of weapon components). Traditional x-ray systems involve a single source and detector system that rotate and/or translate about the object under evaluation. At each angular location, the source projects x-rays through the object. The rays undergo attenuation proportional to the density of the object's constitutive material. The detector records a measure of the attenuation. Mathematical algorithms are used to invert the forward attenuated ray projection process to form images of the object. This is known as computed tomography (CT). In recent years, the single-source x-ray NDE systems have been generalized to arrays of x-ray sources. Array sources permit multiple views of the object with fewer rotations and translations of the source/detector system. The spatially diverse nature of x-ray array sources has the potential of reducing data collection time, reducing imaging artifacts, and increasing the resolution of the resultant images. Most of the existing CT algorithms were not derived from array source models with a spatially diverse set of viewing perspectives. Single-source x-ray CT data collection, processing, and imaging methods and algorithms are not applicable when the source location is expanded from one dimension (a rotating and/or translating point source) to two (a rotating and/or translating array). They must be reformulated. The goal of this project is to determine the applicability of x-ray array sources to problems of interest to LLNL and its customers. It is believed array source
Real-time high dynamic range laser scanning microscopy
NASA Astrophysics Data System (ADS)
Vinegoni, C.; Leon Swisher, C.; Fumene Feruglio, P.; Giedt, R. J.; Rousso, D. L.; Stapleton, S.; Weissleder, R.
2016-04-01
In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging.
Real-time high dynamic range laser scanning microscopy
Vinegoni, C.; Leon Swisher, C.; Fumene Feruglio, P.; Giedt, R. J.; Rousso, D. L.; Stapleton, S.; Weissleder, R.
2016-01-01
In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging. PMID:27032979
Optimization of electrostatic lens systems for low-energy scanning microcolumn applications
Oh, Tae-Sik; Kim, Dae-Wook; Ahn, Seungjoon; Kim, Young Chul; Kim, Ho-Seob; Ahn, Seong Joon
2008-11-15
The optimization of a low-energy scanning microcolumn is proposed by adopting a modified Einzel lens sandwiched between an aligner and a deflector. The modified Einzel lens is composed of four electrodes, and the two center electrodes are specially designed quadrupole lenses having keyhole type rather than circular apertures. The outer electrodes of the Einzel lens having circular apertures are grounded, and the quadrupole lens is operated by applying the quadrupole voltages. The effects of the separated deflector system and the static quadrupole lens were investigated by analyzing the scanning electron beam spot at the target, and the results show that the proposed system can improve the performance of the scanning microcolumn.
Optimization of scanning parameters for MR elastography at 3.0 T clinical unit: volunteer study.
Shinagawa, Yoshinobu; Mitsufuji, Toshimichi; Morimoto, Shoichi; Nakamuta, Ryuji; Urakawa, Hiroshi; Morita, Ayako; Fujimitsu, Ritsuko; Takano, Koichi; Yoshimitsu, Kengo
2014-07-01
We sought to optimize scanning parameters for MR elastography at 3.0 T clinical unit. 10 volunteers were scanned with various magnetization encoding gradient (MEG) frequencies from 60 to 120 Hz at every 10 Hz, with otherwise fixed parameters (external driver frequency/amplitude = 60 Hz/50 %, 10 mm slice thickness, etc.). Images were qualitatively assessed for the degree of image defects, and also quantitatively for the areas without cross-hatching. After determining optimal MEG frequency, external driver amplitudes of 70 % (vs 50 %) and slice thickness of 8 mm (vs 10 mm) were also tested. With the optimized parameters, scans were repeated 1 week after the initial scan, and the repeatability of the liver stiffness measurement was validated. 80 or 90 Hz was shown to be the best MEG frequency. There were no significant differences in the qualitative and quantitative assessment between the two amplitudes and two slice thicknesses; however, 70 % amplitude resulted in discomfort at the chest wall beneath the external acoustic driver. Thus, MEG 80 (or 90) Hz, amplitude 50 %, and thickness 10 (or 8) mm were considered optimal. Repeatability of the liver stiffness measurement was ±10 % (95 % confidence interval). With the optimized parameters, repeatability of ±10 % in liver stiffness measurement was obtained.
Implementation of pattern-specific illumination pupil optimization on Step & Scan systems
NASA Astrophysics Data System (ADS)
Engelen, Andre; Socha, Robert J.; Hendrickx, Eric; Scheepers, Wieger; Nowak, Frank; Van Dam, Marco; Liebchen, Armin; Faas, Denis A.
2004-05-01
Step&Scan systems are pushed towards low k1 applications. Contrast enhancement techniques are crucial for successful implementation of these applications in a production environment. A NA - sigma - illumination mode optimizer and a contrast-based optimization algorithm are implemented in LithoCruiser in order to optimize illumination setting and illumination pupil for a specific repetitive pattern. Calculated illumination pupils have been realized using Diffractive Optical Elements (DOE), which are supported by ASML's AERIAL II illuminator. The qualification of the illumination pupil is done using inline metrology on the ASML Step & Scan system. This paper describes the process of pattern specific illumination optimization for a given mask. Multiple examples will be used to demonstrate the advantage of using non-standard illumination pupils.
Time optimal movement of cooperating robots
NASA Technical Reports Server (NTRS)
Mccarthy, J. M.; Bobrow, J. E.
1989-01-01
The maximization of the speed of movement along a prescribed path, of the system formed by a set of robot arms and the object they hold is examined. The actuator torques that maximize the acceleration of the system are shown to be determined by the solution to a standard linear programming problem. The combination of this result with the known control strategy for time optimal movement of a single robot arm yields an algorithm for time optimal movement of multiple robot arms holding the same workpiece.
Optimization of Imaging Parameters for SPECT scans of [99mTc]TRODAT-1 Using Taguchi Analysis
Huang, Cheng-Kai; Wu, Jay; Cheng, Kai-Yuan; Pan, Lung-Kwang
2015-01-01
Parkinson’s disease (PD) is a neurodegenerative disease characterized by progressive loss of dopaminergic neurons in the basal ganglia. Single photon emission computed tomography (SPECT) scans using [99mTc]TRODAT-1 can image dopamine transporters and provide valuable diagnostic information of PD. In this study, we optimized the scanning parameters for [99mTc]TRODAT-1/SPECT using the Taguchi analysis to improve image quality. SPECT scans were performed on forty-five healthy volunteers according to an L9 orthogonal array. Three parameters were considered, including the injection activity, uptake duration, and acquisition time per projection. The signal-to-noise ratio (SNR) was calculated from the striatum/occipital activity ratio as an image quality index. Ten healthy subjects and fifteen PD patients were used to verify the optimal parameters. The estimated optimal parameters were 962 MBq for [99mTc]TRODAT-1 injection, 260 min for uptake duration, and 60 s/projection for data acquisition. The uptake duration and time per projection were the two dominant factors which had an F-value of 18.638 (38%) and 25.933 (53%), respectively. Strong cross interactions existed between the injection activity/uptake duration and injection activity/time per projection. Therefore, under the consideration of as low as reasonably achievable (ALARA) for radiation protection, we can decrease the injection activity to 740 MBq. The image quality remains almost the same for clinical applications. PMID:25790100
Sanchez-Parcerisa, Daniel; Kirk, Maura; Fager, Marcus; Burgdorf, Brendan; Stowe, Malorie; Solberg, Tim; Carabe, Alejandro
2016-11-07
The development of rotational proton therapy plans based on a pencil-beam-scanning (PBS) system has been limited, among several other factors, by the energy-switching time between layers, a system-dependent parameter that ranges between a fraction of a second and several seconds. We are investigating mono- and bi-energetic rotational proton modulated arc therapy (PMAT) solutions that would not be affected by long energy switching times. In this context, a systematic selection of the optimal proton energy for each arc is vital. We present a treatment planning comparison of four different range selection methods, analyzing the dosimetric outcomes of the resulting treatment plans created with the ranges obtained. Given the patient geometry and arc definition (gantry and couch trajectories, snout elevation) our in-house treatment planning system (TPS) FoCa was used to find the maximum, medial and minimum water-equivalent thicknesses (WETs) of the target viewed from all possible field orientations. Optimal ranges were subsequently determined using four methods: (1) by dividing the max/min WET interval into equal steps, (2) by taking the average target midpoints from each field, (3) by taking the average WET of all voxels from all field orientations, and (4) by minimizing the fraction of the target which cannot be reached from any of the available angles. After the range (for mono-energetic plans) or ranges (for bi-energetic plans) were selected, the commercial clinical TPS in use in our institution (Varian Eclipse(™)) was used to produce the PMAT plans using multifield optimization. Linear energy transfer (LET) distributions of all plans were also calculated using FoCa and compared among the different methods. Mono- and bi-energetic PMAT plans, composed of a single 180° arc, were created for two patient geometries: a C-shaped target located in the mediastinal area of a thoracic tissue-equivalent phantom and a small brain tumor located directly above the brainstem
Range optimization for mono- and bi-energetic proton modulated arc therapy with pencil beam scanning
NASA Astrophysics Data System (ADS)
Sanchez-Parcerisa, Daniel; Kirk, Maura; Fager, Marcus; Burgdorf, Brendan; Stowe, Malorie; Solberg, Tim; Carabe, Alejandro
2016-11-01
The development of rotational proton therapy plans based on a pencil-beam-scanning (PBS) system has been limited, among several other factors, by the energy-switching time between layers, a system-dependent parameter that ranges between a fraction of a second and several seconds. We are investigating mono- and bi-energetic rotational proton modulated arc therapy (PMAT) solutions that would not be affected by long energy switching times. In this context, a systematic selection of the optimal proton energy for each arc is vital. We present a treatment planning comparison of four different range selection methods, analyzing the dosimetric outcomes of the resulting treatment plans created with the ranges obtained. Given the patient geometry and arc definition (gantry and couch trajectories, snout elevation) our in-house treatment planning system (TPS) FoCa was used to find the maximum, medial and minimum water-equivalent thicknesses (WETs) of the target viewed from all possible field orientations. Optimal ranges were subsequently determined using four methods: (1) by dividing the max/min WET interval into equal steps, (2) by taking the average target midpoints from each field, (3) by taking the average WET of all voxels from all field orientations, and (4) by minimizing the fraction of the target which cannot be reached from any of the available angles. After the range (for mono-energetic plans) or ranges (for bi-energetic plans) were selected, the commercial clinical TPS in use in our institution (Varian Eclipse™) was used to produce the PMAT plans using multifield optimization. Linear energy transfer (LET) distributions of all plans were also calculated using FoCa and compared among the different methods. Mono- and bi-energetic PMAT plans, composed of a single 180° arc, were created for two patient geometries: a C-shaped target located in the mediastinal area of a thoracic tissue-equivalent phantom and a small brain tumor located directly above the brainstem. All
Eddy current analysis and optimization of fast scanning magnet for a proton therapy system
NASA Astrophysics Data System (ADS)
Liu, Xu; Qin, Bin; Liu, Kaifeng; Chen, Wei; Liang, Zhikai; Chen, Qushan; Chen, Dezhi; Fan, Mingwu
2017-08-01
Proton therapy is now recognized as one of the most effective radiation therapy methods for cancers. A proton therapy facility with multiple gantry treatment rooms is under development in HUST (Huazhong University of Science and Technology), which is based on isochronous superconducting cyclotron scheme. In the beam line, the scanning system spreads out the proton beam on the target according to the complex tumour shape by two scanning magnets for horizontal and vertical scanning independently. Since these two magnets are excited by alternating currents and the maximum repetition frequency is up to 100 Hz, eddy currents and losses are expected to be significant. Slits are proven to be an effective way to reduce the eddy currents. To evaluate the heat distribution due to eddy losses in the pole end of the scanning magnet, the transient electromagnetic analysis and steady-state thermal analysis are performed. This paper describes design considerations of the scanning system and mainly analyses the eddy current effect of the scanning magnets. Different coil shapes and slit arrangements are simulated and compared to obtain the optimal configuration. The maximum temperatures of two magnets are optimized below 70 °C. In addition, the lag effect due to eddy currents is also discussed.
Optimizing the maximum reported cluster size in the spatial scan statistic for ordinal data.
Kim, Sehwi; Jung, Inkyung
2017-01-01
The spatial scan statistic is an important tool for spatial cluster detection. There have been numerous studies on scanning window shapes. However, little research has been done on the maximum scanning window size or maximum reported cluster size. Recently, Han et al. proposed to use the Gini coefficient to optimize the maximum reported cluster size. However, the method has been developed and evaluated only for the Poisson model. We adopt the Gini coefficient to be applicable to the spatial scan statistic for ordinal data to determine the optimal maximum reported cluster size. Through a simulation study and application to a real data example, we evaluate the performance of the proposed approach. With some sophisticated modification, the Gini coefficient can be effectively employed for the ordinal model. The Gini coefficient most often picked the optimal maximum reported cluster sizes that were the same as or smaller than the true cluster sizes with very high accuracy. It seems that we can obtain a more refined collection of clusters by using the Gini coefficient. The Gini coefficient developed specifically for the ordinal model can be useful for optimizing the maximum reported cluster size for ordinal data and helpful for properly and informatively discovering cluster patterns.
Optimizing the 3D-reconstruction technique for serial block-face scanning electron microscopy.
Wernitznig, Stefan; Sele, Mariella; Urschler, Martin; Zankel, Armin; Pölt, Peter; Rind, F Claire; Leitinger, Gerd
2016-05-01
Elucidating the anatomy of neuronal circuits and localizing the synaptic connections between neurons, can give us important insights in how the neuronal circuits work. We are using serial block-face scanning electron microscopy (SBEM) to investigate the anatomy of a collision detection circuit including the Lobula Giant Movement Detector (LGMD) neuron in the locust, Locusta migratoria. For this, thousands of serial electron micrographs are produced that allow us to trace the neuronal branching pattern. The reconstruction of neurons was previously done manually by drawing cell outlines of each cell in each image separately. This approach was very time consuming and troublesome. To make the process more efficient a new interactive software was developed. It uses the contrast between the neuron under investigation and its surrounding for semi-automatic segmentation. For segmentation the user sets starting regions manually and the algorithm automatically selects a volume within the neuron until the edges corresponding to the neuronal outline are reached. Internally the algorithm optimizes a 3D active contour segmentation model formulated as a cost function taking the SEM image edges into account. This reduced the reconstruction time, while staying close to the manual reference segmentation result. Our algorithm is easy to use for a fast segmentation process, unlike previous methods it does not require image training nor an extended computing capacity. Our semi-automatic segmentation algorithm led to a dramatic reduction in processing time for the 3D-reconstruction of identified neurons. Copyright © 2016 Elsevier B.V. All rights reserved.
MR physics in practice: how to optimize acquisition quality and time for cardiac MR imaging.
Saloner, David; Liu, Jing; Haraldsson, Henrik
2015-02-01
The quality of the medical imaging is a key component for accurate disease diagnosis. Optimizing image quality while maintaining scan time efficiency and patient comfort is important for routine clinical MRIs. In this article, we review both practical and advanced techniques for achieving high image quality, especially focusing on optimizing the trade-offs between the image quality (such as signal-to-noise and spatial resolution) and acquisition time. We provide practical examples for optimizing the image quality and scan time. Copyright © 2015 Elsevier Inc. All rights reserved.
Optimal Lead Time for Dengue Forecast
Hii, Yien Ling; Rocklöv, Joacim; Wall, Stig; Ng, Lee Ching; Tang, Choon Siang; Ng, Nawi
2012-01-01
Background A dengue early warning system aims to prevent a dengue outbreak by providing an accurate prediction of a rise in dengue cases and sufficient time to allow timely decisions and preventive measures to be taken by local authorities. This study seeks to identify the optimal lead time for warning of dengue cases in Singapore given the duration required by a local authority to curb an outbreak. Methodology and Findings We developed a Poisson regression model to analyze relative risks of dengue cases as functions of weekly mean temperature and cumulative rainfall with lag times of 1–5 months using spline functions. We examined the duration of vector control and cluster management in dengue clusters > = 10 cases from 2000 to 2010 and used the information as an indicative window of the time required to mitigate an outbreak. Finally, we assessed the gap between forecast and successful control to determine the optimal timing for issuing an early warning in the study area. Our findings show that increasing weekly mean temperature and cumulative rainfall precede risks of increasing dengue cases by 4–20 and 8–20 weeks, respectively. These lag times provided a forecast window of 1–5 months based on the observed weather data. Based on previous vector control operations, the time needed to curb dengue outbreaks ranged from 1–3 months with a median duration of 2 months. Thus, a dengue early warning forecast given 3 months ahead of the onset of a probable epidemic would give local authorities sufficient time to mitigate an outbreak. Conclusions Optimal timing of a dengue forecast increases the functional value of an early warning system and enhances cost-effectiveness of vector control operations in response to forecasted risks. We emphasize the importance of considering the forecast-mitigation gaps in respective study areas when developing a dengue forecasting model. PMID:23110242
Optimization Integrator for Large Time Steps.
Gast, Theodore F; Schroeder, Craig; Stomakhin, Alexey; Jiang, Chenfanfu; Teran, Joseph M
2015-10-01
Practical time steps in today's state-of-the-art simulators typically rely on Newton's method to solve large systems of nonlinear equations. In practice, this works well for small time steps but is unreliable at large time steps at or near the frame rate, particularly for difficult or stiff simulations. We show that recasting backward Euler as a minimization problem allows Newton's method to be stabilized by standard optimization techniques with some novel improvements of our own. The resulting solver is capable of solving even the toughest simulations at the [Formula: see text] frame rate and beyond. We show how simple collisions can be incorporated directly into the solver through constrained minimization without sacrificing efficiency. We also present novel penalty collision formulations for self collisions and collisions against scripted bodies designed for the unique demands of this solver. Finally, we show that these techniques improve the behavior of Material Point Method (MPM) simulations by recasting it as an optimization problem.
Optimal, real-time control--colliders
Spencer, J.E.
1991-05-01
With reasonable definitions, optimal control is possible for both classical and quantal systems with new approaches called PISC(Parallel) and NISC(Neural) from analogy with RISC (Reduced Instruction Set Computing). If control equals interaction, observation and comparison to some figure of merit with interaction via external fields, then optimization comes from varying these fields to give design or operating goals. Structural stability can then give us tolerance and design constraints. But simulations use simplified models, are not in real-time and assume fixed or stationary conditions, so optimal control goes far beyond convergence rates of algorithms. It is inseparable from design and this has many implications for colliders. 12 refs., 3 figs.
Optimal time step for incompressible SPH
NASA Astrophysics Data System (ADS)
Violeau, Damien; Leroy, Agnès
2015-05-01
A classical incompressible algorithm for Smoothed Particle Hydrodynamics (ISPH) is analyzed in terms of critical time step for numerical stability. For this purpose, a theoretical linear stability analysis is conducted for unbounded homogeneous flows, leading to an analytical formula for the maximum CFL (Courant-Friedrichs-Lewy) number as a function of the Fourier number. This gives the maximum time step as a function of the fluid viscosity, the flow velocity scale and the SPH discretization size (kernel standard deviation). Importantly, the maximum CFL number at large Reynolds number appears twice smaller than with the traditional Weakly Compressible (WCSPH) approach. As a consequence, the optimal time step for ISPH is only five times larger than with WCSPH. The theory agrees very well with numerical data for two usual kernels in a 2-D periodic flow. On the other hand, numerical experiments in a plane Poiseuille flow show that the theory overestimates the maximum allowed time step for small Reynolds numbers.
Choi, Soo-Young; Lee, In; Seo, Ji-Won; Park, Hyun-Young; Choi, Ho-Jung
2016-01-01
This study was conducted to establish the values for optimal fixed scan delays and diagnostic scan delays associated with the bolus-tracking technique using various contrast material injection durations in canine abdominal multi-phase computed tomography (CT). This study consisted of two experiments employing the crossover method. In experiment 1, three dynamic scans at the porta hepatis were performed using 5, 10 and 15 sec injection durations. In experiment 2, two CT scans consisting of five multi-phase series with different scan delays of 5 sec intervals for bolus-tracking were performed using 5, 10 and 15 sec injection duration. Mean arrival times to aortic enhancement peak (12.0, 15.6, and 18.6 sec for 5, 10, and 15 sec, respectively) and pancreatic parenchymal peak (17.8, 25.1, and 29.5 sec) differed among injection durations. The maximum mean attenuation values of aortas and pancreases were shown at the scan section with 0 and 5, 0 and 10 and 5 and 10 sec diagnostic scan delays during each injection duration, respectively. The optimal scan delays of the arterial and pancreatic parenchymal phase in multi-phase CT scan using fixed scan delay or bolus-tracking should be determined with consideration of the injection duration. PMID:27297414
NASA Astrophysics Data System (ADS)
Woodford, Curtis; Yartsev, Slav; Van Dyk, Jake
2007-04-01
This study aims to determine the settings that provide the optimal clinical accuracy and consistency for the registration of megavoltage CT (MVCT) with planning kilovoltage CT image sets on the Hi-ART tomotherapy system. The systematic offset between the MVCT and the planning kVCT was determined by registration of multiple MVCT scans of a head phantom aligned with the planning isocentre. Residual error vector lengths and components were used to quantify the alignment quality for the phantom shifted by 5 mm in different directions obtained by all 27 possible combinations of MVCT inter-slice spacing, registration techniques and resolution. MVCT scans with normal slices are superior to coarse slices for registration of shifts in the superior-inferior, lateral and anterior-posterior directions. Decreasing the scan length has no detrimental effect on registration accuracy as long as the scan lengths are larger than 24 mm. In the case of bone technique and fine resolution, normal and fine MVCT scan slice spacing options give similar accuracy, so normal mode is preferable due to shorter procedure and less delivered dose required for patient set-up. A superior-inferior field length of 24-30 mm, normal slice spacing, bone technique, and fine resolution is the optimum set of registration settings for MVCT scans of a Rando head phantom acquired with the Hi-ART tomotherapy system, provided the registration shifts are less than 5 mm.
NASA Technical Reports Server (NTRS)
Roth, Don J.; Cosgriff, Laura M.; Martin, Richard E.; Teemer, LeTarrie
2004-01-01
This study analyzes the effect of signal processing variables on the ability of the ultrasonic guided wave scan method at NASA Glenn Research Center to distinguish various flaw conditions in ceramic matrix composites samples. In the ultrasonic guided wave scan method, several time- and frequency-domain parameters are calculated from the ultrasonic guided wave signal at each scan location to form images. The parameters include power spectral density, centroid mean time, total energy (zeroth moment), centroid frequency, and ultrasonic decay rate. A number of signal processing variables are available to the user when calculating these parameters. These signal processing variables include 1) the time portion of the time-domain waveform processed, 2) integration type for the properties requiring integrations, 3) bounded versus unbounded integrations, 4) power spectral density window type, 5) and the number of time segments chosen if using the short-time fourier transform to calculate ultrasonic decay rate. Flaw conditions examined included delamination, cracking, and density variation.
NASA Technical Reports Server (NTRS)
Roth, Don J.; Cosgriff, Laura M.; Martin, Richard E.; Teemer, LeTarrie
2004-01-01
This study analyzes the effect of signal processing variables on the ability of the ultrasonic guided wave scan method at NASA Glenn Research Center to distinguish various flaw conditions in ceramic matrix composites samples. In the ultrasonic guided wave scan method, several time- and frequency-domain parameters are calculated from the ultrasonic guided wave signal at each scan location to form images. The parameters include power spectral density, centroid mean time, total energy (zeroth moment), centroid frequency, and ultrasonic decay rate. A number of signal processing variables are available to the user when calculating these parameters. These signal processing variables include 1) the time portion of the time-domain waveform processed, 2) integration type for the properties requiring integrations, 3) bounded versus unbounded integrations, 4) power spectral density window type, 5) and the number of time segments chosen if using the short-time fourier transform to calculate ultrasonic decay rate. Flaw conditions examined included delamination, cracking, and density variation.
Guan, Fada; Bronk, Lawrence; Titt, Uwe; Lin, Steven H.; Mirkovic, Dragan; Kerr, Matthew D.; Zhu, X. Ronald; Dinh, Jeffrey; Sobieski, Mary; Stephan, Clifford; Peeler, Christopher R.; Taleei, Reza; Mohan, Radhe; Grosshans, David R.
2015-01-01
The physical properties of particles used in radiation therapy, such as protons, have been well characterized, and their dose distributions are superior to photon-based treatments. However, proton therapy may also have inherent biologic advantages that have not been capitalized on. Unlike photon beams, the linear energy transfer (LET) and hence biologic effectiveness of particle beams varies along the beam path. Selective placement of areas of high effectiveness could enhance tumor cell kill and simultaneously spare normal tissues. However, previous methods for mapping spatial variations in biologic effectiveness are time-consuming and often yield inconsistent results with large uncertainties. Thus the data needed to accurately model relative biological effectiveness to guide novel treatment planning approaches are limited. We used Monte Carlo modeling and high-content automated clonogenic survival assays to spatially map the biologic effectiveness of scanned proton beams with high accuracy and throughput while minimizing biological uncertainties. We found that the relationship between cell kill, dose, and LET, is complex and non-unique. Measured biologic effects were substantially greater than in most previous reports, and non-linear surviving fraction response was observed even for the highest LET values. Extension of this approach could generate data needed to optimize proton therapy plans incorporating variable RBE. PMID:25984967
Optimal cooperative time-fixed impulsive rendezvous
NASA Technical Reports Server (NTRS)
Mirfakhraie, Koorosh; Conway, Bruce A.; Prussing, John E.
1988-01-01
A method has been developed for determining optimal, i.e., minimum fuel, trajectories for the fixed-time cooperative rendezvous of two spacecraft. The method presently assumes that the vehicles perform a total of three impulsive maneuvers with each vehicle being active, that is, making at least one maneuver. The cost of a feasible 'reference' trajectory is improved by an optimizer which uses an analytical gradient developed using primer vector theory and a new solution for the optimal terminal (rendezvous) maneuver. Results are presented for a large number of cases in which the initial orbits of both vehicles are circular but in which the initial positions of the vehicles and the allotted time for rendezvous are varied. In general, the cost of the cooperative rendezvous is less than that of rendezvous with one vehicle passive. Further improvement in cost may be obtained in the future when additional, i.e., midcourse, impulses are allowed and inserted as indicated for some cases by the primer vector histories which are generated by the program.
Gu, Qiang; Sivanandam, Thamil Mani
2014-06-01
Microarray experiments are a centerpiece of postgenomics life sciences and the current efforts to develop systems diagnostics for personalized medicine. The majority of antibody microarray experiments are fluorescence-based, which utilizes a scanner to convert target signals into image files for subsequent quantification. Certain scan parameters such as the laser power and photomultiplier tube gain (PMT) can influence the readout of fluorescent intensities and thus may affect data quantitation. To date, however, there is no consensus of how to determine the optimal settings of microarray scanners. Here we show that different settings of the laser power and PMT not only affect the signal intensities but also the accuracy of antibody microarray experiments. More importantly, we demonstrate an experimental approach using two fluorescent dyes to determine optimal settings of scan parameters for microarray experiments. These measures provide added quality control of microarray experiments, and thus help to improve the accuracy of quantitative outcome in microarray experiments in the above contexts.
Schmidt, K. F. Jr.; Little, J. R. Jr.; Ellingson, W. A.; Green, W.
2010-02-22
The projected microwave energy pattern, wave guide geometry, positioning methods and process variables have been optimized for use of a portable, non-contact, lap-top computer-controlled microwave interference scanning system on multi-layered dielectric materials. The system can be used in situ with one-sided access and has demonstrated capability of damage detection on composite ceramic armor. Specimens used for validation included specially fabricated surrogates, and ballistic impact-damaged specimens. Microwave data results were corroborated with high resolution direct-digital x-ray imaging. Microwave interference scanning detects cracks, laminar features and material properties variations. This paper presents the details of the system, the optimization steps and discusses results obtained.
Necessary adiabatic run times in quantum optimization
NASA Astrophysics Data System (ADS)
Brady, Lucas T.; van Dam, Wim
2017-03-01
Quantum annealing is guaranteed to find the ground state of optimization problems provided it operates in the adiabatic limit. Recent work [S. Muthukrishnan et al., Phys. Rev. X 6, 031010 (2016), 10.1103/PhysRevX.6.031010] has found that for some barrier tunneling problems, quantum annealing can be run much faster than is adiabatically required. Specifically, an n -qubit optimization problem was presented for which a nonadiabatic, or diabatic, annealing algorithm requires only a constant run time, while an adiabatic annealing algorithm requires a run-time polynomial in n . Here we show that this nonadiabatic speedup is the direct result of a specific symmetry in the studied problem. In the more general case, no such nonadiabatic speedup occurs and we show why the special case achieves this speedup compared to the general case. We also prove that the adiabatic annealing algorithm has a necessary and sufficient run time that is quadratically better than the standard quantum adiabatic condition suggests. We conclude with an observation about the required precision in timing for the diabatic algorithm.
Artifact reduction in short-scan CBCT by use of optimization-based reconstruction
NASA Astrophysics Data System (ADS)
Zhang, Zheng; Han, Xiao; Pearson, Erik; Pelizzari, Charles; Sidky, Emil Y.; Pan, Xiaochuan
2016-05-01
Increasing interest in optimization-based reconstruction in research on, and applications of, cone-beam computed tomography (CBCT) exists because it has been shown to have to potential to reduce artifacts observed in reconstructions obtained with the Feldkamp-Davis-Kress (FDK) algorithm (or its variants), which is used extensively for image reconstruction in current CBCT applications. In this work, we carried out a study on optimization-based reconstruction for possible reduction of artifacts in FDK reconstruction specifically from short-scan CBCT data. The investigation includes a set of optimization programs such as the image-total-variation (TV)-constrained data-divergency minimization, data-weighting matrices such as the Parker weighting matrix, and objects of practical interest for demonstrating and assessing the degree of artifact reduction. Results of investigative work reveal that appropriately designed optimization-based reconstruction, including the image-TV-constrained reconstruction, can reduce significant artifacts observed in FDK reconstruction in CBCT with a short-scan configuration.
Interactive Tools for Measuring Visual Scanning Performance and Reaction Time
Seeanner, Julia; Hennessy, Sarah; Manganelli, Joseph; Crisler, Matthew; Rosopa, Patrick; Jenkins, Casey; Anderson, Michael; Drouin, Nathalie; Belle, Leah; Truesdail, Constance; Tanner, Stephanie
2017-01-01
Occupational therapists are constantly searching for engaging, high-technology interactive tasks that provide immediate feedback to evaluate and train clients with visual scanning deficits. This study examined the relationship between two tools: the VISION COACH™ interactive light board and the Functional Object Detection© (FOD) Advanced driving simulator scenario. Fifty-four healthy drivers, ages 21–66 yr, were divided into three age groups. Participants performed braking response and visual target (E) detection tasks of the FOD Advanced driving scenario, followed by two sets of three trials using the VISION COACH Full Field 60 task. Results showed no significant effect of age on FOD Advanced performance but a significant effect of age on VISION COACH performance. Correlations showed that participants’ performance on both braking and E detection tasks were significantly positively correlated with performance on the VISION COACH (.37 < r < .40, p < .01). These tools provide new options for therapists. PMID:28218598
Shen, Jiajian; Tryggestad, Erik; Younkin, James E; Keole, Sameer R; Furutani, Keith M; Kang, Yixiu; Herman, Michael G; Bues, Martin
2017-08-04
To accurately model the beam delivery time (BDT) for a synchrotron-based proton spot scanning system using experimentally determined beam parameters. A model to simulate the proton spot delivery sequences was constructed, and BDT was calculated by summing times for layer switch, spot switch, and spot delivery. Test plans were designed to isolate and quantify the relevant beam parameters in the operation cycle of the proton beam therapy delivery system. These parameters included the layer switch time, magnet preparation and verification time, average beam scanning speeds in x- and y-directions, proton spill rate, and maximum charge and maximum extraction time for each spill. The experimentally determined parameters, as well as the nominal values initially provided by the vendor, served as inputs to the model to predict BDTs for 602 clinical proton beam deliveries. The calculated BDTs (TBDT ) were compared with the BDTs recorded in the treatment delivery log files (TLog ): ∆t = TLog -TBDT . The experimentally determined average layer switch time for all 97 energies was 1.91 s (ranging from 1.9 to 2.0 s for beam energies from 71.3 to 228.8 MeV), average magnet preparation and verification time was 1.93 ms, the average scanning speeds were 5.9 m/s in x-direction and 19.3 m/s in y-direction, the proton spill rate was 8.7 MU/s, and the maximum proton charge available for one acceleration is 2.0 ± 0.4 nC. Some of the measured parameters differed from the nominal values provided by the vendor. The calculated BDTs using experimentally determined parameters matched the recorded BDTs of 602 beam deliveries (∆t = -0.49 ± 1.44 s), which were significantly more accurate than BDTs calculated using nominal timing parameters (∆t = -7.48 ± 6.97 s). An accurate model for BDT prediction was achieved by using the experimentally determined proton beam therapy delivery parameters, which may be useful in modeling the interplay effect and patient throughput. The model may provide
Innovative method for optimizing Side-Scan Sonar mapping: The blind band unveiled
NASA Astrophysics Data System (ADS)
Pergent, Gérard; Monnier, Briac; Clabaut, Philippe; Gascon, Gilles; Pergent-Martini, Christine; Valette-Sansevin, Audrey
2017-07-01
Over the past few years, the mapping of Mediterranean marine habitats has become a priority for scientists, environment managers and stakeholders, in particular in order to comply with European directives (Water Framework Directive and Marine Strategy Framework Directive) and to implement legislation to ensure their conservation. Side-scan sonar (SSS) is recognised as one of the most effective tool for underwater mapping. However, interpretation of acoustic data (sonograms) requires extensive field calibration and the ground-truthing process remains essential. Several techniques are commonly used, with sampling methods involving grabs, scuba diving observations or Remotely Operated Vehicle (ROV) underwater video recordings. All these techniques are time consuming, expensive and only provide sporadic informations. In the present study, the possibility of coupling a camera with a SSS and acquiring underwater videos in a continuous way has been tested. During the 'PosidCorse' oceanographic survey carried out along the eastern coast of Corsica, optical and acoustic data were respectively obtained using a GoPro™ camera and a Klein 3000™ SSS. Thereby, five profiles were performed between 10 and 50 m depth, corresponding to more than 20 km of data acquisition. The vertical images recorded with the camera fixed under the SSS and positioned facing downwards provided photo mosaics of very good quality corresponding to the entire sonograms's blind band. From the photo mosaics, 94% of the different bottom types and main habitats have been identified; specific structures linked to hydrodynamics conditions, anthropic and biological activities have also been observed as well as the substrate on which the Posidonia oceanica meadow grows. The association between acoustic data and underwater videos has proved to be a non-destructive and cost-effective method for ground-truthing in marine habitats mapping. Nevertheless, in order to optimize the results over the next surveys
NASA Astrophysics Data System (ADS)
Vaid, Alok; Osorio, Carmen; Tsai, Jamie; Bozdog, Cornel; Sendelbach, Matthew; Grubner, Eyal; Koret, Roy; Wolfling, Shay
2014-10-01
Work using the concept of a co-optimization-based metrology hybridization is presented. Hybrid co-optimization involves the combination of data from two or more metrology tools such that the output of each tool is improved by the output of the other tool. Here, the image analysis parameters from a critical dimension scanning electron microscope (CD-SEM) are modulated by the profile information from optical critical dimension (OCD, or scatterometry), while the OCD-extracted profile is concurrently optimized through addition of the CD-SEM CD results. The test vehicle utilized is the 14-nm technology node-based FinFET high-k/interfacial layer (HK/IL) structure. When compared with the nonhybrid approach, the correlation to reference measurements of the HK layer thickness measurement using hybrid co-optimization resulted in an improvement in relative accuracy of about 40% and in R2 from 0.81 to 0.91. The measurement of the IL thickness also shows an improvement with hybrid co-optimization: better matching to the expected conditions as well as data that contain less noise.
A 4D-optimization concept for scanned ion beam therapy.
Graeff, Christian; Lüchtenborg, Robert; Eley, John Gordon; Durante, Marco; Bert, Christoph
2013-12-01
Scanned carbon beam therapy offers advantageous dose distributions and an increased biological effect. Treating moving targets is complex due to sensitivity to range changes and interplay. We propose a 4D treatment planning concept that considers motion during particle number optimization. The target was subdivided into sectors, one for each motion phase of a 4D-CT. Each sector was non-rigidly transformed to its motion phase and there targeted by a dedicated raster field (RST). Therefore, the resulting 4D-RST compensated target motion and range changes. A 4D treatment control system (TCS) was needed for synchronized delivery to the measured patient motion. 4D-optimized plans were simulated for 9 NSCLC lung cancer patients and compared to static irradiation at end-exhale. A prototype TCS was implemented and successfully tested in a film experiment. The 4D-optimized treatment plan resulted in only slightly lower dose coverage of the target compared to static optimization, with V 95% of 97.9% (median, range 96.5-99.4%) vs. 99.3% (98.5-99.8%), with negligible overdose. The conformity number was comparable at 88.2% (85.1-92.5%) vs. 85.2% (79.9-91.2%) for 4D and static, respectively. We implemented and tested a 4D treatment plan optimization method resulting in highly conformal dose delivery. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Optimization of 3D laser scanning speed by use of combined variable step
NASA Astrophysics Data System (ADS)
Garcia-Cruz, X. M.; Sergiyenko, O. Yu.; Tyrsa, Vera; Rivas-Lopez, M.; Hernandez-Balbuena, D.; Rodriguez-Quiñonez, J. C.; Basaca-Preciado, L. C.; Mercorelli, P.
2014-03-01
The problem of 3D TVS slow functioning caused by constant small scanning step becomes its solution in the presented research. It can be achieved by combined scanning step application for the fast search of n obstacles in unknown surroundings. Such a problem is of keynote importance in automatic robot navigation. To maintain a reasonable speed robots must detect dangerous obstacles as soon as possible, but all known scanners able to measure distances with sufficient accuracy are unable to do it in real time. So, the related technical task of the scanning with variable speed and precise digital mapping only for selected spatial sectors is under consideration. A wide range of simulations in MATLAB 7.12.0 of several variants of hypothetic scenes with variable n obstacles in each scene (including variation of shapes and sizes) and scanning with incremented angle value (0.6° up to 15°) is provided. The aim of such simulation was to detect which angular values of interval still permit getting the maximal information about obstacles without undesired time losses. Three of such local maximums were obtained in simulations and then rectified by application of neuronal network formalism (Levenberg-Marquradt Algorithm). The obtained results in its turn were applied to MET (Micro-Electro-mechanical Transmission) design for practical realization of variable combined step scanning on an experimental prototype of our previously known laser scanner.
Optimization in modeling the ribs-bounded contour from computer tomography scan
NASA Astrophysics Data System (ADS)
Bilinskas, M. J.; Dzemyda, G.
2016-10-01
In this paper a method for analyzing transversal plane images from computer tomography scans is presented. A mathematical model that describes the ribs-bounded contour was created and the problem of approximation is solved by finding out the optimal parameters of the model in the least-squares sense. Such model would be useful in registration of images independently on the patient position on the bed and on the radio-contrast agent injection. We consider the slices, where ribs are visible, because many important internal organs are located here: liver, heart, stomach, pancreas, lung, etc.
FXR LIA Optimization - Time-resolved OTR Emittance Measurement
Jacob, J; Ong, M; Wargo, P; LeSage, G
2005-07-21
The Flash X-Ray Radiography (FXR) facility at Lawrence Livermore National Laboratory utilizes a high current, long pulse linear induction accelerator to produce high doses of x-ray radiation. Accurate characterization of the transverse beam emittance is required in order to facilitate accelerator modeling and tuning efforts and, ultimately, to optimize the final focus spot size, yielding higher resolution radiographs. In addition to conventional magnet scan, pepper-pot, and multiple screen techniques, optical transition radiation (OTR) has been proven as a useful emittance measurement diagnostic and is particularly well suited to the FXR accelerator. We shall discuss the time-resolved emittance characterization of an induction linac electron beam using OTR, and we will present our experimental apparatus and analysis software. We shall also develop the theoretical background of beam emittance and transition radiation.
Alton, Gillian D; Pearl, David L; Bateman, Ken G; McNab, Bruce; Berke, Olaf
2013-11-18
Abattoir condemnation data show promise as a rich source of data for syndromic surveillance of both animal and zoonotic diseases. However, inherent characteristics of abattoir condemnation data can bias results from space-time cluster detection methods for disease surveillance, and may need to be accounted for using various adjustment methods. The objective of this study was to compare the space-time scan statistics with different abilities to control for covariates and to assess their suitability for food animal syndromic surveillance. Four space-time scan statistic models were used including: animal class adjusted Poisson, space-time permutation, multi-level model adjusted Poisson, and a weighted normal scan statistic using model residuals. The scan statistics were applied to monthly bovine pneumonic lung and "parasitic liver" condemnation data from Ontario provincial abattoirs from 2001-2007. The number and space-time characteristics of identified clusters often varied between space-time scan tests for both "parasitic liver" and pneumonic lung condemnation data. While there were some similarities between isolated clusters in space, time and/or space-time, overall the results from space-time scan statistics differed substantially depending on the covariate adjustment approach used. Variability in results among methods suggests that caution should be used in selecting space-time scan methods for abattoir surveillance. Furthermore, validation of different approaches with simulated or real outbreaks is required before conclusive decisions can be made concerning the best approach for conducting surveillance with these data.
Space-time ambiguity functions for electronically scanned ISR applications
NASA Astrophysics Data System (ADS)
Swoboda, John; Semeter, Joshua; Erickson, Philip
2015-05-01
Electronically steerable array (ESA) technology has recently been applied to incoherent scatter radar (ISR) systems. These arrays allow for pulse-to-pulse steering of the antenna beam to collect data in a three-dimensional region. This is in direct contrast to dish-based antennas, where ISR acquisition is limited at any one time to observations in a two-dimensional slice. This new paradigm allows for more flexibility in the measurement of ionospheric plasma parameters. Multiple ESA-based ISR systems operate currently in the high-latitude region where the ionosphere is highly variable in both space and time. Because of the highly dynamic nature of the ionosphere in this region, it is important to differentiate between measurement-induced artifacts and the true behavior of the plasma. Often, three-dimensional ISR data produced by ESA systems are fitted in a spherical coordinate space and then the parameters are interpolated to a Cartesian grid, potentially introducing error and impacting the reconstructions of the plasma parameters. To take advantage of the new flexibility inherent in ESA systems, we present a new way of analyzing ISR observations through use of the space-time ambiguity function. The use of this new measurement ambiguity function allows us to pose the ISR observational problem in terms of a linear inverse problem whose goal is the estimate of the time domain lags of the intrinsic plasma autocorrelation function used for parameter fitting. The framework allows us to explore the impact of nonuniformity in plasma parameters in both time and space. We discuss examples of possible artifacts in high-latitude situations and discuss possible ways of reducing them and improving the quality of data products from electronically steerable ISRs.
Time optimal paths for a constant speed unicycle
Reister, D.B.
1991-01-01
This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed unicycle. The time optimal paths consist of sequences of arcs of circles and straight lines. The maximum principle introduced concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature of the time optimal paths. 10 refs., 6 figs.
NASA Astrophysics Data System (ADS)
Huang, Yung-hui; Chen, Chia-lin; Sheu, Chin-yin; Lee, Jason J. S.
2007-02-01
Cardiovascular diseases are the most common incidence for premature death in developed countries. A major fraction is attributable to atherosclerotic coronary artery disease, which may result in sudden cardiac failure. A reduction of mortality caused by myocardial infarction may be achieved if coronary atherosclerosis can be detected and treated at an early stage before symptoms occur. Therefore, there is need for an effective tool that allows identification of patients at increased risk for future cardiac events. The current multi-detector CT has been widely used for detection and quantification of coronary calcifications as a sign of coronary atherosclerosis. The aim of this study is to optimize the diagnostic values and radiation exposure in coronary artery calcium-screening examination using multi-slice CT (MSCT) with different image scan protocols. The radiation exposure for all protocols is evaluated by using computed tomography dose index (CTDI) phantom measurements. We chose an optimal scanning protocol and evaluated patient radiation dose in the MSCT coronary artery screenings and preserved its expecting diagnostic accuracy. These changes make the MSCT have more operation flexibility and provide more diagnostic values in current practice.
Svensson, Roger; Larsson, Susanne; Gudowska, Irena; Holmberg, Rickard; Brahme, Anders
2007-03-01
Intensity modulated radiation therapy is rapidly becoming the treatment of choice for most tumors with respect to minimizing damage to the normal tissues and maximizing tumor control. Today, intensity modulated beams are most commonly delivered using segmental multileaf collimation, although an increasing number of radiation therapy departments are employing dynamic multileaf collimation. The irradiation time using dynamic multileaf collimation depends strongly on the nature of the desired dose distribution, and it is difficult to reduce this time to less than the sum of the irradiation times for all individual peak heights using dynamic leaf collimation [Svensson et al., Phys. Med. Biol. 39, 37-61 (1994)]. Therefore, the intensity modulation will considerably increase the total treatment time. A more cost-effective procedure for rapid intensity modulation is using narrow scanned photon, electron, and light ion beams in combination with fast multileaf collimator penumbra trimming. With this approach, the irradiation time is largely independent of the complexity of the desired intensity distribution and, in the case of photon beams, may even be shorter than with uniform beams. The intensity modulation is achieved primarily by scanning of a narrow elementary photon pencil beam generated by directing a narrow well focused high energy electron beam onto a thin bremsstrahlung target. In the present study, the design of a fast low-weight multileaf collimator that is capable of further sharpening the penumbra at the edge of the elementary scanned beam has been simulated, in order to minimize the dose or radiation response of healthy tissues. In the case of photon beams, such a multileaf collimator can be placed relatively close to the bremsstrahlung target to minimize its size. It can also be flat and thin, i.e., only 15-25 mm thick in the direction of the beam with edges made of tungsten or preferably osmium to optimize the sharpening of the penumbra. The low height of
Svensson, Roger; Larsson, Susanne; Gudowska, Irena; Holmberg, Rickard; Brahme, Anders
2007-03-15
Intensity modulated radiation therapy is rapidly becoming the treatment of choice for most tumors with respect to minimizing damage to the normal tissues and maximizing tumor control. Today, intensity modulated beams are most commonly delivered using segmental multileaf collimation, although an increasing number of radiation therapy departments are employing dynamic multileaf collimation. The irradiation time using dynamic multileaf collimation depends strongly on the nature of the desired dose distribution, and it is difficult to reduce this time to less than the sum of the irradiation times for all individual peak heights using dynamic leaf collimation [Svensson et al., Phys. Med. Biol. 39, 37-61 (1994)]. Therefore, the intensity modulation will considerably increase the total treatment time. A more cost-effective procedure for rapid intensity modulation is using narrow scanned photon, electron, and light ion beams in combination with fast multileaf collimator penumbra trimming. With this approach, the irradiation time is largely independent of the complexity of the desired intensity distribution and, in the case of photon beams, may even be shorter than with uniform beams. The intensity modulation is achieved primarily by scanning of a narrow elementary photon pencil beam generated by directing a narrow well focused high energy electron beam onto a thin bremsstrahlung target. In the present study, the design of a fast low-weight multileaf collimator that is capable of further sharpening the penumbra at the edge of the elementary scanned beam has been simulated, in order to minimize the dose or radiation response of healthy tissues. In the case of photon beams, such a multileaf collimator can be placed relatively close to the bremsstrahlung target to minimize its size. It can also be flat and thin, i.e., only 15-25 mm thick in the direction of the beam with edges made of tungsten or preferably osmium to optimize the sharpening of the penumbra. The low height of
Reliability of the 8 Week Time Point for Single Assessment of Midcarpal Fusion by CT Scan.
Henry, Mark
2011-06-01
High rates of nonunion have recently been reported for midcarpal fusions. Due to curvature and overlap of carpal interfaces, two dimensional films are not reliable in determining union of a midcarpal fusion. Computed tomography is the most reliable radiographic method of evaluating osseous union. Initiating motion as soon as fusion has occurred is a priority with the goal of maximizing final range. Cost control in healthcare makes obtaining serial scans unreasonable. The single optimal time point for a computed tomography scan to determine union of a midcarpal fusion remains to be determined. A prospective protocol selected 8 weeks post operative as the point in time to obtain the single determining scan. Forty-six consecutive midcarpal fusions with scaphoidectomy were retrospectively analyzed for the reliability of this time point. All fusions had achieved union by 8 weeks and only this one scan was clinically necessary to advance the patients on to full range of motion without a splint at that time.
Multi-objective optimal design of high frequency probe for scanning ion conductance microscopy
NASA Astrophysics Data System (ADS)
Guo, Renfei; Zhuang, Jian; Ma, Li; Li, Fei; Yu, Dehong
2016-01-01
Scanning ion conductance microscopy(SICM) is an emerging non-destructive surface topography characterization apparatus with nanoscale resolution. However, the low regulating frequency of probe in most existing modulated current based SICM systems increases the system noise, and has difficulty in imaging sample surface with steep height changes. In order to enable SICM to have the capability of imaging surfaces with steep height changes, a novel probe that can be used in the modulated current based hopping mode is designed. The design relies on two piezoelectric ceramics with different travels to separate position adjustment and probe frequency regulation in the Z direction. To further improve the resonant frequency of the probe, the material and the key dimensions for each component of the probe are optimized based on the multi-objective optimization method and the finite element analysis. The optimal design has a resonant frequency of above 10 kHz. To validate the rationality of the designed probe, microstructured grating samples are imaged using the homebuilt modulated current based SICM system. The experimental results indicate that the designed high frequency probe can effectively reduce the spike noise by 26% in the average number of spike noise. The proposed design provides a feasible solution for improving the imaging quality of the existing SICM systems which normally use ordinary probes with relatively low regulating frequency.
Temporal Prediction Errors Affect Short-Term Memory Scanning Response Time.
Limongi, Roberto; Silva, Angélica M
2016-11-01
The Sternberg short-term memory scanning task has been used to unveil cognitive operations involved in time perception. Participants produce time intervals during the task, and the researcher explores how task performance affects interval production - where time estimation error is the dependent variable of interest. The perspective of predictive behavior regards time estimation error as a temporal prediction error (PE), an independent variable that controls cognition, behavior, and learning. Based on this perspective, we investigated whether temporal PEs affect short-term memory scanning. Participants performed temporal predictions while they maintained information in memory. Model inference revealed that PEs affected memory scanning response time independently of the memory-set size effect. We discuss the results within the context of formal and mechanistic models of short-term memory scanning and predictive coding, a Bayes-based theory of brain function. We state the hypothesis that our finding could be associated with weak frontostriatal connections and weak striatal activity.
Time delay study of a CT simulator in respiratory gated CT scanning
Guan Huaiqun
2006-04-15
In respiratory-gated radiotherapy (RGRT), if the time delay in a computed tomography (CT) simulator and that in a linear accelerator (Linac) are different, the simulation and the treatment cannot be synchronized. In this study, we presented a technique to measure the time delay of the AcQSim CT simulator (Philips Medical Systems, Cleveland, OH) using Varian's Real-Time Positioning Management (RPM) system (Varian Medical Systems, Palo Alto, CA). A respiratory gating platform (REF 91150, Standard Imaging, Inc., Middleton, MI) was first set at the position of amplitude maximum (phase 0). Then a ball of 1.3 cm diameter was put on the platform and set at the CT laser. A single axial scan was acquired across the center of the ball without motion. Then the motion was turned on and single axial scans gated at different phases were acquired with a very narrow gating window. The time between the phase giving a good estimate of the ball and phase 0 is the overall delay time. We found that for AcQSim CT, the overall delay for a single axial scan (with 1 s scan time) is 1.75 s. For multiple axial scans, the overall delay is 1.75 s for the first scan and 0.75 s for the subsequent ones. This demonstrated that the CT mechanical startup delay is 1 s. After the first axial scan, the overall delay per scan is less because CT gantry continuously spins and no mechanical delay exists. We call the overall delay without mechanical part the scanning delay, which basically equals half the scan time (0.5 s for 1 s scan time) plus the gating pulse triggering delay (250 ms). The delays were also verified using metal balls of 1.5 mm diameter set at the amplitude minimum (phase 180, initially). We note that it is the scanning delay rather than the triggering delay that should be compensated when doing motion-synchronized radiotherapy. The current interface between the RPM system and the AcQSim CT does not compensate for this scanning delay.
Underwater 3D scanning using Kinect v2 time of flight camera
NASA Astrophysics Data System (ADS)
Anwer, Atif; Ali, Syed Saad Azhar; Khan, Amjad; Mériaudeau, Fabrice
2017-03-01
This paper presents preliminary results of using commercial time of flight depth camera for 3D scanning of underwater objects. Generating accurate and detailed 3D models of objects in underwater environment is a challenging task. This work presents experimental results of using Microsoft Kinect v2 depth camera for dense depth data acquisition underwater that gives reasonable 3D scanned data but with smaller scanning range. Motivations for this research are the user friendliness and low-cost of the device as compared to multi view stereo cameras or marine-hardened laser scanning solutions and equipment. Preliminary results of underwater point cloud generation and volumetric reconstruction are also presented. The novelty of this work is the utilization of the Kinect depth camera for real-time 3D mesh reconstruction and the main objective is to develop an economical and compact solution for underwater 3D scanning.
High sensitivity EndoV mutation scanning through real-time ligase proofreading.
Pincas, Hanna; Pingle, Maneesh R; Huang, Jianmin; Lao, Kaiqin; Paty, Philip B; Friedman, Alan M; Barany, Francis
2004-10-28
The ability to associate mutations in cancer genes with the disease and its subtypes is critical for understanding oncogenesis and identifying biomarkers for clinical diagnosis. A two-step mutation scanning method that sequentially used endonuclease V (EndoV) to nick at mismatches and DNA ligase to reseal incorrectly or nonspecifically nicked sites was previously developed in our laboratory. Herein we report an optimized single-step assay that enables ligase to proofread EndoV cleavage in real-time under a compromise between buffer conditions. Real-time proofreading results in a dramatic reduction of background cleavage. A universal PCR strategy that employs both unlabeled gene-specific primers and labeled universal primers, allows for multiplexed gene amplification and precludes amplification of primer dimers. Internally labeled PCR primers eliminate EndoV cleavage at the 5' terminus, enabling high-throughput capillary electrophoresis readout. Furthermore, signal intensity is increased and artifacts are reduced by generating heteroduplexes containing only one of the two possible mismatches (e.g. either A/C or G/T). The single-step assay improves sensitivity to 1:50 and 1:100 (mutant:wild type) for unknown mutations in the p53 and K-ras genes, respectively, opening prospects as an early detection tool.
NASA Astrophysics Data System (ADS)
Li, Lin; Du, Yi; Zhao, Qingliang; Li, Qian; Chai, Xinyu; Zhou, Chuanqing
2014-11-01
Laser-scanning optical-resolution photoacoustic microscopy (LSOR-PAM) has a high application potential in ophthalmology and other clinical fields because of its high resolution and imaging speed. The stationary unfocused ultrasonic transducer of this system decides the efficiency and field of view (FOV) of photoacoustic signal detection, but the refraction and attenuation of laser generated photoacoustic signal in different tissue mediums will cause signal strength and direction distribution uneven. In this study, we simulated the photoacoustic signal propagation and detection in compound medium models with different tissue parameters using k-space method based on LSOR-PAM imaging principle. The results show a distance related signal strength attenuation and FOV changes related to transducer angle. Our study provides a method for photoacoustic signal detection optimization for different complex tissue structure with LSOR-PAM.
NASA Astrophysics Data System (ADS)
Inaniwa, Taku; Kanematsu, Nobuyuki; Furukawa, Takuji; Noda, Koji
2011-03-01
A 'patch-field' strategy is often used for tumors with large volumes exceeding the available field size in passive irradiations with ion beams. Range and setup errors can cause hot and cold spots at the field junction within the target. Such errors will also displace the field to miss the target periphery. With scanned ion beams with fluence modulation, the two junctional fields can be overlapped rather than patched, which may potentially reduce the sensitivity to these uncertainties. In this study, we have developed such a robust optimization algorithm. This algorithm is composed of the following two steps: (1) expanding the target volume with margins against the uncertainties, and (2) solving the inverse problem where the terms suppressing the dose gradient of individual fields are added into the objective function. The validity of this algorithm is demonstrated through simulation studies for two extreme cases of two fields with unidirectional and opposing geometries and for a prostate-cancer case. With the proposed algorithm, we can obtain a more robust plan with minimized influence of range and setup uncertainties than the conventional plan. Compared to conventional optimization, the calculation time for the robust optimization increased by a factor of approximately 3.
2013-01-01
Background Abattoir condemnation data show promise as a rich source of data for syndromic surveillance of both animal and zoonotic diseases. However, inherent characteristics of abattoir condemnation data can bias results from space-time cluster detection methods for disease surveillance, and may need to be accounted for using various adjustment methods. The objective of this study was to compare the space-time scan statistics with different abilities to control for covariates and to assess their suitability for food animal syndromic surveillance. Four space-time scan statistic models were used including: animal class adjusted Poisson, space-time permutation, multi-level model adjusted Poisson, and a weighted normal scan statistic using model residuals. The scan statistics were applied to monthly bovine pneumonic lung and “parasitic liver” condemnation data from Ontario provincial abattoirs from 2001–2007. Results The number and space-time characteristics of identified clusters often varied between space-time scan tests for both “parasitic liver” and pneumonic lung condemnation data. While there were some similarities between isolated clusters in space, time and/or space-time, overall the results from space-time scan statistics differed substantially depending on the covariate adjustment approach used. Conclusions Variability in results among methods suggests that caution should be used in selecting space-time scan methods for abattoir surveillance. Furthermore, validation of different approaches with simulated or real outbreaks is required before conclusive decisions can be made concerning the best approach for conducting surveillance with these data. PMID:24246040
RTSPM: real-time Linux control software for scanning probe microscopy.
Chandrasekhar, V; Mehta, M M
2013-01-01
Real time computer control is an essential feature of scanning probe microscopes, which have become important tools for the characterization and investigation of nanometer scale samples. Most commercial (and some open-source) scanning probe data acquisition software uses digital signal processors to handle the real time data processing and control, which adds to the expense and complexity of the control software. We describe here scan control software that uses a single computer and a data acquisition card to acquire scan data. The computer runs an open-source real time Linux kernel, which permits fast acquisition and control while maintaining a responsive graphical user interface. Images from a simulated tuning-fork based microscope as well as a standard topographical sample are also presented, showing some of the capabilities of the software.
Line-scanning microscopy for time-gated and spectrally resolved fluorescence imaging.
Nakamura, Ryosuke; Izumi, Yoshihiro; Kajiyama, Shin'ichiro; Kobayashi, Akio; Kanematsu, Yasuo
2008-04-01
Laser-scanning fluorescence microscopy for efficient acquisition of time-gated and spectrally resolved fluorescence images was developed based on line illumination of the laser beam and detection of the fluorescence image through a slit. In this optical arrangement, the fluorescence image was obtained by scanning only one axis perpendicular to the excitation line, and the acquisition time was significantly reduced compared with conventional laser-scanning confocal microscopy. A multidimensional fluorescence dataset consisting of fluorescence intensities as a function of x-position, y-position, fluorescence wavelength, and delay time after photoexcitation was analyzed and decomposed based on the parallel factor analysis model. The performance of the line-scanning microscopy was examined by applying it to the analysis of one of the plant defense responses, accumulation of antimicrobial compounds of phytoalexin in oat (Avena sativa), induced by the elicitor treatment.
Conforto, Egle; Joguet, Nicolas; Buisson, Pierre; Vendeville, Jean-Eudes; Chaigneau, Carine; Maugard, Thierry
2015-02-01
The aim of this paper is to describe an optimized methodology to study the surface characteristics and internal structure of biopolymer capsules using scanning electron microscopy (SEM) in environmental mode. The main advantage of this methodology is that no preparation is required and, significantly, no metallic coverage is deposited on the surface of the specimen, thus preserving the original capsule shape and its surface morphology. This avoids introducing preparation artefacts which could modify the capsule surface and mask information concerning important feature like porosities or roughness. Using this method gelatin and mainly fatty coatings, difficult to be analyzed by standard SEM technique, unambiguously show fine details of their surface morphology without damage. Furthermore, chemical contrast is preserved in backscattered electron images of unprepared samples, allowing visualizing the internal organization of the capsule, the quality of the envelope, etc... This study provides pointers on how to obtain optimal conditions for the analysis of biological or sensitive material, as this is not always studied using appropriate techniques. A reliable evaluation of the parameters used in capsule elaboration for research and industrial applications, as well as that of capsule functionality is provided by this methodology, which is essential for the technological progress in this domain.
Piersimoni, Pierluigi; Rimoldi, Adele; Riccardi, Cristina; Pirola, Michele; Molinelli, Silvia; Ciocca, Mario
2015-03-08
The Italian National Center for Hadrontherapy (CNAO, Centro Nazionale di Adroterapia Oncologica), a synchrotron-based hospital facility, started the treatment of patients within selected clinical trials in late 2011 and 2012 with actively scanned proton and carbon ion beams, respectively. The activation of a new clinical protocol for the irradiation of uveal melanoma using the existing general-purpose proton beamline is foreseen for late 2014. Beam characteristics and patient treatment setup need to be tuned to meet the specific requirements for such a type of treatment technique. The aim of this study is to optimize the CNAO transport beamline by adding passive components and minimizing air gap to achieve the optimal conditions for ocular tumor irradiation. The CNAO setup with the active and passive components along the transport beamline, as well as a human eye-modeled detector also including a realistic target volume, were simulated using the Monte Carlo Geant4 toolkit. The strong reduction of the air gap between the nozzle and patient skin, as well as the insertion of a range shifter plus a patient-specific brass collimator at a short distance from the eye, were found to be effective tools to be implemented. In perspective, this simulation toolkit could also be used as a benchmark for future developments and testing purposes on commercial treatment planning systems.
Dávila Pintle, José A; Lara, Edmundo Reynoso; Iturbe Castillo, Marcelo D
2013-07-01
It is presented a criteria for selecting the optimum aperture radius for the one beam Z-scan technique (OBZT), based on the analysis of the transmittance of the aperture. It is also presented a modification to the OBZT by directly measuring the beam radius in the far field with a rotating disk, which allows to determine simultaneously the non-linear absorptive coefficient and non-linear refractive index, much less sensitive to wave front distortions caused by inhomogeneities of the sample with a negligible loss of signal to noise ratio. It is demonstrated its equivalence to the OBZT.
NASA Astrophysics Data System (ADS)
Mohanty, Sankhya; Hattel, Jesper H.
2016-04-01
Residual stresses and deformations continue to remain one of the primary challenges towards expanding the scope of selective laser melting as an industrial scale manufacturing process. While process monitoring and feedback-based process control of the process has shown significant potential, there is still dearth of techniques to tackle the issue. Numerical modelling of selective laser melting process has thus been an active area of research in the last few years. However, large computational resource requirements have slowed the usage of these models for optimizing the process. In this paper, a calibrated, fast, multiscale thermal model coupled with a 3D finite element mechanical model is used to simulate residual stress formation and deformations during selective laser melting. The resulting reduction in thermal model computation time allows evolutionary algorithm-based optimization of the process. A multilevel optimization strategy is adopted using a customized genetic algorithm developed for optimizing cellular scanning strategy for selective laser melting, with an objective of reducing residual stresses and deformations. The resulting thermo-mechanically optimized cellular scanning strategies are compared with standard scanning strategies and have been used to manufacture standard samples.
Computational methods to obtain time optimal jet engine control
NASA Technical Reports Server (NTRS)
Basso, R. J.; Leake, R. J.
1976-01-01
Dynamic Programming and the Fletcher-Reeves Conjugate Gradient Method are two existing methods which can be applied to solve a general class of unconstrained fixed time, free right end optimal control problems. New techniques are developed to adapt these methods to solve a time optimal control problem with state variable and control constraints. Specifically, they are applied to compute a time optimal control for a jet engine control problem.
Kaster, Tyler S; Dwivedi, Girish; Susser, Leah; Renaud, Jennifer M; Beanlands, Rob S B; Chow, Benjamin J W; deKemp, Robert A
2015-06-01
Coronary artery calcium is an important marker of coronary artery disease. Myocardial perfusion imaging (MPI) using PET-CT technology requires a CT scan for attenuation correction (CTAC) but is not used routinely to measure coronary calcium burden. This study aimed to determine if a low-dose CTAC scan can also accurately quantify coronary artery calcium. Twenty-three patients underwent both a traditional coronary artery calcium scan on a dedicated cardiac CT scanner (CAC-CT) and a myocardial perfusion scan on a hybrid PET-CT scanner. The standard MPI protocol includes rest and stress-matched PET and CTAC scans. The post-stress CTAC scan was modified to approximate the CAC-CT scan protocol while maintaining ~0.5 mSv dose. Coronary artery calcium scores were compared between the Ca-CTAC and CAC-CT scans. The modified Ca-CTAC scan showed a trend toward slight decreases in segmental stress perfusion of 2-3.5% in the anterior wall segments (P < 0.05). Correlation and agreement between the proposed Ca-CTAC and standard CAC-CT calcium scores at the optimal threshold of 110 HU were also excellent (r (2) = 0.99, κ = 1.0). There was a small difference in the regression slope vs unity: Ca-CTAC = 0.96 × CAC (P < 0.05), but the categorical classification of calcium was accurate in all twenty-three patients (κ = 1.0). A single low-dose rest CTAC scan can be used for accurate attenuation correction of rest and stress PET perfusion images, thus allowing a post-stress CTAC scan to be optimized for improved quantification of coronary artery calcium without increasing radiation dose vs standard protocols.
A prototype scanning system for optimal edging and trimming of rough hardwood lumber
Sang-Mook Lee; A. Lynn Abbott; Philip A. Araman; Daniel L. Schmoldt
2003-01-01
This paper is concerned with scanning and assessment of hardwood lumber early in the manufacturing process. Scanning operations that take place immediately after the headrig have significantly greater potential to reduce loss and improve economic value, as compared to scanning that is performed during subsequent manufacturing steps. In spite of this, the scanning of...
Saedi, Amirmehdi; Poelsema, Bene; Zandvliet, Harold J W
2010-07-07
The time resolution of a conventional scanning tunneling microscope can be improved by many orders of magnitude by recording open feedback loop current-time traces. The enhanced time resolution comes, however, at the expense of the ability to obtain spatial information. In this paper, we first consider the Ge(111)-c(2 × 8) surface as an example of how surface dynamics can show up in conventional STM images. After a brief introduction to the time-resolved scanning tunneling microscopy technique, its capabilities will be demonstrated by addressing the dynamics of a dimer pair of a Pt modified Ge(001).
Minimum time optimal synthesis for two level quantum systems
Albertini, Francesca; D’Alessandro, Domenico
2015-01-15
For the time optimal problem of an invariant system on SU(2), with two independent controls and a bound on the norm of the control, the extremals of the Pontryagin maximum principle are explicit functions of time. We use this fact here to perform the optimal synthesis for these systems, i.e., to find all time optimal trajectories. Although the Lie group SU(2) is three dimensional, time optimal trajectories can be described in the unit disk of the complex plane. We find that a circular trajectory separates optimal trajectories that reach the boundary of the unit disk from the others. Inside this separatrix circle, another trajectory (the critical trajectory) plays an important role in that all optimal trajectories end at an intersection with this curve. The results allow us to find the minimum time needed to achieve a given evolution of a two level quantum system.
Relative risk estimates from spatial and space-time scan statistics: Are they biased?
Prates, Marcos O.; Kulldorff, Martin; Assunção, Renato M.
2014-01-01
The purely spatial and space-time scan statistics have been successfully used by many scientists to detect and evaluate geographical disease clusters. Although the scan statistic has high power in correctly identifying a cluster, no study has considered the estimates of the cluster relative risk in the detected cluster. In this paper we evaluate whether there is any bias on these estimated relative risks. Intuitively, one may expect that the estimated relative risks has upward bias, since the scan statistic cherry picks high rate areas to include in the cluster. We show that this intuition is correct for clusters with low statistical power, but with medium to high power the bias becomes negligible. The same behaviour is not observed for the prospective space-time scan statistic, where there is an increasing conservative downward bias of the relative risk as the power to detect the cluster increases. PMID:24639031
Relative risk estimates from spatial and space-time scan statistics: are they biased?
Prates, Marcos O; Kulldorff, Martin; Assunção, Renato M
2014-07-10
The purely spatial and space-time scan statistics have been successfully used by many scientists to detect and evaluate geographical disease clusters. Although the scan statistic has high power in correctly identifying a cluster, no study has considered the estimates of the cluster relative risk in the detected cluster. In this paper, we evaluate whether there is any bias on these estimated relative risks. Intuitively, one may expect that the estimated relative risks has upward bias, because the scan statistic cherry picks high rate areas to include in the cluster. We show that this intuition is correct for clusters with low statistical power, but with medium to high power, the bias becomes negligible. The same behavior is not observed for the prospective space-time scan statistic, where there is an increasing conservative downward bias of the relative risk as the power to detect the cluster increases. Copyright © 2014 John Wiley & Sons, Ltd.
Radiation dosimetry of the FluoroCAT scan for real-time endoscopic sinus surgery.
Manarey, Casey R A; Anand, Vijay K
2006-09-01
The FluoroCAT platform of the GE InstaTrak 3500 Plus reconstructs images acquired from the GE OEC 9800 Plus fluoroscope into triplanar images which allow the surgeon to perform real-time endoscopic sinus and skull-base surgery. The radiation dosimetry for the new scanning protocol required by the FluoroCAT has not been reported. This study was designed to measure the radiation dose of a FluoroCAT scan and compare this to the dosimetry of an InstaTrak CT scan. Prospective study. A standardized CT head phantom was used along with a CT ion chamber to measure radiation exposure. FluoroCAT scans were performed using the GE OEC 9800 Plus fluoroscope. Scans were performed using each of the three fluoroscopic scanning modes on the GE OEC 9800 Plus; normal fluoro, high-level fluoro, and Digital Ciné at 15 pulses per second (pps). The highest radiation dose was measured using Digital Ciné 15 pps. The dose measured at the center of the head phantom was 4.1 Gy while the maximum surface dose was 10.7 mGy. The center and surface radiation dose recorded from the CTDI(vol) reading on the control panel of a GE Lightspeed Plus during an InstaTrak CT scan was 85 mGy. Using the GE OEC 9800 Plus fluoroscope to accumulate images for the FluoroCAT platform in the InstaTrak 3500 Plus resulted in less radiation compared to an InstaTrak CT scan. This will allow multiple scans to be performed intraoperatively, giving the surgeon the opportunity to perform real-time endoscopic sinus and skull-base surgery. C-4.
Robustified time-optimal control of uncertain structural dynamic systems
NASA Technical Reports Server (NTRS)
Liu, Qiang; Wie, Bong
1991-01-01
A new approach for computing open-loop time-optimal control inputs for uncertain linear dynamical systems is developed. In particular, the single-axis, rest-to-rest maneuvering problem of flexible spacecraft in the presence of uncertainty in model parameters is considered. Robustified time-optimal control inputs are obtained by solving a parameter optimization problem subject to robustness constraints. A simple dynamical system with a rigid-body mode and one flexible mode is used to illustrate the concept.
Visual scanning with or without spatial uncertainty and time-sharing performance
NASA Technical Reports Server (NTRS)
Liu, Yili; Wickens, Christopher D.
1989-01-01
An experiment is reported that examines the pattern of task interference between visual scanning as a sequential and selective attention process and other concurrent spatial or verbal processing tasks. A distinction is proposed between visual scanning with or without spatial uncertainty regarding the possible differential effects of these two types of scanning on interference with other concurrent processes. The experiment required the subject to perform a simulated primary tracking task, which was time-shared with a secondary spatial or verbal decision task. The relevant information that was needed to perform the decision tasks were displayed with or without spatial uncertainty. The experiment employed a 2 x 2 x 2 design with types of scanning (with or without spatial uncertainty), expected scanning distance (low/high), and codes of concurrent processing (spatial/verbal) as the three experimental factors. The results provide strong evidence that visual scanning as a spatial exploratory activity produces greater task interference with concurrent spatial tasks than with concurrent verbal tasks. Furthermore, spatial uncertainty in visual scanning is identified to be the crucial factor in producing this differential effect.
Optimal shock isolation with minimum settling time
NASA Technical Reports Server (NTRS)
Pilkey, W. D.; Lim, T. W.
1987-01-01
It is shown how unique isolator forces and corresponding forces can be chosen by superimposing a minimum settling time onto the limiting performance of the shock isolation system. Basically, this means that the system which has reached the peak value of the performance index is settled to rest in minimum time.
Using Gini coefficient to determining optimal cluster reporting sizes for spatial scan statistics.
Han, Junhee; Zhu, Li; Kulldorff, Martin; Hostovich, Scott; Stinchcomb, David G; Tatalovich, Zaria; Lewis, Denise Riedel; Feuer, Eric J
2016-08-03
Spatial and space-time scan statistics are widely used in disease surveillance to identify geographical areas of elevated disease risk and for the early detection of disease outbreaks. With a scan statistic, a scanning window of variable location and size moves across the map to evaluate thousands of overlapping windows as potential clusters, adjusting for the multiple testing. Almost always, the method will find many very similar overlapping clusters, and it is not useful to report all of them. This paper proposes to use the Gini coefficient to help select which of the many overlapping clusters to report. The Gini coefficient provides a quick and intuitive way to evaluate the degree of the heterogeneity of the collection of clusters, which is useful to explain how well the cluster collection reveal the underlying true cluster patterns. Using simulation studies and real cancer mortality data, it is compared with the traditional approach for reporting non-overlapping clusters. The Gini coefficient can identify a more refined collection of non-overlapping clusters to report. For example, it is able to determine when it makes more sense to report a collection of smaller non-overlapping clusters versus a single large cluster containing all of them. It also fulfils a set of desirable theoretical properties, such as being invariant under a uniform multiplication of the population numbers by the same constant. The Gini coefficient can be used to determine which set of non-overlapping clusters to report. It has been implemented in the free SaTScan™ software version 9.3 ( www.satscan.org ).
Optimal Partitioning of Testing Time: Theoretical Properties and Practical Implications
ERIC Educational Resources Information Center
Wang, Tianyou; Zhang, Jiawei
2006-01-01
This paper deals with optimal partitioning of limited testing time in order to achieve maximum total test score. Nonlinear optimization theory was used to analyze this problem. A general case using a generic item response model is first presented. A special case that applies a response time model proposed by Wang and Hanson (2005) is also…
Hara, Tetsuya; Yamashiro, Kohei; Okajima, Katsunori; Hayashi, Takatoshi; Kajiya, Teishi
2009-11-01
The present study aimed at optimizing the scan protocol for multidetector-row computed tomography (MDCT) to adequately visualize coronary veins. Circulation time (Cir.T) was defined as the time period from the injection of contrast media into the coronary artery to the pervasion of the contrast media into the coronary sinus as observed by coronary angiography. We investigated the relation between the Cir.T and echocardiographic parameters in 64 patients. The left ventricular end-diastolic diameter (LVDd) and left ventricular end-systolic diameter (LVDs) were correlated with the Cir.T (r = 0.58, P < 0.0001, and r = 0.60, P < 0.0001 respectively). In addition, the left ventricular ejection fraction (LVEF) was negatively correlated with the Cir.T (r = 0.48, P < 0.0001). The average Cir. T was longer in patients with LVEF < 35% (8.0 s vs 6.7 s; P < 0.05) or LVDd > 55 mm (7.9 s vs 6.2 s; P < 0.05) than in the other patients. The quality of the MDCT images of the coronary veins obtained at different scan timings (coronary artery phase and 10 s or 15 s after the coronary artery phase) were graded and classified into four categories (0 = worst, 3 = best) in 25 patients with LVEF < 35%. The delays of 10 and 15 s after the coronary artery phase significantly improved the mean image quality (P < 0.05). The Cir.T was prolonged in patients with low LVEF and LV dilation. An appropriate delay improved the quality of the MDCT images of the coronary veins in patients with LV dysfunction.
Optimization of an adaptive SPECT system with the scanning linear estimator
NASA Astrophysics Data System (ADS)
Ghanbari, Nasrin; Clarkson, Eric; Kupinski, Matthew A.; Li, Xin
2015-08-01
The adaptive single-photon emission computed tomography (SPECT) system studied here acquires an initial scout image to obtain preliminary information about the object. Then the configuration is adjusted by selecting the size of the pinhole and the magnification that optimize system performance on an ensemble of virtual objects generated to be consistent with the scout data. In this study the object is a lumpy background that contains a Gaussian signal with a variable width and amplitude. The virtual objects in the ensemble are imaged by all of the available configurations and the subsequent images are evaluated with the scanning linear estimator to obtain an estimate of the signal width and amplitude. The ensemble mean squared error (EMSE) on the virtual ensemble between the estimated and the true parameters serves as the performance figure of merit for selecting the optimum configuration. The results indicate that variability in the original object background, noise and signal parameters leads to a specific optimum configuration in each case. A statistical study carried out for a number of objects show that the adaptive system on average performs better than its nonadaptive counterpart.
Solar sail time-optimal interplanetary transfer trajectory design
NASA Astrophysics Data System (ADS)
Gong, Sheng-Pin; Gao, Yun-Feng; Li, Jun-Feng
2011-08-01
The fuel consumption associated with some interplanetary transfer trajectories using chemical propulsion is not affordable. A solar sail is a method of propulsion that does not consume fuel. Transfer time is one of the most pressing problems of solar sail transfer trajectory design. This paper investigates the time-optimal interplanetary transfer trajectories to a circular orbit of given inclination and radius. The optimal control law is derived from the principle of maximization. An indirect method is used to solve the optimal control problem by selecting values for the initial adjoint variables, which are normalized within a unit sphere. The conditions for the existence of the time-optimal transfer are dependent on the lightness number of the sail and the inclination and radius of the target orbit. A numerical method is used to obtain the boundary values for the time-optimal transfer trajectories. For the cases where no time-optimal transfer trajectories exist, first-order necessary conditions of the optimal control are proposed to obtain feasible solutions. The results show that the transfer time decreases as the minimum distance from the Sun decreases during the transfer duration. For a solar sail with a small lightness number, the transfer time may be evaluated analytically for a three-phase transfer trajectory. The analytical results are compared with previous results and the associated numerical results. The transfer time of the numerical result here is smaller than the transfer time from previous results and is larger than the analytical result.
Optimal scan strategy for mega-pixel and kilo-gray-level OLED-on-silicon microdisplay.
Ji, Yuan; Ran, Feng; Ji, Weigui; Xu, Meihua; Chen, Zhangjing; Jiang, Yuxi; Shen, Weixin
2012-06-10
The digital pixel driving scheme makes the organic light-emitting diode (OLED) microdisplays more immune to the pixel luminance variations and simplifies the circuit architecture and design flow compared to the analog pixel driving scheme. Additionally, it is easily applied in full digital systems. However, the data bottleneck becomes a notable problem as the number of pixels and gray levels grow dramatically. This paper will discuss the digital driving ability to achieve kilogray-levels for megapixel displays. The optimal scan strategy is proposed for creating ultra high gray levels and increasing light efficiency and contrast ratio. Two correction schemes are discussed to improve the gray level linearity. A 1280×1024×3 OLED-on-silicon microdisplay, with 4096 gray levels, is designed based on the optimal scan strategy. The circuit driver is integrated in the silicon backplane chip in the 0.35 μm 3.3 V-6 V dual voltage one polysilicon layer, four metal layers (1P4M) complementary metal-oxide semiconductor (CMOS) process with custom top metal. The design aspects of the optimal scan controller are also discussed. The test results show the gray level linearity of the correction schemes for the optimal scan strategy is acceptable by the human eye.
Optimal health insurance for multiple goods and time periods.
Ellis, Randall P; Jiang, Shenyi; Manning, Willard G
2015-05-01
We examine the efficiency-based arguments for second-best optimal health insurance with multiple treatment goods and multiple time periods. Correlated shocks across health care goods and over time interact with complementarity and substitutability to affect optimal cost sharing. Health care goods that are substitutes or have positively correlated demand shocks should have lower optimal patient cost sharing. Positive serial correlations of demand shocks and uncompensated losses that are positively correlated with covered health services also reduce optimal cost sharing. Our results rationalize covering pharmaceuticals and outpatient spending more fully than is implied by static, one good, or one period models. Copyright © 2015 Elsevier B.V. All rights reserved.
New ultrarapid-scanning interferometer for FT-IR spectroscopy with microsecond time-resolution
NASA Astrophysics Data System (ADS)
Süss, B.; Ringleb, F.; Heberle, J.
2016-06-01
A novel Fourier-transform infrared (FT-IR) rapid-scan spectrometer has been developed (patent pending EP14194520.4) which yields 1000 times higher time resolution as compared to conventional rapid-scanning spectrometers. The central element to achieve faster scanning rates is based on a sonotrode whose front face represents the movable mirror of the interferometer. A prototype spectrometer with a time resolution of 13 μs was realized, capable of fully automated long-term measurements with a flow cell for liquid samples, here a photosynthetic membrane protein in solution. The performance of this novel spectrometer is demonstrated by recording the photoreaction of bacteriorhodopsin initiated by a short laser pulse that is synchronized to the data recording. The resulting data are critically compared to those obtained by step-scan spectroscopy and demonstrate the relevance of performing experiments on proteins in solution. The spectrometer allows for future investigations of fast, non-repetitive processes, whose investigation is challenging to step-scan FT-IR spectroscopy.
Yamada, T; Fujii, Y; Miyamoto, N; Matsuura, T; Takao, S; Matsuzaki, Y; Koyano, H; Shirato, H; Nihongi, H; Umezawa, M; Matsuda, K; Umegaki, K
2015-06-15
Purpose: We have developed a gated spot scanning proton beam therapy system with real-time tumor-tracking. This system has the ability of multiple-gated irradiation in a single synchrotron operation cycle controlling the wait-time for consecutive gate signals during a flat-top phase so that the decrease in irradiation efficiency induced by irregular variation of gate signal is reduced. Our previous studies have shown that a 200 ms wait-time is appropriate to increase the average irradiation efficiency, but the optimal wait-time can vary patient by patient and day by day. In this research, we have developed an evaluation system of the optimal wait-time in each irradiation based on the log data of the real-time-image gated proton beam therapy (RGPT) system. Methods: The developed system consists of logger for operation of RGPT system and software for evaluation of optimal wait-time. The logger records timing of gate on/off, timing and the dose of delivered beam spots, beam energy and timing of X-ray irradiation. The evaluation software calculates irradiation time in the case of different wait-time by simulating the multiple-gated irradiation operation using several timing information. Actual data preserved in the log data are used for gate on and off time, spot irradiation time, and time moving to the next spot. Design values are used for the acceleration and deceleration times. We applied this system to a patient treated with the RGPT system. Results: The evaluation system found the optimal wait-time of 390 ms that reduced the irradiation time by about 10 %. The irradiation time with actual wait-time used in treatment was reproduced with accuracy of 0.2 ms. Conclusion: For spot scanning proton therapy system with multiple-gated irradiation in one synchrotron operation cycle, an evaluation system of the optimal wait-time in each irradiation based on log data has been developed. Funding Support: Japan Society for the Promotion of Science (JSPS) through the FIRST
Topography Data on Mars: Optimizing its Collection and Application Using Laser Scanning.
NASA Astrophysics Data System (ADS)
Bulmer, Mark; Finnegan, David
2010-05-01
Sites on Mars with rocky geomorphic features interpreted to be lava flows, avalanches, talus cones, rock glaciers, glacial moraines and fluvial outwash channels are the focus of interest for this project. For each site, image and topography datasets have been compiled that include Viking Orbiter, Mars Orbiter Laser Altimeter (MOLA), Mars Orbital Camera (MOC), Thermal Emission Imaging System (THEMIS), HRSC and most recently MRO CTX and HiRISE. To correctly interpret geomorphic and geologic features and their underlying processes the limitations of the imaging sensors used at Mars and any derived data products have had to be understood. From studies conducted at our terrestrial analog sites it has become clear that obtaining topographic data at the appropriate resolution is essential to provide the boundary conditions to quantify processes such as lava flows, landslides and fluvial activity on Mars. Airborne Laser Altimeter derived topography at ~1-2 m/pixel has been obtained for six sites (Martinez, Chaos Jumbles, Amboy, Mission Creek, Buckhorn Playa, and Mojave River). These data were obtained using NASA's Research Grade Airborne Topographic Mapper IV (ATM-IV) waveform laser altimeter. As a result of these data acquisitions, we have come to understand that each dataset is unique due to variations in aircraft speed and altitude which affects the size of the laser footprint on the surface of interest, incident angle and the number of return pulsed within it. Working with the NASA pilots, we have been able to test a variety of flight strategies in an attempt to determine the optimal flight profile for the surface of interest. High-resolution topography has also been acquired at Amboy, Mission Creek, Buckhorn Playa, and Mojave River using a tripod/vehicle mounted LMS-Z420i scanning laser. The technical specifications of the instrument enables repeatable topographic accuracies to 5 mm. Considerable knowledge has been gained at each of our sites as to most suitable
2011-09-01
York, NY, 1992. [5] A.V. Savkin, P.N. Pathirana, nd F. Faruqi. The problem of precision missile guidance: LQR and H 00 control frameworks. IEEE...STOCHASTIC REAL-TIME OPTIMAL CONTROL : A PSEUDOSPECTRAL APPROACH FOR BEARING-ONLY TRAJECTORY OPTIMIZATION DISSERTATION Steven M. Ross, Lieutenant...the U.S. Government and is not subject to copyright protection in the United States. AFIT/DS/ENY/11-24 STOCHASTIC REAL-TIME OPTIMAL CONTROL : A
NASA Astrophysics Data System (ADS)
Chiariotti, Paolo; Martarelli, Milena; Revel, Gian Marco
2014-07-01
This paper proposes the use of continuous scanning laser Doppler vibrometry (CSLDV) in time domain correlation techniques that aim at characterizing the structure-borne contributions of the noise emission of a mechanical system. The time domain correlation technique presented in this paper is based on the use of FIR (finite impulse response) filters obtained from the vibro-acoustic transfer matrix when vibration data are collected by laser Doppler vibrometry (LDV) exploited in continuous scan mode (CSLDV). The advantages, especially in terms of source decorrelation capabilities, related to the use of CSLDV for such purpose, with respect to standard discrete scan (SLDV), are discussed throughout the paper. To validate this approach, vibro-acoustic measurements were performed on a planetary gear motor for home appliances. The analysis of results is also supported by a simulation.
NASA Astrophysics Data System (ADS)
Lu, Yiqing; Xi, Peng; Piper, James A.; Huo, Yujing; Jin, Dayong
2012-11-01
We report a new development of orthogonal scanning automated microscopy (OSAM) incorporating time-gated detection to locate rare-event organisms regardless of autofluorescent background. The necessity of using long-lifetime (hundreds of microseconds) luminescent biolabels for time-gated detection implies long integration (dwell) time, resulting in slow scan speed. However, here we achieve high scan speed using a new 2-step orthogonal scanning strategy to realise on-the-fly time-gated detection and precise location of 1-μm lanthanide-doped microspheres with signal-to-background ratio of 8.9. This enables analysis of a 15 mm × 15 mm slide area in only 3.3 minutes. We demonstrate that detection of only a few hundred photoelectrons within 100 μs is sufficient to distinguish a target event in a prototype system using ultraviolet LED excitation. Cytometric analysis of lanthanide labelled Giardia cysts achieved a signal-to-background ratio of two orders of magnitude. Results suggest that time-gated OSAM represents a new opportunity for high-throughput background-free biosensing applications.
Maximum linkage space-time permutation scan statistics for disease outbreak detection.
Costa, Marcelo A; Kulldorff, Martin
2014-06-10
In disease surveillance, the prospective space-time permutation scan statistic is commonly used for the early detection of disease outbreaks. The scanning window that defines potential clusters of diseases is cylindrical in shape, which does not allow incorporating into the cluster shape potential factors that can contribute to the spread of the disease, such as information about roads, landscape, among others. Furthermore, the cylinder scanning window assumes that the spatial extent of the cluster does not change in time. Alternatively, a dynamic space-time cluster may indicate the potential spread of the disease through time. For instance, the cluster may decrease over time indicating that the spread of the disease is vanishing. This paper proposes two irregularly shaped space-time permutation scan statistics. The cluster geometry is dynamically created using a graph structure. The graph can be created to include nearest-neighbor structures, geographical adjacency information or any relevant prior information regarding the contagious behavior of the event under surveillance. The new methods are illustrated using influenza cases in three New England states, and compared with the cylindrical version. A simulation study is provided to investigate some properties of the proposed arbitrary cluster detection techniques. We have successfully developed two new space-time permutation scan statistics methods with irregular shapes and improved computational performance. The results demonstrate the potential of these methods to quickly detect disease outbreaks with irregular geometries. Future work aims at performing intensive simulation studies to evaluate the proposed methods using different scenarios, number of cases, and graph structures.
Maximum linkage space-time permutation scan statistics for disease outbreak detection
2014-01-01
Background In disease surveillance, the prospective space-time permutation scan statistic is commonly used for the early detection of disease outbreaks. The scanning window that defines potential clusters of diseases is cylindrical in shape, which does not allow incorporating into the cluster shape potential factors that can contribute to the spread of the disease, such as information about roads, landscape, among others. Furthermore, the cylinder scanning window assumes that the spatial extent of the cluster does not change in time. Alternatively, a dynamic space-time cluster may indicate the potential spread of the disease through time. For instance, the cluster may decrease over time indicating that the spread of the disease is vanishing. Methods This paper proposes two irregularly shaped space-time permutation scan statistics. The cluster geometry is dynamically created using a graph structure. The graph can be created to include nearest-neighbor structures, geographical adjacency information or any relevant prior information regarding the contagious behavior of the event under surveillance. Results The new methods are illustrated using influenza cases in three New England states, and compared with the cylindrical version. A simulation study is provided to investigate some properties of the proposed arbitrary cluster detection techniques. Conclusion We have successfully developed two new space-time permutation scan statistics methods with irregular shapes and improved computational performance. The results demonstrate the potential of these methods to quickly detect disease outbreaks with irregular geometries. Future work aims at performing intensive simulation studies to evaluate the proposed methods using different scenarios, number of cases, and graph structures. PMID:24916839
NASA Astrophysics Data System (ADS)
Eisa, Fabian; Brauweiler, Robert; Peetz, Alexander; Hupfer, Martin; Nowak, Tristan; Kalender, Willi A.
2012-05-01
One of the biggest challenges in dynamic contrast-enhanced CT is the optimal synchronization of scan start and duration with contrast medium administration in order to optimize image contrast and to reduce the amount of contrast medium. We present a new optically based approach, which was developed to investigate and optimize bolus timing and shape. The time-concentration curve of an intravenously injected test bolus of a dye is measured in peripheral vessels with an optical sensor prior to the diagnostic CT scan. The curves can be used to assess bolus shapes as a function of injection protocols and to determine contrast medium arrival times. Preliminary results for phantom and animal experiments showed the expected linear behavior between dye concentration and absorption. The kinetics of the dye was compared to iodinated contrast medium and was found to be in good agreement. The contrast enhancement curves were reliably detected in three mice with individual bolus shapes and delay times of 2.1, 3.5 and 6.1 s, respectively. The optical sensor appears to be a promising approach to optimize injection protocols and contrast enhancement timing and is applicable to all modalities without implying any additional radiation dose. Clinical tests are still necessary.
Near-real-time mosaics from high-resolution side-scan sonar
Danforth, William W.; O'Brien, Thomas F.; Schwab, W.C.
1991-01-01
High-resolution side-scan sonar has proven to be a very effective tool for stuyding and understanding the surficial geology of the seafloor. Since the mid-1970s, the US Geological Survey has used high-resolution side-scan sonar systems for mapping various areas of the continental shelf. However, two problems typically encountered included the short range and the high sampling rate of high-resolution side-scan sonar systems and the acquisition and real-time processing of the enormous volume of sonar data generated by high-resolution suystems. These problems were addressed and overcome in August 1989 when the USGS conducted a side-scan sonar and bottom sampling survey of a 1000-sq-km section of the continental shelf in the Gulf of Farallones located offshore of San Francisco. The primary goal of this survey was to map an area of critical interest for studying continental shelf sediment dynamics. This survey provided an opportunity to test an image processing scheme that enabled production of a side-scan sonar hard-copy mosaic during the cruise in near real-time.
Kim, Michele M; Zhu, Timothy C
2013-02-02
During HPPH-mediated pleural photodynamic therapy (PDT), it is critical to determine the anatomic geometry of the pleural surface quickly as there may be movement during treatment resulting in changes with the cavity. We have developed a laser scanning device for this purpose, which has the potential to obtain the surface geometry in real-time. A red diode laser with a holographic template to create a pattern and a camera with auto-focusing abilities are used to scan the cavity. In conjunction with a calibration with a known surface, we can use methods of triangulation to reconstruct the surface. Using a chest phantom, we are able to obtain a 360 degree scan of the interior in under 1 minute. The chest phantom scan was compared to an existing CT scan to determine its accuracy. The laser-camera separation can be determined through the calibration with 2mm accuracy. The device is best suited for environments that are on the scale of a chest cavity (between 10cm and 40cm). This technique has the potential to produce cavity geometry in real-time during treatment. This would enable PDT treatment dosage to be determined with greater accuracy. Works are ongoing to build a miniaturized device that moves the light source and camera via a fiber-optics bundle commonly used for endoscopy with increased accuracy.
[The optimal dosing times of corticoids].
Dridi, Dorra; Ben Attia, Mossadok; Aouam, Karim; Bouzouita, Kamel; Boughattas, Naceur A; Reinberg, Alain
2006-01-01
The therapeutic use of cortisol and its derivatives, anti-inflammatory corticoids, sets delicate problems to resolve because of cortisol's physiological roles and its circadian rhythms. Cortisol and the majority of its derivatives have desirable and undesirable effects that are time-related administration. The chronotherapeutic optimisation to increase desirable effects and safety of corticoids is shown in the treatment of adrenocortical failure, congenital adrenal hyperplasia and asthma. The knowledge of physiological and physiopathological rhythms of asthma permitted to realize oral treatment optimisation by using a number of corticoids. This knowledge puts in a prominent position the advantages of ciclesonide: a new inhaled corticoid. A chronobiologic approach could be used in a classic optimisation which involves a molecule modification and inhalation like routes of administration.
Optimal estimation for discrete time jump processes
NASA Technical Reports Server (NTRS)
Vaca, M. V.; Tretter, S. A.
1977-01-01
Optimum estimates of nonobservable random variables or random processes which influence the rate functions of a discrete time jump process (DTJP) are obtained. The approach is based on the a posteriori probability of a nonobservable event expressed in terms of the a priori probability of that event and of the sample function probability of the DTJP. A general representation for optimum estimates and recursive equations for minimum mean squared error (MMSE) estimates are obtained. MMSE estimates are nonlinear functions of the observations. The problem of estimating the rate of a DTJP when the rate is a random variable with a probability density function of the form cx super K (l-x) super m and show that the MMSE estimates are linear in this case. This class of density functions explains why there are insignificant differences between optimum unconstrained and linear MMSE estimates in a variety of problems.
Optimal estimation for discrete time jump processes
NASA Technical Reports Server (NTRS)
Vaca, M. V.; Tretter, S. A.
1978-01-01
Optimum estimates of nonobservable random variables or random processes which influence the rate functions of a discrete time jump process (DTJP) are derived. The approach used is based on the a posteriori probability of a nonobservable event expressed in terms of the a priori probability of that event and of the sample function probability of the DTJP. Thus a general representation is obtained for optimum estimates, and recursive equations are derived for minimum mean-squared error (MMSE) estimates. In general, MMSE estimates are nonlinear functions of the observations. The problem is considered of estimating the rate of a DTJP when the rate is a random variable with a beta probability density function and the jump amplitudes are binomially distributed. It is shown that the MMSE estimates are linear. The class of beta density functions is rather rich and explains why there are insignificant differences between optimum unconstrained and linear MMSE estimates in a variety of problems.
Evaluation of optimal DNA staining for triggering by scanning fluorescence microscopy (SFM)
NASA Astrophysics Data System (ADS)
Mittag, Anja; Marecka, Monika; Pierzchalski, Arkadiusz; Malkusch, Wolf; Bocsi, József; Tárnok, Attila
2009-02-01
In imaging and flow cytometry, DNA staining is a common trigger signal for cell identification. Selection of the proper DNA dye is restricted by the hardware configuration of the instrument. The Zeiss Imaging Solutions GmbH (München, Germany) introduced a new automated scanning fluorescence microscope - SFM (Axio Imager.Z1) which combines fluorescence imaging with cytometric parameters measurement. The aim of the study was to select optimal DNA dyes as trigger signal in leukocyte detection and subsequent cytometric analysis of double-labeled leukocytes by SFM. Seven DNA dyes (DAPI, Hoechst 33258, Hoechst 33342, POPO-3, PI, 7-AAD, and TOPRO-3) were tested and found to be suitable for the implemented filtersets (fs) of the SFM (fs: 49, fs: 44, fs: 20). EDTA blood was stained after erythrocyte lysis with DNA dye. Cells were transferred on microscopic slides and embedded in fluorescent mounting medium. Quality of DNA fluorescence signal as well as spillover signals were analyzed by SFM. CD45-APC and CD3-PE as well as CD4-FITC and CD8-APC were selected for immunophenotyping and used in combination with Hoechst. Within the tested DNA dyes DAPI showed relatively low spillover and the best CV value. Due to the low spillover of UV DNA dyes a triple staining of Hoechst and APC and PE (or APC and FITC, respectively) could be analyzed without difficulty. These results were confirmed by FCM measurements. DNA fluorescence is applicable for identifying and triggering leukocytes in SFM analyses. Although some DNA dyes exhibit strong spillover in other fluorescence channels, it was possible to immunophenotype leukocytes. DAPI seems to be best suitable for use in the SFM system and will be used in protocol setups as primary parameter.
NASA Astrophysics Data System (ADS)
Venkatesan, K.; Ramanujam, R.; Kuppan, P.
2016-04-01
This paper presents a parametric effect, microstructure, micro-hardness and optimization of laser scanning parameters (LSP) on heating experiments during laser assisted machining of Inconel 718 alloy. The laser source used for experiments is a continuous wave Nd:YAG laser with maximum power of 2 kW. The experimental parameters in the present study are cutting speed in the range of 50-100 m/min, feed rate of 0.05-0.1 mm/rev, laser power of 1.25-1.75 kW and approach angle of 60-90°of laser beam axis to tool. The plan of experiments are based on central composite rotatable design L31 (43) orthogonal array. The surface temperature is measured via on-line measurement using infrared pyrometer. Parametric significance on surface temperature is analysed using response surface methodology (RSM), analysis of variance (ANOVA) and 3D surface graphs. The structural change of the material surface is observed using optical microscope and quantitative measurement of heat affected depth that are analysed by Vicker's hardness test. The results indicate that the laser power and approach angle are the most significant parameters to affect the surface temperature. The optimum ranges of laser power and approach angle was identified as 1.25-1.5 kW and 60-65° using overlaid contour plot. The developed second order regression model is found to be in good agreement with experimental values with R2 values of 0.96 and 0.94 respectively for surface temperature and heat affected depth.
NASA Astrophysics Data System (ADS)
Lerm, Steffen; Holder, Silvio; Schellhorn, Mathias; Brückner, Peter; Linß, Gerhard
2013-05-01
An important part of the quality assurance of meat is the estimation of germs in the meat exudes. The kind and the number of the germs in the meat affect the medical risk for the consumer of the meat. State-of-the-art analyses of meat are incubator test procedures. The main disadvantages of such incubator tests are the time consumption, the necessary equipment and the need of special skilled employees. These facts cause in high inspection cost. For this reason a new method for the quality assurance is necessary which combines low detection limits and less time consumption. One approach for such a new method is fluorescence microscopic imaging. The germs in the meat exude are caught in special membranes by body-antibody reactions. The germ typical signature could be enhanced with fluorescent chemical markers instead of reproduction of the germs. Each fluorescent marker connects with a free germ or run off the membrane. An image processing system is used to detect the number of fluorescent particles. Each fluorescent spot should be a marker which is connected with a germ. Caused by the small object sizes of germs, the image processing system needs a high optical magnification of the camera. However, this leads to a small field of view and a small depth of focus. For this reasons the whole area of the membrane has to be scanned in three dimensions. To minimize the time consumption, the optimal path has to be found. This optimization problem is influenced by features of the hardware and is presented in this paper. The traversing range in each direction, the step width, the velocity, the shape of the inspection volume and the field of view have influence on the optimal path to scan the membrane.
Time optimal paths and acceleration lines of robotic manipulators
NASA Technical Reports Server (NTRS)
Shiller, Zvi; Dubowsky, Steven
1987-01-01
The concept of acceleration lines and their correlation with time-optimal paths of robotic manipulators is presented. The acceleration lines represent the directions of maximum tip acceleration from a point in the manipulator work-space, starting at a zero velocity. These lines can suggest the number and shapes of time-optimal paths for a class of manipulators. It is shown that nonsingular time-optimal paths are tangent to one of the acceleration lines near the end-points. A procedure for obtaining near-optimal paths, utilizing the acceleration lines, is developed. These paths are obtained by connecting the end-points with B splines tangent to the acceleration lines. The near-minimum paths are shown to yield better traveling times than the straight-line path between the same end-points. The near-minimum paths can be used as initial conditions in existing optimization methods to speed-up convergence and computation time. This method can be used for online robot path planning and for interactive designs of robotic-cell layouts. Examples of time-optimal paths of a two-link manipulator, obtained by other optimization procedures and their acceleration lines, are shown.
Autonomous Real-Time Interventional Scan Plane Control With a 3-D Shape-Sensing Needle
Plata, Juan Camilo; Holbrook, Andrew B.; Park, Yong-Lae; Pauly, Kim Butts; Daniel, Bruce L.; Cutkosky, Mark R.
2016-01-01
This study demonstrates real-time scan plane control dependent on three-dimensional needle bending, as measured from magnetic resonance imaging (MRI)-compatible optical strain sensors. A biopsy needle with embedded fiber Bragg grating (FBG) sensors to measure surface strains is used to estimate its full 3-D shape and control the imaging plane of an MR scanner in real-time, based on the needle’s estimated profile. The needle and scanner coordinate frames are registered to each other via miniature radio-frequency (RF) tracking coils, and the scan planes autonomously track the needle as it is deflected, keeping its tip in view. A 3-D needle annotation is superimposed over MR-images presented in a 3-D environment with the scanner’s frame of reference. Scan planes calculated based on the FBG sensors successfully follow the tip of the needle. Experiments using the FBG sensors and RF coils to track the needle shape and location in real-time had an average root mean square error of 4.2 mm when comparing the estimated shape to the needle profile as seen in high resolution MR images. This positional variance is less than the image artifact caused by the needle in high resolution SPGR (spoiled gradient recalled) images. Optical fiber strain sensors can estimate a needle’s profile in real-time and be used for MRI scan plane control to potentially enable faster and more accurate physician response. PMID:24968093
Autonomous real-time interventional scan plane control with a 3-D shape-sensing needle.
Elayaperumal, Santhi; Plata, Juan Camilo; Holbrook, Andrew B; Park, Yong-Lae; Pauly, Kim Butts; Daniel, Bruce L; Cutkosky, Mark R
2014-11-01
This study demonstrates real-time scan plane control dependent on three-dimensional needle bending, as measured from magnetic resonance imaging (MRI)-compatible optical strain sensors. A biopsy needle with embedded fiber Bragg grating (FBG) sensors to measure surface strains is used to estimate its full 3-D shape and control the imaging plane of an MR scanner in real-time, based on the needle's estimated profile. The needle and scanner coordinate frames are registered to each other via miniature radio-frequency (RF) tracking coils, and the scan planes autonomously track the needle as it is deflected, keeping its tip in view. A 3-D needle annotation is superimposed over MR-images presented in a 3-D environment with the scanner's frame of reference. Scan planes calculated based on the FBG sensors successfully follow the tip of the needle. Experiments using the FBG sensors and RF coils to track the needle shape and location in real-time had an average root mean square error of 4.2 mm when comparing the estimated shape to the needle profile as seen in high resolution MR images. This positional variance is less than the image artifact caused by the needle in high resolution SPGR (spoiled gradient recalled) images. Optical fiber strain sensors can estimate a needle's profile in real-time and be used for MRI scan plane control to potentially enable faster and more accurate physician response.
Robust real-time mine classification based on side-scan sonar imagery
NASA Astrophysics Data System (ADS)
Bello, Martin G.
2000-08-01
We describe here image processing and neural network based algorithms for detection and classification of mines in side-scan sonar imagery, and the results obtained from their application to two distinct image data bases. These algorithms evolved over a period from 1994 to the present, originally at Draper Laboratory, and currently at Alphatech Inc. The mine-detection/classification system is partitioned into an anomaly screening stage followed by a classification stage involving the calculation of features on blobs, and their input into a multilayer perceptron neural network. Particular attention is given to the selection of algorithm parameters, and training data, in order to optimize performance over the aggregate data set.
Correction of scan time dependence of standard uptake values in oncological PET
2014-01-01
Background Standard uptake values (SUV) as well as tumor-to-blood standard uptake ratios (SUR) measured with [ 18F-]fluorodeoxyglucose (FDG) PET are time dependent. This poses a serious problem for reliable quantification since variability of scan start time relative to the time of injection is a persistent issue in clinical oncological Positron emission tomography (PET). In this work, we present a method for scan time correction of, both, SUR and SUV. Methods Assuming irreversible FDG kinetics, SUR is linearly correlated to Km (the metabolic rate of FDG), where the slope only depends on the shape of the arterial input function (AIF) and on scan time. Considering the approximately invariant shape of the AIF, this slope (the ‘Patlak time’) is an investigation independent function of scan time. This fact can be used to map SUR and SUV values from different investigations to a common time point for quantitative comparison. Additionally, it turns out that modelling the invariant AIF shape by an inverse power law is possible which further simplifies the correction procedure. The procedure was evaluated in 15 fully dynamic investigations of liver metastases from colorectal cancer and 10 dual time point (DTP) measurements. From each dynamic study, three ‘static scans’ at T=20,35,and 55 min post injection (p.i.) were created, where the last scan defined the reference time point to which the uptake values measured in the other two were corrected. The corrected uptake values were then compared to those actually measured at the reference time. For the DTP studies, the first scan (acquired at (78.1 ± 15.9) min p.i.) served as the reference, and the uptake values from the second scan (acquired (39.2 ± 9.9) min later) were corrected accordingly and compared to the reference. Results For the dynamic data, the observed difference between uncorrected values and values at reference time was (-52±4.5)% at T=20 min and (-31±3.7)% at T=35 min for SUR and (-30±6.6)% at T=20
A 3D scanning device for architectural survey based on time-of-flight technology
NASA Astrophysics Data System (ADS)
Fontana, Raffaella; Gambino, Maria Chiara; Gianfrate, Gabriella; Greco, Marinella; Pampaloni, Enrico; Pezzati, Luca
2004-09-01
This work is intended to show the results of a few architectural and archaeological surveys realized by means of a 3D scanning device, based on TOF (Time-Of-Flight) technology. The instrument was set up by the Art Diagnostic Group of the National Institute for Applied Optics (INOA) and it is composed by a high precision scanning system equipped with a commercial low-cost distance-meter. This device was projected in order to provide the following characteristics: reliability, good accuracy and compatibility with other systems and it is devoted to applications in Cultural Heritage field.
Interim PET Scans in Diffuse Large B-Cell Lymphoma: Is It Ready for Prime Time?
Bolshinsky, Maital; Nabhan, Chadi
2016-12-01
Prognostication of patients with diffuse large B-cell lymphoma (DLBCL) has improved in the past decade with a variety of clinical, morphologic, molecular, and radiographic methods. Comparable to data on the value of interim positron emission tomography (I-PET) in Hodgkin lymphoma, several retrospective and prospective studies are attempting to assess the value of I-PET scanning in DLBCL patients. In this review, we briefly describe and analyze the various prognostic methods in DLBCL with specific focus on the value of I-PET scanning in this disease. This is a timely analysis, as tailoring therapies based on prognosis at diagnosis are becoming of increased investigational interest.
Li, Heng; Zhu, X. Ronald; Zhang, Xiaodong
2016-01-01
Purpose To develop and validate a novel delivery strategy for reducing the respiratory motion–induced dose uncertainty of spot-scanning proton therapy. Methods and Materials The spot delivery sequence was optimized to reduce dose uncertainty. The effectiveness of the delivery sequence optimization was evaluated using measurements and patient simulation. One hundred ninety-one 2-dimensional measurements using different delivery sequences of a single-layer uniform pattern were obtained with a detector array on a 1-dimensional moving platform. Intensity modulated proton therapy plans were generated for 10 lung cancer patients, and dose uncertainties for different delivery sequences were evaluated by simulation. Results Without delivery sequence optimization, the maximum absolute dose error can be up to 97.2% in a single measurement, whereas the optimized delivery sequence results in a maximum absolute dose error of ≤11.8%. In patient simulation, the optimized delivery sequence reduces the mean of fractional maximum absolute dose error compared with the regular delivery sequence by 3.3% to 10.6% (32.5-68.0% relative reduction) for different patients. Conclusions Optimizing the delivery sequence can reduce dose uncertainty due to respiratory motion in spot-scanning proton therapy, assuming the 4-dimensional CT is a true representation of the patients’ breathing patterns. PMID:26460997
Watanabe, Haruo; Kanematsu, Masayuki; Kondo, Hiroshi; Tomimatsu, Hideto; Sakurai, Kota; Goshima, Satoshi; Kawada, Hiroshi; Noda, Yoshifumi; Miyoshi, Toshiharu
2014-01-01
To assess the optimal scan delays and contrast injection durations for contrast-enhanced whole-body computed tomography (CT). One hundred forty-two patients were randomized into three groups: protocol A-scan delay of 65 s after starting contrast injection over 30 s; protocol B-105 and 70 s; and protocol C-145 and 110 s, respectively. Contrast enhancement and diagnostic acceptability were assessed. Qualitative assessment was subtle among the three protocols. Homogenous enhancement of deep veins was more assuredly achieved with protocol C. With protocol C, qualitatively acceptable enhancement can be obtained in whole-body CT. Copyright © 2014 Elsevier Inc. All rights reserved.
Sasaki, Osami; Akiyama, Kazuhiro; Suzuki, Takamasa
2002-07-01
In addition to a conventional phase a the interference signal of a sinusoidal-wavelength-scanning interferometer has a phase-modulation amplitude Zb that is proportional to the optical path difference L and amplitude b of the wavelength scan. L and b are controlled by a double feedback system so that the phase alpha and the amplitude Zb are kept at 3pi/2 and pi, respectively. The voltage applied to a device that displaces a reference mirror to change the optical path difference becomes a ruler with scales smaller than a wavelength. Voltage applied to a device that determines the amplitude of the wavelength scan becomes a ruler marking every wavelength. These two rulers enable one to measure an absolute distance longer than a wavelength in real time.
Real-time drift error compensation in a self-reference frequency-scanning fiber interferometer
NASA Astrophysics Data System (ADS)
Tao, Long; Liu, Zhigang; Zhang, Weibo; Liu, Zhe; Hong, Jun
2017-01-01
In order to eliminate the fiber drift errors in a frequency-scanning fiber interferometer, we propose a self-reference frequency-scanning fiber interferometer composed of two fiber Michelson interferometers sharing common optical paths of fibers. One interferometer defined as reference interferometer is used to monitor the optical path length drift in real time and establish a measurement fixed origin. The other is used as a measurement interferometer to acquire the information from the target. Because the measured optical path differences of the reference and measurement interferometers by frequency-scanning interferometry include the same fiber drift errors, the errors can be eliminated by subtraction of the former optical path difference from the latter optical path difference. A prototype interferometer was developed in our research, and experimental results demonstrate its robustness and stability.
An Earlier Time of Scan is Associated with Greater Threat-related Amygdala Reactivity.
Baranger, David A A; Margolis, Seth; Hariri, Ahmad R; Bogdan, Ryan
2017-04-04
Time-dependent variability in mood and anxiety suggest that related neural phenotypes, such as threat-related amygdala reactivity, may also follow a diurnal pattern. Here, using data from 1,043 young adult volunteers, we found that threat-related amygdala reactivity was negatively coupled with time of day, an effect which was stronger in the left hemisphere (β=-0.1083, p-fdr=0.0012). This effect was moderated by subjective sleep quality (β=-0.0715, p-fdr=0.0387); participants who reported average and poor sleep quality had relatively increased left amygdala reactivity in the morning. Bootstrapped simulations suggest that similar cross-sectional samples with at least 300 participants would be able to detect associations between amygdala reactivity and time of scan. In control analyses, we found no associations between time and V1 activation. Our results provide initial evidence that threat-related amygdala reactivity may vary diurnally, and that this effect is potentiated among individuals with average to low sleep quality. More broadly, our results suggest that considering time of scan in study design or modeling time of scan in analyses, as well as collecting additional measures of circadian variation, may be useful for understanding threat-related neural phenotypes and their associations with behavior, such as fear conditioning, mood and anxiety symptoms, and related phenotypes.
Time optimal trajectories for a two wheeled robot
Reister, D.B.; Pin, F.G.
1991-01-01
This paper addresses the problem of time-optimal motions for a mobile platform in a 2-D planar environment. The platform is assumed to be of the skid-steer type, with two non-steerable independently driven wheels. The overall mission of the robot is expressed in terms of a sequence of via points at which the platform must be at rest in a given configuration (position and orientation). The objective is to plan time-optimal trajectories between these configurations assuming an unobstructed environment. Using Pontryagin's maximum principle, we formally demonstrate that the time optimal motions of the platform are bang-bang (at each instant, the acceleration on each wheel is either at the upper or lower limit). The optimal trajectories can be characterized by a set of unique parameters corresponding to the switch times (the times at which the wheel accelerations change sign). We show numerically that trajectories with three switch times (two on one wheel, one on the other) can reach any position, while trajectories with four switch times can reach any configuration. Given the desired final configuration of the platform, we can search the parameter space and find the switch times that will produce particular paths to the configuration. We show numerically that a uniquely defined subset of these paths are time optimal by calculating the dual variables required by the maximum principle. 26 refs., 12 figs.
Optimal finite-time processes in stochastic thermodynamics.
Schmiedl, Tim; Seifert, Udo
2007-03-09
For a small system like a colloidal particle or a single biomolecule embedded in a heat bath, the optimal protocol of an external control parameter minimizes the mean work required to drive the system from one given equilibrium state to another in a finite time. In general, this optimal protocol obeys an integro-differential equation. Explicit solutions both for a moving laser trap and a time-dependent strength of such a trap show finite jumps of the optimal protocol to be typical both at the beginning and at the end of the process.
NASA Technical Reports Server (NTRS)
Woolley, R. D.; Werking, R. D.
1973-01-01
An original technique for determining the optimal magnetic torque strategy for control of the attitude of spin stabilized spacecraft is presented. By employing Lagrange multipliers and the Calculus of Variations, optimal control equations are derived which define minimum time and minimum energy attitude maneuvers. Computer program algorithms to numerically solve these optimal control equations are also described. The performance of this technique is compared with a commonly employed planning method.
NASA Astrophysics Data System (ADS)
Razak, Khamarrul Azahari; Santangelo, Michele; Van Westen, Cees J.; Straatsma, Menno W.; de Jong, Steven M.
2013-05-01
Landslide inventory maps are fundamental for assessing landslide susceptibility, hazard, and risk. In tropical mountainous environments, mapping landslides is difficult as rapid and dense vegetation growth obscures landslides soon after their occurrence. Airborne laser scanning (ALS) data have been used to construct the digital terrain model (DTM) under dense vegetation, but its reliability for landslide recognition in the tropics remains surprisingly unknown. This study evaluates the suitability of ALS for generating an optimal DTM for mapping landslides in the Cameron Highlands, Malaysia. For the bare-earth extraction, we used hierarchical robust filtering algorithm and a parameterization with three sequential filtering steps. After each filtering step, four interpolations techniques were applied, namely: (i) the linear prediction derived from the SCOP++ (SCP), (ii) the inverse distance weighting (IDW), (iii) the natural neighbor (NEN) and (iv) the topo-to-raster (T2R). We assessed the quality of 12 DTMs in two ways: (1) with respect to 448 field-measured terrain heights and (2) based on the interpretability of landslides. The lowest root-mean-square error (RMSE) was 0.89 m across the landscape using three filtering steps and linear prediction as interpolation method. However, we found that a less stringent DTM filtering unveiled more diagnostic micro-morphological features, but also retained some of vegetation. Hence, a combination of filtering steps is required for optimal landslide interpretation, especially in forested mountainous areas. IDW was favored as the interpolation technique because it combined computational times more reasonably without adding artifacts to the DTM than T2R and NEN, which performed relatively well in the first and second filtering steps, respectively. The laser point density and the resulting ground point density after filtering are key parameters for producing a DTM applicable to landslide identification. The results showed that the
Optimal Control Modification for Time-Scale Separated Systems
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2012-01-01
Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. A model matching conditions in the transformed time coordinate results in an increase in the actuator command that effectively compensate for the slow actuator dynamics. Simulations demonstrate effectiveness of the method.
Time-optimal control of the magnetically levitated photolithography platen
Redmond, J.; Tucker, S.
1995-01-01
This report summarizes two approaches to time-optimal control of a nonlinear magnetically levitated platen. The system of interest is a candidate technology for next-generation photolithography machines used in the manufacture of integrated circuits. The dynamics and the variable peak control force of the electro-magnetic actuators preclude the direct application of classical time-optimal control methodologies for determining optimal rest-to-rest maneuver strategies. Therefore, this study explores alternate approaches using a previously developed computer simulation. In the first approach, conservative estimates of the available control forces are used to generate suboptimal switching curves. In the second approach, exact solutions are determined iteratively and used as a training set for an artificial neural network. The trained network provides optimal actuator switching times that incorporate the full nonlinearities of the magnetic levitation actuators. Sample problems illustrate the effectiveness of these techniques as compared to traditional proportional-derivative control.
A Photoacoustic Imaging System with Optimized Real-Time Parallel Reconstruction
NASA Astrophysics Data System (ADS)
Feng, Ting; Yuan, Jie; Yu, Yao; Zhou, Yu; Xu, Guan
2013-10-01
Biomedical photoacoustic tomography (PAT) provides anatomical, functional, metabolic, molecular, and genetic contrasts of vasculature, hemodynamics, oxygen metabolism, biomarkers, and gene expression. These attributes bring PAT to a wide variety of applications in clinical medicine and preclinical research. We report the development of a real-time PAT imaging system, which integrates signal scanning, image reconstruction and displaying photoacoustic images in real time. An optimized back projection algorithm for PAT imaging is proposed and tested on a latest graphics process unit based card. The whole system is built and tested in an experiment for monitoring moving blood events to validate the real-time performance of this system to image moving events.
NASA Astrophysics Data System (ADS)
Qiu, Jiawei; Xia, Haiyun; Dou, Xiankang; Shangguan, Mingjia; Wang, Chong; Zhang, Yunpeng
2016-08-01
Although the optimization of a static Fabry-Perot interferometer (FPI)-used as a Doppler shift discriminator in wind lidar-has been proposed, it cannot be applied to the scanning FPI used in the high-spectral resolution lidar for temperature detection. After a comparison, the optimal scanning implementation is chosen and a new optimization scheme is proposed. The free spectral range (FSR) of the FPI is determined by the width of the Rayleigh spectrum. Then, for analytical purposes, the transmission of Rayleigh backscattering through an FPI is simplified to be a superposition of a Gaussian function and a constant background. The maximum likelihood estimation and the Cramer-Rao bound theory are used to derive an analytic expression of the temperature error. Thus, the effective reflectance of the FPI can be optimized. Finally, assuming known atmospheric temperature-pressure-density profiles, backscattering raw signals are simulated using the optimized parameters of the FPI and some other key system parameters of our existing lidar system. Comparisons between the assumed and retrieved temperature profiles revealed that error <2 K can be achieved in the altitude range of 15 to 40 km, even with the disturbance of aerosol contamination.
NASA Astrophysics Data System (ADS)
Laslandes, Marie; Salas, Matthias; Hitzenberger, Christoph K.; Pircher, Michael
2017-02-01
We present the optimization of an adaptive optics loop for retinal imaging. Generally, the wave-front is overdetermined compared to the number of corrector elements. The sampling of the sensor can be reduced while maintaining an efficient correction, leading to higher sensitivity, faster correction and larger dynamic range. An analytical model was developed to characterize the link between number of actuators, number of micro-lenses and correction performance. The optimized correction loop was introduced into a scanning laser ophthalmoscope. In vivo images of foveal photoreceptors were recorded and the obtained image quality is equivalent to the state of the art in retinal AO-imaging.
Toward real-time en route air traffic control optimization
NASA Astrophysics Data System (ADS)
Jardin, Matthew Robert
The increase in air traffic along the existing jet route structure has led to inefficiencies and frequent congestion in en route airspace. Analysis of air-traffic data suggests that direct operating costs might be reduced by about 4.5%, or $500 million per year, if aircraft were permitted to fly optimal wind routes instead of the structured routes allowed today. To enable aircraft to fly along unstructured optimal routes safely, automation is required to aid air-traffic controllers. This requires the global solution for conflict-free optimal routes for many aircraft in real time. The constraint that all aircraft must maintain adequate separation from one another results in a greater-than-exponential increase in the complexity of the multi-aircraft optimization problem. The main challenges addressed in this dissertation are in the areas of optimal wind routing, computationally efficient aircraft conflict detection, and efficient conflict resolution. A core contribution is the derivation of an analytical neighboring optimal control solution for the efficient computation of optimal wind routes. The neighboring optimal control algorithm uses an order of magnitude less computational effort to achieve the same performance as existing algorithms, and is easily extended to compute near-optimal conflict free trajectories. A conflict detection algorithm as been developed which eliminates the need to compute inter-aircraft distances. Simulation results are presented to demonstrate an integrated horizontal route-optimization and conflict-resolution method for air-traffic control. Conflict-free solutions have been computed for roughly double the current-day traffic density for a single flight level (over 600 aircraft) in less than 1 minute on a 450-MHz UNIX work station. This corresponds to a computation rate of better than 25 optimal routes per second. Extrapolation of the two-dimensional results to the multi-flight-level domain suggests that the complete solution for optimal
Optimal regulation in systems with stochastic time sampling
NASA Technical Reports Server (NTRS)
Montgomery, R. C.; Lee, P. S.
1980-01-01
An optimal control theory that accounts for stochastic variable time sampling in a distributed microprocessor based flight control system is presented. The theory is developed by using a linear process model for the airplane dynamics and the information distribution process is modeled as a variable time increment process where, at the time that information is supplied to the control effectors, the control effectors know the time of the next information update only in a stochastic sense. An optimal control problem is formulated and solved for the control law that minimizes the expected value of a quadratic cost function. The optimal cost obtained with a variable time increment Markov information update process where the control effectors know only the past information update intervals and the Markov transition mechanism is almost identical to that obtained with a known and uniform information update interval.
Audiovisual biofeedback improves image quality and reduces scan time for respiratory-gated 3D MRI
NASA Astrophysics Data System (ADS)
Lee, D.; Greer, P. B.; Arm, J.; Keall, P.; Kim, T.
2014-03-01
The purpose of this study was to test the hypothesis that audiovisual (AV) biofeedback can improve image quality and reduce scan time for respiratory-gated 3D thoracic MRI. For five healthy human subjects respiratory motion guidance in MR scans was provided using an AV biofeedback system, utilizing real-time respiratory motion signals. To investigate the improvement of respiratory-gated 3D MR images between free breathing (FB) and AV biofeedback (AV), each subject underwent two imaging sessions. Respiratory-related motion artifacts and imaging time were qualitatively evaluated in addition to the reproducibility of external (abdominal) motion. In the results, 3D MR images in AV biofeedback showed more anatomic information such as a clear distinction of diaphragm, lung lobes and sharper organ boundaries. The scan time was reduced from 401±215 s in FB to 334±94 s in AV (p-value 0.36). The root mean square variation of the displacement and period of the abdominal motion was reduced from 0.4±0.22 cm and 2.8±2.5 s in FB to 0.1±0.15 cm and 0.9±1.3 s in AV (p-value of displacement <0.01 and p-value of period 0.12). This study demonstrated that audiovisual biofeedback improves image quality and reduces scan time for respiratory-gated 3D MRI. These results suggest that AV biofeedback has the potential to be a useful motion management tool in medical imaging and radiation therapy procedures.
Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients
NASA Astrophysics Data System (ADS)
Grosenick, Dirk; Moesta, K. Thomas; Möller, Michael; Mucke, Jörg; Wabnitz, Heidrun; Gebauer, Bernd; Stroszczynski, Christian; Wassermann, Bernhard; Schlag, Peter M.; Rinneberg, Herbert
2005-06-01
Using a triple wavelength (670 nm, 785 nm, 843/884 nm) scanning laser-pulse mammograph we recorded craniocaudal and mediolateral projection optical mammograms of 154 patients, suspected of having breast cancer. From distributions of times of flight of photons recorded at typically 1000-2000 scan positions, optical mammograms were derived displaying (inverse) photon counts in selected time windows, absorption and reduced scattering coefficients or total haemoglobin concentration and blood oxygen saturation. Optical mammograms were analysed by comparing them with x-ray and MR mammograms, including results of histopathology, attributing a subjective visibility score to each tumour assessed. Out of 102 histologically confirmed tumours, 72 tumours were detected retrospectively in both optical projection mammograms, in addition 20 cases in one projection only, whereas 10 tumours were not detectable in any projection. Tumour contrast and contrast-to-noise ratios of mammograms of the same breast, but derived from measured DTOFs by various methods were quantitatively compared. On average, inverse photon counts in selected time windows, including total photon counts, provide highest tumour contrast and contrast-to-noise ratios. Based on the results of the present study we developed a multi-wavelength, multi-projection scanning time-domain optical mammograph with improved spectral and spatial (angular) sampling, that allows us to record entire mammograms simultaneously at various offsets between the transmitting fibre and receiving fibre bundle and provides first results for illustration.
Continuously scanning time-correlated single-photon-counting single-pixel 3-D lidar
NASA Astrophysics Data System (ADS)
Henriksson, Markus; Larsson, Håkan; Grönwall, Christina; Tolt, Gustav
2017-03-01
Time-correlated single-photon-counting (TCSPC) lidar provides very high resolution range measurements. This makes the technology interesting for three-dimensional imaging of complex scenes with targets behind foliage or other obscurations. TCSPC is a statistical method that demands integration of multiple measurements toward the same area to resolve objects at different distances within the instantaneous field-of-view. Point-by-point scanning will demand significant overhead for the movement, increasing the measurement time. Here, the effect of continuously scanning the scene row-by-row is investigated and signal processing methods to transform this into low-noise point clouds are described. The methods are illustrated using measurements of a characterization target and an oak and hazel copse. Steps between different surfaces of less than 5 cm in range are resolved as two surfaces.
Sub-nanosecond time-resolved near-field scanning magneto-optical microscope.
Rudge, J; Xu, H; Kolthammer, J; Hong, Y K; Choi, B C
2015-02-01
We report on the development of a new magnetic microscope, time-resolved near-field scanning magneto-optical microscope, which combines a near-field scanning optical microscope and magneto-optical contrast. By taking advantage of the high temporal resolution of time-resolved Kerr microscope and the sub-wavelength spatial resolution of a near-field microscope, we achieved a temporal resolution of ∼50 ps and a spatial resolution of <100 nm. In order to demonstrate the spatiotemporal magnetic imaging capability of this microscope, the magnetic field pulse induced gyrotropic vortex dynamics occurring in 1 μm diameter, 20 nm thick CoFeB circular disks has been investigated. The microscope provides sub-wavelength resolution magnetic images of the gyrotropic motion of the vortex core at a resonance frequency of ∼240 MHz.
NASA Astrophysics Data System (ADS)
Kurosu, Keita; Das, Indra J.; Moskvin, Vadim P.
2016-01-01
Spot scanning, owing to its superior dose-shaping capability, provides unsurpassed dose conformity, in particular for complex targets. However, the robustness of the delivered dose distribution and prescription has to be verified. Monte Carlo (MC) simulation has the potential to generate significant advantages for high-precise particle therapy, especially for medium containing inhomogeneities. However, the inherent choice of computational parameters in MC simulation codes of GATE, PHITS and FLUKA that is observed for uniform scanning proton beam needs to be evaluated. This means that the relationship between the effect of input parameters and the calculation results should be carefully scrutinized. The objective of this study was, therefore, to determine the optimal parameters for the spot scanning proton beam for both GATE and PHITS codes by using data from FLUKA simulation as a reference. The proton beam scanning system of the Indiana University Health Proton Therapy Center was modeled in FLUKA, and the geometry was subsequently and identically transferred to GATE and PHITS. Although the beam transport is managed by spot scanning system, the spot location is always set at the center of a water phantom of 600 × 600 × 300 mm3, which is placed after the treatment nozzle. The percentage depth dose (PDD) is computed along the central axis using 0.5 × 0.5 × 0.5 mm3 voxels in the water phantom. The PDDs and the proton ranges obtained with several computational parameters are then compared to those of FLUKA, and optimal parameters are determined from the accuracy of the proton range, suppressed dose deviation, and computational time minimization. Our results indicate that the optimized parameters are different from those for uniform scanning, suggesting that the gold standard for setting computational parameters for any proton therapy application cannot be determined consistently since the impact of setting parameters depends on the proton irradiation technique. We
A non-contact time-domain scanning brain imaging system: first in-vivo results
NASA Astrophysics Data System (ADS)
Mazurenka, M.; Di Sieno, L.; Boso, G.; Contini, D.; Pifferi, A.; Dalla Mora, A.; Tosi, A.; Wabnitz, H.; Macdonald, R.
2013-06-01
We present results of first in-vivo tests of an optical non-contact scanning imaging system, intended to study oxidative metabolism related processes in biological tissue by means of time-resolved near-infrared spectroscopy. Our method is a novel realization of the short source-detector separation approach and based on a fast-gated single-photon avalanche diode to detect late photons only. The scanning system is built in quasi-confocal configuration and utilizes polarizationsensitive detection. It scans an area of 4×4 cm2, recording images with 32×32 pixels, thus creating a high density of source-detector pairs. To test the system we performed a range of in vivo measurements of hemodynamic changes in several types of biological tissues, i.e. skin (Valsalva maneuver), muscle (venous and arterial occlusions) and brain (motor and cognitive tasks). Task-related changes in hemoglobin concentrations were clearly detected in skin and muscle. The brain activation shows weaker, but yet detectable changes. These changes were localized in pixels near the motor cortex area (C3). However, it was found that even very short hair substantially impairs the measurement. Thus the applicability of the scanner is limited to hairless parts of body. The results of our first in-vivo tests prove the feasibility of non-contact scanning imaging as a first step towards development of a prototype for biological tissue imaging for various medical applications.
Time-limited optimal dynamics beyond the quantum speed limit
NASA Astrophysics Data System (ADS)
Gajdacz, Miroslav; Das, Kunal K.; Arlt, Jan; Sherson, Jacob F.; Opatrný, Tomáš
2015-12-01
The quantum speed limit sets the minimum time required to transfer a quantum system completely into a given target state. At shorter times the higher operation speed results in a loss of fidelity. Here we quantify the trade-off between the fidelity and the duration in a system driven by a time-varying control. The problem is addressed in the framework of Hilbert space geometry offering an intuitive interpretation of optimal control algorithms. This approach leads to a necessary criterion for control optimality applicable as a measure of algorithm convergence. The time fidelity trade-off expressed in terms of the direct Hilbert velocity provides a robust prediction of the quantum speed limit and allows one to adapt the control optimization such that it yields a predefined fidelity. The results are verified numerically in a multilevel system with a constrained Hamiltonian and a classification scheme for the control sequences is proposed based on their optimizability.
Kinematically optimal robot placement for minimum time coordinated motion
Feddema, J.T.
1995-10-01
This paper describes an algorithm for determining the optimal placement of a robotic manipulator within a workcell for minimum time coordinated motion. The algorithm uses a simple principle of coordinated motion to estimate the time of a joint interpolated motion. Specifically, the coordinated motion profile is limited by the slowest axis. Two and six degree of freedom (DOF) examples are presented. In experimental tests on a FANUC S-800 arm, the optimal placement of the robot can improve cycle time of a robotic operation by as much as 25%. In high volume processes where the robot motion is currently the limiting factor, this increased throughput can result in substantial cost savings.
Kinematically optimal robot placement for minimum time coordinated motion
NASA Astrophysics Data System (ADS)
Feddema, John T.
1995-11-01
This paper describes an algorithm for determining the optimal placement of a robotic manipulator within a workcell for minimum time coordinated motion. The algorithm uses a simple principle of coordinated motion to estimate the time of a joint interpolated motion. Specifically, the coordinated motion profile is limited by the slowest axis. Two and six degrees of freedom examples are presented. In experimental tests on a FANUC S-800 arm, the optimal placement of the robot can improve the cycle time of a robotic operation by as much as 25%. In high volume processes where the robot motion is currently the limiting factor, this increased throughput can result in substantial cost savings.
Time dependent optimal switching controls in online selling models
Bradonjic, Milan; Cohen, Albert
2010-01-01
We present a method to incorporate dishonesty in online selling via a stochastic optimal control problem. In our framework, the seller wishes to maximize her average wealth level W at a fixed time T of her choosing. The corresponding Hamilton-Jacobi-Bellmann (HJB) equation is analyzed for a basic case. For more general models, the admissible control set is restricted to a jump process that switches between extreme values. We propose a new approach, where the optimal control problem is reduced to a multivariable optimization problem.
Methodology for Determining Optimal Exposure Parameters of a Hyperspectral Scanning Sensor
NASA Astrophysics Data System (ADS)
Walczykowski, P.; Siok, K.; Jenerowicz, A.
2016-06-01
The purpose of the presented research was to establish a methodology that would allow the registration of hyperspectral images with a defined spatial resolution on a horizontal plane. The results obtained within this research could then be used to establish the optimum sensor and flight parameters for collecting aerial imagery data using an UAV or other aerial system. The methodology is based on an user-selected optimal camera exposure parameters (i.e. time, gain value) and flight parameters (i.e. altitude, velocity). A push-broom hyperspectral imager- the Headwall MicroHyperspec A-series VNIR was used to conduct this research. The measurement station consisted of the following equipment: a hyperspectral camera MicroHyperspec A-series VNIR, a personal computer with HyperSpec III software, a slider system which guaranteed the stable motion of the sensor system, a white reference panel and a Siemens star, which was used to evaluate the spatial resolution. Hyperspectral images were recorded at different distances between the sensor and the target- from 5m to 100m. During the registration process of each acquired image, many exposure parameters were changed, such as: the aperture value, exposure time and speed of the camera's movement on the slider. Based on all of the registered hyperspectral images, some dependencies between chosen parameters had been developed: - the Ground Sampling Distance - GSD and the distance between the sensor and the target, - the speed of the camera and the distance between the sensor and the target, - the exposure time and the gain value, - the Density Number and the gain value. The developed methodology allowed us to determine the speed and the altitude of an unmanned aerial vehicle on which the sensor would be mounted, ensuring that the registered hyperspectral images have the required spatial resolution.
An Optimization Framework for Dynamic, Distributed Real-Time Systems
NASA Technical Reports Server (NTRS)
Eckert, Klaus; Juedes, David; Welch, Lonnie; Chelberg, David; Bruggerman, Carl; Drews, Frank; Fleeman, David; Parrott, David; Pfarr, Barbara
2003-01-01
Abstract. This paper presents a model that is useful for developing resource allocation algorithms for distributed real-time systems .that operate in dynamic environments. Interesting aspects of the model include dynamic environments, utility and service levels, which provide a means for graceful degradation in resource-constrained situations and support optimization of the allocation of resources. The paper also provides an allocation algorithm that illustrates how to use the model for producing feasible, optimal resource allocations.
Combining phase images from array coils using a short echo time reference scan (COMPOSER)
Dymerska, Barbara; Bogner, Wolfgang; Barth, Markus; Zaric, Olgica; Goluch, Sigrun; Grabner, Günther; Deligianni, Xeni; Bieri, Oliver; Trattnig, Siegfried
2015-01-01
Purpose To develop a simple method for combining phase images from multichannel coils that does not require a reference coil and does not entail phase unwrapping, fitting or iterative procedures. Theory and Methods At very short echo time, the phase measured with each coil of an array approximates to the phase offset to which the image from that coil is subject. Subtracting this information from the phase of the scan of interest matches the phases from the coils, allowing them to be combined. The effectiveness of this approach is quantified in the brain, calf and breast with coils of diverse designs. Results The quality of phase matching between coil elements was close to 100% with all coils assessed even in regions of low signal. This method of phase combination was similar in effectiveness to the Roemer method (which needs a reference coil) and was superior to the rival reference‐coil‐free approaches tested. Conclusion The proposed approach—COMbining Phase data using a Short Echo‐time Reference scan (COMPOSER)—is a simple and effective approach to reconstructing phase images from multichannel coils. It requires little additional scan time, is compatible with parallel imaging and is applicable to all coils, independent of configuration. Magn Reson Med 77:318–327, 2017. © 2015 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine PMID:26712454
Line-scan hyperspectral imaging for real-time poultry fecal detection
NASA Astrophysics Data System (ADS)
Park, Bosoon; Yoon, Seung-Chul; Windham, William R.; Lawrence, Kurt C.; Heitschmidt, G. W.; Kim, Moon S.; Chao, Kaunglin
2010-04-01
The ARS multispectral imaging system with three-band common aperture camera was able to inspect fecal contaminants in real-time mode during poultry processing. Recent study has demonstrated several image processing methods including binning, cuticle removal filter, median filter, and morphological analysis in real-time mode could remove false positive errors. The ARS research groups and their industry partner are now merging the fecal detection and systemically disease detection systems onto a common platform using line-scan hyperspectral imaging system. This system will aid in commercialization by creating one hyperspectral imaging system with user-defined wavelengths that can be installed in different locations of the processing line to solve significant food safety problems. Therefore, this research demonstrated the feasibility of line-scan hyperspectral imaging system in terms of processing speed and detection accuracy for a real-time, on-line fecal detection at current processing speed (140 birds per minute) of commercial poultry plant. The newly developed line-scan hyperspectral imaging system could improve Food Safety Inspection Service (FSIS)'s poultry safety inspection program significantly.
Almutairi, Abdulrahman; Sun, Zhonghua; Al Safran, Zakariya; Poovathumkadavi, Abduljaleel; Albader, Suha; Ifdailat, Husam
2015-01-01
Objective: To identify the optimal dual-energy computed tomography (DECT) scanning protocol for peripheral arterial stents while achieving a low radiation dose, while still maintaining diagnostic image quality, as determined by an in vitro phantom study. Methods: Dual-energy scans in monochromatic spectral imaging mode were performed on a peripheral arterial phantom with use of three gemstone spectral imaging (GSI) protocols, three pitch values, and four kiloelectron volts (keV) ranges. A total of 15 stents of different sizes, materials, and designs were deployed in the phantom. Image noise, the signal-to-noise ratio (SNR), different levels of adaptive statistical iterative reconstruction (ASIR), and the four levels of monochromatic energy for DECT imaging of peripheral arterial stents were measured and compared to determine the optimal protocols. Results: A total of 36 scans with 180 datasets were reconstructed from a combination of different protocols. There was a significant reduction of image noise with a higher SNR from monochromatic energy images between 65 and 70 keV in all investigated preset GSI protocols (p < 0.05). In addition, significant effects were found from the main effect analysis for these factors: GSI, pitch, and keV (p = 0.001). In contrast, there was significant interaction on the unstented area between GSI and ASIR (p = 0.015) and a very high significant difference between keV and ASIR (p < 0.001). A radiation dose reduction of 50% was achieved. Conclusions: The optimal scanning protocol and energy level in the phantom study were GSI-48, pitch value 0.984, and 65 keV, which resulted in lower image noise and a lower radiation dose, but with acceptable diagnostic images. PMID:26006234
Ahmadi, Katayoon; Fouladi Nia, Babak
2016-01-01
Automatic segmentation of medical CT scan images is one of the most challenging fields in digital image processing. The goal of this paper is to discuss the automatic segmentation of CT scan images to detect and separate vessels in the liver. The segmentation of liver vessels is very important in the liver surgery planning and identifying the structure of vessels and their relationship to tumors. Fuzzy C-means (FCM) method has already been proposed for segmentation of liver vessels. Due to classical optimization process, this method suffers lack of sensitivity to the initial values of class centers and segmentation of local minima. In this article, a method based on FCM in conjunction with genetic algorithms (GA) is applied for segmentation of liver's blood vessels. This method was simulated and validated using 20 CT scan images of the liver. The results showed that the accuracy, sensitivity, specificity, and CPU time of new method in comparison with FCM algorithm reaching up to 91%, 83.62, 94.11%, and 27.17 were achieved, respectively. Moreover, selection of optimal and robust parameters in the initial step led to rapid convergence of the proposed method. The outcome of this research assists medical teams in estimating disease progress and selecting proper treatments. PMID:28044090
Ahmadi, Katayoon; Karimi, Abbas; Fouladi Nia, Babak
2016-01-01
Automatic segmentation of medical CT scan images is one of the most challenging fields in digital image processing. The goal of this paper is to discuss the automatic segmentation of CT scan images to detect and separate vessels in the liver. The segmentation of liver vessels is very important in the liver surgery planning and identifying the structure of vessels and their relationship to tumors. Fuzzy C-means (FCM) method has already been proposed for segmentation of liver vessels. Due to classical optimization process, this method suffers lack of sensitivity to the initial values of class centers and segmentation of local minima. In this article, a method based on FCM in conjunction with genetic algorithms (GA) is applied for segmentation of liver's blood vessels. This method was simulated and validated using 20 CT scan images of the liver. The results showed that the accuracy, sensitivity, specificity, and CPU time of new method in comparison with FCM algorithm reaching up to 91%, 83.62, 94.11%, and 27.17 were achieved, respectively. Moreover, selection of optimal and robust parameters in the initial step led to rapid convergence of the proposed method. The outcome of this research assists medical teams in estimating disease progress and selecting proper treatments.
TRIASSIC: the Time-Resolved Industrial Alpha-Source Scanning Induced Current microscope
NASA Astrophysics Data System (ADS)
Pallone, Arthur
Time-resolved ion beam induced current (TRIBIC) microscopy yields useful information such as carrier mobility and lifetimes in semiconductors and defect locations in devices; however, traditional TRIBIC uses large, expensive particle accelerators that require specialized training to operate and maintain. The time-resolved industrial alpha-source scanning induced current (TRIASSIC) microscope transforms TRIBIC by replacing the particle accelerator facility with an affordable, tabletop instrument suitable for use in research and education at smaller colleges and universities. I will discuss the development of, successes with, setbacks to and future directions for TRIASSIC.
NASA Astrophysics Data System (ADS)
Yabushita, Atsushi; Kao, Chih-Hsien; Lee, Yu-Hsien; Kobayashi, Takayoshi
2015-07-01
Ultrafast dynamics is generally studied by pump-probe method with laser pulse, which scans optical delay by motorized stage step by step. Using ultrashort laser pulse shorter than typical molecular vibration periods, the pump-probe measurement can study both of electronic dynamics and vibration dynamics simultaneously. The probe wavelength dependence of the ultrafast electronic and vibration dynamics (UEVD) helps us to distinguish the signal contributions from the dynamics of the electronic ground state and that of the electronic excited states, which elucidates primary reaction mechanism after photoexcitation. Meanwhile, the measurement time of UEVD spectroscopy takes too long time to be used in realistic application. In our previous work, we have developed multi-channel lock-in amplifying (MLA) detectors to study UEVD at all probe wavelengths simultaneously, and synchronized it with laser and fast-scan delay stage to scan the data in five seconds. It enabled us to study UEVD spectroscopy even for photo-fragile materials. However, the home-made MLA detectors required for the measurement is expensive and massive in size and weight, thus not suitable for general researchers in the field of ultrafast time-resolved spectroscopy. In the present work, we have developed a table-top synchronized fast-scan femtosecond time-resolved spectroscopy system using single shot scan line CCD. This system measures time-resolved trace at all probe wavelengths simultaneously in five seconds. The CCD-based fast-scan time-resolved spectroscopy system enables us to study ultrafast dynamics of various materials even biomaterials, which have been thought to be hard or even impossible to be studied in previous methods.
NASA Astrophysics Data System (ADS)
Glasberg, S.; Farjon, D.; Ankry, M.; Eisenbach, S.; Shnapp, M.; Altman, A.
2007-03-01
We have analyzed 144 ECG wave-forms that were taken during cardiac CT exams to determine in retrospect the optimized timing for updating the gantry rotation-time. A score was defined, according to the number of heart beats during X-ray on, which fulfill the temporal resolution (tR)condition, tR<100mSec. The temporal resolution calculation was based on dual-cycle π/2 sector segmentation, where the data required for any image is collected during two heart cycle. The results yield a significant improvement of the tR score with the rotation-time update method relative to using a fixed minimal rotation-time of the gantry. The analysis suggest that full heart scan with better than 100mSec temporal resolution per slice can routinely be achieved in 128 slices MSCT scanner by performing gantry rotation-time -update after patient starts its breath hold. At these conditions the required breath-hold time is expected to be less than 15 seconds.
Near-time-optimal control for quantum systems
NASA Astrophysics Data System (ADS)
Chen, Qi-Ming; Wu, Re-Bing; Zhang, Tian-Ming; Rabitz, Herschel
2015-12-01
For a quantum system controlled by an external field, time-optimal control is referred to as the shortest-time-duration control that can still permit maximizing an objective function J , which is especially a desirable goal for engineering quantum dynamics against decoherence effects. However, since rigorously finding a time-optimal control is usually very difficult and in many circumstances the control is only required to be sufficiently short and precise, one can design algorithms seeking such suboptimal control solutions for much reduced computational effort. In this paper, we propose an iterative algorithm for finding near-time-optimal control in a high level set (i.e., the set of controls that achieves the same value of J ) that can be arbitrarily close to the global optima. The algorithm proceeds seeking to decrease the time duration T while the value of J remains invariant, until J leaves the level-set value; the deviation of J due to numerical errors is corrected by gradient climbing that brings the search back to the level-set J value. Since the level set is very close to the maximum value of J , the resulting control solution is nearly time optimal with manageable precision. Numerical examples demonstrate the effectiveness and general applicability of the algorithm.
Real-time 3-D ultrasound scan conversion using a multicore processor.
Zhuang, Bo; Shamdasani, Vijay; Sikdar, Siddhartha; Managuli, Ravi; Kim, Yongmin
2009-07-01
Real-time 3-D ultrasound scan conversion (SC) in software has not been practical due to its high computation and I/O data handling requirements. In this paper, we describe software-based 3-D SC with high volume rates using a multicore processor, Cell. We have implemented both 3-D SC approaches: 1) the separable 3-D SC where two 2-D coordinate transformations in orthogonal planes are performed in sequence and 2) the direct 3-D SC where the coordinate transformation is directly handled in 3-D. One Cell processor can scan-convert a 192 x 192 x 192 16-bit volume at 87.8 volumes/s with the separable 3-D SC algorithm and 28 volumes/s with the direct 3-D SC algorithm.
Time-resolved step-scan infrared imaging system utilizing a linear array detector.
Sugiyama, Hiroshi; Koshoubu, Jun; Kashiwabara, Seiichi; Nagoshi, Toshiyuki; Larsen, Richard A; Akao, Kenichi
2008-01-01
A time-resolved infrared (IR) imaging system combined with a multichannel IR microscope, which utilizes a 16 channel linear array (LA) detector, and step-scan Fourier transform infrared (FT-IR) microscope was developed. The LA detector integrates a readout circuit on each detector element, so the detected signals can be read simultaneously. Thus, this system can perform high speed imaging using the step-scan method, similar to a single channel detector. To verify the capabilities of this system, a reflective sample was examined whose position was altered using a piezo actuator activated by an alternating voltage. In addition, the localization of relaxation dynamics for the liquid crystal (LC) molecules in an LC cell under oscillating electric field conditions was detected by this system.
Linear time near-optimal planning in the blocks world
Slaney, J.; Thiebaux, S.
1996-12-31
This paper reports an analysis of near-optimal Blocks World planning. Various methods are clarified, and their time complexity is shown to be linear in the number of blocks, which improves their known complexity bounds. The speed of the implemented programs (ten thousand blocks are handled in a second) enables us to make empirical observations on large problems. These suggest that the above methods have very close average performance ratios, and yield a rough upper bound on those ratios well below the worst case of 2. Further, they lead to the conjecture that in the limit the simplest linear time algorithm could be just as good on average as the optimal one.
[Study on optimal harvest time of Erigeron breviscapus].
Yang, Sheng-chao; Zhang, Xue-feng; Zhang, Li-mei; Liu, Li-xian; Yang, Yong-jian; Xiao, Feng-hui
2008-12-01
To ascertain the optimal harvest time of Erigeron breviscapus. The dry matter weight accumulation of different organs in growth process and contents of scutellarin and coffeic acid ester in whole plant of E. breviscapus were determined. The number of leaves per plant, the dried weight of single leaf and dry matter weight of whole plant and different organs reached the highest after seedling 130-140 d. The content of scutellarin gradually decreased with growth period, and sharply decreased after seedling 140 d. The content of coffeic acid ester varied irregularly with growth period. The optimal harvest time of E. breviscapus is in early bloom period after seedling 130 d.
Optimal estimation of recurrence structures from time series
NASA Astrophysics Data System (ADS)
beim Graben, Peter; Sellers, Kristin K.; Fröhlich, Flavio; Hutt, Axel
2016-05-01
Recurrent temporal dynamics is a phenomenon observed frequently in high-dimensional complex systems and its detection is a challenging task. Recurrence quantification analysis utilizing recurrence plots may extract such dynamics, however it still encounters an unsolved pertinent problem: the optimal selection of distance thresholds for estimating the recurrence structure of dynamical systems. The present work proposes a stochastic Markov model for the recurrent dynamics that allows for the analytical derivation of a criterion for the optimal distance threshold. The goodness of fit is assessed by a utility function which assumes a local maximum for that threshold reflecting the optimal estimate of the system's recurrence structure. We validate our approach by means of the nonlinear Lorenz system and its linearized stochastic surrogates. The final application to neurophysiological time series obtained from anesthetized animals illustrates the method and reveals novel dynamic features of the underlying system. We propose the number of optimal recurrence domains as a statistic for classifying an animals' state of consciousness.
A simple approach for predicting time-optimal slew capability
NASA Astrophysics Data System (ADS)
King, Jeffery T.; Karpenko, Mark
2016-03-01
The productivity of space-based imaging satellite sensors to collect images is directly related to the agility of the spacecraft. Increasing the satellite agility, without changing the attitude control hardware, can be accomplished by using optimal control to design shortest-time maneuvers. The performance improvement that can be obtained using optimal control is tied to the specific configuration of the satellite, e.g. mass properties and reaction wheel array geometry. Therefore, it is generally difficult to predict performance without an extensive simulation study. This paper presents a simple idea for estimating the agility enhancement that can be obtained using optimal control without the need to solve any optimal control problems. The approach is based on the concept of the agility envelope, which expresses the capability of a spacecraft in terms of a three-dimensional agility volume. Validation of this new approach is conducted using both simulation and on-orbit data.
A Space–Time Permutation Scan Statistic for Disease Outbreak Detection
2005-01-01
Background The ability to detect disease outbreaks early is important in order to minimize morbidity and mortality through timely implementation of disease prevention and control measures. Many national, state, and local health departments are launching disease surveillance systems with daily analyses of hospital emergency department visits, ambulance dispatch calls, or pharmacy sales for which population-at-risk information is unavailable or irrelevant. Methods and Findings We propose a prospective space–time permutation scan statistic for the early detection of disease outbreaks that uses only case numbers, with no need for population-at-risk data. It makes minimal assumptions about the time, geographical location, or size of the outbreak, and it adjusts for natural purely spatial and purely temporal variation. The new method was evaluated using daily analyses of hospital emergency department visits in New York City. Four of the five strongest signals were likely local precursors to citywide outbreaks due to rotavirus, norovirus, and influenza. The number of false signals was at most modest. Conclusion If such results hold up over longer study times and in other locations, the space–time permutation scan statistic will be an important tool for local and national health departments that are setting up early disease detection surveillance systems. PMID:15719066
Optimal scheduling of multiple sensors in continuous time.
Wu, Xiang; Zhang, Kanjian; Sun, Changyin
2014-05-01
This paper considers an optimal sensor scheduling problem in continuous time. In order to make the model more close to the practical problems, suppose that the following conditions are satisfied: only one sensor may be active at any one time; an admissible sensor schedule is a piecewise constant function with a finite number of switches; and each sensor either doesn't operate or operates for a minimum non-negligible amount of time. However, the switching times are unknown, and the feasible region isn't connected. Thus, it's difficult to solve the problem by conventional optimization techniques. To overcome this difficulty, by combining a binary relaxation, a time-scaling transformation and an exact penalty function, an algorithm is developed for solving this problem. Numerical results show that the algorithm is effective. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hwang, Gwangseok; Chung, Jaehun; Kwon, Ohmyoung
2014-11-01
The application of conventional scanning thermal microscopy (SThM) is severely limited by three major problems: (i) distortion of the measured signal due to heat transfer through the air, (ii) the unknown and variable value of the tip-sample thermal contact resistance, and (iii) perturbation of the sample temperature due to the heat flux through the tip-sample thermal contact. Recently, we proposed null-point scanning thermal microscopy (NP SThM) as a way of overcoming these problems in principle by tracking the thermal equilibrium between the end of the SThM tip and the sample surface. However, in order to obtain high spatial resolution, which is the primary motivation for SThM, NP SThM requires an extremely sensitive SThM probe that can trace the vanishingly small heat flux through the tip-sample nano-thermal contact. Herein, we derive a relation between the spatial resolution and the design parameters of a SThM probe, optimize the thermal and electrical design, and develop a batch-fabrication process. We also quantitatively demonstrate significantly improved sensitivity, lower measurement noise, and higher spatial resolution of the fabricated SThM probes. By utilizing the exceptional performance of these fabricated probes, we show that NP SThM can be used to obtain a quantitative temperature profile with nanoscale resolution independent of the changing tip-sample thermal contact resistance and without perturbation of the sample temperature or distortion due to the heat transfer through the air.
Exploiting Continuous Scanning Laser Doppler Vibrometry in timing belt dynamic characterisation
NASA Astrophysics Data System (ADS)
Chiariotti, P.; Martarelli, M.; Castellini, P.
2017-03-01
Dynamic behaviour of timing belts has always interested the engineering community over the years. Nowadays, there are several numerical methods to predict the dynamics of these systems. However, the tuning of such models by experimental approaches still represents an issue: an accurate characterisation does require a measurement in operating conditions since the belt mounting condition might severely affect its dynamic behaviour. Moreover, since the belt is constantly moving during running conditions, non-contact measurement methods are needed. Laser Doppler Vibrometry (LDV) and imaging techniques do represent valid candidates for this purpose. This paper aims at describing the use of Continuous Scanning LDV (CSLDV) as a tool for the dynamic characterisation of timing belts in IC (Internal Combustion) engines (cylinder head). The high-spatial resolution data that can be collected in short testing time makes CSLDV highly suitable for such application. The measurement on a moving surface, however, represents a challenge for CSLDV. The paper discusses how the belt in-plane speed influences CSLDV signal and how an order-based multi-harmonic excitation might affect the recovery of Operational Deflection Shapes in a CSLDV test. A comparison with a standard Discrete Scanning LDV measurement is also given in order to show that a CSLDV test, if well designed, can indeed provide the same amount of information in a drastically reduced amount of time.
Real Time Optimal Control of Supercapacitor Operation for Frequency Response
Luo, Yusheng; Panwar, Mayank; Mohanpurkar, Manish; Hovsapian, Rob
2016-07-01
Supercapacitors are gaining wider applications in power systems due to fast dynamic response. Utilizing supercapacitors by means of power electronics interfaces for power compensation is a proven effective technique. For applications such as requency restoration if the cost of supercapacitors maintenance as well as the energy loss on the power electronics interfaces are addressed. It is infeasible to use traditional optimization control methods to mitigate the impacts of frequent cycling. This paper proposes a Front End Controller (FEC) using Generalized Predictive Control featuring real time receding optimization. The optimization constraints are based on cost and thermal management to enhance to the utilization efficiency of supercapacitors. A rigorous mathematical derivation is conducted and test results acquired from Digital Real Time Simulator are provided to demonstrate effectiveness.
Mechanically scanned real-time passive millimeter-wave imaging at 94 GHz
NASA Astrophysics Data System (ADS)
Appleby, Roger; Anderton, Rupert N.; Price, Sean; Salmon, Neil A.; Sinclair, Gordon N.; Coward, Peter R.; Barnes, Andrew R.; Munday, P. D.; Moore, M.; Lettington, Alan H.; Robertson, Duncan A.
2003-08-01
It is well known that millimetre wave systems can penetrate poor weather and battlefield obscurants far better than infrared or visible systems. Thermal imaging in this band offers the opportunity for passive surveillance and navigation, allowing military operations in poor weather. We have previously reported a novel real time mechanically scanned passive millimetre wave imager operating at 35GHz and in this paper a 94GHz variant will be described. This 94GHz imager has a field-of-view of 60° x 30° and has diffraction limited performance over the central two thirds of this field-of-view. It is relatively inexpensive because the scene is imaged using a linear array of direct detection receivers and compact folded optics. The receiver array has been constructed using indium phosphide monolithic microwave integrated circuits (MMICs) allowing high gain and low noise figure to be achieved. The compact optics consist of a polarisation sensitive mirror and a Faraday rotator. readily The mirror is constructed from expanded polystyrene, supporting a printed copper grid etched onto a PTFE/glass fibre substrate. These materials are low cost and readily available. The Faraday rotator is made from a commercial grade plasto-ferrite sandwiched between antireflection coatings. The optics produce a conical scan pattern and image processing is used to generate a raster scan pattern and to perform gain and offset corrections.
Real-time trajectory optimization on parallel processors
NASA Technical Reports Server (NTRS)
Psiaki, Mark L.
1993-01-01
A parallel algorithm has been developed for rapidly solving trajectory optimization problems. The goal of the work has been to develop an algorithm that is suitable to do real-time, on-line optimal guidance through repeated solution of a trajectory optimization problem. The algorithm has been developed on an INTEL iPSC/860 message passing parallel processor. It uses a zero-order-hold discretization of a continuous-time problem and solves the resulting nonlinear programming problem using a custom-designed augmented Lagrangian nonlinear programming algorithm. The algorithm achieves parallelism of function, derivative, and search direction calculations through the principle of domain decomposition applied along the time axis. It has been encoded and tested on 3 example problems, the Goddard problem, the acceleration-limited, planar minimum-time to the origin problem, and a National Aerospace Plane minimum-fuel ascent guidance problem. Execution times as fast as 118 sec of wall clock time have been achieved for a 128-stage Goddard problem solved on 32 processors. A 32-stage minimum-time problem has been solved in 151 sec on 32 processors. A 32-stage National Aerospace Plane problem required 2 hours when solved on 32 processors. A speed-up factor of 7.2 has been achieved by using 32-nodes instead of 1-node to solve a 64-stage Goddard problem.
Evaluating cluster alarms: a space-time scan statistic and brain cancer in Los Alamos, New Mexico.
Kulldorff, M; Athas, W F; Feurer, E J; Miller, B A; Key, C R
1998-01-01
OBJECTIVES: This article presents a space-time scan statistic, useful for evaluating space-time cluster alarms, and illustrates the method on a recent brain cancer cluster alarms in Los Alamos, NM. METHODS: The space-time scan statistic accounts for the preselection bias and multiple testing inherent in a cluster alarm. Confounders and time trends can be adjusted for. RESULTS: The observed excess of brain cancer in Los Alamos was not statistically significant. CONCLUSIONS: The space-time scan statistic is useful as a screening tool for evaluating which cluster alarms merit further investigation and which clusters are probably chance occurrences. PMID:9736881
Time optimal control of pendulum-cart system
Turnau, A.; Korytowski, A.
1994-12-31
We consider the synthesis of time optimal control which steers a pendulum hinged to a cart to a given state (e.g., the upright position), starting from arbitrary initial conditions. The control of the pendulum can system has attracted attention of many authors because of its relatively simple structure and at the same time, nontrivial nonlinearity. Various heuristic approaches combined with 1q stabilization in the vicinity of the target state were used to swing the pendulum up to the upright position and to keep it there. However, time-optimality was not achieved. We construct the time optimal control using a sequence of fixed horizon problems in which the norms of terminal states are minimized. The problems with fixed horizons are solved numerically by means of gradient optimization, with gradients determined from the solution of adjoint equations. Due to embedding the synthesis algorithms in the Matlab - Simulink environment, it is possible to track and visualize the control process as well as the results of simulation experiments.
Optimal Expected-Time Algorithms for Closest-Point Problems
1979-03-01
Aho, Hopcroft and UlIman [1974].) Monier [1978] has 3 March 1979 Optimal Expected-Time - 14 - described a related technique that allows a hash table to...170. Monier , L. [1978]. Personal communication of Louis Monler of the Universite de Paris-Sud to J. L. Bentley (June 1978). Preparata, F. P. and Hong
Beam-energy-spread minimization using cell-timing optimization
NASA Astrophysics Data System (ADS)
Rose, C. R.; Ekdahl, C.; Schulze, M.
2012-04-01
Beam energy spread, and related beam motion, increase the difficulty in tuning for multipulse radiographic experiments at the dual-axis radiographic hydrodynamic test facility’s axis-II linear induction accelerator (LIA). In this article, we describe an optimization method to reduce the energy spread by adjusting the timing of the cell voltages (both unloaded and loaded), either advancing or retarding, such that the injector voltage and summed cell voltages in the LIA result in a flatter energy profile. We developed a nonlinear optimization routine which accepts as inputs the 74 cell-voltage, injector voltage, and beam current waveforms. It optimizes cell timing per user-selected groups of cells and outputs timing adjustments, one for each of the selected groups. To verify the theory, we acquired and present data for both unloaded and loaded cell-timing optimizations. For the unloaded cells, the preoptimization baseline energy spread was reduced by 34% and 31% for two shots as compared to baseline. For the loaded-cell case, the measured energy spread was reduced by 49% compared to baseline.
Characterization and optimization of scan speed for tapping-mode atomic force microscopy
NASA Astrophysics Data System (ADS)
Sulchek, T.; Yaralioglu, G. G.; Quate, C. F.; Minne, S. C.
2002-08-01
Increasing the imaging speed of tapping mode atomic force microscopy (AFM) has important practical and scientific applications. The scan speed of tapping-mode AFMs is limited by the speed of the feedback loop that maintains a constant tapping amplitude. This article seeks to illuminate these limits to scanning speed. The limits to the feedback loop are: (1) slow transient response of probe; (2) instability limitations of high-quality factor (Q) systems; (3) feedback actuator bandwidth; (4) error signal saturation; and the (5) rms-to-dc converter. The article will also suggest solutions to mitigate these limitations. These limitations can be addressed through integrating a faster feedback actuator as well as active control of the dynamics of the cantilever.
Yamao, Yoshikazu; Yamakado, Koichiro; Takaki, Haruyuki; Yamada, Tomomi; Murashima, Shuichi; Uraki, Junji; Kodama, Hiroshi; Nagasawa, Naoki; Takeda, Kan
2010-04-01
To evaluate the relationship between radiation doses and lung computed tomographic (CT) fluoroscopic scan parameters and to determine optimal scan parameters for performance of lung interventional radiologic (IR) procedures. The institutional review board approved this prospective study, which included 32 patients with a single lung tumor; written informed consent was obtained. CT fluoroscopic images were obtained with three tube voltages (80,120,135 kV) and three tube currents (10, 20, 30 mA) in each patient. The signal-to-noise ratios (SNRs) and the contrast-to-noise ratios (CNRs) were measured quantitatively. To evaluate the feasibility of performing lung IR procedures, four readers visually scored the image quality. Acceptable CT fluoroscopic images were determined by using agreement of at least three of the four readers. The weighted CT dose index for each CT scan parameter was measured. A piecewise linear regression equation was obtained from the relationship between radiation doses and visual image scores. Both the SNR and the CNR improved as the radiation dose increased, leading to improvement in the image quality. Acceptable image quality was achieved in 94% (30 of 32) of patients when the radiation dose was 1.18 mGy/sec (120 kV, 10 mA) and in all patients when it was greater than 1.48 mGy/sec (135 kV, 10 mA). The piecewise linear curve showed rapid improvement in image quality until the radiation dose increased to 1.48 mGy/sec (135 kV, 10 mA). When the radiation dose was increased greater than 1.48 mGy/sec, improvement in the image quality became more gradual. Results of this study can be used to guide the determination of optimal scan parameters in lung CT fluoroscopy. RSNA, 2010
Real-time optical scanning system for measurement of chest volume changes during anesthesia
NASA Astrophysics Data System (ADS)
Duffy, Neil D.; Drummond, Gordon D.; McGowan, Steve; Dessesard, Pascal
1991-04-01
A low cost real time method of measuring the movement of the ribcage and abdomen during anaesthesia is described. The equipment comprises a scanning light stripe system video pre-processing electronics and a personal computer. Selected chest surface contours are measured at the rate of 2Oms per contour. Linear interpolation is used to provide contour area estimates between contour sample periods to allow chest volume to be calculated at 2Oms intervals. Results using test objects show that the equipment is able to measure volume to an accuracy of beuer than 1 with reproducibility to within 0. 3
2015-05-01
STONE ) Optimization of evacuation time and transportation resource utilization Jean-Denis Caron Bohdan L. Kaluzny Canadian Joint Operations Command OR...Simulation Tool for Optimizing Non-Combatant Evacuation ( STONE ) Optimization of evacuation time and transportation resource utilization Jean-Denis Caron...Combatant Evacuation ( STONE ) analysis toolset to support NEO planning. This Scientific Report documents the STONE optimization component, STONE (Opt
NASA Astrophysics Data System (ADS)
Jing, Zijian; Xu, Minglong; Feng, Bo
2015-02-01
Mirror-scanning mechanisms are a key component in optical systems for diverse applications. However, the applications of existing piezoelectric scanners are limited due to their small angular travels. To overcome this problem, a novel two-axis mirror-scanning mechanism, which consists of a two-axis tip-tilt flexure mechanism and a set of piezoelectric actuators, is proposed in this paper. The focus of this research is on the design, theoretical modeling, and optimization of the piezoelectric-driven mechanism, with the goal of achieving large angular travels in a compact size. The design of the two-axis tip-tilt flexure mechanism is based on two nonuniform beams, which translate the limited linear output displacements of the piezoelectric actuators into large output angles. To exactly predict the angular travels, we built a voltage-angle model that characterizes the relationship between the input voltages to the piezoelectric actuators and the output angles of the piezoelectric-driven mechanism. Using this analytical model, the optimization is performed to improve the angular travels. A prototype of the mirror-scanning mechanism is fabricated based on the optimization results, and experiments are implemented to test the two-axis output angles. The experimental result shows that the angular travels of the scanner achieve more than 50 mrad, and the error between the analytical model and the experiment is about 11%. This error is much smaller than the error for the model built using the previous method because the influence of the stiffness of the mechanical structure on the deformation of the piezoelectric stack is considered in the voltage-angle model.
Cine viability magnetic resonance imaging of the heart without increased scan time.
Hassanein, Azza S; Khalifa, Ayman M; Ibrahim, El-Sayed H
2016-02-01
Cardiac magnetic resonance imaging (MRI) provides information about myocardial morphology, function, and viability from cine, tagged, and late gadolinium enhancement (LGE) images, respectively. While the cine and tagged images are acquired in a time-resolved fashion, the LGE images are acquired at a single timeframe. The purpose of this work is to develop a method for generating cine LGE images without additional scan time. The motion field is extracted from the tagged images, and is then used to guide the deformation of the infarcted region from the acquired LGE image at the acquired timeframe to any other timeframe. Major techniques for motion estimation, including harmonic phase (HARP) and optical flow analysis, are tested in this work for motion estimation. The proposed method is tested on numerical phantom and images from four human subjects. The generated cine LGE images showed both viability and wall motion information in the same set of images without additional scan time or image misregistration problems. The band-pass optical flow analysis resulted in the most accurate motion estimation compared to other methods, especially HARP, which fails to track points at the myocardial boundary. Infarct transmurality from the generated images showed good agreement with myocardial strain, and wall thickening showed good agreement with that measured from conventional cine images. In conclusion, the developed technique allows for generating cine LGE images that enable simultaneous display of wall motion and viability information. The generated images could be useful for estimating myocardial contractility reserve and for treatment prognosis.
NASA Astrophysics Data System (ADS)
Wen-Quan, Liu; Yuan-Fu, Lu; Guo-Hua, Jiao; Xian-Feng, Chen; Zhi-Sheng, Zhou; Rong-Bin, She; Jin-Ying, Li; Si-Hai, Chen; Yu-Ming, Dong; Jian-Cheng, Lv
2016-06-01
Spectroscopic measurements and terahertz imaging of the cornea are carried out by using a rapid scanning terahertz time domain spectroscopy (THz-TDS) system. A voice coil motor stage based optical delay line (VCM-ODL) is developed to provide a rather simple and robust structure with both the high scanning speed and the large delay length. The developed system is used for THz spectroscopic measurements and imaging of the corneal tissue with different amounts of water content, and the measurement results show the consistence with the reported results, in which the measurement time using VCM-ODL is a factor of 360 shorter than the traditional motorized optical delay line (MDL). With reducing the water content a monotonic decrease of the complex permittivity of the cornea is observed. The two-term Debye relaxation model is employed to explain our experimental results, revealing that the fast relaxation time of a dehydrated cornea is much larger than that of a hydrated cornea and its dielectric behavior can be affected by the presence of the biological macromolecules. These results demonstrate that our THz spectrometer may be a promising candidate for tissue hydration sensing and practical application of THz technology. Project supported by the National Natural Science Foundation of China (Grant No. 61205101), the Shenzhen Municipal Research Foundation, China (Grant Nos. GJHZ201404171134305 and JCYJ20140417113130693), and the Marie Curie Actions-International Research Staff Exchange Scheme (IRSES) (Grant No. FP7 PIRSES-2013-612267).
Optimal, Impulsive, Direct Ascent, Time-Fixed Orbital Interception.
1985-01-01
pp. 943-949. 10. Chiu, J. H. "Optimal Multiple-Impulse Nonlinear Orbital Rendezvous ." Ph.D. thesis, University of Illinois at Urbana-Champaign...the Earth. Each model is investigated for transfers in which the launch point is in the same plane as the target orbit (coplanar) and in which the...transfer times. Recent studies have explored orbital rendezvous for a specified 2 transfer time, i.e. time-fixed (10, 18, 29, 37). The time-fixed case is
Recursive multibody dynamics and discrete-time optimal control
NASA Technical Reports Server (NTRS)
Deleuterio, G. M. T.; Damaren, C. J.
1989-01-01
A recursive algorithm is developed for the solution of the simulation dynamics problem for a chain of rigid bodies. Arbitrary joint constraints are permitted, that is, joints may allow translational and/or rotational degrees of freedom. The recursive procedure is shown to be identical to that encountered in a discrete-time optimal control problem. For each relevant quantity in the multibody dynamics problem, there exists an analog in the context of optimal control. The performance index that is minimized in the control problem is identified as Gibbs' function for the chain of bodies.
Optimal moving grids for time-dependent partial differential equations
NASA Technical Reports Server (NTRS)
Wathen, A. J.
1992-01-01
Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of PDE solutions in the least-squares norm are reported.
Optimal moving grids for time-dependent partial differential equations
NASA Technical Reports Server (NTRS)
Wathen, A. J.
1992-01-01
Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of PDE solutions in the least-squares norm are reported.
A mathematical model on the optimal timing of offspring desertion.
Seno, Hiromi; Endo, Hiromi
2007-06-07
We consider the offspring desertion as the optimal strategy for the deserter parent, analyzing a mathematical model for its expected reproductive success. It is shown that the optimality of the offspring desertion significantly depends on the offsprings' birth timing in the mating season, and on the other ecological parameters characterizing the innate nature of considered animals. Especially, the desertion is less likely to occur for the offsprings born in the later period of mating season. It is also implied that the offspring desertion after a partially biparental care would be observable only with a specific condition.
Optimal moving grids for time-dependent partial differential equations
NASA Technical Reports Server (NTRS)
Wathen, A. J.
1989-01-01
Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of partial differential equation solutions in the least squares norm.
NASA Astrophysics Data System (ADS)
Daripa, Prabir
2011-11-01
We numerically investigate the optimal viscous profile in constant time injection policy of enhanced oil recovery. In particular, we investigate the effect of a combination of interfacial and layer instabilities in three-layer porous media flow on the overall growth of instabilities and thereby characterize the optimal viscous profile. Results based on monotonic and non-monotonic viscous profiles will be presented. Time permitting. we will also present results on multi-layer porous media flows for Newtonian and non-Newtonian fluids and compare the results. The support of Qatar National Fund under a QNRF Grant is acknowledged.
Myung, Sunnie; Cohen, Herbert; Fenyo, David; Padovan, Julio C.; Krutchinsky, Andrew N.
2010-01-01
A high-capacity ion trap coupled to a time-of-flight (TOF) mass spectrometer has been developed to carry out comprehensive linked scan analysis of all stored ions in the ion trap. The approach involves a novel tapered geometry high-capacity ion trap that can store more than 106 ions (range 800-4000 m/z) without degrading its performance. Ions are stored and scanned out from the high-capacity ion trap as a function of m/z, collisionally fragmented and analyzed by TOF. Accurate mass analysis is achieved on both the precursor and fragment ions of all species ejected from the ion trap. We demonstrate the approach for comprehensive linked-scan identification of phosphopeptides in mixtures with their corresponding unphosphorylated peptides. PMID:21516228
Gonnissen, J.; De Backer, A.; Martinez, G. T.; Van Aert, S.; Dekker, A. J. den; Rosenauer, A.; Sijbers, J.
2014-08-11
We report an innovative method to explore the optimal experimental settings to detect light atoms from scanning transmission electron microscopy (STEM) images. Since light elements play a key role in many technologically important materials, such as lithium-battery devices or hydrogen storage applications, much effort has been made to optimize the STEM technique in order to detect light elements. Therefore, classical performance criteria, such as contrast or signal-to-noise ratio, are often discussed hereby aiming at improvements of the direct visual interpretability. However, when images are interpreted quantitatively, one needs an alternative criterion, which we derive based on statistical detection theory. Using realistic simulations of technologically important materials, we demonstrate the benefits of the proposed method and compare the results with existing approaches.
NASA Astrophysics Data System (ADS)
Zhao, Jianhu; Wang, Xiao; Zhang, Hongmei; Hu, Jun; Jian, Xiaomin
2016-09-01
To fulfill side scan sonar (SSS) image segmentation accurately and efficiently, a novel segmentation algorithm based on neutrosophic set (NS) and quantum-behaved particle swarm optimization (QPSO) is proposed in this paper. Firstly, the neutrosophic subset images are obtained by transforming the input image into the NS domain. Then, a co-occurrence matrix is accurately constructed based on these subset images, and the entropy of the gray level image is described to serve as the fitness function of the QPSO algorithm. Moreover, the optimal two-dimensional segmentation threshold vector is quickly obtained by QPSO. Finally, the contours of the interested target are segmented with the threshold vector and extracted by the mathematic morphology operation. To further improve the segmentation efficiency, the single threshold segmentation, an alternative algorithm, is recommended for the shadow segmentation by considering the gray level characteristics of the shadow. The accuracy and efficiency of the proposed algorithm are assessed with experiments of SSS image segmentation.
Thermodynamics Constrains Allometric Scaling of Optimal Development Time in Insects
Dillon, Michael E.; Frazier, Melanie R.
2013-01-01
Development time is a critical life-history trait that has profound effects on organism fitness and on population growth rates. For ectotherms, development time is strongly influenced by temperature and is predicted to scale with body mass to the quarter power based on 1) the ontogenetic growth model of the metabolic theory of ecology which describes a bioenergetic balance between tissue maintenance and growth given the scaling relationship between metabolism and body size, and 2) numerous studies, primarily of vertebrate endotherms, that largely support this prediction. However, few studies have investigated the allometry of development time among invertebrates, including insects. Abundant data on development of diverse insects provides an ideal opportunity to better understand the scaling of development time in this ecologically and economically important group. Insects develop more quickly at warmer temperatures until reaching a minimum development time at some optimal temperature, after which development slows. We evaluated the allometry of insect development time by compiling estimates of minimum development time and optimal developmental temperature for 361 insect species from 16 orders with body mass varying over nearly 6 orders of magnitude. Allometric scaling exponents varied with the statistical approach: standardized major axis regression supported the predicted quarter-power scaling relationship, but ordinary and phylogenetic generalized least squares did not. Regardless of the statistical approach, body size alone explained less than 28% of the variation in development time. Models that also included optimal temperature explained over 50% of the variation in development time. Warm-adapted insects developed more quickly, regardless of body size, supporting the “hotter is better” hypothesis that posits that ectotherms have a limited ability to evolutionarily compensate for the depressing effects of low temperatures on rates of biological processes
Thermodynamics constrains allometric scaling of optimal development time in insects.
Dillon, Michael E; Frazier, Melanie R
2013-01-01
Development time is a critical life-history trait that has profound effects on organism fitness and on population growth rates. For ectotherms, development time is strongly influenced by temperature and is predicted to scale with body mass to the quarter power based on 1) the ontogenetic growth model of the metabolic theory of ecology which describes a bioenergetic balance between tissue maintenance and growth given the scaling relationship between metabolism and body size, and 2) numerous studies, primarily of vertebrate endotherms, that largely support this prediction. However, few studies have investigated the allometry of development time among invertebrates, including insects. Abundant data on development of diverse insects provides an ideal opportunity to better understand the scaling of development time in this ecologically and economically important group. Insects develop more quickly at warmer temperatures until reaching a minimum development time at some optimal temperature, after which development slows. We evaluated the allometry of insect development time by compiling estimates of minimum development time and optimal developmental temperature for 361 insect species from 16 orders with body mass varying over nearly 6 orders of magnitude. Allometric scaling exponents varied with the statistical approach: standardized major axis regression supported the predicted quarter-power scaling relationship, but ordinary and phylogenetic generalized least squares did not. Regardless of the statistical approach, body size alone explained less than 28% of the variation in development time. Models that also included optimal temperature explained over 50% of the variation in development time. Warm-adapted insects developed more quickly, regardless of body size, supporting the "hotter is better" hypothesis that posits that ectotherms have a limited ability to evolutionarily compensate for the depressing effects of low temperatures on rates of biological processes. The
Existence of the time optimal control for robotic manipulators
NASA Technical Reports Server (NTRS)
Wen, J.; Desrochers, A.
1986-01-01
Using Filipov's Theorem, it is shown that the conditions oif nonfinite escape of trajectories, reachability, and convexity of the dynamics over all admissible controls are needed for the existence of a time optimal solution for the robotic equation. With a lower bound for the finite-escape time established using a Liapunov approach, and an upper bound for the time to reach the target established using the exact linearization idea, a single inequality is found which is closely related to the coriolis and the centrifugal terms, the absence of which implies that the domain of existence of the optimal solution can be made arbitrarily large with a large torque constraint. As the work space is finite, this is essentially a global result in practical situations.
Optimal timing for interim analyses in clinical trials.
Togo, Kanae; Iwasaki, Manabu
2013-01-01
In clinical trials, interim analyses are often performed before the completion of the trial. The intention is to possibly terminate the trial early or adjust the sample size. The time of conducting an interim analysis affects the probability of the early termination and the number of subjects enrolled until the interim analysis. This influences the expected total number of subjects. In this study, we examine the optimal time for conducting interim analyses with a view to minimizing the expected total sample size. It is found that regardless of the effect size, the optimal time of one interim analysis for the early termination is approximately two-thirds of the planned observations for the O'Brien-Fleming type of spending function and approximately half of the planned observations for the Pocock type when the subject enrollment is halted for the interim analysis. When the subject enrollment is continuous throughout the trial, the optimal time for the interim analysis varies according to the follow-up duration. We also consider the time for one interim analysis including the sample size adjustment in terms of minimizing the expected total sample size.
Optimal rebinning of time-of-flight PET data.
Ahn, Sangtae; Cho, Sanghee; Li, Quanzheng; Lin, Yanguang; Leahy, Richard M
2011-10-01
Time-of-flight (TOF) positron emission tomography (PET) scanners offer the potential for significantly improved signal-to-noise ratio (SNR) and lesion detectability in clinical PET. However, fully 3D TOF PET image reconstruction is a challenging task due to the huge data size. One solution to this problem is to rebin TOF data into a lower dimensional format. We have recently developed Fourier rebinning methods for mapping TOF data into non-TOF formats that retain substantial SNR advantages relative to sinograms acquired without TOF information. However, mappings for rebinning into non-TOF formats are not unique and optimization of rebinning methods has not been widely investigated. In this paper we address the question of optimal rebinning in order to make full use of TOF information. We focus on FORET-3D, which approximately rebins 3D TOF data into 3D non-TOF sinogram formats without requiring a Fourier transform in the axial direction. We optimize the weighting for FORET-3D to minimize the variance, resulting in H(2)-weighted FORET-3D, which turns out to be the best linear unbiased estimator (BLUE) under reasonable approximations and furthermore the uniformly minimum variance unbiased (UMVU) estimator under Gaussian noise assumptions. This implies that any information loss due to optimal rebinning is as a result only of the approximations used in deriving the rebinning equation and developing the optimal weighting. We demonstrate using simulated and real phantom TOF data that the optimal rebinning method achieves variance reduction and contrast recovery improvement compared to nonoptimized rebinning weightings. In our preliminary study using a simplified simulation setup, the performance of the optimal rebinning method was comparable to that of fully 3D TOF MAP. © 2011 IEEE
FPGA implementation of real-time SENSE reconstruction using pre-scan and Emaps sensitivities.
Siddiqui, Muhammad Faisal; Reza, Ahmed Wasif; Shafique, Abubakr; Omer, Hammad; Kanesan, Jeevan
2017-08-30
Sensitivity Encoding (SENSE) is a widely used technique in Parallel Magnetic Resonance Imaging (MRI) to reduce scan time. Reconfigurable hardware based architecture for SENSE can potentially provide image reconstruction with much less computation time. Application specific hardware platform for SENSE may dramatically increase the power efficiency of the system and can decrease the execution time to obtain MR images. A new implementation of SENSE on Field Programmable Gate Array (FPGA) is presented in this study, which provides real-time SENSE reconstruction right on the receiver coil data acquisition system with no need to transfer the raw data to the MRI server, thereby minimizing the transmission noise and memory usage. The proposed SENSE architecture can reconstruct MR images using receiver coil sensitivity maps obtained using pre-scan and eigenvector (E-maps) methods. The results show that the proposed system consumes remarkably less computation time for SENSE reconstruction, i.e., 0.164ms @ 200MHz, while maintaining the quality of the reconstructed images with good mean SNR (29+ dB), less RMSE (<5×10(-2)) and comparable artefact power (<9×10(-4)) to conventional SENSE reconstruction. A comparison of the center line profiles of the reconstructed and reference images also indicates a good quality of the reconstructed images. Furthermore, the results indicate that the proposed architectural design can prove to be a significant tool for SENSE reconstruction in modern MRI scanners and its low power consumption feature can be remarkable for portable MRI scanners. Copyright © 2017 Elsevier Inc. All rights reserved.
Optimal Real-time Dispatch for Integrated Energy Systems
Firestone, Ryan Michael
2007-05-31
This report describes the development and application of a dispatch optimization algorithm for integrated energy systems (IES) comprised of on-site cogeneration of heat and electricity, energy storage devices, and demand response opportunities. This work is intended to aid commercial and industrial sites in making use of modern computing power and optimization algorithms to make informed, near-optimal decisions under significant uncertainty and complex objective functions. The optimization algorithm uses a finite set of randomly generated future scenarios to approximate the true, stochastic future; constraints are included that prevent solutions to this approximate problem from deviating from solutions to the actual problem. The algorithm is then expressed as a mixed integer linear program, to which a powerful commercial solver is applied. A case study of United States Postal Service Processing and Distribution Centers (P&DC) in four cities and under three different electricity tariff structures is conducted to (1) determine the added value of optimal control to a cogeneration system over current, heuristic control strategies; (2) determine the value of limited electric load curtailment opportunities, with and without cogeneration; and (3) determine the trade-off between least-cost and least-carbon operations of a cogeneration system. Key results for the P&DC sites studied include (1) in locations where the average electricity and natural gas prices suggest a marginally profitable cogeneration system, optimal control can add up to 67% to the value of the cogeneration system; optimal control adds less value in locations where cogeneration is more clearly profitable; (2) optimal control under real-time pricing is (a) more complicated than under typical time-of-use tariffs and (b) at times necessary to make cogeneration economic at all; (3) limited electric load curtailment opportunities can be more valuable as a compliment to the cogeneration system than alone; and
Real-time Optimization of an Ion Optical Beamline
NASA Astrophysics Data System (ADS)
Schillaci, Zachary; Amthor, Matthew; Morrissey, Dave; Portillo, Mauricio; Schwarz, Stefan; Steiner, Mathias; Sumithrarachchi, Chandana
2015-10-01
We have developed an experimental approach to automatically adjust multiple electrostatic and/or magnetic elements on an ion optical beamline, while analyzing the profile of the beam on a detector at the image point, until an optimal tune is found. This approach dramatically simplifies beamline tuning, thus allowing more efficient use of experimental equipment; ensures a more optimal tune is found, providing a more focused beam spot without a significant loss of beam transmission; and will allow the development of specialized optical tunes based on the needs of any given experiment. The approach was tested directly on the D-Line at the National Superconducting Cyclotron Laboratory at Michigan State University in several real-time optimization runs. The initial experiments demonstrate the ability of the optimizer to focus the beam while preserving transmission, ultimately halving σx and σy of the beam spot within a one-hour optimization run relative to that produced through a manual tweak of a model based tune. With further research we plan to generalize the approach to work on any given beamline, including particularly for higher order tunes of fragment separators. NSF REU Grant #PHY-1156964 and NSF Grant #PHY-1102511.
Lipnharski, I; Carranza, C; Quails, N; Correa, N; Rajderkar, D; Bennett, J; Rill, L; Arreola, M
2016-06-15
Purpose: To optimize adult head CT protocol by reducing dose to an appropriate level while providing CT images of diagnostic quality. Methods: Five cadavers were scanned from the skull base to the vertex using a routine adult head CT protocol (120 kVp, 270 mA, 0.75 s rotation, 0.5 mm × 32 detectors, 70.8 mGy CTDIvol) followed by seven reduced-dose protocols with varying combinations of reduced tube current, reduced rotation time, and increased detectors with CTDIvol ranging from 38.2 to 65.6 mGy. Organ doses were directly measured with 21 OSL dosimeters placed on the surface and implanted in the head by a neurosurgeon. Two neuroradiologists assessed grey-white matter differentiation, fluid space, ventricular size, midline shift, brain mass, edema, ischemia, and skull fractures on a three point scale: (1) Unacceptable, (2) Borderline Acceptable, and (3) Acceptable. Results: For the standard scan, doses to the skin, lens of the eye, salivary glands, thyroid, and brain were 37.55 mGy, 49.65 mGy, 40.67 mGy, 4.63 mGy, and 27.33 mGy, respectively. Two cadavers had cerebral edema due to changing dynamics of postmortem effects, causing the grey-white matter differentiation to appear less distinct. Two cadavers with preserved grey-white matter received acceptable scores for all image quality features for the protocol with a CTDIvol of 57.3 mGy, allowing organ dose savings ranging from 34% to 45%. One cadaver allowed for greater dose reduction for the protocol with a CTDIvol of 42 mGy. Conclusion: Efforts to optimize scan protocol should consider both dose and clinical image quality. This is made possible with postmortem subjects, whose brains are similar to patients, allowing for an investigation of ideal scan parameters. Radiologists at our institution accepted scan protocols acquired with lower scan parameters, with CTDIvol values closer to the American College of Radiology’s (ACR) Achievable Dose level of 57 mGy.
Linear optimal control of continuous time chaotic systems.
Merat, Kaveh; Abbaszadeh Chekan, Jafar; Salarieh, Hassan; Alasty, Aria
2014-07-01
In this research study, chaos control of continuous time systems has been performed by using dynamic programming technique. In the first step by crossing the response orbits with a selected Poincare section and subsequently applying linear regression method, the continuous time system is converted to a discrete type. Then, by solving the Riccati equation a sub-optimal algorithm has been devised for the obtained discrete chaotic systems. In the next step, by implementing the acquired algorithm on the quantized continuous time system, the chaos has been suppressed in the Rossler and AFM systems as some case studies.
Domain decomposition in time for PDE-constrained optimization
Barker, Andrew T.; Stoll, Martin
2015-08-28
Here, PDE-constrained optimization problems have a wide range of applications, but they lead to very large and ill-conditioned linear systems, especially if the problems are time dependent. In this paper we outline an approach for dealing with such problems by decomposing them in time and applying an additive Schwarz preconditioner in time, so that we can take advantage of parallel computers to deal with the very large linear systems. We then illustrate the performance of our method on a variety of problems.
Optimal transport in time-varying small-world networks
NASA Astrophysics Data System (ADS)
Chen, Qu; Qian, Jiang-Hai; Zhu, Liang; Han, Ding-Ding
2016-03-01
The time-order of interactions, which is regulated by some intrinsic activity, surely plays a crucial role regarding the transport efficiency of transportation systems. Here we study the optimal transport structure by measure of the length of time-respecting paths. Our network is built from a two-dimensional regular lattice, and long-range connections are allocated with probability Pi j˜rij -α , where ri j is the Manhattan distance. By assigning each shortcut an activity rate subjected to its geometric distance τi j˜rij -C , long-range links become active intermittently, leading to the time-varying dynamics. We show that for 0
2013-01-01
Background The fovea, which is the most sensitive part of the retina, is known to have birefringent properties, i.e. it changes the polarization state of light upon reflection. Existing devices use this property to obtain information on the orientation of the fovea and the direction of gaze. Such devices employ specific frequency components that appear during moments of fixation on a target. To detect them, previous methods have used solely the power spectrum of the Fast Fourier Transform (FFT), which, unfortunately, is an integral method, and does not give information as to where exactly the events of interest occur. With very young patients who are not cooperative enough, this presents a problem, because central fixation may be present only during very short-lasting episodes, and can easily be missed by the FFT. Method This paper presents a method for detecting short-lasting moments of central fixation in existing devices for retinal birefringence scanning, with the goal of a reliable detection of eye alignment. Signal analysis is based on the Continuous Wavelet Transform (CWT), which reliably localizes such events in the time-frequency plane. Even though the characteristic frequencies are not always strongly expressed due to possible artifacts, simple topological analysis of the time-frequency distribution can detect fixation reliably. Results In all six subjects tested, the CWT allowed precise identification of both frequency components. Moreover, in four of these subjects, episodes of intermittent but definitely present central fixation were detectable, similar to those in Figure 4. A simple FFT is likely to treat them as borderline cases, or entirely miss them, depending on the thresholds used. Conclusion Joint time-frequency analysis is a powerful tool in the detection of eye alignment, even in a noisy environment. The method is applicable to similar situations, where short-lasting diagnostic events need to be detected in time series acquired by means of
NASA Astrophysics Data System (ADS)
Ross, Steven M.
A method is presented to couple and solve the optimal control and the optimal estimation problems simultaneously, allowing systems with bearing-only sensors to maneuver to obtain observability for relative navigation without unnecessarily detracting from a primary mission. A fundamentally new approach to trajectory optimization and the dual control problem is presented, constraining polynomial approximations of the Fisher Information Matrix to provide an information gradient and allow prescription of the level of future estimation certainty required for mission accomplishment. Disturbances, modeling deficiencies, and corrupted measurements are addressed recursively using Radau pseudospectral collocation methods and sequential quadratic programming for the optimal path and an Unscented Kalman Filter for the target position estimate. The underlying real-time optimal control (RTOC) algorithm is developed, specifically addressing limitations of current techniques that lose error integration. The resulting guidance method can be applied to any bearing-only system, such as submarines using passive sonar, anti-radiation missiles, or small UAVs seeking to land on power lines for energy harvesting. System integration, variable timing methods, and discontinuity management techniques are provided for actual hardware implementation. Validation is accomplished with both simulation and flight test, autonomously landing a quadrotor helicopter on a wire.
Earl, R D; Zeng, G L; Zhang, B
2005-09-01
This article considers a hypothetical imaging device with a spinning slat collimator that measures parallel-planar-integral data from an object. This device rotates around the object 180 degrees and stops at N positions uniformly distributed over this 180 degrees. At each stop, the device spins on its own axis 180 degrees and acquires measurements at M positions uniformly distributed over this 180 degrees. For a fixed total imaging time, an optimal distribution of the scanning time among the data measurement locations is searched by a nonlinear programming method: Nelder-Mead's simplex method. The optimal dwell time is approximately proportional to the weighting factor in the backprojector of the reconstruction algorithm. By using an optimal dwell-time profile, the reconstruction signal-to-noise ratio has a gain of 23%-24% for the filtered backprojection algorithm and a gain of 10%-18% for the iterative algorithms, compared with the situation when a constant dwell-time profile is used.
Causal Discovery from Subsampled Time Series Data by Constraint Optimization
Hyttinen, Antti; Plis, Sergey; Järvisalo, Matti; Eberhardt, Frederick; Danks, David
2017-01-01
This paper focuses on causal structure estimation from time series data in which measurements are obtained at a coarser timescale than the causal timescale of the underlying system. Previous work has shown that such subsampling can lead to significant errors about the system’s causal structure if not properly taken into account. In this paper, we first consider the search for the system timescale causal structures that correspond to a given measurement timescale structure. We provide a constraint satisfaction procedure whose computational performance is several orders of magnitude better than previous approaches. We then consider finite-sample data as input, and propose the first constraint optimization approach for recovering the system timescale causal structure. This algorithm optimally recovers from possible conflicts due to statistical errors. More generally, these advances allow for a robust and non-parametric estimation of system timescale causal structures from subsampled time series data. PMID:28203316
Causal Discovery from Subsampled Time Series Data by Constraint Optimization.
Hyttinen, Antti; Plis, Sergey; Järvisalo, Matti; Eberhardt, Frederick; Danks, David
2016-08-01
This paper focuses on causal structure estimation from time series data in which measurements are obtained at a coarser timescale than the causal timescale of the underlying system. Previous work has shown that such subsampling can lead to significant errors about the system's causal structure if not properly taken into account. In this paper, we first consider the search for the system timescale causal structures that correspond to a given measurement timescale structure. We provide a constraint satisfaction procedure whose computational performance is several orders of magnitude better than previous approaches. We then consider finite-sample data as input, and propose the first constraint optimization approach for recovering the system timescale causal structure. This algorithm optimally recovers from possible conflicts due to statistical errors. More generally, these advances allow for a robust and non-parametric estimation of system timescale causal structures from subsampled time series data.
Discrete-time dynamic user-optimal departure time/route choice model
Chen, H.K.; Hsueh, C.F.
1998-05-01
This paper concerns a discrete-time, link-based, dynamic user-optimal departure time/route choice model using the variational inequality approach. The model complies with a dynamic user-optimal equilibrium condition in which for each origin-destination pair, the actual route travel times experienced by travelers, regardless the departure time, is equal and minimal. A nested diagonalization procedure is proposed to solve the model. Numerical examples are then provided for demonstration and detailed elaboration for multiple solutions and Braess`s paradox.
Time Distribution Using SpaceWire in the SCaN Testbed on ISS
NASA Technical Reports Server (NTRS)
Lux, James P.
2012-01-01
A paper describes an approach for timekeeping and time transfer among the devices on the CoNNeCT project s SCaN Testbed. It also describes how the clocks may be synchronized with an external time reference; e.g., time tags from the International Space Station (ISS) or RF signals received by a radio (TDRSS time service or GPS). All the units have some sort of counter that is fed by an oscillator at some convenient frequency. The basic problem in timekeeping is relating the counter value to some external time standard such as UTC. With SpaceWire, there are two approaches possible: one is to just use SpaceWire to send a message, and use an external wire for the sync signal. This is much the same as with the RS- 232 messages and l pps line from a GPS receiver. However, SpaceWire has an additional capability that was added to make it easier - it can insert and receive a special "timecode" word in the data stream.
A 3D Scanning Device for Architectural Relieves Based on Time-Of-Flight Technology
NASA Astrophysics Data System (ADS)
Gambino, M. C.; Fontana, R.; Gianfrate, G.; Greco, M.; Marras, L.; Materazzi, M.; Pampaloni, E.; Pezzati, L.
In this work we present the results of some architectural and archaeological relieves realized by means of a Time-Of-Flight (TOF) laser scanner developed by the Art Diagnostic Group of Istituto Nazionale di Ottica Applicata — INOA (the National Institute of Applied Optics). The instrument is composed of a commercial distance meter mounted on a high precision scanning system, and is equipped with a tripod for total-stations. The device was projected in order to have the following characteristics: reliability, good accuracy and compatibility to other systems. For Cultural Heritage applications it is important to integrate the data acquired with different instruments, but a problem met with many commercial systems is the lack of compatibility with classic survey methodologies. Moreover, superimposition of results from different techniques is possible only if the output is metrically correct. Up to now, the realization of accurate 3D models of buildings was a prerogative of the photogrammetric devices, but the recent progress in opto-electronic technology and 3D software of analysis made possible the production of accurate 3D models. Laser scanning has the main advantage of allowing the acquisition of dense data sampling with high accuracy and high speed.
[Photodissociation of Acetylene and Acetone using Step-Scan Time-Resolved FTIR Emission Spectroscopy
NASA Technical Reports Server (NTRS)
McLaren, Ian A.; Wrobel, Jacek D.
1997-01-01
The photodissociation of acetylene and acetone was investigated as a function of added quenching gas pressures using step-scan time-resolved FTIR emission spectroscopy. Its main components consist of Bruker IFS88, step-scan Fourier Transform Infrared (FTIR) spectrometer coupled to a flow cell equipped with Welsh collection optics. Vibrationally excited C2H radicals were produced from the photodissociation of acetylene in the unfocused experiments. The infrared (IR) emission from these excited C2H radicals was investigated as a function of added argon pressure. Argon quenching rate constants for all C2H emission bands are of the order of 10(exp -13)cc/molecule.sec. Quenching of these radicals by acetylene is efficient, with a rate constant in the range of 10(exp -11) cc/molecule.sec. The relative intensity of the different C2H emission bands did not change with the increasing argon or acetylene pressure. However, the overall IR emission intensity decreased, for example, by more than 50% when the argon partial pressure was raised from 0.2 to 2 Torr at fixed precursor pressure of 160mTorr. These observations provide evidence for the formation of a metastable C2H2 species, which are collisionally quenched by argon or acetylene. Problems encountered in the course of the experimental work are also described.
A versatile aquatics facility inventory system with real-time barcode scan entry.
Anderson, Jennifer L; Macurak, Michelle L; Halpern, Marnie E; Farber, Steven A
2010-09-01
Research involving model organisms necessitates recording and archiving many types of animal maintenance and use data. We developed a comprehensive inventory system using FileMaker Pro® to incorporate, record, and archive data on zebrafish stocks, tank organization, husbandry, and fish usage. Our relational database is constructed of tables containing detailed information on fish identity, parents of origin, tank location, mutant phenotypes, caretakers, natural mating and in vitro fertilization experiments, and fish mortality. In addition to its basic annotation and reporting capabilities, the database allows barcode scan entry of several actions, for example, moving a tank of fish, mating or performing in vitro fertilization with specific fish, and recording dead fish. All data are input in real time using either barcode scanning or manual entry. The database provides several types of preformatted reports, as well as printed labels for tank location and stock identification. In summary, we have created a versatile, multipurpose inventory system that can be personalized and enhanced for any zebrafish facility and can be further adapted to organize data and archival information for other model systems or applications.
Side-scan sonar mapping: Pseudo-real-time processing and mosaicking techniques
Danforth, W.W.; Schwab, W.C.; O'Brien, T.F. ); Karl, H. )
1990-05-01
The US Geological Survey (USGS) surveyed 1,000 km{sup 2} of the continental shelf off San Francisco during a 17-day cruise, using a 120-kHz side-scan sonar system, and produced a digitally processed sonar mosaic of the survey area. The data were processed and mosaicked in real time using software developed at the Lamont-Doherty Geological Observatory and modified by the USGS, a substantial task due to the enormous amount of data produced by high-resolution side-scan systems. Approximately 33 megabytes of data were acquired every 1.5 hr. The real-time sonar images were displayed on a PC-based workstation and the data were transferred to a UNIX minicomputer where the sonar images were slant-range corrected, enhanced using an averaging method of desampling and a linear-contrast stretch, merged with navigation, geographically oriented at a user-selected scale, and finally output to a thermal printer. The hard-copy output was then used to construct a mosaic of the survey area. The final product of this technique is a UTM-projected map-mosaic of sea-floor backscatter variations, which could be used, for example, to locate appropriate sites for sediment sampling to ground truth the sonar imagery while still at sea. More importantly, reconnaissance surveys of this type allow for the analysis and interpretation of the mosaic during a cruise, thus greatly reducing the preparation time needed for planning follow-up studies of a particular area.
Optimal ambulance location with random delays and travel times.
Ingolfsson, Armann; Budge, Susan; Erkut, Erhan
2008-09-01
We describe an ambulance location optimization model that minimizes the number of ambulances needed to provide a specified service level. The model measures service level as the fraction of calls reached within a given time standard and considers response time to be composed of a random delay (prior to travel to the scene) plus a random travel time. In addition to modeling the uncertainty in the delay and in the travel time, we incorporate uncertainty in the ambulance availability in determining the response time. Models that do not account for the uncertainty in all three of these components may overestimate the possible service level for a given number of ambulances and underestimate the number of ambulances needed to provide a specified service level. By explicitly modeling the randomness in the ambulance availability and in the delays and the travel times, we arrive at a more realistic ambulance location model. Our model is tractable enough to be solved with general-purpose optimization solvers for cities with populations around one Million. We illustrate the use of the model using actual data from Edmonton.
Li, H; Zhang, X; Zhu, X; Li, Y
2014-06-15
Purpose: Intensity modulated proton therapy (IMPT) has been shown to be able to reduce dose to normal tissue compared to intensity modulated photon radio-therapy (IMRT), and has been implemented for selected lung cancer patients. However, respiratory motion-induced dose uncertainty remain one of the major concerns for the radiotherapy of lung cancer, and the utility of IMPT for lung patients was limited because of the proton dose uncertainty induced by motion. Strategies such as repainting and tumor tracking have been proposed and studied but repainting could result in unacceptable long delivery time and tracking is not yet clinically available. We propose a novel delivery strategy for spot scanning proton beam therapy. Method: The effective number of delivery (END) for each spot position in a treatment plan was calculated based on the parameters of the delivery system, including time required for each spot, spot size and energy. The dose uncertainty was then calculated with an analytical formula. The spot delivery sequence was optimized to maximize END and minimize the dose uncertainty. 2D Measurements with a detector array on a 1D moving platform were performed to validate the calculated results. Results: 143 2D measurements on a moving platform were performed for different delivery sequences of a single layer uniform pattern. The measured dose uncertainty is a strong function of the delivery sequence, the worst delivery sequence results in dose error up to 70% while the optimized delivery sequence results in dose error of <5%. END vs. measured dose uncertainty follows the analytical formula. Conclusion: With optimized delivery sequence, it is feasible to minimize the dose uncertainty due to motion in spot scanning proton therapy.
NASA Astrophysics Data System (ADS)
Heydari, Ali
Optimal solutions with neural networks (NN) based on an approximate dynamic programming (ADP) framework for new classes of engineering and non-engineering problems and associated difficulties and challenges are investigated in this dissertation. In the enclosed eight papers, the ADP framework is utilized for solving fixed-final-time problems (also called terminal control problems) and problems with switching nature. An ADP based algorithm is proposed in Paper 1 for solving fixed-final-time problems with soft terminal constraint, in which, a single neural network with a single set of weights is utilized. Paper 2 investigates fixed-final-time problems with hard terminal constraints. The optimality analysis of the ADP based algorithm for fixed-final-time problems is the subject of Paper 3, in which, it is shown that the proposed algorithm leads to the global optimal solution providing certain conditions hold. Afterwards, the developments in Papers 1 to 3 are used to tackle a more challenging class of problems, namely, optimal control of switching systems. This class of problems is divided into problems with fixed mode sequence (Papers 4 and 5) and problems with free mode sequence (Papers 6 and 7). Each of these two classes is further divided into problems with autonomous subsystems (Papers 4 and 6) and problems with controlled subsystems (Papers 5 and 7). Different ADP-based algorithms are developed and proofs of convergence of the proposed iterative algorithms are presented. Moreover, an extension to the developments is provided for online learning of the optimal switching solution for problems with modeling uncertainty in Paper 8. Each of the theoretical developments is numerically analyzed using different real-world or benchmark problems.
Optimal model-free prediction from multivariate time series.
Runge, Jakob; Donner, Reik V; Kurths, Jürgen
2015-05-01
Forecasting a time series from multivariate predictors constitutes a challenging problem, especially using model-free approaches. Most techniques, such as nearest-neighbor prediction, quickly suffer from the curse of dimensionality and overfitting for more than a few predictors which has limited their application mostly to the univariate case. Therefore, selection strategies are needed that harness the available information as efficiently as possible. Since often the right combination of predictors matters, ideally all subsets of possible predictors should be tested for their predictive power, but the exponentially growing number of combinations makes such an approach computationally prohibitive. Here a prediction scheme that overcomes this strong limitation is introduced utilizing a causal preselection step which drastically reduces the number of possible predictors to the most predictive set of causal drivers making a globally optimal search scheme tractable. The information-theoretic optimality is derived and practical selection criteria are discussed. As demonstrated for multivariate nonlinear stochastic delay processes, the optimal scheme can even be less computationally expensive than commonly used suboptimal schemes like forward selection. The method suggests a general framework to apply the optimal model-free approach to select variables and subsequently fit a model to further improve a prediction or learn statistical dependencies. The performance of this framework is illustrated on a climatological index of El Niño Southern Oscillation.
Optimal model-free prediction from multivariate time series
NASA Astrophysics Data System (ADS)
Runge, Jakob; Donner, Reik V.; Kurths, Jürgen
2015-05-01
Forecasting a time series from multivariate predictors constitutes a challenging problem, especially using model-free approaches. Most techniques, such as nearest-neighbor prediction, quickly suffer from the curse of dimensionality and overfitting for more than a few predictors which has limited their application mostly to the univariate case. Therefore, selection strategies are needed that harness the available information as efficiently as possible. Since often the right combination of predictors matters, ideally all subsets of possible predictors should be tested for their predictive power, but the exponentially growing number of combinations makes such an approach computationally prohibitive. Here a prediction scheme that overcomes this strong limitation is introduced utilizing a causal preselection step which drastically reduces the number of possible predictors to the most predictive set of causal drivers making a globally optimal search scheme tractable. The information-theoretic optimality is derived and practical selection criteria are discussed. As demonstrated for multivariate nonlinear stochastic delay processes, the optimal scheme can even be less computationally expensive than commonly used suboptimal schemes like forward selection. The method suggests a general framework to apply the optimal model-free approach to select variables and subsequently fit a model to further improve a prediction or learn statistical dependencies. The performance of this framework is illustrated on a climatological index of El Niño Southern Oscillation.
Chaos Time Series Prediction Based on Membrane Optimization Algorithms
Li, Meng; Yi, Liangzhong; Pei, Zheng; Gao, Zhisheng
2015-01-01
This paper puts forward a prediction model based on membrane computing optimization algorithm for chaos time series; the model optimizes simultaneously the parameters of phase space reconstruction (τ, m) and least squares support vector machine (LS-SVM) (γ, σ) by using membrane computing optimization algorithm. It is an important basis for spectrum management to predict accurately the change trend of parameters in the electromagnetic environment, which can help decision makers to adopt an optimal action. Then, the model presented in this paper is used to forecast band occupancy rate of frequency modulation (FM) broadcasting band and interphone band. To show the applicability and superiority of the proposed model, this paper will compare the forecast model presented in it with conventional similar models. The experimental results show that whether single-step prediction or multistep prediction, the proposed model performs best based on three error measures, namely, normalized mean square error (NMSE), root mean square error (RMSE), and mean absolute percentage error (MAPE). PMID:25874249
Wang, D; Smith, B; Hill, P; Gelover, E; Flynn, R; Hyer, D
2014-06-15
Purpose: There has been a growing interest in applying collimation to pencil beam scanning (PBS) proton therapy in order to sharpen the lateral dose falloff out of the target, especially at low energies. Currently, there is not a method to optimally determine the collimation position or margin around the target. A uniform margin would not be ideal due to the fact that an incoming symmetric pencil beam, after being intercepted by a collimator near the target boundary, will become asymmetric and experience a lateral shift away from its original spot location, leaving the target insufficiently covered. We demonstrate a method that optimally determines the collimator position on a per-spot basis, in order to maximize target dose while minimizing normal tissue dose. Methods: A library of collimated pencil beams were obtained through Monte Carlo simulation with a collimator placed at varying distances from the central axis of an incoming symmetrical pencil beam of 118 MeV and 5 mm sigma-in-air. Two-dimensional treatment plans were then created using this library of collimated pencil beams. For each spot position in a treatment plan, the collimator position was optimally determined in such a way that the resultant pencil beam maximized the ratio of in-target dose and out-of-target dose. For comparison, un-collimated treatment plans were also computed. Results: The spot-by-spot optimally determined collimator positions allowed the reduction of normal tissue dose while maintaining the same target coverage as un-collimated PBS. Quantitatively, the mean dose outside of the target was reduced by approximately 40% as compared to the plan without collimation. Conclusion: The proposed method determines the optimal collimator position for each spot in collimated PBS proton therapy. The use of a collimator will improve PBS dose distributions achievable today and will continue to be the subject of future investigations.
Optimal Stochastic Restart Renders Fluctuations in First Passage Times Universal
NASA Astrophysics Data System (ADS)
Reuveni, Shlomi
2016-04-01
Stochastic restart may drastically reduce the expected run time of a computer algorithm, expedite the completion of a complex search process, or increase the turnover rate of an enzymatic reaction. These diverse first-passage-time (FPT) processes seem to have very little in common but it is actually quite the other way around. Here we show that the relative standard deviation associated with the FPT of an optimally restarted process, i.e., one that is restarted at a constant (nonzero) rate which brings the mean FPT to a minimum, is always unity. We interpret, further generalize, and discuss this finding and the implications arising from it.
Optimal open multistep discretization formulas for real-time simulation
NASA Technical Reports Server (NTRS)
Moerder, Daniel D.; Calise, Anthony J.; Clemmons, Paul
1993-01-01
The performance of digital real-time simulations is considered. A figure of merit is derived that quantifies a simulation's fidelity in terms of the time-domain discrepancy between its output and that of the plant it simulates, assuming that the plant is linearizable and asymptotically stable. This performance index is then used in deriving an easily automated procedure for calculating optimal values for free parameters in plant discretizations based on a generalized form of open linear multistep integration formulas. The theory is demonstrated in simulating the rigid-body dynamics of a fully articulated helicopter rotor blade system.
Robust Optimal Stopping-Time Control for Nonlinear Systems
Ball, J.A.; Chudoung, J.; Day, M.V.
2002-10-01
We formulate a robust optimal stopping-time problem for a state-space system and give the connection between various notions of lower value function for the associated games (and storage function for the associated dissipative system) with solutions of the appropriate variational inequality (VI) (the analogue of the Hamilton-Jacobi-Bellman-Isaacs equation for this setting). We show that the stopping-time rule can be obtained by solving the VI in the viscosity sense and a positive definite supersolution of the VI can be used for stability analysis.
Optimal model-free prediction from multivariate time series
NASA Astrophysics Data System (ADS)
Runge, Jakob; Donner, Reik V.; Kurths, Jürgen
2015-04-01
Forecasting a complex system's time evolution constitutes a challenging problem, especially if the governing physical equations are unknown or too complex to be simulated with first-principle models. Here a model-free prediction scheme based on the observed multivariate time series is discussed. It efficiently overcomes the curse of dimensionality in finding good predictors from large data sets and yields information-theoretically optimal predictors. The practical performance of the prediction scheme is demonstrated on multivariate nonlinear stochastic delay processes and in an application to an index of El Nino-Southern Oscillation.
NASA Astrophysics Data System (ADS)
Wu, Yuanfeng; Gao, Lianru; Zhang, Bing; Zhao, Haina; Li, Jun
2014-01-01
We present a parallel implementation of the optimized maximum noise fraction (G-OMNF) transform algorithm for feature extraction of hyperspectral images on commodity graphics processing units (GPUs). The proposed approach explored the algorithm data-level concurrency and optimized the computing flow. We first defined a three-dimensional grid, in which each thread calculates a sub-block data to easily facilitate the spatial and spectral neighborhood data searches in noise estimation, which is one of the most important steps involved in OMNF. Then, we optimized the processing flow and computed the noise covariance matrix before computing the image covariance matrix to reduce the original hyperspectral image data transmission. These optimization strategies can greatly improve the computing efficiency and can be applied to other feature extraction algorithms. The proposed parallel feature extraction algorithm was implemented on an Nvidia Tesla GPU using the compute unified device architecture and basic linear algebra subroutines library. Through the experiments on several real hyperspectral images, our GPU parallel implementation provides a significant speedup of the algorithm compared with the CPU implementation, especially for highly data parallelizable and arithmetically intensive algorithm parts, such as noise estimation. In order to further evaluate the effectiveness of G-OMNF, we used two different applications: spectral unmixing and classification for evaluation. Considering the sensor scanning rate and the data acquisition time, the proposed parallel implementation met the on-board real-time feature extraction.
Interfacial Dzyaloshinskii-Moriya interaction studied by time-resolved scanning Kerr microscopy
NASA Astrophysics Data System (ADS)
Körner, H. S.; Stigloher, J.; Bauer, H. G.; Hata, H.; Taniguchi, T.; Moriyama, T.; Ono, T.; Back, C. H.
2015-12-01
We investigate the influence of the interfacial Dzyaloshinskii-Moriya interaction (DMI) on the propagation of Damon-Eshbach spin waves in micrometer-sized Pt(2 nm)/Co(0.4 nm)/Py(5 nm)/MgO(5 nm) stripes. We use time-resolved scanning Kerr microscopy to image the spin waves excited by a microwave antenna and to directly access their dispersion. The presence of an interfacial DMI manifests itself in an asymmetry in the dispersion for counterpropagating spin waves which reverses sign upon reversal of the direction of the externally applied magnetic field. From this asymmetry we deduce the strength of the interfacial DMI. Micromagnetic simulations confirm that the observed difference in the wave numbers and the signature of the asymmetry are characteristic for the occurrence of an interfacial DMI at the Pt/Co interface and cannot be explained by the uniaxial perpendicular magnetic anisotropy field originating from the same interface.
On cerebral celebrity and reality TV: subjectivity in times of brain scans and psychotainment.
De Vos, Jan
2009-01-01
The philosopher Daniel Dennett developed a theory of consciousness in which he replaces the so-called Cartesian theater with conceptions such as "fame in the brain" and "cerebral celebrity." The paradox of this is that Dennett unwittingly reintroduces the metaphors of the stage and the screen. The use of this trope is pursued in this essay in order to juxtapose Dennett's theory with reality TV and celebrity culture. This will allow us to sketch out late-modern subjectivity in times of brains scans and "psychotainment." Drawing on Walter Benjamin, Giorgi Agamben, Slavoj Žižek, and others, a plea is made for a materialism of the zero-level of subjectivity.
Non-contact in vivo diffuse optical imaging using a time-gated scanning system
Mazurenka, M.; Di Sieno, L.; Boso, G.; Contini, D.; Pifferi, A.; Mora, A. Dalla; Tosi, A.; Wabnitz, H.; Macdonald, R.
2013-01-01
We report on the design and first in vivo tests of a novel non-contact scanning imaging system for time-domain near-infrared spectroscopy. Our system is based on a null source-detector separation approach and utilizes polarization-selective detection and a fast-gated single-photon avalanche diode to record late photons only. The in-vivo tests included the recording of hemodynamics during arm occlusion and two brain activation tasks. Localized and non-localized changes in oxy- and deoxyhemoglobin concentration were detected for motor and cognitive tasks, respectively. The tests demonstrate the feasibility of non-contact imaging of absorption changes in deeper tissues. PMID:24156081
Lu, Jie; Martin, Jody; Lu, Yiqing; Zhao, Jiangbo; Yuan, Jingli; Ostrowski, Martin; Paulsen, Ian; Piper, James A; Jin, Dayong
2012-11-20
We report a highly sensitive method for rapid identification and quantification of rare-event cells carrying low-abundance surface biomarkers. The method applies lanthanide bioprobes and time-gated detection to effectively eliminate both nontarget organisms and background noise and utilizes the europium containing nanoparticles to further amplify the signal strength by a factor of ∼20. Of interest is that these nanoparticles did not correspondingly enhance the intensity of nonspecific binding. Thus, the dramatically improved signal-to-background ratio enables the low-expression surface antigens on single cells to be quantified. Furthermore, we applied an orthogonal scanning automated microscopy (OSAM) technique to rapidly process a large population of target-only cells on microscopy slides, leading to quantitative statistical data with high certainty. Thus, the techniques together resolved nearly all false-negative events from the interfering crowd including many false-positive events.
Time-resolved scanning Kerr microscopy of flux beam formation in hard disk write heads
NASA Astrophysics Data System (ADS)
Valkass, Robert A. J.; Spicer, Timothy M.; Burgos Parra, Erick; Hicken, Robert J.; Bashir, Muhammad A.; Gubbins, Mark A.; Czoschke, Peter J.; Lopusnik, Radek
2016-06-01
To meet growing data storage needs, the density of data stored on hard disk drives must increase. In pursuit of this aim, the magnetodynamics of the hard disk write head must be characterized and understood, particularly the process of "flux beaming." In this study, seven different configurations of perpendicular magnetic recording (PMR) write heads were imaged using time-resolved scanning Kerr microscopy, revealing their detailed dynamic magnetic state during the write process. It was found that the precise position and number of driving coils can significantly alter the formation of flux beams during the write process. These results are applicable to the design and understanding of current PMR and next-generation heat-assisted magnetic recording devices, as well as being relevant to other magnetic devices.
A Time Series of Mean Global Sea Surface Temperature from the Along-Track Scanning Radiometers
NASA Astrophysics Data System (ADS)
Veal, Karen L.; Corlett, Gary; Remedios, John; Llewellyn-Jones, David
2010-12-01
A climate data set requires a long time series of consistently processed data with suitably long periods of overlap of different instruments which allows characterization of any inter-instrument biases. The data obtained from ESA's three Along-Track Scanning Radiometers (ATSRs) together comprise an 18 year record of SST with overlap periods of at least 6 months. The data from all three ATSRs has been consistently processed. These factors together with the stability of the instruments and the precision of the derived SST makes this data set eminently suitable for the construction of a time series of SST that complies with many of the GCOS requirements for a climate data set. A time series of global and regional average SST anomalies has been constructed from the ATSR version 2 data set. An analysis of the overlap periods of successive instruments was used to remove intra-series biases and align the series to a common reference. An ATSR climatology has been developed and has been used to calculate the SST anomalies. The ATSR-1 time series and the AATSR time series have been aligned to ATSR-2. The largest adjustment is ~0.2 K between ATSR-2 and AATSR which is suspected to be due to a shift of the 12 μm filter function for AATSR. An uncertainty of 0.06 K is assigned to the relative anomaly record that is derived from the dual three-channel night-time data. A relative uncertainty of 0.07 K is assigned to the dual night-time two-channel record, except in the ATSR-1 period (1994-1996) where it is larger.
Reducing the throughput time of the diagnostic track involving CT scanning with computer simulation.
van Lent, Wineke A M; Deetman, Joost W; Teertstra, H Jelle; Muller, Sara H; Hans, Erwin W; van Harten, Wim H
2012-11-01
To examine the use of computer simulation to reduce the time between the CT request and the consult in which the CT report is discussed (diagnostic track) while restricting idle time and overtime. After a pre implementation analysis in our case study hospital, by computer simulation three scenarios were evaluated on access time, overtime and idle time of the CT; after implementation these same aspects were evaluated again. Effects on throughput time were measured for outpatient short-term and urgent requests only. The pre implementation analysis showed an average CT access time of 9.8 operating days and an average diagnostic track of 14.5 operating days. Based on the outcomes of the simulation, management changed the capacity for the different patient groups to facilitate a diagnostic track of 10 operating days, with a CT access time of 7 days. After the implementation of changes, the average diagnostic track duration was 12.6 days with an average CT access time of 7.3 days. The fraction of patients with a total throughput time within 10 days increased from 29% to 44% while the utilization remained equal with 82%, the idle time increased by 11% and the overtime decreased by 82%. The fraction of patients that completed the diagnostic track within 10 days improved with 52%. Computer simulation proved useful for studying the effects of proposed scenarios in radiology management. Besides the tangible effects, the simulation increased the awareness that optimizing capacity allocation can reduce access times. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Timing optimization utilizing order statistics and multichannel digital silicon photomultipliers.
Mandai, Shingo; Venialgo, Esteban; Charbon, Edoardo
2014-02-01
We present an optimization technique utilizing order statistics with a multichannel digital silicon photomultiplier (MD-SiPM) for timing measurements. Accurate timing measurements are required by 3D rangefinding and time-of-flight positron emission tomography, to name a few applications. We have demonstrated the ability of the MD-SiPM to detect multiple photons, and we verified the advantage of detecting multiple photons assuming incoming photons follow a Gaussian distribution. We have also shown the advantage of utilizing multiple timestamps for estimating time-of-arrivals more accurately. This estimation technique can be widely available in various applications, which have a certain probability density function of incoming photons, such as a scintillator or a laser source.
Time-Dependent Response Versus Scan Angle for MODIS Reflective Solar Bands
NASA Technical Reports Server (NTRS)
Sun, Junqiang; Xiong, Xiaoxiong; Angal, Amit; Chen, Hongda; Wu, Aisheng; Geng, Xu
2014-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) instruments currently operate onboard the National Aeronautics and Space Administration (NASA's) Terra and Aqua spacecraft, launched on December 18, 1999 and May 4, 2002, respectively. MODIS has 36 spectral bands, among which 20 are reflective solar bands (RSBs) covering a spectral range from 0.412 to 2.13 µm. The RSBs are calibrated on orbit using a solar diffuser (SD) and an SD stability monitor and with additional measurements from lunar observations via a space view (SV) port. Selected pseudo-invariant desert sites are also used to track the RSB on-orbit gain change, particularly for short-wavelength bands. MODIS views the Earth surface, SV, and the onboard calibrators using a two-sided scan mirror. The response versus scan angle (RVS) of the scan mirror was characterized prior to launch, and its changes are tracked using observations made at different angles of incidence from onboard SD, lunar, and Earth view (EV) measurements. These observations show that the optical properties of the scan mirror have experienced large wavelength-dependent degradation in both the visible and near infrared spectral regions. Algorithms have been developed to track the on-orbit RVS change using the calibrators and the selected desert sites. These algorithms have been applied to both Terra and Aqua MODIS Level 1B (L1B) to improve the EV data accuracy since L1B Collection 4, refined in Collection 5, and further improved in the latest Collection 6 (C6). In C6, two approaches have been used to derive the time-dependent RVS for MODIS RSB. The first approach relies on data collected from sensor onboard calibrators and mirror side ratios from EV observations. The second approach uses onboard calibrators and EV response trending from selected desert sites. This approach is mainly used for the bands with much larger changes in their time-dependent RVS, such as the Terra MODIS bands 1-4, 8, and 9 and the Aqua MODIS bands 8- and 9
Optimizing timing performance of silicon photomultiplier-based scintillation detectors
Yeom, Jung Yeol; Vinke, Ruud
2013-01-01
Precise timing resolution is crucial for applications requiring photon time-of-flight (ToF) information such as ToF positron emission tomography (PET). Silicon photomultipliers (SiPM) for PET, with their high output capacitance, are known to require custom preamplifiers to optimize timing performance. In this paper, we describe simple alternative front-end electronics based on a commercial low-noise RF preamplifier and methods that have been implemented to achieve excellent timing resolution. Two radiation detectors with L(Y)SO scintillators coupled to Hamamatsu SiPMs (MPPC S10362–33-050C) and front-end electronics based on an RF amplifier (MAR-3SM+), typically used for wireless applications that require minimal additional circuitry, have been fabricated. These detectors were used to detect annihilation photons from a Ge-68 source and the output signals were subsequently digitized by a high speed oscilloscope for offline processing. A coincident resolving time (CRT) of 147 ± 3 ps FWHM and 186 ± 3 ps FWHM with 3 × 3 × 5 mm3 and with 3 × 3 × 20 mm3 LYSO crystal elements were measured, respectively. With smaller 2 × 2 × 3 mm3 LSO crystals, a CRT of 125 ± 2 ps FWHM was achieved with slight improvement to 121 ± 3 ps at a lower temperature (15°C). Finally, with the 20 mm length crystals, a degradation of timing resolution was observed for annihilation photon interactions that occur close to the photosensor compared to shallow depth-of-interaction (DOI). We conclude that commercial RF amplifiers optimized for noise, besides their ease of use, can produce excellent timing resolution comparable to best reported values acquired with custom readout electronics. On the other hand, as timing performance degrades with increasing photon DOI, a head-on detector configuration will produce better CRT than a side-irradiated setup for longer crystals. PMID:23369872
Optimal trading strategies—a time series approach
NASA Astrophysics Data System (ADS)
Bebbington, Peter A.; Kühn, Reimer
2016-05-01
Motivated by recent advances in the spectral theory of auto-covariance matrices, we are led to revisit a reformulation of Markowitz’ mean-variance portfolio optimization approach in the time domain. In its simplest incarnation it applies to a single traded asset and allows an optimal trading strategy to be found which—for a given return—is minimally exposed to market price fluctuations. The model is initially investigated for a range of synthetic price processes, taken to be either second order stationary, or to exhibit second order stationary increments. Attention is paid to consequences of estimating auto-covariance matrices from small finite samples, and auto-covariance matrix cleaning strategies to mitigate against these are investigated. Finally we apply our framework to real world data.
Wan Chan Tseung, Hok Seum; Ma, Jiasen; Kreofsky, Cole R; Ma, Daniel J; Beltran, Chris
2016-08-01
Our aim is to demonstrate the feasibility of fast Monte Carlo (MC)-based inverse biological planning for the treatment of head and neck tumors in spot-scanning proton therapy. Recently, a fast and accurate graphics processor unit (GPU)-based MC simulation of proton transport was developed and used as the dose-calculation engine in a GPU-accelerated intensity modulated proton therapy (IMPT) optimizer. Besides dose, the MC can simultaneously score the dose-averaged linear energy transfer (LETd), which makes biological dose (BD) optimization possible. To convert from LETd to BD, a simple linear relation was assumed. By use of this novel optimizer, inverse biological planning was applied to 4 patients, including 2 small and 1 large thyroid tumor targets, as well as 1 glioma case. To create these plans, constraints were placed to maintain the physical dose (PD) within 1.25 times the prescription while maximizing target BD. For comparison, conventional intensity modulated radiation therapy (IMRT) and IMPT plans were also created using Eclipse (Varian Medical Systems) in each case. The same critical-structure PD constraints were used for the IMRT, IMPT, and biologically optimized plans. The BD distributions for the IMPT plans were obtained through MC recalculations. Compared with standard IMPT, the biologically optimal plans for patients with small tumor targets displayed a BD escalation that was around twice the PD increase. Dose sparing to critical structures was improved compared with both IMRT and IMPT. No significant BD increase could be achieved for the large thyroid tumor case and when the presence of critical structures mitigated the contribution of additional fields. The calculation of the biologically optimized plans can be completed in a clinically viable time (<30 minutes) on a small 24-GPU system. By exploiting GPU acceleration, MC-based, biologically optimized plans were created for small-tumor target patients. This optimizer will be used in an upcoming
Adjoint-Based Methodology for Time-Dependent Optimization
NASA Technical Reports Server (NTRS)
Yamaleev, N. K.; Diskin, B.; Nielsen, E. J.
2008-01-01
This paper presents a discrete adjoint method for a broad class of time-dependent optimization problems. The time-dependent adjoint equations are derived in terms of the discrete residual of an arbitrary finite volume scheme which approximates unsteady conservation law equations. Although only the 2-D unsteady Euler equations are considered in the present analysis, this time-dependent adjoint method is applicable to the 3-D unsteady Reynolds-averaged Navier-Stokes equations with minor modifications. The discrete adjoint operators involving the derivatives of the discrete residual and the cost functional with respect to the flow variables are computed using a complex-variable approach, which provides discrete consistency and drastically reduces the implementation and debugging cycle. The implementation of the time-dependent adjoint method is validated by comparing the sensitivity derivative with that obtained by forward mode differentiation. Our numerical results show that O(10) optimization iterations of the steepest descent method are needed to reduce the objective functional by 3-6 orders of magnitude for test problems considered.
Time-resolved scanning tunneling microscopy for studies of nanoscale magnetization dynamics
NASA Astrophysics Data System (ADS)
Loth, Sebastian
2015-03-01
The time resolution of the scanning tunneling microscope can be boosted greatly by use of electronic pump probe measurement schemes. Pulse shaping of the input pulses can even overcome bandwidth limitations of the instrument and enables sub-nanosecond time resolution. In this talk we will focus on applications of this technique for measurements of fast spin dynamics in nanomagnets. We use the probe tip of a low-temperature STM to arrange magnetic atoms into arrays of our own design. Thin insulating films decouple the atoms from the supporting metallic substrate so that the nanostructures show quantum-magnetic properties with discrete spin states. The time-domain information gained in pump probe spectroscopy quantifies the spin relaxation between metastable spin states. It enables isolating the interaction between the nanomagnet and its environment. In particular, we find that the magnetic atoms of a spin-polarized STM tip interact significantly with the surface even at moderate tunneling conditions. This interaction acts analogously to a highly localized magnetic field. It depends exponentially on the tip-nanomagnet distance and can reach a strength of several tesla. We use this atomically localized magnetic field to control the spin state mixing of a nanomagnet in an avoided level crossing of low-energy spin states. Furthermore, pump probe spectroscopy enables non-local measurements of magnetic states and highlights pathways to design and control magnetism at the single atom level.
Sun, Jingya; Adhikari, Aniruddha; Shaheen, Basamat S; Yang, Haoze; Mohammed, Omar F
2016-03-17
Selectively capturing the ultrafast dynamics of charge carriers on materials surfaces and at interfaces is crucial to the design of solar cells and optoelectronic devices. Despite extensive research efforts over the past few decades, information and understanding about surface-dynamical processes, including carrier trapping and recombination remains extremely limited. A key challenge is to selectively map such dynamic processes, a capability that is hitherto impractical by time-resolved laser techniques, which are limited by the laser's relatively large penetration depth and consequently these techniques record mainly bulk information. Such surface dynamics can only be mapped in real space and time by applying four-dimensional (4D) scanning ultrafast electron microscopy (S-UEM), which records snapshots of materials surfaces with nanometer spatial and subpicosecond temporal resolutions. In this method, the secondary electron (SE) signal emitted from the sample's surface is extremely sensitive to the surface dynamics and is detected in real time. In several unique applications, we spatially and temporally visualize the SE energy gain and loss, the charge carrier dynamics on the surface of InGaN nanowires and CdSe single crystal and its powder film. We also discuss the mechanisms for the observed dynamics, which will be the foundation for future potential applications of S-UEM to a wide range of studies on material surfaces and device interfaces.
Time-resolved x-ray diffraction and calorimetric studies at low scan rates
Tenchov, Boris G.; Yao, Haruhiko; Hatta, Ichiro
1989-01-01
The phase transitions in fully hydrated dipalmitoylphosphatidylcholine (DPPC) and DPPC/water/ethanol phases have been studied by lowangle time-resolved x-ray diffraction under conditions similar to those employed in calorimetry (scan rates 0.05-0.5°C/min and uniform temperature throughout the samples). This approach provides more adequate characterization of the equilibrium transition pathways and allows for close correlations between structural and thermodynamic data. No coexistence of the rippled gel (Pβ') and liquid-crystalline (Lα) phases was found in the main transition of DPPC; rather, a loss of correlation in the lamellar structure, observed as broadening of the lamellar reflections, takes place in a narrow temperature range of ∼100 mK at the transition midpoint. Formation of a long-living metastable phase, denoted by Pβ'(mst), differing from the initial Pβ' was observed in cooling direction by both x-ray diffraction and calorimetry. No direct conversion of Pβ'(mst) into Pβ' occurs for over 24 h but only by way of the phase sequence Pβ'(mst) → Lβ' → Pβ'. According to differential scanning calorimetry (DSC), the enthalpy of the Pβ'(mst)-Lα transition is by ∼5% lower than that of the Pβ'-Lα transition. The effects of ethanol (Rowe, E. S. 1983. Biochemistry. 22:3299-3305; Simon, S. A., and T. J. McIntosh. 1984. Biochim. Biophys. Acta 773:169-172) on the mechanism and reversibility of the DPPC main transition were clearly visualized. At ethanol concentrations inducing formation of interdigitated gel phase, the main transition proceeds through a coexistence of the initial and final phases over a finite temperature range. During the subtransition in DPPC recorded at scan rate 0.3°C/min, a smooth monotonic increase of the lamellar spacing from its subgel (Lc) to its gel (Lβ') phase value takes place. The width of the lamellar reflections remains unchanged during this transformation. This provides grounds to propose a
Unifying time evolution and optimization with matrix product states
NASA Astrophysics Data System (ADS)
Haegeman, Jutho; Lubich, Christian; Oseledets, Ivan; Vandereycken, Bart; Verstraete, Frank
2016-10-01
We show that the time-dependent variational principle provides a unifying framework for time-evolution methods and optimization methods in the context of matrix product states. In particular, we introduce a new integration scheme for studying time evolution, which can cope with arbitrary Hamiltonians, including those with long-range interactions. Rather than a Suzuki-Trotter splitting of the Hamiltonian, which is the idea behind the adaptive time-dependent density matrix renormalization group method or time-evolving block decimation, our method is based on splitting the projector onto the matrix product state tangent space as it appears in the Dirac-Frenkel time-dependent variational principle. We discuss how the resulting algorithm resembles the density matrix renormalization group (DMRG) algorithm for finding ground states so closely that it can be implemented by changing just a few lines of code and it inherits the same stability and efficiency. In particular, our method is compatible with any Hamiltonian for which ground-state DMRG can be implemented efficiently. In fact, DMRG is obtained as a special case of our scheme for imaginary time evolution with infinite time step.
Laser cooling of electron – ion plasma in the case of optimal scanning of the laser frequency
Gavrilyuk, A P; Isaev, I L
2015-11-30
Laser cooling of ions of electron – ion plasma is studied under the action of spontaneous radiation pressure forces. It is shown that the use of a constant detuning of the laser frequency from the quantum transition frequency w0 in ions significantly limits the conditions under which the ions are cooled. To extend the range of initial temperatures of possible cooling of ions and to increase the cooling efficiency we suggest scanning the laser frequency detuning so that the cooling rate remained maximal in the process of changing the temperature of ions. In the case of an optimal detuning, we have found an asymptotic expression for the cooling rate and identified intervals of electron concentrations and temperatures, where cooling of ions is possible. (interaction of laser radiation with matter. laser plasma)
NASA Astrophysics Data System (ADS)
Kingston, Andrew M.; Myers, Glenn R.; Latham, Shane J.; Li, Heyang; Veldkamp, Jan P.; Sheppard, Adrian P.
2016-10-01
With the GPU computing becoming main-stream, iterative tomographic reconstruction (IR) is becoming a com- putationally viable alternative to traditional single-shot analytical methods such as filtered back-projection. IR liberates one from the continuous X-ray source trajectories required for analytical reconstruction. We present a family of novel X-ray source trajectories for large-angle CBCT. These discrete (sparsely sampled) trajectories optimally fill the space of possible source locations by maximising the degree of mutually independent information. They satisfy a discrete equivalent of Tuy's sufficiency condition and allow high cone-angle (high-flux) tomog- raphy. The highly isotropic nature of the trajectory has several advantages: (1) The average source distance is approximately constant throughout the reconstruction volume, thus avoiding the differential-magnification artefacts that plague high cone-angle helical computed tomography; (2) Reduced streaking artifacts due to e.g. X-ray beam-hardening; (3) Misalignment and component motion manifests as blur in the tomogram rather than double-edges, which is easier to automatically correct; (4) An approximately shift-invariant point-spread-function which enables filtering as a pre-conditioner to speed IR convergence. We describe these space-filling trajectories and demonstrate their above-mentioned properties compared with a traditional helical trajectories.
Optimal Time Allocation in Backscatter Assisted Wireless Powered Communication Networks
Lyu, Bin; Yang, Zhen; Gui, Guan; Sari, Hikmet
2017-01-01
This paper proposes a wireless powered communication network (WPCN) assisted by backscatter communication (BackCom). This model consists of a power station, an information receiver and multiple users that can work in either BackCom mode or harvest-then-transmit (HTT) mode. The time block is mainly divided into two parts corresponding to the data backscattering and transmission periods, respectively. The users first backscatter data to the information receiver in time division multiple access (TDMA) during the data backscattering period. When one user works in the BackCom mode, the other users harvest energy from the power station. During the data transmission period, two schemes, i.e., non-orthogonal multiple access (NOMA) and TDMA, are considered. To maximize the system throughput, the optimal time allocation policies are obtained. Simulation results demonstrate the superiority of the proposed model. PMID:28587171
Prediction-Correction Algorithms for Time-Varying Constrained Optimization
Dall-Anese, Emiliano; Simonetto, Andrea
2017-07-26
This paper develops online algorithms to track solutions of time-varying constrained optimization problems. Particularly, resembling workhorse Kalman filtering-based approaches for dynamical systems, the proposed methods involve prediction-correction steps to provably track the trajectory of the optimal solutions of time-varying convex problems. The merits of existing prediction-correction methods have been shown for unconstrained problems and for setups where computing the inverse of the Hessian of the cost function is computationally affordable. This paper addresses the limitations of existing methods by tackling constrained problems and by designing first-order prediction steps that rely on the Hessian of the cost function (and do notmore » require the computation of its inverse). In addition, the proposed methods are shown to improve the convergence speed of existing prediction-correction methods when applied to unconstrained problems. Numerical simulations corroborate the analytical results and showcase performance and benefits of the proposed algorithms. A realistic application of the proposed method to real-time control of energy resources is presented.« less
Exposure time optimization for highly dynamic star trackers.
Wei, Xinguo; Tan, Wei; Li, Jian; Zhang, Guangjun
2014-03-11
Under highly dynamic conditions, the star-spots on the image sensor of a star tracker move across many pixels during the exposure time, which will reduce star detection sensitivity and increase star location errors. However, this kind of effect can be compensated well by setting an appropriate exposure time. This paper focuses on how exposure time affects the star tracker under highly dynamic conditions and how to determine the most appropriate exposure time for this case. Firstly, the effect of exposure time on star detection sensitivity is analyzed by establishing the dynamic star-spot imaging model. Then the star location error is deduced based on the error analysis of the sub-pixel centroiding algorithm. Combining these analyses, the effect of exposure time on attitude accuracy is finally determined. Some simulations are carried out to validate these effects, and the results show that there are different optimal exposure times for different angular velocities of a star tracker with a given configuration. In addition, the results of night sky experiments using a real star tracker agree with the simulation results. The summarized regularities in this paper should prove helpful in the system design and dynamic performance evaluation of the highly dynamic star trackers.
Exposure Time Optimization for Highly Dynamic Star Trackers
Wei, Xinguo; Tan, Wei; Li, Jian; Zhang, Guangjun
2014-01-01
Under highly dynamic conditions, the star-spots on the image sensor of a star tracker move across many pixels during the exposure time, which will reduce star detection sensitivity and increase star location errors. However, this kind of effect can be compensated well by setting an appropriate exposure time. This paper focuses on how exposure time affects the star tracker under highly dynamic conditions and how to determine the most appropriate exposure time for this case. Firstly, the effect of exposure time on star detection sensitivity is analyzed by establishing the dynamic star-spot imaging model. Then the star location error is deduced based on the error analysis of the sub-pixel centroiding algorithm. Combining these analyses, the effect of exposure time on attitude accuracy is finally determined. Some simulations are carried out to validate these effects, and the results show that there are different optimal exposure times for different angular velocities of a star tracker with a given configuration. In addition, the results of night sky experiments using a real star tracker agree with the simulation results. The summarized regularities in this paper should prove helpful in the system design and dynamic performance evaluation of the highly dynamic star trackers. PMID:24618776
NASA Astrophysics Data System (ADS)
Grosenick, Dirk; Hagen, Axel; Steinkellner, Oliver; Poellinger, Alexander; Burock, Susen; Schlag, Peter M.; Rinneberg, Herbert; Macdonald, Rainer
2011-02-01
We present a scanning time-domain fluorescence mammograph capable to image the distribution of a fluorescent contrast agent within a female breast, slightly compressed between two parallel glass plates, with high sensitivity. Fluorescence of the contrast agent is excited using a near infrared picosecond diode laser module. Four additional picosecond diode lasers with emission wavelengths between 660 and 1066 nm allow to measure the intrinsic optical properties of the breast tissue. By synchronously moving a source fiber and seven detection fiber bundles across the breast, distributions of times of flight of photons are recorded simultaneously for selected source-detector combinations in transmission and reflection geometry either at the fluorescence wavelength or at the selected laser wavelengths. To evaluate the performance of the mammograph, we used breastlike rectangular phantoms comprising fluorescent and absorbing objects using the fluorescent dye Omocyanine as contrast agent excited at 735 nm. We compare two-dimensional imaging of the phantom based on transmission and reflection data. Furthermore, we developed an improved tomosynthesis algorithm which permits three-dimensional reconstruction of fluorescence and absorption properties of lesions with good spatial resolution. For illustration, we present fluorescence mammograms of one patient recorded 30 min after administration of the contrast agent indocyanine green showing the carcinoma at high contrast originating from fluorescence of the extravasated dye, excited at 780 nm.
How does radiology report format impact reading time, comprehension and visual scanning?
NASA Astrophysics Data System (ADS)
Krupinski, Elizabeth A.; Reiner, Bruce; Siegel, Eliot
2014-03-01
The question of whether radiology report format influences reading time, comprehension of information, and/or scannig behavior was examined. Three radiology reports were reformatted to three versions: conventional free text, structured text organized by organ system, and hierarchical structured text organized by clinical significance. Five radiologists, 5 radiology residents, 5 internal medicine clinicians and 5 internal medicine residents read the reports. They then answered a series of questions about the report content. Reading time was recorded. Participants also reported reading preferences. Eye-position was also recorded. There were no significant diffrences for reading time as a function of format, but there was for attending versus resident, and radiology versus internal medicine. There was no significant difference for percent correct scores on the questions for report format or for attending versus resident, but there was for radiology versus internal medicine with the radiologists scoring higher. Eye-position results showed that although patterns tended to be indeosynchratic to readers, there were differences in the overall search patterns as a function of report format, with the free text option yielding more regular scanning and the other two formats yielding more "jumping" from one section to another. Report format does not appear to impact viewing time or percent correct answers, but there are differences in both for specialty and level of experience. There were also differences between the four groups of participants with respect to what they focus on in a radiology report and how they read reports (skim versus read in detail). Eye-position recording also revealed differences in report coverage patterns. The way that radiology reports are read is quite variable as individual preferences differ widely, suggesting that there may not be a single format acceptable to all users.
Solving Globally-Optimal Threading Problems in ''Polynomial-Time''
Uberbacher, E.C.; Xu, D.; Xu, Y.
1999-04-12
Computational protein threading is a powerful technique for recognizing native-like folds of a protein sequence from a protein fold database. In this paper, we present an improved algorithm (over our previous work) for solving the globally-optimal threading problem, and illustrate how the computational complexity and the fold recognition accuracy of the algorithm change as the cutoff distance for pairwise interactions changes. For a given fold of m residues and M core secondary structures (or simply cores) and a protein sequence of n residues, the algorithm guarantees to find a sequence-fold alignment (threading) that is globally optimal, measured collectively by (1) the singleton match fitness, (2) pairwise interaction preference, and (3) alignment gap penalties, in O(mn + MnN{sup 1.5C-1}) time and O(mn + nN{sup C-1}) space. C, the topological complexity of a fold as we term, is a value which characterizes the overall structure of the considered pairwise interactions in the fold, which are typically determined by a specified cutoff distance between the beta carbon atoms of a pair of amino acids in the fold. C is typically a small positive integer. N represents the maximum number of possible alignments between an individual core of the fold and the protein sequence when its neighboring cores are already aligned, and its value is significantly less than n. When interacting amino acids are required to see each other, C is bounded from above by a small integer no matter how large the cutoff distance is. This indicates that the protein threading problem is polynomial-time solvable if the condition of seeing each other between interacting amino acids is sufficient for accurate fold recognition. A number of extensions have been made to our basic threading algorithm to allow finding a globally-optimal threading under various constraints, which include consistencies with (1) specified secondary structures (both cores and loops), (2) disulfide bonds, (3) active sites, etc.
Ramachandra, Ranjan; de Jonge, Niels
2012-01-01
Three-dimensional (3D) data sets were recorded of gold nanoparticles placed on both sides of silicon nitride membranes using focal series aberration-corrected scanning transmission electron microscopy (STEM). The deconvolution of the 3D datasets was optimized to obtain the highest possible axial resolution. The deconvolution involved two different point spread function (PSF)s, each calculated iteratively via blind deconvolution.. Supporting membranes of different thicknesses were tested to study the effect of beam broadening on the deconvolution. It was found that several iterations of deconvolution was efficient in reducing the imaging noise. With an increasing number of iterations, the axial resolution was increased, and most of the structural information was preserved. Additional iterations improved the axial resolution by maximal a factor of 4 to 6, depending on the particular dataset, and up to 8 nm maximal, but at the cost of a reduction of the lateral size of the nanoparticles in the image. Thus, the deconvolution procedure optimized for highest axial resolution is best suited for applications where one is interested in the 3D locations of nanoparticles only. PMID:22152090
Optimal spacecraft rendezvous by minimum velocity change and wait time
NASA Astrophysics Data System (ADS)
Oghim, Snyoll; Mok, Sung-Hoon; Leeghim, Henzeh
2017-09-01
An optimization problem is investigated in this paper to obtain a minimum velocity change, sometimes called as minimum-energy, to rendezvous a target spacecraft. The problem formulation starts with known initial positions and velocity vectors of two spacecraft, so-called target and chaser, respectively. The Kepler's time-of-flight equation in terms of the universal variables and the relationship between final position vectors of the two spacecraft are posed as constraints. Three-dimensional orbital information is obtained by using the f and g solution that called the Lagrange coefficients. One of advantages for the universal variables is that it provides total orbital information valid for all conic orbits without much numerical difficulty. The wait time concept is also employed to release the magnitude of velocity changes by minimizing the performance index. Finally, these techniques are demonstrated using numerical simulations.
Optimizing timing performance of silicon photomultiplier-based scintillation detectors.
Yeom, Jung Yeol; Vinke, Ruud; Levin, Craig S
2013-02-21
Precise timing resolution is crucial for applications requiring photon time-of-flight (ToF) information such as ToF positron emission tomography (PET). Silicon photomultipliers (SiPM) for PET, with their high output capacitance, are known to require custom preamplifiers to optimize timing performance. In this paper, we describe simple alternative front-end electronics based on a commercial low-noise RF preamplifier and methods that have been implemented to achieve excellent timing resolution. Two radiation detectors with L(Y)SO scintillators coupled to Hamamatsu SiPMs (MPPC S10362-33-050C) and front-end electronics based on an RF amplifier (MAR-3SM+), typically used for wireless applications that require minimal additional circuitry, have been fabricated. These detectors were used to detect annihilation photons from a Ge-68 source and the output signals were subsequently digitized by a high speed oscilloscope for offline processing. A coincident resolving time (CRT) of 147 ± 3 ps FWHM and 186 ± 3 ps FWHM with 3 × 3 × 5 mm(3) and with 3 × 3 × 20 mm(3) LYSO crystal elements were measured, respectively. With smaller 2 × 2 × 3 mm(3) LSO crystals, a CRT of 125 ± 2 ps FWHM was achieved with slight improvement to 121 ± 3 ps at a lower temperature (15° C). Finally, with the 20 mm length crystals, a degradation of timing resolution was observed for annihilation photon interactions that occur close to the photosensor compared to shallow depth-of-interaction (DOI). We conclude that commercial RF amplifiers optimized for noise, besides their ease of use, can produce excellent timing resolution comparable to best reported values acquired with custom readout electronics. On the other hand, as timing performance degrades with increasing photon DOI, a head-on detector configuration will produce better CRT than a side-irradiated setup for longer crystals.
Computing Finite-Time Lyapunov Exponents with Optimally Time Dependent Reduction
NASA Astrophysics Data System (ADS)
Babaee, Hessam; Farazmand, Mohammad; Sapsis, Themis; Haller, George
2016-11-01
We present a method to compute Finite-Time Lyapunov Exponents (FTLE) of a dynamical system using Optimally Time-Dependent (OTD) reduction recently introduced by H. Babaee and T. P. Sapsis. The OTD modes are a set of finite-dimensional, time-dependent, orthonormal basis {ui (x , t) } |i=1N that capture the directions associated with transient instabilities. The evolution equation of the OTD modes is derived from a minimization principle that optimally approximates the most unstable directions over finite times. To compute the FTLE, we evolve a single OTD mode along with the nonlinear dynamics. We approximate the FTLE from the reduced system obtained from projecting the instantaneous linearized dynamics onto the OTD mode. This results in a significant reduction in the computational cost compared to conventional methods for computing FTLE. We demonstrate the efficiency of our method for double Gyre and ABC flows. ARO project 66710-EG-YIP.
Time Scale Optimization and the Hunt for Astronomical Cycles in Deep Time Strata
NASA Astrophysics Data System (ADS)
Meyers, Stephen R.
2016-04-01
A valuable attribute of astrochronology is the direct link between chronometer and climate change, providing a remarkable opportunity to constrain the evolution of the surficial Earth System. Consequently, the hunt for astronomical cycles in strata has spurred the development of a rich conceptual framework for climatic/oceanographic change, and has allowed exploration of the geologic record with unprecedented temporal resolution. Accompanying these successes, however, has been a persistent skepticism about appropriate astrochronologic testing and circular reasoning: how does one reliably test for astronomical cycles in stratigraphic data, especially when time is poorly constrained? From this perspective, it would seem that the merits and promise of astrochronology (e.g., a geologic time scale measured in ≤400 kyr increments) also serves as its Achilles heel, if the confirmation of such short rhythms defies rigorous statistical testing. To address these statistical challenges in astrochronologic testing, a new approach has been developed that (1) explicitly evaluates time scale uncertainty, (2) is resilient to common problems associated with spectrum confidence level assessment and 'multiple testing', and (3) achieves high statistical power under a wide range of conditions (it can identify astronomical cycles when present in data). Designated TimeOpt (for "time scale optimization"; Meyers 2015), the method employs a probabilistic linear regression model framework to investigate amplitude modulation and frequency ratios (bundling) in stratigraphic data, while simultaneously determining the optimal time scale. This presentation will review the TimeOpt method, and demonstrate how the flexible statistical framework can be further extended to evaluate (and optimize upon) complex sedimentation rate models, enhancing the statistical power of the approach, and addressing the challenge of unsteady sedimentation. Meyers, S. R. (2015), The evaluation of eccentricity
Optimal real-time estimation in diffusion tensor imaging
Casaseca-de-la-Higuera, Pablo; Tristán-Vega, Antonio; Aja-Fernández, Santiago; Alberola-López, Carlos; Westin, Carl-Fredrik; Estépar, Raúl San José
2013-01-01
Diffusion tensor imaging (DTI) constitutes the most used paradigm among the diffusion-weighted magnetic resonance imaging (DW-MRI) techniques due to its simplicity and application potential. Recently, real-time estimation in DW-MRI has deserved special attention, with several proposals aiming at the estimation of meaningful diffusion parameters during the repetition time of the acquisition sequence. Specifically focusing on DTI, the underlying model of the noise present in the acquired data is not taken into account, leading to a suboptimal estimation of the diffusion tensor. In this paper, we propose an optimal real-time estimation framework for DTI reconstruction in single-coil acquisitions. By including an online estimation of the time-changing noise variance associated to the acquisition process, the proposed method achieves the sequential best linear unbiased estimator. Results on both synthetic and real data show that our method outperforms those so far proposed, reaching the best performance of the existing proposals by processing a substantially lower number of diffusion images. PMID:22305020
Maximum-likelihood estimation optimizer for constrained, time-optimal satellite reorientation
NASA Astrophysics Data System (ADS)
Melton, Robert G.
2014-10-01
The Covariance Matrix Adaptation-Evolutionary Strategy (CMA-ES) method provides a high-quality estimate of the control solution for an unconstrained satellite reorientation problem, and rapid, useful guesses needed for high-fidelity methods that can solve time-optimal reorientation problems with multiple path constraints. The CMA-ES algorithm offers two significant advantages over heuristic methods such as Particle Swarm or Bacteria Foraging Optimisation: it builds an approximation to the covariance matrix for the cost function, and uses that to determine a direction of maximum likelihood for the search, reducing the chance of stagnation; and it achieves second-order, quasi-Newton convergence behaviour.
Hyperspectral waveband group optimization for time-resolved human sensing
NASA Astrophysics Data System (ADS)
Kaur, Balvinder; Hodgkin, Van A.; Nelson, Jill K.; Ikonomidou, Vasiliki N.; Hutchinson, J. Andrew
2013-05-01
Pulse and respiration rates provide vital information for evaluating the physiological state of an individual during triage. Traditionally, pulse and respiration have been tracked by means of contact sensors. Recent work has shown that visible cameras can passively and remotely obtain pulse signals under controlled environmental conditions [2] [5] [14] [27]. This paper introduces methods for extracting and characterizing pulse and respiration signals from skin reflectivity data captured in peak sensitivity range for silicon detector (400nm-1100nm). Based on the physiological understanding [12] [13] [15] of human skin and reflectivity at various skin depths, we optimize a group of spectral bands to determine pulse and respiration with high Peak Signal-to-Noise Ratio (PSNR) and correlation values [27] [30]. Our preliminary results indicate top six optimal waveband groups in about 100nm - 200nm resolution in each, with rank-ordered peaks at 409nm, 512nm, 584nm, 667nm, 885nm and 772nm. This work, collected under an approved IRB protocol enhances non-contact, remote, passive, and real-time measurement of pulse and respiration for security and medical applications.
Discrete-Time ARMAv Model-Based Optimal Sensor Placement
Song Wei; Dyke, Shirley J.
2008-07-08
This paper concentrates on the optimal sensor placement problem in ambient vibration based structural health monitoring. More specifically, the paper examines the covariance of estimated parameters during system identification using auto-regressive and moving average vector (ARMAv) model. By utilizing the discrete-time steady state Kalman filter, this paper realizes the structure's finite element (FE) model under broad-band white noise excitations using an ARMAv model. Based on the asymptotic distribution of the parameter estimates of the ARMAv model, both a theoretical closed form and a numerical estimate form of the covariance of the estimates are obtained. Introducing the information entropy (differential entropy) measure, as well as various matrix norms, this paper attempts to find a reasonable measure to the uncertainties embedded in the ARMAv model estimates. Thus, it is possible to select the optimal sensor placement that would lead to the smallest uncertainties during the ARMAv identification process. Two numerical examples are provided to demonstrate the methodology and compare the sensor placement results upon various measures.
Concepts and Analyses in the CT Scanning of Root Systems and Leaf Canopies: A Timely Summary
Lafond, Jonathan A.; Han, Liwen; Dutilleul, Pierre
2015-01-01
Non-medical applications of computed tomography (CT) scanning have flourished in recent years, including in Plant Science. This Perspective article on CT scanning of root systems and leaf canopies is intended to be of interest to three categories of readers: those who have not yet tried plant CT scanning, and should find inspiration for new research objectives; readers who are on the learning curve with applications—here is helpful advice for them; and researchers with greater experience—the field is evolving quickly and it is easy to miss aspects. Our conclusion is that CT scanning of roots and canopies is highly demanding in terms of technology, multidisciplinarity and big-data analysis, to name a few areas of expertise, but eventually, the reward for researchers is directly proportional! PMID:26734022
Scanning-electron-microscope used in real-time study of friction and wear
NASA Technical Reports Server (NTRS)
Brainard, W. A.; Buckley, D. H.
1975-01-01
Small friction and wear apparatus built directly into scanning-electron-microscope provides both dynamic observation and microscopic view of wear process. Friction and wear tests conducted using this system have indicated that considerable information can readily be gained.
NASA Astrophysics Data System (ADS)
Callender, Kennard
The signature-based radiation scanning (SBRS) technique can be used to rapidly detect nitrogen-rich explosives at standoff distances. This technique uses a template-matching procedure that produces a figure-of-merit (FOM) whose value is used to distinguish between inert and explosive materials. The present study develops a tiered-filter implementation of the signature-based radiation scanning technique, which reduces the number of templates needed. This approach starts by calculating a normalized FOM between signatures from an unknown target and an explosive template through stages or tiers (nitrogen first, then oxygen, then carbon, and finally hydrogen). If the normalized FOM is greater than a specified cut-off value for any of the tiers, the target signatures are considered not to match that specific template and the process is repeated for the next explosive template until all of the relevant templates have been considered. If a target's signatures match all the tiers of a single template, then the target is assumed to contain an explosive. The tiered filter approach uses eight elements to construct artificial explosive-templates that have the function of representing explosives cluttered with real materials. The feasibility of the artificial template approach to systematically build a library of templates that successfully differentiates explosive targets from inert ones in the presence of clutter and under different geometric configurations was explored. In total, 10 different geometric configurations were simulated and analyzed using the MCNP5 code. For each configuration, 51 different inert materials were used as inert samples and as clutter in front of the explosive cyclonite (RDX). The geometric configurations consisted of different explosive volumes, clutter thicknesses, and distances of the clutter from the neutron source. Additionally, an objective function was developed to optimize the parameters that maximize the sensitivity and specificity of the
Kiely, J Blanco; White, B; Both, S
2015-06-15
Purpose: The ability of pencil beam scanning (PBS) to deliver highly conformal dose distributions may be affected by patient- and physics-related uncertainties. In clinical practice, selection of proton beam angles is determined qualitatively. This study investigates whether an optimal proton PBS beam angle could be quantitatively determined to ensure robust planning for pelvic targets. Methods: PBS beam angles were optimized based on two independent criteria; shortest and most homogeneous path from the patient surface to the distal edge of the target. The beam angle optimization criteria for gantry angles between 90°-270° were quantified in 10° increments for each ray, calculated as the straight line distance from the surface of the skin to the CTV’s distal edge. The goal was to minimize the path length of a proton PBS beam from the patient surface to the distal edge of the CTV, relative to the entry point, while minimizing HU inhomogeneity along the ray. HU homogeneity (i.e. HU variation) was quantitatively defined as the standard deviation of the average intra-ray HU intensity distribution of the rays comprising a single beam. This method was validated relative to inter-fraction changes on ten consecutive, locally advanced, rectal cancer patients, who underwent an average 4 verification CTs. The displacement of the 95–98% isodose lines was determined from forward calculated dose distributions on verification CTs. Results: The posterior beam (180°) had the average shortest path length, 132.7±17.2mm, and the most homogenous path, 31.9±4.3HU. The 95–98% isodose lines from all plans verified our path length to within 2.3±1.2% and HU homogeneity to within 1.2±0.5%. Conclusion: The proposed optimization algorithm determined the posterior beam dose distribution as the most robust relative to inter-fraction variation for large pelvic targets treated with PBS and was validated via verification CT for our patient cohort. Future work will focus on further
Optimizing accu time-of-flight/direct analysis in real time for explosive residue analysis.
Swider, Joseph R
2013-11-01
The use of a direct analysis in real time (DART) mass spectrometer (MS) instrument was optimized for 22 compounds of organic explosive residues to provide a guide for DART-MS users in rapid screening of explosive compounds. Samples were introduced as neat solutions and sequential dilutions to determine optimal instrument conditions and lowest concentration detectable. Most compounds were optimized to 250°C in the negative ion mode, and several compounds benefited from the addition of a chloride dopant from methylene chloride (amino-dinitrotoluenes, RDX, EGDN, and PETN). Few compounds were more sensitive in the positive ion mode (TEGDN, DEGDN, HNS, and DMNB). Mixtures of compounds were detected using clean room wipes, directly from their surfaces and from subsequent extractions. Compounds from the mixtures were also successfully detected in soil and from swipes of spiked surfaces. The instrument showed merit in detection of pg/μL solutions for most of the compounds and among the substrates tested.
Optimizing functional network representation of multivariate time series.
Zanin, Massimiliano; Sousa, Pedro; Papo, David; Bajo, Ricardo; García-Prieto, Juan; del Pozo, Francisco; Menasalvas, Ernestina; Boccaletti, Stefano
2012-01-01
By combining complex network theory and data mining techniques, we provide objective criteria for optimization of the functional network representation of generic multivariate time series. In particular, we propose a method for the principled selection of the threshold value for functional network reconstruction from raw data, and for proper identification of the network's indicators that unveil the most discriminative information on the system for classification purposes. We illustrate our method by analysing networks of functional brain activity of healthy subjects, and patients suffering from Mild Cognitive Impairment, an intermediate stage between the expected cognitive decline of normal aging and the more pronounced decline of dementia. We discuss extensions of the scope of the proposed methodology to network engineering purposes, and to other data mining tasks.
Optimizing Functional Network Representation of Multivariate Time Series
Zanin, Massimiliano; Sousa, Pedro; Papo, David; Bajo, Ricardo; García-Prieto, Juan; Pozo, Francisco del; Menasalvas, Ernestina; Boccaletti, Stefano
2012-01-01
By combining complex network theory and data mining techniques, we provide objective criteria for optimization of the functional network representation of generic multivariate time series. In particular, we propose a method for the principled selection of the threshold value for functional network reconstruction from raw data, and for proper identification of the network's indicators that unveil the most discriminative information on the system for classification purposes. We illustrate our method by analysing networks of functional brain activity of healthy subjects, and patients suffering from Mild Cognitive Impairment, an intermediate stage between the expected cognitive decline of normal aging and the more pronounced decline of dementia. We discuss extensions of the scope of the proposed methodology to network engineering purposes, and to other data mining tasks. PMID:22953051
Time-optimal chaos control by center manifold targeting.
Starrett, John
2002-10-01
Ott-Grebogi-Yorke control and its map-based variants work by targeting the (linear) stable subspace of the target orbit so that after one application of the control the system will be in this subspace. I propose an n-step variation, where n is the dimension of the system, that sends any initial condition in a controllable region directly to the target orbit instead of its stable subspace. This method is time optimal, in that, up to modeling and measurement error, the system is completely controlled after n iterations of the control procedure. I demonstrate the procedure using a piecewise linear and a nonlinear two-dimensional map, and indicate how the technique may be extended to maps and flows of higher dimension.
Optimizing Functional Network Representation of Multivariate Time Series
NASA Astrophysics Data System (ADS)
Zanin, Massimiliano; Sousa, Pedro; Papo, David; Bajo, Ricardo; García-Prieto, Juan; Pozo, Francisco Del; Menasalvas, Ernestina; Boccaletti, Stefano
2012-09-01
By combining complex network theory and data mining techniques, we provide objective criteria for optimization of the functional network representation of generic multivariate time series. In particular, we propose a method for the principled selection of the threshold value for functional network reconstruction from raw data, and for proper identification of the network's indicators that unveil the most discriminative information on the system for classification purposes. We illustrate our method by analysing networks of functional brain activity of healthy subjects, and patients suffering from Mild Cognitive Impairment, an intermediate stage between the expected cognitive decline of normal aging and the more pronounced decline of dementia. We discuss extensions of the scope of the proposed methodology to network engineering purposes, and to other data mining tasks.
Likelihood scan of the Super-Kamiokande I time series data
Ranucci, Gioacchino
2006-05-15
In this work a detailed spectral analysis of the time series of the {sup 8}B solar neutrino flux published by the Super-Kamiokande Collaboration is presented, performed through a likelihood scan approach. Preliminarily a careful review of the analysis methodology is given, showing that the traditional periodicity search via the Lomb-Scargle periodogram is a special case of a more general likelihood based method. Since the data are published together with the relevant asymmetric errors, it is then shown how the likelihood analysis can be performed either with or without a prior error averaging. A key point of this work is the detailed illustration of the mathematical model describing the statistical properties of the estimated spectra obtained in the various cases, which is also validated through extensive Monte Carlo computations; the model includes a calculation for the prediction of the possible alias effects. In the successive investigation of the data, such a model is used to derive objective, mathematical predictions which are quantitatively compared with the features observed in the experimental spectra. This article clearly demonstrates that the handling of the errors is the origin of the discrepancy between published null observations and claimed significant periodicity in the same SK-I data sample. Moreover, the comprehensive likelihood analysis with asymmetric errors developed in this work provides results which cannot exclude the null hypothesis of constant rate, even though some indications stemming from the model at odd with such conclusion point towards the desirability of additional investigations with alternative methods to shed further light on the characteristics of the data.
Forward Collision Warning: Clues to Optimal Timing of Advisory Warnings.
Aksan, Nazan; Sager, Lauren; Hacker, Sarah; Marini, Robert; Dawson, Jeffrey; Anderson, Steven; Rizzo, Matthew
2016-04-01
We examined the effectiveness of a heads-up Forward Collision Warning (FCW) system in 39 younger to middle aged drivers (25-50, mean = 35 years) and 37 older drivers (66-87, mean = 77 years). The warnings were implemented in a fixed based, immersive, 180 degree forward field of view simulator. The FCW included a visual advisory component consisting of a red horizontal bar which flashed in the center screen of the simulator that was triggered at time-to-collision (TTC) 4 seconds. The bar roughly overlapped the rear bumper of the lead vehicle, just below the driver's line-of-sight. A sustained auditory tone (~80 dB) was activated at TTC=2 to alert the driver to an imminent collision. Hence, the warning system differed from the industry standard in significant ways. 95% Confidence intervals for the safety gains ranged from -.03 to .19 seconds in terms of average correction time across several activations. Older and younger adults did not differ in terms of safety gains. Closer inspection of data revealed that younger to middle aged drivers were already braking (42%) on a larger proportion of FCW activations than older drivers (26%), p < .001. Conversely, older drivers were still accelerating (38%) on a larger proportion of FCW activations than younger to middle aged drivers (23%) at the time FCW was activated, p < .009. There were no differences in the proportion of activations when drivers were coasting at the time FCW was activated, p = .240. Furthermore, large individual differences in basic visual, motor, and cognitive function predicted the tendency to brake prior to FCW activation. Those who tended to be better functioning in each of these domains were more likely to be already braking prior to FCW activation at the fixed threshold of TTC=4. These findings suggest optimal timing for advisory alerts for forward events may need to be larger than TTC=4.
Aloisi, G.; Bacci, F.; Carla, M.; Dolci, D.; Lanzi, L.
2008-11-15
A software package has been developed to implement the real time feedback control loop needed in scanning probe microscopy on a general purpose desktop computer of the current high-speed/multicore generation. The main features of the implementation of both the feedback loop and the control of the experiment on the same computer are discussed. The package can work with several general purpose data acquisition boards and can be extended in a modular way to further board models; timing performance has been tested with several hardware configurations and some applications common in scanning probe microscopy. The package is available under an Open Source license.
NASA Astrophysics Data System (ADS)
Umezawa, Masumi; Fujimoto, Rintaro; Umekawa, Tooru; Fujii, Yuusuke; Takayanagi, Taisuke; Ebina, Futaro; Aoki, Takamichi; Nagamine, Yoshihiko; Matsuda, Koji; Hiramoto, Kazuo; Matsuura, Taeko; Miyamoto, Naoki; Nihongi, Hideaki; Umegaki, Kikuo; Shirato, Hiroki
2013-04-01
Hokkaido University and Hitachi Ltd. have started joint development of the Gated Spot Scanning Proton Therapy with Real-Time Tumor-Tracking System by integrating real-time tumor tracking technology (RTRT) and the proton therapy system dedicated to discrete spot scanning techniques under the "Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program)". In this development, we have designed the synchrotron-based accelerator system by using the advantages of the spot scanning technique in order to realize a more compact and lower cost proton therapy system than the conventional system. In the gated irradiation, we have focused on the issues to maximize irradiation efficiency and minimize the dose errors caused by organ motion. In order to understand the interplay effect between scanning beam delivery and target motion, we conducted a simulation study. The newly designed system consists of the synchrotron, beam transport system, one compact rotating gantry treatment room with robotic couch, and one experimental room for future research. To improve the irradiation efficiency, the new control function which enables multiple gated irradiations per synchrotron cycle has been applied and its efficacy was confirmed by the irradiation time estimation. As for the interplay effect, we confirmed that the selection of a strict gating width and scan direction enables formation of the uniform dose distribution.
Shattock, Andrew J; Kerr, Cliff C; Stuart, Robyn M; Masaki, Emiko; Fraser, Nicole; Benedikt, Clemens; Gorgens, Marelize; Wilson, David P; Gray, Richard T
2016-01-01
Introduction International investment in the response to HIV and AIDS has plateaued and its future level is uncertain. With many countries committed to ending the epidemic, it is essential to allocate available resources efficiently over different response periods to maximize impact. The objective of this study is to propose a technique to determine the optimal allocation of funds over time across a set of HIV programmes to achieve desirable health outcomes. Methods We developed a technique to determine the optimal time-varying allocation of funds (1) when the future annual HIV budget is pre-defined and (2) when the total budget over a period is pre-defined, but the year-on-year budget is to be optimally determined. We use this methodology with Optima, an HIV transmission model that uses non-linear relationships between programme spending and associated programmatic outcomes to quantify the expected epidemiological impact of spending. We apply these methods to data collected from Zambia to determine the optimal distribution of resources to fund the right programmes, for the right people, at the right time. Results and discussion Considering realistic implementation and ethical constraints, we estimate that the optimal time-varying redistribution of the 2014 Zambian HIV budget between 2015 and 2025 will lead to a 7.6% (7.3% to 7.8%) decrease in cumulative new HIV infections compared with a baseline scenario where programme allocations remain at 2014 levels. This compares to a 5.1% (4.6% to 5.6%) reduction in new infections using an optimal allocation with constant programme spending that recommends unrealistic programmatic changes. Contrasting priorities for programme funding arise when assessing outcomes for a five-year funding period over 5-, 10- and 20-year time horizons. Conclusions Countries increasingly face the need to do more with the resources available. The methodology presented here can aid decision-makers in planning as to when to expand or contract
Ramachandra, Ranjan; de Jonge, Niels
2012-02-01
Three-dimensional (3D) datasets were recorded of gold nanoparticles placed on both sides of silicon nitride membranes using focal series aberration-corrected scanning transmission electron microscopy (STEM). Deconvolution of the 3D datasets was applied to obtain the highest possible axial resolution. The deconvolution involved two different point spread functions, each calculated iteratively via blind deconvolution. Supporting membranes of different thicknesses were tested to study the effect of beam broadening on the deconvolution. It was found that several iterations of deconvolution was efficient in reducing the imaging noise. With an increasing number of iterations, the axial resolution was increased, and most of the structural information was preserved. Additional iterations improved the axial resolution by maximal a factor of 4 to 6, depending on the particular dataset, and up to 8 nm maximal, but also led to a reduction of the lateral size of the nanoparticles in the image. Thus, the deconvolution procedure optimized for the highest axial resolution is best suited for applications where one is interested in the 3D locations of nanoparticles only.
NASA Astrophysics Data System (ADS)
Mendoza, Carlos S.; Safdar, Nabile; Myers, Emmarie; Kittisarapong, Tanakorn; Rogers, Gary F.; Linguraru, Marius George
2013-02-01
Craniosynostosis (premature fusion of skull sutures) is a severe condition present in one of every 2000 newborns. Metopic craniosynostosis, accounting for 20-27% of cases, is diagnosed qualitatively in terms of skull shape abnormality, a subjective call of the surgeon. In this paper we introduce a new quantitative diagnostic feature for metopic craniosynostosis derived optimally from shape analysis of CT scans of the skull. We built a robust shape analysis pipeline that is capable of obtaining local shape differences in comparison to normal anatomy. Spatial normalization using 7-degree-of-freedom registration of the base of the skull is followed by a novel bone labeling strategy based on graph-cuts according to labeling priors. The statistical shape model built from 94 normal subjects allows matching a patient's anatomy to its most similar normal subject. Subsequently, the computation of local malformations from a normal subject allows characterization of the points of maximum malformation on each of the frontal bones adjacent to the metopic suture, and on the suture itself. Our results show that the malformations at these locations vary significantly (p<0.001) between abnormal/normal subjects and that an accurate diagnosis can be achieved using linear regression from these automatic measurements with an area under the curve for the receiver operating characteristic of 0.97.
Optimal Planet Properties For Plate Tectonics Through Time And Space
NASA Astrophysics Data System (ADS)
Stamenkovic, Vlada; Seager, Sara
2014-11-01
Both the time and the location of planet formation shape a rocky planet’s mass, interior composition and structure, and hence also its tectonic mode. The tectonic mode of a planet can vary between two end-member solutions, plate tectonics and stagnant lid convection, and does significantly impact outgassing and biogeochemical cycles on any rocky planet. Therefore, estimating how the tectonic mode of a planet is affected by a planet’s age, mass, structure, and composition is a major step towards understanding habitability of exoplanets and geophysical false positives to biosignature gases. We connect geophysics to astronomy in order to understand how we could identify and where we could find planet candidates with optimal conditions for plate tectonics. To achieve this goal, we use thermal evolution models, account for the current wide range of uncertainties, and simulate various alien planets. Based on our best model estimates, we predict that the ideal targets for plate tectonics are oxygen-dominated (C/O<1) (solar system like) rocky planets of ~1 Earth mass with surface oceans, large metallic cores super-Mercury, rocky body densities of ~7000kgm-3), and with small mantle concentrations of iron 0%), water 0%), and radiogenic isotopes 10 times less than Earth). Super-Earths, undifferentiated planets, and especially hypothetical carbon planets, speculated to consist of SiC and C, are not optimal for the occurrence of plate tectonics. These results put Earth close to an ideal compositional and structural configuration for plate tectonics. Moreover, the results indicate that plate tectonics might have never existed on planets formed soon after the Big Bang—but instead is favored on planets formed from an evolved interstellar medium enriched in iron but depleted in silicon, oxygen, and especially in Th, K, and U relative to iron. This possibly sets a belated Galactic start for complex Earth-like surface life if plate tectonics significantly impacts the build up
NASA Astrophysics Data System (ADS)
Rueck, Angelika; Dolp, Frank; Scalfi-Happ, Claudia; Steiner, Rudolf W.; Beil, Michael
2003-10-01
A setup consisting on a laser scanning microscope equipped with appropriate detection units was developed for time-resolved intracellular fluorescence spectroscopy and fluorescence lifetime imaging (FLIM) for online detection of structural changes of various biomolecules. Short-pulsed excitation was performed with a diode laser which emits pulses at 398 nm with 70 ps duration. The laser was coupled to the laser scanning microscope. For time resolved spectroscopy a setup consisting on a Czerny Turner spectrometer and a MCP-gated and -intensified CCD camera was used. Time-gated spectra within the cells were acquired by placing the laser beam in "spot scan" mode. In addition, a time-correlated single photon counting module (TCSPC) was used to determine the fluorescence lifetime from single spots and to record lifetime images (τ-mapping). To prove and calibrate the system, the time-resolved fluorescence characteristics of the mitochondrial marker Rhodamine 123 and 5-ALA (5-aminolevulinic-acid), as well as 5-ALAhe (5-aminolevulinic-acidhexylester)- induced protoporphyrine IX (PPIX) were investigated in solution and in cell culture. Different lifetimes could be found in different cell compartiments. During illumination, the lifetimes decreased significantly. From photobleaching experiments different metabolites of 5-ALA could be correlated with different fluorescence lifetimes. In conclusion FLIM, using ps diode lasers and TCSPC techniques is a valuable method to selectively identify and localize various metabolites of fluorescent probes during laser scanning microscopy.
Design Time Optimization for Hardware Watermarking Protection of HDL Designs
Castillo, E.; Morales, D. P.; García, A.; Parrilla, L.; Todorovich, E.; Meyer-Baese, U.
2015-01-01
HDL-level design offers important advantages for the application of watermarking to IP cores, but its complexity also requires tools automating these watermarking algorithms. A new tool for signature distribution through combinational logic is proposed in this work. IPP@HDL, a previously proposed high-level watermarking technique, has been employed for evaluating the tool. IPP@HDL relies on spreading the bits of a digital signature at the HDL design level using combinational logic included within the original system. The development of this new tool for the signature distribution has not only extended and eased the applicability of this IPP technique, but it has also improved the signature hosting process itself. Three algorithms were studied in order to develop this automated tool. The selection of a cost function determines the best hosting solutions in terms of area and performance penalties on the IP core to protect. An 1D-DWT core and MD5 and SHA1 digital signatures were used in order to illustrate the benefits of the new tool and its optimization related to the extraction logic resources. Among the proposed algorithms, the alternative based on simulated annealing reduces the additional resources while maintaining an acceptable computation time and also saving designer effort and time. PMID:25861681
Optimization of Exposure Time Division for Multi-object Photometry
NASA Astrophysics Data System (ADS)
Popowicz, Adam; Kurek, Aleksander R.
2017-09-01
Optical observations of wide fields of view entail the problem of selecting the best exposure time. As many objects are usually observed simultaneously, the quality of photometry of the brightest ones is always better than that of the dimmer ones, even though all of them are frequently equally interesting for astronomers. Thus, measuring all objects with the highest possible precision is desirable. In this paper, we present a new optimization algorithm, dedicated for the division of exposure time into sub-exposures, which enables photometry with a more balanced noise budget. The proposed technique increases the photometric precision of dimmer objects at the expense of the measurement fidelity of the brightest ones. We have tested the method on real observations using two telescope setups, demonstrating its usefulness and good consistency with theoretical expectations. The main application of our approach is a wide range of sky surveys, including ones performed by space telescopes. The method can be used to plan virtually any photometric observation of objects that show a wide range of magnitudes.
Design time optimization for hardware watermarking protection of HDL designs.
Castillo, E; Morales, D P; García, A; Parrilla, L; Todorovich, E; Meyer-Baese, U
2015-01-01
HDL-level design offers important advantages for the application of watermarking to IP cores, but its complexity also requires tools automating these watermarking algorithms. A new tool for signature distribution through combinational logic is proposed in this work. IPP@HDL, a previously proposed high-level watermarking technique, has been employed for evaluating the tool. IPP@HDL relies on spreading the bits of a digital signature at the HDL design level using combinational logic included within the original system. The development of this new tool for the signature distribution has not only extended and eased the applicability of this IPP technique, but it has also improved the signature hosting process itself. Three algorithms were studied in order to develop this automated tool. The selection of a cost function determines the best hosting solutions in terms of area and performance penalties on the IP core to protect. An 1D-DWT core and MD5 and SHA1 digital signatures were used in order to illustrate the benefits of the new tool and its optimization related to the extraction logic resources. Among the proposed algorithms, the alternative based on simulated annealing reduces the additional resources while maintaining an acceptable computation time and also saving designer effort and time.
Inversion of generalized relaxation time distributions with optimized damping parameter
NASA Astrophysics Data System (ADS)
Florsch, Nicolas; Revil, André; Camerlynck, Christian
2014-10-01
Retrieving the Relaxation Time Distribution (RDT), the Grains Size Distribution (GSD) or the Pore Size Distribution (PSD) from low-frequency impedance spectra is a major goal in geophysics. The “Generalized RTD” generalizes parametric models like Cole-Cole and many others, but remains tricky to invert since this inverse problem is ill-posed. We propose to use generalized relaxation basis function (for instance by decomposing the spectra on basis of generalized Cole-Cole relaxation elements instead of the classical Debye basis) and to use the L-curve approach to optimize the damping parameter required to get smooth and realistic inverse solutions. We apply our algorithm to three examples, one synthetic and two real data sets, and the program includes the possibility of converting the RTD into GSD or PSD by choosing the value of the constant connecting the relaxation time to the characteristic polarization size of interest. A high frequencies (typically above 1 kHz), a dielectric term in taken into account in the model. The code is provided as an open Matlab source as a supplementary file associated with this paper.
Optimal timing for antihypertensive dosing: focus on valsartan
Hermida, Ramón C; Ayala, Diana E; Calvo, Carlos
2007-01-01
Some specific features of the 24 h blood pressure (BP) pattern are linked to the progressive injury of target tissues and the triggering of cardiac and cerebrovascular events. In particular, many studies show the extent of the nocturnal BP decline relative to the diurnal BP mean (the diurnal/nocturnal ratio, an index of BP dipping) is deterministic of cardiovascular injury and risk. Normalization of the circadian BP pattern is considered to be an important clinical goal of pharmacotherapy because it may slow the advance of renal injury and avert end-stage renal failure. The chronotherapy of hypertension takes into account the epidemiology of the BP pattern, plus potential administration-time determinants of the pharmacokinetics and dynamics of antihypertensive medications, as a means of enhancing beneficial outcomes and/or attenuating or averting adverse effects. Thus, bedtime dosing with nifedipine gastrointestinal therapeutic system (GITS) is more effective than morning dosing, while also reducing significantly secondary effects. The dose-response curve, therapeutic coverage, and efficacy of doxazosin GITS are all markedly dependent on the circadian time of drug administration. Moreover, valsartan administration at bedtime as opposed to upon wakening results in improved diurnal/nocturnal ratio, a significant increase in the percentage of patients with controlled BP after treatment, and significant reductions in urinary albumin excretion and plasma fibrinogen. Chronotherapy provides a means of individualizing treatment of hypertension according to the circadian BP profile of each patient, and constitutes a new option to optimize BP control and reduce risk. PMID:18360620
Development of a real-time transport performance optimization methodology
NASA Technical Reports Server (NTRS)
Gilyard, Glenn
1996-01-01
The practical application of real-time performance optimization is addressed (using a wide-body transport simulation) based on real-time measurements and calculation of incremental drag from forced response maneuvers. Various controller combinations can be envisioned although this study used symmetric outboard aileron and stabilizer. The approach is based on navigation instrumentation and other measurements found on state-of-the-art transports. This information is used to calculate winds and angle of attack. Thrust is estimated from a representative engine model as a function of measured variables. The lift and drag equations are then used to calculate lift and drag coefficients. An expression for drag coefficient, which is a function of parasite drag, induced drag, and aileron drag, is solved from forced excitation response data. Estimates of the parasite drag, curvature of the aileron drag variation, and minimum drag aileron position are produced. Minimum drag is then obtained by repositioning the symmetric aileron. Simulation results are also presented which evaluate the affects of measurement bias and resolution.
NASA Astrophysics Data System (ADS)
Bernardo, César; Belsley, Michael; de Matos Gomes, Etelvina; Gonçalves, Hugo; Isakov, Dmitry; Liebold, Falk; Pereira, Eduardo; Pires, Vladimiro; Samantilleke, Anura; Vasilevskiy, Mikhail; Schellenberg, Peter
2014-08-01
We present a flexible fluorescence lifetime imaging device which can be employed to scan large sample areas with a spatial resolution adjustable from many micrometers down to sub-micrometers and a temporal resolution of 20 picoseconds. Several different applications of the system will be presented including protein microarrays analysis, the scanning of historical samples, evaluation of solar cell surfaces and nanocrystalline organic crystals embedded in electrospun polymeric nanofibers. Energy transfer processes within semiconductor quantum dot superstructures as well as between dye probes and graphene layers were also investigated.
Optimal recovery time for postactivation potentiation in professional soccer players.
Mola, Jameson N; Bruce-Low, Stewart S; Burnet, Scott J
2014-06-01
Resistance exercise may acutely enhance muscle contractile activity, which is known as postactivation potentiation (PAP). Postactivation potentiation augments important skills that require power production that are necessary during soccer performance. The aim of this study was to determine the optimal recovery time to elicit PAP after a bout of high-intensity resistance exercise in professional soccer players. Twenty-two senior professional soccer players (mean [SD]; age, 23 [4.5] years; stature, 1.83 [6.6] m; body mass, 80.9 [7.8] kg) were randomized to either an experimental (n = 11) or a control group (n = 11). Both groups performed a standardized warm-up and baseline countermovement jump (CMJ) followed by a 10-minute recovery. The control group then performed a CMJ at 15 seconds and at 4, 8, 12, 16, and 20 minutes, whereas the experimental group performed a 3 repetition maximum (RM) squat and then an identical CMJ protocol. No significant differences were found between the groups for CMJ peak power (p > 0.05) or jump height (p > 0.05). No time effect for peak power (F(6,60) = 2.448; p = 0.063) or jump height (F(6,60) = 2.399; p = 0.089) was observed throughout the experimental group trials. Responders (n = 6) displayed individualized PAP profiles at 4 (n = 3), 12 (n = 1), and 16 (n = 2) minutes after conditioning contraction, whereas nonresponders (n = 5) did not. A set of 3RM squats failed to acutely potentiate all participants CMJ performance. Both PAP responders and nonresponders were identified and have individualized PAP time constants. This is not consistent with the previous literature, which used identical protocols. Strength and conditioning practitioners need to individualize recovery "windows" and identify athletes who respond to PAP before undertaking a complex training intervention.
Fast scanning exafs: A useful tool in time-resolved studies of chemical processes
NASA Astrophysics Data System (ADS)
Prieto, C.; Briois, V.; Parent, Ph.; Villain, F.; Lagarde, P.; Dexpert, H.; Fourman, B.; Michalowicz, A.; Verdaguer, M.
1992-07-01
The X-ray absorption spectroscopy station EXAFS III (of the D1 line of the D.C.I. ring at LURE) has been modified to record data in the fast scanning mode. After a brief description of the experimental set-up, results of selected kinetics experiments are presented. Interests and limitations are shortly discussed.
Xu, Stanley; Hambidge, Simon J.; McClure, David L.; Daley, Matthew F.; Glanz, Jason M.
2014-01-01
In examining the association between vaccines and rare adverse events after vaccination in post-licensure observational studies, it is challenging to define appropriate risk windows because pre-licensure randomized clinical trials provide little insight on the timing of specific adverse events. Past vaccine safety studies have often used pre-specified risk windows based on prior publications, biological understanding of the vaccine, and expert opinion. Recently, a data driven approach was developed to identify appropriate risk windows for vaccine safety studies that use the self-controlled case series design. This approach employs both the maximum incidence rate ratio and the linear relation between the estimated incidence rate ratio and the inverse of average person time at risk, given a specified risk window. In this paper, we present a scan statistic that can identify appropriate risk windows in vaccine safety studies using the self-controlled case series design while taking into account the dependence of time intervals within an individual and while adjusting for time-varying covariates such as age and seasonality. This approach uses the maximum likelihood ratio test based on fixed effects models, which has been used for analyzing data from self-controlled case series design in addition to conditional Poisson models. PMID:23303643
Xu, Stanley; Hambidge, Simon J; McClure, David L; Daley, Matthew F; Glanz, Jason M
2013-08-30
In the examination of the association between vaccines and rare adverse events after vaccination in postlicensure observational studies, it is challenging to define appropriate risk windows because prelicensure RCTs provide little insight on the timing of specific adverse events. Past vaccine safety studies have often used prespecified risk windows based on prior publications, biological understanding of the vaccine, and expert opinion. Recently, a data-driven approach was developed to identify appropriate risk windows for vaccine safety studies that use the self-controlled case series design. This approach employs both the maximum incidence rate ratio and the linear relation between the estimated incidence rate ratio and the inverse of average person time at risk, given a specified risk window. In this paper, we present a scan statistic that can identify appropriate risk windows in vaccine safety studies using the self-controlled case series design while taking into account the dependence of time intervals within an individual and while adjusting for time-varying covariates such as age and seasonality. This approach uses the maximum likelihood ratio test based on fixed-effects models, which has been used for analyzing data from self-controlled case series design in addition to conditional Poisson models.
Time evolution and deterministic optimization of correlator product states
NASA Astrophysics Data System (ADS)
Stojevic, Vid; Crowley, Philip; Äńurić, Tanja; Grey, Callum; Green, Andrew G.
2016-10-01
We study a restricted class of correlator product states (CPS) for a spin-half chain in which each spin is contained in just two overlapping plaquettes. This class is also a restriction upon matrix product states (MPS) with local dimension 2n (n being the size of the overlapping regions of plaquettes) equal to the bond dimension. We investigate the trade-off between gains in efficiency due to this restriction against losses in fidelity. The time-dependent variational principle formulated for these states is numerically very stable. Moreover, it shows significant gains in efficiency compared to the naively related matrix product states—the evolution or optimization scales as 23 n for the correlator product states versus 24 n for the unrestricted matrix product state. However, much of this advantage is offset by a significant reduction in fidelity. Correlator product states break the local Hilbert space symmetry by the explicit selection of a local basis. We investigate this dependence in detail and formulate the broad principles under which correlator product states may be a useful tool. In particular, we find that scaling with overlap/bond order may be more stable with correlator product states allowing a more efficient extraction of critical exponents—we present an example in which the use of correlator product states is several orders of magnitude quicker than matrix product states.
Gao, Feng-hua; Zhang, Shi-qing; He, Jia-chang; Wang, Tian-ping; Zhang, Gong-hua; Li, Ting-ting
2013-08-01
To explore the application of space-time scan statistics in the early warning of distribution of schistosome infected Oncomelania hupensis snails. The data of distribution of infected snails in Anhui Province from 2006 to 2012 were collected, and a spatial database was established by ArcGIS 9.3. The prospective spatial-temporal cluster analysis was done by SaTscan 9.1.1 at the village level. Four space-time clusters, which were distributed over the Yangtze River and its branch rivers, were detected. The space-time scan statistics could detect the distribution of infected snails early, and the space-time clusters found were the key and difficult points of schistosomiasis control in Anhui Province.
The optimal time for early excision in major burn injury.
Muangman, Pornprom; Sullivan, Stephen R; Honari, Shari; Engrav, Lorenz H; Heimbach, David M; Gibran, Nicole S
2006-01-01
Early excision and grafting (E&G) drastically changed burn care in America by reducing morbidity, mortality and hospital length of stay (LOS). The present study was intended to determine whether an optimal time window exists between resuscitation and wound sepsis for the first E&G in a patient with a large burn. The authors conducted a retrospective study of patients admitted between January 1994 and December 2000 with > or = 40% TBSA burns and at least 1 E&G procedure. Patients were grouped according to the day of their first operation. Patients allowed to heal indeterminate burns prior to excision and grafting of deep partial or full thickness burns were grouped as > or = d7 and were excluded from the present study. The authors correlated the time of first excision with infection, mortality and LOS. Seventy-five patients were identified and 12 patients allowed to heal indeterminate burn prior to excision and grafting of deep partial or full thickness burns were excluded. Sixty-three remaining patients included 51 males and 12 females. Mean burn size was 49% of total body surface area (TBSA) (44% deep partial or full thickness) and the mean age was 36 years. There were 61 flame (2 combined with electrical injuries), 1 scald and 1 chemical burn. Twelve died (19%) and 52 patients developed 121 infections. Whereas there was no statistical difference in mortality for patients operated on different days (p > 0.2), 60% of patients operated within the first 48 hours after injury died; this was not significant due to a small patient number The present data suggest that patients who undergo early excision and grafting within seven days following a major burn > or = 40% TBSA have equivalent infection or mortality rates regardless of when the first operation occurs between post burn day(PBD) 2 and PBD 7 (p > 0.2).
Boellaard, R; van Lingen, A; van Balen, S C M; Lammertsma, A A
2004-02-21
The quality of thorax and pelvis transmission scans and therefore of attenuation correction in PET depends on patient thickness and transmission rod source strength. The purpose of the present study was to assess the feasibility of using count-based transmission scans, thereby guaranteeing more consistent image quality and more precise quantification than with fixed transmission scan duration. First, the relation between noise equivalent counts (NEC) of 10 min calibration transmission scans and rod source activity was determined over a period of 1.5 years. Second, the relation between transmission scan counts and uniform phantom diameter was studied numerically, determining the relative contribution of counts from lines of response passing through the phantom as compared with the total number of counts. Finally, the relation between patient weight and transmission scan duration was determined for 35 patients, who were scanned at the level of thorax or pelvis. After installation of new rod sources, the NEC of transmission scans first increased slightly (5%) with decreasing rod source activity and after 3 months decreased with a rate of 2-3% per month. The numerical simulation showed that the number of transmission scan counts from lines of response passing through the phantom increased with phantom diameter up to 7 cm. For phantoms larger than 7 cm, the number of these counts decreased at approximately the same rate as the total number of transmission scan counts. Patient data confirmed that the total number of transmission scan counts decreased with increasing patient weight with about 0.5% kg(-1). It can be concluded that count-based transmission scans compensate for radioactive decay of the rod sources. With count-based transmission scans, rod sources can be used for up to 1.5 years at the cost of a 50% increased transmission scan duration. For phantoms with diameters of more than 7 cm and for patients scanned at the level of thorax or pelvis, use of count
NASA Astrophysics Data System (ADS)
Boellaard, R.; van Lingen, A.; van Balen, S. C. M.; Lammertsma, A. A.
2004-02-01
The quality of thorax and pelvis transmission scans and therefore of attenuation correction in PET depends on patient thickness and transmission rod source strength. The purpose of the present study was to assess the feasibility of using count-based transmission scans, thereby guaranteeing more consistent image quality and more precise quantification than with fixed transmission scan duration. First, the relation between noise equivalent counts (NEC) of 10 min calibration transmission scans and rod source activity was determined over a period of 1.5 years. Second, the relation between transmission scan counts and uniform phantom diameter was studied numerically, determining the relative contribution of counts from lines of response passing through the phantom as compared with the total number of counts. Finally, the relation between patient weight and transmission scan duration was determined for 35 patients, who were scanned at the level of thorax or pelvis. After installation of new rod sources, the NEC of transmission scans first increased slightly (5%) with decreasing rod source activity and after 3 months decreased with a rate of 2 3% per month. The numerical simulation showed that the number of transmission scan counts from lines of response passing through the phantom increased with phantom diameter up to 7 cm. For phantoms larger than 7 cm, the number of these counts decreased at approximately the same rate as the total number of transmission scan counts. Patient data confirmed that the total number of transmission scan counts decreased with increasing patient weight with about 0.5% kg-1. It can be concluded that count-based transmission scans compensate for radioactive decay of the rod sources. With count-based transmission scans, rod sources can be used for up to 1.5 years at the cost of a 50% increased transmission scan duration. For phantoms with diameters of more than 7 cm and for patients scanned at the level of thorax or pelvis, use of count
A pipette-based calibration system for fast-scan cyclic voltammetry with fast response times.
Ramsson, Eric S
2016-01-01
Fast-scan cyclic voltammetry (FSCV) is an electrochemical technique that utilizes the oxidation and/or reduction of an analyte of interest to infer rapid changes in concentrations. In order to calibrate the resulting oxidative or reductive current, known concentrations of an analyte must be introduced under controlled settings. Here, I describe a simple and cost-effective method, using a Petri dish and pipettes, for the calibration of carbon fiber microelectrodes (CFMs) using FSCV.
Nanosecond time-scale semiconductor photoexcitations probed by a scanning tunneling microscope
NASA Astrophysics Data System (ADS)
Gallagher, Mark J.; Ruskell, Todd G.; Chen, Dong; Sarid, Dror; Jenkinson, Howard
1994-01-01
The high-frequency response of scanning tunneling microscopy of a semiconductor is demonstrated by using the beat frequencies of the longitudinal modes of a HeNe laser at the tunneling junction. We present a comparison of the slow and fast optical response of photoexcited charge carriers in the layered structure semiconductors n-type MoS2 and p-type WSe2 using this method.
NASA Astrophysics Data System (ADS)
Bhatia, Parmeet S.; Reda, Fitsum; Harder, Martin; Zhan, Yiqiang; Zhou, Xiang Sean
2017-02-01
Automatically detecting anatomy orientation is an important task in medical image analysis. Specifically, the ability to automatically detect coarse orientation of structures is useful to minimize the effort of fine/accurate orientation detection algorithms, to initialize non-rigid deformable registration algorithms or to align models to target structures in model-based segmentation algorithms. In this work, we present a deep convolution neural network (DCNN)-based method for fast and robust detection of the coarse structure orientation, i.e., the hemi-sphere where the principal axis of a structure lies. That is, our algorithm predicts whether the principal orientation of a structure is in the northern hemisphere or southern hemisphere, which we will refer to as UP and DOWN, respectively, in the remainder of this manuscript. The only assumption of our method is that the entire structure is located within the scan's field-of-view (FOV). To efficiently solve the problem in 3D space, we formulated it as a multi-planar 2D deep learning problem. In the training stage, a large number coronal-sagittal slice pairs are constructed as 2-channel images to train a DCNN to classify whether a scan is UP or DOWN. During testing, we randomly sample a small number of coronal-sagittal 2-channel images and pass them through our trained network. Finally, coarse structure orientation is determined using majority voting. We tested our method on 114 Elbow MR Scans. Experimental results suggest that only five 2-channel images are sufficient to achieve a high success rate of 97.39%. Our method is also extremely fast and takes approximately 50 milliseconds per 3D MR scan. Our method is insensitive to the location of the structure in the FOV.
Femtosecond terahertz time-domain spectroscopy at 36 kHz scan rate using an acousto-optic delay
NASA Astrophysics Data System (ADS)
Urbanek, B.; Möller, M.; Eisele, M.; Baierl, S.; Kaplan, D.; Lange, C.; Huber, R.
2016-03-01
We present a rapid-scan, time-domain terahertz spectrometer employing femtosecond Er:fiber technology and an acousto-optic delay with attosecond precision, enabling scanning of terahertz transients over a 12.4-ps time window at a waveform refresh rate of 36 kHz, and a signal-to-noise ratio of 1.7 × 105 / √{ H z } . Our approach enables real-time monitoring of dynamic THz processes at unprecedented speeds, which we demonstrate through rapid 2D thickness mapping of a spinning teflon disc at a precision of 10 nm/ √{ H z } . The compact, all-optical design ensures alignment-free operation even in harsh environments.
Utilization of dual-source X-ray tomography for reduction of scanning time of wooden samples
NASA Astrophysics Data System (ADS)
Fíla, T.; Kumpová, I.; Jandejsek, I.; Kloiber, M.; Tureček, D.; Vavřík, D.
2015-05-01
We present a novel dual-source/dual energy (DSCT/DECT) micro-tomography system including results of high-resolution DSCT reconstruction. The DSCT micro-tomography setup was designed as a multi-purpose X-ray imaging device equipped with two pairs of X-ray tubes and detectors in orthogonal arrangement with independent control of beam parameters. Both pairs (tube-detector) are mounted on a computer numerical control positioning system and can be independently set up to different geometries (e.g. with different magnification of each pair). In this work the simultaneous scanning of the object by two tube-detector pairs was used for approximately half reduction of tomography scanning time. The developed imaging procedure was applied for scanning of a wooden sample locally damaged during a semi-destructive test for assessment of wood quality. Prior to the tomography measurements the setup geometry was precisely adjusted in terms of magnification, horizontal and vertical tube-specimen-detector alignment of both pairs. DSCT measurements were carried out in sequence (2 × 90° for each tube) with identical 100μm image resolution. It was proven that the presented experimental setup combined with appropriate control technique significantly reduces tomography scanning time of materials with complex micro-structure.
Xu, Jin; Bigelow, Timothy A
2011-11-01
Histotripsy uses high-intensity focused ultrasound to create energetic bubble clouds inside tissue to liquefy a region and has the advantages of higher contrast B-mode monitoring and sharp borders. This study experimentally investigated the effects of stiffness, exposure time and scan direction on the size of histotripsy-induced lesions in agar samples. A targeted region 0.45 cm wide (lateral) and 0.6 cm deep (axial) was scanned with the step sizes of 0.075 cm and 0.3 cm, respectively. The single-element spherically focused source (1.1 MHz, 6.34 cm focal length, f/1) had the peak compressional and rarefactional pressures of approximately 102 and 17 MPa. Pulses consisted of 20-cycle sine wave tone bursts with a burst period of 3 ms and exposure time of 15, 30 or 60 s. Also, both inward and outward scan direction were tested along the beam axis. The liquefied lesions generally had a larger size than the initially targeted region with larger sizes corresponding to softer agar and longer exposure. There was not a statistically significant difference in the lesion size with scan direction. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Optimal multisensory decision-making in a reaction-time task.
Drugowitsch, Jan; DeAngelis, Gregory C; Klier, Eliana M; Angelaki, Dora E; Pouget, Alexandre
2014-06-14
Humans and animals can integrate sensory evidence from various sources to make decisions in a statistically near-optimal manner, provided that the stimulus presentation time is fixed across trials. Little is known about whether optimality is preserved when subjects can choose when to make a decision (reaction-time task), nor when sensory inputs have time-varying reliability. Using a reaction-time version of a visual/vestibular heading discrimination task, we show that behavior is clearly sub-optimal when quantified with traditional optimality metrics that ignore reaction times. We created a computational model that accumulates evidence optimally across both cues and time, and trades off accuracy with decision speed. This model quantitatively explains subjects's choices and reaction times, supporting the hypothesis that subjects do, in fact, accumulate evidence optimally over time and across sensory modalities, even when the reaction time is under the subject's control.
Time optimal controls of the linear Fitzhugh–Nagumo equation with pointwise control constraints
Kunisch, Karl; Wang, Lijuan
2012-01-01
Time optimal control governed by the internally controlled linear Fitzhugh–Nagumo equation with pointwise control constraint is considered. Making use of Ekeland’s variational principle, we obtain Pontryagin’s maximum principle for a time optimal control problem. Using the maximum principle, the bang–bang property of the optimal controls is established under appropriate assumptions. PMID:23576818
Time optimal controls of the linear Fitzhugh-Nagumo equation with pointwise control constraints.
Kunisch, Karl; Wang, Lijuan
2012-11-01
Time optimal control governed by the internally controlled linear Fitzhugh-Nagumo equation with pointwise control constraint is considered. Making use of Ekeland's variational principle, we obtain Pontryagin's maximum principle for a time optimal control problem. Using the maximum principle, the bang-bang property of the optimal controls is established under appropriate assumptions.
Fayek, H M; Elamvazuthi, I; Perumal, N; Venkatesh, B
2014-09-01
A computationally-efficient systematic procedure to design an Optimal Type-2 Fuzzy Logic Controller (OT2FLC) is proposed. The main scheme is to optimize the gains of the controller using Particle Swarm Optimization (PSO), then optimize only two parameters per type-2 membership function using Genetic Algorithm (GA). The proposed OT2FLC was implemented in real-time to control the position of a DC servomotor, which is part of a robotic arm. The performance judgments were carried out based on the Integral Absolute Error (IAE), as well as the computational cost. Various type-2 defuzzification methods were investigated in real-time. A comparative analysis with an Optimal Type-1 Fuzzy Logic Controller (OT1FLC) and a PI controller, demonstrated OT2FLC׳s superiority; which is evident in handling uncertainty and imprecision induced in the system by means of noise and disturbances. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
The synthesis of optimal controls for linear, time-optimal problems with retarded controls.
NASA Technical Reports Server (NTRS)
Banks, H. T.; Jacobs, M. Q.; Latina, M. R.
1971-01-01
Optimization problems involving linear systems with retardations in the controls are studied in a systematic way. Some physical motivation for the problems is discussed. The topics covered are: controllability, existence and uniqueness of the optimal control, sufficient conditions, techniques of synthesis, and dynamic programming. A number of solved examples are presented.
Yokota, Munenori; Yoshida, Shoji; Mera, Yutaka; Takeuchi, Osamu; Oigawa, Haruhiro; Shigekawa, Hidemi
2013-10-07
The tangled mechanism that produces optical pump-probe scanning tunneling microscopy spectra from semiconductors was analyzed by comparing model simulation data with experimental data. The nonlinearities reflected in the spectra, namely, the excitations generated by paired laser pulses with a delay time, the logarithmic relationship between carrier density and surface photovoltage (SPV), and the effect of the change in tunneling barrier height depending on SPV, were examined along with the delay-time-dependent integration process used in measurement. The optimum conditions required to realize reliable measurement, as well as the validity of the microscopy technique, were demonstrated for the first time.
Speidel, Michael A.; Tomkowiak, Michael T.; Raval, Amish N.; Dunkerley, David A. P.; Slagowski, Jordan M.; Kahn, Paul; Ku, Jamie; Funk, Tobias
2015-01-01
Scanning-beam digital x-ray (SBDX) is an inverse geometry fluoroscopy system for low dose cardiac imaging. The use of a narrow scanned x-ray beam in SBDX reduces detected x-ray scatter and improves dose efficiency, however the tight beam collimation also limits the maximum achievable x-ray fluence. To increase the fluence available for imaging, we have constructed a new SBDX prototype with a wider x-ray beam, larger-area detector, and new real-time image reconstructor. Imaging is performed with a scanning source that generates 40,328 narrow overlapping projections from 71 × 71 focal spot positions for every 1/15 s scan period. A high speed 2-mm thick CdTe photon counting detector was constructed with 320×160 elements and 10.6 cm × 5.3 cm area (full readout every 1.28 μs), providing an 86% increase in area over the previous SBDX prototype. A matching multihole collimator was fabricated from layers of tungsten, brass, and lead, and a multi-GPU reconstructor was assembled to reconstruct the stream of captured detector images into full field-of-view images in real time. Thirty-two tomosynthetic planes spaced by 5 mm plus a multiplane composite image are produced for each scan frame. Noise equivalent quanta on the new SBDX prototype measured 63%–71% higher than the previous prototype. X-ray scatter fraction was 3.9–7.8% when imaging 23.3–32.6 cm acrylic phantoms, versus 2.3–4.2% with the previous prototype. Coronary angiographic imaging at 15 frame/s was successfully performed on the new SBDX prototype, with live display of either a multiplane composite or single plane image. PMID:26236071
NASA Astrophysics Data System (ADS)
Speidel, Michael A.; Tomkowiak, Michael T.; Raval, Amish N.; Dunkerley, David A. P.; Slagowski, Jordan M.; Kahn, Paul; Ku, Jamie; Funk, Tobias
2015-03-01
Scanning-beam digital x-ray (SBDX) is an inverse geometry fluoroscopy system for low dose cardiac imaging. The use of a narrow scanned x-ray beam in SBDX reduces detected x-ray scatter and improves dose efficiency, however the tight beam collimation also limits the maximum achievable x-ray fluence. To increase the fluence available for imaging, we have constructed a new SBDX prototype with a wider x-ray beam, larger-area detector, and new real-time image reconstructor. Imaging is performed with a scanning source that generates 40,328 narrow overlapping projections from 71 x 71 focal spot positions for every 1/15 s scan period. A high speed 2-mm thick CdTe photon counting detector was constructed with 320x160 elements and 10.6 cm x 5.3 cm area (full readout every 1.28 μs), providing an 86% increase in area over the previous SBDX prototype. A matching multihole collimator was fabricated from layers of tungsten, brass, and lead, and a multi-GPU reconstructor was assembled to reconstruct the stream of captured detector images into full field-of-view images in real time. Thirty-two tomosynthetic planes spaced by 5 mm plus a multiplane composite image are produced for each scan frame. Noise equivalent quanta on the new SBDX prototype measured 63%-71% higher than the previous prototype. X-ray scatter fraction was 3.9-7.8% when imaging 23.3-32.6 cm acrylic phantoms, versus 2.3- 4.2% with the previous prototype. Coronary angiographic imaging at 15 frame/s was successfully performed on the new SBDX prototype, with live display of either a multiplane composite or single plane image.
Carver, Charles S.; Scheier, Michael F.; Segerstrom, Suzanne C.
2010-01-01
Optimism is an individual difference variable that reflects the extent to which people hold generalized favorable expectancies for their future. Higher levels of optimism have been related prospectively to better subjective well-being in times of adversity or difficulty (i.e., controlling for previous well-being). Consistent with such findings, optimism has been linked to higher levels of engagement coping and lower levels of avoidance, or disengagement, coping. There is evidence that optimism is associated with taking proactive steps to protect one's health, whereas pessimism is associated with health-damaging behaviors. Consistent with such findings, optimism is also related to indicators of better physical health. The energetic, task-focused approach that optimists take to goals also relates to benefits in the socioeconomic world. Some evidence suggests that optimism relates to more persistence in educational efforts and to higher later income. Optimists also appear to fare better than pessimists in relationships. Although there are instances in which optimism fails to convey an advantage, and instances in which it may convey a disadvantage, those instances are relatively rare. In sum, the behavioral patterns of optimists appear to provide models of living for others to learn from. PMID:20170998
Feasibility of ASL spinal bone marrow perfusion imaging with optimized inversion time.
Xing, Dong; Zha, Yunfei; Yan, Liyong; Wang, Kejun; Gong, Wei; Lin, Hui
2015-11-01
To assess the correlation between flow-sensitive alternating inversion recovery (FAIR) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in the measurement of spinal bone marrow (SBM) perfusion; in addition, to assess for an optimized inversion time (TI) as well as the reproducibility of SBM FAIR perfusion. The optimized TI of a FAIR SBM perfusion experiment was carried out on 14 volunteers; two adjacent vertebral bodies were selected from each volunteer to measure the change of signal intensity (ΔM) and the signal-to-noise ratio (SNR) of FAIR perfusion MRI with five different TIs. Then, reproducibility of FAIR data from 10 volunteers was assessed by the reposition SBM FAIR experiments. Finally, FAIR and DCE-MRI were performed on 27 subjects. The correlation between the blood flow on FAIR (BFASL ) and perfusion-related parameters on DCE-MRI was evaluated. The maximum value of ΔM and SNR were 36.39 ± 12.53 and 2.38 ± 0.97, respectively; both were obtained when TI was near 1200 msec. There were no significant difference between the two successive measurements of SBM BFASL perfusion (P = 0.879), and the within-subject coefficients of variation (wCV) of the measurements was 3.28%. The BFASL showed a close correlation with K(trans) (P < 0.001) and Kep (P = 0.004), and no correlation with Ve (P = 0.082) was found. 1200 msec was the optimal TI for the SBM ASL perfusion image, which led to the maximum ΔM and a good quality perfusion image. The SBM FAIR perfusion scan protocol has good reproducibility, and as blood flow measurement on FAIR is reliable and closely related with the parameters on DCE-MRI, FAIR is feasible for measuring SBM blood flow. © 2015 Wiley Periodicals, Inc.
Shimizu, S; Matsuura, T; Umezawa, M; Hiramoto, K; Miyamoto, N; Umegaki, K; Shirato, H
2014-07-01
Spot-scanning proton beam therapy (PBT) can create good dose distribution for static targets. However, there exists larger uncertainty for tumors that move due to respiration, bowel gas or other internal circumstances within the patients. We have developed a real-time tumor-tracking radiation therapy (RTRT) system that uses an X-ray linear accelerator gated to the motion of internal fiducial markers introduced in the late 1990s. Relying on more than 10 years of clinical experience and big log data, we established a real-time image gated proton beam therapy system dedicated to spot scanning. Using log data and clinical outcomes derived from the clinical usage of the RTRT system since 1999, we have established a library to be used for in-house simulation for tumor targeting and evaluation. Factors considered to be the dominant causes of the interplay effects related to the spot scanning dedicated proton therapy system are listed and discussed. Total facility design, synchrotron operation cycle, and gating windows were listed as the important factors causing the interplay effects contributing to the irradiation time and motion-induced dose error. Fiducial markers that we have developed and used for the RTRT in X-ray therapy were suggested to have the capacity to improve dose distribution. Accumulated internal motion data in the RTRT system enable us to improve the operation and function of a Spot-scanning proton beam therapy (SSPT) system. A real-time-image gated SSPT system can increase accuracy for treating moving tumors. The system will start clinical service in early 2014. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Optimal experiment design for time-lapse traveltime tomography
Ajo-Franklin, J.B.
2009-10-01
Geophysical monitoring techniques offer the only noninvasive approach capable of assessing both the spatial and temporal dynamics of subsurface fluid processes. Increasingly, permanent sensor arrays in boreholes and on the ocean floor are being deployed to improve the repeatability and increase the temporal sampling of monitoring surveys. Because permanent arrays require a large up-front capital investment and are difficult (or impossible) to re-configure once installed, a premium is placed on selecting a geometry capable of imaging the desired target at minimum cost. We present a simple approach to optimizing downhole sensor configurations for monitoring experiments making use of differential seismic traveltimes. In our case, we use a design quality metric based on the accuracy of tomographic reconstructions for a suite of imaging targets. By not requiring an explicit singular value decomposition of the forward operator, evaluation of this objective function scales to problems with a large number of unknowns. We also restrict the design problem by recasting the array geometry into a low dimensional form more suitable for optimization at a reasonable computational cost. We test two search algorithms on the design problem: the Nelder-Mead downhill simplex method and the Multilevel Coordinate Search algorithm. The algorithm is tested for four crosswell acquisition scenarios relevant to continuous seismic monitoring, a two parameter array optimization, several scenarios involving four parameter length/offset optimizations, and a comparison of optimal multi-source designs. In the last case, we also examine trade-offs between source sparsity and the quality of tomographic reconstructions. One general observation is that asymmetric array lengths improve localized image quality in crosswell experiments with a small number of sources and a large number of receivers. Preliminary results also suggest that high-quality differential images can be generated using only a small
Optimal relative view angles for an object viewed multiple times
NASA Astrophysics Data System (ADS)
Gilani, Syed U.; Shende, Apoorva; Nguyen, Bao; Stilwell, Daniel J.
2015-05-01
Typically, the detection of an object of interest improves as we view the object from multiple angles. For cases where viewing angle matters, object detection can be improved further by optimally selecting the relative angles of multiple views. This motivates the search for viewing angles that maximize the expected probability of detection. Although our work is motivated by applications in subsea sensing, our fundamental analysis is easily adapted for other classes of applications. The specific challenge that motivates our work is the selection of optimal viewing angles for subsea sensing in which sonar is used for bathymetric imaging.
PTCDA growth on Ge(111)-c(2\\times 8) surfaces: a scanning tunneling microscopy study
NASA Astrophysics Data System (ADS)
Martínez-Galera, A. J.; Wei, Z.; Nicoara, N.; Brihuega, I.; Gómez-Rodríguez, J. M.
2017-03-01
The initial stages of growth of PTCDA (3,4,9,10 perylene tetracarboxylic dianhydride) at room temperature (RT) on Ge(111)-c(2× 8) surfaces have been studied by means of scanning tunneling microscopy (STM) under ultrahigh vacuum conditions. The results show that PTCDA molecules have a high mobility at RT on the well ordered areas of the semiconductor substrate, since nucleation is only observed in domain walls, steps and surface defects. However, no molecular ordering has been detected at submonolayer coverage. For higher coverages, the formation of three-dimensional (3D) molecular islands has been observed. These 3D islands present a crystalline nature as demostrated by molecularly resolved STM images. According to these STM measurements, PTCDA molecules are ordered in a herringbone structure, similar to the one observed in PTCDA bulk crystals. Moreover, the 3D crystallites are grown on top of a disordered molecular layer, which acts as a passivating layer.
Hotspot detection using space-time scan statistics on children under five years of age in Depok
NASA Astrophysics Data System (ADS)
Verdiana, Miranti; Widyaningsih, Yekti
2017-03-01
Some problems that affect the health level in Depok is the high malnutrition rates from year to year and the more spread infectious and non-communicable diseases in some areas. Children under five years old is a vulnerable part of population to get the malnutrition and diseases. Based on this reason, it is important to observe the location and time, where and when, malnutrition in Depok happened in high intensity. To obtain the location and time of the hotspots of malnutrition and diseases that attack children under five years old, space-time scan statistics method can be used. Space-time scan statistic is a hotspot detection method, where the area and time of information and time are taken into account simultaneously in detecting the hotspots. This method detects a hotspot with a cylindrical scanning window: the cylindrical pedestal describes the area, and the height of cylinder describe the time. Cylinders formed is a hotspot candidate that may occur, which require testing of hypotheses, whether a cylinder can be summed up as a hotspot. Hotspot detection in this study carried out by forming a combination of several variables. Some combination of variables provides hotspot detection results that tend to be the same, so as to form groups (clusters). In the case of infant health level in Depok city, Beji health care center region in 2011-2012 is a hotspot. According to the combination of the variables used in the detection of hotspots, Beji health care center is most frequently as a hotspot. Hopefully the local government can take the right policy to improve the health level of children under five in the city of Depok.
NASA Technical Reports Server (NTRS)
Yamaleev, N. K.; Diskin, B.; Nielsen, E. J.
2009-01-01
.We study local-in-time adjoint-based methods for minimization of ow matching functionals subject to the 2-D unsteady compressible Euler equations. The key idea of the local-in-time method is to construct a very accurate approximation of the global-in-time adjoint equations and the corresponding sensitivity derivative by using only local information available on each time subinterval. In contrast to conventional time-dependent adjoint-based optimization methods which require backward-in-time integration of the adjoint equations over the entire time interval, the local-in-time method solves local adjoint equations sequentially over each time subinterval. Since each subinterval contains relatively few time steps, the storage cost of the local-in-time method is much lower than that of the global adjoint formulation, thus making the time-dependent optimization feasible for practical applications. The paper presents a detailed comparison of the local- and global-in-time adjoint-based methods for minimization of a tracking functional governed by the Euler equations describing the ow around a circular bump. Our numerical results show that the local-in-time method converges to the same optimal solution obtained with the global counterpart, while drastically reducing the memory cost as compared to the global-in-time adjoint formulation.
Reducing acquisition times in multidimensional NMR with a time-optimized Fourier encoding algorithm.
Zhang, Zhiyong; Smith, Pieter E S; Frydman, Lucio
2014-11-21
Speeding up the acquisition of multidimensional nuclear magnetic resonance (NMR) spectra is an important topic in contemporary NMR, with central roles in high-throughput investigations and analyses of marginally stable samples. A variety of fast NMR techniques have been developed, including methods based on non-uniform sampling and Hadamard encoding, that overcome the long sampling times inherent to schemes based on fast-Fourier-transform (FFT) methods. Here, we explore the potential of an alternative fast acquisition method that leverages a priori knowledge, to tailor polychromatic pulses and customized time delays for an efficient Fourier encoding of the indirect domain of an NMR experiment. By porting the encoding of the indirect-domain to the excitation process, this strategy avoids potential artifacts associated with non-uniform sampling schemes and uses a minimum number of scans equal to the number of resonances present in the indirect dimension. An added convenience is afforded by the fact that a usual 2D FFT can be used to process the generated data. Acquisitions of 2D heteronuclear correlation NMR spectra on quinine and on the anti-inflammatory drug isobutyl propionic phenolic acid illustrate the new method's performance. This method can be readily automated to deal with complex samples such as those occurring in metabolomics, in in-cell as well as in in vivo NMR applications, where speed and temporal stability are often primary concerns.
Reducing acquisition times in multidimensional NMR with a time-optimized Fourier encoding algorithm
Zhang, Zhiyong; Smith, Pieter E. S.; Frydman, Lucio
2014-11-21
Speeding up the acquisition of multidimensional nuclear magnetic resonance (NMR) spectra is an important topic in contemporary NMR, with central roles in high-throughput investigations and analyses of marginally stable samples. A variety of fast NMR techniques have been developed, including methods based on non-uniform sampling and Hadamard encoding, that overcome the long sampling times inherent to schemes based on fast-Fourier-transform (FFT) methods. Here, we explore the potential of an alternative fast acquisition method that leverages a priori knowledge, to tailor polychromatic pulses and customized time delays for an efficient Fourier encoding of the indirect domain of an NMR experiment. By porting the encoding of the indirect-domain to the excitation process, this strategy avoids potential artifacts associated with non-uniform sampling schemes and uses a minimum number of scans equal to the number of resonances present in the indirect dimension. An added convenience is afforded by the fact that a usual 2D FFT can be used to process the generated data. Acquisitions of 2D heteronuclear correlation NMR spectra on quinine and on the anti-inflammatory drug isobutyl propionic phenolic acid illustrate the new method's performance. This method can be readily automated to deal with complex samples such as those occurring in metabolomics, in in-cell as well as in in vivo NMR applications, where speed and temporal stability are often primary concerns.
Optimal digital redesign of continuous-time controllers
NASA Technical Reports Server (NTRS)
Shieh, Leang S.; Zhang, Jian L.; Coleman, Norman P.
1991-01-01
This paper proposes a new optimal digital redesign technique for finding a dynamic digital control law from the available analog counterpart and simultaneously minimizing a quadratic performance index. The proposed technique can be applied to a system with a more general class of reference inputs, and the developed digital regulator can be implemented using low cost microcomputers.
Pulmonary acceleration time to optimize the timing of lung transplant in cystic fibrosis.
Damy, Thibaud; Burgel, Pierre-Régis; Pepin, Jean-Louis; Boelle, Pierre-Yves; Cracowski, Claire; Murris-Espin, Marlène; Nove-Josserand, Raphaele; Stremler, Nathalie; Simon, Tabassome; Adnot, Serge; Fauroux, Brigitte
2012-01-01
Pulmonary hypertension (PH) may affect survival in cystic fibrosis (CF) and can be assessed on echocardiographic measurement of the pulmonary acceleration time (PAT). The study aimed at evaluating PAT as a tool to optimize timing of lung transplant in CF patients. Prospective multicenter longitudinal study of patients with forced expiratory volume in 1 second (FEV1) ≤60% predicted. Echocardiography, spirometry and nocturnal oximetry were obtained as part of the routine evaluation. We included 67 patients (mean FEV1 42±12% predicted), among whom 8 underwent lung transplantation during the mean follow-up of 19±6 months. No patients died. PAT was determined in all patients and correlated negatively with systolic pulmonary artery pressure (sPAP, r=-0.36, P=0.01). Patients in the lowest PAT tertile (<101 ms) had lower FEV1 and worse nocturnal oxygen saturation, and they were more often on the lung transplant waiting list compared to patients in the other tertiles. Kaplan-Meier curves showed a shorter time to lung transplantation in the lowest PAT tertile (P<0.001) but not in patients with sPAP>35 mmHg. By multivariate analysis, FEV(1)and nocturnal desaturation were the main determinants of reduced PAT. A PAT<101 ms reduction is a promising tool for timing of lung transplantation in CF.
Pulmonary acceleration time to optimize the timing of lung transplant in cystic fibrosis
Damy, Thibaud; Burgel, Pierre-Régis; Pepin, Jean-Louis; Boelle, Pierre-Yves; Cracowski, Claire; Murris-Espin, Marlène; Nove-Josserand, Raphaele; Stremler, Nathalie; Simon, Tabassome; Adnot, Serge; Fauroux, Brigitte
2012-01-01
Pulmonary hypertension (PH) may affect survival in cystic fibrosis (CF) and can be assessed on echocardiographic measurement of the pulmonary acceleration time (PAT). The study aimed at evaluating PAT as a tool to optimize timing of lung transplant in CF patients. Prospective multicenter longitudinal study of patients with forced expiratory volume in 1 second (FEV1) ≤60% predicted. Echocardiography, spirometry and nocturnal oximetry were obtained as part of the routine evaluation. We included 67 patients (mean FEV1 42±12% predicted), among whom 8 underwent lung transplantation during the mean follow-up of 19±6 months. No patients died. PAT was determined in all patients and correlated negatively with systolic pulmonary artery pressure (sPAP, r=–0.36, P=0.01). Patients in the lowest PAT tertile (<101 ms) had lower FEV1 and worse nocturnal oxygen saturation, and they were more often on the lung transplant waiting list compared to patients in the other tertiles. Kaplan–Meier curves showed a shorter time to lung transplantation in the lowest PAT tertile (P<0.001) but not in patients with sPAP>35 mmHg. By multivariate analysis, FEV1and nocturnal desaturation were the main determinants of reduced PAT. A PAT<101 ms reduction is a promising tool for timing of lung transplantation in CF. PMID:22558523
NASA Astrophysics Data System (ADS)
Ceylan, Omer; Shafique, Atia; Burak, Abdurrahman; Caliskan, Can; Yazici, Melik; Abbasi, Shahbaz; Galioglu, Arman; Kayahan, Huseyin; Gurbuz, Yasar
2016-11-01
This paper presents a digital readout integrated circuit (DROIC) implementing time delay and integration (TDI) for scanning type infrared focal plane arrays (IRFPAs) with a charge handling capacity of 44.8 Me- while achieving quantization noise of 198 e- and power consumption of 14.35 mW. Conventional pulse frequency modulation (PFM) method is supported by a single slope ramp ADC technique to have a very low quantization noise together with a low power consumption. The proposed digital TDI ROIC converts the photocurrent into digital domain in two phases; in the first phase, most significant bits (MSBs) are generated by the conventional PFM technique in the charge domain, while in the second phase least significant bits (LSBs) are generated by a single slope ramp ADC in the time domain. A 90 × 8 prototype has been fabricated and verified, showing a significantly improved signal-to-noise ratio (SNR) of 51 dB for low illumination levels (280,000 collected electrons), which is attributed to the TDI implementation method and very low quantization noise due to the single slope ADC implemented for LSBs. Proposed digital TDI ROIC proves the benefit of digital readouts for scanning arrays enabling smaller pixel pitches, better SNR for the low illumination levels and lower power consumption compared to analog TDI readouts for scanning arrays.
Robust fuel- and time-optimal control of uncertain flexible space structures
NASA Technical Reports Server (NTRS)
Wie, Bong; Sinha, Ravi; Sunkel, John; Cox, Ken
1993-01-01
The problem of computing open-loop, fuel- and time-optimal control inputs for flexible space structures in the face of modeling uncertainty is investigated. Robustified, fuel- and time-optimal pulse sequences are obtained by solving a constrained optimization problem subject to robustness constraints. It is shown that 'bang-off-bang' pulse sequences with a finite number of switchings provide a practical tradeoff among the maneuvering time, fuel consumption, and performance robustness of uncertain flexible space structures.
Robust fuel- and time-optimal control of uncertain flexible space structures
NASA Technical Reports Server (NTRS)
Wie, Bong; Sinha, Ravi; Sunkel, John; Cox, Ken
1993-01-01
The problem of computing open-loop, fuel- and time-optimal control inputs for flexible space structures in the face of modeling uncertainty is investigated. Robustified, fuel- and time-optimal pulse sequences are obtained by solving a constrained optimization problem subject to robustness constraints. It is shown that 'bang-off-bang' pulse sequences with a finite number of switchings provide a practical tradeoff among the maneuvering time, fuel consumption, and performance robustness of uncertain flexible space structures.
Zhang, Michelle Meng-Ni; Long, Yi-Tao; Ding, Zhifeng
2012-03-21
The morphology of a live cell reflects the organization of the cytoskeleton and the healthy status of the cell. We established a label-free platform for monitoring the changing morphology of live cells in real time based on scanning electrochemical microscopy (SECM). The dynamic morphology of a live human bladder cancer cell (T24) was revealed by time-lapse SECM with dissolved oxygen in the medium solution as the redox mediator. Detailed local movements of cell membrane were presented by time-lapse cross section lines extracted from time-lapse SECM. Vivid dynamic morphology is presented by a movie made of time-lapse SECM images. The morphological change of the T24 cell by non-physiological temperature is in consistence with the morphological feature of early apoptosis. To obtain dynamic cellular morphology with other methods is difficult. The non-invasive nature of SECM combined with high resolution realized filming the movements of live cells.
Ekroos, Kim; Chernushevich, Igor V; Simons, Kai; Shevchenko, Andrej
2002-03-01
A hybrid quadrupole time-of-flight mass spectrometer featured with ion trapping capabilities was employed for quantitative profiling of total extracts of endogenous phospholipids. Simultaneous acquisition of precursor ion spectra of multiple fragment ions allowed detection of major classes of phospholipids in a single experiment. Relative changes in their concentration were monitored using a mixture of isotopically labeled endogenous lipids as a comprehensive internal standard. Precursor ion scanning spectra were acquired simultaneously for acyl anions of major fatty acids in negative ion mode and identified the fatty acid moieties and their relative position at the glycerol backbone in individual lipid species. Taken together, a combination of multiple precursor ion scans allowed quantitative monitoring of major perturbation in phospholipid composition and elucidating of molecular heterogeneity of individual lipid species.
Liu, Xiuhui; Ramsey, Matthew M; Chen, Xiaole; Koley, Dipankar; Whiteley, Marvin; Bard, Allen J
2011-02-15
Quantitative detection of hydrogen peroxide in solution above a Streptococcus gordonii (Sg) bacterial biofilm was studied in real time by scanning electrochemical microscopy (SECM). The concentration of hydrogen peroxide was determined to be 0.7 mM to 1.6 mM in the presence of 10 mM glucose over a period of 2 to 8 h. The hydrogen peroxide production measured was higher near the biofilm surface in comparison to Sg grown planktonically. Differential hydrogen peroxide production was observed both by fluorometric as well as by SECM measurements. The interaction between two different species in a bacterial biofilm of Sg and Aggregatibacter actinomycetemcomitans (Aa) in terms of hydrogen peroxide production was also studied by SECM. One-directional y-scan SECM measurements showed the unique spatial mapping of hydrogen peroxide concentration across a mixed species biofilm and revealed that hydrogen peroxide concentration varies greatly dependent upon local species composition.
Incorporation of 3-D Scanning Lidar Data into Google Earth for Real-time Air Pollution Observation
NASA Astrophysics Data System (ADS)
Chiang, C.; Nee, J.; Das, S.; Sun, S.; Hsu, Y.; Chiang, H.; Chen, S.; Lin, P.; Chu, J.; Su, C.; Lee, W.; Su, L.; Chen, C.
2011-12-01
3-D Differential Absorption Scanning Lidar (DIASL) system has been designed with small size, light weight, and suitable for installation in various vehicles and places for monitoring of air pollutants and displays a detailed real-time temporal and spatial variability of trace gases via the Google Earth. The fast scanning techniques and visual information can rapidly identify the locations and sources of the polluted gases and assess the most affected areas. It is helpful for Environmental Protection Agency (EPA) to protect the people's health and abate the air pollution as quickly as possible. The distributions of the atmospheric pollutants and their relationship with local metrological parameters measured with ground based instruments will also be discussed. Details will be presented in the upcoming symposium.
Tang, Jian.; Chen, Yuwei.; Jaakkola, Anttoni.; Liu, Jinbing.; Hyyppä, Juha.; Hyyppä, Hannu.
2014-01-01
Laser scan matching with grid-based maps is a promising tool for real-time indoor positioning of mobile Unmanned Ground Vehicles (UGVs). While there are critical implementation problems, such as the ability to estimate the position by sensing the unknown indoor environment with sufficient accuracy and low enough latency for stable vehicle control, further development work is necessary. Unfortunately, most of the existing methods employ heuristics for quick positioning in which numerous accumulated errors easily lead to loss of positioning accuracy. This severely restricts its applications in large areas and over lengthy periods of time. This paper introduces an efficient real-time mobile UGV indoor positioning system for large-area applications using laser scan matching with an improved probabilistically-motivated Maximum Likelihood Estimation (IMLE) algorithm, which is based on a multi-resolution patch-divided grid likelihood map. Compared with traditional methods, the improvements embodied in IMLE include: (a) Iterative Closed Point (ICP) preprocessing, which adaptively decreases the search scope; (b) a totally brute search matching method on multi-resolution map layers, based on the likelihood value between current laser scan and the grid map within refined search scope, adopted to obtain the global optimum position at each scan matching; and (c) a patch-divided likelihood map supporting a large indoor area. A UGV platform called NAVIS was designed, manufactured, and tested based on a low-cost robot integrating a LiDAR and an odometer sensor to verify the IMLE algorithm. A series of experiments based on simulated data and field tests with NAVIS proved that the proposed IMEL algorithm is a better way to perform local scan matching that can offer a quick and stable positioning solution with high accuracy so it can be part of a large area localization/mapping, application. The NAVIS platform can reach an updating rate of 12 Hz in a feature-rich environment and 2 Hz
Tang, Jian; Chen, Yuwei; Jaakkola, Anttoni; Liu, Jinbing; Hyyppä, Juha; Hyyppä, Hannu
2014-07-04
Laser scan matching with grid-based maps is a promising tool for real-time indoor positioning of mobile Unmanned Ground Vehicles (UGVs). While there are critical implementation problems, such as the ability to estimate the position by sensing the unknown indoor environment with sufficient accuracy and low enough latency for stable vehicle control, further development work is necessary. Unfortunately, most of the existing methods employ heuristics for quick positioning in which numerous accumulated errors easily lead to loss of positioning accuracy. This severely restricts its applications in large areas and over lengthy periods of time. This paper introduces an efficient real-time mobile UGV indoor positioning system for large-area applications using laser scan matching with an improved probabilistically-motivated Maximum Likelihood Estimation (IMLE) algorithm, which is based on a multi-resolution patch-divided grid likelihood map. Compared with traditional methods, the improvements embodied in IMLE include: (a) Iterative Closed Point (ICP) preprocessing, which adaptively decreases the search scope; (b) a totally brute search matching method on multi-resolution map layers, based on the likelihood value between current laser scan and the grid map within refined search scope, adopted to obtain the global optimum position at each scan matching; and (c) a patch-divided likelihood map supporting a large indoor area. A UGV platform called NAVIS was designed, manufactured, and tested based on a low-cost robot integrating a LiDAR and an odometer sensor to verify the IMLE algorithm. A series of experiments based on simulated data and field tests with NAVIS proved that the proposed IMEL algorithm is a better way to perform local scan matching that can offer a quick and stable positioning solution with high accuracy so it can be part of a large area localization/mapping, application. The NAVIS platform can reach an updating rate of 12 Hz in a feature-rich environment and 2 Hz
An optimal modification of a Kalman filter for time scales
NASA Technical Reports Server (NTRS)
Greenhall, C. A.
2003-01-01
The Kalman filter in question, which was implemented in the time scale algorithm TA(NIST), produces time scales with poor short-term stability. A simple modification of the error covariance matrix allows the filter to produce time scales with good stability at all averaging times, as verified by simulations of clock ensembles.
An optimal modification of a Kalman filter for time scales
NASA Technical Reports Server (NTRS)
Greenhall, C. A.
2003-01-01
The Kalman filter in question, which was implemented in the time scale algorithm TA(NIST), produces time scales with poor short-term stability. A simple modification of the error covariance matrix allows the filter to produce time scales with good stability at all averaging times, as verified by simulations of clock ensembles.
Operational Analysis of Time-Optimal Maneuvering for Imaging Spacecraft
2013-03-01
EO Electro Optical IR Infrared SAR Synthetic Aperture Radar CMG Control Moment Gyroscope FOV Field of View GSD Ground Sample Distance STK...Earth in LEO, the slewing capability of the spacecraft will affect the speed of the imaging satellite’s target acquisition for satellite imagery ...sensor can then acquire the desired target for imagery capture [11]. Optimal control theory can also be applied towards enabling rapid target -to
Bayesian Optimization Algorithm, Population Sizing, and Time to Convergence
Pelikan, M.; Goldberg, D.E.; Cantu-Paz, E.
2000-01-19
This paper analyzes convergence properties of the Bayesian optimization algorithm (BOA). It settles the BOA into the framework of problem decomposition used frequently in order to model and understand the behavior of simple genetic algorithms. The growth of the population size and the number of generations until convergence with respect to the size of a problem is theoretically analyzed. The theoretical results are supported by a number of experiments.
Hernández-Chavarría, Francisco
2004-01-01
Microwave irradiation (MWI) has been applied to the development of rapid methods to process biological samples for scanning electron microscopy (SEM). In this paper we propose two simple and quick techniques for processing bacteria (Proteus mirabilis and Vibrio mimicus) for SEM using MWI. In the simplest methodology, the bacteria were placed on a cover-glass, air-dried, and submitted to conductivity stain. The reagent used for the conductivity stain was the mordant of a light microscopy staining method (10 ml of 5% carbolic acid solution, 2 g of tannic acid, and 10 ml of saturated aluminum sulfate 12-H2O). In the second method the samples were double fixed (glutaraldehyde and then osmium), submitted to conductivity stain, dehydrated through a series of ethanol solutions of increasing concentration, treated with hexamethyldisilazine (HMDS), and dried at 35 degrees C for 5 minutes. In both methods the steps from fixation to treatment with HMDS were done under MWI for 2 minutes in an ice-water bath, in order to dissipate the heat generated by the MWI. Although both techniques preserve bacterial morphology adequately, the latter, technique showed the best preservation, including the appearance of flagella, and that process was completed in less than 2 hours at temperatures of MWI between 4 to 5 degrees C.
NASA Astrophysics Data System (ADS)
Rodrigues, Pedro L.; Rodrigues, Nuno F.; Fonseca, Jaime C.; von Krüger, M. A.; Pereira, W. C. A.; Vilaça, João. L.
2015-03-01
Background: Kidney stone is a major universal health problem, affecting 10% of the population worldwide. Percutaneous nephrolithotomy is a first-line and established procedure for disintegration and removal of renal stones. Its surgical success depends on the precise needle puncture of renal calyces, which remains the most challenging task for surgeons. This work describes and tests a new ultrasound based system to alert the surgeon when undesirable anatomical structures are in between the puncture path defined through a tracked needle. Methods: Two circular ultrasound transducers were built with a single 3.3-MHz piezoelectric ceramic PZT SN8, 25.4 mm of radius and resin-epoxy matching and backing layers. One matching layer was designed with a concave curvature to work as an acoustic lens with long focusing. The A-scan signals were filtered and processed to automatically detect reflected echoes. Results: The transducers were mapped in water tank and tested in a study involving 45 phantoms. Each phantom mimics different needle insertion trajectories with a percutaneous path length between 80 and 150 mm. Results showed that the beam cross-sectional area oscillates around the ceramics radius and it was possible to automatically detect echo signals in phantoms with length higher than 80 mm. Conclusions: This new solution may alert the surgeon about anatomical tissues changes during needle insertion, which may decrease the need of X-Ray radiation exposure and ultrasound image evaluation during percutaneous puncture.
Kany, Jean; Flamand, Olivier; Grimberg, Jean; Guinand, Régis; Croutzet, Pierre; Amaravathi, Rajkumar; Sekaran, Padmanaban
2016-01-01
We hypothesized that the arthroscopic Latarjet procedure could be performed with accurate bone block positioning and screw fixation with a similar rate of complications to the open Latarjet procedure. In this prospective study, 105 shoulders (104 patients) underwent the arthroscopic Latarjet procedure performed by the same senior surgeon. The day after surgery, an independent surgeon examiner performed a multiplanar bidimensional computed tomography scan analysis. We also evaluated our learning curve by comparing 2 chronologic periods (30 procedures performed in each period), separated by an interval during which 45 procedures were performed. Of the 105 shoulders included in the study, 95 (90.5%) (94 patients) were evaluated. The coracoid graft was accurately positioned relative to the equator of the glenoid surface in 87 of 95 shoulders (91.5%). Accurate bone-block positioning on the axial view with "circle" evaluation was obtained for 77 of 95 shoulders (81%). This procedure was performed in a lateralized position in 7 of 95 shoulders (7.3%) and in a medialized position in 11 shoulders (11.6%). The mean screw angulation with the glenoid surface was 21°. One patient had transient axillary nerve palsy. Of the initial 104 patients, 3 (2.8%) underwent revision. The analysis of our results indicated that the screw-glenoid surface angle significantly predicted the accuracy of the bone-block positioning (P = .001). Our learning curve estimates showed that, compared with our initial period, the average surgical time decreased, and the risk of lateralization showed a statistically significant decrease during the last period (P = .006). This study showed that accurate positioning of the bone block onto the anterior aspect of the glenoid is possible, safe, and reproducible with the arthroscopic Latarjet procedure without additional complications compared with open surgery. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc
Bjorgan, Asgeir; Randeberg, Lise Lyngsnes
2015-01-01
Processing line-by-line and in real-time can be convenient for some applications of line-scanning hyperspectral imaging technology. Some types of processing, like inverse modeling and spectral analysis, can be sensitive to noise. The MNF (minimum noise fraction) transform provides suitable denoising performance, but requires full image availability for the estimation of image and noise statistics. In this work, a modified algorithm is proposed. Incrementally-updated statistics enables the algorithm to denoise the image line-by-line. The denoising performance has been compared to conventional MNF and found to be equal. With a satisfying denoising performance and real-time implementation, the developed algorithm can denoise line-scanned hyperspectral images in real-time. The elimination of waiting time before denoised data are available is an important step towards real-time visualization of processed hyperspectral data. The source code can be found at http://www.github.com/ntnu-bioopt/mnf. This includes an implementation of conventional MNF denoising. PMID:25654717
Bjorgan, Asgeir; Randeberg, Lise Lyngsnes
2015-02-03
Processing line-by-line and in real-time can be convenient for some applications of line-scanning hyperspectral imaging technology. Some types of processing, like inverse modeling and spectral analysis, can be sensitive to noise. The MNF (minimum noise fraction) transform provides suitable denoising performance, but requires full image availability for the estimation of image and noise statistics. In this work, a modified algorithm is proposed. Incrementally-updated statistics enables the algorithm to denoise the image line-by-line. The denoising performance has been compared to conventional MNF and found to be equal. With a satisfying denoising performance and real-time implementation, the developed algorithm can denoise line-scanned hyperspectral images in real-time. The elimination of waiting time before denoised data are available is an important step towards real-time visualization of processed hyperspectral data. The source code can be found at http://www.github.com/ntnu-bioopt/mnf. This includes an implementation of conventional MNF denoising.
Optimal measurement counting time and statistics in gamma spectrometry analysis: The time balance
NASA Astrophysics Data System (ADS)
Joel, Guembou Shouop Cebastien; Penabei, Samafou; Maurice, Ndontchueng Moyo; Gregoire, Chene; Jilbert, Nguelem Mekontso Eric; Didier, Takoukam Serge; Werner, Volker; David, Strivay
2017-01-01
The optimal measurement counting time for gamma-ray spectrometry analysis using HPGe detectors was determined in our laboratory by comparing twelve hours measurement counting time at day and twelve hours measurement counting time at night. The day spectrum does not fully cover the night spectrum for the same sample. It is observed that the perturbation come to the sun-light. After several investigations became clearer: to remove all effects of radiation from outside (earth, the sun, and universe) our system, it is necessary to measure the background for 24, 48 or 72 hours. In the same way, the samples have to be measured for 24, 48 or 72 hours to be safe to be purified the measurement (equality of day and night measurement). It is also possible to not use the background of the winter in summer. Depend on to the energy of radionuclide we seek, it is clear that the most important steps of a gamma spectrometry measurement are the preparation of the sample and the calibration of the detector.
MAGANA, DONNY; PARUL, DZMITRY; DYER, R. BRIAN; SHREVE, ANDREW P.
2011-01-01
Time-resolved step-scan Fourier transform infrared (FT-IR) spectroscopy has been shown to be invaluable for studying excited-state structures and dynamics in both biological and inorganic systems. Despite the established utility of this method, technical challenges continue to limit the data quality and more wide ranging applications. A critical problem has been the low laser repetition rate and interferometer stepping rate (both are typically 10 Hz) used for data acquisition. Here we demonstrate significant improvement in the quality of time-resolved spectra through the use of a kHz repetition rate laser to achieve kHz excitation and data collection rates while stepping the spectrometer at 200 Hz. We have studied the metal-to-ligand charge transfer excited state of Ru(bipyridine)3Cl2 in deuterated acetonitrile to test and optimize high repetition rate data collection. Comparison of different interferometer stepping rates reveals an optimum rate of 200 Hz due to minimization of long-term baseline drift. With the improved collection efficiency and signal-to-noise ratio, better assignments of the MLCT excited-state bands can be made. Using optimized parameters, carbonmonoxy myoglobin in deuterated buffer is also studied by observing the infrared signatures of carbon monoxide photolysis upon excitation of the heme. We conclude from these studies that a substantial increase in performance of ss-FT-IR instrumentation is achieved by coupling commercial infrared benches with kHz repetition rate lasers. PMID:21513597
Magana, Donny; Parul, Dzmitry; Dyer, R Brian; Shreve, Andrew P
2011-05-01
Time-resolved step-scan Fourier transform infrared (FT-IR) spectroscopy has been shown to be invaluable for studying excited-state structures and dynamics in both biological and inorganic systems. Despite the established utility of this method, technical challenges continue to limit the data quality and more wide ranging applications. A critical problem has been the low laser repetition rate and interferometer stepping rate (both are typically 10 Hz) used for data acquisition. Here we demonstrate significant improvement in the quality of time-resolved spectra through the use of a kHz repetition rate laser to achieve kHz excitation and data collection rates while stepping the spectrometer at 200 Hz. We have studied the metal-to-ligand charge transfer excited state of Ru(bipyridine)(3)Cl(2) in deuterated acetonitrile to test and optimize high repetition rate data collection. Comparison of different interferometer stepping rates reveals an optimum rate of 200 Hz due to minimization of long-term baseline drift. With the improved collection efficiency and signal-to-noise ratio, better assignments of the MLCT excited-state bands can be made. Using optimized parameters, carbonmonoxy myoglobin in deuterated buffer is also studied by observing the infrared signatures of carbon monoxide photolysis upon excitation of the heme. We conclude from these studies that a substantial increase in performance of ss-FT-IR instrumentation is achieved by coupling commercial infrared benches with kHz repetition rate lasers.
Koffarnus, Mikhail N; Deshpande, Harshawardhan U; Lisinski, Jonathan M; Eklund, Anders; Bickel, Warren K; LaConte, Stephen M
2017-08-10
Research on the rate at which people discount the value of future rewards has become increasingly prevalent as discount rate has been shown to be associated with many unhealthy patterns of behavior such as drug abuse, gambling, and overeating. fMRI research points to a fronto-parietal-limbic pathway that is active during decisions between smaller amounts of money now and larger amounts available after a delay. Researchers in this area have used different variants of delay discounting tasks and reported various contrasts between choice trials of different types from these tasks. For instance, researchers have compared 1) choices of delayed monetary amounts to choices of the immediate monetary amounts, 2) 'hard' choices made near one's point of indifference to 'easy' choices that require little thought, and 3) trials where an immediate choice is available versus trials where one is unavailable, regardless of actual eventual choice. These differences in procedure and analysis make comparison of results across studies difficult. In the present experiment, we designed a delay discounting task with the intended capability of being able to construct contrasts of all three comparisons listed above while optimizing scanning time to reduce costs and avoid participant fatigue. This was accomplished with an algorithm that customized the choice trials presented to each participant with the goal of equalizing choice trials of each type. We compared this task, which we refer to here as the individualized discounting task (IDT), to two other delay discounting tasks previously reported in the literature (McClure et al., 2004; Amlung et al., 2014) in 18 participants. Results show that the IDT can examine each of the three contrasts mentioned above, while yielding a similar degree of activation as the reference tasks. This suggests that this new task could be used in delay discounting fMRI studies to allow researchers to more easily compare their results to a majority of previous
NASA Astrophysics Data System (ADS)
Masters, Barry R.
1995-05-01
We describe a new, real-time, flying slit confocal microscope, that has unique features and imaging characteristics for in vivo human ocular imaging. In vivo real-time confocal microscopy is currently used to investigate the tear film, renewal of the ocular surface, the role of epithelial innervation in epithelial cell proliferation, wound healing, kinetics of drug penetration, the effects of laser refractive surgery on the keratocyte activation and distribution in the stroma, and the nature of endothelial defects. The following clinical examples will be presented and discussed: confocal microscopy of normal human basal and wing cells in the epithelium, confocal microscopy of lamellar and penetrating corneal grafts, confocal microscopy of corneal ulcer, confocal microscopy of scar formation after herpes keratitis, and confocal microscopy of corneal innervation. The use of scanning slit confocal microscopes has unique advantages over other instrumental systems based on pinhole-containing Nipkow disks (tandem-scanning confocal microscopes) for clinical in vivo confocal microscopy.
Wang, Xinghu; Hong, Yiguang; Yi, Peng; Ji, Haibo; Kang, Yu
2017-05-24
In this paper, a distributed optimization problem is studied for continuous-time multiagent systems with unknown-frequency disturbances. A distributed gradient-based control is proposed for the agents to achieve the optimal consensus with estimating unknown frequencies and rejecting the bounded disturbance in the semi-global sense. Based on convex optimization analysis and adaptive internal model approach, the exact optimization solution can be obtained for the multiagent system disturbed by exogenous disturbances with uncertain parameters.
Linton, Sabriya L; Jennings, Jacky M; Latkin, Carl A; Gomez, Marisela B; Mehta, Shruti H
2014-10-01
Knowledge of the geographic and temporal clustering of drug activity can inform where health and social services are needed and can provide insight on the potential impact of local policies on drug activity. This ecologic study assessed the spatial and temporal distribution of drug activity in Baltimore, Maryland, prior to and following the implementation of a large urban redevelopment project in East Baltimore, which began in 2003. Drug activity was measured by narcotic calls for service at the neighborhood level. A space-time scan statistic approach was used to identify statistically significant clusters of narcotic calls for service across space and time, using a discrete Poisson model. After adjusting for economic deprivation and housing vacancy, clusters of narcotic calls for service were identified among neighborhoods located in Southeast, Northeast, Northwest, and West Baltimore from 2001 to 2010. Clusters of narcotic calls for service were identified among neighborhoods located in East Baltimore from 2001 to 2003, indicating a decrease in narcotic calls thereafter. A large proportion of clusters occurred among neighborhoods located in North and Northeast Baltimore after 2003, which indicated a potential spike during this time frame. These findings suggest potential displacement of drug activity coinciding with the initiation of urban redevelopment in East Baltimore. Space-time scan statistics should be used in future research to describe the potential implications of local policies on drug activity.
Predicting Intracerebral Hemorrhage Growth With the Spot Sign: The Effect of Onset-to-Scan Time.
Dowlatshahi, Dar; Brouwers, H Bart; Demchuk, Andrew M; Hill, Michael D; Aviv, Richard I; Ufholz, Lee-Anne; Reaume, Michael; Wintermark, Max; Hemphill, J Claude; Murai, Yasuo; Wang, Yongjun; Zhao, Xingquan; Wang, Yilong; Li, Na; Sorimachi, Takatoshi; Matsumae, Mitsunori; Steiner, Thorsten; Rizos, Timolaos; Greenberg, Steven M; Romero, Javier M; Rosand, Jonathan; Goldstein, Joshua N; Sharma, Mukul
2016-03-01
Hematoma expansion after acute intracerebral hemorrhage is common and is associated with early deterioration and poor clinical outcome. The computed tomographic angiography (CTA) spot sign is a promising predictor of expansion; however, frequency and predictive values are variable across studies, possibly because of differences in onset-to-CTA time. We performed a patient-level meta-analysis to define the relationship between onset-to-CTA time and frequency and predictive ability of the spot sign. We completed a systematic review for studies of CTA spot sign and hematoma expansion. We subsequently pooled patient-level data on the frequency and predictive values for significant hematoma expansion according to 5 predefined categorized onset-to-CTA times. We calculated spot-sign frequency both as raw and frequency-adjusted rates. Among 2051 studies identified, 12 met our inclusion criteria. Baseline hematoma volume, spot-sign status, and time-to-CTA were available for 1176 patients, and 1039 patients had follow-up computed tomographies for hematoma expansion analysis. The overall spot sign frequency was 26%, decreasing from 39% within 2 hours of onset to 13% beyond 8 hours (P<0.001). There was a significant decrease in hematoma expansion in spot-positive patients as onset-to-CTA time increased (P=0.004), with positive predictive values decreasing from 53% to 33%. The frequency of the CTA spot sign is inversely related to intracerebral hemorrhage onset-to-CTA time. Furthermore, the positive predictive value of the spot sign for significant hematoma expansion decreases as time-to-CTA increases. Our results offer more precise risk stratification for patients with acute intracerebral hemorrhage and will help refine clinical prediction rules for intracerebral hemorrhage expansion. © 2016 American Heart Association, Inc.
NASA Astrophysics Data System (ADS)
WANG, Qingrong; ZHU, Changfeng; LI, Ying; ZHANG, Zhengkun
2017-06-01
Considering the time dependence of emergency logistic network and complexity of the environment that the network exists in, in this paper the time dependent network optimization theory and robust discrete optimization theory are combined, and the emergency logistics dynamic network optimization model with characteristics of robustness is built to maximize the timeliness of emergency logistics. On this basis, considering the complexity of dynamic network and the time dependence of edge weight, an improved ant colony algorithm is proposed to realize the coupling of the optimization algorithm and the network time dependence and robustness. Finally, a case study has been carried out in order to testify validity of this robustness optimization model and its algorithm, and the value of different regulation factors was analyzed considering the importance of the value of the control factor in solving the optimal path. Analysis results show that this model and its algorithm above-mentioned have good timeliness and strong robustness.
NASA Astrophysics Data System (ADS)
Gershenzon, V.; Gershenzon, O.; Sergeeva, M.; Ippolitov, V.; Targulyan, O.
2012-04-01
Keywords: Remote Sensing, UniScan ground station, Education, Monitoring. Remote Sensing Centers allowing real-time imagery acquisition from Earth observing satellites within the structure of Universities provides proper environment for innovative education. It delivers the efficient training for scientific and academic and teaching personnel, secure the role of the young professionals in science, education and hi-tech, and maintain the continuity of generations in science and education. Article is based on experience for creation such centers in more than 20 higher education institutions in Russia, Kazakhstan, and Spain on the base of UniScan ground station by R&D Center ScanEx. These stations serve as the basis for Earth monitoring from space providing the training and advanced training to produce the specialists having the state-of-the-art knowledge in Earth Remote Sensing and GIS, as well as the land-use monitoring and geo-data service for the economic operators in such diverse areas as the nature resource management, agriculture, land property management, disasters monitoring, etc. Currently our proposal of UniScan for universities all over the world allows to receive low resolution free of charge MODIS data from Terra and Aqua satellites, VIIRS from the NPP mission, and also high resolution optical images from EROS A and radar images from Radarsat-1 satellites, including the telemetry for the first year of operation, within the footprint of up to 2,500 kilometers in radius. Creation remote sensing centers at universities will lead to a new quality level for education and scientific studies and will enable to make education system in such innovation institutions open to modern research work and economy.
MEG dual scanning: a procedure to study real-time auditory interaction between two persons
Baess, Pamela; Zhdanov, Andrey; Mandel, Anne; Parkkonen, Lauri; Hirvenkari, Lotta; Mäkelä, Jyrki P.; Jousmäki, Veikko; Hari, Riitta
2012-01-01
Social interactions fill our everyday life and put strong demands on our brain function. However, the possibilities for studying the brain basis of social interaction are still technically limited, and even modern brain imaging studies of social cognition typically monitor just one participant at a time. We present here a method to connect and synchronize two faraway neuromagnetometers. With this method, two participants at two separate sites can interact with each other through a stable real-time audio connection with minimal delay and jitter. The magnetoencephalographic (MEG) and audio recordings of both laboratories are accurately synchronized for joint offline analysis. The concept can be extended to connecting multiple MEG devices around the world. As a proof of concept of the MEG-to-MEG link, we report the results of time-sensitive recordings of cortical evoked responses to sounds delivered at laboratories separated by 5 km. PMID:22514530
Determining optimal ultrasound off time with micropulse longitudinal phacoemulsification.
Jensen, Jason D; Kirk, Kevin R; Gupta, Isha; Ronquillo, Cecinio; Farukhi, M Aabid; Stagg, Brian C; Pettey, Jeff H; Olson, Randall J
2015-02-01
To evaluate the optimum off time for the most efficient removal of lens fragments using micropulse ultrasound (US). John A. Moran Eye Center Laboratories, University of Utah, Salt Lake City, Utah, USA. Experimental study. Porcine lens nuclei were soaked in formalin for 2 hours and then cut into 2.0 mm cubes using the Signature US machine with a bent 0.9 mm phaco tip with a 30-degree bevel. The on time was 7 milliseconds (ms), and the off time was varied from 2 to 20 ms in 2 ms steps. Phacoemulsification efficiency (time for fragment removal) and chatter (number of times the fragment bounced from the tip) were measured. A nonsignificant linear increase in efficiency was observed with 2 to 6 ms of off time (R(2) = .87, P = .24). A significant linear decrease in efficiency was observed with 6 to 20 ms (R(2) = .74, P = .006). With micropulse longitudinal US, 6 to 7 ms of off time was as efficient as shorter off times; longer off times (8 to 20 ms) showed decreased efficiency. Chatter was minimal and statistically similar throughout. To maximize phacoemulsification US efficiency, an off-time setting of 6 ms is recommended. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Fuzzy time-optimal controller (FTOC) for second order nonlinear systems.
Nagi, Farrukh; Ahmed, Syed Khaleel; Zularnain, Abdul Talip; Nagi, Jawad
2011-07-01
The motivation behind this paper is to seek alternative techniques to achieve a near optimal controller for non-linear systems without solving the analytical problem. In classical optimal control systems, the system states and optimization co-state parameters generate a two-point boundary value problem (TPBVP) using Pontryagin's minimum principle (PMP). The paper contributes a new fuzzy time-optimal controller to the existing fuzzy controllers which has two regular inputs and one bang-bang output. The proposed controller closely approximates the output of the classical time-optimal controller. Further, input membership function are tuned on-line to improve the time-optimal output. The new controller exhibits optimal behaviour for second order non-linear systems. The rules are selected to satisfy the stability and optimality conditions of the new fuzzy time-optimal controller. The paper describes a systematic procedure to design the controller and how to achieve the desired result. To benchmark the new controller performance, a sliding mode controller is used for guidance and comparison purpose. Simulation of three non-linear examples shows promising results. The work described here is expected to incite researcher's interest in fuzzy time-optimal controller design. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Optimizing timing performance of CdTe detectors for PET
NASA Astrophysics Data System (ADS)
Nakhostin, M.
2017-10-01
Despite several attractive properties, the poor timing performance of compound semiconductor detectors such as CdTe and CdZnTe has hindered their use in commercial PET imaging systems. The standard method of pulse timing with such detectors is to employ a constant-fraction discriminator at the output of a timing filter which is fed by the pulses from a charge-sensitive preamplifier. The method has led to a time resolution of about 10 ns at full-width at half-maximum (FWHM) with 1 mm thick CdTe detectors. This paper presents a detailed investigation on the parameters limiting the timing performance of Ohmic contact planar CdTe detectors with the standard pulse timing method. The jitter and time-walk errors are studied through simulation and experimental measurements and it is revealed that the best timing results obtained with the standard timing method suffer from a significant loss of coincidence events (~50%). In order to improve the performance of the detectors with full detection efficiency, a new digital pulse timing method based on a simple pattern recognition technique was developed. A time resolution of 3.29 ± 0.10 ns (FWHM) in the energy range of 300–650 keV was achieved with an Ohmic contact planar CdTe detector (5 × 5 × 1 mm3). The digital pulse processing method was also used to correct for the charge-trapping effect and an improvement in the energy resolution from 4.83 ± 0.66% to 2.780 ± 0.002% (FWHM) at 511 keV was achieved. Further improvement of time resolution through a moderate cooling of the detector and the application of the method to other detector structures are also discussed.
Real-time B-scan ultrasonic imaging using a digital phased array system for NDE
NASA Astrophysics Data System (ADS)
Dunki-Jacobs, Robert; Thomas, Lewis
A demonstration is presented of the ability to produce real-time images of metals on the basis of a phased-array ultrasound system. Attention is given to the critical role played by a beam-former. It is established that the present imaging system's resolution approaches the theoretical capabilities of the given aperture size and wavelength.
Amor, Rumelo; McDonald, Alison; Trägårdh, Johanna; Robb, Gillian; Wilson, Louise; Abdul Rahman, Nor Zaihana; Dempster, John; Amos, William Bradshaw; Bushell, Trevor J.; McConnell, Gail
2016-01-01
We demonstrate fluorescence imaging by two-photon excitation without scanning in biological specimens as previously described by Hwang and co-workers, but with an increased field size and with framing rates of up to 100 Hz. During recordings of synaptically-driven Ca2+ events in primary rat hippocampal neurone cultures loaded with the fluorescent Ca2+ indicator Fluo-4 AM, we have observed greatly reduced photo-bleaching in comparison with single-photon excitation. This method, which requires no costly additions to the microscope, promises to be useful for work where high time-resolution is required. PMID:26824845
Amor, Rumelo; McDonald, Alison; Trägårdh, Johanna; Robb, Gillian; Wilson, Louise; Abdul Rahman, Nor Zaihana; Dempster, John; Amos, William Bradshaw; Bushell, Trevor J; McConnell, Gail
2016-01-01
We demonstrate fluorescence imaging by two-photon excitation without scanning in biological specimens as previously described by Hwang and co-workers, but with an increased field size and with framing rates of up to 100 Hz. During recordings of synaptically-driven Ca(2+) events in primary rat hippocampal neurone cultures loaded with the fluorescent Ca(2+) indicator Fluo-4 AM, we have observed greatly reduced photo-bleaching in comparison with single-photon excitation. This method, which requires no costly additions to the microscope, promises to be useful for work where high time-resolution is required.
Facilitating Timely Completion of a College Degree with Optimization Technology
ERIC Educational Resources Information Center
Dechter, Avi
2009-01-01
Students who pursue a bachelor's degree in four-year colleges and universities often take longer than four years to complete their degrees. The reasons for prolonging the time to degree seem to fall into three broad categories: part-time enrollment, deficiencies in academic readiness, and inadequate course planning. This paper focuses on the…
Coarse-grained and fine-grained parallel optimization for real-time en-face OCT imaging
NASA Astrophysics Data System (ADS)
Kapinchev, Konstantin; Bradu, Adrian; Barnes, Frederick; Podoleanu, Adrian
2016-03-01
This paper presents parallel optimizations in the en-face (C-scan) optical coherence tomography (OCT) display. Compared with the cross-sectional (B-scan) imagery, the production of en-face images is more computationally demanding, due to the increased size of the data handled by the digital signal processing (DSP) algorithms. A sequential implementation of the DSP leads to a limited number of real-time generated en-face images. There are OCT applications, where simultaneous production of large number of en-face images from multiple depths is required, such as real-time diagnostics and monitoring of surgery and ablation. In sequential computing, this requirement leads to a significant increase of the time to process the data and to generate the images. As a result, the processing time exceeds the acquisition time and the image generation is not in real-time. In these cases, not producing en-face images in real-time makes the OCT system ineffective. Parallel optimization of the DSP algorithms provides a solution to this problem. Coarse-grained central processing unit (CPU) based and fine-grained graphics processing unit (GPU) based parallel implementations of the conventional Fourier domain (CFD) OCT method and the Master-Slave Interferometry (MSI) OCT method are studied. In the coarse-grained CPU implementation, each parallel thread processes the whole OCT frame and generates a single en-face image. The corresponding fine-grained GPU implementation launches one parallel thread for every data point from the OCT frame and thus achieves maximum parallelism. The performance and scalability of the CPU-based and GPU-based parallel approaches are analyzed and compared. The quality and the resolution of the images generated by the CFD method and the MSI method are also discussed and compared.
Ma, Dinglong; Bec, Julien; Gorpas, Dimitris; Yankelevich, Diego; Marcu, Laura
2015-01-01
We report a novel technique for continuous acquisition, processing and display of fluorescence lifetimes enabling real-time tissue diagnosis through a single hand held or biopsy fiber-optic probe. A scanning multispectral time-resolved fluorescence spectroscopy (ms-TRFS) with self-adjustable photon detection range was developed to account for the dynamic changes of fluorescence intensity typically encountered in clinical application. A fast algorithm was implemented in the ms-TRFS software platform, providing up to 15 Hz continuous display of fluorescence lifetime values. Potential applications of this technique, including biopsy guidance, and surgical margins delineation were demonstrated in proof-of-concept experiments. Current results showed accurate display of fluorescence lifetimes values and discrimination of distinct fluorescence markers and tissue types in real-time (< 100 ms per data point). PMID:25798320
Suzuki, Yuta; Tay, Jian Wei; Yang, Qiang; Wang, Lihong V.
2014-01-01
Time-reversed ultrasonically encoded (TRUE) optical focusing in turbid media was previously implemented using both analog and digital phase conjugation. The digital approach, in addition to its large energy gain, can improve the focal intensity and resolution by iterative focusing. However, performing iterative focusing at each focal position can be time-consuming. Here, we show that by gradually moving the focal position, the TRUE focal intensity is improved, as in iterative focusing at a fixed position, and can be continuously scanned to image fluorescent targets in a shorter time. Also, our setup is the first demonstration of TRUE focusing using a digital phase conjugate mirror in reflection mode, which is more suitable for practical applications. PMID:24978506
NASA Astrophysics Data System (ADS)
Ohldag, Hendrik
Understanding magnetic properties at ultrafast timescales is crucial for the development of new magnetic devices. Samples of interest are often thin film magnetic multilayers with thicknesses in the range of a few atomic layers. This fact alone presents a sensitivity challenge in STXM microscopy, which is more suited toward studying thicker samples. In addition the relevant time scale is of the order of 10 ps, which is well below the typical x-ray pulse length of 50 - 100 ps. The SSRL STXM is equipped with a single photon counting electronics that effectively allows using a double lock-in detection at 476MHz (the x-ray pulse frequency) and 1.28MHz (the synchrotron revelation frequency) to provide the required sensitivity. In the first year of operation the excellent spatial resolution, temporal stability and sensitivity of the detection electronics of this microscope has enabled researchers to acquire time resolved images of standing as well as traveling spin waves in a spin torque oscillator in real space as well as detect the real time spin accumulation in non magnetic Copper once a spin polarized current is injected into this material. The total magnetic moment is comparable to that of a single nanocube of magnetic Fe buried under a micron of non-magnetic material.
Wang, H.; Palmer, R.A.; Manning, C.J.; Schoonover, J.R.
1998-07-01
Step-scan Fourier transform infrared spectroscopy in conjunction with impulse stress on polymer films has been used to monitor dynamic rheological responses in real time. A novel piezo-electrically-driven polymer microrheometer was employed to apply repetitive impulses to the polymer sample while time-domain spectra were recorded. Recent results include the study of both semi-crystalline polymers such as isotactic polypropylene (iPP) and elastomers such as Estane polyester/polyurethane copolymer and Kraton tri-block copolymer. The spectral changes of iPP are consistent with frequency-domain results. For iPP at room temperature, large differences in the response times of different absorption bands are not seen. However, the orientation response of the CH{sub 3} rocking mode is slightly slower than the responses of the backbone modes. To the authors` knowledge, this is the first reported successful step-scan FTIR time-domain dynamic polymer opto-rheology experiment. The advantages of the time-domain experiment over the frequency-domain experiment are also discussed briefly. This technique appears to be applicable to a variety of polymer samples, and examples from additional results are illustrated.
Zhang, Huaguang; Song, Ruizhuo; Wei, Qinglai; Zhang, Tieyan
2011-12-01
In this paper, a novel heuristic dynamic programming (HDP) iteration algorithm is proposed to solve the optimal tracking control problem for a class of nonlinear discrete-time systems with time delays. The novel algorithm contains state updating, control policy iteration, and performance index iteration. To get the optimal states, the states are also updated. Furthermore, the "backward iteration" is applied to state updating. Two neural networks are used to approximate the performance index function and compute the optimal control policy for facilitating the implementation of HDP iteration algorithm. At last, we present two examples to demonstrate the effectiveness of the proposed HDP iteration algorithm.
Chen, Chaoliang; Cheng, Kyle H Y; Jakubovic, Raphael; Jivraj, Jamil; Ramjist, Joel; Deorajh, Ryan; Gao, Wanrong; Barnes, Elizabeth; Chin, Lee; Yang, Victor X D
2017-04-03
In this paper, a multi-beam scanning technique is proposed to optimize the microvascular images of human skin obtained with Doppler effect based methods and speckle variance processing. Flow phantom experiments were performed to investigate the suitability for combining multi-beam data to achieve enhanced microvascular imaging. To our surprise, the highly variable spot sizes (ranging from 13 to 77 μm) encountered in high numerical aperture multi-beam OCT system imaging the same target provided reasonably uniform Doppler variance and speckle variance responses as functions of flow velocity, which formed the basis for combining them to obtain better microvascular imaging without scanning penalty. In vivo 2D and 3D imaging of human skin was then performed to further demonstrate the benefit of combining multi-beam scanning to obtain improved signal-to-noise ratio (SNR) in microvascular imaging. Such SNR improvement can be as high as 10 dB. To our knowledge, this is the first demonstration of combining different spot size, staggered multiple optical foci scanning, to achieve enhanced SNR for blood flow OCT imaging.
Optimizing computed tomography simulation wait times in a busy radiation medicine program.
Roussos, Jerry; Zahedi, Payam; Spence, Tara; Swanson, Lue-Ann; Li-Cheung, Fionna; Cops, Fred; Darcy, Patrick; Chhin, Veng; Moyo, Elen; Warde, Padraig; Foxcroft, Sophie; Liu, Fei-Fei
An audit was conducted of patient schedules for computed tomography simulation (CT-Sim) scans within the Radiation Medicine Program at the Princess Margaret Cancer Centre to investigate opportunities for improved efficiencies, enhancing process, reducing rescanning rates, and decreasing wait times. A 3-phased approach was undertaken to evaluate the current practice in the CT-Sim facility with a view toward implementing improvements. The first phase involved a review and assessment of the validity of current guidelines and protocols associated with 16 different disease sites. The second phase incorporated the use of a patient record and verification program MOSAIQ to capture the duration of each appointment. The last phase allocated additional time for patient-centered care and staff engagement. The audit revealed that efficiency could be achieved through staff training, updating protocols, and improving process coordination. With the exception of sarcoma, pediatric, and palliative patients who require unique management approaches, the duration for each CT-Sim appointment was successfully shortened for all disease sites by 22% to 33%, corresponding to a reduction of 10 to 15 minutes per appointment. Rescanning rates for patients requiring self-administered preparations before CT-Sim procedures were also significantly reduced by enhancing processes to increase patient compliance. Implementation of procedural changes resulted in an overall net gain of 3060 minutes, equivalent to 102 additional 30-minute CT-Sim appointment slots available for each month. This retrospective evaluation, review, and optimization of CT-Sim guidelines and practices identified opportunities to shorten appointment timeslots, and reduce rescanning rates for CT-Sim procedures, thereby significantly shortening wait times and improving access to service for our patients. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
A comparison of time-optimal interception trajectories for the F-8 and F-15
NASA Technical Reports Server (NTRS)
Calise, Anthony J.; Pettengill, James B.
1990-01-01
The simulation results of a real time control algorithm for onboard computation of time-optimal intercept trajectories for the F-8 and F-15 aircraft are given. Due to the inherent aerodynamic and propulsion differences in the aircraft, there are major differences in their optimal trajectories. The significant difference in the two aircrafts are their flight envelopes. The F-8's optimal cruise velocity is thrust limited, while the F-15's optimal cruise velocity is at the intersection of the Mach and dynamic pressure constraint boundaries. This inherent difference necessitated the development of a proportional thrust controller for use as the F-15 approaches it's optimal cruise energy. Documented here is the application of singular perturbation theory to the trajectory optimization problem, along with a summary of the control algorithms. Numerical results for the two aircraft are compared to illustrate the performance of the minimum time algorithm, and to compute the resulting flight paths.
Applications of asynoptic space - Time Fourier transform methods to scanning satellite measurements
NASA Technical Reports Server (NTRS)
Lait, Leslie R.; Stanford, John L.
1988-01-01
A method proposed by Salby (1982) for computing the zonal space-time Fourier transform of asynoptically acquired satellite data is discussed. The method and its relationship to other techniques are briefly described, and possible problems in applying it to real data are outlined. Examples of results obtained using this technique are given which demonstrate its sensitivity to small-amplitude signals. A number of waves are found which have previously been observed as well as two not heretofore reported. A possible extension of the method which could increase temporal and longitudinal resolution is described.
Optimization of vehicle accelerator-brake pedal foot travel time.
Glass, S W; Suggs, C W
1977-12-01
This study was directed towards reducing the lag time between stimulus and incidence of braking. The effect of the relative vertical heights of the brake and accelerator pedals on foot travel time was the subject of the first part of the investigation. In the second part, two new pedal designs in which the accelerator was mounted directly on the brake pedal were evaluated. A significant reduction in foot travel time of approximately 12.5% was realised by locating the accelerator pedal 25-50 mm (1-2 in) higher than the brake pedal. Mounting of the accelerator pedal adjacent to or directly on the brake pedal allowed reductions in braking lag time of 46% to 74%.
Optimal observation time window for forecasting the next earthquake
Omi, Takahiro; Shinomoto, Shigeru; Kanter, Ido
2011-02-15
We report that the accuracy of predicting the occurrence time of the next earthquake is significantly enhanced by observing the latest rate of earthquake occurrences. The observation period that minimizes the temporal uncertainty of the next occurrence is on the order of 10 hours. This result is independent of the threshold magnitude and is consistent across different geographic areas. This time scale is much shorter than the months or years that have previously been considered characteristic of seismic activities.
Kress, Matthias; Meier, Thomas; Steiner, Rudolf; Dolp, Frank; Erdmann, Rainer; Ortmann, Uwe; Rück, Angelika
2003-01-01
This work describes the time-resolved fluorescence characteristics of two different photosensitizers in single cells, in detail mTHPC and 5-ALA induced PPIX, which are currently clinically used in photodynamic therapy. The fluorescence lifetime of the drugs was determined in the cells from time-gated spectra as well as single photon counting, using a picosecond pulsed diode laser for fluorescence excitation. The diode laser, which emits pulses at 398 nm with 70 ps full width at half maximum duration, was coupled to a confocal laser scanning microscope. For time-resolved spectroscopy a setup consisting of a Czerny Turner spectrometer and a MCP-gated and -intensified CCD camera was used. Time-gated spectra within the cells were acquired by placing the laser beam in "spot scan" mode. In addition, a time-correlated single photon counting module was used to determine the fluorescence lifetime from single spots and to record lifetime images. The fluorescence lifetime of mTHPC decreased from 7.5 to 5.5 ns during incubation from 1 to 6 h. This decrease was probably attributed to enhanced formation of aggregates during incubation. Fluorescence lifetime imaging showed that longer lifetimes were correlated with accumulation in the cytoplasm in the neighborhood of the cell nucleus, whereas shorter lifetimes were found in the outer cytoplasm. For cells that were incubated with 5-ALA, a fluorescence lifetime of 7.4 ns was found for PPIX; a shorter lifetime at 3.6 ns was probably attributed to photoproducts and aggregates of PPIX. In contrast from fluorescence intensity images alone, different fluorescence species could not be distinguished. However, in the lifetime image a structured fluorescence distribution in the cytoplasm was correlated with the longer lifetime and probably coincides with mitochondria. In conclusion, picosecond diode lasers coupled to a laser scanning microscope equipped with appropriate detection units allows time-resolved spectroscopy and lifetime imaging
Time-optimal three-axis reorientation of asymmetric rigid spacecraft via homotopic approach
NASA Astrophysics Data System (ADS)
Li, Jing
2016-05-01
This paper investigates the time-optimal rest-to-rest three-axis reorientation of asymmetric rigid spacecraft. First, time-optimal solutions for the inertially symmetric rigid spacecraft (ISRS) three-axis reorientation are briefly reviewed. By utilizing initial costates and reorientation time of the ISRS time-optimal solution, the homotopic approach is introduced to solve the asymmetric rigid spacecraft time-optimal three-axis reorientation problem. The main merit is that the homotopic approach can start automatically and reliably, which would facilitate the real-time generation of open-loop time-optimal solutions for attitude slewing maneuvers. Finally, numerical examples are given to illustrate the performance of the proposed method. For principle axis reorientation, numerical results and analytical derivations show that, multiple time-optimal solutions exist and relations between them are given. For generic reorientation problem, though mathematical rigorous proof is not available to date, numerical results also indicated the existing of multiple time-optimal solutions.
NASA Astrophysics Data System (ADS)
Lin, Deng-Sung; Ku, Tsai-Shuan; Chen, Ru-Ping
2000-01-01
In this paper, we investigate the interaction of phosphine (PH3) on the Si(100)-2×1 surface at temperatures between 635 and 900 K. The hydrogen desorption, growth mode, surface morphology, and chemical composition and ordering of the surface layer are examined by synchrotron radiation core-level photoemission and real-time high-temperature scanning tunneling microscopy. The P 2p core-level spectra indicate that decomposition of PHn is complete above ~550 K and the maximum P coverage is strongly influenced by the growth temperature, which governs the coverage of H-terminated sites. The scanning tunneling microscopy (STM) images taken at real time during PH3 exposure indicate that a surface phosphorus atom readily and randomly displaces one Si atom from the substrate. The ejected Si diffuses, nucleates, and incorporates itself into islands or step edges, leading to similar growth behavior as that found in Si chemical vapor deposition. Line defects both perpendicular and parallel to the dimer rows are observed on the nearly P-saturated surface. Perpendicular line defects act as a strain relief mechanism. Parallel line defects result from growth kinetics. STM images also indicate that incorporating a small amount of phosphorus eliminates the line defects in the Si(100)-2×n surface.
Clinical results of real-time ultrasonic scanning of the heart using a phased array system.
Kisslo, J A; vonRamm, O T; Thurstone, F L
1977-01-01
This report describes the operating characteristics and initial clinical results of a new echocardiographic system that produces real-time, high resolution, cross-sectional images of the heart. This system relies upon phased-array principles to rapidly steer and focus the ultrasound beam through the cardiac structures under investigation. A hand-held, linear array of 24 transducers is manipulated on the patient's chest to direct the interrogating plane at various cardiac structures. Images of high line density are presented in selectable sector arcs to a maximum of 90 degrees. This imaging system has been used clinically in over 2,000 patients in the past two and one-half years. Its use in the detection of altered states of ventricular and valvular pathology has been described.
Optimization of Time-Dependent Particle Tracing Using Tetrahedral Decomposition
NASA Technical Reports Server (NTRS)
Kenwright, David; Lane, David
1995-01-01
An efficient algorithm is presented for computing particle paths, streak lines and time lines in time-dependent flows with moving curvilinear grids. The integration, velocity interpolation and step-size control are all performed in physical space which avoids the need to transform the velocity field into computational space. This leads to higher accuracy because there are no Jacobian matrix approximations or expensive matrix inversions. Integration accuracy is maintained using an adaptive step-size control scheme which is regulated by the path line curvature. The problem of cell-searching, point location and interpolation in physical space is simplified by decomposing hexahedral cells into tetrahedral cells. This enables the point location to be done analytically and substantially faster than with a Newton-Raphson iterative method. Results presented show this algorithm is up to six times faster than particle tracers which operate on hexahedral cells yet produces almost identical particle trajectories.
Simulations of Cold Electroweak Baryogenesis: finding the optimal quench time
NASA Astrophysics Data System (ADS)
Mou, Zong-Gang; Saffin, Paul M.; Tranberg, Anders
2017-07-01
We revisit the numerical computation of the baryon asymmetry from Cold Electroweak Baryogenesis given the physical Higgs mass. We investigate the dependence of the asymmetry on the speed at which electroweak symmetry breaking takes place. The maximum asymmetry does not occur for arbitrarily fast quenches, but at quench times of about τ q ≃ 16 m H - 1 , with no asymmetry created for quenches slower than τ q > 30 m H - 1 . Curiously, we also find that the overall sign of the asymmetry depends on the quench time.
Nearly time-optimal feedback control of a magnetically levitated photolithography positioning system
Redmond, J.
1993-12-31
This paper focuses on the development of an approximate time-optimal feedback strategy for conducting rest-to-rest maneuvers of a magnetically levitated table. Classical switching curves are modified to account for the complexities of magnetic actuation as well as the coupling of the rigid body modes through the control. A smooth blend of time-optimal and proportional-derivative controls is realized near the destination point to correct for inaccuracies produced by the approximate time-optimal strategy. Detailed computer simulations of the system indicate that this hybrid control strategy provides a significant reduction in settling time as compared to proportional-derivative control alone.
Calliste, Jabari; Wu, Gongting; Laganis, Philip E; Spronk, Derrek; Jafari, Houman; Olson, Kyle; Gao, Bo; Lee, Yueh Z; Zhou, Otto; Lu, Jianping
2017-09-01
The aim of this study was to characterize a new generation stationary digital breast tomosynthesis system with higher tube flux and increased angular span over a first generation system. The linear CNT x-ray source was designed, built, and evaluated to determine its performance parameters. The second generation system was then constructed using the CNT x-ray source and a Hologic gantry. Upon construction, test objects and phantoms were used to characterize system resolution as measured by the modulation transfer function (MTF), and artifact spread function (ASF). The results indicated that the linear CNT x-ray source was capable of stable operation at a tube potential of 49 kVp, and measured focal spot sizes showed source-to-source consistency with a nominal focal spot size of 1.1 mm. After construction, the second generation (Gen 2) system exhibited entrance surface air kerma rates two times greater the previous s-DBT system. System in-plane resolution as measured by the MTF is 7.7 cycles/mm, compared to 6.7 cycles/mm for the Gen 1 system. As expected, an increase in the z-axis depth resolution was observed, with a decrease in the ASF from 4.30 mm to 2.35 mm moving from the Gen 1 system to the Gen 2 system as result of an increased angular span. The results indicate that the Gen 2 stationary digital breast tomosynthesis system, which has a larger angular span, increased entrance surface air kerma, and faster image acquisition time over the Gen 1 s-DBT system, results in higher resolution images. With the detector operating at full resolution, the Gen 2 s-DBT system can achieve an in-plane resolution of 7.7 cycles per mm, which is better than the current commercial DBT systems today, and may potentially result in better patient diagnosis. © 2017 American Association of Physicists in Medicine.
Kwoni, Eri; Choi, Samjin; Cheong, Youjin; Park, Ki-Ho; Park, Hun-Kuk
2012-07-01
Scanning electron microscopy (SEM) was used to examine the abrasive and erosive potential of the brushing time on the dentin surface eroded by acidic soft drinks to suggest an optimized toothbrushing start time after the consumption of cola (pH 2.52) in children. Thirty-six non-carious primary central incisors were assigned to 12 experimental groups (n = 3) based on the erosive and abrasive treatment protocols. Cola exposure was used as the erosive treatment. Three brushing durations (5, 15, and 30 sec) and four brushing start times (immediately, 30 min, 60 min, and 120 min) after an erosive pre-treatment were used for the abrasive treatment. Toothbrushing after exposure to acidic soft drinks led to an increase in the open-tubule fraction and microstructural changes. Toothbrushing immediately after the erosive pre-treatment showed the largest abrasive and erosive potential on the dentin whereas that 60 and 120 min after the pre-treatment showed the least abrasive and erosive potential on the dentin. Toothbrushing for both 60 and 120 min after the pre-treatment showed similar erosive and abrasive potentials on the dentin. The brushing duration showed no effect on the erosive and abrasive potential on the dentin. Therefore, to achieve the desired tooth surface cleaning and less surface lesion on the dentin surface, toothbrushing should be performed at least 1 hour after cola consumption. Three-minute brushing after cola consumption is sufficient to prevent dental lesions, and prolonged brushing can irritate the gingival tissues.
Bozorgzadeh, Bardia; Covey, Daniel P; Heidenreich, Byron A; Garris, Paul A; Mohseni, Pedram
2014-01-01
This paper reports the hardware implementation of a digital signal processing (DSP) unit for real-time processing of data obtained by fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM), an electrochemical transduction technique for high-resolution monitoring of brain neurochemistry. Implemented on a field-programmable gate array (FPGA), the DSP unit comprises a decimation filter and an embedded processor to process the oversampled FSCV data and obtain in real time a temporal profile of concentration variation along with a chemical signature to identify the target neurotransmitter. Interfaced with an integrated, FSCV-sensing front-end, the DSP unit can successfully process FSCV data obtained by bolus injection of dopamine in a flow cell as well as electrically evoked, transient dopamine release in the dorsal striatum of an anesthetized rat.
Optimizing the Timing Resolution for the NEXT Array
NASA Astrophysics Data System (ADS)
Engelhardt, A.; Shadrick, S.; Rajabali, M.; Schmitt, K.; Grzywacz, R.
2016-09-01
In nuclear physics studies there are very few detectors capable of measuring neutron energies in the 0.1-10 MeV energy range with a reasonable resolution. The VANDLE array is the premier detector array for these measurements, yet VANDLE is limited by the its thickness (2.9 cm minimum).The Neutron dEtector with Tracking (NEXT) array would be capable of surpassing the limitations caused by the large size of VANDLE bars. A proposed configuration of each neutron detector consists of ten 3-mm thick plastic scintillators with two or more silicon photomultipliers (SiPMs) attached at each end. To achieve the desired energy resolution for neutron energy measurements through time of flight, the timing resolution between these SiPMs needs to be below 200 ps. A SiPM was placed on each end of a plastic scintillator inside a light-tight electrical box along with a 137Cs source. An analog circuit was designed in order to measure the timing difference between the two SiPMs. Different configurations of SiPM sizes, scintillator sizes, and wrappings were tested in order to determine the configuration that yields the best timing resolution. Details of the testing procedures and results will be presented. Research Supported by the National Nuclear Security Administration.
Deceleration-stats save much time during phototrophic culture optimization.
Hoekema, Sebastiaan; Rinzema, Arjen; Tramper, Johannes; Wijffels, René H; Janssen, Marcel
2014-04-01
In case of phototrophic cultures, photobioreactor costs contribute significantly to the total operating costs. Therefore one of the most important parameters to be determined is the maximum biomass production rate, if biomass or a biomass associated product is the desired product. This is traditionally determined in time consuming series of chemostat cultivations. The goal of this work is to assess the experimental time that can be saved by applying the deceleration stat (D-stat) technique to assess the maximum biomass production rate of a phototrophic cultivation system, instead of a series of chemostat cultures. A mathematical model developed by Geider and co-workers was adapted in order to describe the rate of photosynthesis as a function of the local light intensity. This is essential for the accurate description of biomass productivity in phototrophic cultures. The presented simulations demonstrate that D-stat experiments executed in the absence of pseudo steady-state (i.e., the arbitrary situation that the observed specific growth rate deviates <5% from the dilution rate) can still be used to accurately determine the maximum biomass productivity of the system. Moreover, this approach saves up to 94% of the time required to perform a series of chemostat experiments that has the same accuracy. In case more information on the properties of the system is required, the reduction in experimental time is reduced but still significant. © 2013 Wiley Periodicals, Inc.
Optease Vena Cava Filter Optimal Indwelling Time and Retrievability
Rimon, Uri Bensaid, Paul Golan, Gil Garniek, Alexander Khaitovich, Boris; Dotan, Zohar; Konen, Eli
2011-06-15
The purpose of this study was to assess the indwelling time and retrievability of the Optease IVC filter. Between 2002 and 2009, a total of 811 Optease filters were inserted: 382 for prophylaxis in multitrauma patients and 429 for patients with venous thromboembolic (VTE) disease. In 139 patients [97 men and 42 women; mean age, 36 (range, 17-82) years], filter retrieval was attempted. They were divided into two groups to compare change in retrieval policy during the years: group A, 60 patients with filter retrievals performed before December 31 2006; and group B, 79 patients with filter retrievals from January 2007 to October 2009. A total of 128 filters were successfully removed (57 in group A, and 71 in group B). The mean filter indwelling time in the study group was 25 (range, 3-122) days. In group A the mean indwelling time was 18 (range, 7-55) days and in group B 31 days (range, 8-122). There were 11 retrieval failures: 4 for inability to engage the filter hook and 7 for inability to sheathe the filter due to intimal overgrowth. The mean indwelling time of group A retrieval failures was 16 (range, 15-18) days and in group B 54 (range, 17-122) days. Mean fluoroscopy time for successful retrieval was 3.5 (range, 1-16.6) min and for retrieval failures 25.2 (range, 7.2-62) min. Attempts to retrieve the Optease filter can be performed up to 60 days, but more failures will be encountered with this approach.
Optease vena cava filter optimal indwelling time and retrievability.
Rimon, Uri; Bensaid, Paul; Golan, Gil; Garniek, Alexander; Khaitovich, Boris; Dotan, Zohar; Konen, Eli
2011-06-01
The purpose of this study was to assess the indwelling time and retrievability of the Optease IVC filter. Between 2002 and 2009, a total of 811 Optease filters were inserted: 382 for prophylaxis in multitrauma patients and 429 for patients with venous thromboembolic (VTE) disease. In 139 patients [97 men and 42 women; mean age, 36 (range, 17-82) years], filter retrieval was attempted. They were divided into two groups to compare change in retrieval policy during the years: group A, 60 patients with filter retrievals performed before December 31 2006; and group B, 79 patients with filter retrievals from January 2007 to October 2009. A total of 128 filters were successfully removed (57 in group A, and 71 in group B). The mean filter indwelling time in the study group was 25 (range, 3-122) days. In group A the mean indwelling time was 18 (range, 7-55) days and in group B 31 days (range, 8-122). There were 11 retrieval failures: 4 for inability to engage the filter hook and 7 for inability to sheathe the filter due to intimal overgrowth. The mean indwelling time of group A retrieval failures was 16 (range, 15-18) days and in group B 54 (range, 17-122) days. Mean fluoroscopy time for successful retrieval was 3.5 (range, 1-16.6) min and for retrieval failures 25.2 (range, 7.2-62) min. Attempts to retrieve the Optease filter can be performed up to 60 days, but more failures will be encountered with this approach.
On computing the global time-optimal motions of robotic manipulators in the presence of obstacles
NASA Technical Reports Server (NTRS)
Shiller, Zvi; Dubowsky, Steven
1991-01-01
A method for computing the time-optimal motions of robotic manipulators is presented that considers the nonlinear manipulator dynamics, actuator constraints, joint limits, and obstacles. The optimization problem is reduced to a search for the time-optimal path in the n-dimensional position space. A small set of near-optimal paths is first efficiently selected from a grid, using a branch and bound search and a series of lower bound estimates on the traveling time along a given path. These paths are further optimized with a local path optimization to yield the global optimal solution. Obstacles are considered by eliminating the collision points from the tessellated space and by adding a penalty function to the motion time in the local optimization. The computational efficiency of the method stems from the reduced dimensionality of the searched spaced and from combining the grid search with a local optimization. The method is demonstrated in several examples for two- and six-degree-of-freedom manipulators with obstacles.
On computing the global time-optimal motions of robotic manipulators in the presence of obstacles
NASA Technical Reports Server (NTRS)
Shiller, Zvi; Dubowsky, Steven
1991-01-01
A method for computing the time-optimal motions of robotic manipulators is presented that considers the nonlinear manipulator dynamics, actuator constraints, joint limits, and obstacles. The optimization problem is reduced to a search for the time-optimal path in the n-dimensional position space. A small set of near-optimal paths is first efficiently selected from a grid, using a branch and bound search and a series of lower bound estimates on the traveling time along a given path. These paths are further optimized with a local path optimization to yield the global optimal solution. Obstacles are considered by eliminating the collision points from the tessellated space and by adding a penalty function to the motion time in the local optimization. The computational efficiency of the method stems from the reduced dimensionality of the searched spaced and from combining the grid search with a local optimization. The method is demonstrated in several examples for two- and six-degree-of-freedom manipulators with obstacles.
Li, Zhuoyan; Shen, Jin H.; Kozub, John A.; Prasad, Ratna; Lu, Pengcheng; Joos, Karen M.
2014-01-01
Background and Objective Investigations have shown that pulsed lasers tuned to 6.1 μm in wavelength are capable of ablating ocular and neural tissue with minimal collateral damage. This study investigated whether a miniature B-scan forward-imaging optical coherence tomography (OCT) probe can be combined with the laser to provide real-time visual feedback during laser incisions. Study Design/Methods and Materials A miniature 25-gauge B-scan forward-imaging OCT probe was developed and combined with a 250 μm hollow-glass waveguide to permit delivery of 6.1 μm laser energy. A gelatin mixture and both porcine corneal and retinal tissues were simultaneously imaged and lased (6.1 μm, 10 Hz, 0.4-0.7 mJ) through air. The ablation studies were observed and recorded in real time. The crater dimensions were measured using OCT imaging software (Bioptigen, Durham, NC). Histological analysis was performed on the ocular tissues. Results The combined miniature forward-imaging OCT and mid-infrared laser-delivery probe successfully imaged real-time tissue ablation in gelatin, corneal tissue, and retinal tissue. Application of a constant number of 60 pulses at 0.5 mJ/pulse to the gelatin resulted in a mean crater depth of 123 ± 15 μm. For the corneal tissue, there was a significant correlation between the number of pulses used and depth of the lased hole (Pearson correlation coefficient = 0.82; P = 0.0002). Histological analysis of the cornea and retina tissues showed discrete holes with minimal thermal damage. Conclusions A combined miniature OCT and laser -delivery probe can monitor real-time tissue laser ablation. With additional testing and improvements, this novel instrument has the future possibility of effectively guiding surgeries by simultaneously imaging and ablating tissue. PMID:24648326
Space-time scan statistics of 2007-2013 dengue incidence in Cimahi City, Indonesia.
Dhewantara, Pandji Wibawa; Ruliansyah, Andri; Fuadiyah, M Ezza Azmi; Astuti, Endang Puji; Widawati, Mutiara
2015-11-27
Four dengue serotypes threatened more than 200 million people and has spread to over 400 districts in Indonesia. Furthermore, 26 districts in most densely populated province, West Java, have been declared as hyperendemic areas. Cimahi is an endemic city with the highest population (14,969 people per square kilometer). Evidence on distribution pattern of dengue cases is required to discover the spread of dengue cases in Cimahi. A study has been conducted to detect clusters of dengue incidence during 2007-2013. A temporal spatial analysis was performed using SaTScan™ software incorporated confirmed dengue monthly data from the Municipality Health Office and population data from a local Bureau of Statistics. A retrospective space-time analysis with a Poisson distribution model and monthly precision was performed. Our results revealed a significant most likely cluster (p<0.001) throughout period of study. The most likely cluster was detected in the centre of the city and moved to the northern region of Cimahi. Cimahi, Karangmekar, and Cibabat village were most likely cluster in 2007-2010 (p <0.001; RR = 2.16-2.98; pop at risk 12% total population); Citeureup were detected as the most likely cluster in 2011-2013 (p <0.001; RR 5.77), respectively. Temporaly, clusters were detected in the first quarter of each year each. In conclusion, a dynamic spread of dengue initiated from the centre to its surrounding areas during the period 2007-2013. Our study suggests the use of GIS to strengthen case detection and surveillance. An in-depth investigation to relevant risk factors in high-risk areas in Cimahi city is encouraged.
Zhao, J; Li, Y; Huang, Z; Deng, Y; Sun, L; Moyers, M; Hsi, W; Wu, X
2015-06-15
Purpose: The time required to deliver a treatment impacts not only the number of patients that can be treated each day but also the accuracy of delivery due to potential movements of patient tissues. Both macroscopic and microscopic timing characteristics of a beam delivery system were studied to examine their impacts on patient treatments. Methods: 35 patients were treated during a clinical trial to demonstrate safety and efficacy of a Siemens Iontris system prior to receiving approval from the Chinese Food and Drug Administration. The system has a variable cycle time and can provide proton beams from 48 to 221 MeV/n and carbon ions from 86 to 430 MeV/n. A modulated scanning beam delivery technique is used where the beam remains stationary at each spot aiming location and is not turned off while the spot quickly moves from one aiming location to the next. The treatment log files for 28 of the trial patients were analyzed to determine several timing characteristics. Results: The average portal time per target dose was 172.5 s/Gy for protons and 150.7 s/Gy for carbon ions. The maximum delivery time for any portal was less than 300 s. The average dwell time per spot was 12 ms for protons and 3.0 ms for carbon ions. The number of aiming positions per energy layer varied from 1 to 258 for protons and 1 to 621 for carbon ions. The average spill time and cycle time per energy layer were 1.20 and 2.68 s for protons and 0.95 and 4.73 s for carbon ions respectively. For 3 of the patients, the beam was gated on and off to reduce the effects of respiration. Conclusion: For a typical target volume of 153 cc as used in this clinical trial, the portal delivery times were acceptable.
Optimal Perceived Timing: Integrating Sensory Information with Dynamically Updated Expectations
Di Luca, Massimiliano; Rhodes, Darren
2016-01-01
The environment has a temporal structure, and knowing when a stimulus will appear translates into increased perceptual performance. Here we investigated how the human brain exploits temporal regularity in stimulus sequences for perception. We find that the timing of stimuli that occasionally deviate from a regularly paced sequence is perceptually distorted. Stimuli presented earlier than expected are perceptually delayed, whereas stimuli presented on time and later than expected are perceptually accelerated. This result suggests that the brain regularizes slightly deviant stimuli with an asymmetry that leads to the perceptual acceleration of expected stimuli. We present a Bayesian model for the combination of dynamically-updated expectations, in the form of a priori probability of encountering future stimuli, with incoming sensory information. The asymmetries in the results are accounted for by the asymmetries in the distributions involved in the computational process. PMID:27385184
Time-optimal control of the spacecraft trajectories in the Earth-Moon system
NASA Astrophysics Data System (ADS)
Starinova, O. L.; Fain, M. K.; Materova, I. L.
2017-01-01
This paper outlines the multiparametric optimization of the L1-L2 and L2-L1 missions in the Earth-Moon system using electric propulsion. The optimal control laws are obtained using the Fedorenko successful linearization method to estimate the derivatives and the gradient method to optimize the control laws. The study of the transfers is based on the restricted circular three-body problem. The mathematical model of the missions is described within the barycentric system of coordinates. The optimization criterion is the total flight time. The perturbation from the Earth, the Moon and the Sun are taking into account. The impact of the shaded areas, induced by the Earth and the Moon, is also accounted. As the results of the optimization we obtained optimal control laws, corresponding trajectories and minimal total flight times.
Changes in Optimism Are Associated with Changes in Health Over Time Among Older Adults
Chopik, William J.; Kim, Eric S.; Smith, Jacqui
2016-01-01
Little is known about how optimism differs by age and changes over time, particularly among older adults. Even less is known about how changes in optimism are related to changes in physical health. We examined age differences and longitudinal changes in optimism in 9,790 older adults over a four-year period. We found an inverted U-shaped pattern between optimism and age both cross-sectionally and longitudinally, such that optimism generally increased in older adults before decreasing. Increases in optimism over a four-year period were associated with improvements in self-rated health and fewer chronic illnesses over the same time frame. The findings from the current study are consistent with changes in emotion regulation strategies employed by older adults and age-related changes in well-being. PMID:27114753
An integrated optimal control algorithm for discrete-time nonlinear stochastic system
NASA Astrophysics Data System (ADS)
Kek, Sie Long; Lay Teo, Kok; Mohd Ismail, A. A.
2010-12-01
Consider a discrete-time nonlinear system with random disturbances appearing in the real plant and the output channel where the randomly perturbed output is measurable. An iterative procedure based on the linear quadratic Gaussian optimal control model is developed for solving the optimal control of this stochastic system. The optimal state estimate provided by Kalman filtering theory and the optimal control law obtained from the linear quadratic regulator problem are then integrated into the dynamic integrated system optimisation and parameter estimation algorithm. The iterative solutions of the optimal control problem for the model obtained converge to the solution of the original optimal control problem of the discrete-time nonlinear system, despite model-reality differences, when the convergence is achieved. An illustrative example is solved using the method proposed. The results obtained show the effectiveness of the algorithm proposed.
Time and space optimization of document content classifiers
NASA Astrophysics Data System (ADS)
Yin, Dawei; Baird, Henry S.; An, Chang
2010-01-01
Scaling up document-image classifiers to handle an unlimited variety of document and image types poses serious challenges to conventional trainable classifier technologies. Highly versatile classifiers demand representative training sets which can be dauntingly large: in investigating document content extraction systems, we have demonstrated the advantages of employing as many as a billion training samples in approximate k-nearest neighbor (kNN) classifiers sped up using hashed K-d trees. We report here on an algorithm, which we call online bin-decimation, for coping with training sets that are too big to fit in main memory, and we show empirically that it is superior to offline pre-decimation, which simply discards a large fraction of the training samples at random before constructing the classifier. The key idea of bin-decimation is to enforce an upper bound approximately on the number of training samples stored in each K-d hash bin; an adaptive statistical technique allows this to be accomplished online and in linear time, while reading the training data exactly once. An experiment on 86.7M training samples reveals a 23-times speedup with less than 0.1% loss of accuracy (compared to pre-decimation); or, for another value of the upper bound, a 60-times speedup with less than 5% loss of accuracy. We also compare it to four other related algorithms.
Evans, Daniel J; Manwaring, Mark L; Soule, Terence
2008-01-01
The technique of inverse computational feedback optimization imaging allows for the imaging of varying tissue without the continuous need of a complex imaging systems such as an MRI or CT. Our method trades complex imaging equipment for computing power. The objective is to use a baseline scan from an imaging system along with finite element method computational software to calculate the physically measurable parameters (such as voltage or temperature). As the physically measurable parameters change the computational model is iteratively run until it matches the measured values. Optimization routines are implemented to accelerate the process of finding the new values. Presented is a computational model demonstrating how the inverse imaging technique would work with a simple homogeneous sample with a circular structure. It demonstrates the ability to locate an object with only a few point measurements. The presented computational model uses swarm optimization techniques to help find the object location from the measured data (which in this case is voltage).
A Space-Time Flow Optimization Model for Neighborhood Evacuation
2010-03-01
We model the minimum cost evacuation behavior through time with formulation SPACETIME below. Index Sets i L Locations (alias j) t T...and ensures that there are no negative flows. C. THE MISSION CANYON EXAMPLE We apply model SPACETIME to the Mission Canyon neighborhood. We use a...11:00 1000 21:54 19:10 15:10 19:00 15:00 1200 26:53 22:50 21:40 22:40 21:40 1400 32:45 28:20 28:20 28:10 28:20 Vital Report SPACETIME SPACETIME
Liu, Xiuhui; Ramsey, Matthew M.; Chen, Xiaole; Koley, Dipankar; Whiteley, Marvin; Bard, Allen J.
2011-01-01
Quantitative detection of hydrogen peroxide in solution above a Streptococcus gordonii (Sg) bacterial biofilm was studied in real time by scanning electrochemical microscopy (SECM). The concentration of hydrogen peroxide was determined to be 0.7 mM to 1.6 mM in the presence of 10 mM glucose over a period of 2 to 8 h. The hydrogen peroxide production measured was higher near the biofilm surface in comparison to Sg grown planktonically. Differential hydrogen peroxide production was observed both by fluorometric as well as by SECM measurements. The interaction between two different species in a bacterial biofilm of Sg and Aggregatibacter actinomycetemcomitans (Aa) in terms of hydrogen peroxide production was also studied by SECM. One-directional y-scan SECM measurements showed the unique spatial mapping of hydrogen peroxide concentration across a mixed species biofilm and revealed that hydrogen peroxide concentration varies greatly dependent upon local species composition. PMID:21282623
Minimum-time running and swimming: an optimal control approach.
Maroński, R
1996-02-01
During analysis of the competitor's velocity in a run, strong assumptions are imposed upon the runner's tactic. It is assumed that the competitor uses his/her maximal propulsive force in short-distance events. The runner's velocity is assumed constant in long-distance races. None of these assumptions is satisfied during middle-distance races. In this study, the competitor's velocity, minimizing the time taken to cover the distance, is determined by means of extremization of linear integrals using Green's theorem (Miele's method). The model of the competitor's motion is based on two differential equations: the first one derives from Newton's second law, the second one is the equation for power balance. The theory is illustrated with two examples referring to competitive running and swimming. The minimum-time competitive run can be broken into three phases: -the acceleration, -the cruise with the constant velocity, and -the negative kick at the end of the race. The problem has a similar solution in competitive swimming, however, the acceleration is replaced by the gliding phase.
Reducing video frame rate increases remote optimal focus time
NASA Technical Reports Server (NTRS)
Haines, Richard F.
1993-01-01
Twelve observers made best optical focus adjustments to a microscope whose high-resolution pattern was video monitored and displayed first on a National Television System Committee (NTSC) analog color monitor and second on a digitally compressed computer monitor screen at frame rates ranging (in six steps) from 1.5 to 30 frames per second (fps). This was done to determine whether reducing the frame rate affects the image focus. Reducing frame rate has been shown to be an effective and acceptable means of reducing transmission bandwidth of dynamic video imagery sent from Space Station Freedom (SSF) to ground scientists. Three responses were recorded per trial: time to complete the focus adjustment, number of changes of focus direction, and subjective rating of final image quality. It was found that: the average time to complete the focus setting increases from 4.5 sec at 30 fps to 7.9 sec at 1.5 fps (statistical probability = 1.2 x 10(exp -7)); there is no significant difference in the number of changes in the direction of focus adjustment across these frame rates; and there is no significant change in subjectively determined final image quality across these frame rates. These data can be used to help pre-plan future remote optical-focus operations on SSF.
U-D factorisation of the strengthened discrete-time optimal projection equations
NASA Astrophysics Data System (ADS)
Van Willigenburg, L. Gerard; De Koning, Willem L.
2016-04-01
Algorithms for optimal reduced-order dynamic output feedback control of linear discrete-time systems with white stochastic parameters are U-D factored in this paper. U-D factorisation enhances computational accuracy, stability and possibly efficiency. Since U-D factorisation of algorithms for optimal full-order output feedback controller design was recently published by us, this paper focusses on the U-D factorisation of the optimal oblique projection matrix that becomes part of the solution as a result of order-reduction. The equations producing the solution are known as the optimal projection equations which for discrete-time systems have been strengthened in the past. The U-D factored strengthened discrete-time optimal projection equations are presented in this paper by means of a transformation that has to be applied recursively until convergence. The U-D factored and conventional algorithms are compared through a series of examples.
NASA Astrophysics Data System (ADS)
Yoon, Seung Chul; Park, Bosoon; Lawrence, Kurt C.; Windham, William R.; Heitschmidt, Gerald W.
2010-04-01
This paper reports a recent development of a line-scan hyperspectral imaging system for real-time multispectral imaging applications in agricultural and food industries. The hyperspectral imaging system consisted of a spectrograph, an EMCCD camera, and application software. The real-time multispectral imaging with the developed system was possible due to (1) data binning, especially a unique feature of the EMCCD sensor allowing the access to non-contiguous multispectral bands, (2) an image processing algorithm designed for real-time multispectral imaging, and (3) the design and implementation of the real-time application software. The imaging system was developed as a poultry inspection instrument determining the presence of surface feces on poultry carcasses moving at commercial poultry processing line speeds up to 180 birds per minute. The imaging system can be easily modifiable to solve other real-time inspection/sorting problems. Three wavelengths at 517 nm, 565 nm and 802 nm were selected for real-time fecal detection imaging. The fecal detection algorithm was based on dual band ratios of 565nm/517nm and 802nm/517nm followed by thresholding. The software architecture was based on a ping pong memory and a circular buffer for the multitasking of image grabbing and processing. The software was written in Microsoft Visual C++. An image-based internal triggering (i.e. polling) algorithm was developed to determine the start and end positions of birds. Twelve chickens were used for testing the imaging system at two different speeds (140 birds per minute and 180 bird per minute) in a pilot-scale processing line. Four types of fecal materials (duodenum, ceca, colon and ingesta) were used for the evaluation of the detection algorithm. The software grabbed and processed multispectral images of the dimension 118 (line scans) x 512 (height) x 3 (bands) pixels obtained from chicken carcasses moving at the speed up to 180 birds per minute (a frame rate 286 Hz). Intensity
Optimizing Spectral Resolution and Observation Time for Measurements of Habitability
NASA Astrophysics Data System (ADS)
Khalfa, N.; Meadows, V. S.; Domagal-Goldman, S. D.
2009-12-01
The Terrestrial Planet Finder (TPF) is a NASA mission concept that will attempt to characterize and search for habitability and life on extrasolar planets. While detection of a planet in the habitable zone increases the probability that the planet is habitable, planetary characterization will be required to confirm habitability and thereby test predictions of the position of the habitable zone. The TPF-I mission will accomplish this with an interferometer, allowing the detection of Earth-mass planets around stars up to 15 pc away and production of mid-infrared spectra from those planets. The focus on the mid-infrared region of the spectrum (7-20 mm) is beneficial because this is where energy from Earth-like planets is strongest relative to the flux from their parent stars. To discover if such planets are habitable we need to know not only what to look for - biosignatures and indicators of habitability - but also how to look. In other words, we must determine the trade-off in telescope properties that will provide the best science return. Extensive models have been made of Earth-like planets to describe many planetary properties, including atmospheric chemistry and surface temperature. Those properties may be derived for extrasolar planets using these models if spectra are obtained for the target planet. When modeling a planet, we can calculate a very high-resolution spectrum that can show the detailed absorption features of gases such as CO2, H2O, and O3. However, the telescope resolution will necessarily be limited by low photon fluxes from the distant targets. Alternatively, the telescope could spend more time taking in photons from each target planet. A balance may have to be struck between the numbers of targets observed and the quality of the data obtained for each target. We will present a number of simulations of TPF instrument measurements of terrestrial spectra that parametrize spectral resolution and observation time. The relative errors of these various
Time optimal robotic manipulator motions and work places for point to point tasks
NASA Technical Reports Server (NTRS)
Dubowsky, S.; Blubaugh, T. D.
1985-01-01
High productivity requires that manipulators perform complex tasks quickly. Recently, optimal control algorithms have been developed which enable manipulators to move quickly, but only for simple motions. A method is presented here which combines simple time optimal motions in an optimal manner to yield the minimum time motions for an important class of complex manipulator tasks composed of point to point moves, such as assembly, electronic component insertion and spot welding. This method can also be used to design manipulator actions and work places so that tasks can be completd in minimum time. The method has been implemented in a CAD software package. Examples are presented which show the methods effectiveness.
Time optimal robotic manipulator motions and work places for point to point tasks
NASA Technical Reports Server (NTRS)
Dubowsky, S.; Blubaugh, T. D.
1985-01-01
High productivity requires that manipulators perform complex tasks quickly. Recently, optimal control algorithms have been developed which enable manipulators to move quickly, but only for simple motions. A method is presented here which combines simple time optimal motions in an optimal manner to yield the minimum time motions for an important class of complex manipulator tasks composed of point to point moves, such as assembly, electronic component insertion and spot welding. This method can also be used to design manipulator actions and work places so that tasks can be completd in minimum time. The method has been implemented in a CAD software package. Examples are presented which show the methods effectiveness.
[Just-in-time initiation of optimal dialysis].
Cornelis, Tom; Kooman, Jeroen P; van der Sande, Frank M
2010-01-01
The IDEAL trial shows that the decision to start renal replacement treatment should not depend on GFR alone, but should be taken on the basis of clinical parameters. Quality of Life (QoL) questionnaires and bio-impedance analysis are potential tools for detecting subtle changes in the predialysis clinic. Too early an initiation of dialysis may be deleterious for the patient and the healthcare system. We are convinced that ESRD patients should be informed about intensive haemodialysis (HD), especially nocturnal (home) HD, as the best available dialysis modality. There is substantial evidence which shows that intensive HD improves clinical, biochemical and biological parameters, and may even prolong survival. We believe that 'just-in-time delivery of intensive haemodialysis' may result in optimised QoL and reduced economic burden.
Optimized fast mixing device for real-time NMR applications
NASA Astrophysics Data System (ADS)
Franco, Rémi; Favier, Adrien; Schanda, Paul; Brutscher, Bernhard
2017-08-01
We present an improved fast mixing device based on the rapid mixing of two solutions inside the NMR probe, as originally proposed by Hore and coworkers (J. Am. Chem. Soc. 125 (2003) 12484-12492). Such a device is important for off-equilibrium studies of molecular kinetics by multidimensional real-time NMR spectrsocopy. The novelty of this device is that it allows removing the injector from the NMR detection volume after mixing, and thus provides good magnetic field homogeneity independently of the initial sample volume placed in the NMR probe. The apparatus is simple to build, inexpensive, and can be used without any hardware modification on any type of liquid-state NMR spectrometer. We demonstrate the performance of our fast mixing device in terms of improved magnetic field homogeneity, and show an application to the study of protein folding and the structural characterization of transiently populated folding intermediates.
Dwell time algorithm for multi-mode optimization in manufacturing large optical mirrors
NASA Astrophysics Data System (ADS)
Liu, Zhenyu
2014-08-01
CCOS (Computer Controlled Optical Surfacing) is one of the most important method to manufacture optical surface. By controlling the dwell time of a polishing tool on the mirror we can get the desired material removal. As the optical surface becoming larger, traditional CCOS method can't meet the demand that manufacturing the mirror in higher efficiency and precision. This paper presents a new method using multi-mode optimization. By calculate the dwell time map of different tool in one optimization cycle, the larger tool and the small one have complementary advantages and obtain a global optimization for multi tool and multi-processing cycles. To calculate the dwell time of different tool at the same time we use multi-mode dwell time algorithm that based on matrix calculation. With this algorithm we did simulation experiment, the result shows using multi-mode optimization algorithm can improve the efficiency maintaining good precision.
Fernández, A; Grüner-Nielsen, L; Andreana, M; Stadler, M; Kirchberger, S; Sturtzel, C; Distel, M; Zhu, L; Kautek, W; Leitgeb, R; Baltuska, A; Jespersen, K; Verhoef, A
2017-08-01
A simple and completely all-fiber Yb chirped pulse amplifier that uses a dispersion matched fiber stretcher and a spliced-on hollow core photonic bandgap fiber compressor is applied in nonlinear optical microscopy. This stretching-compression approach improves compressibility and helps to maximize the fluorescence signal in two-photon laser scanning microscopy as compared with approaches that use standard single mode fibers as stretcher. We also show that in femtosecond all-fiber systems, compensation of higher order dispersion terms is relevant even for pulses with relatively narrow bandwidths for applications relying on nonlinear optical effects. The completely all-fiber system was applied to image green fluorescent beads, a stained lily-of-the-valley root and rat-tail tendon. We also demonstrated in vivo imaging in zebrafish larvae, where we simultaneously measure second harmonic and fluorescence from two-photon excited red-fluorescent protein. Since the pulses are compressed in a fiber, this source is especially suited for upgrading existing laser scanning (confocal) microscopes with multiphoton imaging capabilities in space restricted settings or for incorporation in endoscope-based microscopy.
Optimal control of nonlinear continuous-time systems in strict-feedback form.
Zargarzadeh, Hassan; Dierks, Travis; Jagannathan, Sarangapani
2015-10-01
This paper proposes a novel optimal tracking control scheme for nonlinear continuous-time systems in strict-feedback form with uncertain dynamics. The optimal tracking problem is transformed into an equivalent optimal regulation problem through a feedforward adaptive control input that is generated by modifying the standard backstepping technique. Subsequently, a neural network-based optimal control scheme is introduced to estimate the cost, or value function, over an infinite horizon for the resulting nonlinear continuous-time systems in affine form when the internal dynamics are unknown. The estimated cost function is then used to obtain the optimal feedback control input; therefore, the overall optimal control input for the nonlinear continuous-time system in strict-feedback form includes the feedforward plus the optimal feedback terms. It is shown that the estimated cost function minimizes the Hamilton-Jacobi-Bellman estimation error in a forward-in-time manner without using any value or policy iterations. Finally, optimal output feedback control is introduced through the design of a suitable observer. Lyapunov theory is utilized to show the overall stability of the proposed schemes without requiring an initial admissible controller. Simulation examples are provided to validate the theoretical results.
On the Run-Time Optimization of the Boolean Logic of a Program.
ERIC Educational Resources Information Center
Cadolino, C.; Guazzo, M.
1982-01-01
Considers problem of optimal scheduling of Boolean expression (each Boolean variable represents binary outcome of program module) on single-processor system. Optimization discussed consists of finding operand arrangement that minimizes average execution costs representing consumption of resources (elapsed time, main memory, number of…
The optimization of the direct metro lines based on the waiting time and flow of people
NASA Astrophysics Data System (ADS)
Li, Yan; Li, Yuhe
2017-04-01
In this paper, author established an optimization mathematical framework on helping government optimize the choice of the end stations of the shuttle train and give a specific approach to explore the advantages of the direct metro line and to construct a detailed time schedule.
Ding, X; Zhang, J; Rosen, L; Wu, H; Traneus, E; Lin, H; Zhai, H
2015-06-15
Purpose: We evaluate the feasibility of using robustness optimization (RO) function to improve the planning efficiency of pencil beam scanning (PBS) craniospinal irradiation (CSI) with gradient matching technique. Methods: A CSI patient was planned with 2 lateral brain fields and 4 posterior fields to cover the entire spine to maximal field of 24 cm × 20 cm on a compact PBS gantry, ProteusONE. CSI plans were generated using traditional volumetric gradient dose optimization (VGDO) and robustness optimization (RO) method respectively. In traditional VGDO, besides the sectioned spine target volumes, gradient volume (GV) were generated as 4 equally spaced structures e.g. 80%, 60%, 40%, and 20% of prescription dose. In RO method, only sectioned spine target volumes with an overlap of 4cm were created. In the robustness optimization settings, 5mm uncertainty in superior and inferior direction was defined for auto gradient optimization. Dosimetric metrics of conformity number (CN), homogeneity index (HI), and maximal cord doses were compared in Raystation version 4.6.100.6. Results: In VGDO method, total 16 GV structures and five 100% dose level target structures were contoured compared to total 5 target structures in RO method which saves 30 min in contour. With the same PTV coverage (95% volume receive 30.6Gy prescription dose), maximum cord dose is 32.64Gy in VGDO and 31.94Gy in RO. HI is 1.03 and 1.04 for VGDO and RO respectively. CN is 0.93 and 0.94 for VGDO and RO respectively. Conclusions: The dosimetric comparison demonstrated both methods are equivalent in terms of plan quality. With robust optimization for CSI gradient matching, it efficiently reduces the amount of planning target contour structure by factor of 4 and thus improves the planning efficiency especially for 4 or more gradient junction area.
Consideration of optimal time window for Pittsburgh compound B PET summed uptake measurements.
McNamee, Rebecca L; Yee, Seong-Hwan; Price, Julie C; Klunk, William E; Rosario, Bedda; Weissfeld, Lisa; Ziolko, Scott; Berginc, Michael; Lopresti, Brian; Dekosky, Steven; Mathis, Chester A
2009-03-01
The standardized uptake value ratio (SUVR, or summed tissue ratio) has been used effectively in Pittsburgh compound B (PiB) PET studies to distinguish subjects who have significant amyloid-beta deposition in their brain from those who do not. Relative to quantitative measurements, advantages of the SUVR are improved study feasibility and low test-retest variation; disadvantages include inherent bias (PiB retention overestimation) and potential for time-varying outcomes. The PiB SUVR has proven to be highly correlated with quantitative outcomes and to allow reliable detection of significant group differences (or effective contrasts). In this work, regional PiB SUVRs were examined across 9 time windows to select the window that provided the best trade-offs between bias, correlation, and effective contrast. A total of 40 dynamic PiB PET studies were performed on controls (n = 16), patients with Alzheimer disease (AD; n = 11), and patients with mild cognitive impairment (MCI; n = 13) (555 MBq [15 mCi], 90-min scan, and arterial blood sampling). The SUVR was computed for five 20-min and four 30-min windows that spanned the 30- to 90-min postinjection period. The SUVRs were compared with Logan graphical distribution volume ratio (DVR) measurements (35-90 min), determined with arterial blood as input and without arterial blood as input (cerebellum as reference). Greater correlation and more bias were generally observed for the SUVR measurement at later times than at earlier times (relative to DVR). The effective contrast between the control and AD PiB SUVRs was slightly better for earlier data than for later data. The temporal dynamics of the SUVR measurement indicated greater stability in the measurement at 40 min after injection. The 50- to 70-min time window provided a good compromise between physiologic validity, stability, sensitivity, and clinical feasibility across the control, MCI, and AD subject data examined in this study. The 40- to 60-min period demonstrated
Consideration of Optimal Time Window for Pittsburgh Compound B PET Summed Uptake Measurements
McNamee, Rebecca L.; Yee, Seong-Hwan; Price, Julie C.; Klunk, William E.; Rosario, Bedda; Weissfeld, Lisa; Ziolko, Scott; Berginc, Michael; Lopresti, Brian; DeKosky, Steven; Mathis, Chester A.
2009-01-01
The standardized uptake value ratio (SUVR, or summed tissue ratio) has been used effectively in Pittsburgh compound B (PiB) PET studies to distinguish subjects who have significant amyloid-β deposition in their brain from those who do not. Relative to quantitative measurements, advantages of the SUVR are improved study feasibility and low test–retest variation; disadvantages include inherent bias (PiB retention overestimation) and potential for time-varying outcomes. The PiB SUVR has proven to be highly correlated with quantitative outcomes and to allow reliable detection of significant group differences (or effective contrasts). In this work, regional PiB SUVRs were examined across 9 time windows to select the window that provided the best trade-offs between bias, correlation, and effective contrast. Methods A total of 40 dynamic PiB PET studies were performed on controls (n =16), patients with Alzheimer disease (AD; n =11), and patients with mild cognitive impairment (MCI; n = 13) (555 MBq [15 mCi], 90-min scan, and arterial blood sampling). The SUVR was computed for five 20-min and four 30-min windows that spanned the 30- to 90-min postinjection period. The SUVRs were compared with Logan graphical distribution volume ratio (DVR) measurements (35–90 min), determined with arterial blood as input and without arterial blood as input (cerebellum as reference). Results Greater correlation and more bias were generally observed for the SUVR measurement at later times than at earlier times (relative to DVR). The effective contrast between the control and AD PiB SUVRs was slightly better for earlier data than for later data. The temporal dynamics of the SUVR measurement indicated greater stability in the measurement at 40 min after injection. Conclusion The 50- to 70-min time window provided a good compromise between physiologic validity, stability, sensitivity, and clinical feasibility across the control, MCI, and AD subject data examined in this study. The 40- to
Optimization of ramp area aircraft push back time windows in the presence of uncertainty
NASA Astrophysics Data System (ADS)
Coupe, William Jeremy
It is well known that airport surface traffic congestion at major airports is responsible for increased taxi-out times, fuel burn and excess emissions and there is potential to mitigate these negative consequences through optimizing airport surface traffic operations. Due to a highly congested voice communication channel between pilots and air traffic controllers and a data communication channel that is used only for limited functions, one of the most viable near-term strategies for improvement of the surface traffic is issuing a push back advisory to each departing aircraft. This dissertation focuses on the optimization of a push back time window for each departing aircraft. The optimization takes into account both spatial and temporal uncertainties of ramp area aircraft trajectories. The uncertainties are described by a stochastic kinematic model of aircraft trajectories, which is used to infer distributions of combinations of push back times that lead to conflict among trajectories from different gates. The model is validated and the distributions are included in the push back time window optimization. Under the assumption of a fixed taxiway spot schedule, the computed push back time windows can be integrated with a higher level taxiway scheduler to optimize the flow of traffic from the gate to the departure runway queue. To enable real-time decision making the computational time of the push back time window optimization is critical and is analyzed throughout.
Smoking cessation and bone healing: optimal cessation timing.
Truntzer, Jeremy; Vopat, Bryan; Feldstein, Michael; Matityahu, Amir
2015-02-01
Smoking is a worldwide epidemic. Complications related to smoking behavior generate an economic loss around $193 billion annually. In addition to impacting chronic health conditions, smoking is linked to increased perioperative complications in those with current or previous smoking history. Numerous studies have demonstrated more frequent surgical complications including higher rates of infection, poor wound healing, heightened pain complaints, and increased pulmonary morbidities in patients with a smoking history. Longer preoperative cessation periods also seem to correlate with reduced rates. At roughly 4 weeks of cessation prior to surgery, complication rates more closely reflect individuals without a smoking history in comparison with those that smoke within 4 weeks of surgery. In the musculoskeletal system, a similar trend has been observed in smokers with higher rates of fractures, nonunions, malunions, infections, osteomyelitis, and lower functional scores compared to non-smoking patients. Unfortunately, the present literature lacks robust data suggesting a temporal relationship between smoking cessation and bone healing. In our review, we analyze pseudoarthrosis rates following spinal fusion to suggest that bone healing in the context of smoking behavior follows a similar time sequence as observed in wound healing. We also discuss the implications for further clarity on bone healing and smoking cessation within orthopedics including improved risk stratification and better identification of circumstances where adjunct therapy is appropriate.
Optimal fluid resuscitation: timing and composition of intravenous fluids.
Boomer, Laura; Jones, Wright; Davis, Brett; Williams, Shelley; Barber, Annabel
2009-10-01
Recent data suggest that the timing of fluid resuscitation and the type of fluid used to treat hemorrhagic shock contribute to the inflammatory response as well as cell death. Rats were bled of 40% of their total blood volume and then resuscitated in either early or delayed fashion. Treatment was assigned randomly and consisted of lactated Ringer's solution, normal saline, bicarbonate Ringer's solution, hypertonic saline, or no resuscitation. The first four groups were subdivided into early and late resuscitation. After a 5-h observation period, lung and liver samples were evaluated for apoptosis, and blood was collected for measurements of the cytokines interleukin (IL)-6, IL-10, and IL-1beta. The rats that were not resuscitated had significantly more apoptosis in liver tissue. In the lung, bicarbonate Ringer's solution, when given early, was associated with significantly less apoptosis. Non-resuscitated rats had significantly higher IL-6 concentrations than all other groups. Animals receiving hypertonic saline early had significantly higher IL-6 concentrations than those given any other fluid. The concentration of IL-1beta was significantly higher in the non-resuscitated rats than in those receiving bicarbonate Ringer's, lactated Ringer's, or normal saline for early resuscitation. Interleukin-10 was elevated significantly in non-resuscitated rats. Cellular destruction and a pro-inflammatory response follow hemorrhagic shock. Early resuscitation with isotonic crystalloid fluids decreases these responses.
NASA Astrophysics Data System (ADS)
Kromer, Ryan A.; Abellán, Antonio; Hutchinson, D. Jean; Lato, Matt; Chanut, Marie-Aurelie; Dubois, Laurent; Jaboyedoff, Michel
2017-05-01
We present an automated terrestrial laser scanning (ATLS) system with automatic near-real-time change detection processing. The ATLS system was tested on the Séchilienne landslide in France for a 6-week period with data collected at 30 min intervals. The purpose of developing the system was to fill the gap of high-temporal-resolution TLS monitoring studies of earth surface processes and to offer a cost-effective, light, portable alternative to ground-based interferometric synthetic aperture radar (GB-InSAR) deformation monitoring. During the study, we detected the flux of talus, displacement of the landslide and pre-failure deformation of discrete rockfall events. Additionally, we found the ATLS system to be an effective tool in monitoring landslide and rockfall processes despite missing points due to poor atmospheric conditions or rainfall. Furthermore, such a system has the potential to help us better understand a wide variety of slope processes at high levels of temporal detail.
Determination of nonlinear optical properties by time resolved Z-scan in Nd-doped phosphate glass
NASA Astrophysics Data System (ADS)
de Souza, J. M.; de Lima, W. J.; Pilla, V.; Andrade, A. A.; Dantas, N. O.; Messias, D. N.
2017-02-01
In this work, we have used a Ti3+:Safira laser tuned at 803nm to performed time-resolved measurements using the Z-scan technique to characterize the nonlinear optical properties of phosphate glasses. The glass matrices, labeled PAN (P2O5-Al2O3-Na2CO3) and PANK (P2O5-Al2O3- Na2O-K2O), were doped with increasing Nd3+ concentration, ranging from 0.5 to 5 wt%. For both systems, we have seen that the optical nonlinearity has a linear dependence with the doping ion concentration. Therefore, we propose a new approach to obtain the parameters Δα and Δσ. All results obtained are in good agreement with others found in the literature.
Fast time-lens-based line-scan single-pixel camera with multi-wavelength source
Guo, Qiang; Chen, Hongwei; Weng, Zhiliang; Chen, Minghua; Yang, Sigang; Xie, Shizhong
2015-01-01
A fast time-lens-based line-scan single-pixel camera with multi-wavelength source is proposed and experimentally demonstrated in this paper. A multi-wavelength laser instead of a mode-locked laser is used as the optical source. With a diffraction grating and dispersion compensating fibers, the spatial information of an object is converted into temporal waveforms which are then randomly encoded, temporally compressed and captured by a single-pixel photodetector. Two algorithms (the dictionary learning algorithm and the discrete cosine transform-based algorithm) for image reconstruction are employed, respectively. Results show that the dictionary learning algorithm has greater capability to reduce the number of compressive measurements than the DCT-based algorithm. The effective imaging frame rate increases from 200 kHz to 1 MHz, which shows a significant improvement in imaging speed over conventional single-pixel cameras. PMID:26417527
Approximation of the optimal-time problem for controlled differential inclusions
Otakulov, S.
1995-01-01
One of the common methods for numerical solution of optimal control problems constructs an approximating sequence of discrete control problems. The approximation method is also attractive because it can be used as an effective tool for analyzing optimality conditions and other topics in optimization theory. In this paper, we consider the approximation of optimal-time problems for controlled differential inclusions. The sequence of approximating problems is constructed using a finite-difference scheme, i.e., the differential inclusions are replaced with difference inclusions.
Bernatowicz, K; Zhang, Y; Weber, D; Lomax, A
2015-06-15
Purpose: To develop a 4D treatment optimization approach for Pencil Beam Scanned (PBS) proton therapy that includes breathing variability. Method: PBS proton therapy delivers a pattern of proton pencil beams (PBs), distributed to cover the target volume and optimized such as to achieve a homogenous dose distribution across the target. In this work, this optimization step has been enhanced to include advanced 4D dose calculations of liver tumors based on motion extracted from either 4D-CT (representing a single and averaged respiratory cycle) or 4D-CT(MRI) (including breathing variability). The 4D dose calculation is performed per PB on deforming dose grid, and according to the timestamp of each PB, a displacement due to patient’s motion and a change in radiological depth.Three different treatment fields have been optimized in 3D on the end-exhale phase of a 4D-CT liver data set (3D-opt) and then in 4D using the motion extracted from either 4D-CT or 4D-CT(MRI) using deformable image registration. All plans were calculated directly on the PTV without the use of an ITV. The delivery characteristics of the PSI Gantry 2 have been assumed for all calculations. Results: Dose inhomogeneities (D5-D95) in the CTV for the 3D optimized plans recalculated under conditions of variable motion were increased by on average 19.8% compared to the static case. These differences could be reduced by 4D-CT based 4D optimization to 10.5% and by 4D-CT(MRI) based optimization to only 2.3% of the static value. Liver V25 increased by less than 1% using 4D optimization. Conclusion: 4D optimized PBS treatment plans taking into account breathing variability provide for significantly improved robustness against motion and motion variability than those based on 4D-CT alone, and may negate the need of motion specific target expansions. Swiss National Fund Grant (320030-1493942-1)
Experimental Time-Optimal Universal Control of Spin Qubits in Solids.
Geng, Jianpei; Wu, Yang; Wang, Xiaoting; Xu, Kebiao; Shi, Fazhan; Xie, Yijin; Rong, Xing; Du, Jiangfeng
2016-10-21
Quantum control of systems plays an important role in modern science and technology. The ultimate goal of quantum control is to achieve high-fidelity universal control in a time-optimal way. Although high-fidelity universal control has been reported in various quantum systems, experimental implementation of time-optimal universal control remains elusive. Here, we report the experimental realization of time-optimal universal control of spin qubits in diamond. By generalizing a recent method for solving quantum brachistochrone equations [X. Wang et al., Phys. Rev. Lett. 114, 170501 (2015)], we obtained accurate minimum-time protocols for multiple qubits with fixed qubit interactions and a constrained control field. Single- and two-qubit time-optimal gates are experimentally implemented with fidelities of 99% obtained via quantum process tomography. Our work provides a time-optimal route to achieve accurate quantum control and unlocks new capabilities for the emerging field of time-optimal control in general quantum systems.
Mouse manipulation through single-switch scanning.
Blackstien-Adler, Susie; Shein, Fraser; Quintal, Janet; Birch, Shae; Weiss, Patrice L Tamar
2004-01-01
Given the current extensive reliance on the graphical user interface, independent access to computer software requires that users be able to manipulate a pointing device of some type (e.g., mouse, trackball) or be able to emulate a mouse by some other means (e.g., scanning). The purpose of the present study was to identify one or more optimal single-switch scanning mouse emulation strategies. Four alternative scanning strategies (continuous Cartesian, discrete Cartesian, rotational, and hybrid quadrant/continuous Cartesian) were selected for testing based on current market availability as well as on theoretical considerations of their potential speed and accuracy. Each strategy was evaluated using a repeated measures study design by means of a test program that permitted mouse emulation via any one of four scanning strategies in a motivating environment; response speed and accuracy could be automatically recorded and considered in view of the motor, cognitive, and perceptual demands of each scanning strategy. Ten individuals whose disabilities required them to operate a computer via single-switch scanning participated in the study. Results indicated that Cartesian scanning was the preferred and most effective scanning strategy. There were no significant differences between results from the Continuous Cartesian and Discrete Cartesian scanning strategies. Rotational scanning was quite slow with respect to the other strategies, although it was equally accurate. Hybrid Quadrant scanning improved access time but at the cost of fewer correct selections. These results demonstrated the importance of testing and comparing alternate single-switch scanning strategies.
Optimization of the scan protocols for CT-based material extraction in small animal PET/CT studies
NASA Astrophysics Data System (ADS)
Yang, Ching-Ching; Yu, Jhih-An; Yang, Bang-Hung; Wu, Tung-Hsin
2013-12-01
We investigated the effects of scan protocols on CT-based material extraction to minimize radiation dose while maintaining sufficient image information in small animal studies. The phantom simulation experiments were performed with the high dose (HD), medium dose (MD) and low dose (LD) protocols at 50, 70 and 80 kVp with varying mA s. The reconstructed CT images were segmented based on Hounsfield unit (HU)-physical density (ρ) calibration curves and the dual-energy CT-based (DECT) method. Compared to the (HU;ρ) method performed on CT images acquired with the 80 kVp HD protocol, a 2-fold improvement in segmentation accuracy and a 7.5-fold reduction in radiation dose were observed when the DECT method was performed on CT images acquired with the 50/80 kVp LD protocol, showing the possibility to reduce radiation dose while achieving high segmentation accuracy.
Quantum circuit for optimal eavesdropping in quantum key distribution using phase-time coding
Kronberg, D. A.; Molotkov, S. N.
2010-07-15
A quantum circuit is constructed for optimal eavesdropping on quantum key distribution proto- cols using phase-time coding, and its physical implementation based on linear and nonlinear fiber-optic components is proposed.
Computational alternatives to obtain time optimal jet engine control. M.S. Thesis
NASA Technical Reports Server (NTRS)
Basso, R. J.; Leake, R. J.
1976-01-01
Two computational methods to determine an open loop time optimal control sequence for a simple single spool turbojet engine are described by a set of nonlinear differential equations. Both methods are modifications of widely accepted algorithms which can solve fixed time unconstrained optimal control problems with a free right end. Constrained problems to be considered have fixed right ends and free time. Dynamic programming is defined on a standard problem and it yields a successive approximation solution to the time optimal problem of interest. A feedback control law is obtained and it is then used to determine the corresponding open loop control sequence. The Fletcher-Reeves conjugate gradient method has been selected for adaptation to solve a nonlinear optimal control problem with state variable and control constraints.
Hybrid methods for determining time-optimal, constrained spacecraft reorientation maneuvers
NASA Astrophysics Data System (ADS)
Melton, Robert G.
2014-01-01
Time-optimal spacecraft slewing maneuvers with path constraints are difficult to compute even with direct methods. This paper examines the use of a hybrid, two-stage approach, in which a heuristic method provides a rough estimate of the solution, which then serves as the input to a pseudospectral optimizer. Three heuristic methods are examined for the first stage: particle swarm optimization (PSO), differential evolution (DE), and bacteria foraging optimization (BFO). In this two-stage method, the PSO-pseudospectral combination is approximately three times faster than the pseudospectral method alone, and the BFO-pseudospectral combination is approximately four times faster; however, the DE does not produce an initial estimate that reduces total computation time.
NASA Astrophysics Data System (ADS)
Zakynthinaki, M. S.; Stirling, J. R.
2007-01-01
Stochastic optimization is applied to the problem of optimizing the fit of a model to the time series of raw physiological (heart rate) data. The physiological response to exercise has been recently modeled as a dynamical system. Fitting the model to a set of raw physiological time series data is, however, not a trivial task. For this reason and in order to calculate the optimal values of the parameters of the model, the present study implements the powerful stochastic optimization method ALOPEX IV, an algorithm that has been proven to be fast, effective and easy to implement. The optimal parameters of the model, calculated by the optimization method for the particular athlete, are very important as they characterize the athlete's current condition. The present study applies the ALOPEX IV stochastic optimization to the modeling of a set of heart rate time series data corresponding to different exercises of constant intensity. An analysis of the optimization algorithm, together with an analytic proof of its convergence (in the absence of noise), is also presented.
NASA Astrophysics Data System (ADS)
Brooks, B. A.; Becker, J.; Merrifield, M.; Foster, J.; Ericksen, T.; Hilmer, T.; Vitousek, S.
2008-12-01
To determine the environmental conditions and timing leading to long time scale (O(years)) and specific event (O(days-hours)) changes in beach morphology we collected terrestrial scanning laser (TLS) topographic time series, offshore wave data, and high resolution digital photographs of the entire beach at Waimea Bay, Oahu from January through June 2007. Each survey had better than 1cm range-resolution, average spot-spacing of 10 cm, and had tilts removed using GPS-based geocoding. The TLS surveys on monthly time-scales quantify the seasonal transition in beach morphology and volume forced by high waves (winter) to small waves (summer). The surveys over daily to hourly time scales quantify the evolution of discrete morphological features. For instance, two surveys taken three hours apart on 27 April 2007 when significant wave height was roughly 0.7m document an order 0.1 m increase in sand elevation occurring along the foreshore indicating active sand accretion following an erosion event on 24 April 2007 when significant wave height was roughly 2.5m. Well-defined fore-beach and back-beach cuspate features were present during the surveys. The elevation difference map shows that the main area of accretion occurred in the fore-beach cusp embayments, i.e., the beach cusps appear to be filling in with sand. We further use the TLS time series data to quantify the subaerial morphologic signal and volumetric beach change budget of foot-traffic on the beach. Our initial observations indicate that the upper portions of the beach, rarely affected by waves but receiving hundreds to thousands of visitors per day, exhibits convex upward character typical of diffusive forcing. We assess whether a diffusive landscape evolution model based on linear or non-linear flux laws describes the temporal and spatial evolution of the upper parts of beaches where wave forcing rarely occurs.
Time-optimal quantum control of nonlinear two-level systems
NASA Astrophysics Data System (ADS)
Chen, Xi; Ban, Yue; Hegerfeldt, Gerhard C.
2016-08-01
Nonlinear two-level Landau-Zener type equations for systems with relevance for Bose-Einstein condensates and nonlinear optics are considered and the minimal time Tmin to drive an initial state to a given target state is investigated. Surprisingly, the nonlinearity may be canceled by a time-optimal unconstrained driving and Tmin becomes independent of the nonlinearity. For constrained and unconstrained driving explicit expressions are derived for Tmin, the optimal driving, and the protocol.
Wu, Hairong; Sotthewes, Kai; Kumar, Avijit; Vancso, G Julius; Schön, Peter M; Zandvliet, Harold J W
2013-02-19
We investigated the dynamics of decanethiol self-assembled monolayers on Au(111) surfaces using time-resolved scanning tunneling microscopy at room temperature. The expected ordered phases (β, δ, χ*, and φ) and a disordered phase (ε) were observed. Current-time traces with the feedback loop disabled were recorded at different locations on the surface. The sulfur end group of the decanethiolate molecule exhibits a stochastic two-level switching process when the molecule is adsorbed in a (local) β phase registry. This two-level process is attributed to the diffusion of the Au-thiolate complex between two adjacent adsorption sites. The irregular current jumps in the current-time traces recorded on the tails of decanethiolate molecules in the ordered β, δ, and χ* phases are ascribed to wagging of the alkyl tails. Finally, the disordered phase is characterized by even larger current jumps, which indicates that the tail of the decanethiolate flips up occasionally and makes contact with the tip. Our experiments reveal that the massive dynamics of the self-assembled monolayer is due to diffusion of decanethiol-Au complexes, rather than the diffusion of decanethiolate molecules.
Abucayon, Erwin; Ke, Neng; Cornut, Renaud; Patelunas, Anthony; Miller, Douglas; Nishiguchi, Michele K; Zoski, Cynthia G
2014-01-07
Catalase activity through hydrogen peroxide decomposition in a 1 mM bulk solution above Vibrio fischeri (γ-Protebacteria-Vibrionaceae) bacterial biofilms of either symbiotic or free-living strains was studied in real time by scanning electrochemical microscopy (SECM). The catalase activity, in units of micromoles hydrogen peroxide decomposed per minute over a period of 348 s, was found to vary with incubation time of each biofilm in correlation with the corresponding growth curve of bacteria in liquid culture. Average catalase activity for the same incubation times ranging from 1 to 12 h was found to be 0.28 ± 0.07 μmol H2O2/min for the symbiotic biofilms and 0.31 ± 0.07 μmol H2O2/min for the free-living biofilms, suggesting similar catalase activity. Calculations based on Comsol Multiphysics simulations in fitting experimental biofilm data indicated that approximately (3 ± 1) × 10(6) molecules of hydrogen peroxide were decomposed by a single bacterium per second, signifying the presence of a highly active catalase. A 2-fold enhancement in catalase activity was found for both free-living and symbiotic biofilms in response to external hydrogen peroxide concentrations as low as 1 nM in the growth media, implying a similar mechanism in responding to oxidative stress.
Pratap, Jit
2016-01-01
Objective: This study evaluated the radiation dose and image quality implications of dual-energy CT (DECT) use, compared with kilovoltage-optimized single-source/single-energy CT (SECT) on a dual-source Siemens Somatom® Definition Flash CT scanner (Siemens Healthcare, Forcheim, Germany). Methods: With equalized radiation dose (volumetric CT dose index), image noise (standard deviation of CT number) and signal-difference-to-noise ratio (SDNR) were measured and compared across three techniques: 100, 120 and 100/140 kVp (dual energy). Noise in a 30-cm-diameter water phantom and SDNR within unenhanced soft-tissue regions of a small adult (50 kg/165 cm) anthropomorphic phantom were utilized for the assessment. Results: Water phantom image noise decreased with DECT compared with the lower noise SECT setting of 120 kVp (p = 0.046). A decrease in SDNR within the anthropomorphic phantom was demonstrated at 120 kVp compared with the SECT kilovoltage-optimized setting of 100 kVp (p = 0.001). A further decrease in SDNR was observed for the DECT technique when compared with 120 kVp (p = 0.01). Conclusion: On the Siemens Somatom Definition Flash system (Siemens Healthcare), and for equalized radiation dose conditions, image quality expressed as SDNR of unenhanced soft tissue may be compromised for DECT when compared with kilovoltage-optimized SECT, particularly for smaller patients. Advances in knowledge: DECT on a dual-source CT scanner may require a radiation dose increase to maintain unenhanced soft-tissue contrast detectability, particularly for smaller patients. PMID:26559438
Guthier, C V; Aschenbrenner, K P; Müller, R; Polster, L; Cormack, R A; Hesser, J W
2016-08-21
This paper demonstrates that optimization strategies derived from the field of compressed sensing (CS) improve computational performance in inverse treatment planning (ITP) for high-dose-rate (HDR) brachytherapy. Following an approach applied to low-dose-rate brachytherapy, we developed a reformulation of the ITP problem with the same mathematical structure as standard CS problems. Two greedy methods, derived from hard thresholding and subspace pursuit are presented and their performance is compared to state-of-the-art ITP solvers. Applied to clinical prostate brachytherapy plans speed-up by a factor of 56-350 compared to state-of-the-art methods. Based on a Wilcoxon signed rank-test the novel method statistically significantly decreases the final objective function value (p < 0.01). The optimization times were below one second and thus planing can be considered as real-time capable. The novel CS inspired strategy enables real-time ITP for HDR brachytherapy including catheter optimization. The generated plans are either clinically equivalent or show a better performance with respect to dosimetric measures.
NASA Astrophysics Data System (ADS)
Guthier, C. V.; Aschenbrenner, K. P.; Müller, R.; Polster, L.; Cormack, R. A.; Hesser, J. W.
2016-08-01
This paper demonstrates that optimization strategies derived from the field of compressed sensing (CS) improve computational performance in inverse treatment planning (ITP) for high-dose-rate (HDR) brachytherapy. Following an approach applied to low-dose-rate brachytherapy, we developed a reformulation of the ITP problem with the same mathematical structure as standard CS problems. Two greedy methods, derived from hard thresholding and subspace pursuit are presented and their performance is compared to state-of-the-art ITP solvers. Applied to clinical prostate brachytherapy plans speed-up by a factor of 56-350 compared to state-of-the-art methods. Based on a Wilcoxon signed rank-test the novel method statistically significantly decreases the final objective function value (p < 0.01). The optimization times were below one second and thus planing can be considered as real-time capable. The novel CS inspired strategy enables real-time ITP for HDR brachytherapy including catheter optimization. The generated plans are either clinically equivalent or show a better performance with respect to dosimetric measures.
A Hierarchical Optimization Algorithm Based on GPU for Real-Time 3D Reconstruction
NASA Astrophysics Data System (ADS)
Lin, Jin-hua; Wang, Lu; Wang, Yan-jie
2017-06-01
In machine vision sensing system, it is important to realize high-quality real-time 3D reconstruction in large-scale scene. The recent online approach performed well, but scaling up the reconstruction, it causes pose estimation drift, resulting in the cumulative error, usually requiring a large number of off-line operation to completely correct the error, reducing the reconstruction performance. In order to optimize the traditional volume fusion method and improve the old frame-to-frame pose estimation strategy, this paper presents a real-time CPU to Graphic Processing Unit reconstruction system. Based on a robust camera pose estimation strategy, the algorithm fuses all the RGB-D input values into an effective hierarchical optimization framework, and optimizes each frame according to the global camera attitude, eliminating the serious dependence on the tracking timeliness and continuously tracking globally optimized frames. The system estimates the global optimization of gestures (bundling) in real-time, supports for robust tracking recovery (re-positioning), and re-estimation of large-scale 3D scenes to ensure global consistency. It uses a set of sparse corresponding features, geometric and ray matching functions in one of the parallel optimization systems. The experimental results show that the average reconstruction time is 415 ms per frame, the ICP pose is estimated 20 times in 100.0 ms. For large scale 3D reconstruction scene, the system performs well in online reconstruction ar