NASA Astrophysics Data System (ADS)
Huang, Jyh-Jaan; Löwemark, Ludvig; Chang, Queenie; Lin, Tzu-Yu; Chen, Huei-Fen; Song, Sheng-Rong; Wei, Kuo-Yen
2016-04-01
X-ray fluorescence (XRF) core-scanning is a fast and nondestructive technique to assess elemental variations of unprocessed sediments. However, although the exposure time of XRF-scanning directly affects the scanning counts and total measurement time, only a few studies have considered the influence of exposure time during the scan. How to select an optimal exposure time to achieve reliable results and reduce the total measurement time is an important issue. To address this question, six geological reference materials from the Geological Survey of Japan (JLK-1, JMS-1, JMS-2, JSD-1, JSD-2, and JSD-3) were scanned by the Itrax-XRF core scanner using the Mo- and the Cr-tube with different exposure times to allow a comparison of scanning counts with absolute concentrations. The regression lines and correlation coefficients of elements that are generally used in paleoenvironmental studies were examined for the different exposure times and X-ray tubes. The results show that for those elements with relatively high concentrations or high detectability, the correlation coefficients are higher than 0.90 for all exposure times. In contrast, for the low detectability or low concentration elements, the correlation coefficients are relatively low, and improve little with increased exposure time. Therefore, we suggest that the influence of different exposure times is insignificant for the accuracy of the measurements. Thus, caution must be taken when interpreting the results of elements with low detectability, even when the exposure times are long and scanning counts are reasonably high.
NASA Astrophysics Data System (ADS)
Carlier, T.; Ferrer, L.; Necib, H.; Bodet-Milin, C.; Rousseau, C.; Kraeber-Bodéré, F.
2014-10-01
The injected activity and the acquisition time per bed position for 18F-FDG PET scans are usually optimized by using metrics obtained from phantom experiments. However, optimal activity and time duration can significantly vary from a phantom set-up and from patient to patient. An approach using a patient-specific noise equivalent count rate (NECR) modelling has been previously proposed for optimizing clinical scanning protocols. We propose using the clinical NECR on a large population as a function of the body mass index (BMI) for deriving the optimal injected activity and acquisition duration per bed position. The relationship between the NEC and the signal-to-noise ratio (SNR) was assessed both in a phantom and in a clinical setting. 491 consecutive patients were retrospectively evaluated and divided into 4 BMI subgroups. Two criteria were used to optimize the injected activity and the time per bed position was adjusted using the NECR value while keeping the total acquisition time constant. Finally, the relationship between NEC and SNR was investigated using an anthropomorphic phantom and a population of 507 other patients. While the first dose regimen suggested a unique injected activity (665 MBq) regardless of the BMI, the second dose regimen proposed a variable activity and a total acquisition time according to the BMI. The NEC improvement was around 35% as compared with the local current injection rule. Variable time per bed position was derived according to BMI and anatomical region. NEC and number of true events were found to be highly correlated with SNR for the phantom set-up and partially confirmed in the patient study for the BMI subgroup under 28 kg m-2 suggesting that for the scanner, the nonlinear reconstruction algorithm used in this study and BMI < 28 kg m-2, NEC, or the number of true events linearly correlated with SNR2.
Irvine, D M; Cole, A J; Hanna, G G; McGarry, C K
2015-01-01
Objective: The aim of this study was to identify sources of anatomical misrepresentation owing to the location of camera mounting, tumour motion velocity and image processing artefacts in order to optimize the four-dimensional CT (4DCT) scan protocol and improve geometrical–temporal accuracy. Methods: A phantom with an imaging insert was driven with a sinusoidal superior–inferior motion of varying amplitude and period for 4DCT scanning. The length of a high-density cube within the insert was measured using treatment planning software to determine the accuracy of its spatial representation. Scan parameters were varied, including the tube rotation period and the cine time between reconstructed images. A CT image quality phantom was used to measure various image quality signatures under the scan parameters tested. Results: No significant difference in spatial accuracy was found for 4DCT scans carried out using the wall- or couch-mounted camera for sinusoidal target motion. Greater spatial accuracy was found for 4DCT scans carried out using a tube rotation speed of 0.5 s rather than 1.0 s. The reduction in image quality when using a faster rotation speed was not enough to require an increase in patient dose. Conclusion: The 4DCT accuracy may be increased by optimizing scan parameters, including choosing faster tube rotation speeds. Peak misidentification in the recorded breathing trace may lead to spatial artefacts, and this risk can be reduced by using a couch-mounted infrared camera. Advances in knowledge: This study explicitly shows that 4DCT scan accuracy is improved by scanning with a faster CT tube rotation speed. PMID:25470359
Demonstration of scan path optimization in proton therapy
Kang, Joanne H.; Wilkens, Jan J.; Oelfke, Uwe
2007-09-15
A three-dimensional (3D) intensity modulated proton therapy treatment plan to be delivered by magnetic scanning may comprise thousands of discrete beam positions. This research presents the minimization of the total scan path length by application of a fast simulated annealing (FSA) optimization algorithm. Treatment plans for clinical prostate and head and neck cases were sequenced for continuous raster scanning in two ways, and the resulting scan path lengths were compared: (1) A simple back-and-forth, top-to-bottom (zigzag) succession, and (2) an optimized path produced as a solution of the FSA algorithm. Using a first approximation of the scanning dynamics, the delivery times for the scan sequences before and after path optimization were calculated for comparison. In these clinical examples, the FSA optimization shortened the total scan path length for the 3D target volumes by approximately 13%-56%. The number of extraneous spilled particles was correspondingly reduced by about 13%-54% due to the more efficient scanning maps that eliminated multiple crossings through regions of zero fluence. The relative decrease in delivery time due to path length minimization was estimated to be less than 1%, due to both a high scanning speed and time requirements that could not be altered by optimization (e.g., time required to change the beam energy). In a preliminary consideration of application to rescanning techniques, the decrease in delivery time was estimated to be 4%-20%.
Gramatikov, Boris I; Irsch, Kristina; Guyton, David
2014-01-01
While validating our newly developed vision screener based on a double-pass retinal scanning system, we noticed that in all patients the signals from the retina were significantly higher when measurements were performed within a certain time interval referenced to the initial moment when the lights were dimmed and the test subject was asked to fixate on a target. This appeared to be most likely attributable to pupil size dynamics and triggered the present study, whose aim was to assess the pupillary “lights-off” response while fixating on a target in the presence of an accommodative effort. We found that pupil size increases in the first 60 to 70 s after turning off the room lights, and then it decreases toward the baseline in an exponential decay. Our results suggest that there is an optimal time window during which pupil size is expected to be maximal, that is during the second minute after dimming the room lights. During this time, window retinal diagnostic instruments based on double-pass measurement technology should deliver an optimal signal-to-noise ratio. We also propose a mathematical model that can be used to approximate the behavior of the normalized pupil size.
NASA Astrophysics Data System (ADS)
Gramatikov, Boris I.; Irsch, Kristina; Guyton, David
2014-10-01
While validating our newly developed vision screener based on a double-pass retinal scanning system, we noticed that in all patients the signals from the retina were significantly higher when measurements were performed within a certain time interval referenced to the initial moment when the lights were dimmed and the test subject was asked to fixate on a target. This appeared to be most likely attributable to pupil size dynamics and triggered the present study, whose aim was to assess the pupillary "lights-off" response while fixating on a target in the presence of an accommodative effort. We found that pupil size increases in the first 60 to 70 s after turning off the room lights, and then it decreases toward the baseline in an exponential decay. Our results suggest that there is an optimal time window during which pupil size is expected to be maximal, that is during the second minute after dimming the room lights. During this time, window retinal diagnostic instruments based on double-pass measurement technology should deliver an optimal signal-to-noise ratio. We also propose a mathematical model that can be used to approximate the behavior of the normalized pupil size.
Lidar arc scan uncertainty reduction through scanning geometry optimization
NASA Astrophysics Data System (ADS)
Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.; Brown, Gareth.
2016-04-01
Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annual energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30 % of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. Large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.
Heuristic optimization of the scanning path of particle therapy beams.
Pardo, J; Donetti, M; Bourhaleb, F; Ansarinejad, A; Attili, A; Cirio, R; Garella, M A; Giordanengo, S; Givehchi, N; La Rosa, A; Marchetto, F; Monaco, V; Pecka, A; Peroni, C; Russo, G; Sacchi, R
2009-06-01
Quasidiscrete scanning is a delivery strategy for proton and ion beam therapy in which the beam is turned off when a slice is finished and a new energy must be set but not during the scanning between consecutive spots. Different scanning paths lead to different dose distributions due to the contribution of the unintended transit dose between spots. In this work an algorithm to optimize the scanning path for quasidiscrete scanned beams is presented. The classical simulated annealing algorithm is used. It is a heuristic algorithm frequently used in combinatorial optimization problems, which allows us to obtain nearly optimal solutions in acceptable running times. A study focused on the best choice of operational parameters on which the algorithm performance depends is presented. The convergence properties of the algorithm have been further improved by using the next-neighbor algorithm to generate the starting paths. Scanning paths for two clinical treatments have been optimized. The optimized paths are found to be shorter than the back-and-forth, top-to-bottom (zigzag) paths generally provided by the treatment planning systems. The gamma method has been applied to quantify the improvement achieved on the dose distribution. Results show a reduction of the transit dose when the optimized paths are used. The benefit is clear especially when the fluence per spot is low, as in the case of repainting. The minimization of the transit dose can potentially allow the use of higher beam intensities, thus decreasing the treatment time. The algorithm implemented for this work can optimize efficiently the scanning path of quasidiscrete scanned particle beams. Optimized scanning paths decrease the transit dose and lead to better dose distributions.
Lidar arc scan uncertainty reduction through scanning geometry optimization
Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.; ...
2016-04-13
Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annualmore » energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30 % of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. Large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.« less
Yin, Yafu; Mao, Qiufen; Chen, Song; Li, Na; Li, Xuena; Li, Yaming
2015-01-01
Abstract This article investigates the association of the time interval between the diagnostic dose and ablation with the stunning effect, when a 74 MBq 131I pretherapy scanning was performed on patients with differentiated thyroid carcinoma (DTC); the patients who were diagnosed as DTC and would be performed radioiodine (RAI) ablation of thyroid remnants or metastases were recruited during January 2011 and May 2012 in our hospital. Thirty-seven patients with DTC who had the RAI ablation of thyroid remnants or metastases for the first time were recruited. All the patients received a dose of 1850 to 7400 MBq of 131I for ablation and a diagnostic scan was performed 24 hours after the administration of 74 MBq 131I before ablation. A posttherapy scan was performed 2 to 7 days after the ablation. The patients were broken down into 3 groups (G1, G2, and G3) according to the interval time between the diagnostic dose and therapy (1–3, 4–7, and >7 days). The fractional concentrations of 131I in remnants or functional metastases were quantified and expressed as therapeutic/diagnostic (Rx/Dx). The level of significance was set at 0.05. Sixty-seven foci were found both on pretherapy and posttherapy scans, the mean ratio of Rx/Dx was 0.43 ± 0.29, and the ratio of 49 foci (73.13%) was <0.6. The ratios in G1, G2, and G3 were 0.46 ± 0.29, 0.29 ± 0.18, and 0.55 ± 0.33, respectively. The differences between G1 and G2, and G2 and G3 were statistically significant (t = 2.40, P = 0.021 and t = 3.28, P = 0.002), whereas the difference between G1 and G3 was not significant (t = 1.01, P = 0.319). By a diagnostic scan of 74 MBq 131I, stunning prominently occurs with a time of 4 to 7 days between the diagnostic dose and ablation. We recommend that for less stunning effect, RAI ablation should be performed within 3 days or postponed until 1 week after the diagnostic dose administrated. PMID:26252311
Scanning-time evaluation of Digimarc Barcode
NASA Astrophysics Data System (ADS)
Gerlach, Rebecca; Pinard, Dan; Weaver, Matt; Alattar, Adnan
2015-03-01
This paper presents a speed comparison between the use of Digimarc® Barcodes and the Universal Product Code (UPC) for customer checkout at point of sale (POS). The recently introduced Digimarc Barcode promises to increase the speed of scanning packaged goods at POS. When this increase is exploited by workforce optimization systems, the retail industry could potentially save billions of dollars. The Digimarc Barcode is based on Digimarc's watermarking technology, and it is imperceptible, very robust, and does not require any special ink, material, or printing processes. Using an image-based scanner, a checker can quickly scan consumer packaged goods (CPG) embedded with the Digimarc Barcode without the need to reorient the packages with respect to the scanner. Faster scanning of packages saves money and enhances customer satisfaction. It reduces the length of the queues at checkout, reduces the cost of cashier labor, and makes self-checkout more convenient. This paper quantifies the increase in POS scanning rates resulting from the use of the Digimarc Barcode versus the traditional UPC. It explains the testing methodology, describes the experimental setup, and analyzes the obtained results. It concludes that the Digimarc Barcode increases number of items per minute (IPM) scanned at least 50% over traditional UPC.
Design of optimal fast scanning trajectory for the mechanical scanner of measurement instruments.
Ju, Bing-Feng; Bai, Xiaolong; Chen, Jian; Ge, Yaozheng
2014-01-01
This paper focuses on the design of the optimal scanning mode for the family of scanning probe microscopes. Based on different values of the maximum acceleration (deceleration) rate and maximum speed of X- and Y- axes of the mechanical scanner encountered in practice due to different mechanical design and loads, the design procedure of the optimal fast scanning mode is presented, which is found to be sensitive to the specific parameters of the scanning motion. By utilizing the simultaneous motion of the two axes, the fast raster scanning mode proposed can improve the scanning efficiency by 29% when comparing with the conventional raster (CR) scanning mode, if the scanning speeds of both axes are identical. In addition, the optimal fast mode provided by us has no effects on the image accuracy such as image degradation, image distortion when the efficiency is evaluated. No further difficulties are introduced to the control of the mechanical scanner and the data acquisition process. This optimal scanning mode is useful when the response time of the probe is very fast (such as ultrasonic probe in scanning acoustic microscope (SAM)), and the main limitations are due to the mechanical scanner. By applying different loads for both axes, the experiments with different scanning areas and scanning modes are conducted in a self-developed SAM. Experimental results coincide with the theoretical analysis and confirm the validation of our proposed optimal fast scanning mode and its superiority over the CR scanning mode.
2009-11-01
McGraw-Hill, New York). [16] J. S. Meditch , 1967, “Orthogonal Projection and Discrete Optimal Linear Smoothing ,” SIAM Journal on Control and...Optimization, 5, 74-89. [17] J. S. Meditch , 1973, “A Survey of Data Smoothing for Linear and Nonlinear Dynamic Systems,” Automatica, 9, 151-162... smoothing window forward of each fixed epoch. The length of the smoothing window is bounded above by 5 hours, the maximum time-length of a ground
Fast optimization and dose calculation in scanned ion beam therapy
Hild, S.; Graeff, C.; Trautmann, J.; Kraemer, M.; Zink, K.; Durante, M.; Bert, C.
2014-07-15
Purpose: Particle therapy (PT) has advantages over photon irradiation on static tumors. An increased biological effectiveness and active target conformal dose shaping are strong arguments for PT. However, the sensitivity to changes of internal geometry complicates the use of PT for moving organs. In case of interfractionally moving objects adaptive radiotherapy (ART) concepts known from intensity modulated radiotherapy (IMRT) can be adopted for PT treatments. One ART strategy is to optimize a new treatment plan based on daily image data directly before a radiation fraction is delivered [treatment replanning (TRP)]. Optimizing treatment plans for PT using a scanned beam is a time consuming problem especially for particles other than protons where the biological effective dose has to be calculated. For the purpose of TRP, fast optimization and fast dose calculation have been implemented into the GSI in-house treatment planning system (TPS) TRiP98. Methods: This work reports about the outcome of a code analysis that resulted in optimization of the calculation processes as well as implementation of routines supporting parallel execution of the code. To benchmark the new features, the calculation time for therapy treatment planning has been studied. Results: Compared to the original version of the TPS, calculation times for treatment planning (optimization and dose calculation) have been improved by a factor of 10 with code optimization. The parallelization of the TPS resulted in a speedup factor of 12 and 5.5 for the original version and the code optimized version, respectively. Hence the total speedup of the new implementation of the authors' TPS yielded speedup factors up to 55. Conclusions: The improved TPS is capable of completing treatment planning for ion beam therapy of a prostate irradiation considering organs at risk in this has been overseen in the review process. Also see below 6 min.
Optimization of transmission and emission scan duration in 3D whole-body PET
Beyer, T.; Kinahan, P.E.; Townsend, D.W.
1996-12-31
Whole-body PET imaging is being increasingly used to identify and localize malignant disease remote from the site of the primary tumor. Patients are typically scanned at multiple contiguous bed positions over an axial length of 75-100 cm. For oncology patients, the total scan duration should not exceed about an hour and therefore only 5-10 minutes of imaging can be performed at each bed position. To minimize the total scan duration, the transmission scan is often omitted and the emission scan reconstructed without attenuation correction. However, whole-body scans reconstructed without attenuation correction can lead to incorrect diagnosis, particularly for tumors located deep within the body. We have performed a series of torso phantom measurements to investigate the optimal partition of scan time between the emission and transmission scans for a fixed total scan duration. We find that a transmission fraction of about 0.4 is optimal for a 5 min and 10 min total acquisition time per bed position. The optimal partition depends on the way the attenuation correction factors are calculated and on the reconstruction algorithm.
PREFACE: Time-resolved scanning tunnelling microscopy Time-resolved scanning tunnelling microscopy
NASA Astrophysics Data System (ADS)
Zandvliet, Harold J. W.; Lin, Nian
2010-07-01
Scanning tunnelling microscopy has revolutionized our ability to image, manipulate, and investigate solid surfaces on the length scale of individual atoms and molecules. The strength of this technique lies in its imaging capabilities, since for many scientists 'seeing is believing'. However, scanning tunnelling microscopy also suffers from a severe limitation, namely its poor time resolution. Recording a scanning tunnelling microscopy image typically requires a few tens of seconds for a conventional scanning tunnelling microscope to a fraction of a second for a specially designed fast scanning tunnelling microscope. Designing and building such a fast scanning tunnelling microscope is a formidable task in itself and therefore, only a limited number of these microscopes have been built [1]. There is, however, another alternative route to significantly enhance the time resolution of a scanning tunnelling microscope. In this alternative method, the tunnelling current is measured as a function of time with the feedback loop switched off. The time resolution is determined by the bandwidth of the IV converter rather than the cut-off frequency of the feedback electronics. Such an approach requires a stable microscope and goes, of course, at the expense of spatial information. In this issue, we have collected a set of papers that gives an impression of the current status of this rapidly emerging field [2]. One of the very first attempts to extract information from tunnel current fluctuations was reported by Tringides' group in the mid-1990s [3]. They showed that the collective diffusion coefficient can be extracted from the autocorrelation of the time-dependent tunnelling current fluctuations produced by atom motion in and out of the tunnelling junction. In general, current-time traces provide direct information on switching/conformation rates and distributions of residence times. In the case where these processes are thermally induced it is rather straightforward to map
Optimal lens design and use in laser-scanning microscopy
Negrean, Adrian; Mansvelder, Huibert D.
2014-01-01
In laser-scanning microscopy often an off-the-shelf achromatic doublet is used as a scan lens which can reduce the available diffraction-limited field-of-view (FOV) by a factor of 3 and introduce chromatic aberrations that are scan angle dependent. Here we present several simple lens designs of superior quality that fully make use of high-NA low-magnification objectives, offering diffraction-limited imaging over a large FOV and wavelength range. We constructed a two-photon laser-scanning microscope with optimized custom lenses which had a near diffraction limit point-spread-function (PSF) with less than 3.6% variation over a 400 µm FOV and less than 0.5 µm lateral color between 750 and 1050 nm. PMID:24877017
Optimization of Designs for Nanotube-based Scanning Probes
NASA Technical Reports Server (NTRS)
Harik, V. M.; Gates, T. S.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
Optimization of designs for nanotube-based scanning probes, which may be used for high-resolution characterization of nanostructured materials, is examined. Continuum models to analyze the nanotube deformations are proposed to help guide selection of the optimum probe. The limitations on the use of these models that must be accounted for before applying to any design problem are presented. These limitations stem from the underlying assumptions and the expected range of nanotube loading, end conditions, and geometry. Once the limitations are accounted for, the key model parameters along with the appropriate classification of nanotube structures may serve as a basis for the design optimization of nanotube-based probe tips.
Zhang, Liansheng; Long, Qian; Liu, Yongbin; Zhang, Jie; Feng, Zhihua
2016-07-01
The thermal effect is one of the most important factors that influence the accuracy of nanoscale measurement and the surface topography of samples in scanning probe microscopes (SPMs). We propose a method called correlation-steered scanning, which is capable of overcoming three-dimensional thermal drifts in real time for ultra-long time scanned images. The image is scanned band by band with overlapping parts between adjacent bands. The vertical drift can be considered as linear and can thus be eliminated together with the tilt of the sample by applying the flattening method. Each band is artificially divided into several blocks for conveniently calculating lateral drifts on the basis of the overlapping area of adjacent bands through digital image correlation. The calculated lateral drifts are compensated to steer the scanning of the subsequent blocks, thus ensuring that all bands are parallel to one another. Experimental results proved that images scanned by the proposed method exhibited less distortions than those obtained from the traditional raster scanning method. The nanoscale measurement results based on the image obtained by the proposed method also showed high accuracy, with an error of less than 1.5%. By scanning as many bands as needed, the correlation-steered scanning method can obtain a highly precise SPM image of an ultra-large area.
Optimization of the imaging response of scanning microwave microscopy measurements
Sardi, G. M.; Lucibello, A.; Proietti, E.; Marcelli, R.; Kasper, M.; Gramse, G.; Kienberger, F.
2015-07-20
In this work, we present the analytical modeling and preliminary experimental results for the choice of the optimal frequencies when performing amplitude and phase measurements with a scanning microwave microscope. In particular, the analysis is related to the reflection mode operation of the instrument, i.e., the acquisition of the complex reflection coefficient data, usually referred as S{sub 11}. The studied configuration is composed of an atomic force microscope with a microwave matched nanometric cantilever probe tip, connected by a λ/2 coaxial cable resonator to a vector network analyzer. The set-up is provided by Keysight Technologies. As a peculiar result, the optimal frequencies, where the maximum sensitivity is achieved, are different for the amplitude and for the phase signals. The analysis is focused on measurements of dielectric samples, like semiconductor devices, textile pieces, and biological specimens.
Optimal alignment of mirror based pentaprisms for scanning deflectometric devices
Barber, Samuel K.; Geckeler, Ralf D.; Yashchuk, Valeriy V.; Gubarev, Mikhail V.; Buchheim, Jana; Siewert, Frank; Zeschke, Thomas
2011-03-04
In the recent work [Proc. of SPIE 7801, 7801-2/1-12 (2010), Opt. Eng. 50(5) (2011), in press], we have reported on improvement of the Developmental Long Trace Profiler (DLTP), a slope measuring profiler available at the Advanced Light Source Optical Metrology Laboratory, achieved by replacing the bulk pentaprism with a mirror based pentaprism (MBPP). An original experimental procedure for optimal mutual alignment of the MBPP mirrors has been suggested and verified with numerical ray tracing simulations. It has been experimentally shown that the optimally aligned MBPP allows the elimination of systematic errors introduced by inhomogeneity of the optical material and fabrication imperfections of the bulk pentaprism. In the present article, we provide the analytical derivation and verification of easily executed optimal alignment algorithms for two different designs of mirror based pentaprisms. We also provide an analytical description for the mechanism for reduction of the systematic errors introduced by a typical high quality bulk pentaprism. It is also shown that residual misalignments of an MBPP introduce entirely negligible systematic errors in surface slope measurements with scanning deflectometric devices.
Timing to Block Scanning Malwares by Using Combinatorics Proliferation Model
NASA Astrophysics Data System (ADS)
Omote, Kazumasa; Shimoyama, Takeshi; Torii, Satoru
One of the worst threats present in an enterprise network is the propagation of "scanning malware" (e.g., scanning worms and bots). It is important to prevent such scanning malware from spreading within an enterprise network. It is especially important to suppress scanning malware infection to less than a few infected hosts. We estimated the timing of containment software to block "scanning malware" in a homogeneous enterprise network. The "combinatorics proliferation model", based on discrete mathematics, developed in this study derives a threshold that gives the number of the packets sent by a victim that must not be exceeded in order to suppress the number of infected hosts to less than a few. This model can appropriately express the early state under which an infection started. The result from our model fits very well to the result of computer simulation using a typical existing scanning malware and an actual network.
Scanning laser ophthalmoscopy: optimized testing strategies for psychophysics
NASA Astrophysics Data System (ADS)
Van de Velde, Frans J.
1996-12-01
Retinal function can be evaluated with the scanning laser ophthalmoscope (SLO). the main advantage is a precise localization of the psychophysical stimulus on the retina. Four alternative forced choice (4AFC) and parameter estimation by sequential testing (PEST) are classic adaptive algorithms that have been optimized for use with the SLO, and combined with strategies to correct for small eye movements. Efficient calibration procedures are essential for quantitative microperimetry. These techniques measure precisely visual acuity and retinal sensitivity at distinct locations on the retina. A combined 632 nm and IR Maxwellian view illumination provides a maximal transmittance through the ocular media and has a animal interference with xanthophyll or hemoglobin. Future modifications of the instrument include the possibility of binocular evaluation, Maxwellian view control, fundus tracking using normalized gray-scale correlation, and microphotocoagulation. The techniques are useful in low vision rehabilitation and the application of laser to the retina.
Optimizing the Temporal Resolution of Fast-Scan Cyclic Voltammetry
2012-01-01
Electrochemical detection with carbon-fiber microelectrodes has become an established method to monitor directly the release of dopamine from neurons and its uptake by the dopamine transporter. With constant potential amperometry (CPA), the measured current provides a real time view of the rapid concentration changes, but the method lacks chemical identification of the monitored species and markedly increases the difficulty of signal calibration. Monitoring with fast-scan cyclic voltammetry (FSCV) allows species identification and concentration measurements but often exhibits a delayed response time due to the time-dependent adsorption/desorption of electroactive species at the electrode. We sought to improve the temporal resolution of FSCV to make it more comparable to CPA by increasing the waveform repetition rate from 10 to 60 Hz with uncoated carbon-fiber electrodes. The faster acquisition led to diminished time delays of the recordings that tracked more closely with CPA measurements. The measurements reveal that FSCV at 10 Hz underestimates the normal rate of dopamine uptake by about 18%. However, FSCV collection at 10 and 60 Hz provide identical results when a dopamine transporter (DAT) blocker such as cocaine is bath applied. To verify further the utility of this method, we used transgenic mice that overexpress DAT. After accounting for the slight adsorption delay time, FSCV at 60 Hz adequately monitored the increased uptake rate that arose from overexpression of DAT and, again, was similar to CPA results. Furthermore, the utility of collecting data at 60 Hz was verified in an anesthetized rat by using a higher scan rate (2400 V/s) to increase sensitivity and the overall signal. PMID:22708011
Optimal handling of dimercaptosuccinic acid for quantitative renal scanning
Taylor, A. Jr.; Lallone, R.L.; Hagan, P.L.
1980-12-01
Methods of optimizing quantitative renal imaging with Tc-99m dimercaptosuccinic acid (DMSA) were investigated. Rats were injected with DMSA (one kit per rat) and sacrificed at 0.5, 2.0, and 24 hr after injection. Fifty percent of the injected dose localized in the kidneys at 0.5, 2, and 24 hr after injection while background activity peaked at 0.5 hr and then declined to give substantially higher kidney-to-background ratios at 24 hr. Delayed scanning should increase the accuracy of clinical studies in patients with low kidney-to-background ratios at 1 to 2 hr. After injection of DMSA, 1 ml of air was introduced into the reaction vials and incubated 20 min. Kidney uptake decreased from 50 to 40% and liver uptake increased from 7.5 to 17%. If multiple doses must be drawn from a single vial, air should not be introduced, and the doses should be drawn together and administered immediately to minimize radiopharmaceutical deterioration.
Cylindrical optic figuring dwell time optimization
NASA Astrophysics Data System (ADS)
Waluschka, Eugene
2000-11-01
The Constellation-X, grazing incidence, x-ray telescope may be fabricated from replicated segments. A series of mandrels will serve as the 'masters' in the replication processes. Diamond turning (milling) followed by abrasive figuring followed by a super polishing are the steps currently envisioned in making just one (of many) mandrel. The abrasive figuring of a mandrel is accomplished by moving a grinding tool along a helical path on this almost cylindrical surface. The measurement of the surface is, however, performed along 'axial' scan lines which intercept this helical path. This approach to figuring and measuring permits a relatively simple scheme to be implemented for the determination of the optimal dwell times of the figuring tool. These optimal dwell times are determined by a deconvolution which approaches the problem in a linear programming context and uses the Simplex Method. The approach maximizes the amount of material removed at any point subject to inequality constraints. The effects of using these 'optimum' dwell times is to significantly improve the tools effectiveness at removing the higher spatial frequencies while staying (strictly) within the bounds and constraints imposed by the hardware. In addition, the ringing at the edges of the optic, frequently present in deconvolution problems, is completely eliminated.
Improved Real-Time Scan Matching Using Corner Features
NASA Astrophysics Data System (ADS)
Mohamed, H. A.; Moussa, A. M.; Elhabiby, M. M.; El-Sheimy, N.; Sesay, Abu B.
2016-06-01
The automation of unmanned vehicle operation has gained a lot of research attention, in the last few years, because of its numerous applications. The vehicle localization is more challenging in indoor environments where absolute positioning measurements (e.g. GPS) are typically unavailable. Laser range finders are among the most widely used sensors that help the unmanned vehicles to localize themselves in indoor environments. Typically, automatic real-time matching of the successive scans is performed either explicitly or implicitly by any localization approach that utilizes laser range finders. Many accustomed approaches such as Iterative Closest Point (ICP), Iterative Matching Range Point (IMRP), Iterative Dual Correspondence (IDC), and Polar Scan Matching (PSM) handles the scan matching problem in an iterative fashion which significantly affects the time consumption. Furthermore, the solution convergence is not guaranteed especially in cases of sharp maneuvers or fast movement. This paper proposes an automated real-time scan matching algorithm where the matching process is initialized using the detected corners. This initialization step aims to increase the convergence probability and to limit the number of iterations needed to reach convergence. The corner detection is preceded by line extraction from the laser scans. To evaluate the probability of line availability in indoor environments, various data sets, offered by different research groups, have been tested and the mean numbers of extracted lines per scan for these data sets are ranging from 4.10 to 8.86 lines of more than 7 points. The set of all intersections between extracted lines are detected as corners regardless of the physical intersection of these line segments in the scan. To account for the uncertainties of the detected corners, the covariance of the corners is estimated using the extracted lines variances. The detected corners are used to estimate the transformation parameters between the
Optimization of galvanometer scanning for optical coherence tomography.
Duma, Virgil-Florin; Tankam, Patrice; Huang, Jinxin; Won, Jungeun; Rolland, Jannick P
2015-06-10
We study experimentally the effective duty cycle of galvanometer-based scanners (GSs) with regard to three main parameters of the scanning process: theoretical/imposed duty cycle (of the input signal), scan frequency, and scan amplitude. Sawtooth and triangular input signals for the device are considered. The effects of the mechanical inertia of the oscillatory element of the GS are analyzed and their consequences are discussed in the context of optical coherence tomography (OCT) imaging. When the theoretical duty cycle and the scan amplitude are increased to the limit, the saturation of the device is demonstrated for a useful range of scan frequencies by direct measurement of the position of the galvomirror. Investigations of OCT imaging of large samples also validate this saturation, as examplified by the gaps/blurred portions obtained between neighboring images when using both triangular and sawtooth scanning at high scan frequencies. For this latter aspect, the necessary overlap between neighboring B-scans, and therefore between the corresponding volumetric reconstructions of the sample, are evaluated and implemented with regard to the same parameters of the scanning process. OCT images that are free of these artifacts are thus obtained.
Optimal scan strategies for future CMB satellite experiments
NASA Astrophysics Data System (ADS)
Wallis, Christopher G. R.; Brown, Michael L.; Battye, Richard A.; Delabrouille, Jacques
2017-04-01
The B-mode polarization power spectrum in the cosmic microwave background (CMB) is about four orders of magnitude fainter than the CMB temperature power spectrum. Any instrumental imperfections that couple temperature fluctuations to B-mode polarization must therefore be carefully controlled and/or removed. We investigate the role that a scan strategy can have in mitigating certain common systematics by averaging systematic errors down with many crossing angles. We present approximate analytic forms for the error on the recovered B-mode power spectrum that would result from differential gain, differential pointing and differential ellipticity for the case where two detector pairs are used in a polarization experiment. We use these analytic predictions to search the parameter space of common satellite scan strategies in order to identify those features of a scan strategy that have most impact in mitigating systematic effects. As an example, we go on to identify a scan strategy suitable for the CMB satellite proposed for the European Space Agency M5 call, considering the practical considerations of fuel requirement, data rate and the relative orientation of the telescope to the earth. Having chosen a scan strategy we then go on to investigate the suitability of the scan strategy.
Kenneth Krebs, John Svoboda
2009-11-01
SCAN+ is a software application specifically designed to control the positioning of a gamma spectrometer by a two dimensional translation system above spent fuel bundles located in a sealed spent fuel cask. The gamma spectrometer collects gamma spectrum information for the purpose of spent fuel cask fuel loading verification. SCAN+ performs manual and automatic gamma spectrometer positioning functions as-well-as exercising control of the gamma spectrometer data acquisitioning functions. Cask configuration files are used to determine the positions of spent fuel bundles. Cask scanning files are used to determine the desired scan paths for scanning a spent fuel cask allowing for automatic unattended cask scanning that may take several hours.
Millimeter-wave electronically scanned reflectarray optimization and analysis
NASA Astrophysics Data System (ADS)
Hedden, Abigail S.; Dietlein, Charles R.; Wikner, David A.
2012-06-01
The development of millimeter-wave scanning reflectarrays and phased arrays provides an important path to enabling electronic scanning capabilities at high frequencies. This technology could be used to eliminate the mechanical scanners that are currently used with radar imaging systems. In this work, we analyze properties of wafer-scale two-dimensional rectangular lattice arrays that can be used with a confocal imager for 220 GHz electronic scanning of meter-sized fields of regard at 50 m. Applications include covert imaging of hidden anomalies. We examine tradeoffs between overall system size and array complexity and analyze properties of reflectarrays compatible with a system design that was chosen based on these considerations. The effects of phase quantization are considered in detail for arrays with 1- and 2- bit phase shifters and the results are compared in terms of impacts to image quality. Beam pointing accuracy, main beam energy fraction, and the number and intensity of quantization lobes that appear over the scan ranges of interest are compared. Our results indicate that arrays with 1- and 2-bit phase quantization achieve similar main beam energy efficiencies over the desired scan range. Without restricting the scan range, 1-bit phase quantization is insufficient, resulting in maximum errors that are comparable to the required minimum scan angle. Two-bit phase quantization is preferable, resulting in pointing angle errors of at most 15 % of the diffraction-limited beam-size. Both 1- and 2-bit phase quantization cases result in lobes appearing above our threshold, indicating that spurious returns are a problem that will require further attention.
Optimizing Lidar Scanning Strategies for Wind Energy Measurements (Invited)
NASA Astrophysics Data System (ADS)
Newman, J. F.; Bonin, T. A.; Klein, P.; Wharton, S.; Chilson, P. B.
2013-12-01
Environmental concerns and rising fossil fuel prices have prompted rapid development in the renewable energy sector. Wind energy, in particular, has become increasingly popular in the United States. However, the intermittency of available wind energy makes it difficult to integrate wind energy into the power grid. Thus, the expansion and successful implementation of wind energy requires accurate wind resource assessments and wind power forecasts. The actual power produced by a turbine is affected by the wind speeds and turbulence levels experienced across the turbine rotor disk. Because of the range of measurement heights required for wind power estimation, remote sensing devices (e.g., lidar) are ideally suited for these purposes. However, the volume averaging inherent in remote sensing technology produces turbulence estimates that are different from those estimated by a sonic anemometer mounted on a standard meteorological tower. In addition, most lidars intended for wind energy purposes utilize a standard Doppler beam-swinging or Velocity-Azimuth Display technique to estimate the three-dimensional wind vector. These scanning strategies are ideal for measuring mean wind speeds but are likely inadequate for measuring turbulence. In order to examine the impact of different lidar scanning strategies on turbulence measurements, a WindCube lidar, a scanning Halo lidar, and a scanning Galion lidar were deployed at the Southern Great Plains Atmospheric Radiation Measurement (ARM) site in Summer 2013. Existing instrumentation at the ARM site, including a 60-m meteorological tower and an additional scanning Halo lidar, were used in conjunction with the deployed lidars to evaluate several user-defined scanning strategies. For part of the experiment, all three scanning lidars were pointed at approximately the same point in space and a tri-Doppler analysis was completed to calculate the three-dimensional wind vector every 1 second. In another part of the experiment, one of
Pixel timing correction in time-lapsed calcium imaging using point scanning microscopy.
Boiroux, Dimitri; Oke, Yoshihiko; Miwakeichi, Fumikazu; Oku, Yoshitaka
2014-11-30
In point scanning imaging, data are acquired by sequentially scanning each pixel of a predetermined area. This way of scanning leads to time delays between pixels, especially for lower scanning speed or large scanned areas. Therefore, experiments are often performed at lower framerates in order to ensure a sufficient signal-to-noise ratio, even though framerates above 30 frames per second are technically feasible. For these framerates, we suggest that it becomes crucial to correct the time delay between image pixels prior to analyses. In this paper, we apply temporal interpolation (or pixel timing correction) for calcium imaging in two-photon microscopy as an example of fluorescence imaging. We present and compare three interpolation methods (linear, Lanczos and cubic B-spline). We test these methods on a simulated network of coupled bursting neurons at different framerates. In this network, we introduce a time delay to simulate a scanning by point scanning microscopy. We also assess these methods on actual microscopic calcium imaging movies recorded at usual framerates. Our numerical results suggest that point scanning microscopy imaging introduces statistically significant time delays between image pixels at low frequency. However, we demonstrate that pixel timing correction compensates for these time delays, regardless of the used interpolation method.
Wang Shijun; Yao Jianhua; Liu Jiamin; Petrick, Nicholas; Van Uitert, Robert L.; Periaswamy, Senthil; Summers, Ronald M.
2009-12-15
Purpose: In computed tomographic colonography (CTC), a patient will be scanned twice--Once supine and once prone--to improve the sensitivity for polyp detection. To assist radiologists in CTC reading, in this paper we propose an automated method for colon registration from supine and prone CTC scans. Methods: We propose a new colon centerline registration method for prone and supine CTC scans using correlation optimized warping (COW) and canonical correlation analysis (CCA) based on the anatomical structure of the colon. Four anatomical salient points on the colon are first automatically distinguished. Then correlation optimized warping is applied to the segments defined by the anatomical landmarks to improve the global registration based on local correlation of segments. The COW method was modified by embedding canonical correlation analysis to allow multiple features along the colon centerline to be used in our implementation. Results: We tested the COW algorithm on a CTC data set of 39 patients with 39 polyps (19 training and 20 test cases) to verify the effectiveness of the proposed COW registration method. Experimental results on the test set show that the COW method significantly reduces the average estimation error in a polyp location between supine and prone scans by 67.6%, from 46.27{+-}52.97 to 14.98 mm{+-}11.41 mm, compared to the normalized distance along the colon centerline algorithm (p<0.01). Conclusions: The proposed COW algorithm is more accurate for the colon centerline registration compared to the normalized distance along the colon centerline method and the dynamic time warping method. Comparison results showed that the feature combination of z-coordinate and curvature achieved lowest registration error compared to the other feature combinations used by COW. The proposed method is tolerant to centerline errors because anatomical landmarks help prevent the propagation of errors across the entire colon centerline.
Time optimal paths for high speed maneuvering
Reister, D.B.; Lenhart, S.M.
1993-01-01
Recent theoretical results have completely solved the problem of determining the minimum length path for a vehicle with a minimum turning radius moving from an initial configuration to a final configuration. Time optimal paths for a constant speed vehicle are a subset of the minimum length paths. This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed vehicle. The time optimal paths consist of sequences of axes of circles and straight lines. The maximum principle introduces concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature of the time optimal paths. We explore the properties of the optimal paths and present some experimental results for a mobile robot following an optimal path.
Image reconstruction and optimization using a terahertz scanned imaging system
NASA Astrophysics Data System (ADS)
Yıldırım, İhsan Ozan; Özkan, Vedat A.; Idikut, Fırat; Takan, Taylan; Şahin, Asaf B.; Altan, Hakan
2014-10-01
Due to the limited number of array detection architectures in the millimeter wave to terahertz region of the electromagnetic spectrum, imaging schemes with scan architectures are typically employed. In these configurations the interplay between the frequencies used to illuminate the scene and the optics used play an important role in the quality of the formed image. Using a multiplied Schottky-diode based terahertz transceiver operating at 340 GHz, in a stand-off detection scheme; the effect of image quality of a metal target was assessed based on the scanning speed of the galvanometer mirrors as well as the optical system that was constructed. Background effects such as leakage on the receiver were minimized by conditioning the signal at the output of the transceiver. Then, the image of the target was simulated based on known parameters of the optical system and the measured images were compared to the simulation. By using an image quality index based on χ2 algorithm the simulated and measured images were found to be in good agreement with a value of χ2 = 0 .14. The measurements as shown here will aid in the future development of larger stand-off imaging systems that work in the terahertz frequency range.
Real-time high dynamic range laser scanning microscopy
Vinegoni, C.; Leon Swisher, C.; Fumene Feruglio, P.; Giedt, R. J.; Rousso, D. L.; Stapleton, S.; Weissleder, R.
2016-01-01
In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging. PMID:27032979
Real-time high dynamic range laser scanning microscopy
NASA Astrophysics Data System (ADS)
Vinegoni, C.; Leon Swisher, C.; Fumene Feruglio, P.; Giedt, R. J.; Rousso, D. L.; Stapleton, S.; Weissleder, R.
2016-04-01
In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging.
Optimization of electrostatic lens systems for low-energy scanning microcolumn applications
Oh, Tae-Sik; Kim, Dae-Wook; Ahn, Seungjoon; Kim, Young Chul; Kim, Ho-Seob; Ahn, Seong Joon
2008-11-15
The optimization of a low-energy scanning microcolumn is proposed by adopting a modified Einzel lens sandwiched between an aligner and a deflector. The modified Einzel lens is composed of four electrodes, and the two center electrodes are specially designed quadrupole lenses having keyhole type rather than circular apertures. The outer electrodes of the Einzel lens having circular apertures are grounded, and the quadrupole lens is operated by applying the quadrupole voltages. The effects of the separated deflector system and the static quadrupole lens were investigated by analyzing the scanning electron beam spot at the target, and the results show that the proposed system can improve the performance of the scanning microcolumn.
Implementation of pattern-specific illumination pupil optimization on Step & Scan systems
NASA Astrophysics Data System (ADS)
Engelen, Andre; Socha, Robert J.; Hendrickx, Eric; Scheepers, Wieger; Nowak, Frank; Van Dam, Marco; Liebchen, Armin; Faas, Denis A.
2004-05-01
Step&Scan systems are pushed towards low k1 applications. Contrast enhancement techniques are crucial for successful implementation of these applications in a production environment. A NA - sigma - illumination mode optimizer and a contrast-based optimization algorithm are implemented in LithoCruiser in order to optimize illumination setting and illumination pupil for a specific repetitive pattern. Calculated illumination pupils have been realized using Diffractive Optical Elements (DOE), which are supported by ASML's AERIAL II illuminator. The qualification of the illumination pupil is done using inline metrology on the ASML Step & Scan system. This paper describes the process of pattern specific illumination optimization for a given mask. Multiple examples will be used to demonstrate the advantage of using non-standard illumination pupils.
Optimization of Imaging Parameters for SPECT scans of [99mTc]TRODAT-1 Using Taguchi Analysis
Huang, Cheng-Kai; Wu, Jay; Cheng, Kai-Yuan; Pan, Lung-Kwang
2015-01-01
Parkinson’s disease (PD) is a neurodegenerative disease characterized by progressive loss of dopaminergic neurons in the basal ganglia. Single photon emission computed tomography (SPECT) scans using [99mTc]TRODAT-1 can image dopamine transporters and provide valuable diagnostic information of PD. In this study, we optimized the scanning parameters for [99mTc]TRODAT-1/SPECT using the Taguchi analysis to improve image quality. SPECT scans were performed on forty-five healthy volunteers according to an L9 orthogonal array. Three parameters were considered, including the injection activity, uptake duration, and acquisition time per projection. The signal-to-noise ratio (SNR) was calculated from the striatum/occipital activity ratio as an image quality index. Ten healthy subjects and fifteen PD patients were used to verify the optimal parameters. The estimated optimal parameters were 962 MBq for [99mTc]TRODAT-1 injection, 260 min for uptake duration, and 60 s/projection for data acquisition. The uptake duration and time per projection were the two dominant factors which had an F-value of 18.638 (38%) and 25.933 (53%), respectively. Strong cross interactions existed between the injection activity/uptake duration and injection activity/time per projection. Therefore, under the consideration of as low as reasonably achievable (ALARA) for radiation protection, we can decrease the injection activity to 740 MBq. The image quality remains almost the same for clinical applications. PMID:25790100
Time optimal movement of cooperating robots
NASA Technical Reports Server (NTRS)
Mccarthy, J. M.; Bobrow, J. E.
1989-01-01
The maximization of the speed of movement along a prescribed path, of the system formed by a set of robot arms and the object they hold is examined. The actuator torques that maximize the acceleration of the system are shown to be determined by the solution to a standard linear programming problem. The combination of this result with the known control strategy for time optimal movement of a single robot arm yields an algorithm for time optimal movement of multiple robot arms holding the same workpiece.
Sanchez-Parcerisa, Daniel; Kirk, Maura; Fager, Marcus; Burgdorf, Brendan; Stowe, Malorie; Solberg, Tim; Carabe, Alejandro
2016-11-07
The development of rotational proton therapy plans based on a pencil-beam-scanning (PBS) system has been limited, among several other factors, by the energy-switching time between layers, a system-dependent parameter that ranges between a fraction of a second and several seconds. We are investigating mono- and bi-energetic rotational proton modulated arc therapy (PMAT) solutions that would not be affected by long energy switching times. In this context, a systematic selection of the optimal proton energy for each arc is vital. We present a treatment planning comparison of four different range selection methods, analyzing the dosimetric outcomes of the resulting treatment plans created with the ranges obtained. Given the patient geometry and arc definition (gantry and couch trajectories, snout elevation) our in-house treatment planning system (TPS) FoCa was used to find the maximum, medial and minimum water-equivalent thicknesses (WETs) of the target viewed from all possible field orientations. Optimal ranges were subsequently determined using four methods: (1) by dividing the max/min WET interval into equal steps, (2) by taking the average target midpoints from each field, (3) by taking the average WET of all voxels from all field orientations, and (4) by minimizing the fraction of the target which cannot be reached from any of the available angles. After the range (for mono-energetic plans) or ranges (for bi-energetic plans) were selected, the commercial clinical TPS in use in our institution (Varian Eclipse(™)) was used to produce the PMAT plans using multifield optimization. Linear energy transfer (LET) distributions of all plans were also calculated using FoCa and compared among the different methods. Mono- and bi-energetic PMAT plans, composed of a single 180° arc, were created for two patient geometries: a C-shaped target located in the mediastinal area of a thoracic tissue-equivalent phantom and a small brain tumor located directly above the brainstem
Range optimization for mono- and bi-energetic proton modulated arc therapy with pencil beam scanning
NASA Astrophysics Data System (ADS)
Sanchez-Parcerisa, Daniel; Kirk, Maura; Fager, Marcus; Burgdorf, Brendan; Stowe, Malorie; Solberg, Tim; Carabe, Alejandro
2016-11-01
The development of rotational proton therapy plans based on a pencil-beam-scanning (PBS) system has been limited, among several other factors, by the energy-switching time between layers, a system-dependent parameter that ranges between a fraction of a second and several seconds. We are investigating mono- and bi-energetic rotational proton modulated arc therapy (PMAT) solutions that would not be affected by long energy switching times. In this context, a systematic selection of the optimal proton energy for each arc is vital. We present a treatment planning comparison of four different range selection methods, analyzing the dosimetric outcomes of the resulting treatment plans created with the ranges obtained. Given the patient geometry and arc definition (gantry and couch trajectories, snout elevation) our in-house treatment planning system (TPS) FoCa was used to find the maximum, medial and minimum water-equivalent thicknesses (WETs) of the target viewed from all possible field orientations. Optimal ranges were subsequently determined using four methods: (1) by dividing the max/min WET interval into equal steps, (2) by taking the average target midpoints from each field, (3) by taking the average WET of all voxels from all field orientations, and (4) by minimizing the fraction of the target which cannot be reached from any of the available angles. After the range (for mono-energetic plans) or ranges (for bi-energetic plans) were selected, the commercial clinical TPS in use in our institution (Varian Eclipse™) was used to produce the PMAT plans using multifield optimization. Linear energy transfer (LET) distributions of all plans were also calculated using FoCa and compared among the different methods. Mono- and bi-energetic PMAT plans, composed of a single 180° arc, were created for two patient geometries: a C-shaped target located in the mediastinal area of a thoracic tissue-equivalent phantom and a small brain tumor located directly above the brainstem. All
Optimization Integrator for Large Time Steps.
Gast, Theodore F; Schroeder, Craig; Stomakhin, Alexey; Jiang, Chenfanfu; Teran, Joseph M
2015-10-01
Practical time steps in today's state-of-the-art simulators typically rely on Newton's method to solve large systems of nonlinear equations. In practice, this works well for small time steps but is unreliable at large time steps at or near the frame rate, particularly for difficult or stiff simulations. We show that recasting backward Euler as a minimization problem allows Newton's method to be stabilized by standard optimization techniques with some novel improvements of our own. The resulting solver is capable of solving even the toughest simulations at the [Formula: see text] frame rate and beyond. We show how simple collisions can be incorporated directly into the solver through constrained minimization without sacrificing efficiency. We also present novel penalty collision formulations for self collisions and collisions against scripted bodies designed for the unique demands of this solver. Finally, we show that these techniques improve the behavior of Material Point Method (MPM) simulations by recasting it as an optimization problem.
Optimal, real-time control--colliders
Spencer, J.E.
1991-05-01
With reasonable definitions, optimal control is possible for both classical and quantal systems with new approaches called PISC(Parallel) and NISC(Neural) from analogy with RISC (Reduced Instruction Set Computing). If control equals interaction, observation and comparison to some figure of merit with interaction via external fields, then optimization comes from varying these fields to give design or operating goals. Structural stability can then give us tolerance and design constraints. But simulations use simplified models, are not in real-time and assume fixed or stationary conditions, so optimal control goes far beyond convergence rates of algorithms. It is inseparable from design and this has many implications for colliders. 12 refs., 3 figs.
Choi, Soo-Young; Lee, In; Seo, Ji-Won; Park, Hyun-Young; Choi, Ho-Jung
2016-01-01
This study was conducted to establish the values for optimal fixed scan delays and diagnostic scan delays associated with the bolus-tracking technique using various contrast material injection durations in canine abdominal multi-phase computed tomography (CT). This study consisted of two experiments employing the crossover method. In experiment 1, three dynamic scans at the porta hepatis were performed using 5, 10 and 15 sec injection durations. In experiment 2, two CT scans consisting of five multi-phase series with different scan delays of 5 sec intervals for bolus-tracking were performed using 5, 10 and 15 sec injection duration. Mean arrival times to aortic enhancement peak (12.0, 15.6, and 18.6 sec for 5, 10, and 15 sec, respectively) and pancreatic parenchymal peak (17.8, 25.1, and 29.5 sec) differed among injection durations. The maximum mean attenuation values of aortas and pancreases were shown at the scan section with 0 and 5, 0 and 10 and 5 and 10 sec diagnostic scan delays during each injection duration, respectively. The optimal scan delays of the arterial and pancreatic parenchymal phase in multi-phase CT scan using fixed scan delay or bolus-tracking should be determined with consideration of the injection duration. PMID:27297414
NASA Technical Reports Server (NTRS)
Roth, Don J.; Cosgriff, Laura M.; Martin, Richard E.; Teemer, LeTarrie
2004-01-01
This study analyzes the effect of signal processing variables on the ability of the ultrasonic guided wave scan method at NASA Glenn Research Center to distinguish various flaw conditions in ceramic matrix composites samples. In the ultrasonic guided wave scan method, several time- and frequency-domain parameters are calculated from the ultrasonic guided wave signal at each scan location to form images. The parameters include power spectral density, centroid mean time, total energy (zeroth moment), centroid frequency, and ultrasonic decay rate. A number of signal processing variables are available to the user when calculating these parameters. These signal processing variables include 1) the time portion of the time-domain waveform processed, 2) integration type for the properties requiring integrations, 3) bounded versus unbounded integrations, 4) power spectral density window type, 5) and the number of time segments chosen if using the short-time fourier transform to calculate ultrasonic decay rate. Flaw conditions examined included delamination, cracking, and density variation.
Optimal time step for incompressible SPH
NASA Astrophysics Data System (ADS)
Violeau, Damien; Leroy, Agnès
2015-05-01
A classical incompressible algorithm for Smoothed Particle Hydrodynamics (ISPH) is analyzed in terms of critical time step for numerical stability. For this purpose, a theoretical linear stability analysis is conducted for unbounded homogeneous flows, leading to an analytical formula for the maximum CFL (Courant-Friedrichs-Lewy) number as a function of the Fourier number. This gives the maximum time step as a function of the fluid viscosity, the flow velocity scale and the SPH discretization size (kernel standard deviation). Importantly, the maximum CFL number at large Reynolds number appears twice smaller than with the traditional Weakly Compressible (WCSPH) approach. As a consequence, the optimal time step for ISPH is only five times larger than with WCSPH. The theory agrees very well with numerical data for two usual kernels in a 2-D periodic flow. On the other hand, numerical experiments in a plane Poiseuille flow show that the theory overestimates the maximum allowed time step for small Reynolds numbers.
Guan, Fada; Bronk, Lawrence; Titt, Uwe; Lin, Steven H.; Mirkovic, Dragan; Kerr, Matthew D.; Zhu, X. Ronald; Dinh, Jeffrey; Sobieski, Mary; Stephan, Clifford; Peeler, Christopher R.; Taleei, Reza; Mohan, Radhe; Grosshans, David R.
2015-01-01
The physical properties of particles used in radiation therapy, such as protons, have been well characterized, and their dose distributions are superior to photon-based treatments. However, proton therapy may also have inherent biologic advantages that have not been capitalized on. Unlike photon beams, the linear energy transfer (LET) and hence biologic effectiveness of particle beams varies along the beam path. Selective placement of areas of high effectiveness could enhance tumor cell kill and simultaneously spare normal tissues. However, previous methods for mapping spatial variations in biologic effectiveness are time-consuming and often yield inconsistent results with large uncertainties. Thus the data needed to accurately model relative biological effectiveness to guide novel treatment planning approaches are limited. We used Monte Carlo modeling and high-content automated clonogenic survival assays to spatially map the biologic effectiveness of scanned proton beams with high accuracy and throughput while minimizing biological uncertainties. We found that the relationship between cell kill, dose, and LET, is complex and non-unique. Measured biologic effects were substantially greater than in most previous reports, and non-linear surviving fraction response was observed even for the highest LET values. Extension of this approach could generate data needed to optimize proton therapy plans incorporating variable RBE. PMID:25984967
Gu, Qiang; Sivanandam, Thamil Mani
2014-06-01
Microarray experiments are a centerpiece of postgenomics life sciences and the current efforts to develop systems diagnostics for personalized medicine. The majority of antibody microarray experiments are fluorescence-based, which utilizes a scanner to convert target signals into image files for subsequent quantification. Certain scan parameters such as the laser power and photomultiplier tube gain (PMT) can influence the readout of fluorescent intensities and thus may affect data quantitation. To date, however, there is no consensus of how to determine the optimal settings of microarray scanners. Here we show that different settings of the laser power and PMT not only affect the signal intensities but also the accuracy of antibody microarray experiments. More importantly, we demonstrate an experimental approach using two fluorescent dyes to determine optimal settings of scan parameters for microarray experiments. These measures provide added quality control of microarray experiments, and thus help to improve the accuracy of quantitative outcome in microarray experiments in the above contexts.
Schmidt, K. F. Jr.; Little, J. R. Jr.; Ellingson, W. A.; Green, W.
2010-02-22
The projected microwave energy pattern, wave guide geometry, positioning methods and process variables have been optimized for use of a portable, non-contact, lap-top computer-controlled microwave interference scanning system on multi-layered dielectric materials. The system can be used in situ with one-sided access and has demonstrated capability of damage detection on composite ceramic armor. Specimens used for validation included specially fabricated surrogates, and ballistic impact-damaged specimens. Microwave data results were corroborated with high resolution direct-digital x-ray imaging. Microwave interference scanning detects cracks, laminar features and material properties variations. This paper presents the details of the system, the optimization steps and discusses results obtained.
Interactive Tools for Measuring Visual Scanning Performance and Reaction Time
Seeanner, Julia; Hennessy, Sarah; Manganelli, Joseph; Crisler, Matthew; Rosopa, Patrick; Jenkins, Casey; Anderson, Michael; Drouin, Nathalie; Belle, Leah; Truesdail, Constance; Tanner, Stephanie
2017-01-01
Occupational therapists are constantly searching for engaging, high-technology interactive tasks that provide immediate feedback to evaluate and train clients with visual scanning deficits. This study examined the relationship between two tools: the VISION COACH™ interactive light board and the Functional Object Detection© (FOD) Advanced driving simulator scenario. Fifty-four healthy drivers, ages 21–66 yr, were divided into three age groups. Participants performed braking response and visual target (E) detection tasks of the FOD Advanced driving scenario, followed by two sets of three trials using the VISION COACH Full Field 60 task. Results showed no significant effect of age on FOD Advanced performance but a significant effect of age on VISION COACH performance. Correlations showed that participants’ performance on both braking and E detection tasks were significantly positively correlated with performance on the VISION COACH (.37 < r < .40, p < .01). These tools provide new options for therapists. PMID:28218598
Artifact reduction in short-scan CBCT by use of optimization-based reconstruction
NASA Astrophysics Data System (ADS)
Zhang, Zheng; Han, Xiao; Pearson, Erik; Pelizzari, Charles; Sidky, Emil Y.; Pan, Xiaochuan
2016-05-01
Increasing interest in optimization-based reconstruction in research on, and applications of, cone-beam computed tomography (CBCT) exists because it has been shown to have to potential to reduce artifacts observed in reconstructions obtained with the Feldkamp-Davis-Kress (FDK) algorithm (or its variants), which is used extensively for image reconstruction in current CBCT applications. In this work, we carried out a study on optimization-based reconstruction for possible reduction of artifacts in FDK reconstruction specifically from short-scan CBCT data. The investigation includes a set of optimization programs such as the image-total-variation (TV)-constrained data-divergency minimization, data-weighting matrices such as the Parker weighting matrix, and objects of practical interest for demonstrating and assessing the degree of artifact reduction. Results of investigative work reveal that appropriately designed optimization-based reconstruction, including the image-TV-constrained reconstruction, can reduce significant artifacts observed in FDK reconstruction in CBCT with a short-scan configuration.
Space-time ambiguity functions for electronically scanned ISR applications
NASA Astrophysics Data System (ADS)
Swoboda, John; Semeter, Joshua; Erickson, Philip
2015-05-01
Electronically steerable array (ESA) technology has recently been applied to incoherent scatter radar (ISR) systems. These arrays allow for pulse-to-pulse steering of the antenna beam to collect data in a three-dimensional region. This is in direct contrast to dish-based antennas, where ISR acquisition is limited at any one time to observations in a two-dimensional slice. This new paradigm allows for more flexibility in the measurement of ionospheric plasma parameters. Multiple ESA-based ISR systems operate currently in the high-latitude region where the ionosphere is highly variable in both space and time. Because of the highly dynamic nature of the ionosphere in this region, it is important to differentiate between measurement-induced artifacts and the true behavior of the plasma. Often, three-dimensional ISR data produced by ESA systems are fitted in a spherical coordinate space and then the parameters are interpolated to a Cartesian grid, potentially introducing error and impacting the reconstructions of the plasma parameters. To take advantage of the new flexibility inherent in ESA systems, we present a new way of analyzing ISR observations through use of the space-time ambiguity function. The use of this new measurement ambiguity function allows us to pose the ISR observational problem in terms of a linear inverse problem whose goal is the estimate of the time domain lags of the intrinsic plasma autocorrelation function used for parameter fitting. The framework allows us to explore the impact of nonuniformity in plasma parameters in both time and space. We discuss examples of possible artifacts in high-latitude situations and discuss possible ways of reducing them and improving the quality of data products from electronically steerable ISRs.
Optimization of 3D laser scanning speed by use of combined variable step
NASA Astrophysics Data System (ADS)
Garcia-Cruz, X. M.; Sergiyenko, O. Yu.; Tyrsa, Vera; Rivas-Lopez, M.; Hernandez-Balbuena, D.; Rodriguez-Quiñonez, J. C.; Basaca-Preciado, L. C.; Mercorelli, P.
2014-03-01
The problem of 3D TVS slow functioning caused by constant small scanning step becomes its solution in the presented research. It can be achieved by combined scanning step application for the fast search of n obstacles in unknown surroundings. Such a problem is of keynote importance in automatic robot navigation. To maintain a reasonable speed robots must detect dangerous obstacles as soon as possible, but all known scanners able to measure distances with sufficient accuracy are unable to do it in real time. So, the related technical task of the scanning with variable speed and precise digital mapping only for selected spatial sectors is under consideration. A wide range of simulations in MATLAB 7.12.0 of several variants of hypothetic scenes with variable n obstacles in each scene (including variation of shapes and sizes) and scanning with incremented angle value (0.6° up to 15°) is provided. The aim of such simulation was to detect which angular values of interval still permit getting the maximal information about obstacles without undesired time losses. Three of such local maximums were obtained in simulations and then rectified by application of neuronal network formalism (Levenberg-Marquradt Algorithm). The obtained results in its turn were applied to MET (Micro-Electro-mechanical Transmission) design for practical realization of variable combined step scanning on an experimental prototype of our previously known laser scanner.
NASA Astrophysics Data System (ADS)
Vaid, Alok; Osorio, Carmen; Tsai, Jamie; Bozdog, Cornel; Sendelbach, Matthew; Grubner, Eyal; Koret, Roy; Wolfling, Shay
2014-10-01
Work using the concept of a co-optimization-based metrology hybridization is presented. Hybrid co-optimization involves the combination of data from two or more metrology tools such that the output of each tool is improved by the output of the other tool. Here, the image analysis parameters from a critical dimension scanning electron microscope (CD-SEM) are modulated by the profile information from optical critical dimension (OCD, or scatterometry), while the OCD-extracted profile is concurrently optimized through addition of the CD-SEM CD results. The test vehicle utilized is the 14-nm technology node-based FinFET high-k/interfacial layer (HK/IL) structure. When compared with the nonhybrid approach, the correlation to reference measurements of the HK layer thickness measurement using hybrid co-optimization resulted in an improvement in relative accuracy of about 40% and in R2 from 0.81 to 0.91. The measurement of the IL thickness also shows an improvement with hybrid co-optimization: better matching to the expected conditions as well as data that contain less noise.
Optimization in modeling the ribs-bounded contour from computer tomography scan
NASA Astrophysics Data System (ADS)
Bilinskas, M. J.; Dzemyda, G.
2016-10-01
In this paper a method for analyzing transversal plane images from computer tomography scans is presented. A mathematical model that describes the ribs-bounded contour was created and the problem of approximation is solved by finding out the optimal parameters of the model in the least-squares sense. Such model would be useful in registration of images independently on the patient position on the bed and on the radio-contrast agent injection. We consider the slices, where ribs are visible, because many important internal organs are located here: liver, heart, stomach, pancreas, lung, etc.
Svensson, Roger; Larsson, Susanne; Gudowska, Irena; Holmberg, Rickard; Brahme, Anders
2007-03-01
Intensity modulated radiation therapy is rapidly becoming the treatment of choice for most tumors with respect to minimizing damage to the normal tissues and maximizing tumor control. Today, intensity modulated beams are most commonly delivered using segmental multileaf collimation, although an increasing number of radiation therapy departments are employing dynamic multileaf collimation. The irradiation time using dynamic multileaf collimation depends strongly on the nature of the desired dose distribution, and it is difficult to reduce this time to less than the sum of the irradiation times for all individual peak heights using dynamic leaf collimation [Svensson et al., Phys. Med. Biol. 39, 37-61 (1994)]. Therefore, the intensity modulation will considerably increase the total treatment time. A more cost-effective procedure for rapid intensity modulation is using narrow scanned photon, electron, and light ion beams in combination with fast multileaf collimator penumbra trimming. With this approach, the irradiation time is largely independent of the complexity of the desired intensity distribution and, in the case of photon beams, may even be shorter than with uniform beams. The intensity modulation is achieved primarily by scanning of a narrow elementary photon pencil beam generated by directing a narrow well focused high energy electron beam onto a thin bremsstrahlung target. In the present study, the design of a fast low-weight multileaf collimator that is capable of further sharpening the penumbra at the edge of the elementary scanned beam has been simulated, in order to minimize the dose or radiation response of healthy tissues. In the case of photon beams, such a multileaf collimator can be placed relatively close to the bremsstrahlung target to minimize its size. It can also be flat and thin, i.e., only 15-25 mm thick in the direction of the beam with edges made of tungsten or preferably osmium to optimize the sharpening of the penumbra. The low height of
Svensson, Roger; Larsson, Susanne; Gudowska, Irena; Holmberg, Rickard; Brahme, Anders
2007-03-15
Intensity modulated radiation therapy is rapidly becoming the treatment of choice for most tumors with respect to minimizing damage to the normal tissues and maximizing tumor control. Today, intensity modulated beams are most commonly delivered using segmental multileaf collimation, although an increasing number of radiation therapy departments are employing dynamic multileaf collimation. The irradiation time using dynamic multileaf collimation depends strongly on the nature of the desired dose distribution, and it is difficult to reduce this time to less than the sum of the irradiation times for all individual peak heights using dynamic leaf collimation [Svensson et al., Phys. Med. Biol. 39, 37-61 (1994)]. Therefore, the intensity modulation will considerably increase the total treatment time. A more cost-effective procedure for rapid intensity modulation is using narrow scanned photon, electron, and light ion beams in combination with fast multileaf collimator penumbra trimming. With this approach, the irradiation time is largely independent of the complexity of the desired intensity distribution and, in the case of photon beams, may even be shorter than with uniform beams. The intensity modulation is achieved primarily by scanning of a narrow elementary photon pencil beam generated by directing a narrow well focused high energy electron beam onto a thin bremsstrahlung target. In the present study, the design of a fast low-weight multileaf collimator that is capable of further sharpening the penumbra at the edge of the elementary scanned beam has been simulated, in order to minimize the dose or radiation response of healthy tissues. In the case of photon beams, such a multileaf collimator can be placed relatively close to the bremsstrahlung target to minimize its size. It can also be flat and thin, i.e., only 15-25 mm thick in the direction of the beam with edges made of tungsten or preferably osmium to optimize the sharpening of the penumbra. The low height of
NASA Astrophysics Data System (ADS)
Huang, Yung-hui; Chen, Chia-lin; Sheu, Chin-yin; Lee, Jason J. S.
2007-02-01
Cardiovascular diseases are the most common incidence for premature death in developed countries. A major fraction is attributable to atherosclerotic coronary artery disease, which may result in sudden cardiac failure. A reduction of mortality caused by myocardial infarction may be achieved if coronary atherosclerosis can be detected and treated at an early stage before symptoms occur. Therefore, there is need for an effective tool that allows identification of patients at increased risk for future cardiac events. The current multi-detector CT has been widely used for detection and quantification of coronary calcifications as a sign of coronary atherosclerosis. The aim of this study is to optimize the diagnostic values and radiation exposure in coronary artery calcium-screening examination using multi-slice CT (MSCT) with different image scan protocols. The radiation exposure for all protocols is evaluated by using computed tomography dose index (CTDI) phantom measurements. We chose an optimal scanning protocol and evaluated patient radiation dose in the MSCT coronary artery screenings and preserved its expecting diagnostic accuracy. These changes make the MSCT have more operation flexibility and provide more diagnostic values in current practice.
Time optimal paths for a constant speed unicycle
Reister, D.B.
1991-01-01
This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed unicycle. The time optimal paths consist of sequences of arcs of circles and straight lines. The maximum principle introduced concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature of the time optimal paths. 10 refs., 6 figs.
Temporal Prediction Errors Affect Short-Term Memory Scanning Response Time.
Limongi, Roberto; Silva, Angélica M
2016-11-01
The Sternberg short-term memory scanning task has been used to unveil cognitive operations involved in time perception. Participants produce time intervals during the task, and the researcher explores how task performance affects interval production - where time estimation error is the dependent variable of interest. The perspective of predictive behavior regards time estimation error as a temporal prediction error (PE), an independent variable that controls cognition, behavior, and learning. Based on this perspective, we investigated whether temporal PEs affect short-term memory scanning. Participants performed temporal predictions while they maintained information in memory. Model inference revealed that PEs affected memory scanning response time independently of the memory-set size effect. We discuss the results within the context of formal and mechanistic models of short-term memory scanning and predictive coding, a Bayes-based theory of brain function. We state the hypothesis that our finding could be associated with weak frontostriatal connections and weak striatal activity.
High sensitivity EndoV mutation scanning through real-time ligase proofreading.
Pincas, Hanna; Pingle, Maneesh R; Huang, Jianmin; Lao, Kaiqin; Paty, Philip B; Friedman, Alan M; Barany, Francis
2004-10-28
The ability to associate mutations in cancer genes with the disease and its subtypes is critical for understanding oncogenesis and identifying biomarkers for clinical diagnosis. A two-step mutation scanning method that sequentially used endonuclease V (EndoV) to nick at mismatches and DNA ligase to reseal incorrectly or nonspecifically nicked sites was previously developed in our laboratory. Herein we report an optimized single-step assay that enables ligase to proofread EndoV cleavage in real-time under a compromise between buffer conditions. Real-time proofreading results in a dramatic reduction of background cleavage. A universal PCR strategy that employs both unlabeled gene-specific primers and labeled universal primers, allows for multiplexed gene amplification and precludes amplification of primer dimers. Internally labeled PCR primers eliminate EndoV cleavage at the 5' terminus, enabling high-throughput capillary electrophoresis readout. Furthermore, signal intensity is increased and artifacts are reduced by generating heteroduplexes containing only one of the two possible mismatches (e.g. either A/C or G/T). The single-step assay improves sensitivity to 1:50 and 1:100 (mutant:wild type) for unknown mutations in the p53 and K-ras genes, respectively, opening prospects as an early detection tool.
Multi-objective optimal design of high frequency probe for scanning ion conductance microscopy
NASA Astrophysics Data System (ADS)
Guo, Renfei; Zhuang, Jian; Ma, Li; Li, Fei; Yu, Dehong
2016-01-01
Scanning ion conductance microscopy(SICM) is an emerging non-destructive surface topography characterization apparatus with nanoscale resolution. However, the low regulating frequency of probe in most existing modulated current based SICM systems increases the system noise, and has difficulty in imaging sample surface with steep height changes. In order to enable SICM to have the capability of imaging surfaces with steep height changes, a novel probe that can be used in the modulated current based hopping mode is designed. The design relies on two piezoelectric ceramics with different travels to separate position adjustment and probe frequency regulation in the Z direction. To further improve the resonant frequency of the probe, the material and the key dimensions for each component of the probe are optimized based on the multi-objective optimization method and the finite element analysis. The optimal design has a resonant frequency of above 10 kHz. To validate the rationality of the designed probe, microstructured grating samples are imaged using the homebuilt modulated current based SICM system. The experimental results indicate that the designed high frequency probe can effectively reduce the spike noise by 26% in the average number of spike noise. The proposed design provides a feasible solution for improving the imaging quality of the existing SICM systems which normally use ordinary probes with relatively low regulating frequency.
RTSPM: real-time Linux control software for scanning probe microscopy.
Chandrasekhar, V; Mehta, M M
2013-01-01
Real time computer control is an essential feature of scanning probe microscopes, which have become important tools for the characterization and investigation of nanometer scale samples. Most commercial (and some open-source) scanning probe data acquisition software uses digital signal processors to handle the real time data processing and control, which adds to the expense and complexity of the control software. We describe here scan control software that uses a single computer and a data acquisition card to acquire scan data. The computer runs an open-source real time Linux kernel, which permits fast acquisition and control while maintaining a responsive graphical user interface. Images from a simulated tuning-fork based microscope as well as a standard topographical sample are also presented, showing some of the capabilities of the software.
Saedi, Amirmehdi; Poelsema, Bene; Zandvliet, Harold J W
2010-07-07
The time resolution of a conventional scanning tunneling microscope can be improved by many orders of magnitude by recording open feedback loop current-time traces. The enhanced time resolution comes, however, at the expense of the ability to obtain spatial information. In this paper, we first consider the Ge(111)-c(2 × 8) surface as an example of how surface dynamics can show up in conventional STM images. After a brief introduction to the time-resolved scanning tunneling microscopy technique, its capabilities will be demonstrated by addressing the dynamics of a dimer pair of a Pt modified Ge(001).
Conforto, Egle; Joguet, Nicolas; Buisson, Pierre; Vendeville, Jean-Eudes; Chaigneau, Carine; Maugard, Thierry
2015-02-01
The aim of this paper is to describe an optimized methodology to study the surface characteristics and internal structure of biopolymer capsules using scanning electron microscopy (SEM) in environmental mode. The main advantage of this methodology is that no preparation is required and, significantly, no metallic coverage is deposited on the surface of the specimen, thus preserving the original capsule shape and its surface morphology. This avoids introducing preparation artefacts which could modify the capsule surface and mask information concerning important feature like porosities or roughness. Using this method gelatin and mainly fatty coatings, difficult to be analyzed by standard SEM technique, unambiguously show fine details of their surface morphology without damage. Furthermore, chemical contrast is preserved in backscattered electron images of unprepared samples, allowing visualizing the internal organization of the capsule, the quality of the envelope, etc... This study provides pointers on how to obtain optimal conditions for the analysis of biological or sensitive material, as this is not always studied using appropriate techniques. A reliable evaluation of the parameters used in capsule elaboration for research and industrial applications, as well as that of capsule functionality is provided by this methodology, which is essential for the technological progress in this domain.
Piersimoni, Pierluigi; Rimoldi, Adele; Riccardi, Cristina; Pirola, Michele; Molinelli, Silvia; Ciocca, Mario
2015-03-08
The Italian National Center for Hadrontherapy (CNAO, Centro Nazionale di Adroterapia Oncologica), a synchrotron-based hospital facility, started the treatment of patients within selected clinical trials in late 2011 and 2012 with actively scanned proton and carbon ion beams, respectively. The activation of a new clinical protocol for the irradiation of uveal melanoma using the existing general-purpose proton beamline is foreseen for late 2014. Beam characteristics and patient treatment setup need to be tuned to meet the specific requirements for such a type of treatment technique. The aim of this study is to optimize the CNAO transport beamline by adding passive components and minimizing air gap to achieve the optimal conditions for ocular tumor irradiation. The CNAO setup with the active and passive components along the transport beamline, as well as a human eye-modeled detector also including a realistic target volume, were simulated using the Monte Carlo Geant4 toolkit. The strong reduction of the air gap between the nozzle and patient skin, as well as the insertion of a range shifter plus a patient-specific brass collimator at a short distance from the eye, were found to be effective tools to be implemented. In perspective, this simulation toolkit could also be used as a benchmark for future developments and testing purposes on commercial treatment planning systems.
NASA Astrophysics Data System (ADS)
Mohanty, Sankhya; Hattel, Jesper H.
2016-04-01
Residual stresses and deformations continue to remain one of the primary challenges towards expanding the scope of selective laser melting as an industrial scale manufacturing process. While process monitoring and feedback-based process control of the process has shown significant potential, there is still dearth of techniques to tackle the issue. Numerical modelling of selective laser melting process has thus been an active area of research in the last few years. However, large computational resource requirements have slowed the usage of these models for optimizing the process. In this paper, a calibrated, fast, multiscale thermal model coupled with a 3D finite element mechanical model is used to simulate residual stress formation and deformations during selective laser melting. The resulting reduction in thermal model computation time allows evolutionary algorithm-based optimization of the process. A multilevel optimization strategy is adopted using a customized genetic algorithm developed for optimizing cellular scanning strategy for selective laser melting, with an objective of reducing residual stresses and deformations. The resulting thermo-mechanically optimized cellular scanning strategies are compared with standard scanning strategies and have been used to manufacture standard samples.
Computational methods to obtain time optimal jet engine control
NASA Technical Reports Server (NTRS)
Basso, R. J.; Leake, R. J.
1976-01-01
Dynamic Programming and the Fletcher-Reeves Conjugate Gradient Method are two existing methods which can be applied to solve a general class of unconstrained fixed time, free right end optimal control problems. New techniques are developed to adapt these methods to solve a time optimal control problem with state variable and control constraints. Specifically, they are applied to compute a time optimal control for a jet engine control problem.
New ultrarapid-scanning interferometer for FT-IR spectroscopy with microsecond time-resolution
NASA Astrophysics Data System (ADS)
Süss, B.; Ringleb, F.; Heberle, J.
2016-06-01
A novel Fourier-transform infrared (FT-IR) rapid-scan spectrometer has been developed (patent pending EP14194520.4) which yields 1000 times higher time resolution as compared to conventional rapid-scanning spectrometers. The central element to achieve faster scanning rates is based on a sonotrode whose front face represents the movable mirror of the interferometer. A prototype spectrometer with a time resolution of 13 μs was realized, capable of fully automated long-term measurements with a flow cell for liquid samples, here a photosynthetic membrane protein in solution. The performance of this novel spectrometer is demonstrated by recording the photoreaction of bacteriorhodopsin initiated by a short laser pulse that is synchronized to the data recording. The resulting data are critically compared to those obtained by step-scan spectroscopy and demonstrate the relevance of performing experiments on proteins in solution. The spectrometer allows for future investigations of fast, non-repetitive processes, whose investigation is challenging to step-scan FT-IR spectroscopy.
Hara, Tetsuya; Yamashiro, Kohei; Okajima, Katsunori; Hayashi, Takatoshi; Kajiya, Teishi
2009-11-01
The present study aimed at optimizing the scan protocol for multidetector-row computed tomography (MDCT) to adequately visualize coronary veins. Circulation time (Cir.T) was defined as the time period from the injection of contrast media into the coronary artery to the pervasion of the contrast media into the coronary sinus as observed by coronary angiography. We investigated the relation between the Cir.T and echocardiographic parameters in 64 patients. The left ventricular end-diastolic diameter (LVDd) and left ventricular end-systolic diameter (LVDs) were correlated with the Cir.T (r = 0.58, P < 0.0001, and r = 0.60, P < 0.0001 respectively). In addition, the left ventricular ejection fraction (LVEF) was negatively correlated with the Cir.T (r = 0.48, P < 0.0001). The average Cir. T was longer in patients with LVEF < 35% (8.0 s vs 6.7 s; P < 0.05) or LVDd > 55 mm (7.9 s vs 6.2 s; P < 0.05) than in the other patients. The quality of the MDCT images of the coronary veins obtained at different scan timings (coronary artery phase and 10 s or 15 s after the coronary artery phase) were graded and classified into four categories (0 = worst, 3 = best) in 25 patients with LVEF < 35%. The delays of 10 and 15 s after the coronary artery phase significantly improved the mean image quality (P < 0.05). The Cir.T was prolonged in patients with low LVEF and LV dilation. An appropriate delay improved the quality of the MDCT images of the coronary veins in patients with LV dysfunction.
Robustified time-optimal control of uncertain structural dynamic systems
NASA Technical Reports Server (NTRS)
Liu, Qiang; Wie, Bong
1991-01-01
A new approach for computing open-loop time-optimal control inputs for uncertain linear dynamical systems is developed. In particular, the single-axis, rest-to-rest maneuvering problem of flexible spacecraft in the presence of uncertainty in model parameters is considered. Robustified time-optimal control inputs are obtained by solving a parameter optimization problem subject to robustness constraints. A simple dynamical system with a rigid-body mode and one flexible mode is used to illustrate the concept.
NASA Astrophysics Data System (ADS)
Chiariotti, Paolo; Martarelli, Milena; Revel, Gian Marco
2014-07-01
This paper proposes the use of continuous scanning laser Doppler vibrometry (CSLDV) in time domain correlation techniques that aim at characterizing the structure-borne contributions of the noise emission of a mechanical system. The time domain correlation technique presented in this paper is based on the use of FIR (finite impulse response) filters obtained from the vibro-acoustic transfer matrix when vibration data are collected by laser Doppler vibrometry (LDV) exploited in continuous scan mode (CSLDV). The advantages, especially in terms of source decorrelation capabilities, related to the use of CSLDV for such purpose, with respect to standard discrete scan (SLDV), are discussed throughout the paper. To validate this approach, vibro-acoustic measurements were performed on a planetary gear motor for home appliances. The analysis of results is also supported by a simulation.
NASA Astrophysics Data System (ADS)
Lu, Yiqing; Xi, Peng; Piper, James A.; Huo, Yujing; Jin, Dayong
2012-11-01
We report a new development of orthogonal scanning automated microscopy (OSAM) incorporating time-gated detection to locate rare-event organisms regardless of autofluorescent background. The necessity of using long-lifetime (hundreds of microseconds) luminescent biolabels for time-gated detection implies long integration (dwell) time, resulting in slow scan speed. However, here we achieve high scan speed using a new 2-step orthogonal scanning strategy to realise on-the-fly time-gated detection and precise location of 1-μm lanthanide-doped microspheres with signal-to-background ratio of 8.9. This enables analysis of a 15 mm × 15 mm slide area in only 3.3 minutes. We demonstrate that detection of only a few hundred photoelectrons within 100 μs is sufficient to distinguish a target event in a prototype system using ultraviolet LED excitation. Cytometric analysis of lanthanide labelled Giardia cysts achieved a signal-to-background ratio of two orders of magnitude. Results suggest that time-gated OSAM represents a new opportunity for high-throughput background-free biosensing applications.
Optimal shock isolation with minimum settling time
NASA Technical Reports Server (NTRS)
Pilkey, W. D.; Lim, T. W.
1987-01-01
It is shown how unique isolator forces and corresponding forces can be chosen by superimposing a minimum settling time onto the limiting performance of the shock isolation system. Basically, this means that the system which has reached the peak value of the performance index is settled to rest in minimum time.
Optimization of an adaptive SPECT system with the scanning linear estimator
NASA Astrophysics Data System (ADS)
Ghanbari, Nasrin; Clarkson, Eric; Kupinski, Matthew A.; Li, Xin
2015-08-01
The adaptive single-photon emission computed tomography (SPECT) system studied here acquires an initial scout image to obtain preliminary information about the object. Then the configuration is adjusted by selecting the size of the pinhole and the magnification that optimize system performance on an ensemble of virtual objects generated to be consistent with the scout data. In this study the object is a lumpy background that contains a Gaussian signal with a variable width and amplitude. The virtual objects in the ensemble are imaged by all of the available configurations and the subsequent images are evaluated with the scanning linear estimator to obtain an estimate of the signal width and amplitude. The ensemble mean squared error (EMSE) on the virtual ensemble between the estimated and the true parameters serves as the performance figure of merit for selecting the optimum configuration. The results indicate that variability in the original object background, noise and signal parameters leads to a specific optimum configuration in each case. A statistical study carried out for a number of objects show that the adaptive system on average performs better than its nonadaptive counterpart.
Kim, Michele M; Zhu, Timothy C
2013-02-02
During HPPH-mediated pleural photodynamic therapy (PDT), it is critical to determine the anatomic geometry of the pleural surface quickly as there may be movement during treatment resulting in changes with the cavity. We have developed a laser scanning device for this purpose, which has the potential to obtain the surface geometry in real-time. A red diode laser with a holographic template to create a pattern and a camera with auto-focusing abilities are used to scan the cavity. In conjunction with a calibration with a known surface, we can use methods of triangulation to reconstruct the surface. Using a chest phantom, we are able to obtain a 360 degree scan of the interior in under 1 minute. The chest phantom scan was compared to an existing CT scan to determine its accuracy. The laser-camera separation can be determined through the calibration with 2mm accuracy. The device is best suited for environments that are on the scale of a chest cavity (between 10cm and 40cm). This technique has the potential to produce cavity geometry in real-time during treatment. This would enable PDT treatment dosage to be determined with greater accuracy. Works are ongoing to build a miniaturized device that moves the light source and camera via a fiber-optics bundle commonly used for endoscopy with increased accuracy.
Near-real-time mosaics from high-resolution side-scan sonar
Danforth, William W.; O'Brien, Thomas F.; Schwab, W.C.
1991-01-01
High-resolution side-scan sonar has proven to be a very effective tool for stuyding and understanding the surficial geology of the seafloor. Since the mid-1970s, the US Geological Survey has used high-resolution side-scan sonar systems for mapping various areas of the continental shelf. However, two problems typically encountered included the short range and the high sampling rate of high-resolution side-scan sonar systems and the acquisition and real-time processing of the enormous volume of sonar data generated by high-resolution suystems. These problems were addressed and overcome in August 1989 when the USGS conducted a side-scan sonar and bottom sampling survey of a 1000-sq-km section of the continental shelf in the Gulf of Farallones located offshore of San Francisco. The primary goal of this survey was to map an area of critical interest for studying continental shelf sediment dynamics. This survey provided an opportunity to test an image processing scheme that enabled production of a side-scan sonar hard-copy mosaic during the cruise in near real-time.
Autonomous Real-Time Interventional Scan Plane Control With a 3-D Shape-Sensing Needle
Plata, Juan Camilo; Holbrook, Andrew B.; Park, Yong-Lae; Pauly, Kim Butts; Daniel, Bruce L.; Cutkosky, Mark R.
2016-01-01
This study demonstrates real-time scan plane control dependent on three-dimensional needle bending, as measured from magnetic resonance imaging (MRI)-compatible optical strain sensors. A biopsy needle with embedded fiber Bragg grating (FBG) sensors to measure surface strains is used to estimate its full 3-D shape and control the imaging plane of an MR scanner in real-time, based on the needle’s estimated profile. The needle and scanner coordinate frames are registered to each other via miniature radio-frequency (RF) tracking coils, and the scan planes autonomously track the needle as it is deflected, keeping its tip in view. A 3-D needle annotation is superimposed over MR-images presented in a 3-D environment with the scanner’s frame of reference. Scan planes calculated based on the FBG sensors successfully follow the tip of the needle. Experiments using the FBG sensors and RF coils to track the needle shape and location in real-time had an average root mean square error of 4.2 mm when comparing the estimated shape to the needle profile as seen in high resolution MR images. This positional variance is less than the image artifact caused by the needle in high resolution SPGR (spoiled gradient recalled) images. Optical fiber strain sensors can estimate a needle’s profile in real-time and be used for MRI scan plane control to potentially enable faster and more accurate physician response. PMID:24968093
Autonomous real-time interventional scan plane control with a 3-D shape-sensing needle.
Elayaperumal, Santhi; Plata, Juan Camilo; Holbrook, Andrew B; Park, Yong-Lae; Pauly, Kim Butts; Daniel, Bruce L; Cutkosky, Mark R
2014-11-01
This study demonstrates real-time scan plane control dependent on three-dimensional needle bending, as measured from magnetic resonance imaging (MRI)-compatible optical strain sensors. A biopsy needle with embedded fiber Bragg grating (FBG) sensors to measure surface strains is used to estimate its full 3-D shape and control the imaging plane of an MR scanner in real-time, based on the needle's estimated profile. The needle and scanner coordinate frames are registered to each other via miniature radio-frequency (RF) tracking coils, and the scan planes autonomously track the needle as it is deflected, keeping its tip in view. A 3-D needle annotation is superimposed over MR-images presented in a 3-D environment with the scanner's frame of reference. Scan planes calculated based on the FBG sensors successfully follow the tip of the needle. Experiments using the FBG sensors and RF coils to track the needle shape and location in real-time had an average root mean square error of 4.2 mm when comparing the estimated shape to the needle profile as seen in high resolution MR images. This positional variance is less than the image artifact caused by the needle in high resolution SPGR (spoiled gradient recalled) images. Optical fiber strain sensors can estimate a needle's profile in real-time and be used for MRI scan plane control to potentially enable faster and more accurate physician response.
Solar sail time-optimal interplanetary transfer trajectory design
NASA Astrophysics Data System (ADS)
Gong, Sheng-Pin; Gao, Yun-Feng; Li, Jun-Feng
2011-08-01
The fuel consumption associated with some interplanetary transfer trajectories using chemical propulsion is not affordable. A solar sail is a method of propulsion that does not consume fuel. Transfer time is one of the most pressing problems of solar sail transfer trajectory design. This paper investigates the time-optimal interplanetary transfer trajectories to a circular orbit of given inclination and radius. The optimal control law is derived from the principle of maximization. An indirect method is used to solve the optimal control problem by selecting values for the initial adjoint variables, which are normalized within a unit sphere. The conditions for the existence of the time-optimal transfer are dependent on the lightness number of the sail and the inclination and radius of the target orbit. A numerical method is used to obtain the boundary values for the time-optimal transfer trajectories. For the cases where no time-optimal transfer trajectories exist, first-order necessary conditions of the optimal control are proposed to obtain feasible solutions. The results show that the transfer time decreases as the minimum distance from the Sun decreases during the transfer duration. For a solar sail with a small lightness number, the transfer time may be evaluated analytically for a three-phase transfer trajectory. The analytical results are compared with previous results and the associated numerical results. The transfer time of the numerical result here is smaller than the transfer time from previous results and is larger than the analytical result.
NASA Astrophysics Data System (ADS)
Lerm, Steffen; Holder, Silvio; Schellhorn, Mathias; Brückner, Peter; Linß, Gerhard
2013-05-01
An important part of the quality assurance of meat is the estimation of germs in the meat exudes. The kind and the number of the germs in the meat affect the medical risk for the consumer of the meat. State-of-the-art analyses of meat are incubator test procedures. The main disadvantages of such incubator tests are the time consumption, the necessary equipment and the need of special skilled employees. These facts cause in high inspection cost. For this reason a new method for the quality assurance is necessary which combines low detection limits and less time consumption. One approach for such a new method is fluorescence microscopic imaging. The germs in the meat exude are caught in special membranes by body-antibody reactions. The germ typical signature could be enhanced with fluorescent chemical markers instead of reproduction of the germs. Each fluorescent marker connects with a free germ or run off the membrane. An image processing system is used to detect the number of fluorescent particles. Each fluorescent spot should be a marker which is connected with a germ. Caused by the small object sizes of germs, the image processing system needs a high optical magnification of the camera. However, this leads to a small field of view and a small depth of focus. For this reasons the whole area of the membrane has to be scanned in three dimensions. To minimize the time consumption, the optimal path has to be found. This optimization problem is influenced by features of the hardware and is presented in this paper. The traversing range in each direction, the step width, the velocity, the shape of the inspection volume and the field of view have influence on the optimal path to scan the membrane.
Yamada, T; Fujii, Y; Miyamoto, N; Matsuura, T; Takao, S; Matsuzaki, Y; Koyano, H; Shirato, H; Nihongi, H; Umezawa, M; Matsuda, K; Umegaki, K
2015-06-15
Purpose: We have developed a gated spot scanning proton beam therapy system with real-time tumor-tracking. This system has the ability of multiple-gated irradiation in a single synchrotron operation cycle controlling the wait-time for consecutive gate signals during a flat-top phase so that the decrease in irradiation efficiency induced by irregular variation of gate signal is reduced. Our previous studies have shown that a 200 ms wait-time is appropriate to increase the average irradiation efficiency, but the optimal wait-time can vary patient by patient and day by day. In this research, we have developed an evaluation system of the optimal wait-time in each irradiation based on the log data of the real-time-image gated proton beam therapy (RGPT) system. Methods: The developed system consists of logger for operation of RGPT system and software for evaluation of optimal wait-time. The logger records timing of gate on/off, timing and the dose of delivered beam spots, beam energy and timing of X-ray irradiation. The evaluation software calculates irradiation time in the case of different wait-time by simulating the multiple-gated irradiation operation using several timing information. Actual data preserved in the log data are used for gate on and off time, spot irradiation time, and time moving to the next spot. Design values are used for the acceleration and deceleration times. We applied this system to a patient treated with the RGPT system. Results: The evaluation system found the optimal wait-time of 390 ms that reduced the irradiation time by about 10 %. The irradiation time with actual wait-time used in treatment was reproduced with accuracy of 0.2 ms. Conclusion: For spot scanning proton therapy system with multiple-gated irradiation in one synchrotron operation cycle, an evaluation system of the optimal wait-time in each irradiation based on log data has been developed. Funding Support: Japan Society for the Promotion of Science (JSPS) through the FIRST
Robust real-time mine classification based on side-scan sonar imagery
NASA Astrophysics Data System (ADS)
Bello, Martin G.
2000-08-01
We describe here image processing and neural network based algorithms for detection and classification of mines in side-scan sonar imagery, and the results obtained from their application to two distinct image data bases. These algorithms evolved over a period from 1994 to the present, originally at Draper Laboratory, and currently at Alphatech Inc. The mine-detection/classification system is partitioned into an anomaly screening stage followed by a classification stage involving the calculation of features on blobs, and their input into a multilayer perceptron neural network. Particular attention is given to the selection of algorithm parameters, and training data, in order to optimize performance over the aggregate data set.
Interim PET Scans in Diffuse Large B-Cell Lymphoma: Is It Ready for Prime Time?
Bolshinsky, Maital; Nabhan, Chadi
2016-12-01
Prognostication of patients with diffuse large B-cell lymphoma (DLBCL) has improved in the past decade with a variety of clinical, morphologic, molecular, and radiographic methods. Comparable to data on the value of interim positron emission tomography (I-PET) in Hodgkin lymphoma, several retrospective and prospective studies are attempting to assess the value of I-PET scanning in DLBCL patients. In this review, we briefly describe and analyze the various prognostic methods in DLBCL with specific focus on the value of I-PET scanning in this disease. This is a timely analysis, as tailoring therapies based on prognosis at diagnosis are becoming of increased investigational interest.
Sasaki, Osami; Akiyama, Kazuhiro; Suzuki, Takamasa
2002-07-01
In addition to a conventional phase a the interference signal of a sinusoidal-wavelength-scanning interferometer has a phase-modulation amplitude Zb that is proportional to the optical path difference L and amplitude b of the wavelength scan. L and b are controlled by a double feedback system so that the phase alpha and the amplitude Zb are kept at 3pi/2 and pi, respectively. The voltage applied to a device that displaces a reference mirror to change the optical path difference becomes a ruler with scales smaller than a wavelength. Voltage applied to a device that determines the amplitude of the wavelength scan becomes a ruler marking every wavelength. These two rulers enable one to measure an absolute distance longer than a wavelength in real time.
Real-time drift error compensation in a self-reference frequency-scanning fiber interferometer
NASA Astrophysics Data System (ADS)
Tao, Long; Liu, Zhigang; Zhang, Weibo; Liu, Zhe; Hong, Jun
2017-01-01
In order to eliminate the fiber drift errors in a frequency-scanning fiber interferometer, we propose a self-reference frequency-scanning fiber interferometer composed of two fiber Michelson interferometers sharing common optical paths of fibers. One interferometer defined as reference interferometer is used to monitor the optical path length drift in real time and establish a measurement fixed origin. The other is used as a measurement interferometer to acquire the information from the target. Because the measured optical path differences of the reference and measurement interferometers by frequency-scanning interferometry include the same fiber drift errors, the errors can be eliminated by subtraction of the former optical path difference from the latter optical path difference. A prototype interferometer was developed in our research, and experimental results demonstrate its robustness and stability.
An Earlier Time of Scan is Associated with Greater Threat-related Amygdala Reactivity.
Baranger, David A A; Margolis, Seth; Hariri, Ahmad R; Bogdan, Ryan
2017-04-04
Time-dependent variability in mood and anxiety suggest that related neural phenotypes, such as threat-related amygdala reactivity, may also follow a diurnal pattern. Here, using data from 1,043 young adult volunteers, we found that threat-related amygdala reactivity was negatively coupled with time of day, an effect which was stronger in the left hemisphere (β=-0.1083, p-fdr=0.0012). This effect was moderated by subjective sleep quality (β=-0.0715, p-fdr=0.0387); participants who reported average and poor sleep quality had relatively increased left amygdala reactivity in the morning. Bootstrapped simulations suggest that similar cross-sectional samples with at least 300 participants would be able to detect associations between amygdala reactivity and time of scan. In control analyses, we found no associations between time and V1 activation. Our results provide initial evidence that threat-related amygdala reactivity may vary diurnally, and that this effect is potentiated among individuals with average to low sleep quality. More broadly, our results suggest that considering time of scan in study design or modeling time of scan in analyses, as well as collecting additional measures of circadian variation, may be useful for understanding threat-related neural phenotypes and their associations with behavior, such as fear conditioning, mood and anxiety symptoms, and related phenotypes.
NASA Astrophysics Data System (ADS)
Eisa, Fabian; Brauweiler, Robert; Peetz, Alexander; Hupfer, Martin; Nowak, Tristan; Kalender, Willi A.
2012-05-01
One of the biggest challenges in dynamic contrast-enhanced CT is the optimal synchronization of scan start and duration with contrast medium administration in order to optimize image contrast and to reduce the amount of contrast medium. We present a new optically based approach, which was developed to investigate and optimize bolus timing and shape. The time-concentration curve of an intravenously injected test bolus of a dye is measured in peripheral vessels with an optical sensor prior to the diagnostic CT scan. The curves can be used to assess bolus shapes as a function of injection protocols and to determine contrast medium arrival times. Preliminary results for phantom and animal experiments showed the expected linear behavior between dye concentration and absorption. The kinetics of the dye was compared to iodinated contrast medium and was found to be in good agreement. The contrast enhancement curves were reliably detected in three mice with individual bolus shapes and delay times of 2.1, 3.5 and 6.1 s, respectively. The optical sensor appears to be a promising approach to optimize injection protocols and contrast enhancement timing and is applicable to all modalities without implying any additional radiation dose. Clinical tests are still necessary.
NASA Astrophysics Data System (ADS)
Venkatesan, K.; Ramanujam, R.; Kuppan, P.
2016-04-01
This paper presents a parametric effect, microstructure, micro-hardness and optimization of laser scanning parameters (LSP) on heating experiments during laser assisted machining of Inconel 718 alloy. The laser source used for experiments is a continuous wave Nd:YAG laser with maximum power of 2 kW. The experimental parameters in the present study are cutting speed in the range of 50-100 m/min, feed rate of 0.05-0.1 mm/rev, laser power of 1.25-1.75 kW and approach angle of 60-90°of laser beam axis to tool. The plan of experiments are based on central composite rotatable design L31 (43) orthogonal array. The surface temperature is measured via on-line measurement using infrared pyrometer. Parametric significance on surface temperature is analysed using response surface methodology (RSM), analysis of variance (ANOVA) and 3D surface graphs. The structural change of the material surface is observed using optical microscope and quantitative measurement of heat affected depth that are analysed by Vicker's hardness test. The results indicate that the laser power and approach angle are the most significant parameters to affect the surface temperature. The optimum ranges of laser power and approach angle was identified as 1.25-1.5 kW and 60-65° using overlaid contour plot. The developed second order regression model is found to be in good agreement with experimental values with R2 values of 0.96 and 0.94 respectively for surface temperature and heat affected depth.
Evaluation of optimal DNA staining for triggering by scanning fluorescence microscopy (SFM)
NASA Astrophysics Data System (ADS)
Mittag, Anja; Marecka, Monika; Pierzchalski, Arkadiusz; Malkusch, Wolf; Bocsi, József; Tárnok, Attila
2009-02-01
In imaging and flow cytometry, DNA staining is a common trigger signal for cell identification. Selection of the proper DNA dye is restricted by the hardware configuration of the instrument. The Zeiss Imaging Solutions GmbH (München, Germany) introduced a new automated scanning fluorescence microscope - SFM (Axio Imager.Z1) which combines fluorescence imaging with cytometric parameters measurement. The aim of the study was to select optimal DNA dyes as trigger signal in leukocyte detection and subsequent cytometric analysis of double-labeled leukocytes by SFM. Seven DNA dyes (DAPI, Hoechst 33258, Hoechst 33342, POPO-3, PI, 7-AAD, and TOPRO-3) were tested and found to be suitable for the implemented filtersets (fs) of the SFM (fs: 49, fs: 44, fs: 20). EDTA blood was stained after erythrocyte lysis with DNA dye. Cells were transferred on microscopic slides and embedded in fluorescent mounting medium. Quality of DNA fluorescence signal as well as spillover signals were analyzed by SFM. CD45-APC and CD3-PE as well as CD4-FITC and CD8-APC were selected for immunophenotyping and used in combination with Hoechst. Within the tested DNA dyes DAPI showed relatively low spillover and the best CV value. Due to the low spillover of UV DNA dyes a triple staining of Hoechst and APC and PE (or APC and FITC, respectively) could be analyzed without difficulty. These results were confirmed by FCM measurements. DNA fluorescence is applicable for identifying and triggering leukocytes in SFM analyses. Although some DNA dyes exhibit strong spillover in other fluorescence channels, it was possible to immunophenotype leukocytes. DAPI seems to be best suitable for use in the SFM system and will be used in protocol setups as primary parameter.
[The optimal dosing times of corticoids].
Dridi, Dorra; Ben Attia, Mossadok; Aouam, Karim; Bouzouita, Kamel; Boughattas, Naceur A; Reinberg, Alain
2006-01-01
The therapeutic use of cortisol and its derivatives, anti-inflammatory corticoids, sets delicate problems to resolve because of cortisol's physiological roles and its circadian rhythms. Cortisol and the majority of its derivatives have desirable and undesirable effects that are time-related administration. The chronotherapeutic optimisation to increase desirable effects and safety of corticoids is shown in the treatment of adrenocortical failure, congenital adrenal hyperplasia and asthma. The knowledge of physiological and physiopathological rhythms of asthma permitted to realize oral treatment optimisation by using a number of corticoids. This knowledge puts in a prominent position the advantages of ciclesonide: a new inhaled corticoid. A chronobiologic approach could be used in a classic optimisation which involves a molecule modification and inhalation like routes of administration.
Audiovisual biofeedback improves image quality and reduces scan time for respiratory-gated 3D MRI
NASA Astrophysics Data System (ADS)
Lee, D.; Greer, P. B.; Arm, J.; Keall, P.; Kim, T.
2014-03-01
The purpose of this study was to test the hypothesis that audiovisual (AV) biofeedback can improve image quality and reduce scan time for respiratory-gated 3D thoracic MRI. For five healthy human subjects respiratory motion guidance in MR scans was provided using an AV biofeedback system, utilizing real-time respiratory motion signals. To investigate the improvement of respiratory-gated 3D MR images between free breathing (FB) and AV biofeedback (AV), each subject underwent two imaging sessions. Respiratory-related motion artifacts and imaging time were qualitatively evaluated in addition to the reproducibility of external (abdominal) motion. In the results, 3D MR images in AV biofeedback showed more anatomic information such as a clear distinction of diaphragm, lung lobes and sharper organ boundaries. The scan time was reduced from 401±215 s in FB to 334±94 s in AV (p-value 0.36). The root mean square variation of the displacement and period of the abdominal motion was reduced from 0.4±0.22 cm and 2.8±2.5 s in FB to 0.1±0.15 cm and 0.9±1.3 s in AV (p-value of displacement <0.01 and p-value of period 0.12). This study demonstrated that audiovisual biofeedback improves image quality and reduces scan time for respiratory-gated 3D MRI. These results suggest that AV biofeedback has the potential to be a useful motion management tool in medical imaging and radiation therapy procedures.
Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients
NASA Astrophysics Data System (ADS)
Grosenick, Dirk; Moesta, K. Thomas; Möller, Michael; Mucke, Jörg; Wabnitz, Heidrun; Gebauer, Bernd; Stroszczynski, Christian; Wassermann, Bernhard; Schlag, Peter M.; Rinneberg, Herbert
2005-06-01
Using a triple wavelength (670 nm, 785 nm, 843/884 nm) scanning laser-pulse mammograph we recorded craniocaudal and mediolateral projection optical mammograms of 154 patients, suspected of having breast cancer. From distributions of times of flight of photons recorded at typically 1000-2000 scan positions, optical mammograms were derived displaying (inverse) photon counts in selected time windows, absorption and reduced scattering coefficients or total haemoglobin concentration and blood oxygen saturation. Optical mammograms were analysed by comparing them with x-ray and MR mammograms, including results of histopathology, attributing a subjective visibility score to each tumour assessed. Out of 102 histologically confirmed tumours, 72 tumours were detected retrospectively in both optical projection mammograms, in addition 20 cases in one projection only, whereas 10 tumours were not detectable in any projection. Tumour contrast and contrast-to-noise ratios of mammograms of the same breast, but derived from measured DTOFs by various methods were quantitatively compared. On average, inverse photon counts in selected time windows, including total photon counts, provide highest tumour contrast and contrast-to-noise ratios. Based on the results of the present study we developed a multi-wavelength, multi-projection scanning time-domain optical mammograph with improved spectral and spatial (angular) sampling, that allows us to record entire mammograms simultaneously at various offsets between the transmitting fibre and receiving fibre bundle and provides first results for illustration.
Sub-nanosecond time-resolved near-field scanning magneto-optical microscope.
Rudge, J; Xu, H; Kolthammer, J; Hong, Y K; Choi, B C
2015-02-01
We report on the development of a new magnetic microscope, time-resolved near-field scanning magneto-optical microscope, which combines a near-field scanning optical microscope and magneto-optical contrast. By taking advantage of the high temporal resolution of time-resolved Kerr microscope and the sub-wavelength spatial resolution of a near-field microscope, we achieved a temporal resolution of ∼50 ps and a spatial resolution of <100 nm. In order to demonstrate the spatiotemporal magnetic imaging capability of this microscope, the magnetic field pulse induced gyrotropic vortex dynamics occurring in 1 μm diameter, 20 nm thick CoFeB circular disks has been investigated. The microscope provides sub-wavelength resolution magnetic images of the gyrotropic motion of the vortex core at a resonance frequency of ∼240 MHz.
A non-contact time-domain scanning brain imaging system: first in-vivo results
NASA Astrophysics Data System (ADS)
Mazurenka, M.; Di Sieno, L.; Boso, G.; Contini, D.; Pifferi, A.; Dalla Mora, A.; Tosi, A.; Wabnitz, H.; Macdonald, R.
2013-06-01
We present results of first in-vivo tests of an optical non-contact scanning imaging system, intended to study oxidative metabolism related processes in biological tissue by means of time-resolved near-infrared spectroscopy. Our method is a novel realization of the short source-detector separation approach and based on a fast-gated single-photon avalanche diode to detect late photons only. The scanning system is built in quasi-confocal configuration and utilizes polarizationsensitive detection. It scans an area of 4×4 cm2, recording images with 32×32 pixels, thus creating a high density of source-detector pairs. To test the system we performed a range of in vivo measurements of hemodynamic changes in several types of biological tissues, i.e. skin (Valsalva maneuver), muscle (venous and arterial occlusions) and brain (motor and cognitive tasks). Task-related changes in hemoglobin concentrations were clearly detected in skin and muscle. The brain activation shows weaker, but yet detectable changes. These changes were localized in pixels near the motor cortex area (C3). However, it was found that even very short hair substantially impairs the measurement. Thus the applicability of the scanner is limited to hairless parts of body. The results of our first in-vivo tests prove the feasibility of non-contact scanning imaging as a first step towards development of a prototype for biological tissue imaging for various medical applications.
Optimal finite-time processes in stochastic thermodynamics.
Schmiedl, Tim; Seifert, Udo
2007-03-09
For a small system like a colloidal particle or a single biomolecule embedded in a heat bath, the optimal protocol of an external control parameter minimizes the mean work required to drive the system from one given equilibrium state to another in a finite time. In general, this optimal protocol obeys an integro-differential equation. Explicit solutions both for a moving laser trap and a time-dependent strength of such a trap show finite jumps of the optimal protocol to be typical both at the beginning and at the end of the process.
NASA Astrophysics Data System (ADS)
Razak, Khamarrul Azahari; Santangelo, Michele; Van Westen, Cees J.; Straatsma, Menno W.; de Jong, Steven M.
2013-05-01
Landslide inventory maps are fundamental for assessing landslide susceptibility, hazard, and risk. In tropical mountainous environments, mapping landslides is difficult as rapid and dense vegetation growth obscures landslides soon after their occurrence. Airborne laser scanning (ALS) data have been used to construct the digital terrain model (DTM) under dense vegetation, but its reliability for landslide recognition in the tropics remains surprisingly unknown. This study evaluates the suitability of ALS for generating an optimal DTM for mapping landslides in the Cameron Highlands, Malaysia. For the bare-earth extraction, we used hierarchical robust filtering algorithm and a parameterization with three sequential filtering steps. After each filtering step, four interpolations techniques were applied, namely: (i) the linear prediction derived from the SCOP++ (SCP), (ii) the inverse distance weighting (IDW), (iii) the natural neighbor (NEN) and (iv) the topo-to-raster (T2R). We assessed the quality of 12 DTMs in two ways: (1) with respect to 448 field-measured terrain heights and (2) based on the interpretability of landslides. The lowest root-mean-square error (RMSE) was 0.89 m across the landscape using three filtering steps and linear prediction as interpolation method. However, we found that a less stringent DTM filtering unveiled more diagnostic micro-morphological features, but also retained some of vegetation. Hence, a combination of filtering steps is required for optimal landslide interpretation, especially in forested mountainous areas. IDW was favored as the interpolation technique because it combined computational times more reasonably without adding artifacts to the DTM than T2R and NEN, which performed relatively well in the first and second filtering steps, respectively. The laser point density and the resulting ground point density after filtering are key parameters for producing a DTM applicable to landslide identification. The results showed that the
Combining phase images from array coils using a short echo time reference scan (COMPOSER)
Dymerska, Barbara; Bogner, Wolfgang; Barth, Markus; Zaric, Olgica; Goluch, Sigrun; Grabner, Günther; Deligianni, Xeni; Bieri, Oliver; Trattnig, Siegfried
2015-01-01
Purpose To develop a simple method for combining phase images from multichannel coils that does not require a reference coil and does not entail phase unwrapping, fitting or iterative procedures. Theory and Methods At very short echo time, the phase measured with each coil of an array approximates to the phase offset to which the image from that coil is subject. Subtracting this information from the phase of the scan of interest matches the phases from the coils, allowing them to be combined. The effectiveness of this approach is quantified in the brain, calf and breast with coils of diverse designs. Results The quality of phase matching between coil elements was close to 100% with all coils assessed even in regions of low signal. This method of phase combination was similar in effectiveness to the Roemer method (which needs a reference coil) and was superior to the rival reference‐coil‐free approaches tested. Conclusion The proposed approach—COMbining Phase data using a Short Echo‐time Reference scan (COMPOSER)—is a simple and effective approach to reconstructing phase images from multichannel coils. It requires little additional scan time, is compatible with parallel imaging and is applicable to all coils, independent of configuration. Magn Reson Med 77:318–327, 2017. © 2015 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine PMID:26712454
Line-scan hyperspectral imaging for real-time poultry fecal detection
NASA Astrophysics Data System (ADS)
Park, Bosoon; Yoon, Seung-Chul; Windham, William R.; Lawrence, Kurt C.; Heitschmidt, G. W.; Kim, Moon S.; Chao, Kaunglin
2010-04-01
The ARS multispectral imaging system with three-band common aperture camera was able to inspect fecal contaminants in real-time mode during poultry processing. Recent study has demonstrated several image processing methods including binning, cuticle removal filter, median filter, and morphological analysis in real-time mode could remove false positive errors. The ARS research groups and their industry partner are now merging the fecal detection and systemically disease detection systems onto a common platform using line-scan hyperspectral imaging system. This system will aid in commercialization by creating one hyperspectral imaging system with user-defined wavelengths that can be installed in different locations of the processing line to solve significant food safety problems. Therefore, this research demonstrated the feasibility of line-scan hyperspectral imaging system in terms of processing speed and detection accuracy for a real-time, on-line fecal detection at current processing speed (140 birds per minute) of commercial poultry plant. The newly developed line-scan hyperspectral imaging system could improve Food Safety Inspection Service (FSIS)'s poultry safety inspection program significantly.
A Photoacoustic Imaging System with Optimized Real-Time Parallel Reconstruction
NASA Astrophysics Data System (ADS)
Feng, Ting; Yuan, Jie; Yu, Yao; Zhou, Yu; Xu, Guan
2013-10-01
Biomedical photoacoustic tomography (PAT) provides anatomical, functional, metabolic, molecular, and genetic contrasts of vasculature, hemodynamics, oxygen metabolism, biomarkers, and gene expression. These attributes bring PAT to a wide variety of applications in clinical medicine and preclinical research. We report the development of a real-time PAT imaging system, which integrates signal scanning, image reconstruction and displaying photoacoustic images in real time. An optimized back projection algorithm for PAT imaging is proposed and tested on a latest graphics process unit based card. The whole system is built and tested in an experiment for monitoring moving blood events to validate the real-time performance of this system to image moving events.
NASA Technical Reports Server (NTRS)
Woolley, R. D.; Werking, R. D.
1973-01-01
An original technique for determining the optimal magnetic torque strategy for control of the attitude of spin stabilized spacecraft is presented. By employing Lagrange multipliers and the Calculus of Variations, optimal control equations are derived which define minimum time and minimum energy attitude maneuvers. Computer program algorithms to numerically solve these optimal control equations are also described. The performance of this technique is compared with a commonly employed planning method.
NASA Astrophysics Data System (ADS)
Qiu, Jiawei; Xia, Haiyun; Dou, Xiankang; Shangguan, Mingjia; Wang, Chong; Zhang, Yunpeng
2016-08-01
Although the optimization of a static Fabry-Perot interferometer (FPI)-used as a Doppler shift discriminator in wind lidar-has been proposed, it cannot be applied to the scanning FPI used in the high-spectral resolution lidar for temperature detection. After a comparison, the optimal scanning implementation is chosen and a new optimization scheme is proposed. The free spectral range (FSR) of the FPI is determined by the width of the Rayleigh spectrum. Then, for analytical purposes, the transmission of Rayleigh backscattering through an FPI is simplified to be a superposition of a Gaussian function and a constant background. The maximum likelihood estimation and the Cramer-Rao bound theory are used to derive an analytic expression of the temperature error. Thus, the effective reflectance of the FPI can be optimized. Finally, assuming known atmospheric temperature-pressure-density profiles, backscattering raw signals are simulated using the optimized parameters of the FPI and some other key system parameters of our existing lidar system. Comparisons between the assumed and retrieved temperature profiles revealed that error <2 K can be achieved in the altitude range of 15 to 40 km, even with the disturbance of aerosol contamination.
Time-optimal control of the magnetically levitated photolithography platen
Redmond, J.; Tucker, S.
1995-01-01
This report summarizes two approaches to time-optimal control of a nonlinear magnetically levitated platen. The system of interest is a candidate technology for next-generation photolithography machines used in the manufacture of integrated circuits. The dynamics and the variable peak control force of the electro-magnetic actuators preclude the direct application of classical time-optimal control methodologies for determining optimal rest-to-rest maneuver strategies. Therefore, this study explores alternate approaches using a previously developed computer simulation. In the first approach, conservative estimates of the available control forces are used to generate suboptimal switching curves. In the second approach, exact solutions are determined iteratively and used as a training set for an artificial neural network. The trained network provides optimal actuator switching times that incorporate the full nonlinearities of the magnetic levitation actuators. Sample problems illustrate the effectiveness of these techniques as compared to traditional proportional-derivative control.
Optimal Control Modification for Time-Scale Separated Systems
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2012-01-01
Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. A model matching conditions in the transformed time coordinate results in an increase in the actuator command that effectively compensate for the slow actuator dynamics. Simulations demonstrate effectiveness of the method.
Toward real-time en route air traffic control optimization
NASA Astrophysics Data System (ADS)
Jardin, Matthew Robert
The increase in air traffic along the existing jet route structure has led to inefficiencies and frequent congestion in en route airspace. Analysis of air-traffic data suggests that direct operating costs might be reduced by about 4.5%, or $500 million per year, if aircraft were permitted to fly optimal wind routes instead of the structured routes allowed today. To enable aircraft to fly along unstructured optimal routes safely, automation is required to aid air-traffic controllers. This requires the global solution for conflict-free optimal routes for many aircraft in real time. The constraint that all aircraft must maintain adequate separation from one another results in a greater-than-exponential increase in the complexity of the multi-aircraft optimization problem. The main challenges addressed in this dissertation are in the areas of optimal wind routing, computationally efficient aircraft conflict detection, and efficient conflict resolution. A core contribution is the derivation of an analytical neighboring optimal control solution for the efficient computation of optimal wind routes. The neighboring optimal control algorithm uses an order of magnitude less computational effort to achieve the same performance as existing algorithms, and is easily extended to compute near-optimal conflict free trajectories. A conflict detection algorithm as been developed which eliminates the need to compute inter-aircraft distances. Simulation results are presented to demonstrate an integrated horizontal route-optimization and conflict-resolution method for air-traffic control. Conflict-free solutions have been computed for roughly double the current-day traffic density for a single flight level (over 600 aircraft) in less than 1 minute on a 450-MHz UNIX work station. This corresponds to a computation rate of better than 25 optimal routes per second. Extrapolation of the two-dimensional results to the multi-flight-level domain suggests that the complete solution for optimal
Optimal regulation in systems with stochastic time sampling
NASA Technical Reports Server (NTRS)
Montgomery, R. C.; Lee, P. S.
1980-01-01
An optimal control theory that accounts for stochastic variable time sampling in a distributed microprocessor based flight control system is presented. The theory is developed by using a linear process model for the airplane dynamics and the information distribution process is modeled as a variable time increment process where, at the time that information is supplied to the control effectors, the control effectors know the time of the next information update only in a stochastic sense. An optimal control problem is formulated and solved for the control law that minimizes the expected value of a quadratic cost function. The optimal cost obtained with a variable time increment Markov information update process where the control effectors know only the past information update intervals and the Markov transition mechanism is almost identical to that obtained with a known and uniform information update interval.
TRIASSIC: the Time-Resolved Industrial Alpha-Source Scanning Induced Current microscope
NASA Astrophysics Data System (ADS)
Pallone, Arthur
Time-resolved ion beam induced current (TRIBIC) microscopy yields useful information such as carrier mobility and lifetimes in semiconductors and defect locations in devices; however, traditional TRIBIC uses large, expensive particle accelerators that require specialized training to operate and maintain. The time-resolved industrial alpha-source scanning induced current (TRIASSIC) microscope transforms TRIBIC by replacing the particle accelerator facility with an affordable, tabletop instrument suitable for use in research and education at smaller colleges and universities. I will discuss the development of, successes with, setbacks to and future directions for TRIASSIC.
NASA Astrophysics Data System (ADS)
Yabushita, Atsushi; Kao, Chih-Hsien; Lee, Yu-Hsien; Kobayashi, Takayoshi
2015-07-01
Ultrafast dynamics is generally studied by pump-probe method with laser pulse, which scans optical delay by motorized stage step by step. Using ultrashort laser pulse shorter than typical molecular vibration periods, the pump-probe measurement can study both of electronic dynamics and vibration dynamics simultaneously. The probe wavelength dependence of the ultrafast electronic and vibration dynamics (UEVD) helps us to distinguish the signal contributions from the dynamics of the electronic ground state and that of the electronic excited states, which elucidates primary reaction mechanism after photoexcitation. Meanwhile, the measurement time of UEVD spectroscopy takes too long time to be used in realistic application. In our previous work, we have developed multi-channel lock-in amplifying (MLA) detectors to study UEVD at all probe wavelengths simultaneously, and synchronized it with laser and fast-scan delay stage to scan the data in five seconds. It enabled us to study UEVD spectroscopy even for photo-fragile materials. However, the home-made MLA detectors required for the measurement is expensive and massive in size and weight, thus not suitable for general researchers in the field of ultrafast time-resolved spectroscopy. In the present work, we have developed a table-top synchronized fast-scan femtosecond time-resolved spectroscopy system using single shot scan line CCD. This system measures time-resolved trace at all probe wavelengths simultaneously in five seconds. The CCD-based fast-scan time-resolved spectroscopy system enables us to study ultrafast dynamics of various materials even biomaterials, which have been thought to be hard or even impossible to be studied in previous methods.
NASA Astrophysics Data System (ADS)
Kurosu, Keita; Das, Indra J.; Moskvin, Vadim P.
2016-01-01
Spot scanning, owing to its superior dose-shaping capability, provides unsurpassed dose conformity, in particular for complex targets. However, the robustness of the delivered dose distribution and prescription has to be verified. Monte Carlo (MC) simulation has the potential to generate significant advantages for high-precise particle therapy, especially for medium containing inhomogeneities. However, the inherent choice of computational parameters in MC simulation codes of GATE, PHITS and FLUKA that is observed for uniform scanning proton beam needs to be evaluated. This means that the relationship between the effect of input parameters and the calculation results should be carefully scrutinized. The objective of this study was, therefore, to determine the optimal parameters for the spot scanning proton beam for both GATE and PHITS codes by using data from FLUKA simulation as a reference. The proton beam scanning system of the Indiana University Health Proton Therapy Center was modeled in FLUKA, and the geometry was subsequently and identically transferred to GATE and PHITS. Although the beam transport is managed by spot scanning system, the spot location is always set at the center of a water phantom of 600 × 600 × 300 mm3, which is placed after the treatment nozzle. The percentage depth dose (PDD) is computed along the central axis using 0.5 × 0.5 × 0.5 mm3 voxels in the water phantom. The PDDs and the proton ranges obtained with several computational parameters are then compared to those of FLUKA, and optimal parameters are determined from the accuracy of the proton range, suppressed dose deviation, and computational time minimization. Our results indicate that the optimized parameters are different from those for uniform scanning, suggesting that the gold standard for setting computational parameters for any proton therapy application cannot be determined consistently since the impact of setting parameters depends on the proton irradiation technique. We
NASA Astrophysics Data System (ADS)
Glasberg, S.; Farjon, D.; Ankry, M.; Eisenbach, S.; Shnapp, M.; Altman, A.
2007-03-01
We have analyzed 144 ECG wave-forms that were taken during cardiac CT exams to determine in retrospect the optimized timing for updating the gantry rotation-time. A score was defined, according to the number of heart beats during X-ray on, which fulfill the temporal resolution (tR)condition, tR<100mSec. The temporal resolution calculation was based on dual-cycle π/2 sector segmentation, where the data required for any image is collected during two heart cycle. The results yield a significant improvement of the tR score with the rotation-time update method relative to using a fixed minimal rotation-time of the gantry. The analysis suggest that full heart scan with better than 100mSec temporal resolution per slice can routinely be achieved in 128 slices MSCT scanner by performing gantry rotation-time -update after patient starts its breath hold. At these conditions the required breath-hold time is expected to be less than 15 seconds.
Real-time 3-D ultrasound scan conversion using a multicore processor.
Zhuang, Bo; Shamdasani, Vijay; Sikdar, Siddhartha; Managuli, Ravi; Kim, Yongmin
2009-07-01
Real-time 3-D ultrasound scan conversion (SC) in software has not been practical due to its high computation and I/O data handling requirements. In this paper, we describe software-based 3-D SC with high volume rates using a multicore processor, Cell. We have implemented both 3-D SC approaches: 1) the separable 3-D SC where two 2-D coordinate transformations in orthogonal planes are performed in sequence and 2) the direct 3-D SC where the coordinate transformation is directly handled in 3-D. One Cell processor can scan-convert a 192 x 192 x 192 16-bit volume at 87.8 volumes/s with the separable 3-D SC algorithm and 28 volumes/s with the direct 3-D SC algorithm.
A Space–Time Permutation Scan Statistic for Disease Outbreak Detection
2005-01-01
Background The ability to detect disease outbreaks early is important in order to minimize morbidity and mortality through timely implementation of disease prevention and control measures. Many national, state, and local health departments are launching disease surveillance systems with daily analyses of hospital emergency department visits, ambulance dispatch calls, or pharmacy sales for which population-at-risk information is unavailable or irrelevant. Methods and Findings We propose a prospective space–time permutation scan statistic for the early detection of disease outbreaks that uses only case numbers, with no need for population-at-risk data. It makes minimal assumptions about the time, geographical location, or size of the outbreak, and it adjusts for natural purely spatial and purely temporal variation. The new method was evaluated using daily analyses of hospital emergency department visits in New York City. Four of the five strongest signals were likely local precursors to citywide outbreaks due to rotavirus, norovirus, and influenza. The number of false signals was at most modest. Conclusion If such results hold up over longer study times and in other locations, the space–time permutation scan statistic will be an important tool for local and national health departments that are setting up early disease detection surveillance systems. PMID:15719066
Methodology for Determining Optimal Exposure Parameters of a Hyperspectral Scanning Sensor
NASA Astrophysics Data System (ADS)
Walczykowski, P.; Siok, K.; Jenerowicz, A.
2016-06-01
The purpose of the presented research was to establish a methodology that would allow the registration of hyperspectral images with a defined spatial resolution on a horizontal plane. The results obtained within this research could then be used to establish the optimum sensor and flight parameters for collecting aerial imagery data using an UAV or other aerial system. The methodology is based on an user-selected optimal camera exposure parameters (i.e. time, gain value) and flight parameters (i.e. altitude, velocity). A push-broom hyperspectral imager- the Headwall MicroHyperspec A-series VNIR was used to conduct this research. The measurement station consisted of the following equipment: a hyperspectral camera MicroHyperspec A-series VNIR, a personal computer with HyperSpec III software, a slider system which guaranteed the stable motion of the sensor system, a white reference panel and a Siemens star, which was used to evaluate the spatial resolution. Hyperspectral images were recorded at different distances between the sensor and the target- from 5m to 100m. During the registration process of each acquired image, many exposure parameters were changed, such as: the aperture value, exposure time and speed of the camera's movement on the slider. Based on all of the registered hyperspectral images, some dependencies between chosen parameters had been developed: - the Ground Sampling Distance - GSD and the distance between the sensor and the target, - the speed of the camera and the distance between the sensor and the target, - the exposure time and the gain value, - the Density Number and the gain value. The developed methodology allowed us to determine the speed and the altitude of an unmanned aerial vehicle on which the sensor would be mounted, ensuring that the registered hyperspectral images have the required spatial resolution.
Time-limited optimal dynamics beyond the quantum speed limit
NASA Astrophysics Data System (ADS)
Gajdacz, Miroslav; Das, Kunal K.; Arlt, Jan; Sherson, Jacob F.; Opatrný, Tomáš
2015-12-01
The quantum speed limit sets the minimum time required to transfer a quantum system completely into a given target state. At shorter times the higher operation speed results in a loss of fidelity. Here we quantify the trade-off between the fidelity and the duration in a system driven by a time-varying control. The problem is addressed in the framework of Hilbert space geometry offering an intuitive interpretation of optimal control algorithms. This approach leads to a necessary criterion for control optimality applicable as a measure of algorithm convergence. The time fidelity trade-off expressed in terms of the direct Hilbert velocity provides a robust prediction of the quantum speed limit and allows one to adapt the control optimization such that it yields a predefined fidelity. The results are verified numerically in a multilevel system with a constrained Hamiltonian and a classification scheme for the control sequences is proposed based on their optimizability.
Time dependent optimal switching controls in online selling models
Bradonjic, Milan; Cohen, Albert
2010-01-01
We present a method to incorporate dishonesty in online selling via a stochastic optimal control problem. In our framework, the seller wishes to maximize her average wealth level W at a fixed time T of her choosing. The corresponding Hamilton-Jacobi-Bellmann (HJB) equation is analyzed for a basic case. For more general models, the admissible control set is restricted to a jump process that switches between extreme values. We propose a new approach, where the optimal control problem is reduced to a multivariable optimization problem.
An Optimization Framework for Dynamic, Distributed Real-Time Systems
NASA Technical Reports Server (NTRS)
Eckert, Klaus; Juedes, David; Welch, Lonnie; Chelberg, David; Bruggerman, Carl; Drews, Frank; Fleeman, David; Parrott, David; Pfarr, Barbara
2003-01-01
Abstract. This paper presents a model that is useful for developing resource allocation algorithms for distributed real-time systems .that operate in dynamic environments. Interesting aspects of the model include dynamic environments, utility and service levels, which provide a means for graceful degradation in resource-constrained situations and support optimization of the allocation of resources. The paper also provides an allocation algorithm that illustrates how to use the model for producing feasible, optimal resource allocations.
Exploiting Continuous Scanning Laser Doppler Vibrometry in timing belt dynamic characterisation
NASA Astrophysics Data System (ADS)
Chiariotti, P.; Martarelli, M.; Castellini, P.
2017-03-01
Dynamic behaviour of timing belts has always interested the engineering community over the years. Nowadays, there are several numerical methods to predict the dynamics of these systems. However, the tuning of such models by experimental approaches still represents an issue: an accurate characterisation does require a measurement in operating conditions since the belt mounting condition might severely affect its dynamic behaviour. Moreover, since the belt is constantly moving during running conditions, non-contact measurement methods are needed. Laser Doppler Vibrometry (LDV) and imaging techniques do represent valid candidates for this purpose. This paper aims at describing the use of Continuous Scanning LDV (CSLDV) as a tool for the dynamic characterisation of timing belts in IC (Internal Combustion) engines (cylinder head). The high-spatial resolution data that can be collected in short testing time makes CSLDV highly suitable for such application. The measurement on a moving surface, however, represents a challenge for CSLDV. The paper discusses how the belt in-plane speed influences CSLDV signal and how an order-based multi-harmonic excitation might affect the recovery of Operational Deflection Shapes in a CSLDV test. A comparison with a standard Discrete Scanning LDV measurement is also given in order to show that a CSLDV test, if well designed, can indeed provide the same amount of information in a drastically reduced amount of time.
Ahmadi, Katayoon; Fouladi Nia, Babak
2016-01-01
Automatic segmentation of medical CT scan images is one of the most challenging fields in digital image processing. The goal of this paper is to discuss the automatic segmentation of CT scan images to detect and separate vessels in the liver. The segmentation of liver vessels is very important in the liver surgery planning and identifying the structure of vessels and their relationship to tumors. Fuzzy C-means (FCM) method has already been proposed for segmentation of liver vessels. Due to classical optimization process, this method suffers lack of sensitivity to the initial values of class centers and segmentation of local minima. In this article, a method based on FCM in conjunction with genetic algorithms (GA) is applied for segmentation of liver's blood vessels. This method was simulated and validated using 20 CT scan images of the liver. The results showed that the accuracy, sensitivity, specificity, and CPU time of new method in comparison with FCM algorithm reaching up to 91%, 83.62, 94.11%, and 27.17 were achieved, respectively. Moreover, selection of optimal and robust parameters in the initial step led to rapid convergence of the proposed method. The outcome of this research assists medical teams in estimating disease progress and selecting proper treatments. PMID:28044090
Ahmadi, Katayoon; Karimi, Abbas; Fouladi Nia, Babak
2016-01-01
Automatic segmentation of medical CT scan images is one of the most challenging fields in digital image processing. The goal of this paper is to discuss the automatic segmentation of CT scan images to detect and separate vessels in the liver. The segmentation of liver vessels is very important in the liver surgery planning and identifying the structure of vessels and their relationship to tumors. Fuzzy C-means (FCM) method has already been proposed for segmentation of liver vessels. Due to classical optimization process, this method suffers lack of sensitivity to the initial values of class centers and segmentation of local minima. In this article, a method based on FCM in conjunction with genetic algorithms (GA) is applied for segmentation of liver's blood vessels. This method was simulated and validated using 20 CT scan images of the liver. The results showed that the accuracy, sensitivity, specificity, and CPU time of new method in comparison with FCM algorithm reaching up to 91%, 83.62, 94.11%, and 27.17 were achieved, respectively. Moreover, selection of optimal and robust parameters in the initial step led to rapid convergence of the proposed method. The outcome of this research assists medical teams in estimating disease progress and selecting proper treatments.
NASA Astrophysics Data System (ADS)
Wen-Quan, Liu; Yuan-Fu, Lu; Guo-Hua, Jiao; Xian-Feng, Chen; Zhi-Sheng, Zhou; Rong-Bin, She; Jin-Ying, Li; Si-Hai, Chen; Yu-Ming, Dong; Jian-Cheng, Lv
2016-06-01
Spectroscopic measurements and terahertz imaging of the cornea are carried out by using a rapid scanning terahertz time domain spectroscopy (THz-TDS) system. A voice coil motor stage based optical delay line (VCM-ODL) is developed to provide a rather simple and robust structure with both the high scanning speed and the large delay length. The developed system is used for THz spectroscopic measurements and imaging of the corneal tissue with different amounts of water content, and the measurement results show the consistence with the reported results, in which the measurement time using VCM-ODL is a factor of 360 shorter than the traditional motorized optical delay line (MDL). With reducing the water content a monotonic decrease of the complex permittivity of the cornea is observed. The two-term Debye relaxation model is employed to explain our experimental results, revealing that the fast relaxation time of a dehydrated cornea is much larger than that of a hydrated cornea and its dielectric behavior can be affected by the presence of the biological macromolecules. These results demonstrate that our THz spectrometer may be a promising candidate for tissue hydration sensing and practical application of THz technology. Project supported by the National Natural Science Foundation of China (Grant No. 61205101), the Shenzhen Municipal Research Foundation, China (Grant Nos. GJHZ201404171134305 and JCYJ20140417113130693), and the Marie Curie Actions-International Research Staff Exchange Scheme (IRSES) (Grant No. FP7 PIRSES-2013-612267).
Cine viability magnetic resonance imaging of the heart without increased scan time.
Hassanein, Azza S; Khalifa, Ayman M; Ibrahim, El-Sayed H
2016-02-01
Cardiac magnetic resonance imaging (MRI) provides information about myocardial morphology, function, and viability from cine, tagged, and late gadolinium enhancement (LGE) images, respectively. While the cine and tagged images are acquired in a time-resolved fashion, the LGE images are acquired at a single timeframe. The purpose of this work is to develop a method for generating cine LGE images without additional scan time. The motion field is extracted from the tagged images, and is then used to guide the deformation of the infarcted region from the acquired LGE image at the acquired timeframe to any other timeframe. Major techniques for motion estimation, including harmonic phase (HARP) and optical flow analysis, are tested in this work for motion estimation. The proposed method is tested on numerical phantom and images from four human subjects. The generated cine LGE images showed both viability and wall motion information in the same set of images without additional scan time or image misregistration problems. The band-pass optical flow analysis resulted in the most accurate motion estimation compared to other methods, especially HARP, which fails to track points at the myocardial boundary. Infarct transmurality from the generated images showed good agreement with myocardial strain, and wall thickening showed good agreement with that measured from conventional cine images. In conclusion, the developed technique allows for generating cine LGE images that enable simultaneous display of wall motion and viability information. The generated images could be useful for estimating myocardial contractility reserve and for treatment prognosis.
Near-time-optimal control for quantum systems
NASA Astrophysics Data System (ADS)
Chen, Qi-Ming; Wu, Re-Bing; Zhang, Tian-Ming; Rabitz, Herschel
2015-12-01
For a quantum system controlled by an external field, time-optimal control is referred to as the shortest-time-duration control that can still permit maximizing an objective function J , which is especially a desirable goal for engineering quantum dynamics against decoherence effects. However, since rigorously finding a time-optimal control is usually very difficult and in many circumstances the control is only required to be sufficiently short and precise, one can design algorithms seeking such suboptimal control solutions for much reduced computational effort. In this paper, we propose an iterative algorithm for finding near-time-optimal control in a high level set (i.e., the set of controls that achieves the same value of J ) that can be arbitrarily close to the global optima. The algorithm proceeds seeking to decrease the time duration T while the value of J remains invariant, until J leaves the level-set value; the deviation of J due to numerical errors is corrected by gradient climbing that brings the search back to the level-set J value. Since the level set is very close to the maximum value of J , the resulting control solution is nearly time optimal with manageable precision. Numerical examples demonstrate the effectiveness and general applicability of the algorithm.
Linear time near-optimal planning in the blocks world
Slaney, J.; Thiebaux, S.
1996-12-31
This paper reports an analysis of near-optimal Blocks World planning. Various methods are clarified, and their time complexity is shown to be linear in the number of blocks, which improves their known complexity bounds. The speed of the implemented programs (ten thousand blocks are handled in a second) enables us to make empirical observations on large problems. These suggest that the above methods have very close average performance ratios, and yield a rough upper bound on those ratios well below the worst case of 2. Further, they lead to the conjecture that in the limit the simplest linear time algorithm could be just as good on average as the optimal one.
Optimal estimation of recurrence structures from time series
NASA Astrophysics Data System (ADS)
beim Graben, Peter; Sellers, Kristin K.; Fröhlich, Flavio; Hutt, Axel
2016-05-01
Recurrent temporal dynamics is a phenomenon observed frequently in high-dimensional complex systems and its detection is a challenging task. Recurrence quantification analysis utilizing recurrence plots may extract such dynamics, however it still encounters an unsolved pertinent problem: the optimal selection of distance thresholds for estimating the recurrence structure of dynamical systems. The present work proposes a stochastic Markov model for the recurrent dynamics that allows for the analytical derivation of a criterion for the optimal distance threshold. The goodness of fit is assessed by a utility function which assumes a local maximum for that threshold reflecting the optimal estimate of the system's recurrence structure. We validate our approach by means of the nonlinear Lorenz system and its linearized stochastic surrogates. The final application to neurophysiological time series obtained from anesthetized animals illustrates the method and reveals novel dynamic features of the underlying system. We propose the number of optimal recurrence domains as a statistic for classifying an animals' state of consciousness.
A simple approach for predicting time-optimal slew capability
NASA Astrophysics Data System (ADS)
King, Jeffery T.; Karpenko, Mark
2016-03-01
The productivity of space-based imaging satellite sensors to collect images is directly related to the agility of the spacecraft. Increasing the satellite agility, without changing the attitude control hardware, can be accomplished by using optimal control to design shortest-time maneuvers. The performance improvement that can be obtained using optimal control is tied to the specific configuration of the satellite, e.g. mass properties and reaction wheel array geometry. Therefore, it is generally difficult to predict performance without an extensive simulation study. This paper presents a simple idea for estimating the agility enhancement that can be obtained using optimal control without the need to solve any optimal control problems. The approach is based on the concept of the agility envelope, which expresses the capability of a spacecraft in terms of a three-dimensional agility volume. Validation of this new approach is conducted using both simulation and on-orbit data.
Myung, Sunnie; Cohen, Herbert; Fenyo, David; Padovan, Julio C.; Krutchinsky, Andrew N.
2010-01-01
A high-capacity ion trap coupled to a time-of-flight (TOF) mass spectrometer has been developed to carry out comprehensive linked scan analysis of all stored ions in the ion trap. The approach involves a novel tapered geometry high-capacity ion trap that can store more than 106 ions (range 800-4000 m/z) without degrading its performance. Ions are stored and scanned out from the high-capacity ion trap as a function of m/z, collisionally fragmented and analyzed by TOF. Accurate mass analysis is achieved on both the precursor and fragment ions of all species ejected from the ion trap. We demonstrate the approach for comprehensive linked-scan identification of phosphopeptides in mixtures with their corresponding unphosphorylated peptides. PMID:21516228
Real-time trajectory optimization on parallel processors
NASA Technical Reports Server (NTRS)
Psiaki, Mark L.
1993-01-01
A parallel algorithm has been developed for rapidly solving trajectory optimization problems. The goal of the work has been to develop an algorithm that is suitable to do real-time, on-line optimal guidance through repeated solution of a trajectory optimization problem. The algorithm has been developed on an INTEL iPSC/860 message passing parallel processor. It uses a zero-order-hold discretization of a continuous-time problem and solves the resulting nonlinear programming problem using a custom-designed augmented Lagrangian nonlinear programming algorithm. The algorithm achieves parallelism of function, derivative, and search direction calculations through the principle of domain decomposition applied along the time axis. It has been encoded and tested on 3 example problems, the Goddard problem, the acceleration-limited, planar minimum-time to the origin problem, and a National Aerospace Plane minimum-fuel ascent guidance problem. Execution times as fast as 118 sec of wall clock time have been achieved for a 128-stage Goddard problem solved on 32 processors. A 32-stage minimum-time problem has been solved in 151 sec on 32 processors. A 32-stage National Aerospace Plane problem required 2 hours when solved on 32 processors. A speed-up factor of 7.2 has been achieved by using 32-nodes instead of 1-node to solve a 64-stage Goddard problem.
Characterization and optimization of scan speed for tapping-mode atomic force microscopy
NASA Astrophysics Data System (ADS)
Sulchek, T.; Yaralioglu, G. G.; Quate, C. F.; Minne, S. C.
2002-08-01
Increasing the imaging speed of tapping mode atomic force microscopy (AFM) has important practical and scientific applications. The scan speed of tapping-mode AFMs is limited by the speed of the feedback loop that maintains a constant tapping amplitude. This article seeks to illuminate these limits to scanning speed. The limits to the feedback loop are: (1) slow transient response of probe; (2) instability limitations of high-quality factor (Q) systems; (3) feedback actuator bandwidth; (4) error signal saturation; and the (5) rms-to-dc converter. The article will also suggest solutions to mitigate these limitations. These limitations can be addressed through integrating a faster feedback actuator as well as active control of the dynamics of the cantilever.
Time optimal control of pendulum-cart system
Turnau, A.; Korytowski, A.
1994-12-31
We consider the synthesis of time optimal control which steers a pendulum hinged to a cart to a given state (e.g., the upright position), starting from arbitrary initial conditions. The control of the pendulum can system has attracted attention of many authors because of its relatively simple structure and at the same time, nontrivial nonlinearity. Various heuristic approaches combined with 1q stabilization in the vicinity of the target state were used to swing the pendulum up to the upright position and to keep it there. However, time-optimality was not achieved. We construct the time optimal control using a sequence of fixed horizon problems in which the norms of terminal states are minimized. The problems with fixed horizons are solved numerically by means of gradient optimization, with gradients determined from the solution of adjoint equations. Due to embedding the synthesis algorithms in the Matlab - Simulink environment, it is possible to track and visualize the control process as well as the results of simulation experiments.
Beam-energy-spread minimization using cell-timing optimization
NASA Astrophysics Data System (ADS)
Rose, C. R.; Ekdahl, C.; Schulze, M.
2012-04-01
Beam energy spread, and related beam motion, increase the difficulty in tuning for multipulse radiographic experiments at the dual-axis radiographic hydrodynamic test facility’s axis-II linear induction accelerator (LIA). In this article, we describe an optimization method to reduce the energy spread by adjusting the timing of the cell voltages (both unloaded and loaded), either advancing or retarding, such that the injector voltage and summed cell voltages in the LIA result in a flatter energy profile. We developed a nonlinear optimization routine which accepts as inputs the 74 cell-voltage, injector voltage, and beam current waveforms. It optimizes cell timing per user-selected groups of cells and outputs timing adjustments, one for each of the selected groups. To verify the theory, we acquired and present data for both unloaded and loaded cell-timing optimizations. For the unloaded cells, the preoptimization baseline energy spread was reduced by 34% and 31% for two shots as compared to baseline. For the loaded-cell case, the measured energy spread was reduced by 49% compared to baseline.
NASA Astrophysics Data System (ADS)
Jing, Zijian; Xu, Minglong; Feng, Bo
2015-02-01
Mirror-scanning mechanisms are a key component in optical systems for diverse applications. However, the applications of existing piezoelectric scanners are limited due to their small angular travels. To overcome this problem, a novel two-axis mirror-scanning mechanism, which consists of a two-axis tip-tilt flexure mechanism and a set of piezoelectric actuators, is proposed in this paper. The focus of this research is on the design, theoretical modeling, and optimization of the piezoelectric-driven mechanism, with the goal of achieving large angular travels in a compact size. The design of the two-axis tip-tilt flexure mechanism is based on two nonuniform beams, which translate the limited linear output displacements of the piezoelectric actuators into large output angles. To exactly predict the angular travels, we built a voltage-angle model that characterizes the relationship between the input voltages to the piezoelectric actuators and the output angles of the piezoelectric-driven mechanism. Using this analytical model, the optimization is performed to improve the angular travels. A prototype of the mirror-scanning mechanism is fabricated based on the optimization results, and experiments are implemented to test the two-axis output angles. The experimental result shows that the angular travels of the scanner achieve more than 50 mrad, and the error between the analytical model and the experiment is about 11%. This error is much smaller than the error for the model built using the previous method because the influence of the stiffness of the mechanical structure on the deformation of the piezoelectric stack is considered in the voltage-angle model.
2013-01-01
Background The fovea, which is the most sensitive part of the retina, is known to have birefringent properties, i.e. it changes the polarization state of light upon reflection. Existing devices use this property to obtain information on the orientation of the fovea and the direction of gaze. Such devices employ specific frequency components that appear during moments of fixation on a target. To detect them, previous methods have used solely the power spectrum of the Fast Fourier Transform (FFT), which, unfortunately, is an integral method, and does not give information as to where exactly the events of interest occur. With very young patients who are not cooperative enough, this presents a problem, because central fixation may be present only during very short-lasting episodes, and can easily be missed by the FFT. Method This paper presents a method for detecting short-lasting moments of central fixation in existing devices for retinal birefringence scanning, with the goal of a reliable detection of eye alignment. Signal analysis is based on the Continuous Wavelet Transform (CWT), which reliably localizes such events in the time-frequency plane. Even though the characteristic frequencies are not always strongly expressed due to possible artifacts, simple topological analysis of the time-frequency distribution can detect fixation reliably. Results In all six subjects tested, the CWT allowed precise identification of both frequency components. Moreover, in four of these subjects, episodes of intermittent but definitely present central fixation were detectable, similar to those in Figure 4. A simple FFT is likely to treat them as borderline cases, or entirely miss them, depending on the thresholds used. Conclusion Joint time-frequency analysis is a powerful tool in the detection of eye alignment, even in a noisy environment. The method is applicable to similar situations, where short-lasting diagnostic events need to be detected in time series acquired by means of
Optimal, Impulsive, Direct Ascent, Time-Fixed Orbital Interception.
1985-01-01
pp. 943-949. 10. Chiu, J. H. "Optimal Multiple-Impulse Nonlinear Orbital Rendezvous ." Ph.D. thesis, University of Illinois at Urbana-Champaign...the Earth. Each model is investigated for transfers in which the launch point is in the same plane as the target orbit (coplanar) and in which the...transfer times. Recent studies have explored orbital rendezvous for a specified 2 transfer time, i.e. time-fixed (10, 18, 29, 37). The time-fixed case is
Optimal moving grids for time-dependent partial differential equations
NASA Technical Reports Server (NTRS)
Wathen, A. J.
1992-01-01
Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of PDE solutions in the least-squares norm are reported.
Optimal moving grids for time-dependent partial differential equations
NASA Technical Reports Server (NTRS)
Wathen, A. J.
1989-01-01
Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of partial differential equation solutions in the least squares norm.
A mathematical model on the optimal timing of offspring desertion.
Seno, Hiromi; Endo, Hiromi
2007-06-07
We consider the offspring desertion as the optimal strategy for the deserter parent, analyzing a mathematical model for its expected reproductive success. It is shown that the optimality of the offspring desertion significantly depends on the offsprings' birth timing in the mating season, and on the other ecological parameters characterizing the innate nature of considered animals. Especially, the desertion is less likely to occur for the offsprings born in the later period of mating season. It is also implied that the offspring desertion after a partially biparental care would be observable only with a specific condition.
Recursive multibody dynamics and discrete-time optimal control
NASA Technical Reports Server (NTRS)
Deleuterio, G. M. T.; Damaren, C. J.
1989-01-01
A recursive algorithm is developed for the solution of the simulation dynamics problem for a chain of rigid bodies. Arbitrary joint constraints are permitted, that is, joints may allow translational and/or rotational degrees of freedom. The recursive procedure is shown to be identical to that encountered in a discrete-time optimal control problem. For each relevant quantity in the multibody dynamics problem, there exists an analog in the context of optimal control. The performance index that is minimized in the control problem is identified as Gibbs' function for the chain of bodies.
Time Distribution Using SpaceWire in the SCaN Testbed on ISS
NASA Technical Reports Server (NTRS)
Lux, James P.
2012-01-01
A paper describes an approach for timekeeping and time transfer among the devices on the CoNNeCT project s SCaN Testbed. It also describes how the clocks may be synchronized with an external time reference; e.g., time tags from the International Space Station (ISS) or RF signals received by a radio (TDRSS time service or GPS). All the units have some sort of counter that is fed by an oscillator at some convenient frequency. The basic problem in timekeeping is relating the counter value to some external time standard such as UTC. With SpaceWire, there are two approaches possible: one is to just use SpaceWire to send a message, and use an external wire for the sync signal. This is much the same as with the RS- 232 messages and l pps line from a GPS receiver. However, SpaceWire has an additional capability that was added to make it easier - it can insert and receive a special "timecode" word in the data stream.
NASA Astrophysics Data System (ADS)
Zhao, Jianhu; Wang, Xiao; Zhang, Hongmei; Hu, Jun; Jian, Xiaomin
2016-09-01
To fulfill side scan sonar (SSS) image segmentation accurately and efficiently, a novel segmentation algorithm based on neutrosophic set (NS) and quantum-behaved particle swarm optimization (QPSO) is proposed in this paper. Firstly, the neutrosophic subset images are obtained by transforming the input image into the NS domain. Then, a co-occurrence matrix is accurately constructed based on these subset images, and the entropy of the gray level image is described to serve as the fitness function of the QPSO algorithm. Moreover, the optimal two-dimensional segmentation threshold vector is quickly obtained by QPSO. Finally, the contours of the interested target are segmented with the threshold vector and extracted by the mathematic morphology operation. To further improve the segmentation efficiency, the single threshold segmentation, an alternative algorithm, is recommended for the shadow segmentation by considering the gray level characteristics of the shadow. The accuracy and efficiency of the proposed algorithm are assessed with experiments of SSS image segmentation.
Gonnissen, J.; De Backer, A.; Martinez, G. T.; Van Aert, S.; Dekker, A. J. den; Rosenauer, A.; Sijbers, J.
2014-08-11
We report an innovative method to explore the optimal experimental settings to detect light atoms from scanning transmission electron microscopy (STEM) images. Since light elements play a key role in many technologically important materials, such as lithium-battery devices or hydrogen storage applications, much effort has been made to optimize the STEM technique in order to detect light elements. Therefore, classical performance criteria, such as contrast or signal-to-noise ratio, are often discussed hereby aiming at improvements of the direct visual interpretability. However, when images are interpreted quantitatively, one needs an alternative criterion, which we derive based on statistical detection theory. Using realistic simulations of technologically important materials, we demonstrate the benefits of the proposed method and compare the results with existing approaches.
[Photodissociation of Acetylene and Acetone using Step-Scan Time-Resolved FTIR Emission Spectroscopy
NASA Technical Reports Server (NTRS)
McLaren, Ian A.; Wrobel, Jacek D.
1997-01-01
The photodissociation of acetylene and acetone was investigated as a function of added quenching gas pressures using step-scan time-resolved FTIR emission spectroscopy. Its main components consist of Bruker IFS88, step-scan Fourier Transform Infrared (FTIR) spectrometer coupled to a flow cell equipped with Welsh collection optics. Vibrationally excited C2H radicals were produced from the photodissociation of acetylene in the unfocused experiments. The infrared (IR) emission from these excited C2H radicals was investigated as a function of added argon pressure. Argon quenching rate constants for all C2H emission bands are of the order of 10(exp -13)cc/molecule.sec. Quenching of these radicals by acetylene is efficient, with a rate constant in the range of 10(exp -11) cc/molecule.sec. The relative intensity of the different C2H emission bands did not change with the increasing argon or acetylene pressure. However, the overall IR emission intensity decreased, for example, by more than 50% when the argon partial pressure was raised from 0.2 to 2 Torr at fixed precursor pressure of 160mTorr. These observations provide evidence for the formation of a metastable C2H2 species, which are collisionally quenched by argon or acetylene. Problems encountered in the course of the experimental work are also described.
Side-scan sonar mapping: Pseudo-real-time processing and mosaicking techniques
Danforth, W.W.; Schwab, W.C.; O'Brien, T.F. ); Karl, H. )
1990-05-01
The US Geological Survey (USGS) surveyed 1,000 km{sup 2} of the continental shelf off San Francisco during a 17-day cruise, using a 120-kHz side-scan sonar system, and produced a digitally processed sonar mosaic of the survey area. The data were processed and mosaicked in real time using software developed at the Lamont-Doherty Geological Observatory and modified by the USGS, a substantial task due to the enormous amount of data produced by high-resolution side-scan systems. Approximately 33 megabytes of data were acquired every 1.5 hr. The real-time sonar images were displayed on a PC-based workstation and the data were transferred to a UNIX minicomputer where the sonar images were slant-range corrected, enhanced using an averaging method of desampling and a linear-contrast stretch, merged with navigation, geographically oriented at a user-selected scale, and finally output to a thermal printer. The hard-copy output was then used to construct a mosaic of the survey area. The final product of this technique is a UTM-projected map-mosaic of sea-floor backscatter variations, which could be used, for example, to locate appropriate sites for sediment sampling to ground truth the sonar imagery while still at sea. More importantly, reconnaissance surveys of this type allow for the analysis and interpretation of the mosaic during a cruise, thus greatly reducing the preparation time needed for planning follow-up studies of a particular area.
Thermodynamics constrains allometric scaling of optimal development time in insects.
Dillon, Michael E; Frazier, Melanie R
2013-01-01
Development time is a critical life-history trait that has profound effects on organism fitness and on population growth rates. For ectotherms, development time is strongly influenced by temperature and is predicted to scale with body mass to the quarter power based on 1) the ontogenetic growth model of the metabolic theory of ecology which describes a bioenergetic balance between tissue maintenance and growth given the scaling relationship between metabolism and body size, and 2) numerous studies, primarily of vertebrate endotherms, that largely support this prediction. However, few studies have investigated the allometry of development time among invertebrates, including insects. Abundant data on development of diverse insects provides an ideal opportunity to better understand the scaling of development time in this ecologically and economically important group. Insects develop more quickly at warmer temperatures until reaching a minimum development time at some optimal temperature, after which development slows. We evaluated the allometry of insect development time by compiling estimates of minimum development time and optimal developmental temperature for 361 insect species from 16 orders with body mass varying over nearly 6 orders of magnitude. Allometric scaling exponents varied with the statistical approach: standardized major axis regression supported the predicted quarter-power scaling relationship, but ordinary and phylogenetic generalized least squares did not. Regardless of the statistical approach, body size alone explained less than 28% of the variation in development time. Models that also included optimal temperature explained over 50% of the variation in development time. Warm-adapted insects developed more quickly, regardless of body size, supporting the "hotter is better" hypothesis that posits that ectotherms have a limited ability to evolutionarily compensate for the depressing effects of low temperatures on rates of biological processes. The
Thermodynamics Constrains Allometric Scaling of Optimal Development Time in Insects
Dillon, Michael E.; Frazier, Melanie R.
2013-01-01
Development time is a critical life-history trait that has profound effects on organism fitness and on population growth rates. For ectotherms, development time is strongly influenced by temperature and is predicted to scale with body mass to the quarter power based on 1) the ontogenetic growth model of the metabolic theory of ecology which describes a bioenergetic balance between tissue maintenance and growth given the scaling relationship between metabolism and body size, and 2) numerous studies, primarily of vertebrate endotherms, that largely support this prediction. However, few studies have investigated the allometry of development time among invertebrates, including insects. Abundant data on development of diverse insects provides an ideal opportunity to better understand the scaling of development time in this ecologically and economically important group. Insects develop more quickly at warmer temperatures until reaching a minimum development time at some optimal temperature, after which development slows. We evaluated the allometry of insect development time by compiling estimates of minimum development time and optimal developmental temperature for 361 insect species from 16 orders with body mass varying over nearly 6 orders of magnitude. Allometric scaling exponents varied with the statistical approach: standardized major axis regression supported the predicted quarter-power scaling relationship, but ordinary and phylogenetic generalized least squares did not. Regardless of the statistical approach, body size alone explained less than 28% of the variation in development time. Models that also included optimal temperature explained over 50% of the variation in development time. Warm-adapted insects developed more quickly, regardless of body size, supporting the “hotter is better” hypothesis that posits that ectotherms have a limited ability to evolutionarily compensate for the depressing effects of low temperatures on rates of biological processes
NASA Astrophysics Data System (ADS)
Daripa, Prabir
2011-11-01
We numerically investigate the optimal viscous profile in constant time injection policy of enhanced oil recovery. In particular, we investigate the effect of a combination of interfacial and layer instabilities in three-layer porous media flow on the overall growth of instabilities and thereby characterize the optimal viscous profile. Results based on monotonic and non-monotonic viscous profiles will be presented. Time permitting. we will also present results on multi-layer porous media flows for Newtonian and non-Newtonian fluids and compare the results. The support of Qatar National Fund under a QNRF Grant is acknowledged.
Existence of the time optimal control for robotic manipulators
NASA Technical Reports Server (NTRS)
Wen, J.; Desrochers, A.
1986-01-01
Using Filipov's Theorem, it is shown that the conditions oif nonfinite escape of trajectories, reachability, and convexity of the dynamics over all admissible controls are needed for the existence of a time optimal solution for the robotic equation. With a lower bound for the finite-escape time established using a Liapunov approach, and an upper bound for the time to reach the target established using the exact linearization idea, a single inequality is found which is closely related to the coriolis and the centrifugal terms, the absence of which implies that the domain of existence of the optimal solution can be made arbitrarily large with a large torque constraint. As the work space is finite, this is essentially a global result in practical situations.
Optimal timing for interim analyses in clinical trials.
Togo, Kanae; Iwasaki, Manabu
2013-01-01
In clinical trials, interim analyses are often performed before the completion of the trial. The intention is to possibly terminate the trial early or adjust the sample size. The time of conducting an interim analysis affects the probability of the early termination and the number of subjects enrolled until the interim analysis. This influences the expected total number of subjects. In this study, we examine the optimal time for conducting interim analyses with a view to minimizing the expected total sample size. It is found that regardless of the effect size, the optimal time of one interim analysis for the early termination is approximately two-thirds of the planned observations for the O'Brien-Fleming type of spending function and approximately half of the planned observations for the Pocock type when the subject enrollment is halted for the interim analysis. When the subject enrollment is continuous throughout the trial, the optimal time for the interim analysis varies according to the follow-up duration. We also consider the time for one interim analysis including the sample size adjustment in terms of minimizing the expected total sample size.
Optimal Real-time Dispatch for Integrated Energy Systems
Firestone, Ryan Michael
2007-05-31
This report describes the development and application of a dispatch optimization algorithm for integrated energy systems (IES) comprised of on-site cogeneration of heat and electricity, energy storage devices, and demand response opportunities. This work is intended to aid commercial and industrial sites in making use of modern computing power and optimization algorithms to make informed, near-optimal decisions under significant uncertainty and complex objective functions. The optimization algorithm uses a finite set of randomly generated future scenarios to approximate the true, stochastic future; constraints are included that prevent solutions to this approximate problem from deviating from solutions to the actual problem. The algorithm is then expressed as a mixed integer linear program, to which a powerful commercial solver is applied. A case study of United States Postal Service Processing and Distribution Centers (P&DC) in four cities and under three different electricity tariff structures is conducted to (1) determine the added value of optimal control to a cogeneration system over current, heuristic control strategies; (2) determine the value of limited electric load curtailment opportunities, with and without cogeneration; and (3) determine the trade-off between least-cost and least-carbon operations of a cogeneration system. Key results for the P&DC sites studied include (1) in locations where the average electricity and natural gas prices suggest a marginally profitable cogeneration system, optimal control can add up to 67% to the value of the cogeneration system; optimal control adds less value in locations where cogeneration is more clearly profitable; (2) optimal control under real-time pricing is (a) more complicated than under typical time-of-use tariffs and (b) at times necessary to make cogeneration economic at all; (3) limited electric load curtailment opportunities can be more valuable as a compliment to the cogeneration system than alone; and
Real-time Optimization of an Ion Optical Beamline
NASA Astrophysics Data System (ADS)
Schillaci, Zachary; Amthor, Matthew; Morrissey, Dave; Portillo, Mauricio; Schwarz, Stefan; Steiner, Mathias; Sumithrarachchi, Chandana
2015-10-01
We have developed an experimental approach to automatically adjust multiple electrostatic and/or magnetic elements on an ion optical beamline, while analyzing the profile of the beam on a detector at the image point, until an optimal tune is found. This approach dramatically simplifies beamline tuning, thus allowing more efficient use of experimental equipment; ensures a more optimal tune is found, providing a more focused beam spot without a significant loss of beam transmission; and will allow the development of specialized optical tunes based on the needs of any given experiment. The approach was tested directly on the D-Line at the National Superconducting Cyclotron Laboratory at Michigan State University in several real-time optimization runs. The initial experiments demonstrate the ability of the optimizer to focus the beam while preserving transmission, ultimately halving σx and σy of the beam spot within a one-hour optimization run relative to that produced through a manual tweak of a model based tune. With further research we plan to generalize the approach to work on any given beamline, including particularly for higher order tunes of fragment separators. NSF REU Grant #PHY-1156964 and NSF Grant #PHY-1102511.
Lu, Jie; Martin, Jody; Lu, Yiqing; Zhao, Jiangbo; Yuan, Jingli; Ostrowski, Martin; Paulsen, Ian; Piper, James A; Jin, Dayong
2012-11-20
We report a highly sensitive method for rapid identification and quantification of rare-event cells carrying low-abundance surface biomarkers. The method applies lanthanide bioprobes and time-gated detection to effectively eliminate both nontarget organisms and background noise and utilizes the europium containing nanoparticles to further amplify the signal strength by a factor of ∼20. Of interest is that these nanoparticles did not correspondingly enhance the intensity of nonspecific binding. Thus, the dramatically improved signal-to-background ratio enables the low-expression surface antigens on single cells to be quantified. Furthermore, we applied an orthogonal scanning automated microscopy (OSAM) technique to rapidly process a large population of target-only cells on microscopy slides, leading to quantitative statistical data with high certainty. Thus, the techniques together resolved nearly all false-negative events from the interfering crowd including many false-positive events.
Time-resolved scanning Kerr microscopy of flux beam formation in hard disk write heads
NASA Astrophysics Data System (ADS)
Valkass, Robert A. J.; Spicer, Timothy M.; Burgos Parra, Erick; Hicken, Robert J.; Bashir, Muhammad A.; Gubbins, Mark A.; Czoschke, Peter J.; Lopusnik, Radek
2016-06-01
To meet growing data storage needs, the density of data stored on hard disk drives must increase. In pursuit of this aim, the magnetodynamics of the hard disk write head must be characterized and understood, particularly the process of "flux beaming." In this study, seven different configurations of perpendicular magnetic recording (PMR) write heads were imaged using time-resolved scanning Kerr microscopy, revealing their detailed dynamic magnetic state during the write process. It was found that the precise position and number of driving coils can significantly alter the formation of flux beams during the write process. These results are applicable to the design and understanding of current PMR and next-generation heat-assisted magnetic recording devices, as well as being relevant to other magnetic devices.
Interfacial Dzyaloshinskii-Moriya interaction studied by time-resolved scanning Kerr microscopy
NASA Astrophysics Data System (ADS)
Körner, H. S.; Stigloher, J.; Bauer, H. G.; Hata, H.; Taniguchi, T.; Moriyama, T.; Ono, T.; Back, C. H.
2015-12-01
We investigate the influence of the interfacial Dzyaloshinskii-Moriya interaction (DMI) on the propagation of Damon-Eshbach spin waves in micrometer-sized Pt(2 nm)/Co(0.4 nm)/Py(5 nm)/MgO(5 nm) stripes. We use time-resolved scanning Kerr microscopy to image the spin waves excited by a microwave antenna and to directly access their dispersion. The presence of an interfacial DMI manifests itself in an asymmetry in the dispersion for counterpropagating spin waves which reverses sign upon reversal of the direction of the externally applied magnetic field. From this asymmetry we deduce the strength of the interfacial DMI. Micromagnetic simulations confirm that the observed difference in the wave numbers and the signature of the asymmetry are characteristic for the occurrence of an interfacial DMI at the Pt/Co interface and cannot be explained by the uniaxial perpendicular magnetic anisotropy field originating from the same interface.
On cerebral celebrity and reality TV: subjectivity in times of brain scans and psychotainment.
De Vos, Jan
2009-01-01
The philosopher Daniel Dennett developed a theory of consciousness in which he replaces the so-called Cartesian theater with conceptions such as "fame in the brain" and "cerebral celebrity." The paradox of this is that Dennett unwittingly reintroduces the metaphors of the stage and the screen. The use of this trope is pursued in this essay in order to juxtapose Dennett's theory with reality TV and celebrity culture. This will allow us to sketch out late-modern subjectivity in times of brains scans and "psychotainment." Drawing on Walter Benjamin, Giorgi Agamben, Slavoj Žižek, and others, a plea is made for a materialism of the zero-level of subjectivity.
Non-contact in vivo diffuse optical imaging using a time-gated scanning system
Mazurenka, M.; Di Sieno, L.; Boso, G.; Contini, D.; Pifferi, A.; Mora, A. Dalla; Tosi, A.; Wabnitz, H.; Macdonald, R.
2013-01-01
We report on the design and first in vivo tests of a novel non-contact scanning imaging system for time-domain near-infrared spectroscopy. Our system is based on a null source-detector separation approach and utilizes polarization-selective detection and a fast-gated single-photon avalanche diode to record late photons only. The in-vivo tests included the recording of hemodynamics during arm occlusion and two brain activation tasks. Localized and non-localized changes in oxy- and deoxyhemoglobin concentration were detected for motor and cognitive tasks, respectively. The tests demonstrate the feasibility of non-contact imaging of absorption changes in deeper tissues. PMID:24156081
Domain decomposition in time for PDE-constrained optimization
Barker, Andrew T.; Stoll, Martin
2015-08-28
Here, PDE-constrained optimization problems have a wide range of applications, but they lead to very large and ill-conditioned linear systems, especially if the problems are time dependent. In this paper we outline an approach for dealing with such problems by decomposing them in time and applying an additive Schwarz preconditioner in time, so that we can take advantage of parallel computers to deal with the very large linear systems. We then illustrate the performance of our method on a variety of problems.
Linear optimal control of continuous time chaotic systems.
Merat, Kaveh; Abbaszadeh Chekan, Jafar; Salarieh, Hassan; Alasty, Aria
2014-07-01
In this research study, chaos control of continuous time systems has been performed by using dynamic programming technique. In the first step by crossing the response orbits with a selected Poincare section and subsequently applying linear regression method, the continuous time system is converted to a discrete type. Then, by solving the Riccati equation a sub-optimal algorithm has been devised for the obtained discrete chaotic systems. In the next step, by implementing the acquired algorithm on the quantized continuous time system, the chaos has been suppressed in the Rossler and AFM systems as some case studies.
Optimal transport in time-varying small-world networks
NASA Astrophysics Data System (ADS)
Chen, Qu; Qian, Jiang-Hai; Zhu, Liang; Han, Ding-Ding
2016-03-01
The time-order of interactions, which is regulated by some intrinsic activity, surely plays a crucial role regarding the transport efficiency of transportation systems. Here we study the optimal transport structure by measure of the length of time-respecting paths. Our network is built from a two-dimensional regular lattice, and long-range connections are allocated with probability Pi j˜rij -α , where ri j is the Manhattan distance. By assigning each shortcut an activity rate subjected to its geometric distance τi j˜rij -C , long-range links become active intermittently, leading to the time-varying dynamics. We show that for 0
Discrete-time dynamic user-optimal departure time/route choice model
Chen, H.K.; Hsueh, C.F.
1998-05-01
This paper concerns a discrete-time, link-based, dynamic user-optimal departure time/route choice model using the variational inequality approach. The model complies with a dynamic user-optimal equilibrium condition in which for each origin-destination pair, the actual route travel times experienced by travelers, regardless the departure time, is equal and minimal. A nested diagonalization procedure is proposed to solve the model. Numerical examples are then provided for demonstration and detailed elaboration for multiple solutions and Braess`s paradox.
Time-Dependent Response Versus Scan Angle for MODIS Reflective Solar Bands
NASA Technical Reports Server (NTRS)
Sun, Junqiang; Xiong, Xiaoxiong; Angal, Amit; Chen, Hongda; Wu, Aisheng; Geng, Xu
2014-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) instruments currently operate onboard the National Aeronautics and Space Administration (NASA's) Terra and Aqua spacecraft, launched on December 18, 1999 and May 4, 2002, respectively. MODIS has 36 spectral bands, among which 20 are reflective solar bands (RSBs) covering a spectral range from 0.412 to 2.13 µm. The RSBs are calibrated on orbit using a solar diffuser (SD) and an SD stability monitor and with additional measurements from lunar observations via a space view (SV) port. Selected pseudo-invariant desert sites are also used to track the RSB on-orbit gain change, particularly for short-wavelength bands. MODIS views the Earth surface, SV, and the onboard calibrators using a two-sided scan mirror. The response versus scan angle (RVS) of the scan mirror was characterized prior to launch, and its changes are tracked using observations made at different angles of incidence from onboard SD, lunar, and Earth view (EV) measurements. These observations show that the optical properties of the scan mirror have experienced large wavelength-dependent degradation in both the visible and near infrared spectral regions. Algorithms have been developed to track the on-orbit RVS change using the calibrators and the selected desert sites. These algorithms have been applied to both Terra and Aqua MODIS Level 1B (L1B) to improve the EV data accuracy since L1B Collection 4, refined in Collection 5, and further improved in the latest Collection 6 (C6). In C6, two approaches have been used to derive the time-dependent RVS for MODIS RSB. The first approach relies on data collected from sensor onboard calibrators and mirror side ratios from EV observations. The second approach uses onboard calibrators and EV response trending from selected desert sites. This approach is mainly used for the bands with much larger changes in their time-dependent RVS, such as the Terra MODIS bands 1-4, 8, and 9 and the Aqua MODIS bands 8- and 9
Time-resolved scanning tunneling microscopy for studies of nanoscale magnetization dynamics
NASA Astrophysics Data System (ADS)
Loth, Sebastian
2015-03-01
The time resolution of the scanning tunneling microscope can be boosted greatly by use of electronic pump probe measurement schemes. Pulse shaping of the input pulses can even overcome bandwidth limitations of the instrument and enables sub-nanosecond time resolution. In this talk we will focus on applications of this technique for measurements of fast spin dynamics in nanomagnets. We use the probe tip of a low-temperature STM to arrange magnetic atoms into arrays of our own design. Thin insulating films decouple the atoms from the supporting metallic substrate so that the nanostructures show quantum-magnetic properties with discrete spin states. The time-domain information gained in pump probe spectroscopy quantifies the spin relaxation between metastable spin states. It enables isolating the interaction between the nanomagnet and its environment. In particular, we find that the magnetic atoms of a spin-polarized STM tip interact significantly with the surface even at moderate tunneling conditions. This interaction acts analogously to a highly localized magnetic field. It depends exponentially on the tip-nanomagnet distance and can reach a strength of several tesla. We use this atomically localized magnetic field to control the spin state mixing of a nanomagnet in an avoided level crossing of low-energy spin states. Furthermore, pump probe spectroscopy enables non-local measurements of magnetic states and highlights pathways to design and control magnetism at the single atom level.
Causal Discovery from Subsampled Time Series Data by Constraint Optimization
Hyttinen, Antti; Plis, Sergey; Järvisalo, Matti; Eberhardt, Frederick; Danks, David
2017-01-01
This paper focuses on causal structure estimation from time series data in which measurements are obtained at a coarser timescale than the causal timescale of the underlying system. Previous work has shown that such subsampling can lead to significant errors about the system’s causal structure if not properly taken into account. In this paper, we first consider the search for the system timescale causal structures that correspond to a given measurement timescale structure. We provide a constraint satisfaction procedure whose computational performance is several orders of magnitude better than previous approaches. We then consider finite-sample data as input, and propose the first constraint optimization approach for recovering the system timescale causal structure. This algorithm optimally recovers from possible conflicts due to statistical errors. More generally, these advances allow for a robust and non-parametric estimation of system timescale causal structures from subsampled time series data. PMID:28203316
Causal Discovery from Subsampled Time Series Data by Constraint Optimization.
Hyttinen, Antti; Plis, Sergey; Järvisalo, Matti; Eberhardt, Frederick; Danks, David
2016-08-01
This paper focuses on causal structure estimation from time series data in which measurements are obtained at a coarser timescale than the causal timescale of the underlying system. Previous work has shown that such subsampling can lead to significant errors about the system's causal structure if not properly taken into account. In this paper, we first consider the search for the system timescale causal structures that correspond to a given measurement timescale structure. We provide a constraint satisfaction procedure whose computational performance is several orders of magnitude better than previous approaches. We then consider finite-sample data as input, and propose the first constraint optimization approach for recovering the system timescale causal structure. This algorithm optimally recovers from possible conflicts due to statistical errors. More generally, these advances allow for a robust and non-parametric estimation of system timescale causal structures from subsampled time series data.
Li, H; Zhang, X; Zhu, X; Li, Y
2014-06-15
Purpose: Intensity modulated proton therapy (IMPT) has been shown to be able to reduce dose to normal tissue compared to intensity modulated photon radio-therapy (IMRT), and has been implemented for selected lung cancer patients. However, respiratory motion-induced dose uncertainty remain one of the major concerns for the radiotherapy of lung cancer, and the utility of IMPT for lung patients was limited because of the proton dose uncertainty induced by motion. Strategies such as repainting and tumor tracking have been proposed and studied but repainting could result in unacceptable long delivery time and tracking is not yet clinically available. We propose a novel delivery strategy for spot scanning proton beam therapy. Method: The effective number of delivery (END) for each spot position in a treatment plan was calculated based on the parameters of the delivery system, including time required for each spot, spot size and energy. The dose uncertainty was then calculated with an analytical formula. The spot delivery sequence was optimized to maximize END and minimize the dose uncertainty. 2D Measurements with a detector array on a 1D moving platform were performed to validate the calculated results. Results: 143 2D measurements on a moving platform were performed for different delivery sequences of a single layer uniform pattern. The measured dose uncertainty is a strong function of the delivery sequence, the worst delivery sequence results in dose error up to 70% while the optimized delivery sequence results in dose error of <5%. END vs. measured dose uncertainty follows the analytical formula. Conclusion: With optimized delivery sequence, it is feasible to minimize the dose uncertainty due to motion in spot scanning proton therapy.
NASA Astrophysics Data System (ADS)
Ross, Steven M.
A method is presented to couple and solve the optimal control and the optimal estimation problems simultaneously, allowing systems with bearing-only sensors to maneuver to obtain observability for relative navigation without unnecessarily detracting from a primary mission. A fundamentally new approach to trajectory optimization and the dual control problem is presented, constraining polynomial approximations of the Fisher Information Matrix to provide an information gradient and allow prescription of the level of future estimation certainty required for mission accomplishment. Disturbances, modeling deficiencies, and corrupted measurements are addressed recursively using Radau pseudospectral collocation methods and sequential quadratic programming for the optimal path and an Unscented Kalman Filter for the target position estimate. The underlying real-time optimal control (RTOC) algorithm is developed, specifically addressing limitations of current techniques that lose error integration. The resulting guidance method can be applied to any bearing-only system, such as submarines using passive sonar, anti-radiation missiles, or small UAVs seeking to land on power lines for energy harvesting. System integration, variable timing methods, and discontinuity management techniques are provided for actual hardware implementation. Validation is accomplished with both simulation and flight test, autonomously landing a quadrotor helicopter on a wire.
Time-resolved x-ray diffraction and calorimetric studies at low scan rates
Tenchov, Boris G.; Yao, Haruhiko; Hatta, Ichiro
1989-01-01
The phase transitions in fully hydrated dipalmitoylphosphatidylcholine (DPPC) and DPPC/water/ethanol phases have been studied by lowangle time-resolved x-ray diffraction under conditions similar to those employed in calorimetry (scan rates 0.05-0.5°C/min and uniform temperature throughout the samples). This approach provides more adequate characterization of the equilibrium transition pathways and allows for close correlations between structural and thermodynamic data. No coexistence of the rippled gel (Pβ') and liquid-crystalline (Lα) phases was found in the main transition of DPPC; rather, a loss of correlation in the lamellar structure, observed as broadening of the lamellar reflections, takes place in a narrow temperature range of ∼100 mK at the transition midpoint. Formation of a long-living metastable phase, denoted by Pβ'(mst), differing from the initial Pβ' was observed in cooling direction by both x-ray diffraction and calorimetry. No direct conversion of Pβ'(mst) into Pβ' occurs for over 24 h but only by way of the phase sequence Pβ'(mst) → Lβ' → Pβ'. According to differential scanning calorimetry (DSC), the enthalpy of the Pβ'(mst)-Lα transition is by ∼5% lower than that of the Pβ'-Lα transition. The effects of ethanol (Rowe, E. S. 1983. Biochemistry. 22:3299-3305; Simon, S. A., and T. J. McIntosh. 1984. Biochim. Biophys. Acta 773:169-172) on the mechanism and reversibility of the DPPC main transition were clearly visualized. At ethanol concentrations inducing formation of interdigitated gel phase, the main transition proceeds through a coexistence of the initial and final phases over a finite temperature range. During the subtransition in DPPC recorded at scan rate 0.3°C/min, a smooth monotonic increase of the lamellar spacing from its subgel (Lc) to its gel (Lβ') phase value takes place. The width of the lamellar reflections remains unchanged during this transformation. This provides grounds to propose a
Optimal ambulance location with random delays and travel times.
Ingolfsson, Armann; Budge, Susan; Erkut, Erhan
2008-09-01
We describe an ambulance location optimization model that minimizes the number of ambulances needed to provide a specified service level. The model measures service level as the fraction of calls reached within a given time standard and considers response time to be composed of a random delay (prior to travel to the scene) plus a random travel time. In addition to modeling the uncertainty in the delay and in the travel time, we incorporate uncertainty in the ambulance availability in determining the response time. Models that do not account for the uncertainty in all three of these components may overestimate the possible service level for a given number of ambulances and underestimate the number of ambulances needed to provide a specified service level. By explicitly modeling the randomness in the ambulance availability and in the delays and the travel times, we arrive at a more realistic ambulance location model. Our model is tractable enough to be solved with general-purpose optimization solvers for cities with populations around one Million. We illustrate the use of the model using actual data from Edmonton.
Wang, D; Smith, B; Hill, P; Gelover, E; Flynn, R; Hyer, D
2014-06-15
Purpose: There has been a growing interest in applying collimation to pencil beam scanning (PBS) proton therapy in order to sharpen the lateral dose falloff out of the target, especially at low energies. Currently, there is not a method to optimally determine the collimation position or margin around the target. A uniform margin would not be ideal due to the fact that an incoming symmetric pencil beam, after being intercepted by a collimator near the target boundary, will become asymmetric and experience a lateral shift away from its original spot location, leaving the target insufficiently covered. We demonstrate a method that optimally determines the collimator position on a per-spot basis, in order to maximize target dose while minimizing normal tissue dose. Methods: A library of collimated pencil beams were obtained through Monte Carlo simulation with a collimator placed at varying distances from the central axis of an incoming symmetrical pencil beam of 118 MeV and 5 mm sigma-in-air. Two-dimensional treatment plans were then created using this library of collimated pencil beams. For each spot position in a treatment plan, the collimator position was optimally determined in such a way that the resultant pencil beam maximized the ratio of in-target dose and out-of-target dose. For comparison, un-collimated treatment plans were also computed. Results: The spot-by-spot optimally determined collimator positions allowed the reduction of normal tissue dose while maintaining the same target coverage as un-collimated PBS. Quantitatively, the mean dose outside of the target was reduced by approximately 40% as compared to the plan without collimation. Conclusion: The proposed method determines the optimal collimator position for each spot in collimated PBS proton therapy. The use of a collimator will improve PBS dose distributions achievable today and will continue to be the subject of future investigations.
Robust Optimal Stopping-Time Control for Nonlinear Systems
Ball, J.A.; Chudoung, J.; Day, M.V.
2002-10-01
We formulate a robust optimal stopping-time problem for a state-space system and give the connection between various notions of lower value function for the associated games (and storage function for the associated dissipative system) with solutions of the appropriate variational inequality (VI) (the analogue of the Hamilton-Jacobi-Bellman-Isaacs equation for this setting). We show that the stopping-time rule can be obtained by solving the VI in the viscosity sense and a positive definite supersolution of the VI can be used for stability analysis.
Optimal Stochastic Restart Renders Fluctuations in First Passage Times Universal
NASA Astrophysics Data System (ADS)
Reuveni, Shlomi
2016-04-01
Stochastic restart may drastically reduce the expected run time of a computer algorithm, expedite the completion of a complex search process, or increase the turnover rate of an enzymatic reaction. These diverse first-passage-time (FPT) processes seem to have very little in common but it is actually quite the other way around. Here we show that the relative standard deviation associated with the FPT of an optimally restarted process, i.e., one that is restarted at a constant (nonzero) rate which brings the mean FPT to a minimum, is always unity. We interpret, further generalize, and discuss this finding and the implications arising from it.
Optimal model-free prediction from multivariate time series
NASA Astrophysics Data System (ADS)
Runge, Jakob; Donner, Reik V.; Kurths, Jürgen
2015-05-01
Forecasting a time series from multivariate predictors constitutes a challenging problem, especially using model-free approaches. Most techniques, such as nearest-neighbor prediction, quickly suffer from the curse of dimensionality and overfitting for more than a few predictors which has limited their application mostly to the univariate case. Therefore, selection strategies are needed that harness the available information as efficiently as possible. Since often the right combination of predictors matters, ideally all subsets of possible predictors should be tested for their predictive power, but the exponentially growing number of combinations makes such an approach computationally prohibitive. Here a prediction scheme that overcomes this strong limitation is introduced utilizing a causal preselection step which drastically reduces the number of possible predictors to the most predictive set of causal drivers making a globally optimal search scheme tractable. The information-theoretic optimality is derived and practical selection criteria are discussed. As demonstrated for multivariate nonlinear stochastic delay processes, the optimal scheme can even be less computationally expensive than commonly used suboptimal schemes like forward selection. The method suggests a general framework to apply the optimal model-free approach to select variables and subsequently fit a model to further improve a prediction or learn statistical dependencies. The performance of this framework is illustrated on a climatological index of El Niño Southern Oscillation.
Chaos Time Series Prediction Based on Membrane Optimization Algorithms
Li, Meng; Yi, Liangzhong; Pei, Zheng; Gao, Zhisheng
2015-01-01
This paper puts forward a prediction model based on membrane computing optimization algorithm for chaos time series; the model optimizes simultaneously the parameters of phase space reconstruction (τ, m) and least squares support vector machine (LS-SVM) (γ, σ) by using membrane computing optimization algorithm. It is an important basis for spectrum management to predict accurately the change trend of parameters in the electromagnetic environment, which can help decision makers to adopt an optimal action. Then, the model presented in this paper is used to forecast band occupancy rate of frequency modulation (FM) broadcasting band and interphone band. To show the applicability and superiority of the proposed model, this paper will compare the forecast model presented in it with conventional similar models. The experimental results show that whether single-step prediction or multistep prediction, the proposed model performs best based on three error measures, namely, normalized mean square error (NMSE), root mean square error (RMSE), and mean absolute percentage error (MAPE). PMID:25874249
Optimal model-free prediction from multivariate time series.
Runge, Jakob; Donner, Reik V; Kurths, Jürgen
2015-05-01
Forecasting a time series from multivariate predictors constitutes a challenging problem, especially using model-free approaches. Most techniques, such as nearest-neighbor prediction, quickly suffer from the curse of dimensionality and overfitting for more than a few predictors which has limited their application mostly to the univariate case. Therefore, selection strategies are needed that harness the available information as efficiently as possible. Since often the right combination of predictors matters, ideally all subsets of possible predictors should be tested for their predictive power, but the exponentially growing number of combinations makes such an approach computationally prohibitive. Here a prediction scheme that overcomes this strong limitation is introduced utilizing a causal preselection step which drastically reduces the number of possible predictors to the most predictive set of causal drivers making a globally optimal search scheme tractable. The information-theoretic optimality is derived and practical selection criteria are discussed. As demonstrated for multivariate nonlinear stochastic delay processes, the optimal scheme can even be less computationally expensive than commonly used suboptimal schemes like forward selection. The method suggests a general framework to apply the optimal model-free approach to select variables and subsequently fit a model to further improve a prediction or learn statistical dependencies. The performance of this framework is illustrated on a climatological index of El Niño Southern Oscillation.
NASA Astrophysics Data System (ADS)
Heydari, Ali
Optimal solutions with neural networks (NN) based on an approximate dynamic programming (ADP) framework for new classes of engineering and non-engineering problems and associated difficulties and challenges are investigated in this dissertation. In the enclosed eight papers, the ADP framework is utilized for solving fixed-final-time problems (also called terminal control problems) and problems with switching nature. An ADP based algorithm is proposed in Paper 1 for solving fixed-final-time problems with soft terminal constraint, in which, a single neural network with a single set of weights is utilized. Paper 2 investigates fixed-final-time problems with hard terminal constraints. The optimality analysis of the ADP based algorithm for fixed-final-time problems is the subject of Paper 3, in which, it is shown that the proposed algorithm leads to the global optimal solution providing certain conditions hold. Afterwards, the developments in Papers 1 to 3 are used to tackle a more challenging class of problems, namely, optimal control of switching systems. This class of problems is divided into problems with fixed mode sequence (Papers 4 and 5) and problems with free mode sequence (Papers 6 and 7). Each of these two classes is further divided into problems with autonomous subsystems (Papers 4 and 6) and problems with controlled subsystems (Papers 5 and 7). Different ADP-based algorithms are developed and proofs of convergence of the proposed iterative algorithms are presented. Moreover, an extension to the developments is provided for online learning of the optimal switching solution for problems with modeling uncertainty in Paper 8. Each of the theoretical developments is numerically analyzed using different real-world or benchmark problems.
How does radiology report format impact reading time, comprehension and visual scanning?
NASA Astrophysics Data System (ADS)
Krupinski, Elizabeth A.; Reiner, Bruce; Siegel, Eliot
2014-03-01
The question of whether radiology report format influences reading time, comprehension of information, and/or scannig behavior was examined. Three radiology reports were reformatted to three versions: conventional free text, structured text organized by organ system, and hierarchical structured text organized by clinical significance. Five radiologists, 5 radiology residents, 5 internal medicine clinicians and 5 internal medicine residents read the reports. They then answered a series of questions about the report content. Reading time was recorded. Participants also reported reading preferences. Eye-position was also recorded. There were no significant diffrences for reading time as a function of format, but there was for attending versus resident, and radiology versus internal medicine. There was no significant difference for percent correct scores on the questions for report format or for attending versus resident, but there was for radiology versus internal medicine with the radiologists scoring higher. Eye-position results showed that although patterns tended to be indeosynchratic to readers, there were differences in the overall search patterns as a function of report format, with the free text option yielding more regular scanning and the other two formats yielding more "jumping" from one section to another. Report format does not appear to impact viewing time or percent correct answers, but there are differences in both for specialty and level of experience. There were also differences between the four groups of participants with respect to what they focus on in a radiology report and how they read reports (skim versus read in detail). Eye-position recording also revealed differences in report coverage patterns. The way that radiology reports are read is quite variable as individual preferences differ widely, suggesting that there may not be a single format acceptable to all users.
Timing optimization utilizing order statistics and multichannel digital silicon photomultipliers.
Mandai, Shingo; Venialgo, Esteban; Charbon, Edoardo
2014-02-01
We present an optimization technique utilizing order statistics with a multichannel digital silicon photomultiplier (MD-SiPM) for timing measurements. Accurate timing measurements are required by 3D rangefinding and time-of-flight positron emission tomography, to name a few applications. We have demonstrated the ability of the MD-SiPM to detect multiple photons, and we verified the advantage of detecting multiple photons assuming incoming photons follow a Gaussian distribution. We have also shown the advantage of utilizing multiple timestamps for estimating time-of-arrivals more accurately. This estimation technique can be widely available in various applications, which have a certain probability density function of incoming photons, such as a scintillator or a laser source.
Optimizing timing performance of silicon photomultiplier-based scintillation detectors
Yeom, Jung Yeol; Vinke, Ruud
2013-01-01
Precise timing resolution is crucial for applications requiring photon time-of-flight (ToF) information such as ToF positron emission tomography (PET). Silicon photomultipliers (SiPM) for PET, with their high output capacitance, are known to require custom preamplifiers to optimize timing performance. In this paper, we describe simple alternative front-end electronics based on a commercial low-noise RF preamplifier and methods that have been implemented to achieve excellent timing resolution. Two radiation detectors with L(Y)SO scintillators coupled to Hamamatsu SiPMs (MPPC S10362–33-050C) and front-end electronics based on an RF amplifier (MAR-3SM+), typically used for wireless applications that require minimal additional circuitry, have been fabricated. These detectors were used to detect annihilation photons from a Ge-68 source and the output signals were subsequently digitized by a high speed oscilloscope for offline processing. A coincident resolving time (CRT) of 147 ± 3 ps FWHM and 186 ± 3 ps FWHM with 3 × 3 × 5 mm3 and with 3 × 3 × 20 mm3 LYSO crystal elements were measured, respectively. With smaller 2 × 2 × 3 mm3 LSO crystals, a CRT of 125 ± 2 ps FWHM was achieved with slight improvement to 121 ± 3 ps at a lower temperature (15°C). Finally, with the 20 mm length crystals, a degradation of timing resolution was observed for annihilation photon interactions that occur close to the photosensor compared to shallow depth-of-interaction (DOI). We conclude that commercial RF amplifiers optimized for noise, besides their ease of use, can produce excellent timing resolution comparable to best reported values acquired with custom readout electronics. On the other hand, as timing performance degrades with increasing photon DOI, a head-on detector configuration will produce better CRT than a side-irradiated setup for longer crystals. PMID:23369872
Optimal trading strategies—a time series approach
NASA Astrophysics Data System (ADS)
Bebbington, Peter A.; Kühn, Reimer
2016-05-01
Motivated by recent advances in the spectral theory of auto-covariance matrices, we are led to revisit a reformulation of Markowitz’ mean-variance portfolio optimization approach in the time domain. In its simplest incarnation it applies to a single traded asset and allows an optimal trading strategy to be found which—for a given return—is minimally exposed to market price fluctuations. The model is initially investigated for a range of synthetic price processes, taken to be either second order stationary, or to exhibit second order stationary increments. Attention is paid to consequences of estimating auto-covariance matrices from small finite samples, and auto-covariance matrix cleaning strategies to mitigate against these are investigated. Finally we apply our framework to real world data.
Adjoint-Based Methodology for Time-Dependent Optimization
NASA Technical Reports Server (NTRS)
Yamaleev, N. K.; Diskin, B.; Nielsen, E. J.
2008-01-01
This paper presents a discrete adjoint method for a broad class of time-dependent optimization problems. The time-dependent adjoint equations are derived in terms of the discrete residual of an arbitrary finite volume scheme which approximates unsteady conservation law equations. Although only the 2-D unsteady Euler equations are considered in the present analysis, this time-dependent adjoint method is applicable to the 3-D unsteady Reynolds-averaged Navier-Stokes equations with minor modifications. The discrete adjoint operators involving the derivatives of the discrete residual and the cost functional with respect to the flow variables are computed using a complex-variable approach, which provides discrete consistency and drastically reduces the implementation and debugging cycle. The implementation of the time-dependent adjoint method is validated by comparing the sensitivity derivative with that obtained by forward mode differentiation. Our numerical results show that O(10) optimization iterations of the steepest descent method are needed to reduce the objective functional by 3-6 orders of magnitude for test problems considered.
Unifying time evolution and optimization with matrix product states
NASA Astrophysics Data System (ADS)
Haegeman, Jutho; Lubich, Christian; Oseledets, Ivan; Vandereycken, Bart; Verstraete, Frank
2016-10-01
We show that the time-dependent variational principle provides a unifying framework for time-evolution methods and optimization methods in the context of matrix product states. In particular, we introduce a new integration scheme for studying time evolution, which can cope with arbitrary Hamiltonians, including those with long-range interactions. Rather than a Suzuki-Trotter splitting of the Hamiltonian, which is the idea behind the adaptive time-dependent density matrix renormalization group method or time-evolving block decimation, our method is based on splitting the projector onto the matrix product state tangent space as it appears in the Dirac-Frenkel time-dependent variational principle. We discuss how the resulting algorithm resembles the density matrix renormalization group (DMRG) algorithm for finding ground states so closely that it can be implemented by changing just a few lines of code and it inherits the same stability and efficiency. In particular, our method is compatible with any Hamiltonian for which ground-state DMRG can be implemented efficiently. In fact, DMRG is obtained as a special case of our scheme for imaginary time evolution with infinite time step.
Laser cooling of electron – ion plasma in the case of optimal scanning of the laser frequency
Gavrilyuk, A P; Isaev, I L
2015-11-30
Laser cooling of ions of electron – ion plasma is studied under the action of spontaneous radiation pressure forces. It is shown that the use of a constant detuning of the laser frequency from the quantum transition frequency w0 in ions significantly limits the conditions under which the ions are cooled. To extend the range of initial temperatures of possible cooling of ions and to increase the cooling efficiency we suggest scanning the laser frequency detuning so that the cooling rate remained maximal in the process of changing the temperature of ions. In the case of an optimal detuning, we have found an asymptotic expression for the cooling rate and identified intervals of electron concentrations and temperatures, where cooling of ions is possible. (interaction of laser radiation with matter. laser plasma)
NASA Astrophysics Data System (ADS)
Kingston, Andrew M.; Myers, Glenn R.; Latham, Shane J.; Li, Heyang; Veldkamp, Jan P.; Sheppard, Adrian P.
2016-10-01
With the GPU computing becoming main-stream, iterative tomographic reconstruction (IR) is becoming a com- putationally viable alternative to traditional single-shot analytical methods such as filtered back-projection. IR liberates one from the continuous X-ray source trajectories required for analytical reconstruction. We present a family of novel X-ray source trajectories for large-angle CBCT. These discrete (sparsely sampled) trajectories optimally fill the space of possible source locations by maximising the degree of mutually independent information. They satisfy a discrete equivalent of Tuy's sufficiency condition and allow high cone-angle (high-flux) tomog- raphy. The highly isotropic nature of the trajectory has several advantages: (1) The average source distance is approximately constant throughout the reconstruction volume, thus avoiding the differential-magnification artefacts that plague high cone-angle helical computed tomography; (2) Reduced streaking artifacts due to e.g. X-ray beam-hardening; (3) Misalignment and component motion manifests as blur in the tomogram rather than double-edges, which is easier to automatically correct; (4) An approximately shift-invariant point-spread-function which enables filtering as a pre-conditioner to speed IR convergence. We describe these space-filling trajectories and demonstrate their above-mentioned properties compared with a traditional helical trajectories.
Exposure time optimization for highly dynamic star trackers.
Wei, Xinguo; Tan, Wei; Li, Jian; Zhang, Guangjun
2014-03-11
Under highly dynamic conditions, the star-spots on the image sensor of a star tracker move across many pixels during the exposure time, which will reduce star detection sensitivity and increase star location errors. However, this kind of effect can be compensated well by setting an appropriate exposure time. This paper focuses on how exposure time affects the star tracker under highly dynamic conditions and how to determine the most appropriate exposure time for this case. Firstly, the effect of exposure time on star detection sensitivity is analyzed by establishing the dynamic star-spot imaging model. Then the star location error is deduced based on the error analysis of the sub-pixel centroiding algorithm. Combining these analyses, the effect of exposure time on attitude accuracy is finally determined. Some simulations are carried out to validate these effects, and the results show that there are different optimal exposure times for different angular velocities of a star tracker with a given configuration. In addition, the results of night sky experiments using a real star tracker agree with the simulation results. The summarized regularities in this paper should prove helpful in the system design and dynamic performance evaluation of the highly dynamic star trackers.
Solving Globally-Optimal Threading Problems in ''Polynomial-Time''
Uberbacher, E.C.; Xu, D.; Xu, Y.
1999-04-12
Computational protein threading is a powerful technique for recognizing native-like folds of a protein sequence from a protein fold database. In this paper, we present an improved algorithm (over our previous work) for solving the globally-optimal threading problem, and illustrate how the computational complexity and the fold recognition accuracy of the algorithm change as the cutoff distance for pairwise interactions changes. For a given fold of m residues and M core secondary structures (or simply cores) and a protein sequence of n residues, the algorithm guarantees to find a sequence-fold alignment (threading) that is globally optimal, measured collectively by (1) the singleton match fitness, (2) pairwise interaction preference, and (3) alignment gap penalties, in O(mn + MnN{sup 1.5C-1}) time and O(mn + nN{sup C-1}) space. C, the topological complexity of a fold as we term, is a value which characterizes the overall structure of the considered pairwise interactions in the fold, which are typically determined by a specified cutoff distance between the beta carbon atoms of a pair of amino acids in the fold. C is typically a small positive integer. N represents the maximum number of possible alignments between an individual core of the fold and the protein sequence when its neighboring cores are already aligned, and its value is significantly less than n. When interacting amino acids are required to see each other, C is bounded from above by a small integer no matter how large the cutoff distance is. This indicates that the protein threading problem is polynomial-time solvable if the condition of seeing each other between interacting amino acids is sufficient for accurate fold recognition. A number of extensions have been made to our basic threading algorithm to allow finding a globally-optimal threading under various constraints, which include consistencies with (1) specified secondary structures (both cores and loops), (2) disulfide bonds, (3) active sites, etc.
Computing Finite-Time Lyapunov Exponents with Optimally Time Dependent Reduction
NASA Astrophysics Data System (ADS)
Babaee, Hessam; Farazmand, Mohammad; Sapsis, Themis; Haller, George
2016-11-01
We present a method to compute Finite-Time Lyapunov Exponents (FTLE) of a dynamical system using Optimally Time-Dependent (OTD) reduction recently introduced by H. Babaee and T. P. Sapsis. The OTD modes are a set of finite-dimensional, time-dependent, orthonormal basis {ui (x , t) } |i=1N that capture the directions associated with transient instabilities. The evolution equation of the OTD modes is derived from a minimization principle that optimally approximates the most unstable directions over finite times. To compute the FTLE, we evolve a single OTD mode along with the nonlinear dynamics. We approximate the FTLE from the reduced system obtained from projecting the instantaneous linearized dynamics onto the OTD mode. This results in a significant reduction in the computational cost compared to conventional methods for computing FTLE. We demonstrate the efficiency of our method for double Gyre and ABC flows. ARO project 66710-EG-YIP.
Likelihood scan of the Super-Kamiokande I time series data
Ranucci, Gioacchino
2006-05-15
In this work a detailed spectral analysis of the time series of the {sup 8}B solar neutrino flux published by the Super-Kamiokande Collaboration is presented, performed through a likelihood scan approach. Preliminarily a careful review of the analysis methodology is given, showing that the traditional periodicity search via the Lomb-Scargle periodogram is a special case of a more general likelihood based method. Since the data are published together with the relevant asymmetric errors, it is then shown how the likelihood analysis can be performed either with or without a prior error averaging. A key point of this work is the detailed illustration of the mathematical model describing the statistical properties of the estimated spectra obtained in the various cases, which is also validated through extensive Monte Carlo computations; the model includes a calculation for the prediction of the possible alias effects. In the successive investigation of the data, such a model is used to derive objective, mathematical predictions which are quantitatively compared with the features observed in the experimental spectra. This article clearly demonstrates that the handling of the errors is the origin of the discrepancy between published null observations and claimed significant periodicity in the same SK-I data sample. Moreover, the comprehensive likelihood analysis with asymmetric errors developed in this work provides results which cannot exclude the null hypothesis of constant rate, even though some indications stemming from the model at odd with such conclusion point towards the desirability of additional investigations with alternative methods to shed further light on the characteristics of the data.
Time Scale Optimization and the Hunt for Astronomical Cycles in Deep Time Strata
NASA Astrophysics Data System (ADS)
Meyers, Stephen R.
2016-04-01
A valuable attribute of astrochronology is the direct link between chronometer and climate change, providing a remarkable opportunity to constrain the evolution of the surficial Earth System. Consequently, the hunt for astronomical cycles in strata has spurred the development of a rich conceptual framework for climatic/oceanographic change, and has allowed exploration of the geologic record with unprecedented temporal resolution. Accompanying these successes, however, has been a persistent skepticism about appropriate astrochronologic testing and circular reasoning: how does one reliably test for astronomical cycles in stratigraphic data, especially when time is poorly constrained? From this perspective, it would seem that the merits and promise of astrochronology (e.g., a geologic time scale measured in ≤400 kyr increments) also serves as its Achilles heel, if the confirmation of such short rhythms defies rigorous statistical testing. To address these statistical challenges in astrochronologic testing, a new approach has been developed that (1) explicitly evaluates time scale uncertainty, (2) is resilient to common problems associated with spectrum confidence level assessment and 'multiple testing', and (3) achieves high statistical power under a wide range of conditions (it can identify astronomical cycles when present in data). Designated TimeOpt (for "time scale optimization"; Meyers 2015), the method employs a probabilistic linear regression model framework to investigate amplitude modulation and frequency ratios (bundling) in stratigraphic data, while simultaneously determining the optimal time scale. This presentation will review the TimeOpt method, and demonstrate how the flexible statistical framework can be further extended to evaluate (and optimize upon) complex sedimentation rate models, enhancing the statistical power of the approach, and addressing the challenge of unsteady sedimentation. Meyers, S. R. (2015), The evaluation of eccentricity
NASA Astrophysics Data System (ADS)
Umezawa, Masumi; Fujimoto, Rintaro; Umekawa, Tooru; Fujii, Yuusuke; Takayanagi, Taisuke; Ebina, Futaro; Aoki, Takamichi; Nagamine, Yoshihiko; Matsuda, Koji; Hiramoto, Kazuo; Matsuura, Taeko; Miyamoto, Naoki; Nihongi, Hideaki; Umegaki, Kikuo; Shirato, Hiroki
2013-04-01
Hokkaido University and Hitachi Ltd. have started joint development of the Gated Spot Scanning Proton Therapy with Real-Time Tumor-Tracking System by integrating real-time tumor tracking technology (RTRT) and the proton therapy system dedicated to discrete spot scanning techniques under the "Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program)". In this development, we have designed the synchrotron-based accelerator system by using the advantages of the spot scanning technique in order to realize a more compact and lower cost proton therapy system than the conventional system. In the gated irradiation, we have focused on the issues to maximize irradiation efficiency and minimize the dose errors caused by organ motion. In order to understand the interplay effect between scanning beam delivery and target motion, we conducted a simulation study. The newly designed system consists of the synchrotron, beam transport system, one compact rotating gantry treatment room with robotic couch, and one experimental room for future research. To improve the irradiation efficiency, the new control function which enables multiple gated irradiations per synchrotron cycle has been applied and its efficacy was confirmed by the irradiation time estimation. As for the interplay effect, we confirmed that the selection of a strict gating width and scan direction enables formation of the uniform dose distribution.
Optimizing accu time-of-flight/direct analysis in real time for explosive residue analysis.
Swider, Joseph R
2013-11-01
The use of a direct analysis in real time (DART) mass spectrometer (MS) instrument was optimized for 22 compounds of organic explosive residues to provide a guide for DART-MS users in rapid screening of explosive compounds. Samples were introduced as neat solutions and sequential dilutions to determine optimal instrument conditions and lowest concentration detectable. Most compounds were optimized to 250°C in the negative ion mode, and several compounds benefited from the addition of a chloride dopant from methylene chloride (amino-dinitrotoluenes, RDX, EGDN, and PETN). Few compounds were more sensitive in the positive ion mode (TEGDN, DEGDN, HNS, and DMNB). Mixtures of compounds were detected using clean room wipes, directly from their surfaces and from subsequent extractions. Compounds from the mixtures were also successfully detected in soil and from swipes of spiked surfaces. The instrument showed merit in detection of pg/μL solutions for most of the compounds and among the substrates tested.
NASA Astrophysics Data System (ADS)
Bernardo, César; Belsley, Michael; de Matos Gomes, Etelvina; Gonçalves, Hugo; Isakov, Dmitry; Liebold, Falk; Pereira, Eduardo; Pires, Vladimiro; Samantilleke, Anura; Vasilevskiy, Mikhail; Schellenberg, Peter
2014-08-01
We present a flexible fluorescence lifetime imaging device which can be employed to scan large sample areas with a spatial resolution adjustable from many micrometers down to sub-micrometers and a temporal resolution of 20 picoseconds. Several different applications of the system will be presented including protein microarrays analysis, the scanning of historical samples, evaluation of solar cell surfaces and nanocrystalline organic crystals embedded in electrospun polymeric nanofibers. Energy transfer processes within semiconductor quantum dot superstructures as well as between dye probes and graphene layers were also investigated.
Kiely, J Blanco; White, B; Both, S
2015-06-15
Purpose: The ability of pencil beam scanning (PBS) to deliver highly conformal dose distributions may be affected by patient- and physics-related uncertainties. In clinical practice, selection of proton beam angles is determined qualitatively. This study investigates whether an optimal proton PBS beam angle could be quantitatively determined to ensure robust planning for pelvic targets. Methods: PBS beam angles were optimized based on two independent criteria; shortest and most homogeneous path from the patient surface to the distal edge of the target. The beam angle optimization criteria for gantry angles between 90°-270° were quantified in 10° increments for each ray, calculated as the straight line distance from the surface of the skin to the CTV’s distal edge. The goal was to minimize the path length of a proton PBS beam from the patient surface to the distal edge of the CTV, relative to the entry point, while minimizing HU inhomogeneity along the ray. HU homogeneity (i.e. HU variation) was quantitatively defined as the standard deviation of the average intra-ray HU intensity distribution of the rays comprising a single beam. This method was validated relative to inter-fraction changes on ten consecutive, locally advanced, rectal cancer patients, who underwent an average 4 verification CTs. The displacement of the 95–98% isodose lines was determined from forward calculated dose distributions on verification CTs. Results: The posterior beam (180°) had the average shortest path length, 132.7±17.2mm, and the most homogenous path, 31.9±4.3HU. The 95–98% isodose lines from all plans verified our path length to within 2.3±1.2% and HU homogeneity to within 1.2±0.5%. Conclusion: The proposed optimization algorithm determined the posterior beam dose distribution as the most robust relative to inter-fraction variation for large pelvic targets treated with PBS and was validated via verification CT for our patient cohort. Future work will focus on further
Maximum-likelihood estimation optimizer for constrained, time-optimal satellite reorientation
NASA Astrophysics Data System (ADS)
Melton, Robert G.
2014-10-01
The Covariance Matrix Adaptation-Evolutionary Strategy (CMA-ES) method provides a high-quality estimate of the control solution for an unconstrained satellite reorientation problem, and rapid, useful guesses needed for high-fidelity methods that can solve time-optimal reorientation problems with multiple path constraints. The CMA-ES algorithm offers two significant advantages over heuristic methods such as Particle Swarm or Bacteria Foraging Optimisation: it builds an approximation to the covariance matrix for the cost function, and uses that to determine a direction of maximum likelihood for the search, reducing the chance of stagnation; and it achieves second-order, quasi-Newton convergence behaviour.
Time-optimal chaos control by center manifold targeting.
Starrett, John
2002-10-01
Ott-Grebogi-Yorke control and its map-based variants work by targeting the (linear) stable subspace of the target orbit so that after one application of the control the system will be in this subspace. I propose an n-step variation, where n is the dimension of the system, that sends any initial condition in a controllable region directly to the target orbit instead of its stable subspace. This method is time optimal, in that, up to modeling and measurement error, the system is completely controlled after n iterations of the control procedure. I demonstrate the procedure using a piecewise linear and a nonlinear two-dimensional map, and indicate how the technique may be extended to maps and flows of higher dimension.
Optimizing functional network representation of multivariate time series.
Zanin, Massimiliano; Sousa, Pedro; Papo, David; Bajo, Ricardo; García-Prieto, Juan; del Pozo, Francisco; Menasalvas, Ernestina; Boccaletti, Stefano
2012-01-01
By combining complex network theory and data mining techniques, we provide objective criteria for optimization of the functional network representation of generic multivariate time series. In particular, we propose a method for the principled selection of the threshold value for functional network reconstruction from raw data, and for proper identification of the network's indicators that unveil the most discriminative information on the system for classification purposes. We illustrate our method by analysing networks of functional brain activity of healthy subjects, and patients suffering from Mild Cognitive Impairment, an intermediate stage between the expected cognitive decline of normal aging and the more pronounced decline of dementia. We discuss extensions of the scope of the proposed methodology to network engineering purposes, and to other data mining tasks.
Optimizing Functional Network Representation of Multivariate Time Series
NASA Astrophysics Data System (ADS)
Zanin, Massimiliano; Sousa, Pedro; Papo, David; Bajo, Ricardo; García-Prieto, Juan; Pozo, Francisco Del; Menasalvas, Ernestina; Boccaletti, Stefano
2012-09-01
By combining complex network theory and data mining techniques, we provide objective criteria for optimization of the functional network representation of generic multivariate time series. In particular, we propose a method for the principled selection of the threshold value for functional network reconstruction from raw data, and for proper identification of the network's indicators that unveil the most discriminative information on the system for classification purposes. We illustrate our method by analysing networks of functional brain activity of healthy subjects, and patients suffering from Mild Cognitive Impairment, an intermediate stage between the expected cognitive decline of normal aging and the more pronounced decline of dementia. We discuss extensions of the scope of the proposed methodology to network engineering purposes, and to other data mining tasks.
Fast scanning exafs: A useful tool in time-resolved studies of chemical processes
NASA Astrophysics Data System (ADS)
Prieto, C.; Briois, V.; Parent, Ph.; Villain, F.; Lagarde, P.; Dexpert, H.; Fourman, B.; Michalowicz, A.; Verdaguer, M.
1992-07-01
The X-ray absorption spectroscopy station EXAFS III (of the D1 line of the D.C.I. ring at LURE) has been modified to record data in the fast scanning mode. After a brief description of the experimental set-up, results of selected kinetics experiments are presented. Interests and limitations are shortly discussed.
Forward Collision Warning: Clues to Optimal Timing of Advisory Warnings.
Aksan, Nazan; Sager, Lauren; Hacker, Sarah; Marini, Robert; Dawson, Jeffrey; Anderson, Steven; Rizzo, Matthew
2016-04-01
We examined the effectiveness of a heads-up Forward Collision Warning (FCW) system in 39 younger to middle aged drivers (25-50, mean = 35 years) and 37 older drivers (66-87, mean = 77 years). The warnings were implemented in a fixed based, immersive, 180 degree forward field of view simulator. The FCW included a visual advisory component consisting of a red horizontal bar which flashed in the center screen of the simulator that was triggered at time-to-collision (TTC) 4 seconds. The bar roughly overlapped the rear bumper of the lead vehicle, just below the driver's line-of-sight. A sustained auditory tone (~80 dB) was activated at TTC=2 to alert the driver to an imminent collision. Hence, the warning system differed from the industry standard in significant ways. 95% Confidence intervals for the safety gains ranged from -.03 to .19 seconds in terms of average correction time across several activations. Older and younger adults did not differ in terms of safety gains. Closer inspection of data revealed that younger to middle aged drivers were already braking (42%) on a larger proportion of FCW activations than older drivers (26%), p < .001. Conversely, older drivers were still accelerating (38%) on a larger proportion of FCW activations than younger to middle aged drivers (23%) at the time FCW was activated, p < .009. There were no differences in the proportion of activations when drivers were coasting at the time FCW was activated, p = .240. Furthermore, large individual differences in basic visual, motor, and cognitive function predicted the tendency to brake prior to FCW activation. Those who tended to be better functioning in each of these domains were more likely to be already braking prior to FCW activation at the fixed threshold of TTC=4. These findings suggest optimal timing for advisory alerts for forward events may need to be larger than TTC=4.
Shattock, Andrew J; Kerr, Cliff C; Stuart, Robyn M; Masaki, Emiko; Fraser, Nicole; Benedikt, Clemens; Gorgens, Marelize; Wilson, David P; Gray, Richard T
2016-01-01
Introduction International investment in the response to HIV and AIDS has plateaued and its future level is uncertain. With many countries committed to ending the epidemic, it is essential to allocate available resources efficiently over different response periods to maximize impact. The objective of this study is to propose a technique to determine the optimal allocation of funds over time across a set of HIV programmes to achieve desirable health outcomes. Methods We developed a technique to determine the optimal time-varying allocation of funds (1) when the future annual HIV budget is pre-defined and (2) when the total budget over a period is pre-defined, but the year-on-year budget is to be optimally determined. We use this methodology with Optima, an HIV transmission model that uses non-linear relationships between programme spending and associated programmatic outcomes to quantify the expected epidemiological impact of spending. We apply these methods to data collected from Zambia to determine the optimal distribution of resources to fund the right programmes, for the right people, at the right time. Results and discussion Considering realistic implementation and ethical constraints, we estimate that the optimal time-varying redistribution of the 2014 Zambian HIV budget between 2015 and 2025 will lead to a 7.6% (7.3% to 7.8%) decrease in cumulative new HIV infections compared with a baseline scenario where programme allocations remain at 2014 levels. This compares to a 5.1% (4.6% to 5.6%) reduction in new infections using an optimal allocation with constant programme spending that recommends unrealistic programmatic changes. Contrasting priorities for programme funding arise when assessing outcomes for a five-year funding period over 5-, 10- and 20-year time horizons. Conclusions Countries increasingly face the need to do more with the resources available. The methodology presented here can aid decision-makers in planning as to when to expand or contract
Ramachandra, Ranjan; de Jonge, Niels
2012-02-01
Three-dimensional (3D) datasets were recorded of gold nanoparticles placed on both sides of silicon nitride membranes using focal series aberration-corrected scanning transmission electron microscopy (STEM). Deconvolution of the 3D datasets was applied to obtain the highest possible axial resolution. The deconvolution involved two different point spread functions, each calculated iteratively via blind deconvolution. Supporting membranes of different thicknesses were tested to study the effect of beam broadening on the deconvolution. It was found that several iterations of deconvolution was efficient in reducing the imaging noise. With an increasing number of iterations, the axial resolution was increased, and most of the structural information was preserved. Additional iterations improved the axial resolution by maximal a factor of 4 to 6, depending on the particular dataset, and up to 8 nm maximal, but also led to a reduction of the lateral size of the nanoparticles in the image. Thus, the deconvolution procedure optimized for the highest axial resolution is best suited for applications where one is interested in the 3D locations of nanoparticles only.
NASA Astrophysics Data System (ADS)
Mendoza, Carlos S.; Safdar, Nabile; Myers, Emmarie; Kittisarapong, Tanakorn; Rogers, Gary F.; Linguraru, Marius George
2013-02-01
Craniosynostosis (premature fusion of skull sutures) is a severe condition present in one of every 2000 newborns. Metopic craniosynostosis, accounting for 20-27% of cases, is diagnosed qualitatively in terms of skull shape abnormality, a subjective call of the surgeon. In this paper we introduce a new quantitative diagnostic feature for metopic craniosynostosis derived optimally from shape analysis of CT scans of the skull. We built a robust shape analysis pipeline that is capable of obtaining local shape differences in comparison to normal anatomy. Spatial normalization using 7-degree-of-freedom registration of the base of the skull is followed by a novel bone labeling strategy based on graph-cuts according to labeling priors. The statistical shape model built from 94 normal subjects allows matching a patient's anatomy to its most similar normal subject. Subsequently, the computation of local malformations from a normal subject allows characterization of the points of maximum malformation on each of the frontal bones adjacent to the metopic suture, and on the suture itself. Our results show that the malformations at these locations vary significantly (p<0.001) between abnormal/normal subjects and that an accurate diagnosis can be achieved using linear regression from these automatic measurements with an area under the curve for the receiver operating characteristic of 0.97.
Optimal Planet Properties For Plate Tectonics Through Time And Space
NASA Astrophysics Data System (ADS)
Stamenkovic, Vlada; Seager, Sara
2014-11-01
Both the time and the location of planet formation shape a rocky planet’s mass, interior composition and structure, and hence also its tectonic mode. The tectonic mode of a planet can vary between two end-member solutions, plate tectonics and stagnant lid convection, and does significantly impact outgassing and biogeochemical cycles on any rocky planet. Therefore, estimating how the tectonic mode of a planet is affected by a planet’s age, mass, structure, and composition is a major step towards understanding habitability of exoplanets and geophysical false positives to biosignature gases. We connect geophysics to astronomy in order to understand how we could identify and where we could find planet candidates with optimal conditions for plate tectonics. To achieve this goal, we use thermal evolution models, account for the current wide range of uncertainties, and simulate various alien planets. Based on our best model estimates, we predict that the ideal targets for plate tectonics are oxygen-dominated (C/O<1) (solar system like) rocky planets of ~1 Earth mass with surface oceans, large metallic cores super-Mercury, rocky body densities of ~7000kgm-3), and with small mantle concentrations of iron 0%), water 0%), and radiogenic isotopes 10 times less than Earth). Super-Earths, undifferentiated planets, and especially hypothetical carbon planets, speculated to consist of SiC and C, are not optimal for the occurrence of plate tectonics. These results put Earth close to an ideal compositional and structural configuration for plate tectonics. Moreover, the results indicate that plate tectonics might have never existed on planets formed soon after the Big Bang—but instead is favored on planets formed from an evolved interstellar medium enriched in iron but depleted in silicon, oxygen, and especially in Th, K, and U relative to iron. This possibly sets a belated Galactic start for complex Earth-like surface life if plate tectonics significantly impacts the build up
Inversion of generalized relaxation time distributions with optimized damping parameter
NASA Astrophysics Data System (ADS)
Florsch, Nicolas; Revil, André; Camerlynck, Christian
2014-10-01
Retrieving the Relaxation Time Distribution (RDT), the Grains Size Distribution (GSD) or the Pore Size Distribution (PSD) from low-frequency impedance spectra is a major goal in geophysics. The “Generalized RTD” generalizes parametric models like Cole-Cole and many others, but remains tricky to invert since this inverse problem is ill-posed. We propose to use generalized relaxation basis function (for instance by decomposing the spectra on basis of generalized Cole-Cole relaxation elements instead of the classical Debye basis) and to use the L-curve approach to optimize the damping parameter required to get smooth and realistic inverse solutions. We apply our algorithm to three examples, one synthetic and two real data sets, and the program includes the possibility of converting the RTD into GSD or PSD by choosing the value of the constant connecting the relaxation time to the characteristic polarization size of interest. A high frequencies (typically above 1 kHz), a dielectric term in taken into account in the model. The code is provided as an open Matlab source as a supplementary file associated with this paper.
Design Time Optimization for Hardware Watermarking Protection of HDL Designs
Castillo, E.; Morales, D. P.; García, A.; Parrilla, L.; Todorovich, E.; Meyer-Baese, U.
2015-01-01
HDL-level design offers important advantages for the application of watermarking to IP cores, but its complexity also requires tools automating these watermarking algorithms. A new tool for signature distribution through combinational logic is proposed in this work. IPP@HDL, a previously proposed high-level watermarking technique, has been employed for evaluating the tool. IPP@HDL relies on spreading the bits of a digital signature at the HDL design level using combinational logic included within the original system. The development of this new tool for the signature distribution has not only extended and eased the applicability of this IPP technique, but it has also improved the signature hosting process itself. Three algorithms were studied in order to develop this automated tool. The selection of a cost function determines the best hosting solutions in terms of area and performance penalties on the IP core to protect. An 1D-DWT core and MD5 and SHA1 digital signatures were used in order to illustrate the benefits of the new tool and its optimization related to the extraction logic resources. Among the proposed algorithms, the alternative based on simulated annealing reduces the additional resources while maintaining an acceptable computation time and also saving designer effort and time. PMID:25861681
Optimal timing for antihypertensive dosing: focus on valsartan
Hermida, Ramón C; Ayala, Diana E; Calvo, Carlos
2007-01-01
Some specific features of the 24 h blood pressure (BP) pattern are linked to the progressive injury of target tissues and the triggering of cardiac and cerebrovascular events. In particular, many studies show the extent of the nocturnal BP decline relative to the diurnal BP mean (the diurnal/nocturnal ratio, an index of BP dipping) is deterministic of cardiovascular injury and risk. Normalization of the circadian BP pattern is considered to be an important clinical goal of pharmacotherapy because it may slow the advance of renal injury and avert end-stage renal failure. The chronotherapy of hypertension takes into account the epidemiology of the BP pattern, plus potential administration-time determinants of the pharmacokinetics and dynamics of antihypertensive medications, as a means of enhancing beneficial outcomes and/or attenuating or averting adverse effects. Thus, bedtime dosing with nifedipine gastrointestinal therapeutic system (GITS) is more effective than morning dosing, while also reducing significantly secondary effects. The dose-response curve, therapeutic coverage, and efficacy of doxazosin GITS are all markedly dependent on the circadian time of drug administration. Moreover, valsartan administration at bedtime as opposed to upon wakening results in improved diurnal/nocturnal ratio, a significant increase in the percentage of patients with controlled BP after treatment, and significant reductions in urinary albumin excretion and plasma fibrinogen. Chronotherapy provides a means of individualizing treatment of hypertension according to the circadian BP profile of each patient, and constitutes a new option to optimize BP control and reduce risk. PMID:18360620
Development of a real-time transport performance optimization methodology
NASA Technical Reports Server (NTRS)
Gilyard, Glenn
1996-01-01
The practical application of real-time performance optimization is addressed (using a wide-body transport simulation) based on real-time measurements and calculation of incremental drag from forced response maneuvers. Various controller combinations can be envisioned although this study used symmetric outboard aileron and stabilizer. The approach is based on navigation instrumentation and other measurements found on state-of-the-art transports. This information is used to calculate winds and angle of attack. Thrust is estimated from a representative engine model as a function of measured variables. The lift and drag equations are then used to calculate lift and drag coefficients. An expression for drag coefficient, which is a function of parasite drag, induced drag, and aileron drag, is solved from forced excitation response data. Estimates of the parasite drag, curvature of the aileron drag variation, and minimum drag aileron position are produced. Minimum drag is then obtained by repositioning the symmetric aileron. Simulation results are also presented which evaluate the affects of measurement bias and resolution.
Nanosecond time-scale semiconductor photoexcitations probed by a scanning tunneling microscope
NASA Astrophysics Data System (ADS)
Gallagher, Mark J.; Ruskell, Todd G.; Chen, Dong; Sarid, Dror; Jenkinson, Howard
1994-01-01
The high-frequency response of scanning tunneling microscopy of a semiconductor is demonstrated by using the beat frequencies of the longitudinal modes of a HeNe laser at the tunneling junction. We present a comparison of the slow and fast optical response of photoexcited charge carriers in the layered structure semiconductors n-type MoS2 and p-type WSe2 using this method.
A pipette-based calibration system for fast-scan cyclic voltammetry with fast response times.
Ramsson, Eric S
2016-01-01
Fast-scan cyclic voltammetry (FSCV) is an electrochemical technique that utilizes the oxidation and/or reduction of an analyte of interest to infer rapid changes in concentrations. In order to calibrate the resulting oxidative or reductive current, known concentrations of an analyte must be introduced under controlled settings. Here, I describe a simple and cost-effective method, using a Petri dish and pipettes, for the calibration of carbon fiber microelectrodes (CFMs) using FSCV.
Xu, Stanley; Hambidge, Simon J; McClure, David L; Daley, Matthew F; Glanz, Jason M
2013-08-30
In the examination of the association between vaccines and rare adverse events after vaccination in postlicensure observational studies, it is challenging to define appropriate risk windows because prelicensure RCTs provide little insight on the timing of specific adverse events. Past vaccine safety studies have often used prespecified risk windows based on prior publications, biological understanding of the vaccine, and expert opinion. Recently, a data-driven approach was developed to identify appropriate risk windows for vaccine safety studies that use the self-controlled case series design. This approach employs both the maximum incidence rate ratio and the linear relation between the estimated incidence rate ratio and the inverse of average person time at risk, given a specified risk window. In this paper, we present a scan statistic that can identify appropriate risk windows in vaccine safety studies using the self-controlled case series design while taking into account the dependence of time intervals within an individual and while adjusting for time-varying covariates such as age and seasonality. This approach uses the maximum likelihood ratio test based on fixed-effects models, which has been used for analyzing data from self-controlled case series design in addition to conditional Poisson models.
Optimal recovery time for postactivation potentiation in professional soccer players.
Mola, Jameson N; Bruce-Low, Stewart S; Burnet, Scott J
2014-06-01
Resistance exercise may acutely enhance muscle contractile activity, which is known as postactivation potentiation (PAP). Postactivation potentiation augments important skills that require power production that are necessary during soccer performance. The aim of this study was to determine the optimal recovery time to elicit PAP after a bout of high-intensity resistance exercise in professional soccer players. Twenty-two senior professional soccer players (mean [SD]; age, 23 [4.5] years; stature, 1.83 [6.6] m; body mass, 80.9 [7.8] kg) were randomized to either an experimental (n = 11) or a control group (n = 11). Both groups performed a standardized warm-up and baseline countermovement jump (CMJ) followed by a 10-minute recovery. The control group then performed a CMJ at 15 seconds and at 4, 8, 12, 16, and 20 minutes, whereas the experimental group performed a 3 repetition maximum (RM) squat and then an identical CMJ protocol. No significant differences were found between the groups for CMJ peak power (p > 0.05) or jump height (p > 0.05). No time effect for peak power (F(6,60) = 2.448; p = 0.063) or jump height (F(6,60) = 2.399; p = 0.089) was observed throughout the experimental group trials. Responders (n = 6) displayed individualized PAP profiles at 4 (n = 3), 12 (n = 1), and 16 (n = 2) minutes after conditioning contraction, whereas nonresponders (n = 5) did not. A set of 3RM squats failed to acutely potentiate all participants CMJ performance. Both PAP responders and nonresponders were identified and have individualized PAP time constants. This is not consistent with the previous literature, which used identical protocols. Strength and conditioning practitioners need to individualize recovery "windows" and identify athletes who respond to PAP before undertaking a complex training intervention.
Femtosecond terahertz time-domain spectroscopy at 36 kHz scan rate using an acousto-optic delay
NASA Astrophysics Data System (ADS)
Urbanek, B.; Möller, M.; Eisele, M.; Baierl, S.; Kaplan, D.; Lange, C.; Huber, R.
2016-03-01
We present a rapid-scan, time-domain terahertz spectrometer employing femtosecond Er:fiber technology and an acousto-optic delay with attosecond precision, enabling scanning of terahertz transients over a 12.4-ps time window at a waveform refresh rate of 36 kHz, and a signal-to-noise ratio of 1.7 × 105 / √{ H z } . Our approach enables real-time monitoring of dynamic THz processes at unprecedented speeds, which we demonstrate through rapid 2D thickness mapping of a spinning teflon disc at a precision of 10 nm/ √{ H z } . The compact, all-optical design ensures alignment-free operation even in harsh environments.
Utilization of dual-source X-ray tomography for reduction of scanning time of wooden samples
NASA Astrophysics Data System (ADS)
Fíla, T.; Kumpová, I.; Jandejsek, I.; Kloiber, M.; Tureček, D.; Vavřík, D.
2015-05-01
We present a novel dual-source/dual energy (DSCT/DECT) micro-tomography system including results of high-resolution DSCT reconstruction. The DSCT micro-tomography setup was designed as a multi-purpose X-ray imaging device equipped with two pairs of X-ray tubes and detectors in orthogonal arrangement with independent control of beam parameters. Both pairs (tube-detector) are mounted on a computer numerical control positioning system and can be independently set up to different geometries (e.g. with different magnification of each pair). In this work the simultaneous scanning of the object by two tube-detector pairs was used for approximately half reduction of tomography scanning time. The developed imaging procedure was applied for scanning of a wooden sample locally damaged during a semi-destructive test for assessment of wood quality. Prior to the tomography measurements the setup geometry was precisely adjusted in terms of magnification, horizontal and vertical tube-specimen-detector alignment of both pairs. DSCT measurements were carried out in sequence (2 × 90° for each tube) with identical 100μm image resolution. It was proven that the presented experimental setup combined with appropriate control technique significantly reduces tomography scanning time of materials with complex micro-structure.
Boellaard, R; van Lingen, A; van Balen, S C M; Lammertsma, A A
2004-02-21
The quality of thorax and pelvis transmission scans and therefore of attenuation correction in PET depends on patient thickness and transmission rod source strength. The purpose of the present study was to assess the feasibility of using count-based transmission scans, thereby guaranteeing more consistent image quality and more precise quantification than with fixed transmission scan duration. First, the relation between noise equivalent counts (NEC) of 10 min calibration transmission scans and rod source activity was determined over a period of 1.5 years. Second, the relation between transmission scan counts and uniform phantom diameter was studied numerically, determining the relative contribution of counts from lines of response passing through the phantom as compared with the total number of counts. Finally, the relation between patient weight and transmission scan duration was determined for 35 patients, who were scanned at the level of thorax or pelvis. After installation of new rod sources, the NEC of transmission scans first increased slightly (5%) with decreasing rod source activity and after 3 months decreased with a rate of 2-3% per month. The numerical simulation showed that the number of transmission scan counts from lines of response passing through the phantom increased with phantom diameter up to 7 cm. For phantoms larger than 7 cm, the number of these counts decreased at approximately the same rate as the total number of transmission scan counts. Patient data confirmed that the total number of transmission scan counts decreased with increasing patient weight with about 0.5% kg(-1). It can be concluded that count-based transmission scans compensate for radioactive decay of the rod sources. With count-based transmission scans, rod sources can be used for up to 1.5 years at the cost of a 50% increased transmission scan duration. For phantoms with diameters of more than 7 cm and for patients scanned at the level of thorax or pelvis, use of count
NASA Astrophysics Data System (ADS)
Boellaard, R.; van Lingen, A.; van Balen, S. C. M.; Lammertsma, A. A.
2004-02-01
The quality of thorax and pelvis transmission scans and therefore of attenuation correction in PET depends on patient thickness and transmission rod source strength. The purpose of the present study was to assess the feasibility of using count-based transmission scans, thereby guaranteeing more consistent image quality and more precise quantification than with fixed transmission scan duration. First, the relation between noise equivalent counts (NEC) of 10 min calibration transmission scans and rod source activity was determined over a period of 1.5 years. Second, the relation between transmission scan counts and uniform phantom diameter was studied numerically, determining the relative contribution of counts from lines of response passing through the phantom as compared with the total number of counts. Finally, the relation between patient weight and transmission scan duration was determined for 35 patients, who were scanned at the level of thorax or pelvis. After installation of new rod sources, the NEC of transmission scans first increased slightly (5%) with decreasing rod source activity and after 3 months decreased with a rate of 2 3% per month. The numerical simulation showed that the number of transmission scan counts from lines of response passing through the phantom increased with phantom diameter up to 7 cm. For phantoms larger than 7 cm, the number of these counts decreased at approximately the same rate as the total number of transmission scan counts. Patient data confirmed that the total number of transmission scan counts decreased with increasing patient weight with about 0.5% kg-1. It can be concluded that count-based transmission scans compensate for radioactive decay of the rod sources. With count-based transmission scans, rod sources can be used for up to 1.5 years at the cost of a 50% increased transmission scan duration. For phantoms with diameters of more than 7 cm and for patients scanned at the level of thorax or pelvis, use of count
Fokin, A A; Baryshnikov, A A; Vladimirskiĭ, V V; Gasnikov, A V
2013-01-01
The study was aimed at optimizing the policy of forming a permanent vascular access (PVA) by means of preoperative colour duplex scanning (CDS) of vessels in patients on programmed haemodialysis. The study included 420 patients undergoing from September 2003 to September 2011 a total of 595 PVAs. The Study Group (Group I) patients (351 PVAs) were subjected to preoperative PVA of vessels of limbs accompanied by assessing velocity parameters of the venous blood flow. The comparison group (Group II) patients (244 PVAs) underwent clinical examination only. The end point of the study was early diagnosis of incompetence of the PVA. Using preoperative PVA of vessels improved the outcomes of forming the PVA, significantly increasing the number of native arteriovenous fistulas (AVF) as a whole: (88.0% for Group I and 65.6% for Group II; p<0.01), their variants: radial-cephalic (I - 57.5%, II - 32.2%; p<0.01) and secondary radial-cephalic variants (I - 8.3%, II - 3.7%; p<0.01), leading to decreased frequency of using synthetic prostheses both totally (I - 12.0%, II - 34.4%; p<0.01) and in all positions (p<0.01) taken apart. Also decreased the frequency of the development of incompetence of all PVAs (I - 10.8%, II - 29.9%; p<0.01), AVFs as a whole (I - 7.4%, II - 18.0%; p<0.01) and accesses with a synthetic prosthesis both as a whole (I - 1.7%, II - 11.9%; p<0.01) and in all positions separately (p<0.01). Determining the velocity parameters of venous blood flow made it possible to exclude the development of significant proximal venous obstruction and to refuse phlebography. We consider it obligatory to perform CDS of vessels prior to forming a PVA.
Yokota, Munenori; Yoshida, Shoji; Mera, Yutaka; Takeuchi, Osamu; Oigawa, Haruhiro; Shigekawa, Hidemi
2013-10-07
The tangled mechanism that produces optical pump-probe scanning tunneling microscopy spectra from semiconductors was analyzed by comparing model simulation data with experimental data. The nonlinearities reflected in the spectra, namely, the excitations generated by paired laser pulses with a delay time, the logarithmic relationship between carrier density and surface photovoltage (SPV), and the effect of the change in tunneling barrier height depending on SPV, were examined along with the delay-time-dependent integration process used in measurement. The optimum conditions required to realize reliable measurement, as well as the validity of the microscopy technique, were demonstrated for the first time.
Speidel, Michael A.; Tomkowiak, Michael T.; Raval, Amish N.; Dunkerley, David A. P.; Slagowski, Jordan M.; Kahn, Paul; Ku, Jamie; Funk, Tobias
2015-01-01
Scanning-beam digital x-ray (SBDX) is an inverse geometry fluoroscopy system for low dose cardiac imaging. The use of a narrow scanned x-ray beam in SBDX reduces detected x-ray scatter and improves dose efficiency, however the tight beam collimation also limits the maximum achievable x-ray fluence. To increase the fluence available for imaging, we have constructed a new SBDX prototype with a wider x-ray beam, larger-area detector, and new real-time image reconstructor. Imaging is performed with a scanning source that generates 40,328 narrow overlapping projections from 71 × 71 focal spot positions for every 1/15 s scan period. A high speed 2-mm thick CdTe photon counting detector was constructed with 320×160 elements and 10.6 cm × 5.3 cm area (full readout every 1.28 μs), providing an 86% increase in area over the previous SBDX prototype. A matching multihole collimator was fabricated from layers of tungsten, brass, and lead, and a multi-GPU reconstructor was assembled to reconstruct the stream of captured detector images into full field-of-view images in real time. Thirty-two tomosynthetic planes spaced by 5 mm plus a multiplane composite image are produced for each scan frame. Noise equivalent quanta on the new SBDX prototype measured 63%–71% higher than the previous prototype. X-ray scatter fraction was 3.9–7.8% when imaging 23.3–32.6 cm acrylic phantoms, versus 2.3–4.2% with the previous prototype. Coronary angiographic imaging at 15 frame/s was successfully performed on the new SBDX prototype, with live display of either a multiplane composite or single plane image. PMID:26236071
PTCDA growth on Ge(111)-c(2\\times 8) surfaces: a scanning tunneling microscopy study
NASA Astrophysics Data System (ADS)
Martínez-Galera, A. J.; Wei, Z.; Nicoara, N.; Brihuega, I.; Gómez-Rodríguez, J. M.
2017-03-01
The initial stages of growth of PTCDA (3,4,9,10 perylene tetracarboxylic dianhydride) at room temperature (RT) on Ge(111)-c(2× 8) surfaces have been studied by means of scanning tunneling microscopy (STM) under ultrahigh vacuum conditions. The results show that PTCDA molecules have a high mobility at RT on the well ordered areas of the semiconductor substrate, since nucleation is only observed in domain walls, steps and surface defects. However, no molecular ordering has been detected at submonolayer coverage. For higher coverages, the formation of three-dimensional (3D) molecular islands has been observed. These 3D islands present a crystalline nature as demostrated by molecularly resolved STM images. According to these STM measurements, PTCDA molecules are ordered in a herringbone structure, similar to the one observed in PTCDA bulk crystals. Moreover, the 3D crystallites are grown on top of a disordered molecular layer, which acts as a passivating layer.
Time optimal controls of the linear Fitzhugh-Nagumo equation with pointwise control constraints.
Kunisch, Karl; Wang, Lijuan
2012-11-01
Time optimal control governed by the internally controlled linear Fitzhugh-Nagumo equation with pointwise control constraint is considered. Making use of Ekeland's variational principle, we obtain Pontryagin's maximum principle for a time optimal control problem. Using the maximum principle, the bang-bang property of the optimal controls is established under appropriate assumptions.
Time optimal controls of the linear Fitzhugh–Nagumo equation with pointwise control constraints
Kunisch, Karl; Wang, Lijuan
2012-01-01
Time optimal control governed by the internally controlled linear Fitzhugh–Nagumo equation with pointwise control constraint is considered. Making use of Ekeland’s variational principle, we obtain Pontryagin’s maximum principle for a time optimal control problem. Using the maximum principle, the bang–bang property of the optimal controls is established under appropriate assumptions. PMID:23576818
NASA Astrophysics Data System (ADS)
Ceylan, Omer; Shafique, Atia; Burak, Abdurrahman; Caliskan, Can; Yazici, Melik; Abbasi, Shahbaz; Galioglu, Arman; Kayahan, Huseyin; Gurbuz, Yasar
2016-11-01
This paper presents a digital readout integrated circuit (DROIC) implementing time delay and integration (TDI) for scanning type infrared focal plane arrays (IRFPAs) with a charge handling capacity of 44.8 Me- while achieving quantization noise of 198 e- and power consumption of 14.35 mW. Conventional pulse frequency modulation (PFM) method is supported by a single slope ramp ADC technique to have a very low quantization noise together with a low power consumption. The proposed digital TDI ROIC converts the photocurrent into digital domain in two phases; in the first phase, most significant bits (MSBs) are generated by the conventional PFM technique in the charge domain, while in the second phase least significant bits (LSBs) are generated by a single slope ramp ADC in the time domain. A 90 × 8 prototype has been fabricated and verified, showing a significantly improved signal-to-noise ratio (SNR) of 51 dB for low illumination levels (280,000 collected electrons), which is attributed to the TDI implementation method and very low quantization noise due to the single slope ADC implemented for LSBs. Proposed digital TDI ROIC proves the benefit of digital readouts for scanning arrays enabling smaller pixel pitches, better SNR for the low illumination levels and lower power consumption compared to analog TDI readouts for scanning arrays.
Fayek, H M; Elamvazuthi, I; Perumal, N; Venkatesh, B
2014-09-01
A computationally-efficient systematic procedure to design an Optimal Type-2 Fuzzy Logic Controller (OT2FLC) is proposed. The main scheme is to optimize the gains of the controller using Particle Swarm Optimization (PSO), then optimize only two parameters per type-2 membership function using Genetic Algorithm (GA). The proposed OT2FLC was implemented in real-time to control the position of a DC servomotor, which is part of a robotic arm. The performance judgments were carried out based on the Integral Absolute Error (IAE), as well as the computational cost. Various type-2 defuzzification methods were investigated in real-time. A comparative analysis with an Optimal Type-1 Fuzzy Logic Controller (OT1FLC) and a PI controller, demonstrated OT2FLC׳s superiority; which is evident in handling uncertainty and imprecision induced in the system by means of noise and disturbances.
Liu, Xiuhui; Ramsey, Matthew M; Chen, Xiaole; Koley, Dipankar; Whiteley, Marvin; Bard, Allen J
2011-02-15
Quantitative detection of hydrogen peroxide in solution above a Streptococcus gordonii (Sg) bacterial biofilm was studied in real time by scanning electrochemical microscopy (SECM). The concentration of hydrogen peroxide was determined to be 0.7 mM to 1.6 mM in the presence of 10 mM glucose over a period of 2 to 8 h. The hydrogen peroxide production measured was higher near the biofilm surface in comparison to Sg grown planktonically. Differential hydrogen peroxide production was observed both by fluorometric as well as by SECM measurements. The interaction between two different species in a bacterial biofilm of Sg and Aggregatibacter actinomycetemcomitans (Aa) in terms of hydrogen peroxide production was also studied by SECM. One-directional y-scan SECM measurements showed the unique spatial mapping of hydrogen peroxide concentration across a mixed species biofilm and revealed that hydrogen peroxide concentration varies greatly dependent upon local species composition.
Ekroos, Kim; Chernushevich, Igor V; Simons, Kai; Shevchenko, Andrej
2002-03-01
A hybrid quadrupole time-of-flight mass spectrometer featured with ion trapping capabilities was employed for quantitative profiling of total extracts of endogenous phospholipids. Simultaneous acquisition of precursor ion spectra of multiple fragment ions allowed detection of major classes of phospholipids in a single experiment. Relative changes in their concentration were monitored using a mixture of isotopically labeled endogenous lipids as a comprehensive internal standard. Precursor ion scanning spectra were acquired simultaneously for acyl anions of major fatty acids in negative ion mode and identified the fatty acid moieties and their relative position at the glycerol backbone in individual lipid species. Taken together, a combination of multiple precursor ion scans allowed quantitative monitoring of major perturbation in phospholipid composition and elucidating of molecular heterogeneity of individual lipid species.
Incorporation of 3-D Scanning Lidar Data into Google Earth for Real-time Air Pollution Observation
NASA Astrophysics Data System (ADS)
Chiang, C.; Nee, J.; Das, S.; Sun, S.; Hsu, Y.; Chiang, H.; Chen, S.; Lin, P.; Chu, J.; Su, C.; Lee, W.; Su, L.; Chen, C.
2011-12-01
3-D Differential Absorption Scanning Lidar (DIASL) system has been designed with small size, light weight, and suitable for installation in various vehicles and places for monitoring of air pollutants and displays a detailed real-time temporal and spatial variability of trace gases via the Google Earth. The fast scanning techniques and visual information can rapidly identify the locations and sources of the polluted gases and assess the most affected areas. It is helpful for Environmental Protection Agency (EPA) to protect the people's health and abate the air pollution as quickly as possible. The distributions of the atmospheric pollutants and their relationship with local metrological parameters measured with ground based instruments will also be discussed. Details will be presented in the upcoming symposium.
Tang, Jian.; Chen, Yuwei.; Jaakkola, Anttoni.; Liu, Jinbing.; Hyyppä, Juha.; Hyyppä, Hannu.
2014-01-01
Laser scan matching with grid-based maps is a promising tool for real-time indoor positioning of mobile Unmanned Ground Vehicles (UGVs). While there are critical implementation problems, such as the ability to estimate the position by sensing the unknown indoor environment with sufficient accuracy and low enough latency for stable vehicle control, further development work is necessary. Unfortunately, most of the existing methods employ heuristics for quick positioning in which numerous accumulated errors easily lead to loss of positioning accuracy. This severely restricts its applications in large areas and over lengthy periods of time. This paper introduces an efficient real-time mobile UGV indoor positioning system for large-area applications using laser scan matching with an improved probabilistically-motivated Maximum Likelihood Estimation (IMLE) algorithm, which is based on a multi-resolution patch-divided grid likelihood map. Compared with traditional methods, the improvements embodied in IMLE include: (a) Iterative Closed Point (ICP) preprocessing, which adaptively decreases the search scope; (b) a totally brute search matching method on multi-resolution map layers, based on the likelihood value between current laser scan and the grid map within refined search scope, adopted to obtain the global optimum position at each scan matching; and (c) a patch-divided likelihood map supporting a large indoor area. A UGV platform called NAVIS was designed, manufactured, and tested based on a low-cost robot integrating a LiDAR and an odometer sensor to verify the IMLE algorithm. A series of experiments based on simulated data and field tests with NAVIS proved that the proposed IMEL algorithm is a better way to perform local scan matching that can offer a quick and stable positioning solution with high accuracy so it can be part of a large area localization/mapping, application. The NAVIS platform can reach an updating rate of 12 Hz in a feature-rich environment and 2 Hz
Tang, Jian; Chen, Yuwei; Jaakkola, Anttoni; Liu, Jinbing; Hyyppä, Juha; Hyyppä, Hannu
2014-07-04
Laser scan matching with grid-based maps is a promising tool for real-time indoor positioning of mobile Unmanned Ground Vehicles (UGVs). While there are critical implementation problems, such as the ability to estimate the position by sensing the unknown indoor environment with sufficient accuracy and low enough latency for stable vehicle control, further development work is necessary. Unfortunately, most of the existing methods employ heuristics for quick positioning in which numerous accumulated errors easily lead to loss of positioning accuracy. This severely restricts its applications in large areas and over lengthy periods of time. This paper introduces an efficient real-time mobile UGV indoor positioning system for large-area applications using laser scan matching with an improved probabilistically-motivated Maximum Likelihood Estimation (IMLE) algorithm, which is based on a multi-resolution patch-divided grid likelihood map. Compared with traditional methods, the improvements embodied in IMLE include: (a) Iterative Closed Point (ICP) preprocessing, which adaptively decreases the search scope; (b) a totally brute search matching method on multi-resolution map layers, based on the likelihood value between current laser scan and the grid map within refined search scope, adopted to obtain the global optimum position at each scan matching; and (c) a patch-divided likelihood map supporting a large indoor area. A UGV platform called NAVIS was designed, manufactured, and tested based on a low-cost robot integrating a LiDAR and an odometer sensor to verify the IMLE algorithm. A series of experiments based on simulated data and field tests with NAVIS proved that the proposed IMEL algorithm is a better way to perform local scan matching that can offer a quick and stable positioning solution with high accuracy so it can be part of a large area localization/mapping, application. The NAVIS platform can reach an updating rate of 12 Hz in a feature-rich environment and 2 Hz
NASA Astrophysics Data System (ADS)
Rodrigues, Pedro L.; Rodrigues, Nuno F.; Fonseca, Jaime C.; von Krüger, M. A.; Pereira, W. C. A.; Vilaça, João. L.
2015-03-01
Background: Kidney stone is a major universal health problem, affecting 10% of the population worldwide. Percutaneous nephrolithotomy is a first-line and established procedure for disintegration and removal of renal stones. Its surgical success depends on the precise needle puncture of renal calyces, which remains the most challenging task for surgeons. This work describes and tests a new ultrasound based system to alert the surgeon when undesirable anatomical structures are in between the puncture path defined through a tracked needle. Methods: Two circular ultrasound transducers were built with a single 3.3-MHz piezoelectric ceramic PZT SN8, 25.4 mm of radius and resin-epoxy matching and backing layers. One matching layer was designed with a concave curvature to work as an acoustic lens with long focusing. The A-scan signals were filtered and processed to automatically detect reflected echoes. Results: The transducers were mapped in water tank and tested in a study involving 45 phantoms. Each phantom mimics different needle insertion trajectories with a percutaneous path length between 80 and 150 mm. Results showed that the beam cross-sectional area oscillates around the ceramics radius and it was possible to automatically detect echo signals in phantoms with length higher than 80 mm. Conclusions: This new solution may alert the surgeon about anatomical tissues changes during needle insertion, which may decrease the need of X-Ray radiation exposure and ultrasound image evaluation during percutaneous puncture.
Bjorgan, Asgeir; Randeberg, Lise Lyngsnes
2015-01-01
Processing line-by-line and in real-time can be convenient for some applications of line-scanning hyperspectral imaging technology. Some types of processing, like inverse modeling and spectral analysis, can be sensitive to noise. The MNF (minimum noise fraction) transform provides suitable denoising performance, but requires full image availability for the estimation of image and noise statistics. In this work, a modified algorithm is proposed. Incrementally-updated statistics enables the algorithm to denoise the image line-by-line. The denoising performance has been compared to conventional MNF and found to be equal. With a satisfying denoising performance and real-time implementation, the developed algorithm can denoise line-scanned hyperspectral images in real-time. The elimination of waiting time before denoised data are available is an important step towards real-time visualization of processed hyperspectral data. The source code can be found at http://www.github.com/ntnu-bioopt/mnf. This includes an implementation of conventional MNF denoising. PMID:25654717
NASA Astrophysics Data System (ADS)
Masters, Barry R.
1995-05-01
We describe a new, real-time, flying slit confocal microscope, that has unique features and imaging characteristics for in vivo human ocular imaging. In vivo real-time confocal microscopy is currently used to investigate the tear film, renewal of the ocular surface, the role of epithelial innervation in epithelial cell proliferation, wound healing, kinetics of drug penetration, the effects of laser refractive surgery on the keratocyte activation and distribution in the stroma, and the nature of endothelial defects. The following clinical examples will be presented and discussed: confocal microscopy of normal human basal and wing cells in the epithelium, confocal microscopy of lamellar and penetrating corneal grafts, confocal microscopy of corneal ulcer, confocal microscopy of scar formation after herpes keratitis, and confocal microscopy of corneal innervation. The use of scanning slit confocal microscopes has unique advantages over other instrumental systems based on pinhole-containing Nipkow disks (tandem-scanning confocal microscopes) for clinical in vivo confocal microscopy.
Reducing acquisition times in multidimensional NMR with a time-optimized Fourier encoding algorithm.
Zhang, Zhiyong; Smith, Pieter E S; Frydman, Lucio
2014-11-21
Speeding up the acquisition of multidimensional nuclear magnetic resonance (NMR) spectra is an important topic in contemporary NMR, with central roles in high-throughput investigations and analyses of marginally stable samples. A variety of fast NMR techniques have been developed, including methods based on non-uniform sampling and Hadamard encoding, that overcome the long sampling times inherent to schemes based on fast-Fourier-transform (FFT) methods. Here, we explore the potential of an alternative fast acquisition method that leverages a priori knowledge, to tailor polychromatic pulses and customized time delays for an efficient Fourier encoding of the indirect domain of an NMR experiment. By porting the encoding of the indirect-domain to the excitation process, this strategy avoids potential artifacts associated with non-uniform sampling schemes and uses a minimum number of scans equal to the number of resonances present in the indirect dimension. An added convenience is afforded by the fact that a usual 2D FFT can be used to process the generated data. Acquisitions of 2D heteronuclear correlation NMR spectra on quinine and on the anti-inflammatory drug isobutyl propionic phenolic acid illustrate the new method's performance. This method can be readily automated to deal with complex samples such as those occurring in metabolomics, in in-cell as well as in in vivo NMR applications, where speed and temporal stability are often primary concerns.
Reducing acquisition times in multidimensional NMR with a time-optimized Fourier encoding algorithm
Zhang, Zhiyong; Smith, Pieter E. S.; Frydman, Lucio
2014-11-21
Speeding up the acquisition of multidimensional nuclear magnetic resonance (NMR) spectra is an important topic in contemporary NMR, with central roles in high-throughput investigations and analyses of marginally stable samples. A variety of fast NMR techniques have been developed, including methods based on non-uniform sampling and Hadamard encoding, that overcome the long sampling times inherent to schemes based on fast-Fourier-transform (FFT) methods. Here, we explore the potential of an alternative fast acquisition method that leverages a priori knowledge, to tailor polychromatic pulses and customized time delays for an efficient Fourier encoding of the indirect domain of an NMR experiment. By porting the encoding of the indirect-domain to the excitation process, this strategy avoids potential artifacts associated with non-uniform sampling schemes and uses a minimum number of scans equal to the number of resonances present in the indirect dimension. An added convenience is afforded by the fact that a usual 2D FFT can be used to process the generated data. Acquisitions of 2D heteronuclear correlation NMR spectra on quinine and on the anti-inflammatory drug isobutyl propionic phenolic acid illustrate the new method's performance. This method can be readily automated to deal with complex samples such as those occurring in metabolomics, in in-cell as well as in in vivo NMR applications, where speed and temporal stability are often primary concerns.
The synthesis of optimal controls for linear, time-optimal problems with retarded controls.
NASA Technical Reports Server (NTRS)
Banks, H. T.; Jacobs, M. Q.; Latina, M. R.
1971-01-01
Optimization problems involving linear systems with retardations in the controls are studied in a systematic way. Some physical motivation for the problems is discussed. The topics covered are: controllability, existence and uniqueness of the optimal control, sufficient conditions, techniques of synthesis, and dynamic programming. A number of solved examples are presented.
MAGANA, DONNY; PARUL, DZMITRY; DYER, R. BRIAN; SHREVE, ANDREW P.
2011-01-01
Time-resolved step-scan Fourier transform infrared (FT-IR) spectroscopy has been shown to be invaluable for studying excited-state structures and dynamics in both biological and inorganic systems. Despite the established utility of this method, technical challenges continue to limit the data quality and more wide ranging applications. A critical problem has been the low laser repetition rate and interferometer stepping rate (both are typically 10 Hz) used for data acquisition. Here we demonstrate significant improvement in the quality of time-resolved spectra through the use of a kHz repetition rate laser to achieve kHz excitation and data collection rates while stepping the spectrometer at 200 Hz. We have studied the metal-to-ligand charge transfer excited state of Ru(bipyridine)3Cl2 in deuterated acetonitrile to test and optimize high repetition rate data collection. Comparison of different interferometer stepping rates reveals an optimum rate of 200 Hz due to minimization of long-term baseline drift. With the improved collection efficiency and signal-to-noise ratio, better assignments of the MLCT excited-state bands can be made. Using optimized parameters, carbonmonoxy myoglobin in deuterated buffer is also studied by observing the infrared signatures of carbon monoxide photolysis upon excitation of the heme. We conclude from these studies that a substantial increase in performance of ss-FT-IR instrumentation is achieved by coupling commercial infrared benches with kHz repetition rate lasers. PMID:21513597
Optimal experiment design for time-lapse traveltime tomography
Ajo-Franklin, J.B.
2009-10-01
Geophysical monitoring techniques offer the only noninvasive approach capable of assessing both the spatial and temporal dynamics of subsurface fluid processes. Increasingly, permanent sensor arrays in boreholes and on the ocean floor are being deployed to improve the repeatability and increase the temporal sampling of monitoring surveys. Because permanent arrays require a large up-front capital investment and are difficult (or impossible) to re-configure once installed, a premium is placed on selecting a geometry capable of imaging the desired target at minimum cost. We present a simple approach to optimizing downhole sensor configurations for monitoring experiments making use of differential seismic traveltimes. In our case, we use a design quality metric based on the accuracy of tomographic reconstructions for a suite of imaging targets. By not requiring an explicit singular value decomposition of the forward operator, evaluation of this objective function scales to problems with a large number of unknowns. We also restrict the design problem by recasting the array geometry into a low dimensional form more suitable for optimization at a reasonable computational cost. We test two search algorithms on the design problem: the Nelder-Mead downhill simplex method and the Multilevel Coordinate Search algorithm. The algorithm is tested for four crosswell acquisition scenarios relevant to continuous seismic monitoring, a two parameter array optimization, several scenarios involving four parameter length/offset optimizations, and a comparison of optimal multi-source designs. In the last case, we also examine trade-offs between source sparsity and the quality of tomographic reconstructions. One general observation is that asymmetric array lengths improve localized image quality in crosswell experiments with a small number of sources and a large number of receivers. Preliminary results also suggest that high-quality differential images can be generated using only a small
Optimal relative view angles for an object viewed multiple times
NASA Astrophysics Data System (ADS)
Gilani, Syed U.; Shende, Apoorva; Nguyen, Bao; Stilwell, Daniel J.
2015-05-01
Typically, the detection of an object of interest improves as we view the object from multiple angles. For cases where viewing angle matters, object detection can be improved further by optimally selecting the relative angles of multiple views. This motivates the search for viewing angles that maximize the expected probability of detection. Although our work is motivated by applications in subsea sensing, our fundamental analysis is easily adapted for other classes of applications. The specific challenge that motivates our work is the selection of optimal viewing angles for subsea sensing in which sonar is used for bathymetric imaging.
Pulmonary acceleration time to optimize the timing of lung transplant in cystic fibrosis.
Damy, Thibaud; Burgel, Pierre-Régis; Pepin, Jean-Louis; Boelle, Pierre-Yves; Cracowski, Claire; Murris-Espin, Marlène; Nove-Josserand, Raphaele; Stremler, Nathalie; Simon, Tabassome; Adnot, Serge; Fauroux, Brigitte
2012-01-01
Pulmonary hypertension (PH) may affect survival in cystic fibrosis (CF) and can be assessed on echocardiographic measurement of the pulmonary acceleration time (PAT). The study aimed at evaluating PAT as a tool to optimize timing of lung transplant in CF patients. Prospective multicenter longitudinal study of patients with forced expiratory volume in 1 second (FEV1) ≤60% predicted. Echocardiography, spirometry and nocturnal oximetry were obtained as part of the routine evaluation. We included 67 patients (mean FEV1 42±12% predicted), among whom 8 underwent lung transplantation during the mean follow-up of 19±6 months. No patients died. PAT was determined in all patients and correlated negatively with systolic pulmonary artery pressure (sPAP, r=-0.36, P=0.01). Patients in the lowest PAT tertile (<101 ms) had lower FEV1 and worse nocturnal oxygen saturation, and they were more often on the lung transplant waiting list compared to patients in the other tertiles. Kaplan-Meier curves showed a shorter time to lung transplantation in the lowest PAT tertile (P<0.001) but not in patients with sPAP>35 mmHg. By multivariate analysis, FEV(1)and nocturnal desaturation were the main determinants of reduced PAT. A PAT<101 ms reduction is a promising tool for timing of lung transplantation in CF.
Pulmonary acceleration time to optimize the timing of lung transplant in cystic fibrosis
Damy, Thibaud; Burgel, Pierre-Régis; Pepin, Jean-Louis; Boelle, Pierre-Yves; Cracowski, Claire; Murris-Espin, Marlène; Nove-Josserand, Raphaele; Stremler, Nathalie; Simon, Tabassome; Adnot, Serge; Fauroux, Brigitte
2012-01-01
Pulmonary hypertension (PH) may affect survival in cystic fibrosis (CF) and can be assessed on echocardiographic measurement of the pulmonary acceleration time (PAT). The study aimed at evaluating PAT as a tool to optimize timing of lung transplant in CF patients. Prospective multicenter longitudinal study of patients with forced expiratory volume in 1 second (FEV1) ≤60% predicted. Echocardiography, spirometry and nocturnal oximetry were obtained as part of the routine evaluation. We included 67 patients (mean FEV1 42±12% predicted), among whom 8 underwent lung transplantation during the mean follow-up of 19±6 months. No patients died. PAT was determined in all patients and correlated negatively with systolic pulmonary artery pressure (sPAP, r=–0.36, P=0.01). Patients in the lowest PAT tertile (<101 ms) had lower FEV1 and worse nocturnal oxygen saturation, and they were more often on the lung transplant waiting list compared to patients in the other tertiles. Kaplan–Meier curves showed a shorter time to lung transplantation in the lowest PAT tertile (P<0.001) but not in patients with sPAP>35 mmHg. By multivariate analysis, FEV1and nocturnal desaturation were the main determinants of reduced PAT. A PAT<101 ms reduction is a promising tool for timing of lung transplantation in CF. PMID:22558523
NASA Technical Reports Server (NTRS)
Yamaleev, N. K.; Diskin, B.; Nielsen, E. J.
2009-01-01
.We study local-in-time adjoint-based methods for minimization of ow matching functionals subject to the 2-D unsteady compressible Euler equations. The key idea of the local-in-time method is to construct a very accurate approximation of the global-in-time adjoint equations and the corresponding sensitivity derivative by using only local information available on each time subinterval. In contrast to conventional time-dependent adjoint-based optimization methods which require backward-in-time integration of the adjoint equations over the entire time interval, the local-in-time method solves local adjoint equations sequentially over each time subinterval. Since each subinterval contains relatively few time steps, the storage cost of the local-in-time method is much lower than that of the global adjoint formulation, thus making the time-dependent optimization feasible for practical applications. The paper presents a detailed comparison of the local- and global-in-time adjoint-based methods for minimization of a tracking functional governed by the Euler equations describing the ow around a circular bump. Our numerical results show that the local-in-time method converges to the same optimal solution obtained with the global counterpart, while drastically reducing the memory cost as compared to the global-in-time adjoint formulation.
Linton, Sabriya L; Jennings, Jacky M; Latkin, Carl A; Gomez, Marisela B; Mehta, Shruti H
2014-10-01
Knowledge of the geographic and temporal clustering of drug activity can inform where health and social services are needed and can provide insight on the potential impact of local policies on drug activity. This ecologic study assessed the spatial and temporal distribution of drug activity in Baltimore, Maryland, prior to and following the implementation of a large urban redevelopment project in East Baltimore, which began in 2003. Drug activity was measured by narcotic calls for service at the neighborhood level. A space-time scan statistic approach was used to identify statistically significant clusters of narcotic calls for service across space and time, using a discrete Poisson model. After adjusting for economic deprivation and housing vacancy, clusters of narcotic calls for service were identified among neighborhoods located in Southeast, Northeast, Northwest, and West Baltimore from 2001 to 2010. Clusters of narcotic calls for service were identified among neighborhoods located in East Baltimore from 2001 to 2003, indicating a decrease in narcotic calls thereafter. A large proportion of clusters occurred among neighborhoods located in North and Northeast Baltimore after 2003, which indicated a potential spike during this time frame. These findings suggest potential displacement of drug activity coinciding with the initiation of urban redevelopment in East Baltimore. Space-time scan statistics should be used in future research to describe the potential implications of local policies on drug activity.
Optimal digital redesign of continuous-time controllers
NASA Technical Reports Server (NTRS)
Shieh, Leang S.; Zhang, Jian L.; Coleman, Norman P.
1991-01-01
This paper proposes a new optimal digital redesign technique for finding a dynamic digital control law from the available analog counterpart and simultaneously minimizing a quadratic performance index. The proposed technique can be applied to a system with a more general class of reference inputs, and the developed digital regulator can be implemented using low cost microcomputers.
MEG dual scanning: a procedure to study real-time auditory interaction between two persons
Baess, Pamela; Zhdanov, Andrey; Mandel, Anne; Parkkonen, Lauri; Hirvenkari, Lotta; Mäkelä, Jyrki P.; Jousmäki, Veikko; Hari, Riitta
2012-01-01
Social interactions fill our everyday life and put strong demands on our brain function. However, the possibilities for studying the brain basis of social interaction are still technically limited, and even modern brain imaging studies of social cognition typically monitor just one participant at a time. We present here a method to connect and synchronize two faraway neuromagnetometers. With this method, two participants at two separate sites can interact with each other through a stable real-time audio connection with minimal delay and jitter. The magnetoencephalographic (MEG) and audio recordings of both laboratories are accurately synchronized for joint offline analysis. The concept can be extended to connecting multiple MEG devices around the world. As a proof of concept of the MEG-to-MEG link, we report the results of time-sensitive recordings of cortical evoked responses to sounds delivered at laboratories separated by 5 km. PMID:22514530
NASA Astrophysics Data System (ADS)
Gershenzon, V.; Gershenzon, O.; Sergeeva, M.; Ippolitov, V.; Targulyan, O.
2012-04-01
Keywords: Remote Sensing, UniScan ground station, Education, Monitoring. Remote Sensing Centers allowing real-time imagery acquisition from Earth observing satellites within the structure of Universities provides proper environment for innovative education. It delivers the efficient training for scientific and academic and teaching personnel, secure the role of the young professionals in science, education and hi-tech, and maintain the continuity of generations in science and education. Article is based on experience for creation such centers in more than 20 higher education institutions in Russia, Kazakhstan, and Spain on the base of UniScan ground station by R&D Center ScanEx. These stations serve as the basis for Earth monitoring from space providing the training and advanced training to produce the specialists having the state-of-the-art knowledge in Earth Remote Sensing and GIS, as well as the land-use monitoring and geo-data service for the economic operators in such diverse areas as the nature resource management, agriculture, land property management, disasters monitoring, etc. Currently our proposal of UniScan for universities all over the world allows to receive low resolution free of charge MODIS data from Terra and Aqua satellites, VIIRS from the NPP mission, and also high resolution optical images from EROS A and radar images from Radarsat-1 satellites, including the telemetry for the first year of operation, within the footprint of up to 2,500 kilometers in radius. Creation remote sensing centers at universities will lead to a new quality level for education and scientific studies and will enable to make education system in such innovation institutions open to modern research work and economy.
Robust fuel- and time-optimal control of uncertain flexible space structures
NASA Technical Reports Server (NTRS)
Wie, Bong; Sinha, Ravi; Sunkel, John; Cox, Ken
1993-01-01
The problem of computing open-loop, fuel- and time-optimal control inputs for flexible space structures in the face of modeling uncertainty is investigated. Robustified, fuel- and time-optimal pulse sequences are obtained by solving a constrained optimization problem subject to robustness constraints. It is shown that 'bang-off-bang' pulse sequences with a finite number of switchings provide a practical tradeoff among the maneuvering time, fuel consumption, and performance robustness of uncertain flexible space structures.
Carver, Charles S.; Scheier, Michael F.; Segerstrom, Suzanne C.
2010-01-01
Optimism is an individual difference variable that reflects the extent to which people hold generalized favorable expectancies for their future. Higher levels of optimism have been related prospectively to better subjective well-being in times of adversity or difficulty (i.e., controlling for previous well-being). Consistent with such findings, optimism has been linked to higher levels of engagement coping and lower levels of avoidance, or disengagement, coping. There is evidence that optimism is associated with taking proactive steps to protect one's health, whereas pessimism is associated with health-damaging behaviors. Consistent with such findings, optimism is also related to indicators of better physical health. The energetic, task-focused approach that optimists take to goals also relates to benefits in the socioeconomic world. Some evidence suggests that optimism relates to more persistence in educational efforts and to higher later income. Optimists also appear to fare better than pessimists in relationships. Although there are instances in which optimism fails to convey an advantage, and instances in which it may convey a disadvantage, those instances are relatively rare. In sum, the behavioral patterns of optimists appear to provide models of living for others to learn from. PMID:20170998
Real-time B-scan ultrasonic imaging using a digital phased array system for NDE
NASA Astrophysics Data System (ADS)
Dunki-Jacobs, Robert; Thomas, Lewis
A demonstration is presented of the ability to produce real-time images of metals on the basis of a phased-array ultrasound system. Attention is given to the critical role played by a beam-former. It is established that the present imaging system's resolution approaches the theoretical capabilities of the given aperture size and wavelength.
An optimal modification of a Kalman filter for time scales
NASA Technical Reports Server (NTRS)
Greenhall, C. A.
2003-01-01
The Kalman filter in question, which was implemented in the time scale algorithm TA(NIST), produces time scales with poor short-term stability. A simple modification of the error covariance matrix allows the filter to produce time scales with good stability at all averaging times, as verified by simulations of clock ensembles.
Amor, Rumelo; McDonald, Alison; Trägårdh, Johanna; Robb, Gillian; Wilson, Louise; Abdul Rahman, Nor Zaihana; Dempster, John; Amos, William Bradshaw; Bushell, Trevor J; McConnell, Gail
2016-01-01
We demonstrate fluorescence imaging by two-photon excitation without scanning in biological specimens as previously described by Hwang and co-workers, but with an increased field size and with framing rates of up to 100 Hz. During recordings of synaptically-driven Ca(2+) events in primary rat hippocampal neurone cultures loaded with the fluorescent Ca(2+) indicator Fluo-4 AM, we have observed greatly reduced photo-bleaching in comparison with single-photon excitation. This method, which requires no costly additions to the microscope, promises to be useful for work where high time-resolution is required.
Amor, Rumelo; McDonald, Alison; Trägårdh, Johanna; Robb, Gillian; Wilson, Louise; Abdul Rahman, Nor Zaihana; Dempster, John; Amos, William Bradshaw; Bushell, Trevor J.; McConnell, Gail
2016-01-01
We demonstrate fluorescence imaging by two-photon excitation without scanning in biological specimens as previously described by Hwang and co-workers, but with an increased field size and with framing rates of up to 100 Hz. During recordings of synaptically-driven Ca2+ events in primary rat hippocampal neurone cultures loaded with the fluorescent Ca2+ indicator Fluo-4 AM, we have observed greatly reduced photo-bleaching in comparison with single-photon excitation. This method, which requires no costly additions to the microscope, promises to be useful for work where high time-resolution is required. PMID:26824845
Bayesian Optimization Algorithm, Population Sizing, and Time to Convergence
Pelikan, M.; Goldberg, D.E.; Cantu-Paz, E.
2000-01-19
This paper analyzes convergence properties of the Bayesian optimization algorithm (BOA). It settles the BOA into the framework of problem decomposition used frequently in order to model and understand the behavior of simple genetic algorithms. The growth of the population size and the number of generations until convergence with respect to the size of a problem is theoretically analyzed. The theoretical results are supported by a number of experiments.
Operational Analysis of Time-Optimal Maneuvering for Imaging Spacecraft
2013-03-01
EO Electro Optical IR Infrared SAR Synthetic Aperture Radar CMG Control Moment Gyroscope FOV Field of View GSD Ground Sample Distance STK...Earth in LEO, the slewing capability of the spacecraft will affect the speed of the imaging satellite’s target acquisition for satellite imagery ...sensor can then acquire the desired target for imagery capture [11]. Optimal control theory can also be applied towards enabling rapid target -to
Ma, Dinglong; Bec, Julien; Gorpas, Dimitris; Yankelevich, Diego; Marcu, Laura
2015-01-01
We report a novel technique for continuous acquisition, processing and display of fluorescence lifetimes enabling real-time tissue diagnosis through a single hand held or biopsy fiber-optic probe. A scanning multispectral time-resolved fluorescence spectroscopy (ms-TRFS) with self-adjustable photon detection range was developed to account for the dynamic changes of fluorescence intensity typically encountered in clinical application. A fast algorithm was implemented in the ms-TRFS software platform, providing up to 15 Hz continuous display of fluorescence lifetime values. Potential applications of this technique, including biopsy guidance, and surgical margins delineation were demonstrated in proof-of-concept experiments. Current results showed accurate display of fluorescence lifetimes values and discrimination of distinct fluorescence markers and tissue types in real-time (< 100 ms per data point). PMID:25798320
NASA Astrophysics Data System (ADS)
Ohldag, Hendrik
Understanding magnetic properties at ultrafast timescales is crucial for the development of new magnetic devices. Samples of interest are often thin film magnetic multilayers with thicknesses in the range of a few atomic layers. This fact alone presents a sensitivity challenge in STXM microscopy, which is more suited toward studying thicker samples. In addition the relevant time scale is of the order of 10 ps, which is well below the typical x-ray pulse length of 50 - 100 ps. The SSRL STXM is equipped with a single photon counting electronics that effectively allows using a double lock-in detection at 476MHz (the x-ray pulse frequency) and 1.28MHz (the synchrotron revelation frequency) to provide the required sensitivity. In the first year of operation the excellent spatial resolution, temporal stability and sensitivity of the detection electronics of this microscope has enabled researchers to acquire time resolved images of standing as well as traveling spin waves in a spin torque oscillator in real space as well as detect the real time spin accumulation in non magnetic Copper once a spin polarized current is injected into this material. The total magnetic moment is comparable to that of a single nanocube of magnetic Fe buried under a micron of non-magnetic material.
Kress, Matthias; Meier, Thomas; Steiner, Rudolf; Dolp, Frank; Erdmann, Rainer; Ortmann, Uwe; Rück, Angelika
2003-01-01
This work describes the time-resolved fluorescence characteristics of two different photosensitizers in single cells, in detail mTHPC and 5-ALA induced PPIX, which are currently clinically used in photodynamic therapy. The fluorescence lifetime of the drugs was determined in the cells from time-gated spectra as well as single photon counting, using a picosecond pulsed diode laser for fluorescence excitation. The diode laser, which emits pulses at 398 nm with 70 ps full width at half maximum duration, was coupled to a confocal laser scanning microscope. For time-resolved spectroscopy a setup consisting of a Czerny Turner spectrometer and a MCP-gated and -intensified CCD camera was used. Time-gated spectra within the cells were acquired by placing the laser beam in "spot scan" mode. In addition, a time-correlated single photon counting module was used to determine the fluorescence lifetime from single spots and to record lifetime images. The fluorescence lifetime of mTHPC decreased from 7.5 to 5.5 ns during incubation from 1 to 6 h. This decrease was probably attributed to enhanced formation of aggregates during incubation. Fluorescence lifetime imaging showed that longer lifetimes were correlated with accumulation in the cytoplasm in the neighborhood of the cell nucleus, whereas shorter lifetimes were found in the outer cytoplasm. For cells that were incubated with 5-ALA, a fluorescence lifetime of 7.4 ns was found for PPIX; a shorter lifetime at 3.6 ns was probably attributed to photoproducts and aggregates of PPIX. In contrast from fluorescence intensity images alone, different fluorescence species could not be distinguished. However, in the lifetime image a structured fluorescence distribution in the cytoplasm was correlated with the longer lifetime and probably coincides with mitochondria. In conclusion, picosecond diode lasers coupled to a laser scanning microscope equipped with appropriate detection units allows time-resolved spectroscopy and lifetime imaging
Bozorgzadeh, Bardia; Covey, Daniel P; Heidenreich, Byron A; Garris, Paul A; Mohseni, Pedram
2014-01-01
This paper reports the hardware implementation of a digital signal processing (DSP) unit for real-time processing of data obtained by fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM), an electrochemical transduction technique for high-resolution monitoring of brain neurochemistry. Implemented on a field-programmable gate array (FPGA), the DSP unit comprises a decimation filter and an embedded processor to process the oversampled FSCV data and obtain in real time a temporal profile of concentration variation along with a chemical signature to identify the target neurotransmitter. Interfaced with an integrated, FSCV-sensing front-end, the DSP unit can successfully process FSCV data obtained by bolus injection of dopamine in a flow cell as well as electrically evoked, transient dopamine release in the dorsal striatum of an anesthetized rat.
Coarse-grained and fine-grained parallel optimization for real-time en-face OCT imaging
NASA Astrophysics Data System (ADS)
Kapinchev, Konstantin; Bradu, Adrian; Barnes, Frederick; Podoleanu, Adrian
2016-03-01
This paper presents parallel optimizations in the en-face (C-scan) optical coherence tomography (OCT) display. Compared with the cross-sectional (B-scan) imagery, the production of en-face images is more computationally demanding, due to the increased size of the data handled by the digital signal processing (DSP) algorithms. A sequential implementation of the DSP leads to a limited number of real-time generated en-face images. There are OCT applications, where simultaneous production of large number of en-face images from multiple depths is required, such as real-time diagnostics and monitoring of surgery and ablation. In sequential computing, this requirement leads to a significant increase of the time to process the data and to generate the images. As a result, the processing time exceeds the acquisition time and the image generation is not in real-time. In these cases, not producing en-face images in real-time makes the OCT system ineffective. Parallel optimization of the DSP algorithms provides a solution to this problem. Coarse-grained central processing unit (CPU) based and fine-grained graphics processing unit (GPU) based parallel implementations of the conventional Fourier domain (CFD) OCT method and the Master-Slave Interferometry (MSI) OCT method are studied. In the coarse-grained CPU implementation, each parallel thread processes the whole OCT frame and generates a single en-face image. The corresponding fine-grained GPU implementation launches one parallel thread for every data point from the OCT frame and thus achieves maximum parallelism. The performance and scalability of the CPU-based and GPU-based parallel approaches are analyzed and compared. The quality and the resolution of the images generated by the CFD method and the MSI method are also discussed and compared.
Space-time scan statistics of 2007-2013 dengue incidence in Cimahi City, Indonesia.
Dhewantara, Pandji Wibawa; Ruliansyah, Andri; Fuadiyah, M Ezza Azmi; Astuti, Endang Puji; Widawati, Mutiara
2015-11-27
Four dengue serotypes threatened more than 200 million people and has spread to over 400 districts in Indonesia. Furthermore, 26 districts in most densely populated province, West Java, have been declared as hyperendemic areas. Cimahi is an endemic city with the highest population (14,969 people per square kilometer). Evidence on distribution pattern of dengue cases is required to discover the spread of dengue cases in Cimahi. A study has been conducted to detect clusters of dengue incidence during 2007-2013. A temporal spatial analysis was performed using SaTScan™ software incorporated confirmed dengue monthly data from the Municipality Health Office and population data from a local Bureau of Statistics. A retrospective space-time analysis with a Poisson distribution model and monthly precision was performed. Our results revealed a significant most likely cluster (p<0.001) throughout period of study. The most likely cluster was detected in the centre of the city and moved to the northern region of Cimahi. Cimahi, Karangmekar, and Cibabat village were most likely cluster in 2007-2010 (p <0.001; RR = 2.16-2.98; pop at risk 12% total population); Citeureup were detected as the most likely cluster in 2011-2013 (p <0.001; RR 5.77), respectively. Temporaly, clusters were detected in the first quarter of each year each. In conclusion, a dynamic spread of dengue initiated from the centre to its surrounding areas during the period 2007-2013. Our study suggests the use of GIS to strengthen case detection and surveillance. An in-depth investigation to relevant risk factors in high-risk areas in Cimahi city is encouraged.
Zhao, J; Li, Y; Huang, Z; Deng, Y; Sun, L; Moyers, M; Hsi, W; Wu, X
2015-06-15
Purpose: The time required to deliver a treatment impacts not only the number of patients that can be treated each day but also the accuracy of delivery due to potential movements of patient tissues. Both macroscopic and microscopic timing characteristics of a beam delivery system were studied to examine their impacts on patient treatments. Methods: 35 patients were treated during a clinical trial to demonstrate safety and efficacy of a Siemens Iontris system prior to receiving approval from the Chinese Food and Drug Administration. The system has a variable cycle time and can provide proton beams from 48 to 221 MeV/n and carbon ions from 86 to 430 MeV/n. A modulated scanning beam delivery technique is used where the beam remains stationary at each spot aiming location and is not turned off while the spot quickly moves from one aiming location to the next. The treatment log files for 28 of the trial patients were analyzed to determine several timing characteristics. Results: The average portal time per target dose was 172.5 s/Gy for protons and 150.7 s/Gy for carbon ions. The maximum delivery time for any portal was less than 300 s. The average dwell time per spot was 12 ms for protons and 3.0 ms for carbon ions. The number of aiming positions per energy layer varied from 1 to 258 for protons and 1 to 621 for carbon ions. The average spill time and cycle time per energy layer were 1.20 and 2.68 s for protons and 0.95 and 4.73 s for carbon ions respectively. For 3 of the patients, the beam was gated on and off to reduce the effects of respiration. Conclusion: For a typical target volume of 153 cc as used in this clinical trial, the portal delivery times were acceptable.
Facilitating Timely Completion of a College Degree with Optimization Technology
ERIC Educational Resources Information Center
Dechter, Avi
2009-01-01
Students who pursue a bachelor's degree in four-year colleges and universities often take longer than four years to complete their degrees. The reasons for prolonging the time to degree seem to fall into three broad categories: part-time enrollment, deficiencies in academic readiness, and inadequate course planning. This paper focuses on the…
A comparison of time-optimal interception trajectories for the F-8 and F-15
NASA Technical Reports Server (NTRS)
Calise, Anthony J.; Pettengill, James B.
1990-01-01
The simulation results of a real time control algorithm for onboard computation of time-optimal intercept trajectories for the F-8 and F-15 aircraft are given. Due to the inherent aerodynamic and propulsion differences in the aircraft, there are major differences in their optimal trajectories. The significant difference in the two aircrafts are their flight envelopes. The F-8's optimal cruise velocity is thrust limited, while the F-15's optimal cruise velocity is at the intersection of the Mach and dynamic pressure constraint boundaries. This inherent difference necessitated the development of a proportional thrust controller for use as the F-15 approaches it's optimal cruise energy. Documented here is the application of singular perturbation theory to the trajectory optimization problem, along with a summary of the control algorithms. Numerical results for the two aircraft are compared to illustrate the performance of the minimum time algorithm, and to compute the resulting flight paths.
Optimization of vehicle accelerator-brake pedal foot travel time.
Glass, S W; Suggs, C W
1977-12-01
This study was directed towards reducing the lag time between stimulus and incidence of braking. The effect of the relative vertical heights of the brake and accelerator pedals on foot travel time was the subject of the first part of the investigation. In the second part, two new pedal designs in which the accelerator was mounted directly on the brake pedal were evaluated. A significant reduction in foot travel time of approximately 12.5% was realised by locating the accelerator pedal 25-50 mm (1-2 in) higher than the brake pedal. Mounting of the accelerator pedal adjacent to or directly on the brake pedal allowed reductions in braking lag time of 46% to 74%.
Optimal observation time window for forecasting the next earthquake
Omi, Takahiro; Shinomoto, Shigeru; Kanter, Ido
2011-02-15
We report that the accuracy of predicting the occurrence time of the next earthquake is significantly enhanced by observing the latest rate of earthquake occurrences. The observation period that minimizes the temporal uncertainty of the next occurrence is on the order of 10 hours. This result is independent of the threshold magnitude and is consistent across different geographic areas. This time scale is much shorter than the months or years that have previously been considered characteristic of seismic activities.
NASA Astrophysics Data System (ADS)
Yoon, Seung Chul; Park, Bosoon; Lawrence, Kurt C.; Windham, William R.; Heitschmidt, Gerald W.
2010-04-01
This paper reports a recent development of a line-scan hyperspectral imaging system for real-time multispectral imaging applications in agricultural and food industries. The hyperspectral imaging system consisted of a spectrograph, an EMCCD camera, and application software. The real-time multispectral imaging with the developed system was possible due to (1) data binning, especially a unique feature of the EMCCD sensor allowing the access to non-contiguous multispectral bands, (2) an image processing algorithm designed for real-time multispectral imaging, and (3) the design and implementation of the real-time application software. The imaging system was developed as a poultry inspection instrument determining the presence of surface feces on poultry carcasses moving at commercial poultry processing line speeds up to 180 birds per minute. The imaging system can be easily modifiable to solve other real-time inspection/sorting problems. Three wavelengths at 517 nm, 565 nm and 802 nm were selected for real-time fecal detection imaging. The fecal detection algorithm was based on dual band ratios of 565nm/517nm and 802nm/517nm followed by thresholding. The software architecture was based on a ping pong memory and a circular buffer for the multitasking of image grabbing and processing. The software was written in Microsoft Visual C++. An image-based internal triggering (i.e. polling) algorithm was developed to determine the start and end positions of birds. Twelve chickens were used for testing the imaging system at two different speeds (140 birds per minute and 180 bird per minute) in a pilot-scale processing line. Four types of fecal materials (duodenum, ceca, colon and ingesta) were used for the evaluation of the detection algorithm. The software grabbed and processed multispectral images of the dimension 118 (line scans) x 512 (height) x 3 (bands) pixels obtained from chicken carcasses moving at the speed up to 180 birds per minute (a frame rate 286 Hz). Intensity
Time-optimal three-axis reorientation of asymmetric rigid spacecraft via homotopic approach
NASA Astrophysics Data System (ADS)
Li, Jing
2016-05-01
This paper investigates the time-optimal rest-to-rest three-axis reorientation of asymmetric rigid spacecraft. First, time-optimal solutions for the inertially symmetric rigid spacecraft (ISRS) three-axis reorientation are briefly reviewed. By utilizing initial costates and reorientation time of the ISRS time-optimal solution, the homotopic approach is introduced to solve the asymmetric rigid spacecraft time-optimal three-axis reorientation problem. The main merit is that the homotopic approach can start automatically and reliably, which would facilitate the real-time generation of open-loop time-optimal solutions for attitude slewing maneuvers. Finally, numerical examples are given to illustrate the performance of the proposed method. For principle axis reorientation, numerical results and analytical derivations show that, multiple time-optimal solutions exist and relations between them are given. For generic reorientation problem, though mathematical rigorous proof is not available to date, numerical results also indicated the existing of multiple time-optimal solutions.
Nearly time-optimal feedback control of a magnetically levitated photolithography positioning system
Redmond, J.
1993-12-31
This paper focuses on the development of an approximate time-optimal feedback strategy for conducting rest-to-rest maneuvers of a magnetically levitated table. Classical switching curves are modified to account for the complexities of magnetic actuation as well as the coupling of the rigid body modes through the control. A smooth blend of time-optimal and proportional-derivative controls is realized near the destination point to correct for inaccuracies produced by the approximate time-optimal strategy. Detailed computer simulations of the system indicate that this hybrid control strategy provides a significant reduction in settling time as compared to proportional-derivative control alone.
Optimization of Time-Dependent Particle Tracing Using Tetrahedral Decomposition
NASA Technical Reports Server (NTRS)
Kenwright, David; Lane, David
1995-01-01
An efficient algorithm is presented for computing particle paths, streak lines and time lines in time-dependent flows with moving curvilinear grids. The integration, velocity interpolation and step-size control are all performed in physical space which avoids the need to transform the velocity field into computational space. This leads to higher accuracy because there are no Jacobian matrix approximations or expensive matrix inversions. Integration accuracy is maintained using an adaptive step-size control scheme which is regulated by the path line curvature. The problem of cell-searching, point location and interpolation in physical space is simplified by decomposing hexahedral cells into tetrahedral cells. This enables the point location to be done analytically and substantially faster than with a Newton-Raphson iterative method. Results presented show this algorithm is up to six times faster than particle tracers which operate on hexahedral cells yet produces almost identical particle trajectories.
Optimizing the Timing Resolution for the NEXT Array
NASA Astrophysics Data System (ADS)
Engelhardt, A.; Shadrick, S.; Rajabali, M.; Schmitt, K.; Grzywacz, R.
2016-09-01
In nuclear physics studies there are very few detectors capable of measuring neutron energies in the 0.1-10 MeV energy range with a reasonable resolution. The VANDLE array is the premier detector array for these measurements, yet VANDLE is limited by the its thickness (2.9 cm minimum).The Neutron dEtector with Tracking (NEXT) array would be capable of surpassing the limitations caused by the large size of VANDLE bars. A proposed configuration of each neutron detector consists of ten 3-mm thick plastic scintillators with two or more silicon photomultipliers (SiPMs) attached at each end. To achieve the desired energy resolution for neutron energy measurements through time of flight, the timing resolution between these SiPMs needs to be below 200 ps. A SiPM was placed on each end of a plastic scintillator inside a light-tight electrical box along with a 137Cs source. An analog circuit was designed in order to measure the timing difference between the two SiPMs. Different configurations of SiPM sizes, scintillator sizes, and wrappings were tested in order to determine the configuration that yields the best timing resolution. Details of the testing procedures and results will be presented. Research Supported by the National Nuclear Security Administration.
On computing the global time-optimal motions of robotic manipulators in the presence of obstacles
NASA Technical Reports Server (NTRS)
Shiller, Zvi; Dubowsky, Steven
1991-01-01
A method for computing the time-optimal motions of robotic manipulators is presented that considers the nonlinear manipulator dynamics, actuator constraints, joint limits, and obstacles. The optimization problem is reduced to a search for the time-optimal path in the n-dimensional position space. A small set of near-optimal paths is first efficiently selected from a grid, using a branch and bound search and a series of lower bound estimates on the traveling time along a given path. These paths are further optimized with a local path optimization to yield the global optimal solution. Obstacles are considered by eliminating the collision points from the tessellated space and by adding a penalty function to the motion time in the local optimization. The computational efficiency of the method stems from the reduced dimensionality of the searched spaced and from combining the grid search with a local optimization. The method is demonstrated in several examples for two- and six-degree-of-freedom manipulators with obstacles.
Optimal Perceived Timing: Integrating Sensory Information with Dynamically Updated Expectations
Di Luca, Massimiliano; Rhodes, Darren
2016-01-01
The environment has a temporal structure, and knowing when a stimulus will appear translates into increased perceptual performance. Here we investigated how the human brain exploits temporal regularity in stimulus sequences for perception. We find that the timing of stimuli that occasionally deviate from a regularly paced sequence is perceptually distorted. Stimuli presented earlier than expected are perceptually delayed, whereas stimuli presented on time and later than expected are perceptually accelerated. This result suggests that the brain regularizes slightly deviant stimuli with an asymmetry that leads to the perceptual acceleration of expected stimuli. We present a Bayesian model for the combination of dynamically-updated expectations, in the form of a priori probability of encountering future stimuli, with incoming sensory information. The asymmetries in the results are accounted for by the asymmetries in the distributions involved in the computational process. PMID:27385184
An integrated optimal control algorithm for discrete-time nonlinear stochastic system
NASA Astrophysics Data System (ADS)
Kek, Sie Long; Lay Teo, Kok; Mohd Ismail, A. A.
2010-12-01
Consider a discrete-time nonlinear system with random disturbances appearing in the real plant and the output channel where the randomly perturbed output is measurable. An iterative procedure based on the linear quadratic Gaussian optimal control model is developed for solving the optimal control of this stochastic system. The optimal state estimate provided by Kalman filtering theory and the optimal control law obtained from the linear quadratic regulator problem are then integrated into the dynamic integrated system optimisation and parameter estimation algorithm. The iterative solutions of the optimal control problem for the model obtained converge to the solution of the original optimal control problem of the discrete-time nonlinear system, despite model-reality differences, when the convergence is achieved. An illustrative example is solved using the method proposed. The results obtained show the effectiveness of the algorithm proposed.
Time-optimal control of the spacecraft trajectories in the Earth-Moon system
NASA Astrophysics Data System (ADS)
Starinova, O. L.; Fain, M. K.; Materova, I. L.
2017-01-01
This paper outlines the multiparametric optimization of the L1-L2 and L2-L1 missions in the Earth-Moon system using electric propulsion. The optimal control laws are obtained using the Fedorenko successful linearization method to estimate the derivatives and the gradient method to optimize the control laws. The study of the transfers is based on the restricted circular three-body problem. The mathematical model of the missions is described within the barycentric system of coordinates. The optimization criterion is the total flight time. The perturbation from the Earth, the Moon and the Sun are taking into account. The impact of the shaded areas, induced by the Earth and the Moon, is also accounted. As the results of the optimization we obtained optimal control laws, corresponding trajectories and minimal total flight times.
NASA Astrophysics Data System (ADS)
Brooks, B. A.; Becker, J.; Merrifield, M.; Foster, J.; Ericksen, T.; Hilmer, T.; Vitousek, S.
2008-12-01
To determine the environmental conditions and timing leading to long time scale (O(years)) and specific event (O(days-hours)) changes in beach morphology we collected terrestrial scanning laser (TLS) topographic time series, offshore wave data, and high resolution digital photographs of the entire beach at Waimea Bay, Oahu from January through June 2007. Each survey had better than 1cm range-resolution, average spot-spacing of 10 cm, and had tilts removed using GPS-based geocoding. The TLS surveys on monthly time-scales quantify the seasonal transition in beach morphology and volume forced by high waves (winter) to small waves (summer). The surveys over daily to hourly time scales quantify the evolution of discrete morphological features. For instance, two surveys taken three hours apart on 27 April 2007 when significant wave height was roughly 0.7m document an order 0.1 m increase in sand elevation occurring along the foreshore indicating active sand accretion following an erosion event on 24 April 2007 when significant wave height was roughly 2.5m. Well-defined fore-beach and back-beach cuspate features were present during the surveys. The elevation difference map shows that the main area of accretion occurred in the fore-beach cusp embayments, i.e., the beach cusps appear to be filling in with sand. We further use the TLS time series data to quantify the subaerial morphologic signal and volumetric beach change budget of foot-traffic on the beach. Our initial observations indicate that the upper portions of the beach, rarely affected by waves but receiving hundreds to thousands of visitors per day, exhibits convex upward character typical of diffusive forcing. We assess whether a diffusive landscape evolution model based on linear or non-linear flux laws describes the temporal and spatial evolution of the upper parts of beaches where wave forcing rarely occurs.
Wu, Hairong; Sotthewes, Kai; Kumar, Avijit; Vancso, G Julius; Schön, Peter M; Zandvliet, Harold J W
2013-02-19
We investigated the dynamics of decanethiol self-assembled monolayers on Au(111) surfaces using time-resolved scanning tunneling microscopy at room temperature. The expected ordered phases (β, δ, χ*, and φ) and a disordered phase (ε) were observed. Current-time traces with the feedback loop disabled were recorded at different locations on the surface. The sulfur end group of the decanethiolate molecule exhibits a stochastic two-level switching process when the molecule is adsorbed in a (local) β phase registry. This two-level process is attributed to the diffusion of the Au-thiolate complex between two adjacent adsorption sites. The irregular current jumps in the current-time traces recorded on the tails of decanethiolate molecules in the ordered β, δ, and χ* phases are ascribed to wagging of the alkyl tails. Finally, the disordered phase is characterized by even larger current jumps, which indicates that the tail of the decanethiolate flips up occasionally and makes contact with the tip. Our experiments reveal that the massive dynamics of the self-assembled monolayer is due to diffusion of decanethiol-Au complexes, rather than the diffusion of decanethiolate molecules.
Abucayon, Erwin; Ke, Neng; Cornut, Renaud; Patelunas, Anthony; Miller, Douglas; Nishiguchi, Michele K; Zoski, Cynthia G
2014-01-07
Catalase activity through hydrogen peroxide decomposition in a 1 mM bulk solution above Vibrio fischeri (γ-Protebacteria-Vibrionaceae) bacterial biofilms of either symbiotic or free-living strains was studied in real time by scanning electrochemical microscopy (SECM). The catalase activity, in units of micromoles hydrogen peroxide decomposed per minute over a period of 348 s, was found to vary with incubation time of each biofilm in correlation with the corresponding growth curve of bacteria in liquid culture. Average catalase activity for the same incubation times ranging from 1 to 12 h was found to be 0.28 ± 0.07 μmol H2O2/min for the symbiotic biofilms and 0.31 ± 0.07 μmol H2O2/min for the free-living biofilms, suggesting similar catalase activity. Calculations based on Comsol Multiphysics simulations in fitting experimental biofilm data indicated that approximately (3 ± 1) × 10(6) molecules of hydrogen peroxide were decomposed by a single bacterium per second, signifying the presence of a highly active catalase. A 2-fold enhancement in catalase activity was found for both free-living and symbiotic biofilms in response to external hydrogen peroxide concentrations as low as 1 nM in the growth media, implying a similar mechanism in responding to oxidative stress.
A Space-Time Flow Optimization Model for Neighborhood Evacuation
2010-03-01
We model the minimum cost evacuation behavior through time with formulation SPACETIME below. Index Sets i L Locations (alias j) t T...and ensures that there are no negative flows. C. THE MISSION CANYON EXAMPLE We apply model SPACETIME to the Mission Canyon neighborhood. We use a...11:00 1000 21:54 19:10 15:10 19:00 15:00 1200 26:53 22:50 21:40 22:40 21:40 1400 32:45 28:20 28:20 28:10 28:20 Vital Report SPACETIME SPACETIME
Reducing video frame rate increases remote optimal focus time
NASA Technical Reports Server (NTRS)
Haines, Richard F.
1993-01-01
Twelve observers made best optical focus adjustments to a microscope whose high-resolution pattern was video monitored and displayed first on a National Television System Committee (NTSC) analog color monitor and second on a digitally compressed computer monitor screen at frame rates ranging (in six steps) from 1.5 to 30 frames per second (fps). This was done to determine whether reducing the frame rate affects the image focus. Reducing frame rate has been shown to be an effective and acceptable means of reducing transmission bandwidth of dynamic video imagery sent from Space Station Freedom (SSF) to ground scientists. Three responses were recorded per trial: time to complete the focus adjustment, number of changes of focus direction, and subjective rating of final image quality. It was found that: the average time to complete the focus setting increases from 4.5 sec at 30 fps to 7.9 sec at 1.5 fps (statistical probability = 1.2 x 10(exp -7)); there is no significant difference in the number of changes in the direction of focus adjustment across these frame rates; and there is no significant change in subjectively determined final image quality across these frame rates. These data can be used to help pre-plan future remote optical-focus operations on SSF.
Minimum-time running and swimming: an optimal control approach.
Maroński, R
1996-02-01
During analysis of the competitor's velocity in a run, strong assumptions are imposed upon the runner's tactic. It is assumed that the competitor uses his/her maximal propulsive force in short-distance events. The runner's velocity is assumed constant in long-distance races. None of these assumptions is satisfied during middle-distance races. In this study, the competitor's velocity, minimizing the time taken to cover the distance, is determined by means of extremization of linear integrals using Green's theorem (Miele's method). The model of the competitor's motion is based on two differential equations: the first one derives from Newton's second law, the second one is the equation for power balance. The theory is illustrated with two examples referring to competitive running and swimming. The minimum-time competitive run can be broken into three phases: -the acceleration, -the cruise with the constant velocity, and -the negative kick at the end of the race. The problem has a similar solution in competitive swimming, however, the acceleration is replaced by the gliding phase.
U-D factorisation of the strengthened discrete-time optimal projection equations
NASA Astrophysics Data System (ADS)
Van Willigenburg, L. Gerard; De Koning, Willem L.
2016-04-01
Algorithms for optimal reduced-order dynamic output feedback control of linear discrete-time systems with white stochastic parameters are U-D factored in this paper. U-D factorisation enhances computational accuracy, stability and possibly efficiency. Since U-D factorisation of algorithms for optimal full-order output feedback controller design was recently published by us, this paper focusses on the U-D factorisation of the optimal oblique projection matrix that becomes part of the solution as a result of order-reduction. The equations producing the solution are known as the optimal projection equations which for discrete-time systems have been strengthened in the past. The U-D factored strengthened discrete-time optimal projection equations are presented in this paper by means of a transformation that has to be applied recursively until convergence. The U-D factored and conventional algorithms are compared through a series of examples.
Time optimal robotic manipulator motions and work places for point to point tasks
NASA Technical Reports Server (NTRS)
Dubowsky, S.; Blubaugh, T. D.
1985-01-01
High productivity requires that manipulators perform complex tasks quickly. Recently, optimal control algorithms have been developed which enable manipulators to move quickly, but only for simple motions. A method is presented here which combines simple time optimal motions in an optimal manner to yield the minimum time motions for an important class of complex manipulator tasks composed of point to point moves, such as assembly, electronic component insertion and spot welding. This method can also be used to design manipulator actions and work places so that tasks can be completd in minimum time. The method has been implemented in a CAD software package. Examples are presented which show the methods effectiveness.
Dwell time algorithm for multi-mode optimization in manufacturing large optical mirrors
NASA Astrophysics Data System (ADS)
Liu, Zhenyu
2014-08-01
CCOS (Computer Controlled Optical Surfacing) is one of the most important method to manufacture optical surface. By controlling the dwell time of a polishing tool on the mirror we can get the desired material removal. As the optical surface becoming larger, traditional CCOS method can't meet the demand that manufacturing the mirror in higher efficiency and precision. This paper presents a new method using multi-mode optimization. By calculate the dwell time map of different tool in one optimization cycle, the larger tool and the small one have complementary advantages and obtain a global optimization for multi tool and multi-processing cycles. To calculate the dwell time of different tool at the same time we use multi-mode dwell time algorithm that based on matrix calculation. With this algorithm we did simulation experiment, the result shows using multi-mode optimization algorithm can improve the efficiency maintaining good precision.
NASA Astrophysics Data System (ADS)
Schöpa, Anne; Baewert, Henning; Cook, Kristen; Morche, David
2015-04-01
The north face of the Hochwanner in the Reintal valley, Wetterstein Mountains, southern Germany, has been a site of frequent rock fall activity for the past several hundred years. The so-called 'Steingerümpel' rock fall included an estimated volume of 2.3-2.7 x 106 m3 and led to damming of the Partnach river. This event was dated to 1400-1600 AD. The rock fall left a prominent scar in the rock face where subsequent rock fall activity was concentrated, postulated to be a 'delayed consequence' of the Steingerümpel event. Previous workers used airborne and terrestrial laser scan data to evaluate the volume of the detached material and the deposits on the talus cone at the foot of the slope from the 'delayed consequence' activity between 2006 and 2008 (Heckmann et al., 2012). The largest event during this period was a 5 x 104 m3 rock fall in August 2007. We compared the data of six terrestrial laser scans, which were acquired in June and September 2008, September 2010, June 2011, August 2013, October and November 2014, in order to assess the volumes of detached material after the large rock fall event of 2007. The aim is to investigate the post-event activity at a site of a large rock fall in order to give estimates about the timing when the activity is back to normal conditions in relation to the magnitude of the large event. Although no large rock fall occurred in the observation period, the comparison of the laser scan data indicate that the average rock wall retreat at this site is still higher compared to the mean annual rock wall retreat rate of 0.54 mm/yr for the last millennium in the Reintal valley (Krautblatter et al., 2012). This shows that sites of large rock falls remain active even years after the event. Heckmann, T.; Bimböse, M.; Krautblatter, M.; Haas, F.; Becht, M.; Morche, D. (2012): From geotechnical analysis to quantification and modelling using LiDAR data: a study on rockfall in the Reintal catchment, Bavarian Alps, Germany; Earth Surface
Optimizing Spectral Resolution and Observation Time for Measurements of Habitability
NASA Astrophysics Data System (ADS)
Khalfa, N.; Meadows, V. S.; Domagal-Goldman, S. D.
2009-12-01
The Terrestrial Planet Finder (TPF) is a NASA mission concept that will attempt to characterize and search for habitability and life on extrasolar planets. While detection of a planet in the habitable zone increases the probability that the planet is habitable, planetary characterization will be required to confirm habitability and thereby test predictions of the position of the habitable zone. The TPF-I mission will accomplish this with an interferometer, allowing the detection of Earth-mass planets around stars up to 15 pc away and production of mid-infrared spectra from those planets. The focus on the mid-infrared region of the spectrum (7-20 mm) is beneficial because this is where energy from Earth-like planets is strongest relative to the flux from their parent stars. To discover if such planets are habitable we need to know not only what to look for - biosignatures and indicators of habitability - but also how to look. In other words, we must determine the trade-off in telescope properties that will provide the best science return. Extensive models have been made of Earth-like planets to describe many planetary properties, including atmospheric chemistry and surface temperature. Those properties may be derived for extrasolar planets using these models if spectra are obtained for the target planet. When modeling a planet, we can calculate a very high-resolution spectrum that can show the detailed absorption features of gases such as CO2, H2O, and O3. However, the telescope resolution will necessarily be limited by low photon fluxes from the distant targets. Alternatively, the telescope could spend more time taking in photons from each target planet. A balance may have to be struck between the numbers of targets observed and the quality of the data obtained for each target. We will present a number of simulations of TPF instrument measurements of terrestrial spectra that parametrize spectral resolution and observation time. The relative errors of these various
Ding, X; Zhang, J; Rosen, L; Wu, H; Traneus, E; Lin, H; Zhai, H
2015-06-15
Purpose: We evaluate the feasibility of using robustness optimization (RO) function to improve the planning efficiency of pencil beam scanning (PBS) craniospinal irradiation (CSI) with gradient matching technique. Methods: A CSI patient was planned with 2 lateral brain fields and 4 posterior fields to cover the entire spine to maximal field of 24 cm × 20 cm on a compact PBS gantry, ProteusONE. CSI plans were generated using traditional volumetric gradient dose optimization (VGDO) and robustness optimization (RO) method respectively. In traditional VGDO, besides the sectioned spine target volumes, gradient volume (GV) were generated as 4 equally spaced structures e.g. 80%, 60%, 40%, and 20% of prescription dose. In RO method, only sectioned spine target volumes with an overlap of 4cm were created. In the robustness optimization settings, 5mm uncertainty in superior and inferior direction was defined for auto gradient optimization. Dosimetric metrics of conformity number (CN), homogeneity index (HI), and maximal cord doses were compared in Raystation version 4.6.100.6. Results: In VGDO method, total 16 GV structures and five 100% dose level target structures were contoured compared to total 5 target structures in RO method which saves 30 min in contour. With the same PTV coverage (95% volume receive 30.6Gy prescription dose), maximum cord dose is 32.64Gy in VGDO and 31.94Gy in RO. HI is 1.03 and 1.04 for VGDO and RO respectively. CN is 0.93 and 0.94 for VGDO and RO respectively. Conclusions: The dosimetric comparison demonstrated both methods are equivalent in terms of plan quality. With robust optimization for CSI gradient matching, it efficiently reduces the amount of planning target contour structure by factor of 4 and thus improves the planning efficiency especially for 4 or more gradient junction area.
[Just-in-time initiation of optimal dialysis].
Cornelis, Tom; Kooman, Jeroen P; van der Sande, Frank M
2010-01-01
The IDEAL trial shows that the decision to start renal replacement treatment should not depend on GFR alone, but should be taken on the basis of clinical parameters. Quality of Life (QoL) questionnaires and bio-impedance analysis are potential tools for detecting subtle changes in the predialysis clinic. Too early an initiation of dialysis may be deleterious for the patient and the healthcare system. We are convinced that ESRD patients should be informed about intensive haemodialysis (HD), especially nocturnal (home) HD, as the best available dialysis modality. There is substantial evidence which shows that intensive HD improves clinical, biochemical and biological parameters, and may even prolong survival. We believe that 'just-in-time delivery of intensive haemodialysis' may result in optimised QoL and reduced economic burden.
Nemescu, Dragos; Berescu, Anca
2015-01-01
We measured acoustic output, expressed as the thermal index (TI) and mechanical index (MI), during fetal echocardiography at the time of the first trimester scan. TI and MI were retrieved from the saved displays during gray-mode, high-definition color flow Doppler and pulsed-wave Doppler (tricuspid flow) ultrasound examinations of the fetal heart and from the ductus venosus assessment. A total of 399 fetal cardiac examinations were evaluated. There was a significant increase in TI values from B-mode studies (0.07 ± 0.04 [mean ± SD]) to color flow mapping (0.2 ± 0.0) and pulsed-wave Doppler studies (0.36 ± 0.05). The TI from ductus venosus assessment (0.1 ± 0.01) was significantly lower than those from Doppler examinations of the heart. MI values from B-mode scans (0.65 ± 0.12) and color flow mapping (0.71 ± 0.11) were comparable, although different, and both values were higher than those from pulsed-wave Doppler tricuspid evaluation (0.39 ± 0.03). There were no differences in MI values from power Doppler assessment between the tricuspid flow and ductus venosus. Safety indices were remarkably stable and were largely constant, especially for color Doppler (TI), tricuspid flow (MI) and ductus venosus assessment (TI, MI). We acquired satisfactory Doppler images and/or signals at acoustic levels that were lower than the actual recommendations and never reached a TI of 0.5.
On the Run-Time Optimization of the Boolean Logic of a Program.
ERIC Educational Resources Information Center
Cadolino, C.; Guazzo, M.
1982-01-01
Considers problem of optimal scheduling of Boolean expression (each Boolean variable represents binary outcome of program module) on single-processor system. Optimization discussed consists of finding operand arrangement that minimizes average execution costs representing consumption of resources (elapsed time, main memory, number of…
Bernatowicz, K; Zhang, Y; Weber, D; Lomax, A
2015-06-15
Purpose: To develop a 4D treatment optimization approach for Pencil Beam Scanned (PBS) proton therapy that includes breathing variability. Method: PBS proton therapy delivers a pattern of proton pencil beams (PBs), distributed to cover the target volume and optimized such as to achieve a homogenous dose distribution across the target. In this work, this optimization step has been enhanced to include advanced 4D dose calculations of liver tumors based on motion extracted from either 4D-CT (representing a single and averaged respiratory cycle) or 4D-CT(MRI) (including breathing variability). The 4D dose calculation is performed per PB on deforming dose grid, and according to the timestamp of each PB, a displacement due to patient’s motion and a change in radiological depth.Three different treatment fields have been optimized in 3D on the end-exhale phase of a 4D-CT liver data set (3D-opt) and then in 4D using the motion extracted from either 4D-CT or 4D-CT(MRI) using deformable image registration. All plans were calculated directly on the PTV without the use of an ITV. The delivery characteristics of the PSI Gantry 2 have been assumed for all calculations. Results: Dose inhomogeneities (D5-D95) in the CTV for the 3D optimized plans recalculated under conditions of variable motion were increased by on average 19.8% compared to the static case. These differences could be reduced by 4D-CT based 4D optimization to 10.5% and by 4D-CT(MRI) based optimization to only 2.3% of the static value. Liver V25 increased by less than 1% using 4D optimization. Conclusion: 4D optimized PBS treatment plans taking into account breathing variability provide for significantly improved robustness against motion and motion variability than those based on 4D-CT alone, and may negate the need of motion specific target expansions. Swiss National Fund Grant (320030-1493942-1)
Smoking cessation and bone healing: optimal cessation timing.
Truntzer, Jeremy; Vopat, Bryan; Feldstein, Michael; Matityahu, Amir
2015-02-01
Smoking is a worldwide epidemic. Complications related to smoking behavior generate an economic loss around $193 billion annually. In addition to impacting chronic health conditions, smoking is linked to increased perioperative complications in those with current or previous smoking history. Numerous studies have demonstrated more frequent surgical complications including higher rates of infection, poor wound healing, heightened pain complaints, and increased pulmonary morbidities in patients with a smoking history. Longer preoperative cessation periods also seem to correlate with reduced rates. At roughly 4 weeks of cessation prior to surgery, complication rates more closely reflect individuals without a smoking history in comparison with those that smoke within 4 weeks of surgery. In the musculoskeletal system, a similar trend has been observed in smokers with higher rates of fractures, nonunions, malunions, infections, osteomyelitis, and lower functional scores compared to non-smoking patients. Unfortunately, the present literature lacks robust data suggesting a temporal relationship between smoking cessation and bone healing. In our review, we analyze pseudoarthrosis rates following spinal fusion to suggest that bone healing in the context of smoking behavior follows a similar time sequence as observed in wound healing. We also discuss the implications for further clarity on bone healing and smoking cessation within orthopedics including improved risk stratification and better identification of circumstances where adjunct therapy is appropriate.
Approximation of the optimal-time problem for controlled differential inclusions
Otakulov, S.
1995-01-01
One of the common methods for numerical solution of optimal control problems constructs an approximating sequence of discrete control problems. The approximation method is also attractive because it can be used as an effective tool for analyzing optimality conditions and other topics in optimization theory. In this paper, we consider the approximation of optimal-time problems for controlled differential inclusions. The sequence of approximating problems is constructed using a finite-difference scheme, i.e., the differential inclusions are replaced with difference inclusions.
NASA Astrophysics Data System (ADS)
Matamis, George; Gogoi, Bishnu P.; Monk, David J.; McNeil, Andrew; Burrows, Veronica A.
2000-08-01
An alternative non-destructive analysis method using laser scanning microscopy (LSM) was used to study etch release distances in MEMS pressure sensor. The LSM method eliminates samples preparation and is easy to implement in a MEMS manufacturing environment. In this study, various diaphragm structures were etched using a highly concentrated HF based solution. Experimental etch data were obtained for both SiO2 and PSG films under these various structures. Both the height and the width of the sacrificial layer port/channel had a significant effect on etch rate for both films. As expected, a non-linear etch rate was obtained for both SiO2 and PSG films. Since the HF concentration changes over time in a manufacturing bath process, careful selection of processing time is required in order to fully release MEMS structures. Future theoretical modeling with the assistance of experimental data obtained in this study is being pursued to strengthen past work done by Eaton et al, Monk et al, and Liu et al.
Experimental Time-Optimal Universal Control of Spin Qubits in Solids.
Geng, Jianpei; Wu, Yang; Wang, Xiaoting; Xu, Kebiao; Shi, Fazhan; Xie, Yijin; Rong, Xing; Du, Jiangfeng
2016-10-21
Quantum control of systems plays an important role in modern science and technology. The ultimate goal of quantum control is to achieve high-fidelity universal control in a time-optimal way. Although high-fidelity universal control has been reported in various quantum systems, experimental implementation of time-optimal universal control remains elusive. Here, we report the experimental realization of time-optimal universal control of spin qubits in diamond. By generalizing a recent method for solving quantum brachistochrone equations [X. Wang et al., Phys. Rev. Lett. 114, 170501 (2015)], we obtained accurate minimum-time protocols for multiple qubits with fixed qubit interactions and a constrained control field. Single- and two-qubit time-optimal gates are experimentally implemented with fidelities of 99% obtained via quantum process tomography. Our work provides a time-optimal route to achieve accurate quantum control and unlocks new capabilities for the emerging field of time-optimal control in general quantum systems.
Computational alternatives to obtain time optimal jet engine control. M.S. Thesis
NASA Technical Reports Server (NTRS)
Basso, R. J.; Leake, R. J.
1976-01-01
Two computational methods to determine an open loop time optimal control sequence for a simple single spool turbojet engine are described by a set of nonlinear differential equations. Both methods are modifications of widely accepted algorithms which can solve fixed time unconstrained optimal control problems with a free right end. Constrained problems to be considered have fixed right ends and free time. Dynamic programming is defined on a standard problem and it yields a successive approximation solution to the time optimal problem of interest. A feedback control law is obtained and it is then used to determine the corresponding open loop control sequence. The Fletcher-Reeves conjugate gradient method has been selected for adaptation to solve a nonlinear optimal control problem with state variable and control constraints.
Quantum circuit for optimal eavesdropping in quantum key distribution using phase-time coding
Kronberg, D. A.; Molotkov, S. N.
2010-07-15
A quantum circuit is constructed for optimal eavesdropping on quantum key distribution proto- cols using phase-time coding, and its physical implementation based on linear and nonlinear fiber-optic components is proposed.
Hybrid methods for determining time-optimal, constrained spacecraft reorientation maneuvers
NASA Astrophysics Data System (ADS)
Melton, Robert G.
2014-01-01
Time-optimal spacecraft slewing maneuvers with path constraints are difficult to compute even with direct methods. This paper examines the use of a hybrid, two-stage approach, in which a heuristic method provides a rough estimate of the solution, which then serves as the input to a pseudospectral optimizer. Three heuristic methods are examined for the first stage: particle swarm optimization (PSO), differential evolution (DE), and bacteria foraging optimization (BFO). In this two-stage method, the PSO-pseudospectral combination is approximately three times faster than the pseudospectral method alone, and the BFO-pseudospectral combination is approximately four times faster; however, the DE does not produce an initial estimate that reduces total computation time.
Pratap, Jit
2016-01-01
Objective: This study evaluated the radiation dose and image quality implications of dual-energy CT (DECT) use, compared with kilovoltage-optimized single-source/single-energy CT (SECT) on a dual-source Siemens Somatom® Definition Flash CT scanner (Siemens Healthcare, Forcheim, Germany). Methods: With equalized radiation dose (volumetric CT dose index), image noise (standard deviation of CT number) and signal-difference-to-noise ratio (SDNR) were measured and compared across three techniques: 100, 120 and 100/140 kVp (dual energy). Noise in a 30-cm-diameter water phantom and SDNR within unenhanced soft-tissue regions of a small adult (50 kg/165 cm) anthropomorphic phantom were utilized for the assessment. Results: Water phantom image noise decreased with DECT compared with the lower noise SECT setting of 120 kVp (p = 0.046). A decrease in SDNR within the anthropomorphic phantom was demonstrated at 120 kVp compared with the SECT kilovoltage-optimized setting of 100 kVp (p = 0.001). A further decrease in SDNR was observed for the DECT technique when compared with 120 kVp (p = 0.01). Conclusion: On the Siemens Somatom Definition Flash system (Siemens Healthcare), and for equalized radiation dose conditions, image quality expressed as SDNR of unenhanced soft tissue may be compromised for DECT when compared with kilovoltage-optimized SECT, particularly for smaller patients. Advances in knowledge: DECT on a dual-source CT scanner may require a radiation dose increase to maintain unenhanced soft-tissue contrast detectability, particularly for smaller patients. PMID:26559438
Optimizing Cost Versus Time Shipping of U.S. Navy Retrograde Materiel
2005-03-01
bS ATAIqTA-\\PER S C IE NTL4AMj•. NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS OPTIMIZING COST VERSUS TIME SHIPPING OF U.S. NAVY ...SUBTITLE: 5. FUNDING NUMBERS Optimizing Cost Versus Time Shipping of U.S. Navy Retrograde Materiel 6. AUTHOR(S) Colbert, Charles W. 7. PERFORMING...materiel. This thesis models the NAVICP shipping of unserviceable but repairable (retrograde) Navy materiel or Depot Level Repairables (DLRs). It
Time-optimal quantum control of nonlinear two-level systems
NASA Astrophysics Data System (ADS)
Chen, Xi; Ban, Yue; Hegerfeldt, Gerhard C.
2016-08-01
Nonlinear two-level Landau-Zener type equations for systems with relevance for Bose-Einstein condensates and nonlinear optics are considered and the minimal time Tmin to drive an initial state to a given target state is investigated. Surprisingly, the nonlinearity may be canceled by a time-optimal unconstrained driving and Tmin becomes independent of the nonlinearity. For constrained and unconstrained driving explicit expressions are derived for Tmin, the optimal driving, and the protocol.
Singular-Arc Time-Optimal Trajectory of Aircraft in Two-Dimensional Wind Field
NASA Technical Reports Server (NTRS)
Nguyen, Nhan
2006-01-01
This paper presents a study of a minimum time-to-climb trajectory analysis for aircraft flying in a two-dimensional altitude dependent wind field. The time optimal control problem possesses a singular control structure when the lift coefficient is taken as a control variable. A singular arc analysis is performed to obtain an optimal control solution on the singular arc. Using a time-scale separation with the flight path angle treated as a fast state, the dimensionality of the optimal control solution is reduced by eliminating the lift coefficient control. A further singular arc analysis is used to decompose the original optimal control solution into the flight path angle solution and a trajectory solution as a function of the airspeed and altitude. The optimal control solutions for the initial and final climb segments are computed using a shooting method with known starting values on the singular arc The numerical results of the shooting method show that the optimal flight path angle on the initial and final climb segments are constant. The analytical approach provides a rapid means for analyzing a time optimal trajectory for aircraft performance.
NASA Astrophysics Data System (ADS)
Guthier, C. V.; Aschenbrenner, K. P.; Müller, R.; Polster, L.; Cormack, R. A.; Hesser, J. W.
2016-08-01
This paper demonstrates that optimization strategies derived from the field of compressed sensing (CS) improve computational performance in inverse treatment planning (ITP) for high-dose-rate (HDR) brachytherapy. Following an approach applied to low-dose-rate brachytherapy, we developed a reformulation of the ITP problem with the same mathematical structure as standard CS problems. Two greedy methods, derived from hard thresholding and subspace pursuit are presented and their performance is compared to state-of-the-art ITP solvers. Applied to clinical prostate brachytherapy plans speed-up by a factor of 56-350 compared to state-of-the-art methods. Based on a Wilcoxon signed rank-test the novel method statistically significantly decreases the final objective function value (p < 0.01). The optimization times were below one second and thus planing can be considered as real-time capable. The novel CS inspired strategy enables real-time ITP for HDR brachytherapy including catheter optimization. The generated plans are either clinically equivalent or show a better performance with respect to dosimetric measures.
NASA Astrophysics Data System (ADS)
He, Zhiyu; Zhao, Beijun; Zhu, Shifu; Chen, Baojun; Huang, Wei
2014-09-01
In present work, thermal properties of silver thiogallate (AgGaS2) crystal were investigated by means of differential scanning calorimetry (DSC) measurements performed at different heating and cooling rates. The DSC results confirmed that the melting point was 1249 K with a slight change around 5 K and that the nucleation temperature varied from 1183 K to 1218 K. The supercooling temperature was evaluated in the range 37.69 K to 62.46 K which was considered to be harmful for the single nucleus formation at the beginning of crystal growth. The activation energy E and the pre-exponential factor A were also calculated using different isoconversional methods, namely Kissinger-Akahira-Sunose (KAS) method and Flynn-Wall-Ozawa (FWO) method, and the results showed good agreement with each other. According to the results of DSC, a larger temperature gradient up to 30 K/cm was utilized to suppress the formation and growth of multi nuclei and a rapid cooling rate 25 K/min was applied to minimize the second-phase precipitates during the process of crystal growth. Finally, an integral and transparent AgGaS2 single crystal with diameter of 22 mm and the length of 55 mm was obtained.
NASA Astrophysics Data System (ADS)
Palmer, Richard A.; Plunkett, Susan E.; Dyer, R. B.; Schoonover, Jon; Meyer, Thomas J.; Chao, James L.
1994-01-01
Time-resolved step-scan FT-IR spectroscopy is used to monitor two distinct photo-induced processes. In the first, the third harmonic of a pulsed Nd:YAG laser (355 nm) is used to initiate a metal-to-ligand charge transfer process (MLCT) in a number of Ru(II) and/or Re(I) polypyridyl complexes. Changes in the position and shape of the vibrational signatures of (pi) -backbonding ligands such as CO and/or CN provide information about the changes in oxidation state of the metal resulting from electronic excitation. Changes in the other ligands vibrational bands indicate which is the electron acceptor (radical anion). In the second example demonstrated here, the second harmonic of the Nd:YAG laser (532 nm) pumps into the (beta) -Visible band of carbonmonoxymyoglobin (MbCO). This dissociates the Fe-CO bond of the heme prosthetic group, and the recombination process is observed as indicated by changes in the amide bands of the polypeptide chain. In both cases, these are some of the very few examples of fast (sub-microsecond(s) ) TR FT-IR in the absorbance mode.
Blouin, Stéphane; Puchegger, Stephan; Roschger, Andreas; Berzlanovich, Andrea; Fratzl, Peter; Klaushofer, Klaus; Roschger, Paul
2014-06-01
An important determinant of mechanical properties of bone is Young's modulus and its variation in individual osteons of cortical bone tissue. Its mechanical behavior also depends on deformation rate owing to its visco- or poroelastic properties. We developed a method to measure dynamical mechanical properties of bulk bone tissue at osteonal level based on scanning acoustic microscopy (SAM) using time-of-flight (TOF) measurements in combination with quantitative backscattered electron imaging (qBEI). SAM-TOF yields local sound velocities and qBEI corresponding material densities together providing elastic properties. Osteons (n=55) were measured in three human femoral diaphyseal ground bone sections (∼ 30 µm in thickness). In addition, subchondral bone and mineralized articular cartilage were investigated. The mean mineral contents, the mean sound velocities, and the mean elastic modulus of the osteons ranged from 20 to 26 wt%, from 3,819 to 5,260 m/s, and from 21 to 44 GPa, respectively. There was a strong positive correlation between material density and sound velocity (Pearson's r=0.701; p<0.0001) of the osteons. Sound velocities between cartilage and bone was similar, though material density was higher in cartilage (+4.46%, p<0.0001). These results demonstrate the power of SAM-TOF to estimate dynamic mechanical properties of the bone materials at the osteonal level.
Real-Time Display Of 3-D Computed Holograms By Scanning The Image Of An Acousto-Optic Modulator
NASA Astrophysics Data System (ADS)
Kollin, Joel S.; Benton, Stephen A.; Jepsen, Mary Lou
1989-10-01
The invention of holography has sparked hopes for a three-dimensional electronic imaging systems analogous to television. Unfortunately, the extraordinary spatial detail of ordinary holographic recordings requires unattainable bandwidth and display resolution for three-dimensional moving imagery, effectively preventing their commercial development. However, the essential bandwidth of holographic images can be reduced enough to permit their transmission through fiber optic or coaxial cable, and the required resolution or space-bandwidth product of the display can be obtained by raster scanning the image of a commercially available acousto-optic modulator. No film recording or other photographic intermediate step is necessary as the projected modulator image is viewed directly. The design and construction of a working demonstration of the principles involved is also presented along with a discussion of engineering considerations in the system design. Finally, the theoretical and practical limitations of the system are addressed in the context of extending the system to real-time transmission of moving holograms synthesized from views of real and computer-generated three-dimensional scenes.
Optimal Control Modification Adaptive Law for Time-Scale Separated Systems
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2010-01-01
Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. A model matching conditions in the transformed time coordinate results in an increase in the actuator command that effectively compensate for the slow actuator dynamics. Simulations demonstrate effectiveness of the method.
Optimal compensator structure for linear time-invariant plant with inaccessible states. M.S. Thesis
NASA Technical Reports Server (NTRS)
Blanvillain, P. J. P.
1974-01-01
The problem is considered of designing an optimal linear time-invariant dynamic compensator for the regulation of an n-th order linear time-invariant plant with m independent outputs. The initial plant state is characterized by its first and second moments, and the cost is usual quadratic infinite-time penalty on the state and control, averaged over the initial plant and compensator states. The compensator is based on a minimal-order Luenberger observer and consequently has fixed dimension n-m. Necessary and sufficient conditions are derived for optimality of the compensator gains. The optimal compensator is shown to be unique if the plant has a particular canonical form, and, in general, for any arbitrary plant, the class of all optimal compensators is precisely determined.
Lin, H; Kirk, M; Zhai, H; Ding, X; Liu, H; Hill-Kayser, C; Lustig, R; Tochner, Z; Deville, C; Vapiwala, N; McDonough, J; Both, S
2014-06-01
Purpose: To propose the gradient optimization(GO) approach in planning for matching proton PBS fields and present two commonly used applications in our institution. Methods: GO is employed for PBS field matching in the scenarios that when the size of the target is beyond the field size limit of the beam delivery system or matching is required for beams from different angles to either improve the sparing of important organs or to pass through a short and simple beam path. Overlap is designed between adjacent fields and in the overlapped junction, the dose was optimized such that it gradually decreases in one field and the decrease is compensated by increase from another field. Clinical applications of this approach on craniospinal irradiation(CSI) and whole pelvis treatment were presented. Mathematical model was developed to study the relationships between dose errors, setup errors and junction lengths. Results: Uniform and conformal dose coverage to the entire target volumes was achieved for both applications using GO approach. For CSI, the gradient matching (6.7cm junction) between fields overcame the complexity of planning associated with feathering match lines. A slow dose gradient in the junction area significantly reduced the sensitivity of the treatment to setup errors. For whole pelvis, gradient matching (4cm junction) between posterior fields for superior target and bilateral fields for inferior target provided dose sparing to organs such as bowel, bladder and rectum. For a setup error of 3 mm in longitudinal direction from one field, mathematical model predicted dose errors of 10%, 6% and 4.3% for junction length of 3, 5 and 7cm. Conclusion: This GO approach improves the quality of the PBS treatment plan with matching fields while maintaining the safety of treatment delivery relative to potential misalignments.
Time optimal trajectories for mobile robots with two independently driven wheels
Reister, D.B.; Pin, F.G.
1992-03-01
This paper addresses the problem of time-optional motions for a mobile platform in a planar environment. The platform has two non-steerable independently driven wheels. The overall mission of the robot is expressed in terms of a sequence of via points at which the platform must be at rest in a given configuration (position and orientation). The objective is to plan time-optimal trajectories between these configurations assuming an unobstructed environment. Using Pontryagin`s maximum principle (PMP), we formally demonstrate that all time optimal motions of the platform for this problem occur for bang-bang controls on the wheels (at each instant, the acceleration on each wheel is either at its upper or lower limit). The PMP, however, only provides necessary conditions for time optimality. To find the time optimal robot trajectories, we first parameterize the bang-bang trajectories using the switch times on the wheels (the times at which the wheel accelerations change sign). With this parameterization, we can fully search the robot trajectory space and find the switch times that will produce particular paths to a desired final configuration of the platform. We show numerically that robot trajectories with three switch times (two on one wheel, one on the other) can reach any position, while trajectories with four switch times can reach any configuration. By numerical comparison with other trajectories involving similar or greater numbers of switch times, we then identify the sets of time-optimal trajectories. These are uniquely defined using ranges of the parameters, and consist of subsets of trajectories with three switch times for the problem when the final orientation of the robot is not specified, and four switch times when a full final configuration is specified. We conclude with a description of the use of the method for trajectory planning for one of our robots.
Time optimal trajectories for mobile robots with two independently driven wheels
Reister, D.B.; Pin, F.G.
1992-03-01
This paper addresses the problem of time-optional motions for a mobile platform in a planar environment. The platform has two non-steerable independently driven wheels. The overall mission of the robot is expressed in terms of a sequence of via points at which the platform must be at rest in a given configuration (position and orientation). The objective is to plan time-optimal trajectories between these configurations assuming an unobstructed environment. Using Pontryagin's maximum principle (PMP), we formally demonstrate that all time optimal motions of the platform for this problem occur for bang-bang controls on the wheels (at each instant, the acceleration on each wheel is either at its upper or lower limit). The PMP, however, only provides necessary conditions for time optimality. To find the time optimal robot trajectories, we first parameterize the bang-bang trajectories using the switch times on the wheels (the times at which the wheel accelerations change sign). With this parameterization, we can fully search the robot trajectory space and find the switch times that will produce particular paths to a desired final configuration of the platform. We show numerically that robot trajectories with three switch times (two on one wheel, one on the other) can reach any position, while trajectories with four switch times can reach any configuration. By numerical comparison with other trajectories involving similar or greater numbers of switch times, we then identify the sets of time-optimal trajectories. These are uniquely defined using ranges of the parameters, and consist of subsets of trajectories with three switch times for the problem when the final orientation of the robot is not specified, and four switch times when a full final configuration is specified. We conclude with a description of the use of the method for trajectory planning for one of our robots.
Climate change and the optimal flowering time of annual plants in seasonal environments.
Johansson, Jacob; Bolmgren, Kjell; Jonzén, Niclas
2013-01-01
Long-term phenology monitoring has documented numerous examples of changing flowering dates during the last century. A pivotal question is whether these phenological responses are adaptive or not under directionally changing climatic conditions. We use a classic dynamic growth model for annual plants, based on optimal control theory, to find the fitness-maximizing flowering time, defined as the switching time from vegetative to reproductive growth. In a typical scenario of global warming, with advanced growing season and increased productivity, optimal flowering time advances less than the start of the growing season. Interestingly, increased temporal spread in production over the season may either advance or delay the optimal flowering time depending on overall productivity or season length. We identify situations where large phenological changes are necessary for flowering time to remain optimal. Such changes also indicate changed selection pressures. In other situations, the model predicts advanced phenology on a calendar scale, but no selection for early flowering in relation to the start of the season. We also show that the optimum is more sensitive to increased productivity when productivity is low than when productivity is high. All our results are derived using a general, graphical method to calculate the optimal flowering time applicable for a large range of shapes of the seasonal production curve. The model can thus explain apparent maladaptation in phenological responses in a multitude of scenarios of climate change. We conclude that taking energy allocation trade-offs and appropriate time scales into account is critical when interpreting phenological patterns.
Two neural network algorithms for designing optimal terminal controllers with open final time
NASA Technical Reports Server (NTRS)
Plumer, Edward S.
1992-01-01
Multilayer neural networks, trained by the backpropagation through time algorithm (BPTT), have been used successfully as state-feedback controllers for nonlinear terminal control problems. Current BPTT techniques, however, are not able to deal systematically with open final-time situations such as minimum-time problems. Two approaches which extend BPTT to open final-time problems are presented. In the first, a neural network learns a mapping from initial-state to time-to-go. In the second, the optimal number of steps for each trial run is found using a line-search. Both methods are derived using Lagrange multiplier techniques. This theoretical framework is used to demonstrate that the derived algorithms are direct extensions of forward/backward sweep methods used in N-stage optimal control. The two algorithms are tested on a Zermelo problem and the resulting trajectories compare favorably to optimal control results.
NASA Astrophysics Data System (ADS)
Taylor, J. K.; Revercomb, H. E.; Hoese, D.; Garcia, R. K.; Smith, W. L.; Weisz, E.; Tobin, D. C.; Best, F. A.; Knuteson, R. O.; Sullivan, D. V.; Barnes, C. M.; Van Gilst, D. P.
2015-12-01
The Hurricane and Severe Storm Sentinel (HS3) is a five-year NASA mission targeted to enhance the understanding of the formation and evolution of hurricanes in the Atlantic basin. Measurements were made from two NASA Global Hawk Unmanned Aircraft Systems (UAS) during the 2012 through 2014 hurricane seasons, with flights conducted from the NASA Wallops Flight Facility. The Global Hawk aircraft are capable of high altitude flights with durations of up to 30 hours, which allow extensive observations over distant storms, not typically possible with manned aircraft. The two NASA Global Hawks were equipped with instrument suites to study the storm environment, and inner core structure and processes, respectively. The Scanning High-resolution Interferometer Sounder (S-HIS), designed and built by the University of Wisconsin (UW) Space Science and Engineering Center (SSEC), measures emitted thermal radiation at high spectral resolution between 3.3 and 18 microns. The radiance measurements are used to obtain temperature and water vapor profiles of the Earth's atmosphere. The S-HIS spatial resolution is 2 km at nadir, across a 40 km ground swath from a nominal altitude of 20 kilometers. Since 1998, the S-HIS has participated in 33 field campaigns and has proven to be extremely dependable, effective, and highly accurate. It has flown on the NASA ER-2, DC-8, Proteus, WB-57, and Global Hawk airborne platforms. The UW S-HIS infrared sounder instrument is equipped with a real-time ground data processing system capable of delivering atmospheric profiles, radiance data, and engineering status to mission support scientists - all within less than one minute from the time of observation. This ground data processing system was assembled by a small team using existing software and proven practical techniques similar to a satellite ground system architecture. This summary outlines the design overview for the system and illustrates the data path, content, and outcomes.
Nuclear scans use radioactive substances to see structures and functions inside your body. They use a special ... images. Most scans take 20 to 45 minutes. Nuclear scans can help doctors diagnose many conditions, including ...
... in the body. It is a type of nuclear scan . How the Test is Performed Blood will ... radiation. Due to the slight radiation exposure, most nuclear scans (including WBC scan) are not recommended for ...
... Nuclear scan - technetium; Nuclear scan - liver or spleen Images Liver scan References Lidofsky S. Jaundice. In: Feldman M, ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...
... may have an allergic reaction to the tracer material. Some people have pain, redness, or swelling at ... with diabetes. Most PET scans are now performed along with a CT scan. This combination scan ...
NASA Astrophysics Data System (ADS)
Mori, Shinichiro; Furukawa, Takuji
2016-05-01
To shorten treatment time in pencil beam scanning irradiation, we developed rapid phase-controlled rescanning (rPCR), which irradiates two or more isoenergy layers in a single gating window. Here, we evaluated carbon-ion beam dose distribution with rapid and conventional PCR (cPCR). 4 dimensional computed tomography (4DCT) imaging was performed on 12 subjects with lung or liver tumors. To compensate for intrafractional range variation, the field-specific target volume (FTV) was calculated using 4DCT within the gating window (T20-T80). We applied an amplitude-based gating strategy, in which the beam is on when the tumor is within the gating window defined by treatment planning. Dose distributions were calculated for layered phase-controlled rescanning under an irregular respiratory pattern, although a single 4DCT data set was used. The number of rescannings was eight times. The prescribed doses were 48 Gy(RBE)/1 fr (where RBE is relative biological effectiveness) delivered via four beam ports to the FTV for the lung cases and 45 Gy(RBE)/2 fr delivered via two beam ports to the FTV for the liver cases. In the liver cases, the accumulated dose distributions showed an increased magnitude of hot/cold spots with rPCR compared with cPCR. The results of the dose assessment metrics for the cPCR and rPCR were very similar. The D 95, D max, and D min values (cPCR/rPCR) averaged over all the patients were 96.3 ± 0.9%/96.0 ± 1.2%, 107.3 ± 3.6%/107.1 ± 2.9%, and 88.8 ± 3.2%/88.1 ± 3.1%, respectively. The treatment times in cPCR and rPCR were 110.7 s and 53.5 s, respectively. rPCR preserved dose conformation under irregular respiratory motion and reduced the total treatment time compared with cPCR.
Dynamic modeling and optimization for space logistics using time-expanded networks
NASA Astrophysics Data System (ADS)
Ho, Koki; de Weck, Olivier L.; Hoffman, Jeffrey A.; Shishko, Robert
2014-12-01
This research develops a dynamic logistics network formulation for lifecycle optimization of mission sequences as a system-level integrated method to find an optimal combination of technologies to be used at each stage of the campaign. This formulation can find the optimal transportation architecture considering its technology trades over time. The proposed methodologies are inspired by the ground logistics analysis techniques based on linear programming network optimization. Particularly, the time-expanded network and its extension are developed for dynamic space logistics network optimization trading the quality of the solution with the computational load. In this paper, the methodologies are applied to a human Mars exploration architecture design problem. The results reveal multiple dynamic system-level trades over time and give recommendation of the optimal strategy for the human Mars exploration architecture. The considered trades include those between In-Situ Resource Utilization (ISRU) and propulsion technologies as well as the orbit and depot location selections over time. This research serves as a precursor for eventual permanent settlement and colonization of other planets by humans and us becoming a multi-planet species.
Optimal design of clinical trials with biologics using dose-time-response models.
Lange, Markus R; Schmidli, Heinz
2014-12-30
Biologics, in particular monoclonal antibodies, are important therapies in serious diseases such as cancer, psoriasis, multiple sclerosis, or rheumatoid arthritis. While most conventional drugs are given daily, the effect of monoclonal antibodies often lasts for months, and hence, these biologics require less frequent dosing. A good understanding of the time-changing effect of the biologic for different doses is needed to determine both an adequate dose and an appropriate time-interval between doses. Clinical trials provide data to estimate the dose-time-response relationship with semi-mechanistic nonlinear regression models. We investigate how to best choose the doses and corresponding sample size allocations in such clinical trials, so that the nonlinear dose-time-response model can be precisely estimated. We consider both local and conservative Bayesian D-optimality criteria for the design of clinical trials with biologics. For determining the optimal designs, computer-intensive numerical methods are needed, and we focus here on the particle swarm optimization algorithm. This metaheuristic optimizer has been successfully used in various areas but has only recently been applied in the optimal design context. The equivalence theorem is used to verify the optimality of the designs. The methodology is illustrated based on results from a clinical study in patients with gout, treated by a monoclonal antibody.
Robust Optimization of Fixed Points of Nonlinear Discrete Time Systems with Uncertain Parameters
NASA Astrophysics Data System (ADS)
Kastsian, Darya; Monnigmann, Martin
2010-01-01
This contribution extends the normal vector method for the optimization of parametrically uncertain dynamical systems to a general class of nonlinear discrete time systems. Essentially, normal vectors are used to state constraints on dynamical properties of fixed points in the optimization of discrete time dynamical systems. In a typical application of the method, a technical dynamical system is optimized with respect to an economic profit function, while the normal vector constraints are used to guarantee the stability of the optimal fixed point. We derive normal vector systems for flip, fold, and Neimark-Sacker bifurcation points, because these bifurcation points constitute the stability boundary of a large class of discrete time systems. In addition, we derive normal vector systems for a related type of critical point that can be used to ensure a user-specified disturbance rejection rate in the optimization of parametrically uncertain systems. We illustrate the method by applying it to the optimization of a discrete time supply chain model and a discretized fermentation process model.
Harris, Karen S.; Casey, Joanne L.; Coley, Andrew M.; Karas, John A.; Sabo, Jennifer K.; Tan, Yen Yee; Dolezal, Olan; Norton, Raymond S.; Hughes, Andrew B.; Scanlon, Denis; Foley, Michael
2009-01-01
Apical membrane antigen 1 (AMA1) of the malaria parasite Plasmodium falciparum has been implicated in the invasion of host erythrocytes and is an important vaccine candidate. We have previously described a 20-residue peptide, R1, that binds to AMA1 and subsequently blocks parasite invasion. Because this peptide appears to target a site critical for AMA1 function, it represents an important lead compound for anti-malarial drug development. However, the effectiveness of this peptide inhibitor was limited to a subset of parasite isolates, indicating a requirement for broader strain specificity. Furthermore, a barrier to the utility of any peptide as a potential therapeutic is its susceptibility to rapid proteolytic degradation. In this study, we sought to improve the proteolytic stability and AMA1 binding properties of the R1 peptide by systematic methylation of backbone amides (N-methylation). The inclusion of a single N-methyl group in the R1 peptide backbone dramatically increased AMA1 affinity, bioactivity, and proteolytic stability without introducing global structural alterations. In addition, N-methylation of multiple R1 residues further improved these properties. Therefore, we have shown that modifications to a biologically active peptide can dramatically enhance activity. This approach could be applied to many lead peptides or peptide therapeutics to simultaneously optimize a number of parameters. PMID:19164290
Statistical analysis of piloted simulation of real time trajectory optimization algorithms
NASA Technical Reports Server (NTRS)
Price, D. B.
1982-01-01
A simulation of time-optimal intercept algorithms for on-board computation of control commands is described. The effects of three different display modes and two different computation modes on the pilots' ability to intercept a moving target in minimum time were tested. Both computation modes employed singular perturbation theory to help simplify the two-point boundary value problem associated with trajectory optimization. Target intercept time was affected by both the display and computation modes chosen, but the display mode chosen was the only significant influence on the miss distance.
Real-Time Traffic Signal Control for Optimization of Traffic Jam Probability
NASA Astrophysics Data System (ADS)
Cui, Cheng-You; Shin, Ji-Sun; Miyazaki, Michio; Lee, Hee-Hyol
Real-time traffic signal control is an integral part of urban traffic control system. It can control traffic signals online according to variation of traffic flow. In this paper, we propose a new method for the real-time traffic signal control system. The system uses a Cellular Automaton model and a Bayesian Network model to predict probabilistic distributions of standing vehicles, and uses a Particle Swarm Optimization method to calculate optimal traffic signals. A simulation based on real traffic data was carried out to show the effectiveness of the proposed real-time traffic signal control system CAPSOBN using a micro traffic simulator.
Planning time-optimal robotic manipulator motions and work places for point-to-point tasks
NASA Technical Reports Server (NTRS)
Dubowsky, S.; Blubaugh, T. D.
1989-01-01
A method is presented which combines simple time-optimal motions in an optimal manner to yield the minimum-time motions for an important class of complex manipulator tasks composed of point-to-point moves such as assembly, electronic component insertion, and spot welding. This method can also be used to design manipulator actions and work places so that tasks can be completed in minimum time. The method has been implemented in a computer-aided design software system. Several examples are presented. Experimental results show the method's validity and utility.
A new approach of analyzing time-varying dynamical equation via an optimal principle
NASA Astrophysics Data System (ADS)
Zhao, Hui; Li, Lixiang; Peng, Haipeng; Kurths, Jürgen; Xiao, Jinghua; Yang, Yixian; Li, Ang
2017-03-01
In this paper, an innovative design approach is proposed to solve time-varying dynamical equation, including matrix inverse equation and Sylvester equation. Based on the precondition of the existing solution of time-varying dynamical equation, different from previous approach to solve unknown matrix, an optimal design principle is used to solve the unknown variables. A performance index is introduced based on the inherent properties of the time-varying dynamical equation and Euler equation. The solution of time-varying dynamical equation is converted to an optimal problem of performance index. Furthermore, convergence and sensitivity to additive noise are also analyzed, and simulation results confirm that the method is feasible and effective. Especially, in simulations we design a tunable positive parameter in the dynamic optimization model. The tunable parameter is not only helpful to accelerate its convergence but also reduce its sensitivity to additive noise. Meanwhile the comparative simulation results are shown for the convergence accuracy and robustness of this method.
Discrete-time entropy formulation of optimal and adaptive control problems
NASA Technical Reports Server (NTRS)
Tsai, Yweting A.; Casiello, Francisco A.; Loparo, Kenneth A.
1992-01-01
The discrete-time version of the entropy formulation of optimal control of problems developed by G. N. Saridis (1988) is discussed. Given a dynamical system, the uncertainty in the selection of the control is characterized by the probability distribution (density) function which maximizes the total entropy. The equivalence between the optimal control problem and the optimal entropy problem is established, and the total entropy is decomposed into a term associated with the certainty equivalent control law, the entropy of estimation, and the so-called equivocation of the active transmission of information from the controller to the estimator. This provides a useful framework for studying the certainty equivalent and adaptive control laws.
The Effects of Task Structure on Time-sharing Efficiency and Resource Allocation Optimality
NASA Technical Reports Server (NTRS)
Tsang, P. S.; Wickens, C. D.
1984-01-01
A distinction was made between two aspects of time sharing performance: time sharing efficiency and attention allocation optimality. A secondary task technique was employed to evaluate the effects of the task structures of the component time shared tasks on both aspects of the time sharing performance. Five pairs of dual tasks differing in their structural configurations were investigated. The primary task was a visual/manual tracking task which requires spatial processing. The secondary task was either another tracking task or a verbal memory task with one of four different input/output configurations. Congruent to a common finding, time-sharing efficiency was observed to decrease with an increasing overlap of resources utilized by the time shared tasks. Research also tends to support the hypothesis that resource allocation is more optimal when the time shared tasks placed heavy demands on common processing resources than when they utilized separate resources.
Gong, Zhenhuan; Boyuka, David; Zou, X; Liu, Gary; Podhorszki, Norbert; Klasky, Scott A; Ma, Xiaosong; Samatova, Nagiza F
2013-01-01
Download Citation Email Print Request Permissions Save to Project The size and scope of cutting-edge scientific simulations are growing much faster than the I/O and storage capabilities of their run-time environments. The growing gap is exacerbated by exploratory, data-intensive analytics, such as querying simulation data with multivariate, spatio-temporal constraints, which induces heterogeneous access patterns that stress the performance of the underlying storage system. Previous work addresses data layout and indexing techniques to improve query performance for a single access pattern, which is not sufficient for complex analytics jobs. We present PARLO a parallel run-time layout optimization framework, to achieve multi-level data layout optimization for scientific applications at run-time before data is written to storage. The layout schemes optimize for heterogeneous access patterns with user-specified priorities. PARLO is integrated with ADIOS, a high-performance parallel I/O middleware for large-scale HPC applications, to achieve user-transparent, light-weight layout optimization for scientific datasets. It offers simple XML-based configuration for users to achieve flexible layout optimization without the need to modify or recompile application codes. Experiments show that PARLO improves performance by 2 to 26 times for queries with heterogeneous access patterns compared to state-of-the-art scientific database management systems. Compared to traditional post-processing approaches, its underlying run-time layout optimization achieves a 56% savings in processing time and a reduction in storage overhead of up to 50%. PARLO also exhibits a low run-time resource requirement, while also limiting the performance impact on running applications to a reasonable level.
NASA Astrophysics Data System (ADS)
Sheibani, F.
2014-12-01
Due to low natural gas prices, low production rates, and increased development costs, many operators have shifted operations from shale gas to liquid-rich shale plays. One means to make shale gas plays more attractive is to enhance well production through stimulation optimization. In numerous previous works, the authors have highlighted the geomechanical causes and important parameters for hydraulic fracture optimization in naturally fractured shale plays. The authors have, for example, emphasized the impact that stress shadows, from multiple hydraulic fractures, has on increasing the resistance of natural fractures and weakness planes to shear stimulation. The authors have also shown the critical role that in-situ pressure and pressure changes have on natural fracture shear stimulation.In this paper, we present the results of a discrete element model numerical study of both hydraulic fracture spacing and hydraulic fracture timing in a fully hydro-mechanical coupled fashion. The pressure changes in the natural fracture system of an unconventional play, due to hydraulic fracturing, often follow a diffusion-type process, which means the pressure changes are time dependent. As shown in previous works of the authors and others, the time-dependent changes in the in-situ pressure can have a marked impact on shear stimulation. The study performed quantitatively looked at the impact of hydraulic fracture spacing as a function of in-situ pressure change and time for key parameters such as the in-situ stress ratio, natural fracture characteristics, and natural fracture mechanical properties. The results of the study help improve the understanding of in-situ pressure and hydraulic fracture timing on stimulation optimization and enhanced hydrocarbon production. The study also provides a means to optimize hydraulic fracture spacing and increase shear stimulation for unconventional wells.
An active time-optimal control for space debris deorbiting via geomagnetic field
NASA Astrophysics Data System (ADS)
Amiri Atashgah, M. A.; Gazerpour, Hamid; Lavaei, Abolfazl; Zarei, Yaser
2017-02-01
This paper is concerned with an approach for active removing of space debris by electrodynamic tether (EDT) systems in a time-optimal maneuver. In this regard, a collector-emitter system is comprised of the insulated EDT in order to generate the required electric current over a virtual circuit once the induced electric current is adopted as control force producer. To this end, a simulation program is initially developed, during which dynamic and mathematical models of the EDT as well as the geomagnetic field are encompassed, respectively. This toolset is first utilized for prediction of orbital characteristics during the deorbit process; and subsequently, using the direct transcription method, the time-optimal problem is well solved. The efficacy of the suggested technique is verified through extensive simulations once all hard constraints of the underlying problem are well satisfied. In short, while the altitude varies from 1413 to 200 km, the optimized deorbit time would reduce about 17 days.
NASA Astrophysics Data System (ADS)
Su, Hao; Tang, Gong-You
2016-09-01
This paper proposes a successive approximation design approach of observer-based optimal tracking controllers for time-delay systems with external disturbances. To solve a two-point boundary value problem with time-delay and time-advance terms and obtain the optimal tracking control law, two sequences of vector differential equations are constructed first. Second, the convergence of the sequences of the vector differential equations is proved to guarantee the existence and uniqueness of the control law. Third, a design algorithm of the optimal tracking control law is presented and the physically realisable problem is addressed by designing a disturbance state observer and a reference input state observer. An example of an industrial electric heater is given to demonstrate the efficiency of the proposed approach.
NASA Astrophysics Data System (ADS)
Idrees, Mohammed Oludare; Pradhan, Biswajeet; Buchroithner, Manfred F.; Shafri, Helmi Zulhaidi Mohd; Khairunniza Bejo, Siti
2016-07-01
As far back as early 15th century during the reign of the Ming Dynasty (1368 to 1634 AD), Gomantong cave in Sabah (Malaysia) has been known as one of the largest roosting sites for wrinkle-lipped bats (Chaerephon plicata) and swiftlet birds (Aerodramus maximus and Aerodramus fuciphagus) in very large colonies. Until recently, no study has been done to quantify or estimate the colony sizes of these inhabitants in spite of the grave danger posed to this avifauna by human activities and potential habitat loss to postspeleogenetic processes. This paper evaluates the transferability of a hybrid optimization image analysis-based method developed to detect and count cave roosting birds. The method utilizes high-resolution terrestrial laser scanning intensity image. First, segmentation parameters were optimized by integrating objective function and the statistical Taguchi methods. Thereafter, the optimized parameters were used as input into the segmentation and classification processes using two images selected from Simud Hitam (lower cave) and Simud Putih (upper cave) of the Gomantong cave. The result shows that the method is capable of detecting birds (and bats) from the image for accurate population censusing. A total number of 9998 swiftlet birds were counted from the first image while 1132 comprising of both bats and birds were obtained from the second image. Furthermore, the transferability evaluation yielded overall accuracies of 0.93 and 0.94 (area under receiver operating characteristic curve) for the first and second image, respectively, with p value of <0.0001 at 95% confidence level. The findings indicate that the method is not only efficient for the detection and counting cave birds for which it was developed for but also useful for counting bats; thus, it can be adopted in any cave.
Consideration of Time as a Decision Variable in Subsurface Remediation Optimization
NASA Astrophysics Data System (ADS)
Endres, K. L.; Mayer, A. S.; Horn, J.
2003-12-01
Remediation time frames are normally fixed by a number of management and regulatory issues without consideration of the interaction between remediation cost and the time constraint. This work looks at the implications of the time constraint by considering time as a decision variable in the optimization process. We utilize a multi-objective optimization of a hypothetical contaminated aquifer that results in a trade off curve of total remediation time vs. remediation costs. This curve allows decision makers to view the full range of options for time and cost. The cost function includes treatment, pumping and management costs. The multi-objective problem is formulated to minimize the design cost while also minimizing the remediation time. The Niched Pareto Genetic Algorithm (NPGA) has been modified to allow enforcement of water quality constraints. The addition of this constraint enforcement is developed by two methods. The first method initiates a penalty in the fitness values as the enforcement mechanism. The second uses the niching domination to apply the constraint. Each of these methods is innovative in remediation optimization work. Comparisons of the two methods are presented. Three sets of numerical computational experiments are performed to produce tradeoff curves of cost and total time. The experiments increase in computational effort as the complexity of the time variables increases. In each experiment the cost objective will be a function of pumping rate. The first experiment will use a single management period, where total time is the decision variable. The second will use multiple management periods of fixed length, where the number of management periods is the decision variable. The third will have the number of management periods and the length of the periods as decision variables. This method of investigation in to the impact of time as an optimization variable incorporates the full range of management possibilities. Comparisons of the three
Optimal adaptive control for quantum metrology with time-dependent Hamiltonians
NASA Astrophysics Data System (ADS)
Pang, Shengshi; Jordan, Andrew N.
2017-03-01
Quantum metrology has been studied for a wide range of systems with time-independent Hamiltonians. For systems with time-dependent Hamiltonians, however, due to the complexity of dynamics, little has been known about quantum metrology. Here we investigate quantum metrology with time-dependent Hamiltonians to bridge this gap. We obtain the optimal quantum Fisher information for parameters in time-dependent Hamiltonians, and show proper Hamiltonian control is generally necessary to optimize the Fisher information. We derive the optimal Hamiltonian control, which is generally adaptive, and the measurement scheme to attain the optimal Fisher information. In a minimal example of a qubit in a rotating magnetic field, we find a surprising result that the fundamental limit of T2 time scaling of quantum Fisher information can be broken with time-dependent Hamiltonians, which reaches T4 in estimating the rotation frequency of the field. We conclude by considering level crossings in the derivatives of the Hamiltonians, and point out additional control is necessary for that case.
Optimal adaptive control for quantum metrology with time-dependent Hamiltonians.
Pang, Shengshi; Jordan, Andrew N
2017-03-09
Quantum metrology has been studied for a wide range of systems with time-independent Hamiltonians. For systems with time-dependent Hamiltonians, however, due to the complexity of dynamics, little has been known about quantum metrology. Here we investigate quantum metrology with time-dependent Hamiltonians to bridge this gap. We obtain the optimal quantum Fisher information for parameters in time-dependent Hamiltonians, and show proper Hamiltonian control is generally necessary to optimize the Fisher information. We derive the optimal Hamiltonian control, which is generally adaptive, and the measurement scheme to attain the optimal Fisher information. In a minimal example of a qubit in a rotating magnetic field, we find a surprising result that the fundamental limit of T(2) time scaling of quantum Fisher information can be broken with time-dependent Hamiltonians, which reaches T(4) in estimating the rotation frequency of the field. We conclude by considering level crossings in the derivatives of the Hamiltonians, and point out additional control is necessary for that case.
Optimal tuning of a control system for a second-order plant with time delay
NASA Astrophysics Data System (ADS)
Golinko, I. M.
2014-07-01
An engineering method for optimizing the parameters of PI and PID controllers for a second-order controlled plant with time delay is considered. An integral quality criterion involving minimization of the control output is proposed for optimizing the control system, which differs from the existing ones in that the effect the control output has on the technological process is taken into account in a correct way. The use of such control makes it possible to minimize the expenditure of material and/or energy resources, to limit the wear, and to increase the service life of the control devices. The unimodal nature of the proposed quality criterion for solving optimal controller tuning problems is numerically confirmed using the optimization theory. A functional correlation between the optimal controller parameters and dynamic properties of a controlled plant is determined for a single-loop control system with the use of calculation methods. The results from simulating the transients in the control system using the proposed and existing functional dependences are compared. The proposed calculation formulas differ from the existing ones by having simple structure, high accuracy of searching for the optimal controller parameters; they allow efficient control to be obtained and can be used for tuning automatic control systems in a wide range of controlled plant dynamic properties. The obtained calculation formulas are recommended for being used by engineers specializing in automation for designing new and optimizing the existing control systems.
Energy management of three-dimensional minimum-time intercept. [for aircraft flight optimization
NASA Technical Reports Server (NTRS)
Kelley, H. J.; Cliff, E. M.; Visser, H. G.
1985-01-01
A real-time computer algorithm to control and optimize aircraft flight profiles is described and applied to a three-dimensional minimum-time intercept mission. The proposed scheme has roots in two well known techniques: singular perturbations and neighboring-optimal guidance. Use of singular-perturbation ideas is made in terms of the assumed trajectory-family structure. A heading/energy family of prestored point-mass-model state-Euler solutions is used as the baseline in this scheme. The next step is to generate a near-optimal guidance law that will transfer the aircraft to the vicinity of this reference family. The control commands fed to the autopilot (bank angle and load factor) consist of the reference controls plus correction terms which are linear combinations of the altitude and path-angle deviations from reference values, weighted by a set of precalculated gains. In this respect the proposed scheme resembles neighboring-optimal guidance. However, in contrast to the neighboring-optimal guidance scheme, the reference control and state variables as well as the feedback gains are stored as functions of energy and heading in the present approach. Some numerical results comparing open-loop optimal and approximate feedback solutions are presented.
Optimal design of hydraulic head monitoring networks using space-time geostatistics
NASA Astrophysics Data System (ADS)
Herrera, G. S.; Júnez-Ferreira, H. E.
2013-05-01
This paper presents a new methodology for the optimal design of space-time hydraulic head monitoring networks and its application to the Valle de Querétaro aquifer in Mexico. The selection of the space-time monitoring points is done using a static Kalman filter combined with a sequential optimization method. The Kalman filter requires as input a space-time covariance matrix, which is derived from a geostatistical analysis. A sequential optimization method that selects the space-time point that minimizes a function of the variance, in each step, is used. We demonstrate the methodology applying it to the redesign of the hydraulic head monitoring network of the Valle de Querétaro aquifer with the objective of selecting from a set of monitoring positions and times, those that minimize the spatiotemporal redundancy. The database for the geostatistical space-time analysis corresponds to information of 273 wells located within the aquifer for the period 1970-2007. A total of 1,435 hydraulic head data were used to construct the experimental space-time variogram. The results show that from the existing monitoring program that consists of 418 space-time monitoring points, only 178 are not redundant. The implied reduction of monitoring costs was possible because the proposed method is successful in propagating information in space and time.
Tang, Zhongwen
2015-01-01
An analytical way to compute predictive probability of success (PPOS) together with credible interval at interim analysis (IA) is developed for big clinical trials with time-to-event endpoints. The method takes account of the fixed data up to IA, the amount of uncertainty in future data, and uncertainty about parameters. Predictive power is a special type of PPOS. The result is confirmed by simulation. An optimal design is proposed by finding optimal combination of analysis time and futility cutoff based on some PPOS criteria.
Rao, Sonia N; Wang, Sheila K; Gonzalez Zamora, Jose; Hanson, Amy P; Polisetty, Radhika S; Singh, Kamaljit
2016-12-01
The penicillin-binding protein 2a (PBP2a) assay is a quick, accurate and inexpensive test for determining methicillin susceptibility in Staphylococcus aureus. A pre-post-study design was conducted using a PBP2a assay with and without the impact of an antimicrobial stewardship intervention to improve time to optimal therapy for methicillin-susceptible and methicillin-resistant S. aureus isolates. Our results demonstrate significantly improved time to optimal therapy and support the use of a PBP2a assay as part of an programme for all healthcare facilities, especially those with limited resources.
Daily Time Step Refinement of Optimized Flood Control Rule Curves for a Global Warming Scenario
NASA Astrophysics Data System (ADS)
Lee, S.; Fitzgerald, C.; Hamlet, A. F.; Burges, S. J.
2009-12-01
Pacific Northwest temperatures have warmed by 0.8 °C since 1920 and are predicted to further increase in the 21st century. Simulated streamflow timing shifts associated with climate change have been found in past research to degrade water resources system performance in the Columbia River Basin when using existing system operating policies. To adapt to these hydrologic changes, optimized flood control operating rule curves were developed in a previous study using a hybrid optimization-simulation approach which rebalanced flood control and reservoir refill at a monthly time step. For the climate change scenario, use of the optimized flood control curves restored reservoir refill capability without increasing flood risk. Here we extend the earlier studies using a detailed daily time step simulation model applied over a somewhat smaller portion of the domain (encompassing Libby, Duncan, and Corra Linn dams, and Kootenai Lake) to evaluate and refine the optimized flood control curves derived from monthly time step analysis. Moving from a monthly to daily analysis, we found that the timing of flood control evacuation needed adjustment to avoid unintended outcomes affecting Kootenai Lake. We refined the flood rule curves derived from monthly analysis by creating a more gradual evacuation schedule, but kept the timing and magnitude of maximum evacuation the same as in the monthly analysis. After these refinements, the performance at monthly time scales reported in our previous study proved robust at daily time scales. Due to a decrease in July storage deficits, additional benefits such as more revenue from hydropower generation and more July and August outflow for fish augmentation were observed when the optimized flood control curves were used for the climate change scenario.
Saucedo, V M; Karim, M N
1997-07-20
This article describes a methodology that implements a Markov decision process (MDP) optimization technique in a real time fed-batch experiment. Biological systems can be better modeled under the stochastic framework and MDP is shown to be a suitable technique for their optimization. A nonlinear input/output model is used to calculate the probability transitions. All elements of the MDP are identified according to physical parameters. Finally, this study compares the results obtained when optimizing ethanol production using the infinite horizon problem, with total expected discount policy, to previous experimental results aimed at optimizing ethanol production using a recombinant Escherichia coli fed-batch cultivation. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 317-327, 1997.
Time reversal imaging for sensor networks with optimal compensation in time.
Derveaux, Grégoire; Papanicolaou, George; Tsogka, Chrysoula
2007-04-01
Using extensive numerical simulations, several distributed sensor imaging algorithms for localized damage in a structure are analyzed. Given a configuration of ultrasonic transducers, a full response matrix for the healthy structure is assumed known. It is used as a basis for comparison with the response matrix that is recorded when there is damage. Numerical simulations are done with the wave equation in two dimensions. The healthy structure contains many scatterers. The aim is to image point-like defects with several regularly distributed sensors. Because of the complexity of the environment, the recorded traces have a lot of delay spread and travel time migration does not work so well. Instead, the traces are back propagated numerically assuming that there is some knowledge of the background. Since the time at which the back propagated field will focus on the defects is unknown, the Shannon entropy or the bounded variation norm of the image is computed and the time where it is minimal is picked. This imaging method performs well because it produces a tight image near the location of the defects at the time of refocusing. When there are several defects, the singular value decomposition of the response matrix is also carried out.
Optimal harvesting of fish stocks under a time-varying discount rate.
Duncan, Stephen; Hepburn, Cameron; Papachristodoulou, Antonis
2011-01-21
Optimal control theory has been extensively used to determine the optimal harvesting policy for renewable resources such as fish stocks. In such optimisations, it is common to maximise the discounted utility of harvesting over time, employing a constant time discount rate. However, evidence from human and animal behaviour suggests that we have evolved to employ discount rates which fall over time, often referred to as "hyperbolic discounting". This increases the weight on benefits in the distant future, which may appear to provide greater protection of resources for future generations, but also creates challenges of time-inconsistent plans. This paper examines harvesting plans when the discount rate declines over time. With a declining discount rate, the planner reduces stock levels in the early stages (when the discount rate is high) and intends to compensate by allowing the stock level to recover later (when the discount rate will be lower). Such a plan may be feasible and optimal, provided that the planner remains committed throughout. However, in practice there is a danger that such plans will be re-optimized and adjusted in the future. It is shown that repeatedly restarting the optimization can drive the stock level down to the point where the optimal policy is to harvest the stock to extinction. In short, a key contribution of this paper is to identify the surprising severity of the consequences flowing from incorporating a rather trivial, and widely prevalent, "non-rational" aspect of human behaviour into renewable resource management models. These ideas are related to the collapse of the Peruvian anchovy fishery in the 1970's.
Optimal, impulsive, time-fixed orbital rendezvous and interception with path constraints
NASA Astrophysics Data System (ADS)
Taur, Der-Ren
Minimum-fuel, impulsive, time-fixed extremal solutions are obtained for the problem of orbital rendezvous and interception with path constraints. The coplanar case and a restricted class of path constraints are analyzed. A theory based on the extended problem of Bolza in the calculus of variations was established to determine optimal impulsive trajectories with state variable inequality constraints. According to this newly developed theory, all the necessary conditions including the optimal corner conditions were obtained for both constrained and unconstrained arcs. The constrained extremal solutions, including the optimal number of impulses, their times and positions were studied under a conjecture proposed for the minimization process on the constrained arc. The fundamental problems such as the existence of boundary arcs or boundary points, absorbing boundaries or non-absorbing boundaries, and the continuity of the Hamiltonian function with a scleronomic constraint in infinite control problems were studied and answered. A bifurcation phenomenon and the non-uniqueness of the extremal solutions having the same cost were found during the research. The extended principles of dynamical reversibility and reflectability of the impulsive solution were developed to obtain the conjugate solutions belonging to the same cost function. In addition, the local-optimal time-fixed solutions obtained can be used to perform time versus fuel trade-offs for missions which have time constraints.
Redmond, J.; Parker, G.
1993-07-01
This paper examines the role of the control objective and the control time in determining fuel-optimal actuator placement for structural vibration suppression. A general theory is developed that can be easily extended to include alternative performance metrics such as energy and time-optimal control. The performance metric defines a convex admissible control set which leads to a max-min optimization problem expressing optimal location as a function of initial conditions and control time. A solution procedure based on a nested Genetic Algorithm is presented and applied to an example problem. Results indicate that the optimal locations vary widely as a function of control time and initial conditions.
Comprehensive optimization of emergency evacuation route and departure time under traffic control.
Li, Guo; Zhou, Ying; Liu, Mengqi
2014-01-01
With the frequent occurrence of major emergencies, emergency management gets high attention from all around the world. This paper investigates the comprehensive optimization of major emergency evacuation route and departure time, in which case the evacuation propagation mechanism is considered under traffic control. Given the practical assumptions, we first establish a comprehensive optimization model based on the simulation of evacuation route and departure time. Furthermore, we explore the reasonable description method of evacuation traffic flow propagation under traffic control, including the establishment of traffic flow propagation model and the design of the simulation module that can simulate the evacuation traffic flow. Finally, we propose a heuristic algorithm for the optimization of this comprehensive model. In case analysis, we take some areas in Beijing as the evaluation sources to verify the reliability of our model. A series of constructive suggestions for Beijing's emergency evacuation are proposed, which can be applied to the actual situation under traffic control.
Comprehensive Optimization of Emergency Evacuation Route and Departure Time under Traffic Control
Zhou, Ying; Liu, Mengqi
2014-01-01
With the frequent occurrence of major emergencies, emergency management gets high attention from all around the world. This paper investigates the comprehensive optimization of major emergency evacuation route and departure time, in which case the evacuation propagation mechanism is considered under traffic control. Given the practical assumptions, we first establish a comprehensive optimization model based on the simulation of evacuation route and departure time. Furthermore, we explore the reasonable description method of evacuation traffic flow propagation under traffic control, including the establishment of traffic flow propagation model and the design of the simulation mudule that can simulate the evacuation traffic flow. Finally, we propose a heuristic algorithm for the optimization of this comprehensive model. In case analysis, we take some areas in Beijing as the evaluation sources to verify the reliability of our model. A series of constructive suggestions for Beijing's emergency evacuation are proposed, which can be applied to the actual situation under traffic control. PMID:24977232
Effect of wind turbine response time on optimal dynamic induction control of wind farms
NASA Astrophysics Data System (ADS)
Munters, Wim; Meyers, Johan
2016-09-01
In this work, we extend recent research efforts on induction-based optimal control in large-eddy simulations of wind farms in the turbulent atmospheric boundary layer. More precisely, we investigate the effect of wind turbine response time to requested power setpoints on achievable power gains. We do this by including a time-filtering of the thrust coefficient setpoints in the optimal control framework. We consider simulation cases restricted to underinduction compared to the Betz limit, as well as cases that also allow overinduction. Optimization results show that, except for the most restrictive underinductive slow-response case, all cases still yield increases in energy extraction in the order of 10% and more.
NASA Astrophysics Data System (ADS)
Cournane, S.; Cannon, L.; Browne, J. E.; Fagan, A. J.
2010-10-01
The accuracy of a transient elastography liver-scanning ultrasound system was assessed using a novel application of PVA-cryogel as a tissue-mimicking material with acoustic and shear elasticity properties optimized to best represent those of liver tissue. Although the liver-scanning system has been shown to offer a safer alternative for diagnosing liver cirrhosis through stiffness measurement, as compared to the liver needle biopsy exam, the scanner's accuracy has not been fully established. Young's elastic modulus values of 5-6 wt% PVA-cryogel phantoms, also containing glycerol and 0.3 µm Al2O3 and 3 µm Al2O3, were measured using a 'gold standard' mechanical testing technique and transient elastography. The mechanically measured values and acoustic velocities of the phantoms ranged between 1.6 and 16.1 kPa and 1540 and 1570 m s-1, respectively, mimicking those observed in liver tissue. The values reported by the transient elastography system overestimated Young's elastic modulus values representative of the progressive stages of liver fibrosis by up to 32%. These results were attributed to the relative rather than absolute nature of the measurement arising from the single-point acoustic velocity calibration of the system, rendering the measurements critically dependent on the speed of sound of the sample under investigation. Given the wide range of acoustic velocities which exist in the liver, spanning healthy tissue to cirrhotic pathology, coupled with the system's assumption that the liver is approximately elastic when it is rather highly viscoelastic, care should be exercised when interpreting the results from this system in patient groups.
NASA Astrophysics Data System (ADS)
Kress, Matthias; Meier, Thomas H.; El-Tayeb, Tarek A. A.; Kemkemer, Ralf; Steiner, Rudolf W.; Rueck, Angelika C.
2001-11-01
This article describes a setup for subcellular time-resolved fluorescence spectroscopy and fluorescence lifetime measurements using a confocal laser scanning microscope in combination with a short pulsed diode laser for fluorescence excitation and specimen illumination. The diode laser emits pulses at 398 nm wavelength with 70 ps full width at half maximum (FWHM) duration. The diode laser can be run at a pulse repetition rate of 40 MHz down to single shot mode. For time resolved spectroscopy a spectrometer setup consisting of an Czerny Turner spectrometer and a MCP-gated and -intensified CCD camera was used. Subcellular fluorescence lifetime measurements were achieved using a time-correlated single photon counting (TCSPC) module instead of the spectrometer setup. The capability of the short pulsed diode laser for fluorescence imaging, fluorescence lifetime measurements and time-resolved spectroscopy in combination with laser scanning microscopy is demonstrated by fluorescence analysis of several photosensitizers on a single cell level.
Henrikson, Nora B; Tuzzio, Leah; Gilkey, Melissa B; McRee, Annie-Laurie
2016-12-01
Healthcare providers have a strong influence on human papillomavirus (HPV) vaccination decisions, yet they often fail to recommend the vaccine to the 11- and 12-year-olds who are targeted by practice guidelines. We sought to understand how providers interpret and value age-based guidelines. We conducted a secondary analysis of data from two qualitative studies of healthcare providers' HPV vaccination attitudes and practices. Participants were physicians, nurse practitioners, and physician assistants in Minnesota (n = 27) and in Washington (n = 17) interviewed in 2012 and 2014 respectively. Verbatim transcripts from each study were analyzed independently using content analysis, and collective findings were then jointly analyzed. The research team worked via consensus to derive codes and describe representative themes. A high proportion of providers reported either a lack of concern about HPV vaccine completion, or concern beginning several years past the recommended target age. Many providers perceived a gradient of HPV vaccination timeliness ranging from age 12 to 26. Instead of age-based recommendations, providers timed recommendations based on perceptions of access to care and patient risk. They often offered "gentle" recommendations and deferred vaccination discussions as a tool to building trust with families. Interventions aimed at helping providers deliver effective recommendations for timely HPV vaccination are needed. Our findings suggest that changing the norm of provider culture to one in which "catch-up" schedules are seen as a suboptimal way to achieve vaccine uptake may be an important goal.
Wang, Chia-Chi; Yang, Ming-Ta; Lu, Kang-Hao; Chan, Kuei-Hui
2016-03-04
Creatine plays an important role in muscle energy metabolism. Postactivation potentiation (PAP) is a phenomenon that can acutely increase muscle power, but it is an individualized process that is influenced by muscle fatigue. This study examined the effects of creatine supplementation on explosive performance and the optimal individual PAP time during a set of complex training bouts. Thirty explosive athletes performed tests of back squat for one repetition maximum (1RM) strength and complex training bouts for determining the individual optimal timing of PAP, height and peak power of a counter movement jump before and after the supplementation. Subjects were assigned to a creatine or placebo group and then consumed 20 g of creatine or carboxymethyl cellulose per day for six days. After the supplementation, the 1RM strength in the creatine group significantly increased (p < 0.05). The optimal individual PAP time in the creatine group was also significant earlier than the pre-supplementation and post-supplementation of the placebo group (p < 0.05). There was no significant difference in jump performance between the groups. This study demonstrates that creatine supplementation improves maximal muscle strength and the optimal individual PAP time of complex training but has no effect on explosive performance.
Wang, Chia-Chi; Yang, Ming-Ta; Lu, Kang-Hao; Chan, Kuei-Hui
2016-01-01
Creatine plays an important role in muscle energy metabolism. Postactivation potentiation (PAP) is a phenomenon that can acutely increase muscle power, but it is an individualized process that is influenced by muscle fatigue. This study examined the effects of creatine supplementation on explosive performance and the optimal individual PAP time during a set of complex training bouts. Thirty explosive athletes performed tests of back squat for one repetition maximum (1RM) strength and complex training bouts for determining the individual optimal timing of PAP, height and peak power of a counter movement jump before and after the supplementation. Subjects were assigned to a creatine or placebo group and then consumed 20 g of creatine or carboxymethyl cellulose per day for six days. After the supplementation, the 1RM strength in the creatine group significantly increased (p < 0.05). The optimal individual PAP time in the creatine group was also significant earlier than the pre-supplementation and post-supplementation of the placebo group (p < 0.05). There was no significant difference in jump performance between the groups. This study demonstrates that creatine supplementation improves maximal muscle strength and the optimal individual PAP time of complex training but has no effect on explosive performance. PMID:26959056
ERIC Educational Resources Information Center
Eren, Altay
2012-01-01
This study aimed to examine the mediating role of prospective teachers' academic optimism in the relationship between their future time perspective and professional plans about teaching. A total of 396 prospective teachers voluntarily participated in the study. Correlation, regression, and structural equation modeling analyses were conducted in…
Seeking the Optimal Time for Integrated Curriculum in Jinan University School of Medicine
ERIC Educational Resources Information Center
Pan, Sanqiang; Cheng, Xin; Zhou, Yanghai; Li, Ke; Yang, Xuesong
2017-01-01
The curricular integration of the basic sciences and clinical medicine has been conducted for over 40 years and proved to increase medical students' study interests and clinical reasoning. However, there is still no solid data suggesting what time, freshmen or year 3, is optimal to begin with the integrated curriculum. In this study, the…
Real-time optimal torque control of fault-tolerant permanent magnet brushless machines
NASA Astrophysics Data System (ADS)
Max, L.; Wang, J.; Atallah, K.; Howe, D.
2005-05-01
The paper describes issues that are pertinent to control system hardware and software design for the real-time implementation of an optimal torque control strategy for fault-tolerant permanent magnet brushless ac drives, and reports experimental results. The influence of the current control loop bandwidth and pulse width modulation on the torque ripple are investigated and quantified.
Optimal discrete-time dynamic output-feedback design - A w-domain approach
NASA Technical Reports Server (NTRS)
Ha, Cheolkeun; Ly, Uy-Loi
1991-01-01
An alternative method for optimal digital control design is described in this paper. The method is based on the usage of the w-transform and has many attractive design features. One of these is its immediate connection with frequency loop-shaping techniques that are now popular and effective for multivariable control synthesis in continuous-time domain. Furthermore, any design algorithms originally developed for continuous-time systems can now be immediately extended to the discrete-time domain. The main results presented in this paper are the exact problem formulation and solution of an optimal discrete-time dynamic output-feedback design in the w-domain involving a quadratic performance index to random disturbances. In addition, necessary conditions for optimality are obtained for the numerical solution of the optimal output-feedback compensator design. A numerical example is presented illustrating its application to the design of a low-order dynamic compensator in a stability augmentation system of a commercial transport.
Time, entropy generation, and optimization in low-dissipation heat devices
NASA Astrophysics Data System (ADS)
Calvo Hernández, A.; Medina, A.; Roco, J. M. M.
2015-07-01
We present new results obtained from the Carnot-like low-dissipation model of heat devices when size- and time-constraints are taken into account, in particular those obtained from the total cycle time and the contact times of the working system with the external heat reservoirs. The influence of these constraints and of the characteristic time scale of the model on the entropy generation allows for a clear and unified interpretation of different energetic properties for both heat engines and refrigerators (REs). Some conceptual subtleties with regard to different optimization criteria, especially for REs, are discussed. So, the different status of power input, cooling power, and the unified figure of merit χ are analyzed on the basis of their absolute or local role as optimization criteria.
Optimal Feedback Scheme and Universal Time Scaling for Hamiltonian Parameter Estimation
NASA Astrophysics Data System (ADS)
Yuan, Haidong; Fung, Chi-Hang Fred
2015-09-01
Time is a valuable resource and it is expected that a longer time period should lead to better precision in Hamiltonian parameter estimation. However, recent studies in quantum metrology have shown that in certain cases more time may even lead to worse estimations, which puts this intuition into question. In this Letter we show that by including feedback controls this intuition can be restored. By deriving asymptotically optimal feedback controls we quantify the maximal improvement feedback controls can provide in Hamiltonian parameter estimation and show a universal time scaling for the precision limit under the optimal feedback scheme. Our study reveals an intriguing connection between noncommutativity in the dynamics and the gain of feedback controls in Hamiltonian parameter estimation.
NASA Astrophysics Data System (ADS)
Duan, Qi; Angelini, Elsa D.; Laine, Andrew
2004-04-01
Three-dimensional ultrasound machines based on matrix phased-array transducers are gaining predominance for real-time dynamic screening in cardiac and obstetric practice. These transducers array acquire three-dimensional data in spherical coordinates along lines tiled in azimuth and elevation angles at incremental depth. This study aims at evaluating fast filtering and scan conversion algorithms applied in the spherical domain prior to visualization into Cartesian coordinates for visual quality and spatial measurement accuracy. Fast 3d scan conversion algorithms were implemented and with different order interpolation kernels. Downsizing and smoothing of sampling artifacts were integrated in the scan conversion process. In addition, a denoising scheme for spherical coordinate data with 3d anisotropic diffusion was implemented and applied prior to scan conversion to improve image quality. Reconstruction results under different parameter settings, such as different interpolation kernels, scaling factor, smoothing options, and denoising, are reported. Image quality was evaluated on several data sets via visual inspections and measurements of cylinder objects dimensions. Error measurements of the cylinder's radius, reported in this paper, show that the proposed fast scan conversion algorithm can correctly reconstruct three-dimensional ultrasound in Cartesian coordinates under tuned parameter settings. Denoising via three-dimensional anisotropic diffusion was able to greatly improve the quality of resampled data without affecting the accuracy of spatial information after the modification of the introduction of a variable gradient threshold parameter.
Holistic Context-Sensitivity for Run-Time Optimization of Flexible Manufacturing Systems.
Scholze, Sebastian; Barata, Jose; Stokic, Dragan
2017-02-24
Highly flexible manufacturing systems require continuous run-time (self-) optimization of processes with respect to diverse parameters, e.g., efficiency, availability, energy consumption etc. A promising approach for achieving (self-) optimization in manufacturing systems is the usage of the context sensitivity approach based on data streaming from high amount of sensors and other data sources. Cyber-physical systems play an important role as sources of information to achieve context sensitivity. Cyber-physical systems can be seen as complex intelligent sensors providing data needed to identify the current context under which the manufacturing system is operating. In this paper, it is demonstrated how context sensitivity can be used to realize a holistic solution for (self-) optimization of discrete flexible manufacturing systems, by making use of cyber-physical systems integrated in manufacturing systems/processes. A generic approach for context sensitivity, based on self-learning algorithms, is proposed aiming at a various manufacturing systems. The new solution encompasses run-time context extractor and optimizer. Based on the self-learning module both context extraction and optimizer are continuously learning and improving their performance. The solution is following Service Oriented Architecture principles. The generic solution is developed and then applied to two very different manufacturing processes.
Holistic Context-Sensitivity for Run-Time Optimization of Flexible Manufacturing Systems
Scholze, Sebastian; Barata, Jose; Stokic, Dragan
2017-01-01
Highly flexible manufacturing systems require continuous run-time (self-) optimization of processes with respect to diverse parameters, e.g., efficiency, availability, energy consumption etc. A promising approach for achieving (self-) optimization in manufacturing systems is the usage of the context sensitivity approach based on data streaming from high amount of sensors and other data sources. Cyber-physical systems play an important role as sources of information to achieve context sensitivity. Cyber-physical systems can be seen as complex intelligent sensors providing data needed to identify the current context under which the manufacturing system is operating. In this paper, it is demonstrated how context sensitivity can be used to realize a holistic solution for (self-) optimization of discrete flexible manufacturing systems, by making use of cyber-physical systems integrated in manufacturing systems/processes. A generic approach for context sensitivity, based on self-learning algorithms, is proposed aiming at a various manufacturing systems. The new solution encompasses run-time context extractor and optimizer. Based on the self-learning module both context extraction and optimizer are continuously learning and improving their performance. The solution is following Service Oriented Architecture principles. The generic solution is developed and then applied to two very different manufacturing processes. PMID:28245564
Duvivier, Wilco F; van Putten, Marc R; van Beek, Teris A; Nielen, Michel W F
2016-02-16
Forensic hair evidence can be used to obtain retrospective timelines of drug use by analysis of hair segments. However, this is a laborious and time-consuming process, and mass spectrometric (MS) imaging techniques, which show great potential for single-hair targeted analysis, are less useful due to differences in hair growth rate between individual hairs. As an alternative, a fast untargeted analysis method was developed that uses direct analysis in real time-high-resolution mass spectrometry (DART-HRMS) to longitudinally scan intact locks of hair without extensive sample preparation or segmentation. The hair scan method was validated for cocaine against an accredited liquid chromatography/tandem mass spectrometry (LC/MS/MS) method. The detection limit for cocaine in hair was found to comply with the cutoff value of 0.5 ng/mg recommended by the Society of Hair Testing; that is, the DART hair scan method is amenable to forensic cases. Under DART conditions, no significant thermal degradation of cocaine occurred. The standard DART spot size of 5.1 ± 1.1 mm could be improved to 3.3 ± 1.0 mm, corresponding to approximately 10 days of hair growth, by using a high spatial resolution exit cone. By use of data-dependent product ion scans, multiple drugs of abuse could be detected in a single drug user hair scan with confirmation of identity by both exact mass and MS/HRMS fragmentation patterns. Furthermore, full-scan high-resolution data were retrospectively interrogated versus a list of more than 100 compounds and revealed additional hits and temporal profiles in good correlation with reported drug use.
Time-optimal aircraft pursuit-evasion with a weapon envelope constraint
NASA Technical Reports Server (NTRS)
Menon, P. K. A.; Duke, E. L.
1990-01-01
The optimal pursuit-evasion problem between two aircraft, including nonlinear point-mass vehicle models and a realistic weapon envelope, is analyzed. Using a linear combination of flight time and the square of the vehicle acceleration as the performance index, a closed-form solution is obtained in nonlinear feedback form. Due to its modest computational requirements, this guidance law can be used for onboard real-time implementation.
... Mayo Clinic Staff A bone scan is a nuclear imaging test that helps diagnose and track several ... you're nursing. A bone scan is a nuclear imaging procedure. In nuclear imaging, tiny amounts of ...
... cross-sectional pictures of your body. Doctors use CT scans to look for Broken bones Cancers Blood clots Signs of heart disease Internal bleeding During a CT scan, you lie still on a table. The table ...
A Study on the Optimal Duration of Daylight Saving Time (DST) in Korea
NASA Astrophysics Data System (ADS)
Mihn, Byeong-Hee; Ahn, Young Sook; Kim, Dong-Bin; Yang, Hong-Jin
2009-09-01
Daylight saving time aims at spending effective daylight in summer season. Korea had enforced daylight saving time twelve times from 1948 to 1988. Since 1988, it is not executed, but it is recently discussed the resumption of DST. In this paper, we investigate the trend of DST in other countries, review the history of DST in Korea, and suggest the optimal DST duration in terms of astronomical aspects (times of sunrise and sunset). We find that the starting day of DST in Korea is apt for the second Sunday in May or the second Sunday in April according to the time of sunrise or to the difference between Korean standard meridian and observer's, respectively. We also discuss time friction that might be caused by time difference between DST and Korea Standard Time (KST).
Kim, D.S.; Seong, P.H. . Dept. of Nuclear Engineering)
1994-02-01
This paper describes the optimal testing input sets required for the fault diagnosis of the nuclear power plant digital electronic circuits. With the complicated systems such as very large scale integration (VLSI), nuclear power plant (NPP), and aircraft, testing is the major factor of the maintenance of the system. Particularly, diagnosis time grows quickly with the complexity of the component. In this research, for reduce diagnosis time the authors derived the optimal testing sets that are the minimal testing sets required for detecting the failure and for locating of the failed component. For reduced diagnosis time, the technique presented by Hayes fits best for the approach to testing sets generation among many conventional methods. However, this method has the following disadvantages: (a) it considers only the simple network (b) it concerns only whether the system is in failed state or not and does not provide the way to locate the failed component. Therefore the authors have derived the optimal testing input sets that resolve these problems by Hayes while preserving its advantages. When they applied the optimal testing sets to the automatic fault diagnosis system (AFDS) which incorporates the advanced fault diagnosis method of artificial intelligence technique, they found that the fault diagnosis using the optimal testing sets makes testing the digital electronic circuits much faster than that using exhaustive testing input sets; when they applied them to test the Universal (UV) Card which is a nuclear power plant digital input/output solid state protection system card, they reduced the testing time up to about 100 times.
Namazi-Rad, Mohammad-Reza; Dunbar, Michelle; Ghaderi, Hadi; Mokhtarian, Payam
2015-01-01
To achieve greater transit-time reduction and improvement in reliability of transport services, there is an increasing need to assist transport planners in understanding the value of punctuality; i.e. the potential improvements, not only to service quality and the consumer but also to the actual profitability of the service. In order for this to be achieved, it is important to understand the network-specific aspects that affect both the ability to decrease transit-time, and the associated cost-benefit of doing so. In this paper, we outline a framework for evaluating the effectiveness of proposed changes to average transit-time, so as to determine the optimal choice of average arrival time subject to desired punctuality levels whilst simultaneously minimizing operational costs. We model the service transit-time variability using a truncated probability density function, and simultaneously compare the trade-off between potential gains and increased service costs, for several commonly employed cost-benefit functions of general form. We formulate this problem as a constrained optimization problem to determine the optimal choice of average transit time, so as to increase the level of service punctuality, whilst simultaneously ensuring a minimum level of cost-benefit to the service operator. PMID:25992902
Namazi-Rad, Mohammad-Reza; Dunbar, Michelle; Ghaderi, Hadi; Mokhtarian, Payam
2015-01-01
To achieve greater transit-time reduction and improvement in reliability of transport services, there is an increasing need to assist transport planners in understanding the value of punctuality; i.e. the potential improvements, not only to service quality and the consumer but also to the actual profitability of the service. In order for this to be achieved, it is important to understand the network-specific aspects that affect both the ability to decrease transit-time, and the associated cost-benefit of doing so. In this paper, we outline a framework for evaluating the effectiveness of proposed changes to average transit-time, so as to determine the optimal choice of average arrival time subject to desired punctuality levels whilst simultaneously minimizing operational costs. We model the service transit-time variability using a truncated probability density function, and simultaneously compare the trade-off between potential gains and increased service costs, for several commonly employed cost-benefit functions of general form. We formulate this problem as a constrained optimization problem to determine the optimal choice of average transit time, so as to increase the level of service punctuality, whilst simultaneously ensuring a minimum level of cost-benefit to the service operator.
Near constant-time optimal piecewise LDR to HDR inverse tone mapping
NASA Astrophysics Data System (ADS)
Chen, Qian; Su, Guan-Ming; Yin, Peng
2015-02-01
In a backward compatible HDR image/video compression, it is a general approach to reconstruct HDR from compressed LDR as a prediction to original HDR, which is referred to as inverse tone mapping. Experimental results show that 2- piecewise 2nd order polynomial has the best mapping accuracy than 1 piece high order or 2-piecewise linear, but it is also the most time-consuming method because to find the optimal pivot point to split LDR range to 2 pieces requires exhaustive search. In this paper, we propose a fast algorithm that completes optimal 2-piecewise 2nd order polynomial inverse tone mapping in near constant time without quality degradation. We observe that in least square solution, each entry in the intermediate matrix can be written as the sum of some basic terms, which can be pre-calculated into look-up tables. Since solving the matrix becomes looking up values in tables, computation time barely differs regardless of the number of points searched. Hence, we can carry out the most thorough pivot point search to find the optimal pivot that minimizes MSE in near constant time. Experiment shows that our proposed method achieves the same PSNR performance while saving 60 times computation time compared to the traditional exhaustive search in 2-piecewise 2nd order polynomial inverse tone mapping with continuous constraint.
Tseitlin, Mark; Rinard, George A; Quine, Richard W; Eaton, Sandra S; Eaton, Gareth R
2011-08-01
In rapid frequency scan EPR with triangular scans, sufficient time must be allowed to insure that the magnetization in the x, y plane decays to baseline at the end of the scan, which typically is about 5T(2) after the spins are excited. To permit relaxation of signals excited toward the extremes of the scan the total scan time required may be much longer than 5T(2). However, with periodic, saw-tooth excitation, the slow-scan EPR spectrum can be recovered by Fourier deconvolution of data recorded with a total scan period of 5T(2), even if some spins are excited later in the scan. This scan time is similar to polyphase excitation methods. The peak power required for either polyphase excitation or rapid frequency scans is substantially smaller than for pulsed EPR. The use of an arbitrary waveform generator (AWG) and cross loop resonator facilitated implementation of the rapid frequency scan experiments reported here. The use of constant continuous low B(1), periodic excitation waveform, and constant external magnetic field is similar to polyphase excitation, but could be implemented without the AWG that is required for polyphase excitation.
Tseitlin, Mark; Rinard, George A.; Quine, Richard W.; Eaton, Sandra S.; Eaton, Gareth R.
2011-01-01
In rapid frequency scan EPR with triangular scans, sufficient time must be allowed to insure that the magnetization in the x,y plane decays to baseline at the end of the scan, which typically is about 5 T2 after the spins are excited. To permit relaxation of signals excited toward the extremes of the scan the total scan time required may be much longer than 5 T2. However, with periodic, saw-tooth excitation, the slow-scan EPR spectrum can be recovered by Fourier deconvolution of data recorded with a total scan period of 5 T2, even if some spins are excited later in the scan. This scan time is similar to polyphase excitation methods. The peak power required for either polyphase excitation or rapid frequency scans is substantially smaller than for pulsed EPR. The use of an arbitrary waveform generator (AWG) and cross loop resonator facilitated implementation of the rapid frequency scan experiments reported here. The use of constant continuous low B1, periodic excitation waveform, and constant external magnetic field is similar to polyphase excitation, but could be implemented without the AWG that is required for polyphase excitation. PMID:21664848
Real-time PCR probe optimization using design of experiments approach.
Wadle, S; Lehnert, M; Rubenwolf, S; Zengerle, R; von Stetten, F
2016-03-01
Primer and probe sequence designs are among the most critical input factors in real-time polymerase chain reaction (PCR) assay optimization. In this study, we present the use of statistical design of experiments (DOE) approach as a general guideline for probe optimization and more specifically focus on design optimization of label-free hydrolysis probes that are designated as mediator probes (MPs), which are used in reverse transcription MP PCR (RT-MP PCR). The effect of three input factors on assay performance was investigated: distance between primer and mediator probe cleavage site; dimer stability of MP and target sequence (influenza B virus); and dimer stability of the mediator and universal reporter (UR). The results indicated that the latter dimer stability had the greatest influence on assay performance, with RT-MP PCR efficiency increased by up to 10% with changes to this input factor. With an optimal design configuration, a detection limit of 3-14 target copies/10 μl reaction could be achieved. This improved detection limit was confirmed for another UR design and for a second target sequence, human metapneumovirus, with 7-11 copies/10 μl reaction detected in an optimum case. The DOE approach for improving oligonucleotide designs for real-time PCR not only produces excellent results but may also reduce the number of experiments that need to be performed, thus reducing costs and experimental times.
A time-delay equation: well-posedness to optimal control
NASA Astrophysics Data System (ADS)
Yildirim, Kenan; Alkan, Sertan
2016-01-01
In this paper, well-posedness, controllability and optimal control for a time-delay beam equation are studied. The equation of motion is modeled as a time-delayed distributed parameter system(DPS) and includes Heaviside functions and their spatial derivatives due to the finite size of piezoelectric patch actuators used to suppress the excessive vibrations based on displacement and moment conditions. The optimal control problem is defined with the performance index including a weighted quadratic functional of the displacement and velocity which is to be minimized at a given terminal time and a penalty term defined as the control voltage used in the control duration. Optimal control law is obtained by using Maximum principle and hence, the optimal control problem is transformed the into a boundary-, initial and terminal value problem.The explicit solution of the control problem is obtained by eigenfunction expansions of the state and adjoint variables. Numerical results are presented to show the effectiveness and applicability of the piezoelectric control.
Fitzek, H; Schroettner, H; Wagner, J; Hofer, F; Rattenberger, J
2016-04-01
In environmental scanning electron microscopy applications in the kPa regime are of increasing interest for the investigation of wet and biological samples, because neither sample preparation nor extensive cooling are necessary. Unfortunately, the applications are limited by poor image quality. In this work the image quality at high pressures of a FEI Quanta 600 (field emission gun) and a FEI Quanta 200 (thermionic gun) is greatly improved by optimizing the pressure limiting system and the secondary electron (SE) detection system. The scattering of the primary electron beam strongly increases with pressure and thus the image quality vanishes. The key to high-image quality at high pressures is to reduce scattering as far as possible while maintaining ideal operation conditions for the SE-detector. The amount of scattering is reduced by reducing both the additional stagnation gas thickness (aSGT) and the environmental distance (ED). A new aperture holder is presented that significantly reduces the aSGT while maintaining the same field-of-view (FOV) as the original design. With this aperture holder it is also possible to make the aSGT even smaller at the expense of a smaller FOV. A new blade-shaped SE-detector is presented yielding better image quality than usual flat SE-detectors. The electrode of the new SE detector is positioned on the sample table, which allows the SE-detector to operate at ideal conditions regardless of pressure and ED.
Holmgren, Stina; Tovedal, Annika; Björnham, Oscar; Ramebäck, Henrik
2016-04-01
The aim of this paper is to contribute to a more rapid determination of a series of samples containing (90)Sr by making the Cherenkov measurement of the daughter nuclide (90)Y more time efficient. There are many instances when an optimization of the measurement method might be favorable, such as; situations requiring rapid results in order to make urgent decisions or, on the other hand, to maximize the throughput of samples in a limited available time span. In order to minimize the total analysis time, a mathematical model was developed which calculates the time of ingrowth as well as individual measurement times for n samples in a series. This work is focused on the measurement of (90)Y during ingrowth, after an initial chemical separation of strontium, in which it is assumed that no other radioactive strontium isotopes are present. By using a fixed minimum detectable activity (MDA) and iterating the measurement time for each consecutive sample the total analysis time will be less, compared to using the same measurement time for all samples. It was found that by optimization, the total analysis time for 10 samples can be decreased greatly, from 21h to 6.5h, when assuming a MDA of 1Bq/L and at a background count rate of approximately 0.8cpm.
NASA Astrophysics Data System (ADS)
Daudin, L.; Barberet, Ph.; Serani, L.; Moretto, Ph.
2013-07-01
High resolution ion microbeams, usually used to perform elemental mapping, low dose targeted irradiation or ion beam lithography needs a very flexible beam control system. For this purpose, we have developed a dedicated system (called “CRionScan”), on the AIFIRA facility (Applications Interdisciplinaires des Faisceaux d'Ions en Région Aquitaine). It consists of a stand-alone real-time scanning and imaging instrument based on a Compact Reconfigurable Input/Output (Compact RIO) device from National Instruments™. It is based on a real-time controller, a Field Programmable Gate Array (FPGA), input/output modules and Ethernet connectivity. We have implemented a fast and deterministic beam scanning system interfaced with our commercial data acquisition system without any hardware development. CRionScan is built under LabVIEW™ and has been used on AIFIRA's nanobeam line since 2009 (Barberet et al., 2009, 2011) [1,2]. A Graphical User Interface (GUI) embedded in the Compact RIO as a web page is used to control the scanning parameters. In addition, a fast electrostatic beam blanking trigger has been included in the FPGA and high speed counters (15 MHz) have been implemented to perform dose controlled irradiation and on-line images on the GUI. Analog to Digital converters are used for the beam current measurement and in the near future for secondary electrons imaging. Other functionalities have been integrated in this controller like LED lighting using Pulse Width Modulation and a “NIM Wilkinson ADC” data acquisition.
FPGA-based real-time swept-source OCT systems for B-scan live-streaming or volumetric imaging
NASA Astrophysics Data System (ADS)
Bandi, Vinzenz; Goette, Josef; Jacomet, Marcel; von Niederhäusern, Tim; Bachmann, Adrian H.; Duelk, Marcus
2013-03-01
We have developed a Swept-Source Optical Coherence Tomography (Ss-OCT) system with high-speed, real-time signal processing on a commercially available Data-Acquisition (DAQ) board with a Field-Programmable Gate Array (FPGA). The Ss-OCT system simultaneously acquires OCT and k-clock reference signals at 500MS/s. From the k-clock signal of each A-scan we extract a remap vector for the k-space linearization of the OCT signal. The linear but oversampled interpolation is followed by a 2048-point FFT, additional auxiliary computations, and a data transfer to a host computer for real-time, live-streaming of B-scan or volumetric C-scan OCT visualization. We achieve a 100 kHz A-scan rate by parallelization of our hardware algorithms, which run on standard and affordable, commercially available DAQ boards. Our main development tool for signal analysis as well as for hardware synthesis is MATLAB® with add-on toolboxes and 3rd-party tools.
Optimizing Real-Time Vaccine Allocation in a Stochastic SIR Model
Nguyen, Chantal; Carlson, Jean M.
2016-01-01
Real-time vaccination following an outbreak can effectively mitigate the damage caused by an infectious disease. However, in many cases, available resources are insufficient to vaccinate the entire at-risk population, logistics result in delayed vaccine deployment, and the interaction between members of different cities facilitates a wide spatial spread of infection. Limited vaccine, time delays, and interaction (or coupling) of cities lead to tradeoffs that impact the overall magnitude of the epidemic. These tradeoffs mandate investigation of optimal strategies that minimize the severity of the epidemic by prioritizing allocation of vaccine to specific subpopulations. We use an SIR model to describe the disease dynamics of an epidemic which breaks out in one city and spreads to another. We solve a master equation to determine the resulting probability distribution of the final epidemic size. We then identify tradeoffs between vaccine, time delay, and coupling, and we determine the optimal vaccination protocols resulting from these tradeoffs. PMID:27043931
Kurosu, K; Takashina, M; Koizumi, M; Das, I; Moskvin, V
2014-06-01
Purpose: Monte Carlo codes are becoming important tools for proton beam dosimetry. However, the relationships between the customizing parameters and percentage depth dose (PDD) of GATE and PHITS codes have not been reported which are studied for PDD and proton range compared to the FLUKA code and the experimental data. Methods: The beam delivery system of the Indiana University Health Proton Therapy Center was modeled for the uniform scanning beam in FLUKA and transferred identically into GATE and PHITS. This computational model was built from the blue print and validated with the commissioning data. Three parameters evaluated are the maximum step size, cut off energy and physical and transport model. The dependence of the PDDs on the customizing parameters was compared with the published results of previous studies. Results: The optimal parameters for the simulation of the whole beam delivery system were defined by referring to the calculation results obtained with each parameter. Although the PDDs from FLUKA and the experimental data show a good agreement, those of GATE and PHITS obtained with our optimal parameters show a minor discrepancy. The measured proton range R90 was 269.37 mm, compared to the calculated range of 269.63 mm, 268.96 mm, and 270.85 mm with FLUKA, GATE and PHITS, respectively. Conclusion: We evaluated the dependence of the results for PDDs obtained with GATE and PHITS Monte Carlo generalpurpose codes on the customizing parameters by using the whole computational model of the treatment nozzle. The optimal parameters for the simulation were then defined by referring to the calculation results. The physical model, particle transport mechanics and the different geometrybased descriptions need accurate customization in three simulation codes to agree with experimental data for artifact-free Monte Carlo simulation. This study was supported by Grants-in Aid for Cancer Research (H22-3rd Term Cancer Control-General-043) from the Ministry of Health
NASA Astrophysics Data System (ADS)
Yang, Xiong; Liu, Derong; Wang, Ding
2014-03-01
In this paper, an adaptive reinforcement learning-based solution is developed for the infinite-horizon optimal control problem of constrained-input continuous-time nonlinear systems in the presence of nonlinearities with unknown structures. Two different types of neural networks (NNs) are employed to approximate the Hamilton-Jacobi-Bellman equation. That is, an recurrent NN is constructed to identify the unknown dynamical system, and two feedforward NNs are used as the actor and the critic to approximate the optimal control and the optimal cost, respectively. Based on this framework, the action NN and the critic NN are tuned simultaneously, without the requirement for the knowledge of system drift dynamics. Moreover, by using Lyapunov's direct method, the weights of the action NN and the critic NN are guaranteed to be uniformly ultimately bounded, while keeping the closed-loop system stable. To demonstrate the effectiveness of the present approach, simulation results are illustrated.
Optimal design and use of retry in fault tolerant real-time computer systems
NASA Technical Reports Server (NTRS)
Lee, Y. H.; Shin, K. G.
1983-01-01
A new method to determin an optimal retry policy and for use in retry of fault characterization is presented. An optimal retry policy for a given fault characteristic, which determines the maximum allowable retry durations to minimize the total task completion time was derived. The combined fault characterization and retry decision, in which the characteristics of fault are estimated simultaneously with the determination of the optimal retry policy were carried out. Two solution approaches were developed, one based on the point estimation and the other on the Bayes sequential decision. The maximum likelihood estimators are used for the first approach, and the backward induction for testing hypotheses in the second approach. Numerical examples in which all the durations associated with faults have monotone hazard functions, e.g., exponential, Weibull and gamma distributions are presented. These are standard distributions commonly used for modeling analysis and faults.
Model Predictive Optimal Control of a Time-Delay Distributed-Parameter Systems
NASA Technical Reports Server (NTRS)
Nguyen, Nhan
2006-01-01
This paper presents an optimal control method for a class of distributed-parameter systems governed by first order, quasilinear hyperbolic partial differential equations that arise in many physical systems. Such systems are characterized by time delays since information is transported from one state to another by wave propagation. A general closed-loop hyperbolic transport model is controlled by a boundary control embedded in a periodic boundary condition. The boundary control is subject to a nonlinear differential equation constraint that models actuator dynamics of the system. The hyperbolic equation is thus coupled with the ordinary differential equation via the boundary condition. Optimality of this coupled system is investigated using variational principles to seek an adjoint formulation of the optimal control problem. The results are then applied to implement a model predictive control design for a wind tunnel to eliminate a transport delay effect that causes a poor Mach number regulation.
NASA Astrophysics Data System (ADS)
Lin, Juan; Liu, Chenglian; Guo, Yongning
2014-10-01
The estimation of neural active sources from the magnetoencephalography (MEG) data is a very critical issue for both clinical neurology and brain functions research. A widely accepted source-modeling technique for MEG involves calculating a set of equivalent current dipoles (ECDs). Depth in the brain is one of difficulties in MEG source localization. Particle swarm optimization(PSO) is widely used to solve various optimization problems. In this paper we discuss its ability and robustness to find the global optimum in different depths of the brain when using single equivalent current dipole (sECD) model and single time sliced data. The results show that PSO is an effective global optimization to MEG source localization when given one dipole in different depths.
Optimal times above MICs of ceftibuten and cefaclor in experimental intra-abdominal infections.
Onyeji, C O; Nicolau, D P; Nightingale, C H; Quintiliani, R
1994-01-01
The duration of time that serum drug levels remain above the MIC (time above the MIC) for the pathogen has been shown to be the most significant parameter determining the efficacies of beta-lactam antibiotics. In the described study, we investigated the optimal time above the MIC of ceftibuten and cefaclor using a nonneutropenic mouse model of intra-abdominal infections caused by Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, and Streptococcus pneumoniae. The abilities of the drugs to protect mice against the organisms were determined in mouse protection tests, and the doses were fractionated to produce various dosing regimens with different times above the MIC. All drug-organism combinations showed a significant correlation (r > 0.9) between drug efficacy and the time above the MIC. Also, with ceftibuten treatment, the different dosing regimens that produced equal times above the MIC resulted in the same efficacy, whereas with cefaclor, an apparent dose-dependent effect was observed. These results showed that for a 100% recovery from K. pneumoniae and E. coli infections, the optimal times above the MIC with ceftibuten treatment were 2.2 and 1.6 h, respectively. Relatively high doses of both antibiotics were required to ensure recovery from S. pneumoniae infections. In vitro time-kill studies demonstrated that cefaclor exhibits a marked inoculum effect against the pathogens, and there was a concentration-dependent killing at a large inoculum size. On the other hand, ceftibuten showed no inoculum effect. It is suggested that optimization of both dose and time above the MIC appears to be necessary for the treatment of S. aureus infections with cefaclor, and this may apply to other beta-lactams tht exhibit marked inoculum effects. PMID:8067747
MRI Scan Time Reduction through K-Space Data Sharing in Combo Acquisitions with a Spin Echo Sequence
2007-11-02
REFERENCES [1] P. Mansfield, A. A. Maudsley, and T. Baines, “Fast scan proton density imaging by NMR,” J . Phys. E: Scient . Instrum ., vol. 9, pp. 271...1976. [2] J . Listerud, S. Einstein, E. Outwater, and H. Y. Kressel, “First principles of fast spin echo,” Magnetic Resonance Quarterly, vol. 8, pp. 199...244, 1992. [3] P. van der Meulen, J . P. Groen, and J . J . Cuppen, “Very fast MR imaging by field echoes and small angle excitation,” Magnetic
Optimization of NANOGrav's time allocation for maximum sensitivity to single sources
Christy, Brian; Anella, Ryan; Lommen, Andrea; Camuccio, Richard; Handzo, Emma; Finn, Lee Samuel
2014-10-20
Pulsar timing arrays (PTAs) are a collection of precisely timed millisecond pulsars (MSPs) that can search for gravitational waves (GWs) in the nanohertz frequency range by observing characteristic signatures in the timing residuals. The sensitivity of a PTA depends on the direction of the propagating GW source, the timing accuracy of the pulsars, and the allocation of the available observing time. The goal of this paper is to determine the optimal time allocation strategy among the MSPs in the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) for a single source of GW under a particular set of assumptions. We consider both an isotropic distribution of sources across the sky and a specific source in the Virgo cluster. This work improves on previous efforts by modeling the effect of intrinsic spin noise for each pulsar. We find that, in general, the array is optimized by maximizing time spent on the best-timed pulsars, with sensitivity improvements typically ranging from a factor of 1.5 to 4.
On Time Delay Margin Estimation for Adaptive Control and Optimal Control Modification
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2011-01-01
This paper presents methods for estimating time delay margin for adaptive control of input delay systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent an adaptive law by a locally bounded linear approximation within a small time window. The time delay margin of this input delay system represents a local stability measure and is computed analytically by three methods: Pade approximation, Lyapunov-Krasovskii method, and the matrix measure method. These methods are applied to the standard model-reference adaptive control, s-modification adaptive law, and optimal control modification adaptive law. The windowing analysis results in non-unique estimates of the time delay margin since it is dependent on the length of a time window and parameters which vary from one time window to the next. The optimal control modification adaptive law overcomes this limitation in that, as the adaptive gain tends to infinity and if the matched uncertainty is linear, then the closed-loop input delay system tends to a LTI system. A lower bound of the time delay margin of this system can then be estimated uniquely without the need for the windowing analysis. Simulation results demonstrates the feasibility of the bounded linear stability method for time delay margin estimation.
An optimal control problem for a time-dependent Ginzburg-Landau model of superconductivity
NASA Astrophysics Data System (ADS)
Lin, Haomin
The motion of vortices in a Type II superconductor destroys the material's superconductivity because it dissipates energy and causes resistance. When a transport current is applied to a clean Type-II superconductor in the mixed state, the vortices will go into motion due to the induced Lorentz force and thus the superconductivity of the material is lost. However, various pinning mechanisms, such as normal inclusions, can inhibit vortex motion and pin the vortices to specific sites. We demonstrate that the placement of the normal inclusion sites has an important effect on the largest electrical current that can be applied to the superconducting material while all vortices remain stationary. Here, an optimal control problem using a time dependent Ginzburg-Landau model is proposed to seek numerically the optimal locations of the normal inclusion sites. An analysis of this optimal control problem is performed, the existence of an optimal control solution is proved and a sensitivity system is given. We then derive a gradient method to solve this optimal control problem. Numerical simulations are performed and the results are presented and discussed.
Deriche, Rachid; Calder, Jeff; Descoteaux, Maxime
2009-08-01
Diffusion MRI has become an established research tool for the investigation of tissue structure and orientation. Since its inception, Diffusion MRI has expanded considerably to include a number of variations such as diffusion tensor imaging (DTI), diffusion spectrum imaging (DSI) and Q-ball imaging (QBI). The acquisition and analysis of such data is very challenging due to its complexity. Recently, an exciting new Kalman filtering framework has been proposed for DTI and QBI reconstructions in real-time during the repetition time (TR) of the acquisition sequence. In this article, we first revisit and thoroughly analyze this approach and show it is actually sub-optimal and not recursively minimizing the intended criterion due to the Laplace-Beltrami regularization term. Then, we propose a new approach that implements the QBI reconstruction algorithm in real-time using a fast and robust Laplace-Beltrami regularization without sacrificing the optimality of the Kalman filter. We demonstrate that our method solves the correct minimization problem at each iteration and recursively provides the optimal QBI solution. We validate with real QBI data that our proposed real-time method is equivalent in terms of QBI estimation accuracy to the standard offline processing techniques and outperforms the existing solution. Last, we propose a fast algorithm to recursively compute gradient orientation sets whose partial subsets are almost uniform and show that it can also be applied to the problem of efficiently ordering an existing point-set of any size. This work enables a clinician to start an acquisition with just the minimum number of gradient directions and an initial estimate of the orientation distribution functions (ODF) and then the next gradient directions and ODF estimates can be recursively and optimally determined, allowing the acquisition to be stopped as soon as desired or at any iteration with the optimal ODF estimates. This opens new and interesting opportunities for
PLIO: a generic tool for real-time operational predictive optimal control of water networks.
Cembrano, G; Quevedo, J; Puig, V; Pérez, R; Figueras, J; Verdejo, J M; Escaler, I; Ramón, G; Barnet, G; Rodríguez, P; Casas, M
2011-01-01
This paper presents a generic tool, named PLIO, that allows to implement the real-time operational control of water networks. Control strategies are generated using predictive optimal control techniques. This tool allows the flow management in a large water supply and distribution system including reservoirs, open-flow channels for water transport, water treatment plants, pressurized water pipe networks, tanks, flow/pressure control elements and a telemetry/telecontrol system. Predictive optimal control is used to generate flow control strategies from the sources to the consumer areas to meet future demands with appropriate pressure levels, optimizing operational goals such as network safety volumes and flow control stability. PLIO allows to build the network model graphically and then to automatically generate the model equations used by the predictive optimal controller. Additionally, PLIO can work off-line (in simulation) and on-line (in real-time mode). The case study of Santiago-Chile is presented to exemplify the control results obtained using PLIO off-line (in simulation).
Hartcher-O'Brien, Jess; Di Luca, Massimiliano; Ernst, Marc O
2014-01-01
Often multisensory information is integrated in a statistically optimal fashion where each sensory source is weighted according to its precision. This integration scheme isstatistically optimal because it theoretically results in unbiased perceptual estimates with the highest precisionpossible.There is a current lack of consensus about how the nervous system processes multiple sensory cues to elapsed time.In order to shed light upon this, we adopt a computational approach to pinpoint the integration strategy underlying duration estimationof audio/visual stimuli. One of the assumptions of our computational approach is that the multisensory signals redundantly specify the same stimulus property. Our results clearly show that despite claims to the contrary, perceived duration is the result of an optimal weighting process, similar to that adopted for estimates of space. That is, participants weight the audio and visual information to arrive at the most precise, single duration estimate possible. The work also disentangles how different integration strategies - i.e. consideringthe time of onset/offset ofsignals - might alter the final estimate. As such we provide the first concrete evidence of an optimal integration strategy in human duration estimates.
NASA Astrophysics Data System (ADS)
Lv, Yongfeng; Na, Jing; Yang, Qinmin; Wu, Xing; Guo, Yu
2016-01-01
An online adaptive optimal control is proposed for continuous-time nonlinear systems with completely unknown dynamics, which is achieved by developing a novel identifier-critic-based approximate dynamic programming algorithm with a dual neural network (NN) approximation structure. First, an adaptive NN identifier is designed to obviate the requirement of complete knowledge of system dynamics, and a critic NN is employed to approximate the optimal value function. Then, the optimal control law is computed based on the information from the identifier NN and the critic NN, so that the actor NN is not needed. In particular, a novel adaptive law design method with the parameter estimation error is proposed to online update the weights of both identifier NN and critic NN simultaneously, which converge to small neighbourhoods around their ideal values. The closed-loop system stability and the convergence to small vicinity around the optimal solution are all proved by means of the Lyapunov theory. The proposed adaptation algorithm is also improved to achieve finite-time convergence of the NN weights. Finally, simulation results are provided to exemplify the efficacy of the proposed methods.
Hsu, Chen-Chien; Lin, Geng-Yu
2009-07-01
In this paper, a particle swarm optimization (PSO) based approach is proposed to derive an optimal digital controller for redesigned digital systems having an interval plant based on time-response resemblance of the closed-loop systems. Because of difficulties in obtaining time-response envelopes for interval systems, the design problem is formulated as an optimization problem of a cost function in terms of aggregated deviation between the step responses corresponding to extremal energies of the redesigned digital system and those of their continuous counterpart. A proposed evolutionary framework incorporating three PSOs is subsequently presented to minimize the cost function to derive an optimal set of parameters for the digital controller, so that step response sequences corresponding to the extremal sequence energy of the redesigned digital system suitably approximate those of their continuous counterpart under the perturbation of the uncertain plant parameters. Computer simulations have shown that redesigned digital systems incorporating the PSO-derived digital controllers have better system performance than those using conventional open-loop discretization methods.
Time-optimal path planning in dynamic flows using level set equations: theory and schemes
NASA Astrophysics Data System (ADS)
Lolla, Tapovan; Lermusiaux, Pierre F. J.; Ueckermann, Mattheus P.; Haley, Patrick J.
2014-10-01
We develop an accurate partial differential equation-based methodology that predicts the time-optimal paths of autonomous vehicles navigating in any continuous, strong, and dynamic ocean currents, obviating the need for heuristics. The goal is to predict a sequence of steering directions so that vehicles can best utilize or avoid currents to minimize their travel time. Inspired by the level set method, we derive and demonstrate that a modified level set equation governs the time-optimal path in any continuous flow. We show that our algorithm is computationally efficient and apply it to a number of experiments. First, we validate our approach through a simple benchmark application in a Rankine vortex flow for which an analytical solution is available. Next, we apply our methodology to more complex, simulated flow fields such as unsteady double-gyre flows driven by wind stress and flows behind a circular island. These examples show that time-optimal paths for multiple vehicles can be planned even in the presence of complex flows in domains with obstacles. Finally, we present and support through illustrations several remarks that describe specific features of our methodology.
Optimized quantum sensing with a single electron spin using real-time adaptive measurements
NASA Astrophysics Data System (ADS)
Bonato, C.; Blok, M. S.; Dinani, H. T.; Berry, D. W.; Markham, M. L.; Twitchen, D. J.; Hanson, R.
2016-03-01
Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1 ± 1.7 nT Hz-1/2 over a wide range of 1.78 mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance.
Ambush frequency should increase over time during optimal predator search for prey.
Alpern, Steve; Fokkink, Robbert; Timmer, Marco; Casas, Jérôme
2011-11-07
We advance and apply the mathematical theory of search games to model the problem faced by a predator searching for prey. Two search modes are available: ambush and cruising search. Some species can adopt either mode, with their choice at a given time traditionally explained in terms of varying habitat and physiological conditions. We present an additional explanation of the observed predator alternation between these search modes, which is based on the dynamical nature of the search game they are playing: the possibility of ambush decreases the propensity of the prey to frequently change locations and thereby renders it more susceptible to the systematic cruising search portion of the strategy. This heuristic explanation is supported by showing that in a new idealized search game where the predator is allowed to ambush or search at any time, and the prey can change locations at intermittent times, optimal predator play requires an alternation (or mixture) over time of ambush and cruise search. Thus, our game is an extension of the well-studied 'Princess and Monster' search game. Search games are zero sum games, where the pay-off is the capture time and neither the Searcher nor the Hider knows the location of the other. We are able to determine the optimal mixture of the search modes when the predator uses a mixture which is constant over time, and also to determine how the mode mixture changes over time when dynamic strategies are allowed (the ambush probability increases over time). In particular, we establish the 'square root law of search predation': the optimal proportion of active search equals the square root of the fraction of the region that has not yet been explored.
Dynamic simulation and optimal real-time operation of CHP systems for buildings
NASA Astrophysics Data System (ADS)
Cho, Hee Jin
Combined Cooling, Heating, and Power (CHP) systems have been widely recognized as a key alternative for electric and thermal energy generation because of their outstanding energy efficiency, reduced environmental emissions, and relative independence from centralized power grids. The systems provide simultaneous onsite or near-site electric and thermal energy generation in a single, integrated package. As CHP becomes increasingly popular worldwide and its total capacity increases rapidly, the research on the topics of CHP performance assessment, design, and operational strategy become increasingly important. Following this trend of research activities to improve energy efficiency, environmental emissions, and operational cost, this dissertation focuses on the following aspects: (a) performance evaluation of a CHP system using a transient simulation model; (b) development of a dynamic simulation model of a power generation unit that can be effectively used in transient simulations of CHP systems; (c) investigation of real-time operation of CHP systems based on optimization with respect to operational cost, primary energy consumption, and carbon dioxide emissions; and (d) development of optimal supervisory feed-forward control that can provide realistic real-time operation of CHP systems with electric and thermal energy storages using short-term weather forecasting. The results from a transient simulation of a CHP system show that technical and economical performance can be readily evaluated using the transient model and that the design, component selection, and control of a CHP system can be improved using this model. The results from the case studies using optimal real-time operation strategies demonstrate that CHP systems with an energy dispatch algorithm have the potential to yield savings in operational cost, primary energy consumption, and carbon dioxide emissions with respect to a conventional HVAC system. Finally, the results from the case study using a
Advani, S.H.; Lee, T.S.; Moon, H.
1992-10-01
The analysis of pertinent energy components or affiliated characteristic times for hydraulic stimulation processes serves as an effective tool for fracture configuration designs optimization, and control. This evaluation, in conjunction with parametric sensitivity studies, provides a rational base for quantifying dominant process mechanisms and the roles of specified reservoir properties relative to controllable hydraulic fracture variables for a wide spectrum of treatment scenarios. Results are detailed for the following multi-task effort: (a) Application of characteristic time concept and parametric sensitivity studies for specialized fracture geometries (rectangular, penny-shaped, elliptical) and three-layered elliptic crack models (in situ stress, elastic moduli, and fracture toughness contrasts). (b) Incorporation of leak-off effects for models investigated in (a). (c) Simulation of generalized hydraulic fracture models and investigation of the role of controllable vaxiables and uncontrollable system properties. (d) Development of guidelines for hydraulic fracture design and optimization.
Advani, S.H.; Lee, T.S. ); Moon, H. )
1992-10-01
The analysis of pertinent energy components or affiliated characteristic times for hydraulic stimulation processes serves as an effective tool for fracture configuration designs optimization, and control. This evaluation, in conjunction with parametric sensitivity studies, provides a rational base for quantifying dominant process mechanisms and the roles of specified reservoir properties relative to controllable hydraulic fracture variables for a wide spectrum of treatment scenarios. Results are detailed for the following multi-task effort: (a) Application of characteristic time concept and parametric sensitivity studies for specialized fracture geometries (rectangular, penny-shaped, elliptical) and three-layered elliptic crack models (in situ stress, elastic moduli, and fracture toughness contrasts). (b) Incorporation of leak-off effects for models investigated in (a). (c) Simulation of generalized hydraulic fracture models and investigation of the role of controllable vaxiables and uncontrollable system properties. (d) Development of guidelines for hydraulic fracture design and optimization.
Optimization of a multi-ring detector for Ps time of flight measurements
NASA Astrophysics Data System (ADS)
Di Noto, L.; Benetti, M.; Mariazzi, S.; Dalla Betta, G.-F.; Brusa, R. S.
2013-06-01
We have designed a multi-ring detector (MRD) based on Bismuth Germanate (BGO) crystals, coupled to Silicon PhotoMultipliers (SiPM) for measuring the Ps time of flight (TOF). The set-up geometry was optimized by Monte Carlo simulations to take into account at different Ps velocities: (i) the background noise due to backscattered positrons, (ii) the crosstalk between adjacent detectors, (iii) the lifetime of Ps decay. Three parameters were defined to evaluate the different configurations and a figure of merit was obtained. This allows the choice of the best set up configuration for measuring Ps emitted with a particular energy range, optimizing the signal to noise ratio and keeping the acquisition time acceptable.
Time dependent adjoint-based optimization for coupled fluid-structure problems
NASA Astrophysics Data System (ADS)
Mishra, Asitav; Mani, Karthik; Mavriplis, Dimitri; Sitaraman, Jay
2015-07-01
A formulation for sensitivity analysis of fully coupled time-dependent aeroelastic problems is given in this paper. Both forward sensitivity and adjoint sensitivity formulations are derived that correspond to analogues of the fully coupled non-linear aeroelastic analysis problem. Both sensitivity analysis formulations make use of the same iterative disciplinary solution techniques used for analysis, and make use of an analogous coupling strategy. The information passed between fluid and structural solvers is dimensionally equivalent in all cases, enabling the use of the same data structures for analysis, forward and adjoint problems. The fully coupled adjoint formulation is then used to perform rotor blade design optimization for a four bladed HART2 rotor in hover conditions started impulsively from rest. The effect of time step size and mesh resolution on optimization results is investigated.
Fu, Qinyi; Martin, Benjamin L.; Matus, David Q.; Gao, Liang
2016-01-01
Despite the progress made in selective plane illumination microscopy, high-resolution 3D live imaging of multicellular specimens remains challenging. Tiling light-sheet selective plane illumination microscopy (TLS-SPIM) with real-time light-sheet optimization was developed to respond to the challenge. It improves the 3D imaging ability of SPIM in resolving complex structures and optimizes SPIM live imaging performance by using a real-time adjustable tiling light sheet and creating a flexible compromise between spatial and temporal resolution. We demonstrate the 3D live imaging ability of TLS-SPIM by imaging cellular and subcellular behaviours in live C. elegans and zebrafish embryos, and show how TLS-SPIM can facilitate cell biology research in multicellular specimens by studying left-right symmetry breaking behaviour of C. elegans embryos. PMID:27004937
Symmetry breaking in optimal timing of traffic signals on an idealized two-way street
NASA Astrophysics Data System (ADS)
Panaggio, Mark J.; Ottino-Löffler, Bertand J.; Hu, Peiguang; Abrams, Daniel M.
2013-09-01
Simple physical models based on fluid mechanics have long been used to understand the flow of vehicular traffic on freeways; analytically tractable models of flow on an urban grid, however, have not been as extensively explored. In an ideal world, traffic signals would be timed such that consecutive lights turned green just as vehicles arrived, eliminating the need to stop at each block. Unfortunately, this “green-wave” scenario is generally unworkable due to frustration imposed by competing demands of traffic moving in different directions. Until now this has typically been resolved by numerical simulation and optimization. Here, we develop a theory for the flow in an idealized system consisting of a long two-way road with periodic intersections. We show that optimal signal timing can be understood analytically and that there are counterintuitive asymmetric solutions to this signal coordination problem. We further explore how these theoretical solutions degrade as traffic conditions vary and automotive density increases.
Ebersole, John P; Wilson, Julian C
1980-07-01
Food density, degree of hunger prior to foraging, and food processing difficulty were varied in order to determine their effects on the diet diversity of captive Peromyscus leucopus foraging for buried seeds. No relationship was found between diet diversity and food density. However, diet diversity exhibited a significantly positive relationship with hunger, and a significantly negative relationship with seed processing time. These results strongly support optimal foraging theory.
Li, Huaqing; Huang, Chicheng; Chen, Guo; Liao, Xiaofeng; Huang, Tingwen
2017-03-31
This paper considers solving a class of optimization problems which are modeled as the sum of all agents' convex cost functions and each agent is only accessible to its individual function. Communication between agents in multiagent networks is assumed to be limited: each agent can only interact information with its neighbors by using time-varying communication channels with limited capacities. A technique which overcomes the limitation is to implement a quantization process to the interacted information. The quantized information is first encoded as a binary sequence at the side of each agent before sending. After the binary sequence is received by the neighboring agent, corresponding decoding scheme is utilized to resume the original information with a certain degree of error which is caused by the quantization process. With the availability of each agent's encoding states (associated with its out-channels) and decoding states (associated with its in-channels), we devise a set of distributed optimization algorithms that generate two iterative sequences, one of which converges to the optimal solution and the other of which reaches to the optimal value. We prove that if the parameters satisfy some mild conditions, the quantization errors are bounded and the consensus optimization can be achieved. How to minimize the number of quantization level of each connected communication channel in fixed networks is also explored thoroughly. It is found that, by properly choosing system parameters, one bit information exchange suffices to ensure consensus optimization. Finally, we present two numerical simulation experiments to illustrate the efficacy of the algorithms as well as to validate the theoretical findings.
A New Continuous-Time Equality-Constrained Optimization to Avoid Singularity.
Quan, Quan; Cai, Kai-Yuan
2016-02-01
In equality-constrained optimization, a standard regularity assumption is often associated with feasible point methods, namely, that the gradients of constraints are linearly independent. In practice, the regularity assumption may be violated. In order to avoid such a singularity, a new projection matrix is proposed based on which a feasible point method to continuous-time, equality-constrained optimization is developed. First, the equality constraint is transformed into a continuous-time dynamical system with solutions that always satisfy the equality constraint. Second, a new projection matrix without singularity is proposed to realize the transformation. An update (or say a controller) is subsequently designed to decrease the objective function along the solutions of the transformed continuous-time dynamical system. The invariance principle is then applied to analyze the behavior of the solution. Furthermore, the proposed method is modified to address cases in which solutions do not satisfy the equality constraint. Finally, the proposed optimization approach is applied to three examples to demonstrate its effectiveness.
Theory of optimal balance predicts and explains the amplitude and decay time of synaptic inhibition
NASA Astrophysics Data System (ADS)
Kim, Jaekyung K.; Fiorillo, Christopher D.
2017-03-01
Synaptic inhibition counterbalances excitation, but it is not known what constitutes optimal inhibition. We previously proposed that perfect balance is achieved when the peak of an excitatory postsynaptic potential (EPSP) is exactly at spike threshold, so that the slightest variation in excitation determines whether a spike is generated. Using simulations, we show that the optimal inhibitory postsynaptic conductance (IPSG) increases in amplitude and decay rate as synaptic excitation increases from 1 to 800 Hz. As further proposed by theory, we show that optimal IPSG parameters can be learned through anti-Hebbian rules. Finally, we compare our theoretical optima to published experimental data from 21 types of neurons, in which rates of synaptic excitation and IPSG decay times vary by factors of about 100 (5-600 Hz) and 50 (1-50 ms), respectively. From an infinite range of possible decay times, theory predicted experimental decay times within less than a factor of 2. Across a distinct set of 15 types of neuron recorded in vivo, theory predicted the amplitude of synaptic inhibition within a factor of 1.7. Thus, the theory can explain biophysical quantities from first principles.
Nonlinear stabilization for a class of time delay systems via inverse optimality approach.
Ordaz, Patricio; Santos-Sánchez, Omar-Jacobo; Rodríguez-Guerrero, Liliam; González-Facundo, Alberto
2017-03-01
This paper is devoted to obtain a stabilizing optimal nonlinear controller based on the well known Control Lyapunov-Krasovskii Functional (CLKF) approach, aimed to solve the inverse optimality problem for a class of nonlinear time delay systems. To determine sufficient conditions for the Bellman's equation solution of the system under consideration, the CLKF and the inverse optimality approach are considered in this paper. In comparison with previous results, this scheme allows us to obtain less conservative controllers, implying energy saving (in terms of average power consumption for a specific thermo-electrical process). Sufficient delay-independent criteria in terms of CLKF is obtained such that the closed-loop nonlinear time-delay system is guaranteed to be local Asymptotically Stable. To illustrate the effectiveness of the theoretical results, a comparative study with an industrial PID controller tuned by the Ziegler-Nichols methodology (Z-N) and a Robust-PID tuned by using the D-partition method is presented by online experimental tests for an atmospheric drying process with time delay in its dynamics.
Theory of optimal balance predicts and explains the amplitude and decay time of synaptic inhibition
Kim, Jaekyung K.; Fiorillo, Christopher D.
2017-01-01
Synaptic inhibition counterbalances excitation, but it is not known what constitutes optimal inhibition. We previously proposed that perfect balance is achieved when the peak of an excitatory postsynaptic potential (EPSP) is exactly at spike threshold, so that the slightest variation in excitation determines whether a spike is generated. Using simulations, we show that the optimal inhibitory postsynaptic conductance (IPSG) increases in amplitude and decay rate as synaptic excitation increases from 1 to 800 Hz. As further proposed by theory, we show that optimal IPSG parameters can be learned through anti-Hebbian rules. Finally, we compare our theoretical optima to published experimental data from 21 types of neurons, in which rates of synaptic excitation and IPSG decay times vary by factors of about 100 (5–600 Hz) and 50 (1–50 ms), respectively. From an infinite range of possible decay times, theory predicted experimental decay times within less than a factor of 2. Across a distinct set of 15 types of neuron recorded in vivo, theory predicted the amplitude of synaptic inhibition within a factor of 1.7. Thus, the theory can explain biophysical quantities from first principles. PMID:28281523
Optimizing the timing resolution of SiPM sensors for use in TOF-PET detectors
NASA Astrophysics Data System (ADS)
Vinke, R.; Löhner, H.; Schaart, D. R.; van Dam, H. T.; Seifert, S.; Beekman, F. J.; Dendooven, P.
2009-10-01
We have investigated the timing performance of Hamamatsu Multi-Pixel Photon Counter (MPPC) photosensors in light of their use in time-of-flight (TOF) positron emission tomography detectors. Measurements using picosecond laser pulses show a single photo-electron root-mean-square (RMS) timing resolution down to about 100 ps. In coincidences of 511 keV photons detected with an LYSO crystal coupled to a MPPC and a BaF 2 detector, an optimum FWHM timing resolution of 600 ps was obtained with leading edge time pickoff at the 1-1.5 photo-electron level. By optimizing the LYSO/MPPC coupling, this can be improved by a factor of 2. We further conclude that the use of stored digitized pulses allows great flexibility and efficiency in developing data analysis algorithms.
Singular perturbation techniques for real time aircraft trajectory optimization and control
NASA Technical Reports Server (NTRS)
Calise, A. J.; Moerder, D. D.
1982-01-01
The usefulness of singular perturbation methods for developing real time computer algorithms to control and optimize aircraft flight trajectories is examined. A minimum time intercept problem using F-8 aerodynamic and propulsion data is used as a baseline. This provides a framework within which issues relating to problem formulation, solution methodology and real time implementation are examined. Theoretical questions relating to separability of dynamics are addressed. With respect to implementation, situations leading to numerical singularities are identified, and procedures for dealing with them are outlined. Also, particular attention is given to identifying quantities that can be precomputed and stored, thus greatly reducing the on-board computational load. Numerical results are given to illustrate the minimum time algorithm, and the resulting flight paths. An estimate is given for execution time and storage requirements.
NASA Astrophysics Data System (ADS)
Islam, Syed Zahurul; Islam, Syed Zahidul; Jidin, Razali; Ali, Mohd. Alauddin Mohd.
2010-06-01
Computer vision and digital image processing comprises varieties of applications, where some of these used in image processing include convolution, edge detection as well as contrast enhancement. This paper analyzes execution time optimization analysis between Sobel and Canny image processing algorithms in terms of moving objects edge detection. Sobel and Canny edge detection algorithms have been described with pseudo code and detailed flow chart and implemented in C and MATLAB respectively on different platforms to evaluate performance and execution time for moving cars. It is shown that Sobel algorithm is very effective in case of moving multiple cars and blurs images with efficient execution time. Moreover, convolution operation of Canny takes 94-95% time of total execution time with thin and smooth but redundant edges. This also makes more robust of Sobel to detect moving cars edges.
Time-Optimized High-Resolution Readout-Segmented Diffusion Tensor Imaging
Reishofer, Gernot; Koschutnig, Karl; Langkammer, Christian; Porter, David; Jehna, Margit; Enzinger, Christian; Keeling, Stephen; Ebner, Franz
2013-01-01
Readout-segmented echo planar imaging with 2D navigator-based reacquisition is an uprising technique enabling the sampling of high-resolution diffusion images with reduced susceptibility artifacts. However, low signal from the small voxels and long scan times hamper the clinical applicability. Therefore, we introduce a regularization algorithm based on total variation that is applied directly on the entire diffusion tensor. The spatially varying regularization parameter is determined automatically dependent on spatial variations in signal-to-noise ratio thus, avoiding over- or under-regularization. Information about the noise distribution in the diffusion tensor is extracted from the diffusion weighted images by means of complex independent component analysis. Moreover, the combination of those features enables processing of the diffusion data absolutely user independent. Tractography from in vivo data and from a software phantom demonstrate the advantage of the spatially varying regularization compared to un-regularized data with respect to parameters relevant for fiber-tracking such as Mean Fiber Length, Track Count, Volume and Voxel Count. Specifically, for in vivo data findings suggest that tractography results from the regularized diffusion tensor based on one measurement (16 min) generates results comparable to the un-regularized data with three averages (48 min). This significant reduction in scan time renders high resolution (1×1×2.5 mm3) diffusion tensor imaging of the entire brain applicable in a clinical context. PMID:24019951
Smith, Amanda R.; Garris, Paul A.; Casto, Joseph M.
2015-01-01
Fast-scan cyclic voltammetry is a powerful technique for monitoring rapid changes in extracellular neurotransmitter levels in the brain. In vivo fast-scan cyclic voltammetry has been used extensively in mammalian models to characterize dopamine signals in both anesthetized and awake preparations, but has yet to be applied to a non-mammalian vertebrate. The goal of this study was to establish in vivo fast-scan cyclic voltammetry in a songbird, the European starling, to facilitate real-time measurements of extracellular catecholamine levels in the avian striatum. In urethane-anesthetized starlings, changes in catecholamine levels were evoked by electrical stimulation of the ventral tegmental area and measured at carbon-fiber microelectrodes positioned in the medial and lateral striata. Catecholamines were elicited by different stimulations, including trains related to phasic dopamine signaling in the rat, and were analyzed to quantify presynaptic mechanisms governing exocytotic release and neuronal uptake. Evoked extracellular catecholamine dynamics, maximal amplitude of the evoked catecholamine signal, and parameters for catecholamine release and uptake did not differ between striatal regions and were similar to those determined for dopamine in the rat dorsomedial striatum under similar conditions. Chemical identification of measured catecholamine by its voltammogram was consistent with the presence of both dopamine and norepinephrine in striatal tissue content. However, the high ratio of dopamine to norepinephrine in tissue content and the greater sensitivity of the carbon-fiber microelectrode to dopamine compared to norepinephrine favored the measurement of dopamine. Thus, converging evidence suggests that dopamine was the predominate analyte of the electrically evoked catecholamine signal measured in the striatum by fast-scan cyclic voltammetry. Overall, comparisons between the characteristics of these evoked signals suggested a similar presynaptic regulation of
Smith, Amanda R; Garris, Paul A; Casto, Joseph M
2015-01-01
Fast-scan cyclic voltammetry is a powerful technique for monitoring rapid changes in extracellular neurotransmitter levels in the brain. In vivo fast-scan cyclic voltammetry has been used extensively in mammalian models to characterize dopamine signals in both anesthetized and awake preparations, but has yet to be applied to a non-mammalian vertebrate. The goal of this study was to establish in vivo fast-scan cyclic voltammetry in a songbird, the European starling, to facilitate real-time measurements of extracellular catecholamine levels in the avian striatum. In urethane-anesthetized starlings, changes in catecholamine levels were evoked by electrical stimulation of the ventral tegmental area and measured at carbon-fiber microelectrodes positioned in the medial and lateral striata. Catecholamines were elicited by different stimulations, including trains related to phasic dopamine signaling in the rat, and were analyzed to quantify presynaptic mechanisms governing exocytotic release and neuronal uptake. Evoked extracellular catecholamine dynamics, maximal amplitude of the evoked catecholamine signal, and parameters for catecholamine release and uptake did not differ between striatal regions and were similar to those determined for dopamine in the rat dorsomedial striatum under similar conditions. Chemical identification of measured catecholamine by its voltammogram was consistent with the presence of both dopamine and norepinephrine in striatal tissue content. However, the high ratio of dopamine to norepinephrine in tissue content and the greater sensitivity of the carbon-fiber microelectrode to dopamine compared to norepinephrine favored the measurement of dopamine. Thus, converging evidence suggests that dopamine was the predominate analyte of the electrically evoked catecholamine signal measured in the striatum by fast-scan cyclic voltammetry. Overall, comparisons between the characteristics of these evoked signals suggested a similar presynaptic regulation of
An optimization approach to multi-dimensional time domain acoustic inverse problems.
Gustafsson, M; He, S
2000-10-01
An optimization approach to a multi-dimensional acoustic inverse problem in the time domain is considered. The density and/or the sound speed are reconstructed by minimizing an objective functional. By introducing dual functions and using the Gauss divergence theorem, the gradient of the objective functional is found as an explicit expression. The parameters are then reconstructed by an iterative algorithm (the conjugate gradient method). The reconstruction algorithm is tested with noisy data, and these tests indicate that the algorithm is stable and robust. The computation time for the reconstruction is greatly improved when the analytic gradient is used.
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Rosen, I. G.
1986-01-01
An abstract approximation framework is developed for the finite and infinite time horizon discrete-time linear-quadratic regulator problem for systems whose state dynamics are described by a linear semigroup of operators on an infinite dimensional Hilbert space. The schemes included the framework yield finite dimensional approximations to the linear state feedback gains which determine the optimal control law. Convergence arguments are given. Examples involving hereditary and parabolic systems and the vibration of a flexible beam are considered. Spline-based finite element schemes for these classes of problems, together with numerical results, are presented and discussed.
Optimization Of Output Q-Switched Nd:YAG Laser Based On Switching Time
NASA Astrophysics Data System (ADS)
Tamuri, Abd Rahman; Daud, Yaacob Mat; Bidin, Noriah
2010-07-01
This paper reports the optimization of output Q-switch Nd:YAG. A free running Nd:YAG laser was employed as source of light. KD*P crystal was utilized as a Pockels cell. Avalanche transistor pulser was designed to switch a high voltage power supply. The switching time was conducted via a control unit based PIC16F84A microcontroller. The pulser was able to switch the voltage within 3 ns. The optimum switching time of Q-switching is obtained at 182.34 μs. The corresponding laser output is 40 mJ with pulse duration of 25 ns.
Constrained time-optimal control of double-integrator system and its application in MPC
NASA Astrophysics Data System (ADS)
Fehér, Marek; Straka, Ondřej; Šmídl, Václav
2017-01-01
The paper deals with the design of a time-optimal controller for systems subject to both state and control constraints. The focus is laid on a double-integrator system, for which the time-to-go function is calculated. The function is then used as a part of a model predictive control criterion where it represents the long-horizon part. The designed model predictive control algorithm is then used in a constrained control problem of permanent magnet synchronous motor model, which behavior can be approximated by a double integrator model. Accomplishments of the control goals are illustrated in a numerical example.
Nucleation of holin domains and holes optimizes lysis timing of E. coli by phage λ
NASA Astrophysics Data System (ADS)
Ryan, Gillian; Rutenberg, Andrew
2007-03-01
Holin proteins regulate the precise scheduling of Escherichia coli lysis during infection by bacteriophage λ. Inserted into the host bacterium's inner membrane during infection, holins aggregate to form rafts and then holes within those rafts. We present a two-stage nucleation model of holin action, with the nucleation of condensed holin domains followed by the nucleation of holes within these domains. Late nucleation of holin rafts leads to a weak dependence of lysis timing on host cell size, though both nucleation events contribute equally to timing errors. Our simulations recover the accurate scheduling observed experimentally, and also suggest that phage-λ lysis of E.coli is optimized.
Optimal control of wind-farm boundary layers: effect of turbine response time
NASA Astrophysics Data System (ADS)
Munters, Wim; Meyers, Johan
2016-11-01
Complex turbine wake interactions play an important role in overall energy extraction in large wind farms. Current control strategies optimize individual turbine power, and lead to significant energy losses in wind farms compared to lone-standing turbines. In recent work, an optimal control framework for dynamic induction control of wind farms and their interaction with the atmospheric boundary layer (ABL) was introduced, with the aim of mitigating such losses. The framework applies a receding horizon methodology, in which the ABL state is modeled through large-eddy simulations. Previously, the framework was applied to both fully-developed and spatially developing wind farms, for which respective energy gains of 16% and 7% were obtained, albeit at the cost of additional turbine loading variability. Here, we quantify the trade-off between increased power extraction and smoothed turbine dynamics by varying the turbine response time in the control framework. We consider simulation cases restricted to underinduction compared to Betz-optimal induction, as well as cases that also allow overinduction. In addition, efforts on replicating optimized power gains with practical controllers are presented. The authors are supported by the ERC (ActiveWindFarms, Grant No.: 306471).
Optimal cycling time trial position models: aerodynamics versus power output and metabolic energy.
Fintelman, D M; Sterling, M; Hemida, H; Li, F-X
2014-06-03
The aerodynamic drag of a cyclist in time trial (TT) position is strongly influenced by the torso angle. While decreasing the torso angle reduces the drag, it limits the physiological functioning of the cyclist. Therefore the aims of this study were to predict the optimal TT cycling position as function of the cycling speed and to determine at which speed the aerodynamic power losses start to dominate. Two models were developed to determine the optimal torso angle: a 'Metabolic Energy Model' and a 'Power Output Model'. The Metabolic Energy Model minimised the required cycling energy expenditure, while the Power Output Model maximised the cyclists׳ power output. The input parameters were experimentally collected from 19 TT cyclists at different torso angle positions (0-24°). The results showed that for both models, the optimal torso angle depends strongly on the cycling speed, with decreasing torso angles at increasing speeds. The aerodynamic losses outweigh the power losses at cycling speeds above 46km/h. However, a fully horizontal torso is not optimal. For speeds below 30km/h, it is beneficial to ride in a more upright TT position. The two model outputs were not completely similar, due to the different model approaches. The Metabolic Energy Model could be applied for endurance events, while the Power Output Model is more suitable in sprinting or in variable conditions (wind, undulating course, etc.). It is suggested that despite some limitations, the models give valuable information about improving the cycling performance by optimising the TT cycling position.
A policy iteration approach to online optimal control of continuous-time constrained-input systems.
Modares, Hamidreza; Naghibi Sistani, Mohammad-Bagher; Lewis, Frank L
2013-09-01
This paper is an effort towards developing an online learning algorithm to find the optimal control solution for continuous-time (CT) systems subject to input constraints. The proposed method is based on the policy iteration (PI) technique which has recently evolved as a major technique for solving optimal control problems. Although a number of online PI algorithms have been developed for CT systems, none of them take into account the input constraints caused by actuator saturation. In practice, however, ignoring these constraints leads to performance degradation or even system instability. In this paper, to deal with the input constraints, a suitable nonquadratic functional is employed to encode the constraints into the optimization formulation. Then, the proposed PI algorithm is implemented on an actor-critic structure to solve the Hamilton-Jacobi-Bellman (HJB) equation associated with this nonquadratic cost functional in an online fashion. That is, two coupled neural network (NN) approximators, namely an actor and a critic are tuned online and simultaneously for approximating the associated HJB solution and computing the optimal control policy. The critic is used to evaluate the cost associated with the current policy, while the actor is used to find an improved policy based on information provided by the critic. Convergence to a close approximation of the HJB solution as well as stability of the proposed feedback control law are shown. Simulation results of the proposed method on a nonlinear CT system illustrate the effectiveness of the proposed approach.
Tighten after Relax: Minimax-Optimal Sparse PCA in Polynomial Time
Wang, Zhaoran; Lu, Huanran; Liu, Han
2014-01-01
We provide statistical and computational analysis of sparse Principal Component Analysis (PCA) in high dimensions. The sparse PCA problem is highly nonconvex in nature. Consequently, though its global solution attains the optimal statistical rate of convergence, such solution is computationally intractable to obtain. Meanwhile, although its convex relaxations are tractable to compute, they yield estimators with suboptimal statistical rates of convergence. On the other hand, existing nonconvex optimization procedures, such as greedy methods, lack statistical guarantees. In this paper, we propose a two-stage sparse PCA procedure that attains the optimal principal subspace estimator in polynomial time. The main stage employs a novel algorithm named sparse orthogonal iteration pursuit, which iteratively solves the underlying nonconvex problem. However, our analysis shows that this algorithm only has desired computational and statistical guarantees within a restricted region, namely the basin of attraction. To obtain the desired initial estimator that falls into this region, we solve a convex formulation of sparse PCA with early stopping. Under an integrated analytic framework, we simultaneously characterize the computational and statistical performance of this two-stage procedure. Computationally, our procedure converges at the rate of 1∕t within the initialization stage, and at a geometric rate within the main stage. Statistically, the final principal subspace estimator achieves the minimax-optimal statistical rate of convergence with respect to the sparsity level s*, dimension d and sample size n. Our procedure motivates a general paradigm of tackling nonconvex statistical learning problems with provable statistical guarantees. PMID:25620858
Actor-critic-based optimal tracking for partially unknown nonlinear discrete-time systems.
Kiumarsi, Bahare; Lewis, Frank L
2015-01-01
This paper presents a partially model-free adaptive optimal control solution to the deterministic nonlinear discrete-time (DT) tracking control problem in the presence of input constraints. The tracking error dynamics and reference trajectory dynamics are first combined to form an augmented system. Then, a new discounted performance function based on the augmented system is presented for the optimal nonlinear tracking problem. In contrast to the standard solution, which finds the feedforward and feedback terms of the control input separately, the minimization of the proposed discounted performance function gives both feedback and feedforward parts of the control input simultaneously. This enables us to encode the input constraints into the optimization problem using a nonquadratic performance function. The DT tracking Bellman equation and tracking Hamilton-Jacobi-Bellman (HJB) are derived. An actor-critic-based reinforcement learning algorithm is used to learn the solution to the tracking HJB equation online without requiring knowledge of the system drift dynamics. That is, two neural networks (NNs), namely, actor NN and critic NN, are tuned online and simultaneously to generate the optimal bounded control policy. A simulation example is given to show the effectiveness of the proposed method.
Real-time, large scale optimization of water network systems using a subdomain approach.
van Bloemen Waanders, Bart Gustaaf; Biegler, Lorenz T.; Laird, Carl Damon
2005-03-01
Certain classes of dynamic network problems can be modeled by a set of hyperbolic partial differential equations describing behavior along network edges and a set of differential and algebraic equations describing behavior at network nodes. In this paper, we demonstrate real-time performance for optimization problems in drinking water networks. While optimization problems subject to partial differential, differential, and algebraic equations can be solved with a variety of techniques, efficient solutions are difficult for large network problems with many degrees of freedom and variable bounds. Sequential optimization strategies can be inefficient for this problem due to the high cost of computing derivatives with respect to many degrees of freedom. Simultaneous techniques can be more efficient, but are difficult because of the need to solve a large nonlinear program; a program that may be too large for current solver. This study describes a dynamic optimization formulation for estimating contaminant sources in drinking water networks, given concentration measurements at various network nodes. We achieve real-time performance by combining an efficient large-scale nonlinear programming algorithm with two problem reduction techniques. D Alembert's principle can be applied to the partial differential equations governing behavior along the network edges (distribution pipes). This allows us to approximate the time-delay relationships between network nodes, removing the need to discretize along the length of the pipes. The efficiency of this approach alone, however, is still dependent on the size of the network and does not scale indefinitely to larger network models. We further reduce the problem size with a subdomain approach and solve smaller inversion problems using a geographic window around the area of contamination. We illustrate the effectiveness of this overall approach and these reduction techniques on an actual metropolitan water network model.
Real-time optimal sensing strategies for active control of optical systems
NASA Astrophysics Data System (ADS)
Moon, Suk-Min; Fowler, Leslie P.; Clark, Robert L.; Anderson, Eric H.
2007-04-01
The pointing and imaging performance of precision optical systems is degraded by disturbances on the system that create optical jitter. These disturbances can be caused by structural motion of optical components due to vibration sources that (1) originate within the optical system, (2) originate external to the system and are transmitted through the structural path in the environment, and (3) are air-induced vibrations from acoustic noise. Beam control systems can suppress optical jitter, and active control techniques can be used to extend performance by incorporating information from accelerometers, microphones, and other auxiliary sensors. In some applications, offline fixed gain controllers can be used to minimize jitter. However there are many applications in which a real-time adaptive control approach would yield improved optical performance. Often we would like the capability to adapt in real-time to a system which is time-varying or whose disturbances are non-stationary and hard to predict. In the presence of these harsh, ever-changing environments we would like to use every available tool to optimize performance. Improvements in control algorithms are important, but another potentially useful tool is a real-time adaptive control method employing optimal sensing strategies. In this approach, real-time updating of reference sensors is provided to minimize optical jitter. The technique selects an optimal subset of sensors to use as references from an array of possible sensor locations. The optimal, weighted reference sensor set is well correlated with the disturbance and when used with an adaptive control algorithm, results in improved line-of-sight jitter performance with less computational burden compared to a controller which uses multiple reference sensors. The proposed technique is applied to an experimental test bed in which multiple proof-mass actuators generate structural vibrations on a flexible plate. These vibrations are transmitted to an optical
Variable-Field Analytical Ultracentrifugation: I. Time-Optimized Sedimentation Equilibrium
Ma, Jia; Metrick, Michael; Ghirlando, Rodolfo; Zhao, Huaying; Schuck, Peter
2015-01-01
Sedimentation equilibrium (SE) analytical ultracentrifugation (AUC) is a gold standard for the rigorous determination of macromolecular buoyant molar masses and the thermodynamic study of reversible interactions in solution. A significant experimental drawback is the long time required to attain SE, which is usually on the order of days. We have developed a method for time-optimized SE (toSE) with defined time-varying centrifugal fields that allow SE to be attained in a significantly (up to 10-fold) shorter time than is usually required. To achieve this, numerical Lamm equation solutions for sedimentation in time-varying fields are computed based on initial estimates of macromolecular transport properties. A parameterized rotor-speed schedule is optimized with the goal of achieving a minimal time to equilibrium while limiting transient sample preconcentration at the base of the solution column. The resulting rotor-speed schedule may include multiple over- and underspeeding phases, balancing the formation of gradients from strong sedimentation fluxes with periods of high diffusional transport. The computation is carried out in a new software program called TOSE, which also facilitates convenient experimental implementation. Further, we extend AUC data analysis to sedimentation processes in such time-varying centrifugal fields. Due to the initially high centrifugal fields in toSE and the resulting strong migration, it is possible to extract sedimentation coefficient distributions from the early data. This can provide better estimates of the size of macromolecular complexes and report on sample homogeneity early on, which may be used to further refine the prediction of the rotor-speed schedule. In this manner, the toSE experiment can be adapted in real time to the system under study, maximizing both the information content and the time efficiency of SE experiments. PMID:26287634
Tanaka, Aya; Tanaka, Ryosuke; Kasai, Nahoko; Tsukada, Shingo; Okajima, Takaharu; Sumitomo, Koji
2015-07-01
Apoptosis plays an important role in many physiologic and pathologic conditions. The biochemical and morphological characteristics of apoptosis including cellular volume decrease, cell membrane blebbing, and phosphatidylserine translocation from the inner to the outer leaflet of the cell membrane are considered important events for phagocyte detection. Despite its importance, the relationship between the biological and morphological changes in a living cell has remained controversial. Scanning ion conductance microscopy is a suitable technique for investigating a series of these changes, because it allows us to observe the morphology of living cells without any mechanical interactions between the probe and the sample surface with a high resolution. Here, we investigated the biochemical and morphological changes in single neurons during the early stages of apoptosis, including apoptotic volume decrease, membrane blebbing and phosphatidylserine translocation, by using scanning ion conductance microscopy. Time-course imaging of apoptotic neurons showed there was a reduction in apoptotic volume after exposure to staurosporine and subsequent membrane bleb formation, which has a similar onset time to phosphatidylserine translocation. Our results show that a reduction in cellular volume is one of the earliest morphological changes in apoptosis, and membrane blebbing and phosphatidylserine translocation occur as subsequent biological and morphological changes. This is the first report to describe this series of morphological and biochemical changes ranging from an apoptotic volume decrease to membrane blebbing and PS translocation by scanning ion conductance microscopy (SICM). This new and direct imaging technique will provide new insight into the relationship between biochemical events inside a cell and cellular morphological changes.
Rahmani, Khaled; Yarahmadi, Shahin; Etemad, Koorosh; Koosha, Ahmad; Mehrabi, Yadollah; Aghang, Nasrin; Soori, Hamid
2016-01-01
Context Appropriate management of neonates, tested positive for congenital hypothyroidism (CH), in particular, the initial dosage of levothyroxine and the time of initiation of treatment is a critical issue. The aim of this study was to assess all current evidence available on the subject to ascertain the optimal initial dose and optimal initiation time of treatment for children with CH. Evidence Acquisition In this study, all published research related to the initiation treatment dose and the onset time of treatment in congenital hypothyroidism were reviewed. The searched electronic databases included Medline, Science direct, Scopus EMBASE, PsycINFO, Cochrane, BIOSIS and ISI Web of Knowledge. Additional searches included websites of relevant organizations, reference lists of included studies, and issues of major thyroid and pediatrics journals published within the past 35 years. Studies were included if they were written in English and investigated levothyroxine dose or timing of treatment or both, used for the treatment of children with congenital hypothyroidism. Results Two thousand three hundred and seventy-four articles (excluding duplicates) were retrieved from the primary search. After reviewing the titles, abstracts and full-texts of studies, eventually, 22 studies were found that met our inclusion criteria. Amongst these, 17 and 12 evaluated outcomes of different treatment doses and treatment timing, respectively. Overall, the majority of these studies emphasized the initial high dose of levothyroxine and early treatment of newborns with hypothyroidism. There were, however, some studies that disagreed with increasing levothyroxine dose at initiation of treatment. Conclusions Considering the results of this review, apparently there is no difference in opinion regarding the early initiation of treatment, whereas determining the optimal dose of levothyroxine for start of treatment in CH patients still remains a controversial issue, demonstrating the need for
NASA Astrophysics Data System (ADS)
Lee, Y. G.; Koo, J. H.
2015-12-01
Solar UV radiation in a wavelength range between 280 to 400 nm has both positive and negative influences on human body. Surface UV radiation is the main natural source of vitamin D, providing the promotion of bone and musculoskeletal health and reducing the risk of a number of cancers and other medical conditions. However, overexposure to surface UV radiation is significantly related with the majority of skin cancer, in addition other negative health effects such as sunburn, skin aging, and some forms of eye cataracts. Therefore, it is important to estimate the optimal UV exposure time, representing a balance between reducing negative health effects and maximizing sufficient vitamin D production. Previous studies calculated erythemal UV and vitamin-D UV from the measured and modelled spectral irradiances, respectively, by weighting CIE Erythema and Vitamin D3 generation functions (Kazantzidis et al., 2009; Fioletov et al., 2010). In particular, McKenzie et al. (2009) suggested the algorithm to estimate vitamin-D production UV from erythemal UV (or UV index) and determined the optimum conditions of UV exposure based on skin type Ⅱ according to the Fitzpatrick (1988). Recently, there are various demands for risks and benefits of surface UV radiation on public health over Korea, thus it is necessary to estimate optimal UV exposure time suitable to skin type of East Asians. This study examined the relationship between erythemally weighted UV (UVEry) and vitamin D weighted UV (UVVitD) over Korea during 2004-2012. The temporal variations of the ratio (UVVitD/UVEry) were also analyzed and the ratio as a function of UV index was applied in estimating the optimal UV exposure time. In summer with high surface UV radiation, short exposure time leaded to sufficient vitamin D and erythema and vice versa in winter. Thus, the balancing time in winter was enough to maximize UV benefits and minimize UV risks.
... and urinate often to help remove the radioactive material from the body. How to Prepare for the Test Tell your health care provider if you take ... drink additional fluids before the scan. How the Test will ... into the vein. However, you will not feel the radioactive material. The scanning table may be hard and cold. ...
Mackey-Glass noisy chaotic time series prediction by a swarm-optimized neural network
NASA Astrophysics Data System (ADS)
López-Caraballo, C. H.; Salfate, I.; Lazzús, J. A.; Rojas, P.; Rivera, M.; Palma-Chilla, L.
2016-05-01
In this study, an artificial neural network (ANN) based on particle swarm optimization (PSO) was developed for the time series prediction. The hybrid ANN+PSO algorithm was applied on Mackey-Glass noiseless chaotic time series in the short-term and long-term prediction. The performance prediction is evaluated and compared with similar work in the literature, particularly for the long-term forecast. Also, we present properties of the dynamical system via the study of chaotic behaviour obtained from the time series prediction. Then, this standard hybrid ANN+PSO algorithm was complemented with a Gaussian stochastic procedure (called stochastic hybrid ANN+PSO) in order to obtain a new estimator of the predictions that also allowed us compute uncertainties of predictions for noisy Mackey-Glass chaotic time series. We study the impact of noise for three cases with a white noise level (σ N ) contribution of 0.01, 0.05 and 0.1.
Optimal timing for managed relocation of species faced with climate change
McDonald Madden, Eve; Runge, Michael C.; Possingham, Hugh P.; Martin, Tara G.
2011-01-01
Managed relocation is a controversial climate-adaptation strategy to combat negative climate change impacts on biodiversity. While the scientific community debates the merits of managed relocation, species are already being moved to new areas predicted to be more suitable under climate change. To inform these moves, we construct a quantitative decision framework to evaluate the timing of relocation in the face of climate change. We find that the optimal timing depends on many factors, including the size of the population, the demographic costs of translocation and the expected carrying capacities over time in the source and destination habitats. In some settings, such as when a small population would benefit from time to grow before risking translocation losses, haste is ill advised. We also find that active adaptive management is valuable when the effect of climate change on source habitat is uncertain, and leads to delayed movement.
Reducing wait times through operations research: optimizing the use of surge capacity.
Patrick, Jonathan; Puterman, Martin L
2008-01-01
Widespread public demand for improved access, political pressure for shorter wait times, a stretched workforce, an aging population and overutilized equipment and facilities challenge healthcare leaders to adopt new management approaches. This paper highlights the significant benefits that can be achieved by applying operations research (OR) methods to healthcare management. It shows how queuing theory provides managers with insights into the causes for excessive wait times and the relationship between wait times and capacity. It provides a case study of the use of several OR methods, including Markov decision processes, linear programming and simulation, to optimize the scheduling of patients with multiple priorities. The study shows that by applying this approach, wait time targets can be attained with the judicious use of surge capacity in the form of overtime. It concludes with some policy insights.
Reducing Wait Times through Operations Research: Optimizing the Use of Surge Capacity.
Patrick, Jonathan; Puterman, Martin L
2008-02-01
Widespread public demand for improved access, political pressure for shorter wait times, a stretched workforce, an aging population and overutilized equipment and facilities challenge healthcare leaders to adopt new management approaches. This paper highlights the significant benefits that can be achieved by applying operations research (OR) methods to healthcare management. It shows how queuing theory provides managers with insights into the causes for excessive wait times and the relationship between wait times and capacity. It provides a case study of the use of several OR methods, including Markov decision processes, linear programming and simulation, to optimize the scheduling of patients with multiple priorities. The study shows that by applying this approach, wait time targets can be attained with the judicious use of surge capacity in the form of overtime. It concludes with some policy insights.
Time-optimal excitation of maximum quantum coherence: Physical limits and pulse sequences
NASA Astrophysics Data System (ADS)
Köcher, S. S.; Heydenreich, T.; Zhang, Y.; Reddy, G. N. M.; Caldarelli, S.; Yuan, H.; Glaser, S. J.
2016-04-01
Here we study the optimum efficiency of the excitation of maximum quantum (MaxQ) coherence using analytical and numerical methods based on optimal control theory. The theoretical limit of the achievable MaxQ amplitude and the minimum time to achieve this limit are explored for a set of model systems consisting of up to five coupled spins. In addition to arbitrary pulse shapes, two simple pulse sequence families of practical interest are considered in the optimizations. Compared to conventional approaches, substantial gains were found both in terms of the achieved MaxQ amplitude and in pulse sequence durations. For a model system, theoretically predicted gains of a factor of three compared to the conventional pulse sequence were experimentally demonstrated. Motivated by the numerical results, also two novel analytical transfer schemes were found: Compared to conventional approaches based on non-selective pulses and delays, double-quantum coherence in two-spin systems can be created twice as fast using isotropic mixing and hard spin-selective pulses. Also it is proved that in a chain of three weakly coupled spins with the same coupling constants, triple-quantum coherence can be created in a time-optimal fashion using so-called geodesic pulses.
Sahoo, Avimanyu; Xu, Hao; Jagannathan, Sarangapani
2016-09-01
This paper presents an event-triggered near optimal control of uncertain nonlinear discrete-time systems. Event-driven neurodynamic programming (NDP) is utilized to design the control policy. A neural network (NN)-based identifier, with event-based state and input vectors, is utilized to learn the system dynamics. An actor-critic framework is used to learn the cost function and the optimal control input. The NN weights of the identifier, the critic, and the actor NNs are tuned aperiodically once every triggered instant. An adaptive event-trigger condition to decide the trigger instants is derived. Thus, a suitable number of events are generated to ensure a desired accuracy of approximation. A near optimal performance is achieved without using value and/or policy iterations. A detailed analysis of nontrivial inter-event times with an explicit formula to show the reduction in computation is also derived. The Lyapunov technique is used in conjunction with the event-trigger condition to guarantee the ultimate boundedness of the closed-loop system. The simulation results are included to verify the performance of the controller. The net result is the development of event-driven NDP.
Time-optimal excitation of maximum quantum coherence: Physical limits and pulse sequences.
Köcher, S S; Heydenreich, T; Zhang, Y; Reddy, G N M; Caldarelli, S; Yuan, H; Glaser, S J
2016-04-28
Here we study the optimum efficiency of the excitation of maximum quantum (MaxQ) coherence using analytical and numerical methods based on optimal control theory. The theoretical limit of the achievable MaxQ amplitude and the minimum time to achieve this limit are explored for a set of model systems consisting of up to five coupled spins. In addition to arbitrary pulse shapes, two simple pulse sequence families of practical interest are considered in the optimizations. Compared to conventional approaches, substantial gains were found both in terms of the achieved MaxQ amplitude and in pulse sequence durations. For a model system, theoretically predicted gains of a factor of three compared to the conventional pulse sequence were experimentally demonstrated. Motivated by the numerical results, also two novel analytical transfer schemes were found: Compared to conventional approaches based on non-selective pulses and delays, double-quantum coherence in two-spin systems can be created twice as fast using isotropic mixing and hard spin-selective pulses. Also it is proved that in a chain of three weakly coupled spins with the same coupling constants, triple-quantum coherence can be created in a time-optimal fashion using so-called geodesic pulses.
Foo, Brian; van der Schaar, Mihaela
2010-11-01
In this paper, we discuss distributed optimization techniques for configuring classifiers in a real-time, informationally-distributed stream mining system. Due to the large volume of streaming data, stream mining systems must often cope with overload, which can lead to poor performance and intolerable processing delay for real-time applications. Furthermore, optimizing over an entire system of classifiers is a difficult task since changing the filtering process at one classifier can impact both the feature values of data arriving at classifiers further downstream and thus, the classification performance achieved by an ensemble of classifiers, as well as the end-to-end processing delay. To address this problem, this paper makes three main contributions: 1) Based on classification and queuing theoretic models, we propose a utility metric that captures both the performance and the delay of a binary filtering classifier system. 2) We introduce a low-complexity framework for estimating the system utility by observing, estimating, and/or exchanging parameters between the inter-related classifiers deployed across the system. 3) We provide distributed algorithms to reconfigure the system, and analyze the algorithms based on their convergence properties, optimality, information exchange overhead, and rate of adaptation to non-stationary data sources. We provide results using different video classifier systems.
Xiang, Wenzhong; Song, Xiuzu; Peng, Jianzhong; Xu, Aie; Bi, Zhigang
2015-12-01
The use of noninvasive imaging techniques to evaluate different types of skin lesions is increasing popular. In vivo confocal laser scanning microscopy (CLSM) is a new method for high resolution non-invasive imaging of intact skin in situ and in vivo. Although many studies have investigated melanin-containing cells in lesions by in vivo CLSM, few studies have systematically characterized melanin-containing cells based on their morphology, size, arrangement, density, borders, and brightness. In this study, the characteristics of melanin-containing cells were further investigated by in vivo CLSM. A total of 130 lesions, including common nevi, giant congenital pigmented nevi, vitiligo, melasma, melanoma, and chronic eczema, were imaged by in vivo CLSM. This research helps dermatologists understand the characteristics of melanin-containing cells and facilitate the clinical application of melanin-containing cells in the investigation of dermatological disease. In summary, melanin-containing cells include keratinocytes, melanocytes, macrophages, and melanocytic skin tumor cells. Our study presents the CLSM characteristics of melanin-containing cells to potentially facilitate in vivo diagnosis based on shape, size, arrangement, density, borders, and brightness.
Connell, Jodi L; Kim, Jiyeon; Shear, Jason B; Bard, Allen J; Whiteley, Marvin
2014-12-23
Microbes frequently live in nature as small, densely packed aggregates containing ∼10(1)-10(5) cells. These aggregates not only display distinct phenotypes, including resistance to antibiotics, but also, serve as building blocks for larger biofilm communities. Aggregates within these larger communities display nonrandom spatial organization, and recent evidence indicates that this spatial organization is critical for fitness. Studying single aggregates as well as spatially organized aggregates remains challenging because of the technical difficulties associated with manipulating small populations. Micro-3D printing is a lithographic technique capable of creating aggregates in situ by printing protein-based walls around individual cells or small populations. This 3D-printing strategy can organize bacteria in complex arrangements to investigate how spatial and environmental parameters influence social behaviors. Here, we combined micro-3D printing and scanning electrochemical microscopy (SECM) to probe quorum sensing (QS)-mediated communication in the bacterium Pseudomonas aeruginosa. Our results reveal that QS-dependent behaviors are observed within aggregates as small as 500 cells; however, aggregates larger than 2,000 bacteria are required to stimulate QS in neighboring aggregates positioned 8 μm away. These studies provide a powerful system to analyze the impact of spatial organization and aggregate size on microbial behaviors.
Quan, Enzhuo M.; Liu, Wei; Wu, Richard; Zhang, Xiaodong; Zhu, X. Ronald; Mohan, Radhe; Li, Yupeng; Frank, Steven J.
2013-08-15
Purpose: Spot-scanning proton therapy (SSPT) using multifield optimization (MFO) can generate highly conformal dose distributions, but it is more sensitive to setup and range uncertainties than SSPT using single-field optimization (SFO). The authors compared the two optimization methods for the treatment of head and neck cancer with bilateral targets and determined the superior method on the basis of both the plan quality and the plan robustness in the face of setup and range uncertainties.Methods: Four patients with head and neck cancer with bilateral targets who received SSPT treatment in the authors' institution were studied. The patients had each been treated with a MFO plan using three fields. A three-field SFO plan (3F-SFO) and a two-field SFO plan (2F-SFO) with the use of a range shifter in the beam line were retrospectively generated for each patient. The authors compared the plan quality and robustness to uncertainties of the SFO plans with the MFO plans. Robustness analysis of each plan was performed to generate the two dose distributions consisting of the highest and the lowest possible doses (worst-case doses) from the spatial and range perturbations at every voxel. Dosimetric indices from the nominal and worst-case plans were compared.Results: The 3F-SFO plans generally yielded D95 and D5 values in the targets that were similar to those of the MFO plans. 3F-SFO resulted in a lower dose to the oral cavity than MFO in all four patients by an average of 9.9 Gy, but the dose to the two parotids was on average 6.7 Gy higher for 3F-SFO than for MFO. 3F-SFO plans reduced the variations of dosimetric indices under uncertainties in the targets by 22.8% compared to the MFO plans. Variations of dosimetric indices under uncertainties in the organs at risk (OARs) varied between organs and between patients, although they were on average 9.2% less for the 3F-SFO plans than for the MFO plans. Compared with the MFO plans, the 2F-SFO plans showed a reduced dose to the
Quan, Enzhuo M.; Liu, Wei; Wu, Richard; Li, Yupeng; Frank, Steven J.; Zhang, Xiaodong; Zhu, X. Ronald; Mohan, Radhe
2013-01-01
Purpose: Spot-scanning proton therapy (SSPT) using multifield optimization (MFO) can generate highly conformal dose distributions, but it is more sensitive to setup and range uncertainties than SSPT using single-field optimization (SFO). The authors compared the two optimization methods for the treatment of head and neck cancer with bilateral targets and determined the superior method on the basis of both the plan quality and the plan robustness in the face of setup and range uncertainties. Methods: Four patients with head and neck cancer with bilateral targets who received SSPT treatment in the authors' institution were studied. The patients had each been treated with a MFO plan using three fields. A three-field SFO plan (3F-SFO) and a two-field SFO plan (2F-SFO) with the use of a range shifter in the beam line were retrospectively generated for each patient. The authors compared the plan quality and robustness to uncertainties of the SFO plans with the MFO plans. Robustness analysis of each plan was performed to generate the two dose distributions consisting of the highest and the lowest possible doses (worst-case doses) from the spatial and range perturbations at every voxel. Dosimetric indices from the nominal and worst-case plans were compared. Results: The 3F-SFO plans generally yielded D95 and D5 values in the targets that were similar to those of the MFO plans. 3F-SFO resulted in a lower dose to the oral cavity than MFO in all four patients by an average of 9.9 Gy, but the dose to the two parotids was on average 6.7 Gy higher for 3F-SFO than for MFO. 3F-SFO plans reduced the variations of dosimetric indices under uncertainties in the targets by 22.8% compared to the MFO plans. Variations of dosimetric indices under uncertainties in the organs at risk (OARs) varied between organs and between patients, although they were on average 9.2% less for the 3F-SFO plans than for the MFO plans. Compared with the MFO plans, the 2F-SFO plans showed a reduced dose to the
On the Optimal Identification of Tag Sets in Time-Constrained RFID Configurations
Vales-Alonso, Javier; Bueno-Delgado, María Victoria; Egea-López, Esteban; Alcaraz, Juan José; Pérez-Mañogil, Juan Manuel
2011-01-01
In Radio Frequency Identification facilities the identification delay of a set of tags is mainly caused by the random access nature of the reading protocol, yielding a random identification time of the set of tags. In this paper, the cumulative distribution function of the identification time is evaluated using a discrete time Markov chain for single-set time-constrained passive RFID systems, namely those ones where a single group of tags is assumed to be in the reading area and only for a bounded time (sojourn time) before leaving. In these scenarios some tags in a set may leave the reader coverage area unidentified. The probability of this event is obtained from the cumulative distribution function of the identification time as a function of the sojourn time. This result provides a suitable criterion to minimize the probability of losing tags. Besides, an identification strategy based on splitting the set of tags in smaller subsets is also considered. Results demonstrate that there are optimal splitting configurations that reduce the overall identification time while keeping the same probability of losing tags. PMID:22163777
On the optimal identification of tag sets in time-constrained RFID configurations.
Vales-Alonso, Javier; Bueno-Delgado, María Victoria; Egea-López, Esteban; Alcaraz, Juan José; Pérez-Mañogil, Juan Manuel
2011-01-01
In Radio Frequency Identification facilities the identification delay of a set of tags is mainly caused by the random access nature of the reading protocol, yielding a random identification time of the set of tags. In this paper, the cumulative distribution function of the identification time is evaluated using a discrete time Markov chain for single-set time-constrained passive RFID systems, namely those ones where a single group of tags is assumed to be in the reading area and only for a bounded time (sojourn time) before leaving. In these scenarios some tags in a set may leave the reader coverage area unidentified. The probability of this event is obtained from the cumulative distribution function of the identification time as a function of the sojourn time. This result provides a suitable criterion to minimize the probability of losing tags. Besides, an identification strategy based on splitting the set of tags in smaller subsets is also considered. Results demonstrate that there are optimal splitting configurations that reduce the overall identification time while keeping the same probability of losing tags.
Lee, Bai-Yu; Clemens, Daniel L.; Silva, Aleidy; Dillon, Barbara Jane; Masleša-Galić, Saša; Nava, Susana; Ding, Xianting; Ho, Chih-Ming; Horwitz, Marcus A.
2017-01-01
The current drug regimens for treating tuberculosis are lengthy and onerous, and hence complicated by poor adherence leading to drug resistance and disease relapse. Previously, using an output-driven optimization platform and an in vitro macrophage model of Mycobacterium tuberculosis infection, we identified several experimental drug regimens among billions of possible drug-dose combinations that outperform the current standard regimen. Here we use this platform to optimize the in vivo drug doses of two of these regimens in a mouse model of pulmonary tuberculosis. The experimental regimens kill M. tuberculosis much more rapidly than the standard regimen and reduce treatment time to relapse-free cure by 75%. Thus, these regimens have the potential to provide a markedly shorter course of treatment for tuberculosis in humans. As these regimens omit isoniazid, rifampicin, fluoroquinolones and injectable aminoglycosides, they would be suitable for treating many cases of multidrug and extensively drug-resistant tuberculosis. PMID:28117835
Optimization of high-order harmonic brightness in the space and time domains
Kim, Hyung Taek; Kim, I. Jong; Lee, Dong Gun; Hong, Kyung-Han; Lee, Yong Soo; Nam, Chang Hee; Tosa, Valer
2004-03-01
Brightness of high-order harmonics is optimized in the space domain by profile flattening and self-guiding of intense femtosecond laser pulse and in the time domain by controlling the laser chirp. The profile flattening and self-guiding of the laser pulse propagating through a long gas jet effectively increased the phase-matched harmonic generation volume, thereby obtaining strong harmonics with low beam divergence, and the laser chirp control allowed the generation of spectrally sharp harmonics. At optimized conditions, the 61st harmonic, obtained at 134 A from Ne, had a brightness of about 1x10{sup 15} W/cm{sup 2}/srad with a beam divergence of 0.5 mrad and a spectral bandwidth of 0.7 A.
Xu, Sheng-Hua; Liu, Ji-Ping; Zhang, Fu-Hao; Wang, Liang; Sun, Li-Jian
2015-01-01
A combination of genetic algorithm and particle swarm optimization (PSO) for vehicle routing problems with time windows (VRPTW) is proposed in this paper. The improvements of the proposed algorithm include: using the particle real number encoding method to decode the route to alleviate the computation burden, applying a linear decreasing function based on the number of the iterations to provide balance between global and local exploration abilities, and integrating with the crossover operator of genetic algorithm to avoid the premature convergence and the local minimum. The experimental results show that the proposed algorithm is not only more efficient and competitive with other published results but can also obtain more optimal solutions for solving the VRPTW issue. One new well-known solution for this benchmark problem is also outlined in the following. PMID:26343655
Lee, Bai-Yu; Clemens, Daniel L; Silva, Aleidy; Dillon, Barbara Jane; Masleša-Galić, Saša; Nava, Susana; Ding, Xianting; Ho, Chih-Ming; Horwitz, Marcus A
2017-01-24
The current drug regimens for treating tuberculosis are lengthy and onerous, and hence complicated by poor adherence leading to drug resistance and disease relapse. Previously, using an output-driven optimization platform and an in vitro macrophage model of Mycobacterium tuberculosis infection, we identified several experimental drug regimens among billions of possible drug-dose combinations that outperform the current standard regimen. Here we use this platform to optimize the in vivo drug doses of two of these regimens in a mouse model of pulmonary tuberculosis. The experimental regimens kill M. tuberculosis much more rapidly than the standard regimen and reduce treatment time to relapse-free cure by 75%. Thus, these regimens have the potential to provide a markedly shorter course of treatment for tuberculosis in humans. As these regimens omit isoniazid, rifampicin, fluoroquinolones and injectable aminoglycosides, they would be suitable for treating many cases of multidrug and extensively drug-resistant tuberculosis.
Adjoint-Based Methodology for Time-Dependent Optimal Control (AMTOC)
NASA Technical Reports Server (NTRS)
Yamaleev, Nail; Diskin, boris; Nishikawa, Hiroaki
2012-01-01
During the five years of this project, the AMTOC team developed an adjoint-based methodology for design and optimization of complex time-dependent flows, implemented AMTOC in a testbed environment, directly assisted in implementation of this methodology in the state-of-the-art NASA's unstructured CFD code FUN3D, and successfully demonstrated applications of this methodology to large-scale optimization of several supersonic and other aerodynamic systems, such as fighter jet, subsonic aircraft, rotorcraft, high-lift, wind-turbine, and flapping-wing configurations. In the course of this project, the AMTOC team has published 13 refereed journal articles, 21 refereed conference papers, and 2 NIA reports. The AMTOC team presented the results of this research at 36 international and national conferences, meeting and seminars, including International Conference on CFD, and numerous AIAA conferences and meetings. Selected publications that include the major results of the AMTOC project are enclosed in this report.
Implementation of a Point Algorithm for Real-Time Convex Optimization
NASA Technical Reports Server (NTRS)
Acikmese, Behcet; Motaghedi, Shui; Carson, John
2007-01-01
The primal-dual interior-point algorithm implemented in G-OPT is a relatively new and efficient way of solving convex optimization problems. Given a prescribed level of accuracy, the convergence to the optimal solution is guaranteed in a predetermined, finite number of iterations. G-OPT Version 1.0 is a flight software implementation written in C. Onboard application of the software enables autonomous, real-time guidance and control that explicitly incorporates mission constraints such as control authority (e.g. maximum thrust limits), hazard avoidance, and fuel limitations. This software can be used in planetary landing missions (Mars pinpoint landing and lunar landing), as well as in proximity operations around small celestial bodies (moons, asteroids, and comets). It also can be used in any spacecraft mission for thrust allocation in six-degrees-of-freedom control.
Xu, Sheng-Hua; Liu, Ji-Ping; Zhang, Fu-Hao; Wang, Liang; Sun, Li-Jian
2015-08-27
A combination of genetic algorithm and particle swarm optimization (PSO) for vehicle routing problems with time windows (VRPTW) is proposed in this paper. The improvements of the proposed algorithm include: using the particle real number encoding method to decode the route to alleviate the computation burden, applying a linear decreasing function based on the number of the iterations to provide balance between global and local exploration abilities, and integrating with the crossover operator of genetic algorithm to avoid the premature convergence and the local minimum. The experimental results show that the proposed algorithm is not only more efficient and competitive with other published results but can also obtain more optimal solutions for solving the VRPTW issue. One new well-known solution for this benchmark problem is also outlined in the following.
LQR-Based Optimal Distributed Cooperative Design for Linear Discrete-Time Multiagent Systems.
Zhang, Huaguang; Feng, Tao; Liang, Hongjing; Luo, Yanhong
2017-03-01
In this paper, a novel linear quadratic regulator (LQR)-based optimal distributed cooperative design method is developed for synchronization control of general linear discrete-time multiagent systems on a fixed, directed graph. Sufficient conditions are derived for synchronization, which restrict the graph eigenvalues into a bounded circular region in the complex plane. The synchronizing speed issue is also considered, and it turns out that the synchronizing region reduces as the synchronizing speed becomes faster. To obtain more desirable synchronizing capacity, the weighting matrices are selected by sufficiently utilizing the guaranteed gain margin of the optimal regulators. Based on the developed LQR-based cooperative design framework, an approximate dynamic programming technique is successfully introduced to overcome the (partially or completely) model-free cooperative design for linear multiagent systems. Finally, two numerical examples are given to illustrate the effectiveness of the proposed design methods.
Optimal space-time attacks on system state estimation under a sparsity constraint
NASA Astrophysics Data System (ADS)
Lu, Jingyang; Niu, Ruixin; Han, Puxiao
2016-05-01
System state estimation in the presence of an adversary that injects false information into sensor readings has attracted much attention in wide application areas, such as target tracking with compromised sensors, secure monitoring of dynamic electric power systems, secure driverless cars, and radar tracking and detection in the presence of jammers. From a malicious adversary's perspective, the optimal strategy for attacking a multi-sensor dynamic system over sensors and over time is investigated. It is assumed that the system defender can perfectly detect the attacks and identify and remove sensor data once they are corrupted by false information injected by the adversary. With this in mind, the adversary's goal is to maximize the covariance matrix of the system state estimate by the end of attack period under a sparse attack constraint such that the adversary can only attack the system a few times over time and over sensors. The sparsity assumption is due to the adversary's limited resources and his/her intention to reduce the chance of being detected by the system defender. This becomes an integer programming problem and its optimal solution, the exhaustive search, is intractable with a prohibitive complexity, especially for a system with a large number of sensors and over a large number of time steps. Several suboptimal solutions, such as those based on greedy search and dynamic programming are proposed to find the attack strategies. Examples and numerical results are provided in order to illustrate the effectiveness and the reduced computational complexities of the proposed attack strategies.
Optimizing Timing of Immunotherapy Improves Control of Tumors by Hypofractionated Radiation Therapy
Baird, Jason R.; Savage, Talicia; Cottam, Benjamin; Friedman, David; Bambina, Shelly; Messenheimer, David J.; Fox, Bernard; Newell, Pippa; Bahjat, Keith S.; Gough, Michael J.; Crittenden, Marka R.
2016-01-01
The anecdotal reports of promising results seen with immunotherapy and radiation in advanced malignancies have prompted several trials combining immunotherapy and radiation. However, the ideal timing of immunotherapy with radiation has not been clarified. Tumor bearing mice were treated with 20Gy radiation delivered only to the tumor combined with either anti-CTLA4 antibody or anti-OX40 agonist antibody. Immunotherapy was delivered at a single timepoint around radiation. Surprisingly, the optimal timing of these therapies varied. Anti-CTLA4 was most effective when given prior to radiation therapy, in part due to regulatory T cell depletion. Administration of anti-OX40 agonist antibody was optimal when delivered one day following radiation during the post-radiation window of increased antigen presentation. Combination treatment of anti-CTLA4, radiation, and anti-OX40 using the ideal timing in a transplanted spontaneous mammary tumor model demonstrated tumor cures. These data demonstrate that the combination of immunotherapy and radiation results in improved therapeutic efficacy, and that the ideal timing of administration with radiation is dependent on the mechanism of action of the immunotherapy utilized. PMID:27281029
Construction schedule simulation of a diversion tunnel based on the optimized ventilation time.
Wang, Xiaoling; Liu, Xuepeng; Sun, Yuefeng; An, Juan; Zhang, Jing; Chen, Hongchao
2009-06-15
Former studies, the methods for estimating the ventilation time are all empirical in construction schedule simulation. However, in many real cases of construction schedule, the many factors have impact on the ventilation time. Therefore, in this paper the 3D unsteady quasi-single phase models are proposed to optimize the ventilation time with different tunneling lengths. The effect of buoyancy is considered in the momentum equation of the CO transport model, while the effects of inter-phase drag, lift force, and virtual mass force are taken into account in the momentum source of the dust transport model. The prediction by the present model for airflow in a diversion tunnel is confirmed by the experimental values reported by Nakayama [Nakayama, In-situ measurement and simulation by CFD of methane gas distribution at a heading faces, Shigen-to-Sozai 114 (11) (1998) 769-775]. The construction ventilation of the diversion tunnel of XinTangfang power station in China is used as a case. The distributions of airflow, CO and dust in the diversion tunnel are analyzed. A theory method for GIS-based dynamic visual simulation for the construction processes of underground structure groups is presented that combines cyclic operation network simulation, system simulation, network plan optimization, and GIS-based construction processes' 3D visualization. Based on the ventilation time the construction schedule of the diversion tunnel is simulated by the above theory method.
Event-driven time-optimal control for a class of discontinuous bioreactors.
Moreno, Jaime A; Betancur, Manuel J; Buitrón, Germán; Moreno-Andrade, Iván
2006-07-05
Discontinuous bioreactors may be further optimized for processing inhibitory substrates using a convenient fed-batch mode. To do so the filling rate must be controlled in such a way as to push the reaction rate to its maximum value, by increasing the substrate concentration just up to the point where inhibition begins. However, an exact optimal controller requires measuring several variables (e.g., substrate concentrations in the feed and in the tank) and also good model knowledge (e.g., yield and kinetic parameters), requirements rarely satisfied in real applications. An environmentally important case, that exemplifies all these handicaps, is toxicant wastewater treatment. There the lack of online practical pollutant sensors may allow unforeseen high shock loads to be fed to the bioreactor, causing biomass inhibition that slows down the treatment process and, in extreme cases, even renders the biological process useless. In this work an event-driven time-optimal control (ED-TOC) is proposed to circumvent these limitations. We show how to detect a "there is inhibition" event by using some computable function of the available measurements. This event drives the ED-TOC to stop the filling. Later, by detecting the symmetric event, "there is no inhibition," the ED-TOC may restart the filling. A fill-react cycling then maintains the process safely hovering near its maximum reaction rate, allowing a robust and practically time-optimal operation of the bioreactor. An experimental study case of a wastewater treatment process application is presented. There the dissolved oxygen concentration was used to detect the events needed to drive the controller.
hp-Pseudospectral method for solving continuous-time nonlinear optimal control problems
NASA Astrophysics Data System (ADS)
Darby, Christopher L.
2011-12-01
In this dissertation, a direct hp-pseudospectral method for approximating the solution to nonlinear optimal control problems is proposed. The hp-pseudospectral method utilizes a variable number of approximating intervals and variable-degree polynomial approximations of the state within each interval. Using the hp-discretization, the continuous-time optimal control problem is transcribed to a finite-dimensional nonlinear programming problem (NLP). The differential-algebraic constraints of the optimal control problem are enforced at a finite set of collocation points, where the collocation points are either the Legendre-Gauss or Legendre-Gauss-Radau quadrature points. These sets of points are chosen because they correspond to high-accuracy Gaussian quadrature rules for approximating the integral of a function. Moreover, Runge phenomenon for high-degree Lagrange polynomial approximations to the state is avoided by using these points. The key features of the hp-method include computational sparsity associated with low-order polynomial approximations and rapid convergence rates associated with higher-degree polynomials approximations. Consequently, the hp-method is both highly accurate and computationally efficient. Two hp-adaptive algorithms are developed that demonstrate the utility of the hp-approach. The algorithms are shown to accurately approximate the solution to general continuous-time optimal control problems in a computationally efficient manner without a priori knowledge of the solution structure. The hp-algorithms are compared empirically against local (h) and global (p) collocation methods over a wide range of problems and are found to be more efficient and more accurate. The hp-pseudospectral approach developed in this research not only provides a high-accuracy approximation to the state and control of an optimal control problem, but also provides high-accuracy approximations to the costate of the optimal control problem. The costate is approximated by
Optimal search strategies of space-time coupled random walkers with finite lifetimes.
Campos, D; Abad, E; Méndez, V; Yuste, S B; Lindenberg, K
2015-05-01
We present a simple paradigm for detection of an immobile target by a space-time coupled random walker with a finite lifetime. The motion of the walker is characterized by linear displacements at a fixed speed and exponentially distributed duration, interrupted by random changes in the direction of motion and resumption of motion in the new direction with the same speed. We call these walkers "mortal creepers." A mortal creeper may die at any time during its motion according to an exponential decay law characterized by a finite mean death rate ω(m). While still alive, the creeper has a finite mean frequency ω of change of the direction of motion. In particular, we consider the efficiency of the target search process, characterized by the probability that the creeper will eventually detect the target. Analytic results confirmed by numerical results show that there is an ω(m)-dependent optimal frequency ω=ω(opt) that maximizes the probability of eventual target detection. We work primarily in one-dimensional (d=1) domains and examine the role of initial conditions and of finite domain sizes. Numerical results in d=2 domains confirm the existence of an optimal frequency of change of direction, thereby suggesting that the observed effects are robust to changes in dimensionality. In the d=1 case, explicit expressions for the probability of target detection in the long time limit are given. In the case of an infinite domain, we compute the detection probability for arbitrary times and study its early- and late-time behavior. We further consider the survival probability of the target in the presence of many independent creepers beginning their motion at the same location and at the same time. We also consider a version of the standard "target problem" in which many creepers start at random locations at the same time.
Extremum seeking-based optimization of high voltage converter modulator rise-time
Scheinker, Alexander; Bland, Michael; Krstic, Miroslav; Audia, Jeff
2013-02-01
We digitally implement an extremum seeking (ES) algorithm, which optimizes the rise time of the output voltage of a high voltage converter modulator (HVCM) at the Los Alamos Neutron Science Center (LANSCE) HVCM test stand by iteratively, simultaneously tuning the first 8 switching edges of each of the three phase drive waveforms (24 variables total). We achieve a 50 μs rise time, which is reduction in half compared to the 100 μs achieved at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory. Considering that HVCMs typically operate with an output voltage of 100 kV, with a 60Hz repetition rate, the 50 μs rise time reduction will result in very significant energy savings. The ES algorithm will prove successful, despite the noisy measurements and cost calculations, confirming the theoretical results that the algorithm is not affected by noise whose frequency components are independent of the perturbing frequencies.
Optimal space-time coverage and exploration costs in groundwater monitoring networks.
Nunes, L M; Cunha, M C; Ribeiro, L
2004-01-01
A method to determine the optimal subset of stations from a reference level groundwater monitoring network is proposed. The method considers the redundancy of data from historical time series, the times associated with the total distance required to run through the entire monitoring network, and the sum of the times for each monitoring station. The method was applied to a hypothetical case-study consisting of a monitoring network with 32 stations. Cost-benefit analysis was performed to determine the number of stations to include in the new design versus loss of information. This optimisation problem was solved with simulated annealing. Results showed that the relative reduction in exploration costs more than compensates for the relative loss in data representativeness.
Time-optimal Aircraft Pursuit-evasion with a Weapon Envelope Constraint
NASA Technical Reports Server (NTRS)
Menon, P. K. A.
1990-01-01
The optimal pursuit-evasion problem between two aircraft including a realistic weapon envelope is analyzed using differential game theory. Six order nonlinear point mass vehicle models are employed and the inclusion of an arbitrary weapon envelope geometry is allowed. The performance index is a linear combination of flight time and the square of the vehicle acceleration. Closed form solution to this high-order differential game is then obtained using feedback linearization. The solution is in the form of a feedback guidance law together with a quartic polynomial for time-to-go. Due to its modest computational requirements, this nonlinear guidance law is useful for on-board real-time implementation.
An iterative approach to optimize change classification in SAR time series data
NASA Astrophysics Data System (ADS)
Boldt, Markus; Thiele, Antje; Schulz, Karsten; Hinz, Stefan
2016-10-01
The detection of changes using remote sensing imagery has become a broad field of research with many approaches for many different applications. Besides the simple detection of changes between at least two images acquired at different times, analyses which aim on the change type or category are at least equally important. In this study, an approach for a semi-automatic classification of change segments is presented. A sparse dataset is considered to ensure the fast and simple applicability for practical issues. The dataset is given by 15 high resolution (HR) TerraSAR-X (TSX) amplitude images acquired over a time period of one year (11/2013 to 11/2014). The scenery contains the airport of Stuttgart (GER) and its surroundings, including urban, rural, and suburban areas. Time series imagery offers the advantage of analyzing the change frequency of selected areas. In this study, the focus is set on the analysis of small-sized high frequently changing regions like parking areas, construction sites and collecting points consisting of high activity (HA) change objects. For each HA change object, suitable features are extracted and a k-means clustering is applied as the categorization step. Resulting clusters are finally compared to a previously introduced knowledge-based class catalogue, which is modified until an optimal class description results. In other words, the subjective understanding of the scenery semantics is optimized by the data given reality. Doing so, an even sparsely dataset containing only amplitude imagery can be evaluated without requiring comprehensive training datasets. Falsely defined classes might be rejected. Furthermore, classes which were defined too coarsely might be divided into sub-classes. Consequently, classes which were initially defined too narrowly might be merged. An optimal classification results when the combination of previously defined key indicators (e.g., number of clusters per class) reaches an optimum.
Grey-Theory-Based Optimization Model of Emergency Logistics Considering Time Uncertainty
Qiu, Bao-Jian; Zhang, Jiang-Hua; Qi, Yuan-Tao; Liu, Yang
2015-01-01
Natural disasters occur frequently in recent years, causing huge casualties and property losses. Nowadays, people pay more and more attention to the emergency logistics problems. This paper studies the emergency logistics problem with multi-center, multi-commodity, and single-affected-point. Considering that the path near the disaster point may be damaged, the information of the state of the paths is not complete, and the travel time is uncertainty, we establish the nonlinear programming model that objective function is the maximization of time-satisfaction degree. To overcome these drawbacks: the incomplete information and uncertain time, this paper firstly evaluates the multiple roads of transportation network based on grey theory and selects the reliable and optimal path. Then simplify the original model under the scenario that the vehicle only follows the optimal path from the emergency logistics center to the affected point, and use Lingo software to solve it. The numerical experiments are presented to show the feasibility and effectiveness of the proposed method. PMID:26417946
Grey-Theory-Based Optimization Model of Emergency Logistics Considering Time Uncertainty.
Qiu, Bao-Jian; Zhang, Jiang-Hua; Qi, Yuan-Tao; Liu, Yang
2015-01-01
Natural disasters occur frequently in recent years, causing huge casualties and property losses. Nowadays, people pay more and more attention to the emergency logistics problems. This paper studies the emergency logistics problem with multi-center, multi-commodity, and single-affected-point. Considering that the path near the disaster point may be damaged, the information of the state of the paths is not complete, and the travel time is uncertainty, we establish the nonlinear programming model that objective function is the maximization of time-satisfaction degree. To overcome these drawbacks: the incomplete information and uncertain time, this paper firstly evaluates the multiple roads of transportation network based on grey theory and selects the reliable and optimal path. Then simplify the original model under the scenario that the vehicle only follows the optimal path from the emergency logistics center to the affected point, and use Lingo software to solve it. The numerical experiments are presented to show the feasibility and effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Saleh, Joseph H.; Hastings, Daniel E.; Newman, Dava J.
2004-03-01
An augmented perspective on system architecture is proposed (diachronic) that complements the traditional views on system architecture (synchronic). This paper proposes to view in a system architecture the flow of service (or utility) that the system will provide over its design lifetime. It suggests that the design lifetime is a fundamental component of system architecture although one cannot see it or touch it. Consequently, cost, utility, and value per unit time metrics are introduced. A framework is then developed that identifies optimal design lifetimes for complex systems in general, and space systems in particular, based on this augmented perspective of system architecture and on these metrics. It is found that an optimal design lifetime for a satellite exists, even in the case of constant expected revenues per day over the system's lifetime, and that it changes substantially with the expected Time to Obsolescence of the system and the volatility of the market the system is serving in the case of a commercial venture. The analysis thus proves that it is essential for a system architect to match the design lifetime with the dynamical characteristics of the environment the system is/will be operating in. It is also shown that as the uncertainty in the dynamical characteristics of the environment the system is operating in increases, the value of having the option to upgrade, modify, or extend the lifetime of a system at a later point in time increases depending on how events unfold.
Kim, Jeong Jin; Kang, Jun Hyeok; Lee, Kyo Won; Kim, Kye Hyun; Song, Taejong
2017-03-13
The aim of this study was to determine whether the different phases of the menstrual cycle could affect operative bleeding in women undergoing laparoscopic hysterectomy. This was a retrospective comparative study. Based on the adjusted day of menstrual cycle, 212 women who underwent laparoscopic hysterectomy were classified into three groups: the follicular phase (n = 51), luteal phase group (n = 125), and menstruation group (n = 36). The primary outcome measure was the operative bleeding. There was no difference in the baseline characteristics of the patients belonging to the three groups. For the groups, there were no significant differences in operative bleeding (p = .469) and change in haemoglobin (p = .330), including operative time, length of hospital stay and complications. The menstrual cycle did not affect the operative bleeding and other parameters. Therefore, no phase of the menstrual cycle could be considered as an optimal timing for performing laparoscopic hysterectomy with minimal operative bleeding. Impact statement What is already known on this subject: the menstrual cycle results in periodic changes in haemostasis and blood flow in the reproductive organs. What the results of this study add: the menstrual cycle did not affect the operative bleeding and other operative parameters during laparoscopic hysterectomy. What the implications are of these findings for clinical practice and/or further research: no phase of the menstrual cycle could be considered as an optimal timing for performing laparoscopic hysterectomy with minimal operative bleeding.
Cognitive Aging and Time Perception: Roles of Bayesian Optimization and Degeneracy
Turgeon, Martine; Lustig, Cindy; Meck, Warren H.
2016-01-01
This review outlines the basic psychological and neurobiological processes associated with age-related distortions in timing and time perception in the hundredths of milliseconds-to-minutes range. The difficulty in separating indirect effects of impairments in attention and memory from direct effects on timing mechanisms is addressed. The main premise is that normal aging is commonly associated with increased noise and temporal uncertainty as a result of impairments in attention and memory as well as the possible reduction in the accuracy and precision of a central timing mechanism supported by dopamine-glutamate interactions in cortico-striatal circuits. Pertinent to these findings, potential interventions that may reduce the likelihood of observing age-related declines in timing are discussed. Bayesian optimization models are able to account for the adaptive changes observed in time perception by assuming that older adults are more likely to base their temporal judgments on statistical inferences derived from multiple trials than on a single trial’s clock reading, which is more susceptible to distortion. We propose that the timing functions assigned to the age-sensitive fronto-striatal network can be subserved by other neural networks typically associated with finely-tuned perceptuo-motor adjustments, through degeneracy principles (different structures serving a common function). PMID:27242513
Chenel, Marylore; Ogungbenro, Kayode; Duval, Vincent; Laveille, Christian; Jochemsen, Roeline; Aarons, Leon
2005-12-01
The objective of this paper is to determine optimal blood sampling time windows for the estimation of pharmacokinetic (PK) parameters by a population approach within the clinical constraints. A population PK model was developed to describe a reference phase II PK dataset. Using this model and the parameter estimates, D-optimal sampling times were determined by optimising the determinant of the population Fisher information matrix (PFIM) using PFIM_ _M 1.2 and the modified Fedorov exchange algorithm. Optimal sampling time windows were then determined by allowing the D-optimal windows design to result in a specified level of efficiency when compared to the fixed-times D-optimal design. The best results were obtained when K(a) and IIV on K(a) were fixed. Windows were determined using this approach assuming 90% level of efficiency and uniform sample distribution. Four optimal sampling time windows were determined as follow: at trough between 22 h and new drug administration; between 2 and 4 h after dose for all patients; and for 1/3 of the patients only 2 sampling time windows between 4 and 10 h after dose, equal to [4 h-5 h 05] and [9 h 10-10 h]. This work permitted the determination of an optimal design, with suitable sampling time windows which was then evaluated by simulations. The sampling time windows will be used to define the sampling schedule in a prospective phase II study.
Hwang, Jae-Yeon; Do, Kyung-Hyun; Yang, Dong Hyun; Cho, Young Ah; Yoon, Hye-Kyung; Lee, Jin Seong; Koo, Hyun Jung
2015-12-01
Children are at greater risk of radiation exposure than adults because the rapidly dividing cells of children tend to be more radiosensitive and they have a longer expected life time in which to develop potential radiation injury. Some studies have surveyed computed tomography (CT) radiation doses and several studies have established diagnostic reference levels according to patient age or body size; however, no survey of CT radiation doses with a large number of patients has yet been carried out in South Korea. The aim of the present study was to investigate the radiation dose in pediatric CT examinations performed throughout South Korea. From 512 CT (222 brain CT, 105 chest CT, and 185 abdominopelvic CT) scans that were referred to our tertiary hospital, a dose report sheet was available for retrospective analysis of CT scan protocols and dose, including the volumetric CT dose index (CTDIvol), dose-length product (DLP), effective dose, and size-specific dose estimates (SSDE). At 55.2%, multiphase CT was the most frequently performed protocol for abdominopelvic CT. Tube current modulation was applied most often in abdominopelvic CT and chest CT, accounting for 70.1% and 62.7%, respectively. Regarding the CT dose, the interquartile ranges of the CTDIvol were 11.1 to 22.5 (newborns), 16.6 to 39.1 (≤1 year), 14.6 to 41.7 (2-5 years), 23.5 to 44.1 (6-10 years), and 31.4 to 55.3 (≤15 years) for brain CT; 1.3 to 5.7 (≤1 year), 3.9 to 6.8 (2-5 years), 3.9 to 9.3 (6-10 years), and 7.7 to 13.8 (≤15 years) for chest CT; and 4.0 to 7.5 (≤1 year), 4.2 to 8.9 (2-5 years), 5.7 to 12.4 (6-10 years), and 7.6 to 16.6 (≤15 years) for abdominopelvic CT. The SSDE and CTDIvol were well correlated for patients <5 years old, whereas the CTDIvol was lower in patients ≥6 years old. Our study describes the various parameters and dosimetry metrics of pediatric CT in South Korea. The CTDIvol, DLP, and effective dose were generally lower than in German and UK surveys, except in
Computation of optimal output-feedback compensators for linear time-invariant systems
NASA Technical Reports Server (NTRS)
Platzman, L. K.
1972-01-01
The control of linear time-invariant systems with respect to a quadratic performance criterion was considered, subject to the constraint that the control vector be a constant linear transformation of the output vector. The optimal feedback matrix, f*, was selected to optimize the expected performance, given the covariance of the initial state. It is first shown that the expected performance criterion can be expressed as the ratio of two multinomials in the element of f. This expression provides the basis for a feasible method of determining f* in the case of single-input single-output systems. A number of iterative algorithms are then proposed for the calculation of f* for multiple input-output systems. For two of these, monotone convergence is proved, but they involve the solution of nonlinear matrix equations at each iteration. Another is proposed involving the solution of Lyapunov equations at each iteration, and the gradual increase of the magnitude of a penalty function. Experience with this algorithm will be needed to determine whether or not it does, indeed, possess desirable convergence properties, and whether it can be used to determine the globally optimal f*.
Pseudo-time methods for constrained optimization problems governed by PDE
NASA Technical Reports Server (NTRS)
Taasan, Shlomo
1995-01-01
In this paper we present a novel method for solving optimization problems governed by partial differential equations. Existing methods are gradient information in marching toward the minimum, where the constrained PDE is solved once (sometimes only approximately) per each optimization step. Such methods can be viewed as a marching techniques on the intersection of the state and costate hypersurfaces while improving the residuals of the design equations per each iteration. In contrast, the method presented here march on the design hypersurface and at each iteration improve the residuals of the state and costate equations. The new method is usually much less expensive per iteration step since, in most problems of practical interest, the design equation involves much less unknowns that that of either the state or costate equations. Convergence is shown using energy estimates for the evolution equations governing the iterative process. Numerical tests show that the new method allows the solution of the optimization problem in a cost of solving the analysis problems just a few times, independent of the number of design parameters. The method can be applied using single grid iterations as well as with multigrid solvers.
Effect of embedded unbiasedness on discrete-time optimal FIR filtering estimates
NASA Astrophysics Data System (ADS)
Zhao, Shunyi; Shmaliy, Yuriy S.; Liu, Fei; Ibarra-Manzano, Oscar; Khan, Sanowar H.
2015-12-01
Unbiased estimation is an efficient alternative to optimal estimation when the noise statistics are not fully known and/or the model undergoes temporary uncertainties. In this paper, we investigate the effect of embedded unbiasedness (EU) on optimal finite impulse response (OFIR) filtering estimates of linear discrete time-invariant state-space models. A new OFIR-EU filter is derived by minimizing the mean square error (MSE) subject to the unbiasedness constraint. We show that the OFIR-UE filter is equivalent to the minimum variance unbiased FIR (UFIR) filter. Unlike the OFIR filter, the OFIR-EU filter does not require the initial conditions. In terms of accuracy, the OFIR-EU filter occupies an intermediate place between the UFIR and OFIR filters. Contrary to the UFIR filter which MSE is minimized by the optimal horizon of N opt points, the MSEs in the OFIR-EU and OFIR filters diminish with N and these filters are thus full-horizon. Based upon several examples, we show that the OFIR-UE filter has higher immunity against errors in the noise statistics and better robustness against temporary model uncertainties than the OFIR and Kalman filters.
Optimal q-homotopy analysis method for time-space fractional gas dynamics equation
NASA Astrophysics Data System (ADS)
Saad, K. M.; AL-Shareef, E. H.; Mohamed, Mohamed S.; Yang, Xiao-Jun
2017-01-01
It is well known that the homotopy analysis method is one of the most efficient methods for obtaining analytical or approximate semi-analytical solutions of both linear and non-linear partial differential equations. A more general form of HAM is introduced in this paper, which is called Optimal q-Homotopy Analysis Method (Oq-HAM). It has better convergence properties as compared with the usual HAM, due to the presence of fraction factor associated with the solution. The convergence of q-HAM is studied in details elsewhere (M.A. El-Tawil, Int. J. Contemp. Math. Sci. 8, 481 (2013)). Oq-HAM is applied to the non-linear homogeneous and non-homogeneous time and space fractional gas dynamics equations with initial condition. An optimal convergence region is determined through the residual error. By minimizing the square residual error, the optimal convergence control parameters can be obtained. The accuracy and efficiency of the proposed method are verified by comparison with the exact solution of the fractional gas dynamics equation. Also, it is shown that the Oq-HAM for the fractional gas dynamics equation is equivalent to the exact solution. We obtain graphical representations of the solutions using MATHEMATICA.
Power optimization of wireless media systems with space-time block codes.
Yousefi'zadeh, Homayoun; Jafarkhani, Hamid; Moshfeghi, Mehran
2004-07-01
We present analytical and numerical solutions to the problem of power control in wireless media systems with multiple antennas. We formulate a set of optimization problems aimed at minimizing total power consumption of wireless media systems subject to a given level of QoS and an available bit rate. Our formulation takes into consideration the power consumption related to source coding, channel coding, and transmission of multiple-transmit antennas. In our study, we consider Gauss-Markov and video source models, Rayleigh fading channels along with the Bernoulli/Gilbert-Elliott loss models, and space-time block codes.
Static inverter with synchronous output waveform synthesized by time-optimal-response feedback
NASA Technical Reports Server (NTRS)
Kernick, A.; Stechschulte, D. L.; Shireman, D. W.
1976-01-01
Time-optimal-response 'bang-bang' or 'bang-hang' technique, using four feedback control loops, synthesizes static-inverter sinusoidal output waveform by self-oscillatory but yet synchronous pulse-frequency-modulation (SPFM). A single modular power stage per phase of ac output entails the minimum of circuit complexity while providing by feedback synthesis individual phase voltage regulation, phase position control and inherent compensation simultaneously for line and load disturbances. Clipped sinewave performance is described under off-limit load or input voltage conditions. Also, approaches to high power levels, 3-phase arraying and parallel modular connection are given.
Pseudo-time method for optimal shape design using the Euler equations
NASA Technical Reports Server (NTRS)
Iollo, Angelo; Kuruvila, Geojoe; Ta'asan, Shlomo
1995-01-01
We exploit a novel idea for the optimization of flows governed by the Euler equations. The algorithm consists of marching on the design hypersurface while improving the distance to the state and costate hypersurfaces. We consider the problem of matching the pressure distribution to a desired one, subject to the euler equations, both for subsonic and supersonic flows. The rate of convergence to the minimum for the cases considered is 3 to 4 times slower than that of the analysis problem. Results are given for Ringleb flow and a shockless recompression case.
NASA Technical Reports Server (NTRS)
Rosen, I. G.
1988-01-01
An abstract approximation and convergence theory for the closed-loop solution of discrete-time linear-quadratic regulator problems for parabolic systems with unbounded input is developed. Under relatively mild stabilizability and detectability assumptions, functional analytic, operator techniques are used to demonstrate the norm convergence of Galerkin-based approximations to the optimal feedback control gains. The application of the general theory to a class of abstract boundary control systems is considered. Two examples, one involving the Neumann boundary control of a one-dimensional heat equation, and the other, the vibration control of a cantilevered viscoelastic beam via shear input at the free end, are discussed.
... material called gallium and is a type of nuclear medicine exam. A related test is gallium scan ... Brown ML, Forstrom LA, et al. Society of nuclear medicine procedure guideline for gallium scintigraphy in inflammation. ...
... exposing your baby to radiation. Reactions to contrast material In certain cases, your doctor may recommend you ... for a few hours before your scan Contrast material A special dye called a contrast material is ...
Variational data assimilation for the optimized ozone initial state and the short-time forecasting
NASA Astrophysics Data System (ADS)
Park, Soon-Young; Kim, Dong-Hyeok; Lee, Soon-Hwan; Lee, Hwa Woon
2016-03-01
In this study, we apply the four-dimensional variational (4D-Var) data assimilation to optimize initial ozone state and to improve the predictability of air quality. The numerical modeling systems used for simulations of atmospheric condition and chemical formation are the Weather Research and Forecasting (WRF) model and the Community Multiscale Air Quality (CMAQ) model. The study area covers the capital region of South Korea, where the surface measurement sites are relatively evenly distributed. The 4D-Var code previously developed for the CMAQ model is modified to consider background error in matrix form, and various numerical tests are conducted. The results are evaluated with an idealized covariance function for the appropriateness of the modified codes. The background error is then constructed using the NMC method with long-term modeling results, and the characteristics of the spatial correlation scale related to local circulation are analyzed. The background error is applied in the 4D-Var research, and a surface observational assimilation is conducted to optimize the initial concentration of ozone. The statistical results for the 12 h assimilation periods and the 120 observatory sites show a 49.4 % decrease in the root mean squared error (RMSE), and a 59.9 % increase in the index of agreement (IOA). The temporal variation of spatial distribution of the analysis increments indicates that the optimized initial state of ozone concentration is transported to inland areas by the clockwise-rotating local circulation during the assimilation windows. To investigate the predictability of ozone concentration after the assimilation window, a short-time forecasting is carried out. The ratios of the RMSE (root mean squared error) with assimilation versus that without assimilation are 8 and 13 % for the +24 and +12 h, respectively. Such a significant improvement in the forecast accuracy is obtained solely by using the optimized initial state. The potential improvement in
Variational data assimilation for the optimized ozone initial state and the short-time forecasting
NASA Astrophysics Data System (ADS)
Park, Soon-Young; Kim, Dong-Hyeok; Lee, Soon-Hwan; Lee, Hwa Woon
2016-04-01
In this study, we apply the four-dimensional variational (4D-Var) data assimilation to optimize initial ozone state and to improve the predictability of air quality. The numerical modeling systems used for simulations of atmospheric condition and chemical formation are the Weather Research and Forecasting (WRF) model and the Community Multiscale Air Quality (CMAQ) model . The study area covers the capital region of South Korea, where the surface measurement sites are relatively evenly distributed. The 4D-Var code previously developed for the CMAQ model is modified to consider background error in matrix form, and various numerical tests are conducted. The results are evaluated with an idealized covariance function for the appropriateness of the modified codes. The background error is then constructed using the NMC method with long-term modeling results, and the characteristics of the spatial correlation scale related to local circulation is analyzed. The background error is applied in the 4D-Var research, and a surface observational assimilation is conducted to optimize the initial concentration of ozone. The statistical results for the 12-hour assimilation periods and the 120 observatory sites show a 49.4% decrease in the root mean squred error (RMSE), and a 59.9% increase in the index of agreement (IOA). The temporal variation of spatial distribution of the analysis increments indicates that the optimized initial state of ozone concentration is transported to inland areas by the clockwise-rotating local circulation during the assimilation windows. To investigate the predictability of ozone concentration after the assimilation window, a short-time forecasting is carried out. The ratios of the RMSE with assimilation versus that without assimilation are 8% and 13% for the +24 and +12 hours, respectively. Such a significant improvement in the forecast accuracy is obtained solely by using the optimized initial state. The potential improvement in ozone prediction for
Matsuura, Taeko; Miyamoto, Naoki; Takao, Seishin; Nihongi, Hideaki; Toramatsu, Chie; Sutherland, Kenneth; Suzuki, Ryusuke; Ishikawa, Masayori; Maeda, Kenichiro; Shimizu, Shinichi; Kinoshita, Rumiko; Umegaki, Kikuo; Shirato, Hiroki; Fujii, Yusuke; Umezawa, Masumi
2013-07-15
Purpose: In spot-scanning proton therapy, the interplay effect between tumor motion and beam delivery leads to deterioration of the dose distribution. To mitigate the impact of tumor motion, gating in combination with repainting is one of the most promising methods that have been proposed. This study focused on a synchrotron-based spot-scanning proton therapy system integrated with real-time tumor monitoring. The authors investigated the effectiveness of gating in terms of both the delivered dose distribution and irradiation time by conducting simulations with patients' motion data. The clinically acceptable range of adjustable irradiation control parameters was explored. Also, the relation between the dose error and the characteristics of tumor motion was investigated.Methods: A simulation study was performed using a water phantom. A gated proton beam was irradiated to a clinical target volume (CTV) of 5 Multiplication-Sign 5 Multiplication-Sign 5 cm{sup 3}, in synchronization with lung cancer patients' tumor trajectory data. With varying parameters of gate width, spot spacing, and delivered dose per spot at one time, both dose uniformity and irradiation time were calculated for 397 tumor trajectory data from 78 patients. In addition, the authors placed an energy absorber upstream of the phantom and varied the thickness to examine the effect of changing the size of the Bragg peak and the number of required energy layers. The parameters with which 95% of the tumor trajectory data fulfill our defined criteria were accepted. Next, correlation coefficients were calculated between the maximum dose error and the tumor motion characteristics that were extracted from the tumor trajectory data.Results: With the assumed CTV, the largest percentage of the data fulfilled the criteria when the gate width was {+-}2 mm. Larger spot spacing was preferred because it increased the number of paintings. With a prescribed dose of 2 Gy, it was difficult to fulfill the criteria for the
Brandstetter, Markus; Genner, Andreas; Schwarzer, Clemens; Mujagic, Elvis; Strasser, Gottfried; Lendl, Bernhard
2014-02-10
We present the time-resolved comparison of pulsed 2nd order ring cavity surface emitting (RCSE) quantum cascade lasers (QCLs) and pulsed 1st order ridge-type distributed feedback (DFB) QCLs using a step-scan Fourier transform infrared (FT-IR) spectrometer. Laser devices were part of QCL arrays and fabricated from the same laser material. Required grating periods were adjusted to account for the grating order. The step-scan technique provided a spectral resolution of 0.1 cm(-1) and a time resolution of 2 ns. As a result, it was possible to gain information about the tuning behavior and potential mode-hops of the investigated lasers. Different cavity-lengths were compared, including 0.9 mm and 3.2 mm long ridge-type and 0.97 mm (circumference) ring-type cavities. RCSE QCLs were found to have improved emission properties in terms of line-stability, tuning rate and maximum emission time compared to ridge-type lasers.
Imanishi, M; Newton, A E; Vieira, A R; Gonzalez-Aviles, G; Kendall Scott, M E; Manikonda, K; Maxwell, T N; Halpin, J L; Freeman, M M; Medalla, F; Ayers, T L; Derado, G; Mahon, B E; Mintz, E D
2015-08-01
Although rare, typhoid fever cases acquired in the United States continue to be reported. Detection and investigation of outbreaks in these domestically acquired cases offer opportunities to identify chronic carriers. We searched surveillance and laboratory databases for domestically acquired typhoid fever cases, used a space-time scan statistic to identify clusters, and classified clusters as outbreaks or non-outbreaks. From 1999 to 2010, domestically acquired cases accounted for 18% of 3373 reported typhoid fever cases; their isolates were less often multidrug-resistant (2% vs. 15%) compared to isolates from travel-associated cases. We identified 28 outbreaks and two possible outbreaks within 45 space-time clusters of ⩾2 domestically acquired cases, including three outbreaks involving ⩾2 molecular subtypes. The approach detected seven of the ten outbreaks published in the literature or reported to CDC. Although this approach did not definitively identify any previously unrecognized outbreaks, it showed the potential to detect outbreaks of typhoid fever that may escape detection by routine analysis of surveillance data. Sixteen outbreaks had been linked to a carrier. Every case of typhoid fever acquired in a non-endemic country warrants thorough investigation. Space-time scan statistics, together with shoe-leather epidemiology and molecular subtyping, may improve outbreak detection.
Empirical prediction of climate dynamics: optimal models, derived from time series
NASA Astrophysics Data System (ADS)
Mukhin, D.; Loskutov, E. M.; Gavrilov, A.; Feigin, A. M.
2013-12-01
The new empirical method for prediction of climate indices by the analysis of climatic fields' time series is suggested. The method is based on construction of prognostic models of evolution operator (EO) in low-dimensional subspaces of system's phase space. One of the main points of suggested analysis is reconstruction of appropriate basis of dynamical variables (predictors) from spatially distributed data: different ways of data decomposition are discussed in the report including EOFs, MSSA and other relevant data rotations. We consider the models of different complexity for EO reconstruction, from linear statistical models of particular indices to more complex artificial neural network (ANN) models of climatic patterns dynamics, which take the form of discrete random dynamical systems [1]. Very important problem, that always arises in empirical modeling approaches, is optimal model selection criterium: appropriate regularization procedure is needed to avoid overfitted model. Particulary, it includes finding the optimal structural parameters of the model such as dimension of variables vector, i.e. number of principal components used for modeling, number of states used for prediction, and number of parameters determining quality of approximation. In this report the minimal descriptive length (MDL) approach [2] is proposed for this purpose: the model providing most data compression is chosen. Results of application of suggested method to analysis of SST and SLP fields' time series [3] covering last 30-50 years are presented: predictions of different climate indices time series including NINO 3.4, MEI, PDO, NOA are shown. References: 1. Y. I. Molkov, E. M. Loskutov, D. N. Mukhin, and A. M. Feigin, Random dynamical models from time series, Phys. Rev. E 85, 036216, 2012 2. Molkov, Ya.I., D.N. Mukhin, E.M. Loskutov, A.M. Feigin, and G.A. Fidelin, Using the minimum description length principle for global reconstruction of dynamic systems from noisy time series. Phys
Loui, Hung; Brock, Billy C.
2016-10-25
The various embodiments presented herein relate to beam steering an array antenna by modifying intermediate frequency (IF) waveforms prior to conversion to RF signals. For each channel, a direct digital synthesis (DDS) component can be utilized to generate a waveform or modify amplitude, timing and phase of a waveform relative to another waveform, whereby the generation/modification can be performed prior to the IF input port of a mixer on each channel. A local oscillator (LO) signal can be utilized to commonly drive each of the mixers. After conversion at the RF output port of each of the mixers, each RF signal can be transmitted by a respective antenna element in the antenna array. Initiation of transmission of each RF signal can be performed simultaneously at each antenna. The process can be reversed during receive whereby timing, amplitude, and phase of the received can be modified digitally post ADC conversion.
Spatio-temporal activity in real time (STAR): Optimization of regional fMRI feedback
Magland, Jeremy F.; Tjoa, Christopher W.; Childress, Anna Rose
2011-01-01
The use of real-time feedback has expanded fMRI from a brain probe to include potential brain interventions with significant therapeutic promise. However, whereas time-averaged blood oxygenation level-dependent (BOLD) signal measurement is usually sufficient for probing a brain state, the real-time (frame-to-frame) BOLD signal is noisy, compromising feedback accuracy. We have developed a new real-time processing technique (STAR) that combines noise-reduction properties of multi-voxel (e.g., whole-brain) techniques with the regional specificity critical for therapeutics. Nineteen subjects were given real-time feedback in a cognitive control task (imagining repetitive motor activity vs. spatial navigation), and were all able to control a visual feedback cursor based on whole-brain neural activity. The STAR technique was evaluated, retrospectively, for five a priori regions of interest in these data, and was shown to provide significantly better (frame-by-frame) classification accuracy than a regional BOLD technique. In addition to regional feedback signals, the output of the STAR technique includes spatio-temporal activity maps (movies) providing insight into brain dynamics. The STAR approach offers an appealing optimization for real-time fMRI applications requiring an anatomically-localized feedback signal. PMID:21232612
Craft, David L.; Hong, Theodore S.; Shih, Helen A.; Bortfeld, Thomas R.
2012-01-01
Purpose: To test whether multicriteria optimization (MCO) can reduce treatment planning time and improve plan quality in intensity-modulated radiotherapy (IMRT). Methods and Materials: Ten IMRT patients (5 with glioblastoma and 5 with locally advanced pancreatic cancers) were logged during the standard treatment planning procedure currently in use at Massachusetts General Hospital (MGH). Planning durations and other relevant planning information were recorded. In parallel, the patients were planned using an MCO planning system, and similar planning time data were collected. The patients were treated with the standard plan, but each MCO plan was also approved by the physicians. Plans were then blindly reviewed 3 weeks after planning by the treating physician. Results: In all cases, the treatment planning time was vastly shorter for the MCO planning (average MCO treatment planning time was 12 min; average standard planning time was 135 min). The physician involvement time in the planning process increased from an average of 4.8 min for the standard process to 8.6 min for the MCO process. In all cases, the MCO plan was blindly identified as the superior plan. Conclusions: This provides the first concrete evidence that MCO-based planning is superior in terms of both planning efficiency and dose distribution quality compared with the current trial and error-based IMRT planning approach.
NASA Astrophysics Data System (ADS)
Yu, Jhao-Ming; Pan, Min-Cheng; Hsu, Ya-Fen; Chen, Liang-Yu; Pan, Min-Chun
2015-07-01
We propose and implement three-dimensional (3-D) ring-scanning equipment for near-infrared (NIR) diffuse optical imaging to screen breast tumors under prostrating examination. This equipment has the function of the radial, circular, and vertical motion without compression of breast tissue, thereby achieving 3-D scanning; furthermore, a flexible combination of illumination and detection can be configured for the required resolution. Especially, a rotation-sliding-and-moving mechanism was designed for the guidance of source- and detection-channel motion. Prior to machining and construction of the system, a synthesized image reconstruction was simulated to show the feasibility of this 3-D NIR ring-scanning equipment; finally, this equipment is verified by performing phantom experiments. Rather than the fixed configuration, this addressed screening/diagnosing equipment has the flexibilities of optical-channel expansion for spatial resolution and the dimensional freedom for scanning in reconstructing optical-property images.
Optimizing the decomposition of soil moisture time-series data using genetic algorithms
NASA Astrophysics Data System (ADS)
Kulkarni, C.; Mengshoel, O. J.; Basak, A.; Schmidt, K. M.
2015-12-01
The task of determining near-surface volumetric water content (VWC), using commonly available dielectric sensors (based upon capacitance or frequency domain technology), is made challenging due to the presence of "noise" such as temperature-driven diurnal variations in the recorded data. We analyzed a post-wildfire rainfall and runoff monitoring dataset for hazard studies in Southern California. VWC was measured with EC-5 sensors manufactured by Decagon Devices. Many traditional signal smoothing techniques such as moving averages, splines, and Loess smoothing exist. Unfortunately, when applied to our post-wildfire dataset, these techniques diminish maxima, introduce time shifts, and diminish signal details. A promising seasonal trend-decomposition procedure based on Loess (STL) decomposes VWC time series into trend, seasonality, and remainder components. Unfortunately, STL with its default parameters produces similar results as previously mentioned smoothing methods. We propose a novel method to optimize seasonal decomposition using STL with genetic algorithms. This method successfully reduces "noise" including diurnal variations while preserving maxima, minima, and signal detail. Better decomposition results for the post-wildfire VWC dataset were achieved by optimizing STL's control parameters using genetic algorithms. The genetic algorithms minimize an additive objective function with three weighted terms: (i) root mean squared error (RMSE) of straight line relative to STL trend line; (ii) range of STL remainder; and (iii) variance of STL remainder. Our optimized STL method, combining trend and remainder, provides an improved representation of signal details by preserving maxima and minima as compared to the traditional smoothing techniques for the post-wildfire rainfall and runoff monitoring data. This method identifies short- and long-term VWC seasonality and provides trend and remainder data suitable for forecasting VWC in response to precipitation.
Cai, Ximing; Hejazi, Mohamad I.; Wang, Dingbao
2011-09-29
This paper presents a modeling framework for real-time decision support for irrigation scheduling using the National Oceanic and Atmospheric Administration's (NOAA's) probabilistic rainfall forecasts. The forecasts and their probability distributions are incorporated into a simulation-optimization modeling framework. In this study, modeling irrigation is determined by a stochastic optimization program based on the simulated soil moisture and crop water-stress status and the forecasted rainfall for the next 1-7 days. The modeling framework is applied to irrigated corn in Mason County, Illinois. It is found that there is ample potential to improve current farmers practices by simply using the proposed simulation-optimization framework, which uses the present soil moisture and crop evapotranspiration information even without any forecasts. It is found that the values of the forecasts vary across dry, normal, and wet years. More significant economic gains are found in normal and wet years than in dry years under the various forecast horizons. To mitigate drought effect on crop yield through irrigation, medium- or long-term climate predictions likely play a more important role than short-term forecasts. NOAA's imperfect 1-week forecast is still valuable in terms of both profit gain and water saving. Compared with the no-rain forecast case, the short-term imperfect forecasts could lead to additional 2.4-8.5% gain in profit and 11.0-26.9% water saving. However, the performance of the imperfect forecast is only slightly better than the ensemble weather forecast based on historical data and slightly inferior to the perfect forecast. It seems that the 1-week forecast horizon is too limited to evaluate the role of the various forecast scenarios for irrigation scheduling, which is actually a seasonal decision issue. For irrigation scheduling, both the forecast quality and the length of forecast time horizon matter. Thus, longer forecasts might be necessary to evaluate the role
A methodology to quantify and optimize time complementarity between hydropower and solar PV systems
NASA Astrophysics Data System (ADS)
Kougias, Ioannis; Szabó, Sándor; Monforti-Ferrario, Fabio; Huld, Thomas; Bódis, Katalin
2016-04-01
Hydropower and solar energy are expected to play a major role in achieving renewable energy sources' (RES) penetration targets. However, the integration of RES in the energy mix needs to overcome the technical challenges that are related to grid's operation. Therefore, there is an increasing need to explore approaches where different RES will operate under a synergetic approach. Ideally, hydropower and solar PV systems can be jointly developed in such systems where their electricity output profiles complement each other as much as possible and minimize the need for reserve capacities and storage costs. A straightforward way to achieve that is by optimizing the complementarity among RES systems both over time and spatially. The present research developed a methodology that quantifies the degree of time complementarity between small-scale hydropower stations and solar PV systems and examines ways to increase it. The methodology analyses high-resolution spatial and temporal data for solar radiation obtained from the existing PVGIS model (available online at: http://re.jrc.ec.europa.eu/pvgis/) and associates it with hydrological information of water inflows to a hydropower station. It builds on an exhaustive optimization algorithm that tests possible alterations of the PV system installation (azimuth, tilt) aiming to increase the complementarity, with minor compromises in the total solar energy output. The methodology has been tested in several case studies and the results indicated variations among regions and different hydraulic regimes. In some cases a small compromise in the solar energy output showed significant increases of the complementarity, while in other cases the effect is not that strong. Our contribution aims to present these findings in detail and initiate a discussion on the role and gains of increased complementarity between solar and hydropower energies. Reference: Kougias I, Szabó S, Monforti-Ferrario F, Huld T, Bódis K (2016). A methodology for
Value Iteration Adaptive Dynamic Programming for Optimal Control of Discrete-Time Nonlinear Systems.
Wei, Qinglai; Liu, Derong; Lin, Hanquan
2016-03-01
In this paper, a value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon undiscounted optimal control problems for discrete-time nonlinear systems. The present value iteration ADP algorithm permits an arbitrary positive semi-definite function to initialize the algorithm. A novel convergence analysis is developed to guarantee that the iterative value function converges to the optimal performance index function. Initialized by different initial functions, it is proven that the iterative value function will be monotonically nonincreasing, monotonically nondecreasing, or nonmonotonic and will converge to the optimum. In this paper, for the first time, the admissibility properties of the iterative control laws are developed for value iteration algorithms. It is emphasized that new termination criteria are established to guarantee the effectiveness of the iterative control laws. Neural networks are used to approximate the iterative value function and compute the iterative control law, respectively, for facilitating the implementation of the iterative ADP algorithm. Finally, two simulation examples are given to illustrate the performance of the present method.
Optimization Based Data Mining Approah for Forecasting Real-Time Energy Demand
Omitaomu, Olufemi A; Li, Xueping; Zhou, Shengchao
2015-01-01
The worldwide concern over environmental degradation, increasing pressure on electric utility companies to meet peak energy demand, and the requirement to avoid purchasing power from the real-time energy market are motivating the utility companies to explore new approaches for forecasting energy demand. Until now, most approaches for forecasting energy demand rely on monthly electrical consumption data. The emergence of smart meters data is changing the data space for electric utility companies, and creating opportunities for utility companies to collect and analyze energy consumption data at a much finer temporal resolution of at least 15-minutes interval. While the data granularity provided by smart meters is important, there are still other challenges in forecasting energy demand; these challenges include lack of information about appliances usage and occupants behavior. Consequently, in this paper, we develop an optimization based data mining approach for forecasting real-time energy demand using smart meters data. The objective of our approach is to develop a robust estimation of energy demand without access to these other building and behavior data. Specifically, the forecasting problem is formulated as a quadratic programming problem and solved using the so-called support vector machine (SVM) technique in an online setting. The parameters of the SVM technique are optimized using simulated annealing approach. The proposed approach is applied to hourly smart meters data for several residential customers over several days.
Ye, Xiaoting; Sui, Zhongquan
2016-03-01
Changes in the physicochemical properties and starch digestibility of white salted noodles (WSN) at different cooking stage were investigated. The noodles were dried in fresh air and then cooked for 2-12 min by boiling in distilled water to determine the properties of cooking quality, textural properties and optical characteristic. For starch digestibility, dry noodles were milled and sieved into various particle size classes ranging from 0.5 mm to 5.0 mm, and hydrolyzed by porcine pancreatic α-amylase. The optimal cooking time of WSN determined by squeezing between glasses was 6 min. The results showed that the kinetics of solvation of starch and protein molecules were responsible for changes of the physicochemical properties of WSN during cooking. The susceptibility of starch to α-amylase was influenced by the cooking time, particle size and enzyme treatment. The greater value of rapidly digestible starch (RDS) and lower value of slowly digestible starch (SDS) and resistant starch (RS) were reached at the optimal cooking stage ranging between 63.14-71.97%, 2.47-10.74% and 23.94-26.88%, respectively, indicating the susceptibility on hydrolysis by enzyme was important in defining the cooked stage. The study suggested that cooking quality and digestibility were not correlated but the texture greatly controls the digestibility of the noodles.