Sample records for optimal time delay

  1. On Time Delay Margin Estimation for Adaptive Control and Optimal Control Modification

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2011-01-01

    This paper presents methods for estimating time delay margin for adaptive control of input delay systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent an adaptive law by a locally bounded linear approximation within a small time window. The time delay margin of this input delay system represents a local stability measure and is computed analytically by three methods: Pade approximation, Lyapunov-Krasovskii method, and the matrix measure method. These methods are applied to the standard model-reference adaptive control, s-modification adaptive law, and optimal control modification adaptive law. The windowing analysis results in non-unique estimates of the time delay margin since it is dependent on the length of a time window and parameters which vary from one time window to the next. The optimal control modification adaptive law overcomes this limitation in that, as the adaptive gain tends to infinity and if the matched uncertainty is linear, then the closed-loop input delay system tends to a LTI system. A lower bound of the time delay margin of this system can then be estimated uniquely without the need for the windowing analysis. Simulation results demonstrates the feasibility of the bounded linear stability method for time delay margin estimation.

  2. Optimal estimation of parameters and states in stochastic time-varying systems with time delay

    NASA Astrophysics Data System (ADS)

    Torkamani, Shahab; Butcher, Eric A.

    2013-08-01

    In this study estimation of parameters and states in stochastic linear and nonlinear delay differential systems with time-varying coefficients and constant delay is explored. The approach consists of first employing a continuous time approximation to approximate the stochastic delay differential equation with a set of stochastic ordinary differential equations. Then the problem of parameter estimation in the resulting stochastic differential system is represented as an optimal filtering problem using a state augmentation technique. By adapting the extended Kalman-Bucy filter to the resulting system, the unknown parameters of the time-delayed system are estimated from noise-corrupted, possibly incomplete measurements of the states.

  3. Optimal control of LQR for discrete time-varying systems with input delays

    NASA Astrophysics Data System (ADS)

    Yin, Yue-Zhu; Yang, Zhong-Lian; Yin, Zhi-Xiang; Xu, Feng

    2018-04-01

    In this work, we consider the optimal control problem of linear quadratic regulation for discrete time-variant systems with single input and multiple input delays. An innovative and simple method to derive the optimal controller is given. The studied problem is first equivalently converted into a problem subject to a constraint condition. Last, with the established duality, the problem is transformed into a static mathematical optimisation problem without input delays. The optimal control input solution to minimise performance index function is derived by solving this optimisation problem with two methods. A numerical simulation example is carried out and its results show that our two approaches are both feasible and very effective.

  4. Robust optimization for nonlinear time-delay dynamical system of dha regulon with cost sensitivity constraint in batch culture

    NASA Astrophysics Data System (ADS)

    Yuan, Jinlong; Zhang, Xu; Liu, Chongyang; Chang, Liang; Xie, Jun; Feng, Enmin; Yin, Hongchao; Xiu, Zhilong

    2016-09-01

    Time-delay dynamical systems, which depend on both the current state of the system and the state at delayed times, have been an active area of research in many real-world applications. In this paper, we consider a nonlinear time-delay dynamical system of dha-regulonwith unknown time-delays in batch culture of glycerol bioconversion to 1,3-propanediol induced by Klebsiella pneumonia. Some important properties and strong positive invariance are discussed. Because of the difficulty in accurately measuring the concentrations of intracellular substances and the absence of equilibrium points for the time-delay system, a quantitative biological robustness for the concentrations of intracellular substances is defined by penalizing a weighted sum of the expectation and variance of the relative deviation between system outputs before and after the time-delays are perturbed. Our goal is to determine optimal values of the time-delays. To this end, we formulate an optimization problem in which the time delays are decision variables and the cost function is to minimize the biological robustness. This optimization problem is subject to the time-delay system, parameter constraints, continuous state inequality constraints for ensuring that the concentrations of extracellular and intracellular substances lie within specified limits, a quality constraint to reflect operational requirements and a cost sensitivity constraint for ensuring that an acceptable level of the system performance is achieved. It is approximated as a sequence of nonlinear programming sub-problems through the application of constraint transcription and local smoothing approximation techniques. Due to the highly complex nature of this optimization problem, the computational cost is high. Thus, a parallel algorithm is proposed to solve these nonlinear programming sub-problems based on the filled function method. Finally, it is observed that the obtained optimal estimates for the time-delays are highly satisfactory

  5. Model Predictive Optimal Control of a Time-Delay Distributed-Parameter Systems

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan

    2006-01-01

    This paper presents an optimal control method for a class of distributed-parameter systems governed by first order, quasilinear hyperbolic partial differential equations that arise in many physical systems. Such systems are characterized by time delays since information is transported from one state to another by wave propagation. A general closed-loop hyperbolic transport model is controlled by a boundary control embedded in a periodic boundary condition. The boundary control is subject to a nonlinear differential equation constraint that models actuator dynamics of the system. The hyperbolic equation is thus coupled with the ordinary differential equation via the boundary condition. Optimality of this coupled system is investigated using variational principles to seek an adjoint formulation of the optimal control problem. The results are then applied to implement a model predictive control design for a wind tunnel to eliminate a transport delay effect that causes a poor Mach number regulation.

  6. Efficiency of timing delays and electrode positions in optimization of biventricular pacing: a simulation study.

    PubMed

    Miri, Raz; Graf, Iulia M; Dössel, Olaf

    2009-11-01

    Electrode positions and timing delays influence the efficacy of biventricular pacing (BVP). Accordingly, this study focuses on BVP optimization, using a detailed 3-D electrophysiological model of the human heart, which is adapted to patient-specific anatomy and pathophysiology. The research is effectuated on ten heart models with left bundle branch block and myocardial infarction derived from magnetic resonance and computed tomography data. Cardiac electrical activity is simulated with the ten Tusscher cell model and adaptive cellular automaton at physiological and pathological conduction levels. The optimization methods are based on a comparison between the electrical response of the healthy and diseased heart models, measured in terms of root mean square error (E(RMS)) of the excitation front and the QRS duration error (E(QRS)). Intra- and intermethod associations of the pacing electrodes and timing delays variables were analyzed with statistical methods, i.e., t -test for dependent data, one-way analysis of variance for electrode pairs, and Pearson model for equivalent parameters from the two optimization methods. The results indicate that lateral the left ventricle and the upper or middle septal area are frequently (60% of cases) the optimal positions of the left and right electrodes, respectively. Statistical analysis proves that the two optimization methods are in good agreement. In conclusion, a noninvasive preoperative BVP optimization strategy based on computer simulations can be used to identify the most beneficial patient-specific electrode configuration and timing delays.

  7. Optimal Control for Aperiodic Dual-Rate Systems With Time-Varying Delays.

    PubMed

    Aranda-Escolástico, Ernesto; Salt, Julián; Guinaldo, María; Chacón, Jesús; Dormido, Sebastián

    2018-05-09

    In this work, we consider a dual-rate scenario with slow input and fast output. Our objective is the maximization of the decay rate of the system through the suitable choice of the n -input signals between two measures (periodic sampling) and their times of application. The optimization algorithm is extended for time-varying delays in order to make possible its implementation in networked control systems. We provide experimental results in an air levitation system to verify the validity of the algorithm in a real plant.

  8. Optimal Control for Aperiodic Dual-Rate Systems With Time-Varying Delays

    PubMed Central

    Salt, Julián; Guinaldo, María; Chacón, Jesús

    2018-01-01

    In this work, we consider a dual-rate scenario with slow input and fast output. Our objective is the maximization of the decay rate of the system through the suitable choice of the n-input signals between two measures (periodic sampling) and their times of application. The optimization algorithm is extended for time-varying delays in order to make possible its implementation in networked control systems. We provide experimental results in an air levitation system to verify the validity of the algorithm in a real plant. PMID:29747441

  9. Design of an optimal preview controller for linear discrete-time descriptor systems with state delay

    NASA Astrophysics Data System (ADS)

    Cao, Mengjuan; Liao, Fucheng

    2015-04-01

    In this paper, the linear discrete-time descriptor system with state delay is studied, and a design method for an optimal preview controller is proposed. First, by using the discrete lifting technique, the original system is transformed into a general descriptor system without state delay in form. Then, taking advantage of the first-order forward difference operator, we construct a descriptor augmented error system, including the state vectors of the lifted system, error vectors, and desired target signals. Rigorous mathematical proofs are given for the regularity, stabilisability, causal controllability, and causal observability of the descriptor augmented error system. Based on these, the optimal preview controller with preview feedforward compensation for the original system is obtained by using the standard optimal regulator theory of the descriptor system. The effectiveness of the proposed method is shown by numerical simulation.

  10. Optimal tracking control for a class of nonlinear discrete-time systems with time delays based on heuristic dynamic programming.

    PubMed

    Zhang, Huaguang; Song, Ruizhuo; Wei, Qinglai; Zhang, Tieyan

    2011-12-01

    In this paper, a novel heuristic dynamic programming (HDP) iteration algorithm is proposed to solve the optimal tracking control problem for a class of nonlinear discrete-time systems with time delays. The novel algorithm contains state updating, control policy iteration, and performance index iteration. To get the optimal states, the states are also updated. Furthermore, the "backward iteration" is applied to state updating. Two neural networks are used to approximate the performance index function and compute the optimal control policy for facilitating the implementation of HDP iteration algorithm. At last, we present two examples to demonstrate the effectiveness of the proposed HDP iteration algorithm.

  11. Distributed Optimal Consensus Control for Multiagent Systems With Input Delay.

    PubMed

    Zhang, Huaipin; Yue, Dong; Zhao, Wei; Hu, Songlin; Dou, Chunxia; Huaipin Zhang; Dong Yue; Wei Zhao; Songlin Hu; Chunxia Dou; Hu, Songlin; Zhang, Huaipin; Dou, Chunxia; Yue, Dong; Zhao, Wei

    2018-06-01

    This paper addresses the problem of distributed optimal consensus control for a continuous-time heterogeneous linear multiagent system subject to time varying input delays. First, by discretization and model transformation, the continuous-time input-delayed system is converted into a discrete-time delay-free system. Two delicate performance index functions are defined for these two systems. It is shown that the performance index functions are equivalent and the optimal consensus control problem of the input-delayed system can be cast into that of the delay-free system. Second, by virtue of the Hamilton-Jacobi-Bellman (HJB) equations, an optimal control policy for each agent is designed based on the delay-free system and a novel value iteration algorithm is proposed to learn the solutions to the HJB equations online. The proposed adaptive dynamic programming algorithm is implemented on the basis of a critic-action neural network (NN) structure. Third, it is proved that local consensus errors of the two systems and weight estimation errors of the critic-action NNs are uniformly ultimately bounded while the approximated control policies converge to their target values. Finally, two simulation examples are presented to illustrate the effectiveness of the developed method.

  12. Time delayed Ensemble Nudging Method

    NASA Astrophysics Data System (ADS)

    An, Zhe; Abarbanel, Henry

    Optimal nudging method based on time delayed embedding theory has shows potentials on analyzing and data assimilation in previous literatures. To extend the application and promote the practical implementation, new nudging assimilation method based on the time delayed embedding space is presented and the connection with other standard assimilation methods are studied. Results shows the incorporating information from the time series of data can reduce the sufficient observation needed to preserve the quality of numerical prediction, making it a potential alternative in the field of data assimilation of large geophysical models.

  13. Time Delay of CGM Sensors

    PubMed Central

    Schmelzeisen-Redeker, Günther; Schoemaker, Michael; Kirchsteiger, Harald; Freckmann, Guido; Heinemann, Lutz; del Re, Luigi

    2015-01-01

    Background: Continuous glucose monitoring (CGM) is a powerful tool to support the optimization of glucose control of patients with diabetes. However, CGM systems measure glucose in interstitial fluid but not in blood. Rapid changes in one compartment are not accompanied by similar changes in the other, but follow with some delay. Such time delays hamper detection of, for example, hypoglycemic events. Our aim is to discuss the causes and extent of time delays and approaches to compensate for these. Methods: CGM data were obtained in a clinical study with 37 patients with a prototype glucose sensor. The study was divided into 5 phases over 2 years. In all, 8 patients participated in 2 phases separated by 8 months. A total number of 108 CGM data sets including raw signals were used for data analysis and were processed by statistical methods to obtain estimates of the time delay. Results: Overall mean (SD) time delay of the raw signals with respect to blood glucose was 9.5 (3.7) min, median was 9 min (interquartile range 4 min). Analysis of time delays observed in the same patients separated by 8 months suggests a patient dependent delay. No significant correlation was observed between delay and anamnestic or anthropometric data. The use of a prediction algorithm reduced the delay by 4 minutes on average. Conclusions: Prediction algorithms should be used to provide real-time CGM readings more consistent with simultaneous measurements by SMBG. Patient specificity may play an important role in improving prediction quality. PMID:26243773

  14. Parasitic lasing suppression in large-aperture Ti:sapphire amplifiers by optimizing the seed-pump time delay

    NASA Astrophysics Data System (ADS)

    Chu, Y. X.; Liang, X. Y.; Yu, L. H.; Xu, L.; Lu, X. M.; Liu, Y. Q.; Leng, Y. X.; Li, R. X.; Xu, Z. Z.

    2013-05-01

    Theoretical and experimental investigations are carried out to determine the influence of the time delay between the input seed pulse and pump pulses on transverse parasitic lasing in a Ti:sapphire amplifier with a diameter of 80 mm, which is clad by a refractive index-matched liquid doped with an absorber. When the time delay is optimized, a maximum output energy of 50.8 J is achieved at a pump energy of 105 J, which corresponds to a conversion efficiency of 47.5%. Based on the existing compressor, the laser system achieves a peak power of 1.26 PW with a 29.0 fs pulse duration.

  15. Time domain passivity controller for 4-channel time-delay bilateral teleoperation.

    PubMed

    Rebelo, Joao; Schiele, Andre

    2015-01-01

    This paper presents an extension of the time-domain passivity control approach to a four-channel bilateral controller under the effects of time delays. Time-domain passivity control has been used successfully to stabilize teleoperation systems with position-force and position-position controllers; however, the performance with such control architectures is sub-optimal both with and without time delays. This work extends the network representation of the time-domain passivity controller to the four-channel architecture, which provides perfect transparency to the user without time delay. The proposed architecture is based on modelling the controllers as dependent voltage sources and using only series passivity controllers. The obtained results are shown on a one degree-of-freedom setup and illustrate the stabilization behaviour of the proposed controller when time delay is present in the communication channel.

  16. Stochastic parameter estimation in nonlinear time-delayed vibratory systems with distributed delay

    NASA Astrophysics Data System (ADS)

    Torkamani, Shahab; Butcher, Eric A.

    2013-07-01

    The stochastic estimation of parameters and states in linear and nonlinear time-delayed vibratory systems with distributed delay is explored. The approach consists of first employing a continuous time approximation to approximate the delayed integro-differential system with a large set of ordinary differential equations having stochastic excitations. Then the problem of state and parameter estimation in the resulting stochastic ordinary differential system is represented as an optimal filtering problem using a state augmentation technique. By adapting the extended Kalman-Bucy filter to the augmented filtering problem, the unknown parameters of the time-delayed system are estimated from noise-corrupted, possibly incomplete measurements of the states. Similarly, the upper bound of the distributed delay can also be estimated by the proposed technique. As an illustrative example to a practical problem in vibrations, the parameter, delay upper bound, and state estimation from noise-corrupted measurements in a distributed force model widely used for modeling machine tool vibrations in the turning operation is investigated.

  17. Optimal exponential synchronization of general chaotic delayed neural networks: an LMI approach.

    PubMed

    Liu, Meiqin

    2009-09-01

    This paper investigates the optimal exponential synchronization problem of general chaotic neural networks with or without time delays by virtue of Lyapunov-Krasovskii stability theory and the linear matrix inequality (LMI) technique. This general model, which is the interconnection of a linear delayed dynamic system and a bounded static nonlinear operator, covers several well-known neural networks, such as Hopfield neural networks, cellular neural networks (CNNs), bidirectional associative memory (BAM) networks, and recurrent multilayer perceptrons (RMLPs) with or without delays. Using the drive-response concept, time-delay feedback controllers are designed to synchronize two identical chaotic neural networks as quickly as possible. The control design equations are shown to be a generalized eigenvalue problem (GEVP) which can be easily solved by various convex optimization algorithms to determine the optimal control law and the optimal exponential synchronization rate. Detailed comparisons with existing results are made and numerical simulations are carried out to demonstrate the effectiveness of the established synchronization laws.

  18. Optimal timing of early versus delayed adjuvant radiotherapy following radical prostatectomy for locally advanced prostate cancer.

    PubMed

    Kowalczyk, Keith J; Gu, Xiangmei; Nguyen, Paul L; Lipsitz, Stuart R; Trinh, Quoc-Dien; Lynch, John H; Collins, Sean P; Hu, Jim C

    2014-04-01

    Although post-radical prostatectomy (RP) adjuvant radiation therapy (ART) benefits disease that is staged as pT3 or higher, the optimal ART timing remains unknown. Our objective is to characterize the outcomes and optimal timing of early vs. delayed ART. From the Surveillance, Epidemiology and End Results-Medicare data from 1995 to 2007, we identified 963 men with pT3N0 disease receiving early (<4 mo after RP, n = 419) vs. delayed (4-12 mo after RP, n = 544) ART after RP. Utilizing propensity score methods, we compared overall mortality, prostate cancer-specific mortality (PCSM), bone-related events (BRE), salvage hormonal therapy utilization, and intervention for urethral stricture. We then used the maximal statistic approach to determine at what time post-RP ART had the most significant effect on outcomes of interest in men with pT3N0 disease. When compared with delayed ART in men with pT3 disease, early ART was associated with improved PCSM (0.47 vs. 1.02 events per 100 person-years; P = 0.038) and less salvage hormonal therapy (2.88 vs. 4.59 events per 100 person-years; P = 0.001). Delaying ART beyond 5 months is associated with worse PCSM (hazard ratio [HR] 2.3; P = 0.020), beyond 3 months is associated with more BRE (HR 1.6; P = 0.025), and beyond 4 months is associated higher rates of salvage hormonal therapy (HR 1.6; P = 0.002). ART performed after 9 months was associated with fewer urethral strictures (HR 0.6; P = 0.042). Initiating ART less than 5 months after RP for pT3 is associated with improved PCSM. Early ART is also associated with fewer BRE and less use of salvage hormonal therapy if administered earlier than 3 and 4 months after RP, respectively. However, ART administered later than 9 months after RP is associated with fewer urethral strictures. Our population-based findings complement randomized trials designed with fixed ART timing. © 2013 Published by Elsevier Inc.

  19. System for sensing droplet formation time delay in a flow cytometer

    DOEpatents

    Van den Engh, Ger; Esposito, Richard J.

    1997-01-01

    A droplet flow cytometer system which includes a system to optimize the droplet formation time delay based on conditions actually experienced includes an automatic droplet sampler which rapidly moves a plurality of containers stepwise through the droplet stream while simultaneously adjusting the droplet time delay. Through the system sampling of an actual substance to be processed can be used to minimize the effect of the substances variations or the determination of which time delay is optimal. Analysis such as cell counting and the like may be conducted manually or automatically and input to a time delay adjustment which may then act with analysis equipment to revise the time delay estimate actually applied during processing. The automatic sampler can be controlled through a microprocessor and appropriate programming to bracket an initial droplet formation time delay estimate. When maximization counts through volume, weight, or other types of analysis exists in the containers, the increment may then be reduced for a more accurate ultimate setting. This may be accomplished while actually processing the sample without interruption.

  20. Wide-area Power System Damping Control Coordination Based on Particle Swarm Optimization with Time Delay Considered

    NASA Astrophysics Data System (ADS)

    Zhang, J. Y.; Jiang, Y.

    2017-10-01

    To ensure satisfactory dynamic performance of controllers in time-delayed power systems, a WAMS-based control strategy is investigated in the presence of output feedback delay. An integrated approach based on Pade approximation and particle swarm optimization (PSO) is employed for parameter configuration of PSS. The coordination configuration scheme of power system controllers is achieved by a series of stability constraints at the aim of maximizing the minimum damping ratio of inter-area mode of power system. The validity of this derived PSS is verified on a prototype power system. The findings demonstrate that the proposed approach for control design could damp the inter-area oscillation and enhance the small-signal stability.

  1. Optimizing chaos time-delay signature in two mutually-coupled semiconductor lasers through controlling internal parameters

    NASA Astrophysics Data System (ADS)

    Mu, Penghua; Pan, Wei; Yan, Lianshan; Luo, Bin; Zou, Xihua

    2017-04-01

    In this contribution, the effects of two key internal parameters, i.e. the linewidth-enhancement factor (α) and gain nonlinearity (𝜀), on time-delay signatures (TDS) concealment of two mutually-coupled semiconductor lasers (MCSLs) are numerically investigated. In particular, the influences of α and 𝜀 on the TDS concealment are compared and discussed systematically by setting different values of frequency detuning (Δf) and injection strength (η). The results show that the TDS can be better suppressed with high α or lower 𝜀 in the MCSLs. Two sets of desired optical chaos with TDS being strongly suppressed can be generated simultaneously in a wide injection parameter plane provided that α and 𝜀 are properly chosen, indicating that optimizing TDS suppression through controlling internal parameters can be generalized to any delayed-coupled laser systems.

  2. Optimal Control for Stochastic Delay Evolution Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Qingxin, E-mail: mqx@hutc.zj.cn; Shen, Yang, E-mail: skyshen87@gmail.com

    2016-08-15

    In this paper, we investigate a class of infinite-dimensional optimal control problems, where the state equation is given by a stochastic delay evolution equation with random coefficients, and the corresponding adjoint equation is given by an anticipated backward stochastic evolution equation. We first prove the continuous dependence theorems for stochastic delay evolution equations and anticipated backward stochastic evolution equations, and show the existence and uniqueness of solutions to anticipated backward stochastic evolution equations. Then we establish necessary and sufficient conditions for optimality of the control problem in the form of Pontryagin’s maximum principles. To illustrate the theoretical results, we applymore » stochastic maximum principles to study two examples, an infinite-dimensional linear-quadratic control problem with delay and an optimal control of a Dirichlet problem for a stochastic partial differential equation with delay. Further applications of the two examples to a Cauchy problem for a controlled linear stochastic partial differential equation and an optimal harvesting problem are also considered.« less

  3. Control system estimation and design for aerospace vehicles with time delay

    NASA Technical Reports Server (NTRS)

    Allgaier, G. R.; Williams, T. L.

    1972-01-01

    The problems of estimation and control of discrete, linear, time-varying systems are considered. Previous solutions to these problems involved either approximate techniques, open-loop control solutions, or results which required excessive computation. The estimation problem is solved by two different methods, both of which yield the identical algorithm for determining the optimal filter. The partitioned results achieve a substantial reduction in computation time and storage requirements over the expanded solution, however. The results reduce to the Kalman filter when no delays are present in the system. The control problem is also solved by two different methods, both of which yield identical algorithms for determining the optimal control gains. The stochastic control is shown to be identical to the deterministic control, thus extending the separation principle to time delay systems. The results obtained reduce to the familiar optimal control solution when no time delays are present in the system.

  4. Digital time delay

    DOEpatents

    Martin, A.D.

    1986-05-09

    Method and apparatus are provided for generating an output pulse following a trigger pulse at a time delay interval preset with a resolution which is high relative to a low resolution available from supplied clock pulses. A first lumped constant delay provides a first output signal at predetermined interpolation intervals corresponding to the desired high resolution time interval. Latching circuits latch the high resolution data to form a first synchronizing data set. A selected time interval has been preset to internal counters and corrected for circuit propagation delay times having the same order of magnitude as the desired high resolution. Internal system clock pulses count down the counters to generate an internal pulse delayed by an internal which is functionally related to the preset time interval. A second LCD corrects the internal signal with the high resolution time delay. A second internal pulse is then applied to a third LCD to generate a second set of synchronizing data which is complementary with the first set of synchronizing data for presentation to logic circuits. The logic circuits further delay the internal output signal with the internal pulses. The final delayed output signal thereafter enables the output pulse generator to produce the desired output pulse at the preset time delay interval following input of the trigger pulse.

  5. Adaptive logical stochastic resonance in time-delayed synthetic genetic networks

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Zheng, Wenbin; Song, Aiguo

    2018-04-01

    In the paper, the concept of logical stochastic resonance is applied to implement logic operation and latch operation in time-delayed synthetic genetic networks derived from a bacteriophage λ. Clear logic operation and latch operation can be obtained when the network is tuned by modulated periodic force and time-delay. In contrast with the previous synthetic genetic networks based on logical stochastic resonance, the proposed system has two advantages. On one hand, adding modulated periodic force to the background noise can increase the length of the optimal noise plateau of obtaining desired logic response and make the system adapt to varying noise intensity. On the other hand, tuning time-delay can extend the optimal noise plateau to larger range. The result provides possible help for designing new genetic regulatory networks paradigm based on logical stochastic resonance.

  6. Effect of metrology time delay on overlay APC

    NASA Astrophysics Data System (ADS)

    Carlson, Alan; DiBiase, Debra

    2002-07-01

    The run-to-run control strategy of lithography APC is primarily composed of a feedback loop as shown in the diagram below. It is known that the insertion of a time delay in a feedback loop can cause degradation in control performance and could even cause a stable system to become unstable, if the time delay becomes sufficiently large. Many proponents of integrated metrology methods have cited the damage caused by metrology time delays as the primary justification for moving from a stand-alone to integrated metrology. While there is little dispute over the qualitative form of this argument, there has been very light published about the quantitative effects under real fab conditions - precisely how much control is lost due to these time delays. Another issue regarding time delays is that the length of these delays is not typically fixed - they vary from lot to lot and in some cases this variance can be large - from one hour on the short side to over 32 hours on the long side. Concern has been expressed that the variability in metrology time delays can cause undesirable dynamics in feedback loops that make it difficult to optimize feedback filters and gains and at worst could drive a system unstable. By using data from numerous fabs, spanning many sizes and styles of operation, we have conducted a quantitative study of the time delay effect on overlay run- to-run control. Our analysis resulted in the following conclusions: (1) There is a significant and material relationship between metrology time delay and overlay control under a variety of real world production conditions. (2) The run-to-run controller can be configured to minimize sensitivity to time delay variations. (3) The value of moving to integrated metrology can be quantified.

  7. Two-Channel Transparency-Optimized Control Architectures in Bilateral Teleoperation With Time Delay.

    PubMed

    Kim, Jonghyun; Chang, Pyung Hun; Park, Hyung-Soon

    2013-01-01

    This paper introduces transparency-optimized control architectures (TOCAs) using two communication channels. Two classes of two-channel TOCAs are found, thereby showing that two channels are sufficient to achieve transparency. These TOCAs achieve a greater level of transparency but poorer stability than three-channel TOCAs and four-channel TOCAs. Stability of the two-channel TOCAs has been enhanced while minimizing transparency degradation by adding a filter; and a combined use of the two classes of two-channel TOCAs is proposed for both free space and constrained motion, which involve switching between two TOCAs for transition between free space and constrained motions. The stability condition of the switched teleoperation system is derived for practical applications. Through the one degree-of-freedom (DOF) experiment, the proposed two-channel TOCAs were shown to operate stably, while achieving better transparency under time delay than the other TOCAs.

  8. Optimizing Aesthetic Outcomes in Delayed Breast Reconstruction

    PubMed Central

    2017-01-01

    Background: The need to restore both the missing breast volume and breast surface area makes achieving excellent aesthetic outcomes in delayed breast reconstruction especially challenging. Autologous breast reconstruction can be used to achieve both goals. The aim of this study was to identify surgical maneuvers that can optimize aesthetic outcomes in delayed breast reconstruction. Methods: This is a retrospective review of operative and clinical records of all patients who underwent unilateral or bilateral delayed breast reconstruction with autologous tissue between April 2014 and January 2017. Three groups of delayed breast reconstruction patients were identified based on patient characteristics. Results: A total of 26 flaps were successfully performed in 17 patients. Key surgical maneuvers for achieving aesthetically optimal results were identified. A statistically significant difference for volume requirements was identified in cases where a delayed breast reconstruction and a contralateral immediate breast reconstruction were performed simultaneously. Conclusions: Optimal aesthetic results can be achieved with: (1) restoration of breast skin envelope with tissue expansion when possible, (2) optimal positioning of a small skin paddle to be later incorporated entirely into a nipple areola reconstruction when adequate breast skin surface area is present, (3) limiting the reconstructed breast mound to 2 skin tones when large area skin resurfacing is required, (4) increasing breast volume by deepithelializing, not discarding, the inferior mastectomy flap skin, (5) eccentric division of abdominal flaps when an immediate and delayed bilateral breast reconstructions are performed simultaneously; and (6) performing second-stage breast reconstruction revisions and fat grafting. PMID:28894666

  9. Two-Channel Transparency-Optimized Control Architectures in Bilateral Teleoperation With Time Delay

    PubMed Central

    Kim, Jonghyun; Chang, Pyung Hun; Park, Hyung-Soon

    2013-01-01

    This paper introduces transparency-optimized control architectures (TOCAs) using two communication channels. Two classes of two-channel TOCAs are found, thereby showing that two channels are sufficient to achieve transparency. These TOCAs achieve a greater level of transparency but poorer stability than three-channel TOCAs and four-channel TOCAs. Stability of the two-channel TOCAs has been enhanced while minimizing transparency degradation by adding a filter; and a combined use of the two classes of two-channel TOCAs is proposed for both free space and constrained motion, which involve switching between two TOCAs for transition between free space and constrained motions. The stability condition of the switched teleoperation system is derived for practical applications. Through the one degree-of-freedom (DOF) experiment, the proposed two-channel TOCAs were shown to operate stably, while achieving better transparency under time delay than the other TOCAs. PMID:23833548

  10. Local Bifurcations and Optimal Theory in a Delayed Predator-Prey Model with Threshold Prey Harvesting

    NASA Astrophysics Data System (ADS)

    Tankam, Israel; Tchinda Mouofo, Plaire; Mendy, Abdoulaye; Lam, Mountaga; Tewa, Jean Jules; Bowong, Samuel

    2015-06-01

    We investigate the effects of time delay and piecewise-linear threshold policy harvesting for a delayed predator-prey model. It is the first time that Holling response function of type III and the present threshold policy harvesting are associated with time delay. The trajectories of our delayed system are bounded; the stability of each equilibrium is analyzed with and without delay; there are local bifurcations as saddle-node bifurcation and Hopf bifurcation; optimal harvesting is also investigated. Numerical simulations are provided in order to illustrate each result.

  11. Delay-Dependent Stability Criterion for Bidirectional Associative Memory Neural Networks with Interval Time-Varying Delays

    NASA Astrophysics Data System (ADS)

    Park, Ju H.; Kwon, O. M.

    In the letter, the global asymptotic stability of bidirectional associative memory (BAM) neural networks with delays is investigated. The delay is assumed to be time-varying and belongs to a given interval. A novel stability criterion for the stability is presented based on the Lyapunov method. The criterion is represented in terms of linear matrix inequality (LMI), which can be solved easily by various optimization algorithms. Two numerical examples are illustrated to show the effectiveness of our new result.

  12. Real-time energy-saving metro train rescheduling with primary delay identification

    PubMed Central

    Li, Keping; Schonfeld, Paul

    2018-01-01

    This paper aims to reschedule online metro trains in delay scenarios. A graph representation and a mixed integer programming model are proposed to formulate the optimization problem. The solution approach is a two-stage optimization method. In the first stage, based on a proposed train state graph and system analysis, the primary and flow-on delays are specifically analyzed and identified with a critical path algorithm. For the second stage a hybrid genetic algorithm is designed to optimize the schedule, with the delay identification results as input. Then, based on the infrastructure data of Beijing Subway Line 4 of China, case studies are presented to demonstrate the effectiveness and efficiency of the solution approach. The results show that the algorithm can quickly and accurately identify primary delays among different types of delays. The economic cost of energy consumption and total delay is considerably reduced (by more than 10% in each case). The computation time of the Hybrid-GA is low enough for rescheduling online. Sensitivity analyses further demonstrate that the proposed approach can be used as a decision-making support tool for operators. PMID:29474471

  13. An optimal control model approach to the design of compensators for simulator delay

    NASA Technical Reports Server (NTRS)

    Baron, S.; Lancraft, R.; Caglayan, A.

    1982-01-01

    The effects of display delay on pilot performance and workload and of the design of the filters to ameliorate these effects were investigated. The optimal control model for pilot/vehicle analysis was used both to determine the potential delay effects and to design the compensators. The model was applied to a simple roll tracking task and to a complex hover task. The results confirm that even small delays can degrade performance and impose a workload penalty. A time-domain compensator designed by using the optimal control model directly appears capable of providing extensive compensation for these effects even in multi-input, multi-output problems.

  14. Numerical simulation of time delay Interferometry for LISA with one arm dysfunctional

    NASA Astrophysics Data System (ADS)

    Ni, Wei-Tou; Dhurandhar, Sanjeev V.; Nayak, K. Rajesh; Wang, Gang

    In order to attain the requisite sensitivity for LISA, laser frequency noise must be suppressed below the secondary noises such as the optical path noise, acceleration noise etc. In a previous paper(a), we have found an infinite family of second generation analytic solutions of time delay interferometry and estimated the laser noise due to residual time delay semi-analytically from orbit perturbations due to earth. Since other planets and solar-system bodies also perturb the orbits of LISA spacecraft and affect the time delay interferometry, we simulate the time delay numerically in this paper. To conform to the actual LISA planning, we have worked out a set of 10-year optimized mission orbits of LISA spacecraft using CGC3 ephemeris framework(b). Here we use this numerical solution to calculate the residual errors in the second generation solutions upto n 3 of our previous paper, and compare with the semi-analytic error estimate. The accuracy of this calculation is better than 1 m (or 30 ns). (a) S. V. Dhurandhar, K. Rajesh Nayak and J.-Y. Vinet, time delay Interferometry for LISA with one arm dysfunctional (b) W.-T. Ni and G. Wang, Orbit optimization for 10-year LISA mission orbit starting at 21 June, 2021 using CGC3 ephemeris framework

  15. Channel Noise-Enhanced Synchronization Transitions Induced by Time Delay in Adaptive Neuronal Networks with Spike-Timing-Dependent Plasticity

    NASA Astrophysics Data System (ADS)

    Xie, Huijuan; Gong, Yubing; Wang, Baoying

    In this paper, we numerically study the effect of channel noise on synchronization transitions induced by time delay in adaptive scale-free Hodgkin-Huxley neuronal networks with spike-timing-dependent plasticity (STDP). It is found that synchronization transitions by time delay vary as channel noise intensity is changed and become most pronounced when channel noise intensity is optimal. This phenomenon depends on STDP and network average degree, and it can be either enhanced or suppressed as network average degree increases depending on channel noise intensity. These results show that there are optimal channel noise and network average degree that can enhance the synchronization transitions by time delay in the adaptive neuronal networks. These findings could be helpful for better understanding of the regulation effect of channel noise on synchronization of neuronal networks. They could find potential implications for information transmission in neural systems.

  16. An adaptive, individualized fMRI delay discounting procedure to increase flexibility and optimize scanner time.

    PubMed

    Koffarnus, Mikhail N; Deshpande, Harshawardhan U; Lisinski, Jonathan M; Eklund, Anders; Bickel, Warren K; LaConte, Stephen M

    2017-11-01

    Research on the rate at which people discount the value of future rewards has become increasingly prevalent as discount rate has been shown to be associated with many unhealthy patterns of behavior such as drug abuse, gambling, and overeating. fMRI research points to a fronto-parietal-limbic pathway that is active during decisions between smaller amounts of money now and larger amounts available after a delay. Researchers in this area have used different variants of delay discounting tasks and reported various contrasts between choice trials of different types from these tasks. For instance, researchers have compared 1) choices of delayed monetary amounts to choices of the immediate monetary amounts, 2) 'hard' choices made near one's point of indifference to 'easy' choices that require little thought, and 3) trials where an immediate choice is available versus trials where one is unavailable, regardless of actual eventual choice. These differences in procedure and analysis make comparison of results across studies difficult. In the present experiment, we designed a delay discounting task with the intended capability of being able to construct contrasts of all three comparisons listed above while optimizing scanning time to reduce costs and avoid participant fatigue. This was accomplished with an algorithm that customized the choice trials presented to each participant with the goal of equalizing choice trials of each type. We compared this task, which we refer to here as the individualized discounting task (IDT), to two other delay discounting tasks previously reported in the literature (McClure et al., 2004; Amlung et al., 2014) in 18 participants. Results show that the IDT can examine each of the three contrasts mentioned above, while yielding a similar degree of activation as the reference tasks. This suggests that this new task could be used in delay discounting fMRI studies to allow researchers to more easily compare their results to a majority of previous

  17. Smart-Grid Backbone Network Real-Time Delay Reduction via Integer Programming.

    PubMed

    Pagadrai, Sasikanth; Yilmaz, Muhittin; Valluri, Pratyush

    2016-08-01

    This research investigates an optimal delay-based virtual topology design using integer linear programming (ILP), which is applied to the current backbone networks such as smart-grid real-time communication systems. A network traffic matrix is applied and the corresponding virtual topology problem is solved using the ILP formulations that include a network delay-dependent objective function and lightpath routing, wavelength assignment, wavelength continuity, flow routing, and traffic loss constraints. The proposed optimization approach provides an efficient deterministic integration of intelligent sensing and decision making, and network learning features for superior smart grid operations by adaptively responding the time-varying network traffic data as well as operational constraints to maintain optimal virtual topologies. A representative optical backbone network has been utilized to demonstrate the proposed optimization framework whose simulation results indicate that superior smart-grid network performance can be achieved using commercial networks and integer programming.

  18. Robust stability of bidirectional associative memory neural networks with time delays

    NASA Astrophysics Data System (ADS)

    Park, Ju H.

    2006-01-01

    Based on the Lyapunov Krasovskii functionals combined with linear matrix inequality approach, a novel stability criterion is proposed for asymptotic stability of bidirectional associative memory neural networks with time delays. A novel delay-dependent stability criterion is given in terms of linear matrix inequalities, which can be solved easily by various optimization algorithms.

  19. The Impact of Competing Time Delays in Stochastic Coordination Problems

    NASA Astrophysics Data System (ADS)

    Korniss, G.; Hunt, D.; Szymanski, B. K.

    2011-03-01

    Coordinating, distributing, and balancing resources in coupled systems is a complex task as these operations are very sensitive to time delays. Delays are present in most real communication and information systems, including info-social and neuro-biological networks, and can be attributed to both non-zero transmission times between different units of the system and to non-zero times it takes to process the information and execute the desired action at the individual units. Here, we investigate the importance and impact of these two types of delays in a simple coordination (synchronization) problem in a noisy environment. We establish the scaling theory for the phase boundary of synchronization and for the steady-state fluctuations in the synchronizable regime. Further, we provide the asymptotic behavior near the boundary of the synchronizable regime. Our results also imply the potential for optimization and trade-offs in stochastic synchronization and coordination problems with time delays. Supported in part by DTRA, ARL, and ONR.

  20. Optimal control strategy for an impulsive stochastic competition system with time delays and jumps

    NASA Astrophysics Data System (ADS)

    Liu, Lidan; Meng, Xinzhu; Zhang, Tonghua

    2017-07-01

    Driven by both white and jump noises, a stochastic delayed model with two competitive species in a polluted environment is proposed and investigated. By using the comparison theorem of stochastic differential equations and limit superior theory, sufficient conditions for persistence in mean and extinction of two species are established. In addition, we obtain that the system is asymptotically stable in distribution by using ergodic method. Furthermore, the optimal harvesting effort and the maximum of expectation of sustainable yield (ESY) are derived from Hessian matrix method and optimal harvesting theory of differential equations. Finally, some numerical simulations are provided to illustrate the theoretical results.

  1. Spatiotemporal topology and temporal sequence identification with an adaptive time-delay neural network

    NASA Astrophysics Data System (ADS)

    Lin, Daw-Tung; Ligomenides, Panos A.; Dayhoff, Judith E.

    1993-08-01

    Inspired from the time delays that occur in neurobiological signal transmission, we describe an adaptive time delay neural network (ATNN) which is a powerful dynamic learning technique for spatiotemporal pattern transformation and temporal sequence identification. The dynamic properties of this network are formulated through the adaptation of time-delays and synapse weights, which are adjusted on-line based on gradient descent rules according to the evolution of observed inputs and outputs. We have applied the ATNN to examples that possess spatiotemporal complexity, with temporal sequences that are completed by the network. The ATNN is able to be applied to pattern completion. Simulation results show that the ATNN learns the topology of a circular and figure eight trajectories within 500 on-line training iterations, and reproduces the trajectory dynamically with very high accuracy. The ATNN was also trained to model the Fourier series expansion of the sum of different odd harmonics. The resulting network provides more flexibility and efficiency than the TDNN and allows the network to seek optimal values for time-delays as well as optimal synapse weights.

  2. VARIABLE TIME DELAY MEANS

    DOEpatents

    Clemensen, R.E.

    1959-11-01

    An electrically variable time delay line is described which may be readily controlled simuitaneously with variable impedance matching means coupied thereto such that reflections are prevented. Broadly, the delay line includes a signal winding about a magnetic core whose permeability is electrically variable. Inasmuch as the inductance of the line varies directly with the permeability, the time delay and characteristic impedance of the line both vary as the square root of the permeability. Consequently, impedance matching means may be varied similariy and simultaneously w:th the electrically variable permeability to match the line impedance over the entire range of time delay whereby reflections are prevented.

  3. PRECISION TIME-DELAY CIRCUIT

    DOEpatents

    Creveling, R.

    1959-03-17

    A tine-delay circuit which produces a delay time in d. The circuit a capacitor, an te back resistance, connected serially with the anode of the diode going to ground. At the start of the time delay a negative stepfunction is applied to the series circuit and initiates a half-cycle transient oscillatory voltage terminated by a transient oscillatory voltage of substantially higher frequency. The output of the delay circuit is taken at the junction of the inductor and diode where a sudden voltage rise appears after the initiation of the higher frequency transient oscillations.

  4. 49 CFR 236.563 - Delay time.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Delay time. 236.563 Section 236.563 Transportation... Cab Signal Systems Rules and Instructions; Locomotives § 236.563 Delay time. Delay time of automatic... requirements of § 236.24 shall take into consideration the delay time. ...

  5. 49 CFR 236.563 - Delay time.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Delay time. 236.563 Section 236.563 Transportation... Cab Signal Systems Rules and Instructions; Locomotives § 236.563 Delay time. Delay time of automatic... requirements of § 236.24 shall take into consideration the delay time. ...

  6. The apparent inversion time for optimal delayed enhancement magnetic resonance imaging differs between the right and left ventricles.

    PubMed

    Desai, Milind Y; Gupta, Sandeep; Bomma, Chandra; Tandri, Harikrishna; Foo, Thomas K; Lima, Joao A C; Bluemke, David A

    2005-01-01

    Delayed post-contrast magnetic resonance (MR) imaging involves suppression of signal from myocardium using inversion times (TI) between 150-225 ms, when the myocardium appears dark and fibrotic scar appears bright. We noticed that at a TI optimized for signal suppression of the left ventricle (LV), the right ventricle (RV) appeared brighter. The purpose of this study was to evaluate the TI for signal suppression in RV compared to LV, and to try and identify the cause of this observation. Methods. We studied 31 patients (ages ranged from 17-79 years, 11 females) who had an MR scan on a 1.5 T GE scanner. Delayed post-contrast short-axis images were obtained 20 minutes after injection of 0.2 mmol/kg of intravenous gadolinium chelate. TI optimization was performed by acquiring a range of TI times within a single breath hold, in increments of 25 msec. The TI time that resulted in lowest signal for the RV arid LV was recorded. With the imaging sequence employed, the TI leading to LV signal suppression ranged from 150-225 ms. At the TI that resulted in LV signal suppression, the corrected signal from the RV was significantly higher as compared to the LV (29 +/- 13 au vs. 15 +/- 8 au, p < 0.001). The findings were similar using only the body coil. The TI required to suppress the RV was usually < or =150 msec. The observation persisted before and after gadolinium infusion. The TI for myocardial signal suppression appears to be different between LV and RV. Potential mechanisms include partial volume averaging with fat or blood pool (related to increased trabeculation) in the RV. Alternatively, increased blood pool signal (within Thebesian veins or arterioluminal communications) in RV compared to LV leads to altered TI times due to similar partial volume effects.

  7. Market-based control strategy for long-span structures considering the multi-time delay issue

    NASA Astrophysics Data System (ADS)

    Li, Hongnan; Song, Jianzhu; Li, Gang

    2017-01-01

    To solve the different time delays that exist in the control device installed on spatial structures, in this study, discrete analysis using a 2 N precise algorithm was selected to solve the multi-time-delay issue for long-span structures based on the market-based control (MBC) method. The concept of interval mixed energy was introduced from computational structural mechanics and optimal control research areas, and it translates the design of the MBC multi-time-delay controller into a solution for the segment matrix. This approach transforms the serial algorithm in time to parallel computing in space, greatly improving the solving efficiency and numerical stability. The designed controller is able to consider the issue of time delay with a linear controlling force combination and is especially effective for large time-delay conditions. A numerical example of a long-span structure was selected to demonstrate the effectiveness of the presented controller, and the time delay was found to have a significant impact on the results.

  8. Inverse optimal design of input-to-state stabilisation for affine nonlinear systems with input delays

    NASA Astrophysics Data System (ADS)

    Cai, Xiushan; Meng, Lingxin; Zhang, Wei; Liu, Leipo

    2018-03-01

    We establish robustness of the predictor feedback control law to perturbations appearing at the system input for affine nonlinear systems with time-varying input delay and additive disturbances. Furthermore, it is shown that it is inverse optimal with respect to a differential game problem. All of the stability and inverse optimality proofs are based on the infinite-dimensional backstepping transformation and an appropriate Lyapunov functional. A single-link manipulator subject to input delays and disturbances is given to illustrate the validity of the proposed method.

  9. Optimal harvesting of a stochastic delay logistic model with Lévy jumps

    NASA Astrophysics Data System (ADS)

    Qiu, Hong; Deng, Wenmin

    2016-10-01

    The optimal harvesting problem of a stochastic time delay logistic model with Lévy jumps is considered in this article. We first show that the model has a unique global positive solution and discuss the uniform boundedness of its pth moment with harvesting. Then we prove that the system is globally attractive and asymptotically stable in distribution under our assumptions. Furthermore, we obtain the existence of the optimal harvesting effort by the ergodic method, and then we give the explicit expression of the optimal harvesting policy and maximum yield.

  10. A TOTP-Based Enhanced Route Optimization Procedure for Mobile IPv6 to Reduce Handover Delay and Signalling Overhead

    PubMed Central

    Shah, Peer Azmat; Hasbullah, Halabi B.; Lawal, Ibrahim A.; Aminu Mu'azu, Abubakar; Tang Jung, Low

    2014-01-01

    Due to the proliferation of handheld mobile devices, multimedia applications like Voice over IP (VoIP), video conferencing, network music, and online gaming are gaining popularity in recent years. These applications are well known to be delay sensitive and resource demanding. The mobility of mobile devices, running these applications, across different networks causes delay and service disruption. Mobile IPv6 was proposed to provide mobility support to IPv6-based mobile nodes for continuous communication when they roam across different networks. However, the Route Optimization procedure in Mobile IPv6 involves the verification of mobile node's reachability at the home address and at the care-of address (home test and care-of test) that results in higher handover delays and signalling overhead. This paper presents an enhanced procedure, time-based one-time password Route Optimization (TOTP-RO), for Mobile IPv6 Route Optimization that uses the concepts of shared secret Token, time based one-time password (TOTP) along with verification of the mobile node via direct communication and maintaining the status of correspondent node's compatibility. The TOTP-RO was implemented in network simulator (NS-2) and an analytical analysis was also made. Analysis showed that TOTP-RO has lower handover delays, packet loss, and signalling overhead with an increased level of security as compared to the standard Mobile IPv6's Return-Routability-based Route Optimization (RR-RO). PMID:24688398

  11. A TOTP-based enhanced route optimization procedure for mobile IPv6 to reduce handover delay and signalling overhead.

    PubMed

    Shah, Peer Azmat; Hasbullah, Halabi B; Lawal, Ibrahim A; Aminu Mu'azu, Abubakar; Tang Jung, Low

    2014-01-01

    Due to the proliferation of handheld mobile devices, multimedia applications like Voice over IP (VoIP), video conferencing, network music, and online gaming are gaining popularity in recent years. These applications are well known to be delay sensitive and resource demanding. The mobility of mobile devices, running these applications, across different networks causes delay and service disruption. Mobile IPv6 was proposed to provide mobility support to IPv6-based mobile nodes for continuous communication when they roam across different networks. However, the Route Optimization procedure in Mobile IPv6 involves the verification of mobile node's reachability at the home address and at the care-of address (home test and care-of test) that results in higher handover delays and signalling overhead. This paper presents an enhanced procedure, time-based one-time password Route Optimization (TOTP-RO), for Mobile IPv6 Route Optimization that uses the concepts of shared secret Token, time based one-time password (TOTP) along with verification of the mobile node via direct communication and maintaining the status of correspondent node's compatibility. The TOTP-RO was implemented in network simulator (NS-2) and an analytical analysis was also made. Analysis showed that TOTP-RO has lower handover delays, packet loss, and signalling overhead with an increased level of security as compared to the standard Mobile IPv6's Return-Routability-based Route Optimization (RR-RO).

  12. Finite-time H∞ control for a class of discrete-time switched time-delay systems with quantized feedback

    NASA Astrophysics Data System (ADS)

    Song, Haiyu; Yu, Li; Zhang, Dan; Zhang, Wen-An

    2012-12-01

    This paper is concerned with the finite-time quantized H∞ control problem for a class of discrete-time switched time-delay systems with time-varying exogenous disturbances. By using the sector bound approach and the average dwell time method, sufficient conditions are derived for the switched system to be finite-time bounded and ensure a prescribed H∞ disturbance attenuation level, and a mode-dependent quantized state feedback controller is designed by solving an optimization problem. Two illustrative examples are provided to demonstrate the effectiveness of the proposed theoretical results.

  13. Leveraging delay discounting for health: Can time delays influence food choice?

    PubMed

    Appelhans, Bradley M; French, Simone A; Olinger, Tamara; Bogucki, Michael; Janssen, Imke; Avery-Mamer, Elizabeth F; Powell, Lisa M

    2018-07-01

    Delay discounting, the tendency to choose smaller immediate rewards over larger delayed rewards, is theorized to promote consumption of immediately rewarding but unhealthy foods at the expense of long-term weight maintenance and nutritional health. An untested implication of delay discounting models of decision-making is that selectively delaying access to less healthy foods may promote selection of healthier (immediately available) alternatives, even if they may be less desirable. The current study tested this hypothesis by measuring healthy versus regular vending machine snack purchasing before and during the implementation of a 25-s time delay on the delivery of regular snacks. Purchasing was also examined under a $0.25 discount on healthy snacks, a $0.25 tax on regular snacks, and the combination of both pricing interventions with the 25-s time delay. Across 32,019 vending sales from three separate vending locations, the 25-s time delay increased healthy snack purchasing from 40.1% to 42.5%, which was comparable to the impact of a $0.25 discount (43.0%). Combining the delay and the discount had a roughly additive effect (46.0%). However, the strongest effects were seen under the $0.25 tax on regular snacks (53.7%) and the combination of the delay and the tax (50.2%). Intervention effects varied substantially between vending locations. Importantly, time delays did not harm overall vending sales or revenue, which is relevant to the real-world feasibility of this intervention. More investigation is needed to better understand how the impact of time delays on food choice varies across populations, evaluate the effects of time delays on beverage vending choices, and extend this approach to food choices in contexts other than vending machines. ClinicalTrials.gov, NCT02359916. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. A comparison of cosmological models using time delay lenses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Jun-Jie; Wu, Xue-Feng; Melia, Fulvio, E-mail: jjwei@pmo.ac.cn, E-mail: xfwu@pmo.ac.cn, E-mail: fmelia@email.arizona.edu

    2014-06-20

    The use of time-delay gravitational lenses to examine the cosmological expansion introduces a new standard ruler with which to test theoretical models. The sample suitable for this kind of work now includes 12 lens systems, which have thus far been used solely for optimizing the parameters of ΛCDM. In this paper, we broaden the base of support for this new, important cosmic probe by using these observations to carry out a one-on-one comparison between competing models. The currently available sample indicates a likelihood of ∼70%-80% that the R {sub h} = ct universe is the correct cosmology versus ∼20%-30% formore » the standard model. This possibly interesting result reinforces the need to greatly expand the sample of time-delay lenses, e.g., with the successful implementation of the Dark Energy Survey, the VST ATLAS survey, and the Large Synoptic Survey Telescope. In anticipation of a greatly expanded catalog of time-delay lenses identified with these surveys, we have produced synthetic samples to estimate how large they would have to be in order to rule out either model at a ∼99.7% confidence level. We find that if the real cosmology is ΛCDM, a sample of ∼150 time-delay lenses would be sufficient to rule out R {sub h} = ct at this level of accuracy, while ∼1000 time-delay lenses would be required to rule out ΛCDM if the real universe is instead R {sub h} = ct. This difference in required sample size reflects the greater number of free parameters available to fit the data with ΛCDM.« less

  15. Consensus for multi-agent systems with time-varying input delays

    NASA Astrophysics Data System (ADS)

    Yuan, Chengzhi; Wu, Fen

    2017-10-01

    This paper addresses the consensus control problem for linear multi-agent systems subject to uniform time-varying input delays and external disturbance. A novel state-feedback consensus protocol is proposed under the integral quadratic constraint (IQC) framework, which utilises not only the relative state information from neighbouring agents but also the real-time information of delays by means of the dynamic IQC system states for feedback control. Based on this new consensus protocol, the associated IQC-based control synthesis conditions are established and fully characterised as linear matrix inequalities (LMIs), such that the consensus control solution with optimal ? disturbance attenuation performance can be synthesised efficiently via convex optimisation. A numerical example is used to demonstrate the proposed approach.

  16. Incorporating time-delays in S-System model for reverse engineering genetic networks.

    PubMed

    Chowdhury, Ahsan Raja; Chetty, Madhu; Vinh, Nguyen Xuan

    2013-06-18

    In any gene regulatory network (GRN), the complex interactions occurring amongst transcription factors and target genes can be either instantaneous or time-delayed. However, many existing modeling approaches currently applied for inferring GRNs are unable to represent both these interactions simultaneously. As a result, all these approaches cannot detect important interactions of the other type. S-System model, a differential equation based approach which has been increasingly applied for modeling GRNs, also suffers from this limitation. In fact, all S-System based existing modeling approaches have been designed to capture only instantaneous interactions, and are unable to infer time-delayed interactions. In this paper, we propose a novel Time-Delayed S-System (TDSS) model which uses a set of delay differential equations to represent the system dynamics. The ability to incorporate time-delay parameters in the proposed S-System model enables simultaneous modeling of both instantaneous and time-delayed interactions. Furthermore, the delay parameters are not limited to just positive integer values (corresponding to time stamps in the data), but can also take fractional values. Moreover, we also propose a new criterion for model evaluation exploiting the sparse and scale-free nature of GRNs to effectively narrow down the search space, which not only reduces the computation time significantly but also improves model accuracy. The evaluation criterion systematically adapts the max-min in-degrees and also systematically balances the effect of network accuracy and complexity during optimization. The four well-known performance measures applied to the experimental studies on synthetic networks with various time-delayed regulations clearly demonstrate that the proposed method can capture both instantaneous and delayed interactions correctly with high precision. The experiments carried out on two well-known real-life networks, namely IRMA and SOS DNA repair network in

  17. Correction of ultrasonic wave aberration with a time delay and amplitude filter.

    PubMed

    Måsøy, Svein-Erik; Johansen, Tonni F; Angelsen, Bjørn

    2003-04-01

    Two-dimensional simulations with propagation through two different heterogeneous human body wall models have been performed to analyze different correction filters for ultrasonic wave aberration due to forward wave propagation. The different models each produce most of the characteristic aberration effects such as phase aberration, relatively strong amplitude aberration, and waveform deformation. Simulations of wave propagation from a point source in the focus (60 mm) of a 20 mm transducer through the body wall models were performed. Center frequency of the pulse was 2.5 MHz. Corrections of the aberrations introduced by the two body wall models were evaluated with reference to the corrections obtained with the optimal filter: a generalized frequency-dependent phase and amplitude correction filter [Angelsen, Ultrasonic Imaging (Emantec, Norway, 2000), Vol. II]. Two correction filters were applied, a time delay filter, and a time delay and amplitude filter. Results showed that correction with a time delay filter produced substantial reduction of the aberration in both cases. A time delay and amplitude correction filter performed even better in both cases, and gave correction close to the ideal situation (no aberration). The results also indicated that the effect of the correction was very sensitive to the accuracy of the arrival time fluctuations estimate, i.e., the time delay correction filter.

  18. Microlensing makes lensed quasar time delays significantly time variable

    NASA Astrophysics Data System (ADS)

    Tie, S. S.; Kochanek, C. S.

    2018-01-01

    The time delays of gravitationally lensed quasars are generally believed to be unique numbers whose measurement is limited only by the quality of the light curves and the models for the contaminating contribution of gravitational microlensing to the light curves. This belief is incorrect - gravitational microlensing also produces changes in the actual time delays on the ∼day(s) light-crossing time-scale of the emission region. This is due to a combination of the inclination of the disc relative to the line of sight and the differential magnification of the temperature fluctuations producing the variability. We demonstrate this both mathematically and with direct calculations using microlensing magnification patterns. Measuring these delay fluctuations can provide a physical scale for microlensing observations, removing the need for priors on either the microlens masses or the component velocities. That time delays in lensed quasars are themselves time variable likely explains why repeated delay measurements of individual lensed quasars appear to vary by more than their estimated uncertainties. This effect is also a new important systematic problem for attempts to use time delays in lensed quasars for cosmology or to detect substructures (satellites) in lens galaxies.

  19. The influences of delay time on the stability of a market model with stochastic volatility

    NASA Astrophysics Data System (ADS)

    Li, Jiang-Cheng; Mei, Dong-Cheng

    2013-02-01

    The effects of the delay time on the stability of a market model are investigated, by using a modified Heston model with a cubic nonlinearity and cross-correlated noise sources. These results indicate that: (i) There is an optimal delay time τo which maximally enhances the stability of the stock price under strong demand elasticity of stock price, and maximally reduces the stability of the stock price under weak demand elasticity of stock price; (ii) The cross correlation coefficient of noises and the delay time play an opposite role on the stability for the case of the delay time <τo and the same role for the case of the delay time >τo. Moreover, the probability density function of the escape time of stock price returns, the probability density function of the returns and the correlation function of the returns are compared with other literatures.

  20. A Cross-Layer Optimized Opportunistic Routing Scheme for Loss-and-Delay Sensitive WSNs

    PubMed Central

    Xu, Xin; Yuan, Minjiao; Liu, Xiao; Cai, Zhiping; Wang, Tian

    2018-01-01

    In wireless sensor networks (WSNs), communication links are typically error-prone and unreliable, so providing reliable and timely data routing for loss- and delay-sensitive applications in WSNs it is a challenge issue. Additionally, with specific thresholds in practical applications, the loss and delay sensitivity implies requirements for high reliability and low delay. Opportunistic Routing (OR) has been well studied in WSNs to improve reliability for error-prone and unreliable wireless communication links where the transmission power is assumed to be identical in the whole network. In this paper, a Cross-layer Optimized Opportunistic Routing (COOR) scheme is proposed to improve the communication link reliability and reduce delay for loss-and-delay sensitive WSNs. The main contribution of the COOR scheme is making full use of the remaining energy in networks to increase the transmission power of most nodes, which will provide a higher communication reliability or further transmission distance. Two optimization strategies referred to as COOR(R) and COOR(P) of the COOR scheme are proposed to improve network performance. In the case of increasing the transmission power, the COOR(R) strategy chooses a node that has a higher communication reliability with same distance in comparison to the traditional opportunistic routing when selecting the next hop candidate node. Since the reliability of data transmission is improved, the delay of the data reaching the sink is reduced by shortening the time of communication between candidate nodes. On the other hand, the COOR(P) strategy prefers a node that has the same communication reliability with longer distance. As a result, network performance can be improved for the following reasons: (a) the delay is reduced as fewer hops are needed while the packet reaches the sink in longer transmission distance circumstances; (b) the reliability can be improved since it is the product of the reliability of every hop of the routing path

  1. A Cross-Layer Optimized Opportunistic Routing Scheme for Loss-and-Delay Sensitive WSNs.

    PubMed

    Xu, Xin; Yuan, Minjiao; Liu, Xiao; Liu, Anfeng; Xiong, Neal N; Cai, Zhiping; Wang, Tian

    2018-05-03

    In wireless sensor networks (WSNs), communication links are typically error-prone and unreliable, so providing reliable and timely data routing for loss- and delay-sensitive applications in WSNs it is a challenge issue. Additionally, with specific thresholds in practical applications, the loss and delay sensitivity implies requirements for high reliability and low delay. Opportunistic Routing (OR) has been well studied in WSNs to improve reliability for error-prone and unreliable wireless communication links where the transmission power is assumed to be identical in the whole network. In this paper, a Cross-layer Optimized Opportunistic Routing (COOR) scheme is proposed to improve the communication link reliability and reduce delay for loss-and-delay sensitive WSNs. The main contribution of the COOR scheme is making full use of the remaining energy in networks to increase the transmission power of most nodes, which will provide a higher communication reliability or further transmission distance. Two optimization strategies referred to as COOR(R) and COOR(P) of the COOR scheme are proposed to improve network performance. In the case of increasing the transmission power, the COOR(R) strategy chooses a node that has a higher communication reliability with same distance in comparison to the traditional opportunistic routing when selecting the next hop candidate node. Since the reliability of data transmission is improved, the delay of the data reaching the sink is reduced by shortening the time of communication between candidate nodes. On the other hand, the COOR(P) strategy prefers a node that has the same communication reliability with longer distance. As a result, network performance can be improved for the following reasons: (a) the delay is reduced as fewer hops are needed while the packet reaches the sink in longer transmission distance circumstances; (b) the reliability can be improved since it is the product of the reliability of every hop of the routing path

  2. Optimizing Real-Time Vaccine Allocation in a Stochastic SIR Model

    PubMed Central

    Nguyen, Chantal; Carlson, Jean M.

    2016-01-01

    Real-time vaccination following an outbreak can effectively mitigate the damage caused by an infectious disease. However, in many cases, available resources are insufficient to vaccinate the entire at-risk population, logistics result in delayed vaccine deployment, and the interaction between members of different cities facilitates a wide spatial spread of infection. Limited vaccine, time delays, and interaction (or coupling) of cities lead to tradeoffs that impact the overall magnitude of the epidemic. These tradeoffs mandate investigation of optimal strategies that minimize the severity of the epidemic by prioritizing allocation of vaccine to specific subpopulations. We use an SIR model to describe the disease dynamics of an epidemic which breaks out in one city and spreads to another. We solve a master equation to determine the resulting probability distribution of the final epidemic size. We then identify tradeoffs between vaccine, time delay, and coupling, and we determine the optimal vaccination protocols resulting from these tradeoffs. PMID:27043931

  3. Tracking with time-delayed data in multisensor systems

    NASA Astrophysics Data System (ADS)

    Hilton, Richard D.; Martin, David A.; Blair, William D.

    1993-08-01

    When techniques for target tracking are expanded to make use of multiple sensors in a multiplatform system, the possibility of time delayed data becomes a reality. When a discrete-time Kalman filter is applied and some of the data entering the filter are delayed, proper processing of these late data is a necessity for obtaining an optimal estimate of a target's state. If this problem is not given special care, the quality of the state estimates can be degraded relative to that quality provided by a single sensor. A negative-time update technique is developed using the criteria of minimum mean-square error (MMSE) under the constraint that only the results of the most recent update are saved. The performance of the MMSE technique is compared to that of the ad hoc approach employed in the Cooperative Engagement Capabilities (CEC) system for processing data from multiple platforms. It was discovered that the MMSE technique is a stable solution to the negative-time update problem, while the CEC technique was found to be less than desirable when used with filters designed for tracking highly maneuvering targets at relatively low data rates. The MMSE negative-time update technique was found to be a superior alternative to the existing CEC negative-time update technique.

  4. Optimal harvesting of a stochastic delay tri-trophic food-chain model with Lévy jumps

    NASA Astrophysics Data System (ADS)

    Qiu, Hong; Deng, Wenmin

    2018-02-01

    In this paper, the optimal harvesting of a stochastic delay tri-trophic food-chain model with Lévy jumps is considered. We introduce two kinds of environmental perturbations in this model. One is called white noise which is continuous and is described by a stochastic integral with respect to the standard Brownian motion. And the other one is jumping noise which is modeled by a Lévy process. Under some mild assumptions, the critical values between extinction and persistent in the mean of each species are established. The sufficient and necessary criteria for the existence of optimal harvesting policy are established and the optimal harvesting effort and the maximum of sustainable yield are also obtained. We utilize the ergodic method to discuss the optimal harvesting problem. The results show that white noises and Lévy noises significantly affect the optimal harvesting policy while time delays is harmless for the optimal harvesting strategy in some cases. At last, some numerical examples are introduced to show the validity of our results.

  5. Delay-range-dependent chaos synchronization approach under varying time-lags and delayed nonlinear coupling.

    PubMed

    Zaheer, Muhammad Hamad; Rehan, Muhammad; Mustafa, Ghulam; Ashraf, Muhammad

    2014-11-01

    This paper proposes a novel state feedback delay-range-dependent control approach for chaos synchronization in coupled nonlinear time-delay systems. The coupling between two systems is esteemed to be nonlinear subject to time-lags. Time-varying nature of both the intrinsic and the coupling delays is incorporated to broad scope of the present study for a better-quality synchronization controller synthesis. Lyapunov-Krasovskii (LK) functional is employed to derive delay-range-dependent conditions that can be solved by means of the conventional linear matrix inequality (LMI)-tools. The resultant control approach for chaos synchronization of the master-slave time-delay systems considers non-zero lower bound of the intrinsic as well as the coupling time-delays. Further, the delay-dependent synchronization condition has been established as a special case of the proposed LK functional treatment. Furthermore, a delay-range-dependent condition, independent of the delay-rate, has been provided to address the situation when upper bound of the delay-derivative is unknown. A robust state feedback control methodology is formulated for synchronization of the time-delay chaotic networks against the L2 norm bounded perturbations by minimizing the L2 gain from the disturbance to the synchronization error. Numerical simulation results are provided for the time-delay chaotic networks to show effectiveness of the proposed delay-range-dependent chaos synchronization methodologies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  6. 49 CFR 236.831 - Time, delay.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Time, delay. 236.831 Section 236.831 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Time, delay. As applied to an automatic train stop or train control system, the time which elapses...

  7. Effects of computing time delay on real-time control systems

    NASA Technical Reports Server (NTRS)

    Shin, Kang G.; Cui, Xianzhong

    1988-01-01

    The reliability of a real-time digital control system depends not only on the reliability of the hardware and software used, but also on the speed in executing control algorithms. The latter is due to the negative effects of computing time delay on control system performance. For a given sampling interval, the effects of computing time delay are classified into the delay problem and the loss problem. Analysis of these two problems is presented as a means of evaluating real-time control systems. As an example, both the self-tuning predicted (STP) control and Proportional-Integral-Derivative (PID) control are applied to the problem of tracking robot trajectories, and their respective effects of computing time delay on control performance are comparatively evaluated. For this example, the STP (PID) controller is shown to outperform the PID (STP) controller in coping with the delay (loss) problem.

  8. Delay differential analysis of time series.

    PubMed

    Lainscsek, Claudia; Sejnowski, Terrence J

    2015-03-01

    Nonlinear dynamical system analysis based on embedding theory has been used for modeling and prediction, but it also has applications to signal detection and classification of time series. An embedding creates a multidimensional geometrical object from a single time series. Traditionally either delay or derivative embeddings have been used. The delay embedding is composed of delayed versions of the signal, and the derivative embedding is composed of successive derivatives of the signal. The delay embedding has been extended to nonuniform embeddings to take multiple timescales into account. Both embeddings provide information on the underlying dynamical system without having direct access to all the system variables. Delay differential analysis is based on functional embeddings, a combination of the derivative embedding with nonuniform delay embeddings. Small delay differential equation (DDE) models that best represent relevant dynamic features of time series data are selected from a pool of candidate models for detection or classification. We show that the properties of DDEs support spectral analysis in the time domain where nonlinear correlation functions are used to detect frequencies, frequency and phase couplings, and bispectra. These can be efficiently computed with short time windows and are robust to noise. For frequency analysis, this framework is a multivariate extension of discrete Fourier transform (DFT), and for higher-order spectra, it is a linear and multivariate alternative to multidimensional fast Fourier transform of multidimensional correlations. This method can be applied to short or sparse time series and can be extended to cross-trial and cross-channel spectra if multiple short data segments of the same experiment are available. Together, this time-domain toolbox provides higher temporal resolution, increased frequency and phase coupling information, and it allows an easy and straightforward implementation of higher-order spectra across time

  9. Estimation of coupling between time-delay systems from time series

    NASA Astrophysics Data System (ADS)

    Prokhorov, M. D.; Ponomarenko, V. I.

    2005-07-01

    We propose a method for estimation of coupling between the systems governed by scalar time-delay differential equations of the Mackey-Glass type from the observed time series data. The method allows one to detect the presence of certain types of linear coupling between two time-delay systems, to define the type, strength, and direction of coupling, and to recover the model equations of coupled time-delay systems from chaotic time series corrupted by noise. We verify our method using both numerical and experimental data.

  10. LiDAR-IMU Time Delay Calibration Based on Iterative Closest Point and Iterated Sigma Point Kalman Filter

    PubMed Central

    Liu, Wanli

    2017-01-01

    The time delay calibration between Light Detection and Ranging (LiDAR) and Inertial Measurement Units (IMUs) is an essential prerequisite for its applications. However, the correspondences between LiDAR and IMU measurements are usually unknown, and thus cannot be computed directly for the time delay calibration. In order to solve the problem of LiDAR-IMU time delay calibration, this paper presents a fusion method based on iterative closest point (ICP) and iterated sigma point Kalman filter (ISPKF), which combines the advantages of ICP and ISPKF. The ICP algorithm can precisely determine the unknown transformation between LiDAR-IMU; and the ISPKF algorithm can optimally estimate the time delay calibration parameters. First of all, the coordinate transformation from the LiDAR frame to the IMU frame is realized. Second, the measurement model and time delay error model of LiDAR and IMU are established. Third, the methodology of the ICP and ISPKF procedure is presented for LiDAR-IMU time delay calibration. Experimental results are presented that validate the proposed method and demonstrate the time delay error can be accurately calibrated. PMID:28282897

  11. LiDAR-IMU Time Delay Calibration Based on Iterative Closest Point and Iterated Sigma Point Kalman Filter.

    PubMed

    Liu, Wanli

    2017-03-08

    The time delay calibration between Light Detection and Ranging (LiDAR) and Inertial Measurement Units (IMUs) is an essential prerequisite for its applications. However, the correspondences between LiDAR and IMU measurements are usually unknown, and thus cannot be computed directly for the time delay calibration. In order to solve the problem of LiDAR-IMU time delay calibration, this paper presents a fusion method based on iterative closest point (ICP) and iterated sigma point Kalman filter (ISPKF), which combines the advantages of ICP and ISPKF. The ICP algorithm can precisely determine the unknown transformation between LiDAR-IMU; and the ISPKF algorithm can optimally estimate the time delay calibration parameters. First of all, the coordinate transformation from the LiDAR frame to the IMU frame is realized. Second, the measurement model and time delay error model of LiDAR and IMU are established. Third, the methodology of the ICP and ISPKF procedure is presented for LiDAR-IMU time delay calibration. Experimental results are presented that validate the proposed method and demonstrate the time delay error can be accurately calibrated.

  12. Delay Times From Clustered Multi-Channel Cross Correlation and Simulated Annealing

    NASA Astrophysics Data System (ADS)

    Creager, K. C.; Sambridge, M. S.

    2004-12-01

    Several techniques exist to estimate relative delay times of seismic phases based on the assumption that the waveforms observed at several stations can be expressed as a common waveform that has been time shifted and distorted by random uncorrelated noise. We explore the more general problem of estimating the relative delay times for regional or even global distributions of seismometers in cases where waveforms vary systematically across the array. The estimation of relative delay times is formulated as a global optimization of the weighted sum of squares of cross correlations of each seismogram pair evaluated at the corresponding difference in their relative delay times. As there are many local minima in this penalty function, a simulated annealing algorithm is used to obtain a solution. The weights depend strongly on the separation distance among seismogram pairs as well as a measure of the similarity of waveforms. Thus, seismograph pairs that are physically close to each other and have similar waveforms are expected to be well aligned while those with dissimilar waveforms or large separation distances are severely down-weighted and thus need not be well aligned. As a result noisy seismograms, which are not similar to other seismograms, are down-weighted so they do not adversely effect the relative delay times of other seismograms. Finally, natural clusters of seismograms are determined from the weight matrix. Examples of aligning a few hundred P and PKP waveforms from a broadband global array and from a mixed broadband and short-period continental-scale array will be shown. While this method has applications in many situations, it may be especially useful for arrays such as the EarthScope Bigfoot Array.

  13. Time-delayed chameleon: Analysis, synchronization and FPGA implementation

    NASA Astrophysics Data System (ADS)

    Rajagopal, Karthikeyan; Jafari, Sajad; Laarem, Guessas

    2017-12-01

    In this paper we report a time-delayed chameleon-like chaotic system which can belong to different families of chaotic attractors depending on the choices of parameters. Such a characteristic of self-excited and hidden chaotic flows in a simple 3D system with time delay has not been reported earlier. Dynamic analysis of the proposed time-delayed systems are analysed in time-delay space and parameter space. A novel adaptive modified functional projective lag synchronization algorithm is derived for synchronizing identical time-delayed chameleon systems with uncertain parameters. The proposed time-delayed systems and the synchronization algorithm with controllers and parameter estimates are then implemented in FPGA using hardware-software co-simulation and the results are presented.

  14. Optimal nonlinear information processing capacity in delay-based reservoir computers

    NASA Astrophysics Data System (ADS)

    Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo

    2015-09-01

    Reservoir computing is a recently introduced brain-inspired machine learning paradigm capable of excellent performances in the processing of empirical data. We focus in a particular kind of time-delay based reservoir computers that have been physically implemented using optical and electronic systems and have shown unprecedented data processing rates. Reservoir computing is well-known for the ease of the associated training scheme but also for the problematic sensitivity of its performance to architecture parameters. This article addresses the reservoir design problem, which remains the biggest challenge in the applicability of this information processing scheme. More specifically, we use the information available regarding the optimal reservoir working regimes to construct a functional link between the reservoir parameters and its performance. This function is used to explore various properties of the device and to choose the optimal reservoir architecture, thus replacing the tedious and time consuming parameter scannings used so far in the literature.

  15. Optimal nonlinear information processing capacity in delay-based reservoir computers

    PubMed Central

    Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo

    2015-01-01

    Reservoir computing is a recently introduced brain-inspired machine learning paradigm capable of excellent performances in the processing of empirical data. We focus in a particular kind of time-delay based reservoir computers that have been physically implemented using optical and electronic systems and have shown unprecedented data processing rates. Reservoir computing is well-known for the ease of the associated training scheme but also for the problematic sensitivity of its performance to architecture parameters. This article addresses the reservoir design problem, which remains the biggest challenge in the applicability of this information processing scheme. More specifically, we use the information available regarding the optimal reservoir working regimes to construct a functional link between the reservoir parameters and its performance. This function is used to explore various properties of the device and to choose the optimal reservoir architecture, thus replacing the tedious and time consuming parameter scannings used so far in the literature. PMID:26358528

  16. Optimal nonlinear information processing capacity in delay-based reservoir computers.

    PubMed

    Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo

    2015-09-11

    Reservoir computing is a recently introduced brain-inspired machine learning paradigm capable of excellent performances in the processing of empirical data. We focus in a particular kind of time-delay based reservoir computers that have been physically implemented using optical and electronic systems and have shown unprecedented data processing rates. Reservoir computing is well-known for the ease of the associated training scheme but also for the problematic sensitivity of its performance to architecture parameters. This article addresses the reservoir design problem, which remains the biggest challenge in the applicability of this information processing scheme. More specifically, we use the information available regarding the optimal reservoir working regimes to construct a functional link between the reservoir parameters and its performance. This function is used to explore various properties of the device and to choose the optimal reservoir architecture, thus replacing the tedious and time consuming parameter scannings used so far in the literature.

  17. Channel noise-induced temporal coherence transitions and synchronization transitions in adaptive neuronal networks with time delay

    NASA Astrophysics Data System (ADS)

    Gong, Yubing; Xie, Huijuan

    2017-09-01

    Using spike-timing-dependent plasticity (STDP), we study the effect of channel noise on temporal coherence and synchronization of adaptive scale-free Hodgkin-Huxley neuronal networks with time delay. It is found that the spiking regularity and spatial synchronization of the neurons intermittently increase and decrease as channel noise intensity is varied, exhibiting transitions of temporal coherence and synchronization. Moreover, this phenomenon depends on time delay, STDP, and network average degree. As time delay increases, the phenomenon is weakened, however, there are optimal STDP and network average degree by which the phenomenon becomes strongest. These results show that channel noise can intermittently enhance the temporal coherence and synchronization of the delayed adaptive neuronal networks. These findings provide a new insight into channel noise for the information processing and transmission in neural systems.

  18. A feedback control model for network flow with multiple pure time delays

    NASA Technical Reports Server (NTRS)

    Press, J.

    1972-01-01

    A control model describing a network flow hindered by multiple pure time (or transport) delays is formulated. Feedbacks connect each desired output with a single control sector situated at the origin. The dynamic formulation invokes the use of differential difference equations. This causes the characteristic equation of the model to consist of transcendental functions instead of a common algebraic polynomial. A general graphical criterion is developed to evaluate the stability of such a problem. A digital computer simulation confirms the validity of such criterion. An optimal decision making process with multiple delays is presented.

  19. Long-time behavior for suspension bridge equations with time delay

    NASA Astrophysics Data System (ADS)

    Park, Sun-Hye

    2018-04-01

    In this paper, we consider suspension bridge equations with time delay of the form u_{tt}(x,t) + Δ ^2 u (x,t) + k u^+ (x,t) + a_0 u_t (x,t) + a_1 u_t (x, t- τ ) + f(u(x,t)) = g(x). Many researchers have studied well-posedness, decay rates of energy, and existence of attractors for suspension bridge equations without delay effects. But, as far as we know, there is no work about suspension equations with time delay. In addition, there are not many studies on attractors for other delayed systems. Thus we first provide well-posedness for suspension equations with time delay. And then show the existence of global attractors and the finite dimensionality of the attractors by establishing energy functionals which are related to the norm of the phase space to our problem.

  20. Reconstruction of ensembles of coupled time-delay systems from time series.

    PubMed

    Sysoev, I V; Prokhorov, M D; Ponomarenko, V I; Bezruchko, B P

    2014-06-01

    We propose a method to recover from time series the parameters of coupled time-delay systems and the architecture of couplings between them. The method is based on a reconstruction of model delay-differential equations and estimation of statistical significance of couplings. It can be applied to networks composed of nonidentical nodes with an arbitrary number of unidirectional and bidirectional couplings. We test our method on chaotic and periodic time series produced by model equations of ensembles of diffusively coupled time-delay systems in the presence of noise, and apply it to experimental time series obtained from electronic oscillators with delayed feedback coupled by resistors.

  1. Identifying Anomalies in Gravitational Lens Time Delays

    NASA Astrophysics Data System (ADS)

    Congdon, Arthur B.; Keeton, Charles R.; Nordgren, C. Erik

    2010-02-01

    We examine the ability of gravitational lens time delays to reveal complex structure in lens potentials. In a previous paper, we predicted how the time delay between the bright pair of images in a "fold" lens scales with the image separation, for smooth lens potentials. Here we show that the proportionality constant increases with the quadrupole moment of the lens potential, and depends only weakly on the position of the source along the caustic. We use Monte Carlo simulations to determine the range of time delays that can be produced by realistic smooth lens models consisting of isothermal ellipsoid galaxies with tidal shear. We can then identify outliers as "time delay anomalies." We find evidence for anomalies in close image pairs in the cusp lenses RX J1131 - 1231 and B1422+231. The anomalies in RX J1131 - 1231 provide strong evidence for substructure in the lens potential, while at this point the apparent anomalies in B1422+231 mainly indicate that the time delay measurements need to be improved. We also find evidence for time delay anomalies in larger-separation image pairs in the fold lenses, B1608+656 and WFI 2033 - 4723, and the cusp lens RX J0911+0551. We suggest that these anomalies are caused by some combination of substructure and a complex lens environment. Finally, to assist future monitoring campaigns we use our smooth models with shear to predict the time delays for all known four-image lenses.

  2. Time-delayed feedback technique for suppressing instabilities in time-periodic flow

    NASA Astrophysics Data System (ADS)

    Shaabani-Ardali, Léopold; Sipp, Denis; Lesshafft, Lutz

    2017-11-01

    A numerical method is presented that allows to compute time-periodic flow states, even in the presence of hydrodynamic instabilities. The method is based on filtering nonharmonic components by way of delayed feedback control, as introduced by Pyragas [Phys. Lett. A 170, 421 (1992), 10.1016/0375-9601(92)90745-8]. Its use in flow problems is demonstrated here for the case of a periodically forced laminar jet, subject to a subharmonic instability that gives rise to vortex pairing. The optimal choice of the filter gain, which is a free parameter in the stabilization procedure, is investigated in the context of a low-dimensional model problem, and it is shown that this model predicts well the filter performance in the high-dimensional flow system. Vortex pairing in the jet is efficiently suppressed, so that the unstable periodic flow state in response to harmonic forcing is accurately retrieved. The procedure is straightforward to implement inside any standard flow solver. Memory requirements for the delayed feedback control can be significantly reduced by means of time interpolation between checkpoints. Finally, the method is extended for the treatment of periodic problems where the frequency is not known a priori. This procedure is demonstrated for a three-dimensional cubic lid-driven cavity in supercritical conditions.

  3. 49 CFR 236.563 - Delay time.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Train Stop, Train Control and Cab Signal Systems Rules and Instructions; Locomotives § 236.563 Delay time. Delay time of automatic train stop or train control system shall not exceed 8 seconds and the spacing of signals to meet the...

  4. Delay-correlation landscape reveals characteristic time delays of brain rhythms and heart interactions

    PubMed Central

    Lin, Aijing; Liu, Kang K. L.; Bartsch, Ronny P.; Ivanov, Plamen Ch.

    2016-01-01

    Within the framework of ‘Network Physiology’, we ask a fundamental question of how modulations in cardiac dynamics emerge from networked brain–heart interactions. We propose a generalized time-delay approach to identify and quantify dynamical interactions between physiologically relevant brain rhythms and the heart rate. We perform empirical analysis of synchronized continuous EEG and ECG recordings from 34 healthy subjects during night-time sleep. For each pair of brain rhythm and heart interaction, we construct a delay-correlation landscape (DCL) that characterizes how individual brain rhythms are coupled to the heart rate, and how modulations in brain and cardiac dynamics are coordinated in time. We uncover characteristic time delays and an ensemble of specific profiles for the probability distribution of time delays that underly brain–heart interactions. These profiles are consistently observed in all subjects, indicating a universal pattern. Tracking the evolution of DCL across different sleep stages, we find that the ensemble of time-delay profiles changes from one physiologic state to another, indicating a strong association with physiologic state and function. The reported observations provide new insights on neurophysiological regulation of cardiac dynamics, with potential for broad clinical applications. The presented approach allows one to simultaneously capture key elements of dynamic interactions, including characteristic time delays and their time evolution, and can be applied to a range of coupled dynamical systems. PMID:27044991

  5. Delay-correlation landscape reveals characteristic time delays of brain rhythms and heart interactions

    NASA Astrophysics Data System (ADS)

    Lin, Aijing; Liu, Kang K. L.; Bartsch, Ronny P.; Ivanov, Plamen Ch.

    2016-05-01

    Within the framework of `Network Physiology', we ask a fundamental question of how modulations in cardiac dynamics emerge from networked brain-heart interactions. We propose a generalized time-delay approach to identify and quantify dynamical interactions between physiologically relevant brain rhythms and the heart rate. We perform empirical analysis of synchronized continuous EEG and ECG recordings from 34 healthy subjects during night-time sleep. For each pair of brain rhythm and heart interaction, we construct a delay-correlation landscape (DCL) that characterizes how individual brain rhythms are coupled to the heart rate, and how modulations in brain and cardiac dynamics are coordinated in time. We uncover characteristic time delays and an ensemble of specific profiles for the probability distribution of time delays that underly brain-heart interactions. These profiles are consistently observed in all subjects, indicating a universal pattern. Tracking the evolution of DCL across different sleep stages, we find that the ensemble of time-delay profiles changes from one physiologic state to another, indicating a strong association with physiologic state and function. The reported observations provide new insights on neurophysiological regulation of cardiac dynamics, with potential for broad clinical applications. The presented approach allows one to simultaneously capture key elements of dynamic interactions, including characteristic time delays and their time evolution, and can be applied to a range of coupled dynamical systems.

  6. IDENTIFYING ANOMALIES IN GRAVITATIONAL LENS TIME DELAYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Congdon, Arthur B.; Keeton, Charles R.; Nordgren, C. Erik, E-mail: acongdon@jpl.nasa.go, E-mail: keeton@physics.rutgers.ed, E-mail: nordgren@sas.upenn.ed

    2010-02-01

    We examine the ability of gravitational lens time delays to reveal complex structure in lens potentials. In a previous paper, we predicted how the time delay between the bright pair of images in a 'fold' lens scales with the image separation, for smooth lens potentials. Here we show that the proportionality constant increases with the quadrupole moment of the lens potential, and depends only weakly on the position of the source along the caustic. We use Monte Carlo simulations to determine the range of time delays that can be produced by realistic smooth lens models consisting of isothermal ellipsoid galaxiesmore » with tidal shear. We can then identify outliers as 'time delay anomalies'. We find evidence for anomalies in close image pairs in the cusp lenses RX J1131 - 1231 and B1422+231. The anomalies in RX J1131 - 1231 provide strong evidence for substructure in the lens potential, while at this point the apparent anomalies in B1422+231 mainly indicate that the time delay measurements need to be improved. We also find evidence for time delay anomalies in larger-separation image pairs in the fold lenses, B1608+656 and WFI 2033 - 4723, and the cusp lens RX J0911+0551. We suggest that these anomalies are caused by some combination of substructure and a complex lens environment. Finally, to assist future monitoring campaigns we use our smooth models with shear to predict the time delays for all known four-image lenses.« less

  7. Time-delayed reaction-diffusion fronts

    NASA Astrophysics Data System (ADS)

    Isern, Neus; Fort, Joaquim

    2009-11-01

    A time-delayed second-order approximation for the front speed in reaction-dispersion systems was obtained by Fort and Méndez [Phys. Rev. Lett. 82, 867 (1999)]. Here we show that taking proper care of the effect of the time delay on the reactive process yields a different evolution equation and, therefore, an alternate equation for the front speed. We apply the new equation to the Neolithic transition. For this application the new equation yields speeds about 10% slower than the previous one.

  8. Time-delayed directional beam phased array antenna

    DOEpatents

    Fund, Douglas Eugene; Cable, John William; Cecil, Tony Myron

    2004-10-19

    An antenna comprising a phased array of quadrifilar helix or other multifilar antenna elements and a time-delaying feed network adapted to feed the elements. The feed network can employ a plurality of coaxial cables that physically bridge a microstrip feed circuitry to feed power signals to the elements. The cables provide an incremental time delay which is related to their physical lengths, such that replacing cables having a first set of lengths with cables having a second set of lengths functions to change the time delay and shift or steer the antenna's main beam. Alternatively, the coaxial cables may be replaced with a programmable signal processor unit adapted to introduce the time delay using signal processing techniques applied to the power signals.

  9. 14 CFR 417.221 - Time delay analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.221 Time delay analysis. (a) General. A flight safety analysis must include a time delay analysis that establishes the mean elapsed time between the violation of a flight termination rule and the time when the flight safety system is...

  10. 14 CFR 417.221 - Time delay analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.221 Time delay analysis. (a) General. A flight safety analysis must include a time delay analysis that establishes the mean elapsed time between the violation of a flight termination rule and the time when the flight safety system is...

  11. Optimal therapies of a virus replication model with pharmacological delays based on reverse transcriptase inhibitors and protease inhibitors

    NASA Astrophysics Data System (ADS)

    Pei, Yongzhen; Li, Changguo; Liang, Xiyin

    2017-11-01

    A short delay in the pharmacological effect on account of the time required for drug absorption, distribution, and penetration into target cells after application of any anti-viral drug, is defined by the pharmacological delay (Herz et al 1996 Proc. Natl Acad. Sci. USA 93 7247-51). In this paper, a virus replication model with Beddington-DeAngelis incidence rate and the pharmacological and intracellular delays is presented to describe the treatment to cure the virus infection. The optimal controls represent the efficiency of reverse transcriptase inhibitors and protease inhibitors in suppressing viral production and prohibiting new infections. Due to the fact that both the control and state variables contain delays, we derive a necessary conditions for our optimal problem. Based on these results, numerical simulations are implemented not only to show the optimal therapeutic schedules for different infection and release rates, but also to compare the effective of three treatment programs. Furthermore, comparison of therapeutic effects under different maximum tolerable dosages is shown. Our research indicates that (1) the proper and specific treatment program should be determined according to the infection rates of different virus particles; (2) the optimal combined drug treatment is the most efficient; (3) the appropriate proportion of medicament must be formulated during the therapy due to the non-monotonic relationship between maximum tolerable dosages and therapeutic effects; (4) the therapeutic effect is advantageous when the pharmacological delay is considered.

  12. Time-delayed feedback control of diffusion in random walkers.

    PubMed

    Ando, Hiroyasu; Takehara, Kohta; Kobayashi, Miki U

    2017-07-01

    Time delay in general leads to instability in some systems, while specific feedback with delay can control fluctuated motion in nonlinear deterministic systems to a stable state. In this paper, we consider a stochastic process, i.e., a random walk, and observe its diffusion phenomenon with time-delayed feedback. As a result, the diffusion coefficient decreases with increasing delay time. We analytically illustrate this suppression of diffusion by using stochastic delay differential equations and justify the feasibility of this suppression by applying time-delayed feedback to a molecular dynamics model.

  13. A real time QRS detection using delay-coordinate mapping for the microcontroller implementation.

    PubMed

    Lee, Jeong-Whan; Kim, Kyeong-Seop; Lee, Bongsoo; Lee, Byungchae; Lee, Myoung-Ho

    2002-01-01

    In this article, we propose a new algorithm using the characteristics of reconstructed phase portraits by delay-coordinate mapping utilizing lag rotundity for a real-time detection of QRS complexes in ECG signals. In reconstructing phase portrait the mapping parameters, time delay, and mapping dimension play important roles in shaping of portraits drawn in a new dimensional space. Experimentally, the optimal mapping time delay for detection of QRS complexes turned out to be 20 ms. To explore the meaning of this time delay and the proper mapping dimension, we applied a fill factor, mutual information, and autocorrelation function algorithm that were generally used to analyze the chaotic characteristics of sampled signals. From these results, we could find the fact that the performance of our proposed algorithms relied mainly on the geometrical property such as an area of the reconstructed phase portrait. For the real application, we applied our algorithm for designing a small cardiac event recorder. This system was to record patients' ECG and R-R intervals for 1 h to investigate HRV characteristics of the patients who had vasovagal syncope symptom and for the evaluation, we implemented our algorithm in C language and applied to MIT/BIH arrhythmia database of 48 subjects. Our proposed algorithm achieved a 99.58% detection rate of QRS complexes.

  14. 14 CFR 417.221 - Time delay analysis.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... occurs; (2) A flight safety official's decision and reaction time, including variation in human response... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Time delay analysis. 417.221 Section 417... OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.221 Time delay analysis. (a...

  15. 14 CFR 417.221 - Time delay analysis.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... occurs; (2) A flight safety official's decision and reaction time, including variation in human response... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Time delay analysis. 417.221 Section 417... OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.221 Time delay analysis. (a...

  16. 14 CFR 417.221 - Time delay analysis.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... occurs; (2) A flight safety official's decision and reaction time, including variation in human response... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Time delay analysis. 417.221 Section 417... OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.221 Time delay analysis. (a...

  17. Note: Large active area solid state photon counter with 20 ps timing resolution and 60 fs detection delay stability

    NASA Astrophysics Data System (ADS)

    Prochazka, Ivan; Kodet, Jan; Eckl, Johann; Blazej, Josef

    2017-10-01

    We are reporting on the design, construction, and performance of a photon counting detector system, which is based on single photon avalanche diode detector technology. This photon counting device has been optimized for very high timing resolution and stability of its detection delay. The foreseen application of this detector is laser ranging of space objects, laser time transfer ground to space and fundamental metrology. The single photon avalanche diode structure, manufactured on silicon using K14 technology, is used as a sensor. The active area of the sensor is circular with 200 μm diameter. Its photon detection probability exceeds 40% in the wavelength range spanning from 500 to 800 nm. The sensor is operated in active quenching and gating mode. A new control circuit was optimized to maintain high timing resolution and detection delay stability. In connection to this circuit, timing resolution of the detector is reaching 20 ps FWHM. In addition, the temperature change of the detection delay is as low as 70 fs/K. As a result, the detection delay stability of the device is exceptional: expressed in the form of time deviation, detection delay stability of better than 60 fs has been achieved. Considering the large active area aperture of the detector, this is, to our knowledge, the best timing performance reported for a solid state photon counting detector so far.

  18. Management Strategies to Facilitate Optimal Outcomes for Patients Treated with Delayed-release Dimethyl Fumarate.

    PubMed

    Mayer, Lori; Fink, Mary Kay; Sammarco, Carrie; Laing, Lisa

    2018-04-01

    Delayed-release dimethyl fumarate is an oral disease-modifying therapy that has demonstrated significant efficacy in adults with relapsing-remitting multiple sclerosis. Incidences of flushing and gastrointestinal adverse events are common in the first month after delayed-release dimethyl fumarate initiation. Our objective was to propose mitigation strategies for adverse events related to initiation of delayed-release dimethyl fumarate in the treatment of patients with multiple sclerosis. Studies of individually developed mitigation strategies and chart reviews were evaluated. Those results, as well as mitigation protocols developed at multiple sclerosis care centers, are summarized. Key steps to optimize the effectiveness of delayed-release dimethyl fumarate treatment include education prior to and at the time of delayed-release dimethyl fumarate initiation, initiation dose protocol gradually increasing to maintenance dose, dietary suggestions for co-administration with food, gastrointestinal symptom management with over-the-counter medications, flushing symptom management with aspirin, and temporary dose reduction. Using the available evidence from clinical trials and evaluations of post-marketing studies, these strategies to manage gastrointestinal and flushing symptoms can be effective and helpful to the patient when initiating delayed-release dimethyl fumarate.

  19. The effects of the framing of time on delay discounting.

    PubMed

    DeHart, William Brady; Odum, Amy L

    2015-01-01

    We examined the effects of the framing of time on delay discounting. Delay discounting is the process by which delayed outcomes are devalued as a function of time. Time in a titrating delay discounting task is often framed in calendar units (e.g., as 1 week, 1 month, etc.). When time is framed as a specific date, delayed outcomes are discounted less compared to the calendar format. Other forms of framing time; however, have not been explored. All participants completed a titrating calendar unit delay-discounting task for money. Participants were also assigned to one of two delay discounting tasks: time as dates (e.g., June 1st, 2015) or time in units of days (e.g., 5000 days), using the same delay distribution as the calendar delay-discounting task. Time framed as dates resulted in less discounting compared to the calendar method, whereas time framed as days resulted in greater discounting compared to the calendar method. The hyperboloid model fit best compared to the hyperbola and exponential models. How time is framed may alter how participants attend to the delays as well as how the delayed outcome is valued. Altering how time is framed may serve to improve adherence to goals with delayed outcomes. © Society for the Experimental Analysis of Behavior.

  20. FLASH X-RAY (FXR) LINEAR INDUCTION ACCELERATOR (LIA) OPTIMIZATION Sensor Delay Correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ong, M M; Houck, T L; Kreitzer, B R

    2006-05-01

    The radiographic goal of the FXR Optimization Project is to generate an x-ray pulse with peak energy of 19 MeV, spot-size of 1.5 mm, a dose of 500 rad, and duration of 60 ns. The electrical objectives are to generate a 3 kA electron-beam and refine our 16 MV accelerator so that the voltage does not vary more than 1%-rms. In a multi-cell linear induction accelerator, like FXR, the timing of the acceleration pulses relative to the beam is critical. The pulses must be timed optimally so that a cell is at full voltage before the beam arrives and doesmore » not drop until the beam passes. In order to stay within the energy-variation budget, the synchronization between the cells and beam arrival must be controlled to a couple of nanoseconds. Therefore, temporal measurements must be accurate to a fraction of a nanosecond. FXR Optimization Project developed a one-giga-sample per second (gs/s) data acquisition system to record beam sensor data. Signal processing algorithms were written to determine cell timing with an uncertainty of a fraction of a nanosecond. However, the uncertainty in the sensor delay was still a few nanoseconds. This error had to be reduced if we are to improve the quality of the electron beam. Two types of sensors are used to align the cell voltage pulse against the beam current. The beam current is measured with resistive-wall sensors. The cell voltages are read with capacitive voltage monitors. Sensor delays can be traced to two mechanisms: (1) the sensors are not co-located at the beam and cell interaction points, and (2) the sensors have different length jumper cables and other components that connect them to the standard-length coaxial cables of the data acquisition system. Using the physical locations and dimensions of the sensor components, and the dielectric constant of the materials, delay times were computed. Relative to the cell voltage, the beam current was theoretically reporting late by 7.7 ns. Two experiments were performed to verify

  1. Exponential H(infinity) synchronization of general discrete-time chaotic neural networks with or without time delays.

    PubMed

    Qi, Donglian; Liu, Meiqin; Qiu, Meikang; Zhang, Senlin

    2010-08-01

    This brief studies exponential H(infinity) synchronization of a class of general discrete-time chaotic neural networks with external disturbance. On the basis of the drive-response concept and H(infinity) control theory, and using Lyapunov-Krasovskii (or Lyapunov) functional, state feedback controllers are established to not only guarantee exponential stable synchronization between two general chaotic neural networks with or without time delays, but also reduce the effect of external disturbance on the synchronization error to a minimal H(infinity) norm constraint. The proposed controllers can be obtained by solving the convex optimization problems represented by linear matrix inequalities. Most discrete-time chaotic systems with or without time delays, such as Hopfield neural networks, cellular neural networks, bidirectional associative memory networks, recurrent multilayer perceptrons, Cohen-Grossberg neural networks, Chua's circuits, etc., can be transformed into this general chaotic neural network to be H(infinity) synchronization controller designed in a unified way. Finally, some illustrated examples with their simulations have been utilized to demonstrate the effectiveness of the proposed methods.

  2. Time delays, population, and economic development

    NASA Astrophysics Data System (ADS)

    Gori, Luca; Guerrini, Luca; Sodini, Mauro

    2018-05-01

    This research develops an augmented Solow model with population dynamics and time delays. The model produces either a single stationary state or multiple stationary states (able to characterise different development regimes). The existence of time delays may cause persistent fluctuations in both economic and demographic variables. In addition, the work identifies in a simple way the reasons why economics affects demographics and vice versa.

  3. Efficiency of performing pulmonary procedures in a shared endoscopy unit: procedure time, turnaround time, delays, and procedure waiting time.

    PubMed

    Verma, Akash; Lee, Mui Yok; Wang, Chunhong; Hussein, Nurmalah B M; Selvi, Kalai; Tee, Augustine

    2014-04-01

    The purpose of this study was to assess the efficiency of performing pulmonary procedures in the endoscopy unit in a large teaching hospital. A prospective study from May 20 to July 19, 2013, was designed. The main outcome measures were procedure delays and their reasons, duration of procedural steps starting from patient's arrival to endoscopy unit, turnaround time, total case durations, and procedure wait time. A total of 65 procedures were observed. The most common procedure was BAL (61%) followed by TBLB (31%). Overall procedures for 35 (53.8%) of 65 patients were delayed by ≥ 30 minutes, 21/35 (60%) because of "spillover" of the gastrointestinal and surgical cases into the time block of pulmonary procedure. Time elapsed between end of pulmonary procedure and start of the next procedure was ≥ 30 minutes in 8/51 (16%) of cases. In 18/51 (35%) patients there was no next case in the room after completion of the pulmonary procedure. The average idle time of the room after the end of pulmonary procedure and start of next case or end of shift at 5:00 PM if no next case was 58 ± 53 minutes. In 17/51 (33%) patients the room's idle time was >60 minutes. A total of 52.3% of patients had the wait time >2 days and 11% had it ≥ 6 days, reason in 15/21 (71%) being unavailability of the slot. Most pulmonary procedures were delayed due to spillover of the gastrointestinal and surgical cases into the block time allocated to pulmonary procedures. The most common reason for difficulty encountered in scheduling the pulmonary procedure was slot unavailability. This caused increased procedure waiting time. The strategies to reduce procedure delays and turnaround times, along with improved scheduling methods, may have a favorable impact on the volume of procedures performed in the unit thereby optimizing the existing resources.

  4. Time delay and distance measurement

    NASA Technical Reports Server (NTRS)

    Abshire, James B. (Inventor); Sun, Xiaoli (Inventor)

    2011-01-01

    A method for measuring time delay and distance may include providing an electromagnetic radiation carrier frequency and modulating one or more of amplitude, phase, frequency, polarization, and pointing angle of the carrier frequency with a return to zero (RZ) pseudo random noise (PN) code. The RZ PN code may have a constant bit period and a pulse duration that is less than the bit period. A receiver may detect the electromagnetic radiation and calculate the scattering profile versus time (or range) by computing a cross correlation function between the recorded received signal and a three-state RZ PN code kernel in the receiver. The method also may be used for pulse delay time (i.e., PPM) communications.

  5. Multiobjective optimization model of intersection signal timing considering emissions based on field data: A case study of Beijing.

    PubMed

    Kou, Weibin; Chen, Xumei; Yu, Lei; Gong, Huibo

    2018-04-18

    Most existing signal timing models are aimed to minimize the total delay and stops at intersections, without considering environmental factors. This paper analyzes the trade-off between vehicle emissions and traffic efficiencies on the basis of field data. First, considering the different operating modes of cruising, acceleration, deceleration, and idling, field data of emissions and Global Positioning System (GPS) are collected to estimate emission rates for heavy-duty and light-duty vehicles. Second, multiobjective signal timing optimization model is established based on a genetic algorithm to minimize delay, stops, and emissions. Finally, a case study is conducted in Beijing. Nine scenarios are designed considering different weights of emission and traffic efficiency. The results compared with those using Highway Capacity Manual (HCM) 2010 show that signal timing optimized by the model proposed in this paper can decrease vehicles delay and emissions more significantly. The optimization model can be applied in different cities, which provides supports for eco-signal design and development. Vehicle emissions are heavily at signal intersections in urban area. The multiobjective signal timing optimization model is proposed considering the trade-off between vehicle emissions and traffic efficiencies on the basis of field data. The results indicate that signal timing optimized by the model proposed in this paper can decrease vehicle emissions and delays more significantly. The optimization model can be applied in different cities, which provides supports for eco-signal design and development.

  6. Discrete-time BAM neural networks with variable delays

    NASA Astrophysics Data System (ADS)

    Liu, Xin-Ge; Tang, Mei-Lan; Martin, Ralph; Liu, Xin-Bi

    2007-07-01

    This Letter deals with the global exponential stability of discrete-time bidirectional associative memory (BAM) neural networks with variable delays. Using a Lyapunov functional, and linear matrix inequality techniques (LMI), we derive a new delay-dependent exponential stability criterion for BAM neural networks with variable delays. As this criterion has no extra constraints on the variable delay functions, it can be applied to quite general BAM neural networks with a broad range of time delay functions. It is also easy to use in practice. An example is provided to illustrate the theoretical development.

  7. Linear stability and nonlinear analyses of traffic waves for the general nonlinear car-following model with multi-time delays

    NASA Astrophysics Data System (ADS)

    Sun, Dihua; Chen, Dong; Zhao, Min; Liu, Weining; Zheng, Linjiang

    2018-07-01

    In this paper, the general nonlinear car-following model with multi-time delays is investigated in order to describe the reactions of vehicle to driving behavior. Platoon stability and string stability criteria are obtained for the general nonlinear car-following model. Burgers equation and Korteweg de Vries (KdV) equation and their solitary wave solutions are derived adopting the reductive perturbation method. We investigate the properties of typical optimal velocity model using both analytic and numerical methods, which estimates the impact of delays about the evolution of traffic congestion. The numerical results show that time delays in sensing relative movement is more sensitive to the stability of traffic flow than time delays in sensing host motion.

  8. Effect of time delay on flying qualities: An update

    NASA Technical Reports Server (NTRS)

    Smith, R. E.; Sarrafian, S. K.

    1986-01-01

    Flying qualities problems of modern, full-authority electronic flight control systems are most often related to the introduction of additional time delay in aircraft response to a pilot input. These delays can have a significant effect on the flying qualities of the aircraft. Time delay effects are reexamined in light of recent flight test experience with aircraft incorporating new technology. Data from the X-29A forward-swept-wing demonstrator, a related preliminary in-flight experiment, and other flight observations are presented. These data suggest that the present MIL-F-8785C allowable-control system time delay specifications are inadequate or, at least, incomplete. Allowable time delay appears to be a function of the shape of the aircraft response following the initial delay. The cockpit feel system is discussed as a dynamic element in the flight control system. Data presented indicate that the time delay associated with a significant low-frequency feel system does not result in the predicted degradation in aircraft flying qualities. The impact of the feel system is discussed from two viewpoints: as a filter in the control system which can alter the initial response shape and, therefore, the allowable time delay, and as a unique dynamic element whose delay contribution can potentially be discounted by special pilot loop closures.

  9. Time-delayed autosynchronous swarm control.

    PubMed

    Biggs, James D; Bennet, Derek J; Dadzie, S Kokou

    2012-01-01

    In this paper a general Morse potential model of self-propelling particles is considered in the presence of a time-delayed term and a spring potential. It is shown that the emergent swarm behavior is dependent on the delay term and weights of the time-delayed function, which can be set to induce a stationary swarm, a rotating swarm with uniform translation, and a rotating swarm with a stationary center of mass. An analysis of the mean field equations shows that without a spring potential the motion of the center of mass is determined explicitly by a multivalued function. For a nonzero spring potential the swarm converges to a vortex formation about a stationary center of mass, except at discrete bifurcation points where the center of mass will periodically trace an ellipse. The analytical results defining the behavior of the center of mass are shown to correspond with the numerical swarm simulations.

  10. Exact synchronization bound for coupled time-delay systems.

    PubMed

    Senthilkumar, D V; Pesquera, Luis; Banerjee, Santo; Ortín, Silvia; Kurths, J

    2013-04-01

    We obtain an exact bound for synchronization in coupled time-delay systems using the generalized Halanay inequality for the general case of time-dependent delay, coupling, and coefficients. Furthermore, we show that the same analysis is applicable to both uni- and bidirectionally coupled time-delay systems with an appropriate evolution equation for their synchronization manifold, which can also be defined for different types of synchronization. The exact synchronization bound assures an exponential stabilization of the synchronization manifold which is crucial for applications. The analytical synchronization bound is independent of the nature of the modulation and can be applied to any time-delay system satisfying a Lipschitz condition. The analytical results are corroborated numerically using the Ikeda system.

  11. The Strong Lensing Time Delay Challenge (2014)

    NASA Astrophysics Data System (ADS)

    Liao, Kai; Dobler, G.; Fassnacht, C. D.; Treu, T.; Marshall, P. J.; Rumbaugh, N.; Linder, E.; Hojjati, A.

    2014-01-01

    Time delays between multiple images in strong lensing systems are a powerful probe of cosmology. At the moment the application of this technique is limited by the number of lensed quasars with measured time delays. However, the number of such systems is expected to increase dramatically in the next few years. Hundred such systems are expected within this decade, while the Large Synoptic Survey Telescope (LSST) is expected to deliver of order 1000 time delays in the 2020 decade. In order to exploit this bounty of lenses we needed to make sure the time delay determination algorithms have sufficiently high precision and accuracy. As a first step to test current algorithms and identify potential areas for improvement we have started a "Time Delay Challenge" (TDC). An "evil" team has created realistic simulated light curves, to be analyzed blindly by "good" teams. The challenge is open to all interested parties. The initial challenge consists of two steps (TDC0 and TDC1). TDC0 consists of a small number of datasets to be used as a training template. The non-mandatory deadline is December 1 2013. The "good" teams that complete TDC0 will be given access to TDC1. TDC1 consists of thousands of lightcurves, a number sufficient to test precision and accuracy at the subpercent level, necessary for time-delay cosmography. The deadline for responding to TDC1 is July 1 2014. Submissions will be analyzed and compared in terms of predefined metrics to establish the goodness-of-fit, efficiency, precision and accuracy of current algorithms. This poster describes the challenge in detail and gives instructions for participation.

  12. Effect of time delay on surgical performance during telesurgical manipulation.

    PubMed

    Fabrizio, M D; Lee, B R; Chan, D Y; Stoianovici, D; Jarrett, T W; Yang, C; Kavoussi, L R

    2000-03-01

    Telementoring allows a less experienced surgeon to benefit from an expert surgical consultation, reducing cost, travel, and the learning curve associated with new procedures. However, there are several technical limitations that affect practical applications. One potentially serious problem is the time delay that occurs any time data are transferred across long distances. To date, the effect of time delay on surgical performance has not been studied. A two-phase trial was designed to examine the effect of time delay on surgical performance. In the first phase, a series of tasks was performed, and the numbers of robotic movements required for completion was counted. Programmed incremental time delays were made in audiovisual acquisition and robotic controls. The number of errors made while performing each task at various time delay intervals was noted. In the second phase, a remote surgeon in Baltimore performed the tasks 9000 miles away in Singapore. The number of errors made was recorded. As the time delay increased, the number of operator errors increased. The accuracy needed to perform remote robotic procedures was diminished as the time delay increased. A learning curve did exist for each task, but as the time delay interval increased, it took longer to complete the task. Time delay does affect surgical performance. There is an acceptable delay of <700 msec in which surgeons can compensate for this phenomenon. Clinical studies will be needed to evaluate the true impact of time delay.

  13. Optical resonators for true-time-delay beam steering

    NASA Astrophysics Data System (ADS)

    Gesell, Leslie H.; Evanko, Stephen M.

    1996-06-01

    Conventional true time delay beamforming and steering devices rely on switching between various lengths of delay line. Therefore only discrete delays are possible. Proposed is a new photonics concept for true time delay beamforming which provides a finely controlled continuum of delays with switching speeds on the order of 10's of nanoseconds or faster. The architecture uses an array of waveguide cavities with different resonate frequencies to channelize the signal. Each spectral component of the signal is phase shifted by an amount proportional to the frequency of that component and the desired time delay. These phase shifted spectral components are then summed to obtain the delayed signal. This paper provides an overview of the results of a Phase I SBIR contract where this concept has been refined and analyzed. The parameters for an operational system are determined and indication of the feasibility of this approach is given. Among the issues addressed are the requirements of the resonators and the methods necessary to implement fiber optic Bragg gratings as these resonators.

  14. Time delay in Swiss cheese gravitational lensing

    NASA Astrophysics Data System (ADS)

    Chen, B.; Kantowski, R.; Dai, X.

    2010-08-01

    We compute time delays for gravitational lensing in a flat Λ dominated cold dark matter Swiss cheese universe. We assume a primary and secondary pair of light rays are deflected by a single point mass condensation described by a Kottler metric (Schwarzschild with Λ) embedded in an otherwise homogeneous cosmology. We find that the cosmological constant’s effect on the difference in arrival times is nonlinear and at most around 0.002% for a large cluster lens; however, we find differences from time delays predicted by conventional linear lensing theory that can reach ˜4% for these large lenses. The differences in predicted delay times are due to the failure of conventional lensing to incorporate the lensing mass into the mean mass density of the universe.

  15. A Comparison of Flexible Prompt Fading and Constant Time Delay for Five Children with Autism

    ERIC Educational Resources Information Center

    Soluaga, Doris; Leaf, Justin B.; Taubman, Mitchell; McEachin, John; Leaf, Ron

    2008-01-01

    Given the increasing rates of autism, identifying prompting procedures that can assist in the development of more optimal learning opportunities for this population is critical. Extensive empirical research exists supporting the effectiveness of various prompting strategies. Constant time delay (CTD) is a highly implemented prompting procedure…

  16. Delay time and Hartman effect in strain engineered graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xi, E-mail: xchen@shu.edu.cn; Deng, Zhi-Yong; Ban, Yue, E-mail: yban@shu.edu.cn

    2014-05-07

    Tunneling times, including group delay and dwell time, are studied for massless Dirac electrons transmitting through a one-dimensional barrier in strain-engineered graphene. The Hartman effect, the independence of group delay on barrier length, is induced by the strain effect, and associated with the transmission gap and the evanescent mode. The influence of barrier height/length and strain modulus/direction on the group delay is also discussed, which provides the flexibility to control the group delay with applications in graphene-based devices. The relationship between group delay and dwell time is finally derived to clarify the nature of the Hartman effect.

  17. Solar flux forecasting using mutual information with an optimal delay

    NASA Technical Reports Server (NTRS)

    Ashrafi, S.; Conway, D.; Rokni, M.; Sperling, R.; Roszman, L.; Cooley, J.

    1993-01-01

    Solar flux F(sub 10.7) directly affects the atmospheric density, thereby changing the lifetime and prediction of satellite orbits. For this reason, accurate forecasting of F(sub 10.7) is crucial for orbit determination of spacecraft. Our attempts to model and forecast F(sub 10.7) uncovered highly entangled dynamics. We concluded that the general lack of predictability in solar activity arises from its nonlinear nature. Nonlinear dynamics allow us to predict F(sub 10.7) more accurately than is possible using stochastic methods for time scales shorter than a characteristic horizon, and with about the same accuracy as using stochastic techniques when the forecasted data exceed this horizon. The forecast horizon is a function of two dynamical invariants: the attractor dimension and the Lyapunov exponent. In recent years, estimation of the attractor dimension reconstructed from a time series has become an important tool in data analysis. In calculating the invariants of the system, the first necessary step is the reconstruction of the attractor for the system from the time-delayed values of the time series. The choice of the time delay is critical for this reconstruction. For an infinite amount of noise-free data, the time delay can, in principle, be chosen almost arbitrarily. However, the quality of the phase portraits produced using the time-delay technique is determined by the value chosen for the delay time. Fraser and Swinney have shown that a good choice for this time delay is the one suggested by Shaw, which uses the first local minimum of the mutual information rather than the autocorrelation function to determine the time delay. This paper presents a refinement of this criterion and applies the refined technique to solar flux data to produce a forecast of the solar activity.

  18. Humans Optimize Decision-Making by Delaying Decision Onset

    PubMed Central

    Teichert, Tobias; Ferrera, Vincent P.; Grinband, Jack

    2014-01-01

    Why do humans make errors on seemingly trivial perceptual decisions? It has been shown that such errors occur in part because the decision process (evidence accumulation) is initiated before selective attention has isolated the relevant sensory information from salient distractors. Nevertheless, it is typically assumed that subjects increase accuracy by prolonging the decision process rather than delaying decision onset. To date it has not been tested whether humans can strategically delay decision onset to increase response accuracy. To address this question we measured the time course of selective attention in a motion interference task using a novel variant of the response signal paradigm. Based on these measurements we estimated time-dependent drift rate and showed that subjects should in principle be able trade speed for accuracy very effectively by delaying decision onset. Using the time-dependent estimate of drift rate we show that subjects indeed delay decision onset in addition to raising response threshold when asked to stress accuracy over speed in a free reaction version of the same motion-interference task. These findings show that decision onset is a critical aspect of the decision process that can be adjusted to effectively improve decision accuracy. PMID:24599295

  19. Dynamical Behavior of a Malaria Model with Discrete Delay and Optimal Insecticide Control

    NASA Astrophysics Data System (ADS)

    Kar, Tuhin Kumar; Jana, Soovoojeet

    In this paper we have proposed and analyzed a simple three-dimensional mathematical model related to malaria disease. We consider three state variables associated with susceptible human population, infected human population and infected mosquitoes, respectively. A discrete delay parameter has been incorporated to take account of the time of incubation period with infected mosquitoes. We consider the effect of insecticide control, which is applied to the mosquitoes. Basic reproduction number is figured out for the proposed model and it is shown that when this threshold is less than unity then the system moves to the disease-free state whereas for higher values other than unity, the system would tend to an endemic state. On the other hand if we consider the system with delay, then there may exist some cases where the endemic equilibrium would be unstable although the numerical value of basic reproduction number may be greater than one. We formulate and solve the optimal control problem by considering insecticide as the control variable. Optimal control problem assures to obtain better result than the noncontrol situation. Numerical illustrations are provided in support of the theoretical results.

  20. Angular dependence of EWS time delay for photoionization of @Xe

    NASA Astrophysics Data System (ADS)

    Mandal, Ankur; Deshmukh, Pranawa; Kheifets, Anatoli; Dolmatov, Valeriy; Manson, Steven

    2017-04-01

    Interference between photoionization channels leads to angular dependence in photoionization time delay. Angular dependence is found to be a common effect for two-photon absorption experiments very recently. The effect of confinement on the time delay where each partial wave contributions to the ionization are studied. In this work we report angular dependence and confinement effects on Eisenbud-Wigner-Smith (EWS) time delay in atomic photoionization. Using and we computed the EWS time delay for free and confined Xe atom for photoionization from inner 4d3/2 and 4d5/2 and outer 5p1/2 and 5p3/2 subshells at various angles. The calculated EWS time delay is few tens to few hundreds of attoseconds (10-18 second). The photoionization time delay for @Xe follows that in the free Xe atom on which the confinement oscillations are built. The present work reveals the effect of confinement on the photoionization time delay at different angles between photoelectron ejection and the photon polarization.

  1. Geometric subspace methods and time-delay embedding for EEG artifact removal and classification.

    PubMed

    Anderson, Charles W; Knight, James N; O'Connor, Tim; Kirby, Michael J; Sokolov, Artem

    2006-06-01

    Generalized singular-value decomposition is used to separate multichannel electroencephalogram (EEG) into components found by optimizing a signal-to-noise quotient. These components are used to filter out artifacts. Short-time principal components analysis of time-delay embedded EEG is used to represent windowed EEG data to classify EEG according to which mental task is being performed. Examples are presented of the filtering of various artifacts and results are shown of classification of EEG from five mental tasks using committees of decision trees.

  2. Dynamics of scroll waves with time-delay propagation in excitable media

    NASA Astrophysics Data System (ADS)

    Chen, Jiang-Xing; Xiao, Jie; Qiao, Li-Yan; Xu, Jiang-Rong

    2018-06-01

    Information transmission delay can be widely observed in various systems. Here, we study the dynamics of scroll waves with time-delay propagation among slices in excitable media. Weak time delay induces scroll waves to meander. Through increasing the time delay, we find a series of dynamical transitions. Firstly, the straight filament of a scroll wave becomes twisted. Then, the scroll wave breaks and forms interesting patterns. With long time delay, loosed scroll waves are maintained while their period are greatly decreased. Also, cylinder waves appears. The influences of diffusively coupling strength on the time-delay-induced scroll waves are studied. It is found that the critical time delay characterizing those transitions decreases as the coupling strength is increased. A phase diagram in the diffusive coupling-time delay plane is presented.

  3. Scaling relation for high-temperature biodiesel surrogate ignition delay times

    DOE PAGES

    Campbell, Matthew F.; Davidson, David F.; Hanson, Ronald K.

    2015-10-11

    High-temperature Arrhenius ignition delay time correlations are useful for revealing the underlying parameter dependencies of combustion models, for simplifying and optimizing combustion mechanisms for use in engine simulations, for scaling experimental data to new conditions for comparison purposes, and for guiding in experimental design. Here, we have developed a scaling relationship for Fatty Acid Methyl Ester (FAME) ignition time data taken at high temperatures in 4%O 2/Ar mixtures behind reflected shocks using an aerosol shock tube: τ ign [ms] = 2.24 x 10 -6 [ms] (P [atm]) -.41 (more » $$\\phi$$) 0.30(C n) -.61 x exp $$ \\left(\\frac{37.1 [kcal/mol]}{\\hat{R}_u [kcal / mol K] T [K]}\\right) $$ In addition, we have combined our ignition delay time data for methyl decanoate, methyl palmitate, methyl oleate, and methyl linoleate with other experimental results in the literature in order to derive fuel-specific oxygen-mole-fraction scaling parameters for these surrogates. In conclusion, in this article, we discuss the significance of the parameter values, compare our correlation to others found in the literature for different classes of fuels, and contrast the above expression’s performance with correlations obtained using leading FAME kinetic models in 4%O 2/Ar mixtures.« less

  4. Correlation study of real delay time and imaginary delay time in 1-dimensional weak disorder optical media

    NASA Astrophysics Data System (ADS)

    Sahay, Peeyush; Almabadi, Huda M.; Pradhan, Prabhakar

    Real delay time (τr) provides a measure of the time spent by photons inside an optical system. The measurement of τr is conducted in terms of energy (E) derivative of the Wigner phase delay (φ) , as τr = dϕ / dE dϕ / cdk k and c represents wavenumber and the speed of light, respectively. The characterization of τr requires interferometric system to measure φ of the light waves scattering from the medium [ R =√{ r} exp (- iϕ) ]. We investigated the possibility of extracting the τr information from the intensity measurement of the backscattered waves. The study was performed on a 1D model of weak disordered optical system and short sample length by numerically evaluating the backscattered light intensity. An imaginary delay time (τi) , defined as τi = dθ / cdk , where θ represents an `imaginary phase', was obtained upon expressing the backscattered intensity as RR* =| R | 2 = r = exp (- θ) . The result shows a strong correlation between r and φ with τr and τi exhibiting similar statistical distribution but with a shift. The magnitude and variation of the mean and std values of τr, and the std values of τi with sample lengths are nearly the same, which indicates about one parameter theory of delay time. This work potentially paves way for extracting phase information from the intensity distribution without using interferometric systems.

  5. Solar oscillation time delay measurement assisted celestial navigation method

    NASA Astrophysics Data System (ADS)

    Ning, Xiaolin; Gui, Mingzhen; Zhang, Jie; Fang, Jiancheng; Liu, Gang

    2017-05-01

    Solar oscillation, which causes the sunlight intensity and spectrum frequency change, has been studied in great detail, both observationally and theoretically. In this paper, owing to the existence of solar oscillation, the time delay between the sunlight coming from the Sun directly and the sunlight reflected by the other celestial body such as the satellite of planet or asteroid can be obtained with two optical power meters. Because the solar oscillation time delay is determined by the relative positions of the spacecraft, reflective celestial body and the Sun, it can be adopted as the navigation measurement to estimate the spacecraft's position. The navigation accuracy of single solar oscillation time delay navigation system depends on the time delay measurement accuracy, and is influenced by the distance between spacecraft and reflective celestial body. In this paper, we combine it with the star angle measurement and propose a solar oscillation time delay measurement assisted celestial navigation method for deep space exploration. Since the measurement model of time delay is an implicit function, the Implicit Unscented Kalman Filter (IUKF) is applied. Simulations demonstrate the effectiveness and superiority of this method.

  6. Identifying Anomalies in Gravitational Lens Time Delays

    NASA Astrophysics Data System (ADS)

    Congdon, Arthur B.; Keeton, C. R.; Nordgren, C. E.

    2009-05-01

    Gravitational lensing has become a powerful probe of cold dark matter substructure. Earlier work using anomalous flux ratios in four-image quasar lenses has shown that lensing is sensitive to substructure which raises the exciting prospect of constraining the mass function and spatial distribution of dark matter satellites in galaxies. We examine the ability of gravitational lens time delays to reveal complex structure in lens potentials. We use Monte Carlo simulations to determine the range of time delays that can be produced by realistic smooth lens models consisting of isothermal ellipsoid galaxies with tidal shear. We can then identify outliers as "time-delay anomalies." We find evidence for anomalies in close image pairs in the cusp lenses RX J1131-1231 and B1422+231. The anomalies in RX J1131-1231 provide strong evidence for substructure in the lens potential, while at this point the apparent anomalies in B1422+231 mainly indicate that the time delay measurements need to be improved. We also find evidence for time-delay anomalies in larger-separation image pairs in four additional lenses. We suggest that these anomalies are caused by some combination of substructure and a complex lens environment. Our work argues for a large sample of strong lenses with precisely-measured time delays. The first of these objectives will be readily achievable as the next generation of optical and radio telescopes come online, while the second will require a dedicated one-meter class space-based observatory. Meeting these goals will make it possible to examine the properties of dark matter on sub-galactic scales, which is essential for distinguishing among the various dark matter candidates from particle physics. Part of this work was funded by NSF grant AST-0747311. ABC is currently supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA.

  7. A dual-loop adaptive control for minimizing time response delay in real-time structural vibration control with magnetorheological (MR) devices

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Li, Yancheng; Li, Jianchun; Gu, Xiaoyu

    2018-01-01

    Time delay is a challenge issue faced by the real-time control application of the magnetorheological (MR) devices. Not to deal with it properly may jeopardize the effectiveness of the control, even lead to instability of the control system or catastrophic failure. This paper proposes a dual-loop adaptive control to address the response time delay associated with MR devices. In the proposed dual-loop control, the inner loop is designed to compensate the time delay of MR device induced by the PWM current driver. While the outer loop control can be any structural control algorithm with aims to reducing structural responses of a building during extreme loadings. Here an adaptive control strategy is adopted. To verify the proposed dual-loop control, a smart base isolation system employing magnetorheological elastomer base isolators is used as an example to illustrate the control effect. Numerical study is then conducted using a 5 -storey shear building model equipped with smart base isolation system. The result shows that with the implementation of the inner loop, the control current can instantly follow the control command which reduce the possibility of instability caused by the time delay. Comparative studies are conducted between three control strategies, i.e. dual-loop control, Lyapunov’s direct method based control and optimal passive base isolation control. The results of the study have demonstrated that the proposed dual-loop control strategy can achieve much better performance than the other two control strategies.

  8. Stability of Nonlinear Systems with Unknown Time-varying Feedback Delay

    NASA Astrophysics Data System (ADS)

    Chunodkar, Apurva A.; Akella, Maruthi R.

    2013-12-01

    This paper considers the problem of stabilizing a class of nonlinear systems with unknown bounded delayed feedback wherein the time-varying delay is 1) piecewise constant 2) continuous with a bounded rate. We also consider application of these results to the stabilization of rigid-body attitude dynamics. In the first case, the time-delay in feedback is modeled specifically as a switch among an arbitrarily large set of unknown constant values with a known strict upper bound. The feedback is a linear function of the delayed states. In the case of linear systems with switched delay feedback, a new sufficiency condition for average dwell time result is presented using a complete type Lyapunov-Krasovskii (L-K) functional approach. Further, the corresponding switched system with nonlinear perturbations is proven to be exponentially stable inside a well characterized region of attraction for an appropriately chosen average dwell time. In the second case, the concept of the complete type L-K functional is extended to a class of nonlinear time-delay systems with unknown time-varying time-delay. This extension ensures stability robustness to time-delay in the control design for all values of time-delay less than the known upper bound. Model-transformation is used in order to partition the nonlinear system into a nominal linear part that is exponentially stable with a bounded perturbation. We obtain sufficient conditions which ensure exponential stability inside a region of attraction estimate. A constructive method to evaluate the sufficient conditions is presented together with comparison with the corresponding constant and piecewise constant delay. Numerical simulations are performed to illustrate the theoretical results of this paper.

  9. Wigner time delay and spin-orbit activated confinement resonances

    NASA Astrophysics Data System (ADS)

    Keating, D. A.; Deshmukh, P. C.; Manson, S. T.

    2017-09-01

    A study of the photoionization of spin-orbit split subshells of high-Z atoms confined in C60 has been performed using the relativistic-random-phase approximation. Specifically, Hg@C60 5p, Rn@C60 6p and Ra@C60 5d were investigated and the near-threshold confinement resonances in the j = l - 1/2 channels were found to engender structures in the j = l + 1/2 cross sections via correlation in the form of interchannel coupling. These structures are termed spin-orbit induced confinement resonances and they are found to profoundly influence the Wigner time delay spectrum resulting in time delays of tens or hundreds of attoseconds along with dramatic swings in time delay over small energy intervals. Pronounced relativistic effects in time delay are also found. These structures, including their manifestation in time delay spectra, are expected to be general phenomena in the photoionization of spin-orbit doublets in confined high-Z atoms.

  10. Stochastic resonance enhancement of small-world neural networks by hybrid synapses and time delay

    NASA Astrophysics Data System (ADS)

    Yu, Haitao; Guo, Xinmeng; Wang, Jiang

    2017-01-01

    The synergistic effect of hybrid electrical-chemical synapses and information transmission delay on the stochastic response behavior in small-world neuronal networks is investigated. Numerical results show that, the stochastic response behavior can be regulated by moderate noise intensity to track the rhythm of subthreshold pacemaker, indicating the occurrence of stochastic resonance (SR) in the considered neural system. Inheriting the characteristics of two types of synapses-electrical and chemical ones, neural networks with hybrid electrical-chemical synapses are of great improvement in neuron communication. Particularly, chemical synapses are conducive to increase the network detectability by lowering the resonance noise intensity, while the information is better transmitted through the networks via electrical coupling. Moreover, time delay is able to enhance or destroy the periodic stochastic response behavior intermittently. In the time-delayed small-world neuronal networks, the introduction of electrical synapses can significantly improve the signal detection capability by widening the range of optimal noise intensity for the subthreshold signal, and the efficiency of SR is largely amplified in the case of pure chemical couplings. In addition, the stochastic response behavior is also profoundly influenced by the network topology. Increasing the rewiring probability in pure chemically coupled networks can always enhance the effect of SR, which is slightly influenced by information transmission delay. On the other hand, the capacity of information communication is robust to the network topology within the time-delayed neuronal systems including electrical couplings.

  11. Time averaging, ageing and delay analysis of financial time series

    NASA Astrophysics Data System (ADS)

    Cherstvy, Andrey G.; Vinod, Deepak; Aghion, Erez; Chechkin, Aleksei V.; Metzler, Ralf

    2017-06-01

    We introduce three strategies for the analysis of financial time series based on time averaged observables. These comprise the time averaged mean squared displacement (MSD) as well as the ageing and delay time methods for varying fractions of the financial time series. We explore these concepts via statistical analysis of historic time series for several Dow Jones Industrial indices for the period from the 1960s to 2015. Remarkably, we discover a simple universal law for the delay time averaged MSD. The observed features of the financial time series dynamics agree well with our analytical results for the time averaged measurables for geometric Brownian motion, underlying the famed Black-Scholes-Merton model. The concepts we promote here are shown to be useful for financial data analysis and enable one to unveil new universal features of stock market dynamics.

  12. Photoemission and photoionization time delays and rates

    PubMed Central

    Gallmann, L.; Jordan, I.; Wörner, H. J.; Castiglioni, L.; Hengsberger, M.; Osterwalder, J.; Arrell, C. A.; Chergui, M.; Liberatore, E.; Rothlisberger, U.; Keller, U.

    2017-01-01

    Ionization and, in particular, ionization through the interaction with light play an important role in fundamental processes in physics, chemistry, and biology. In recent years, we have seen tremendous advances in our ability to measure the dynamics of photo-induced ionization in various systems in the gas, liquid, or solid phase. In this review, we will define the parameters used for quantifying these dynamics. We give a brief overview of some of the most important ionization processes and how to resolve the associated time delays and rates. With regard to time delays, we ask the question: how long does it take to remove an electron from an atom, molecule, or solid? With regard to rates, we ask the question: how many electrons are emitted in a given unit of time? We present state-of-the-art results on ionization and photoemission time delays and rates. Our review starts with the simplest physical systems: the attosecond dynamics of single-photon and tunnel ionization of atoms in the gas phase. We then extend the discussion to molecular gases and ionization of liquid targets. Finally, we present the measurements of ionization delays in femto- and attosecond photoemission from the solid–vacuum interface. PMID:29308414

  13. Determination of relevant neuron-neuron connections for neural prosthetics using time-delayed mutual information: tutorial and preliminary results.

    PubMed

    Taghva, Alexander; Song, Dong; Hampson, Robert E; Deadwyler, Sam A; Berger, Theodore W

    2012-12-01

    Identification of functional dependence among neurons is a necessary component in both the rational design of neural prostheses as well as in the characterization of network physiology. The objective of this article is to provide a tutorial for neurosurgeons regarding information theory, specifically time-delayed mutual information, and to compare time-delayed mutual information, an information theoretic quantity based on statistical dependence, with cross-correlation, a commonly used metric for this task in a preliminary analysis of rat hippocampal neurons. Spike trains were recorded from rats performing delayed nonmatch-to-sample task using an array of electrodes surgically implanted into the hippocampus of each hemisphere of the brain. In addition, spike train simulations of positively correlated neurons, negatively correlated neurons, and neurons correlated by nonlinear functions were generated. These were evaluated by time-delayed mutual information (MI) and cross-correlation. Application of time-delayed MI to experimental data indicated the optimal bin size for information capture in the CA3-CA1 system was 40 ms, which may provide some insight into the spatiotemporal nature of encoding in the rat hippocampus. On simulated data, time-delayed MI showed peak values at appropriate time lags in positively correlated, negatively correlated, and complexly correlated data. Cross-correlation showed peak and troughs with positively correlated and negatively correlated data, but failed to capture some higher order correlations. Comparison of time-delayed MI to cross-correlation in identification of functionally dependent neurons indicates that the methods are not equivalent. Time-delayed MI appeared to capture some interactions between CA3-CA1 neurons at physiologically plausible time delays missed by cross-correlation. It should be considered as a method for identification of functional dependence between neurons and may be useful in the development of neural

  14. Determination of Relevant Neuron–Neuron Connections for Neural Prosthetics Using Time-Delayed Mutual Information: Tutorial and Preliminary Results

    PubMed Central

    Taghva, Alexander; Song, Dong; Hampson, Robert E.; Deadwyler, Sam A.; Berger, Theodore W.

    2013-01-01

    BACKGROUND Identification of functional dependence among neurons is a necessary component in both the rational design of neural prostheses as well as in the characterization of network physiology. The objective of this article is to provide a tutorial for neurosurgeons regarding information theory, specifically time-delayed mutual information, and to compare time-delayed mutual information, an information theoretic quantity based on statistical dependence, with cross-correlation, a commonly used metric for this task in a preliminary analysis of rat hippocampal neurons. METHODS Spike trains were recorded from rats performing delayed nonmatch-to-sample task using an array of electrodes surgically implanted into the hippocampus of each hemisphere of the brain. In addition, spike train simulations of positively correlated neurons, negatively correlated neurons, and neurons correlated by nonlinear functions were generated. These were evaluated by time-delayed mutual information (MI) and cross-correlation. RESULTS Application of time-delayed MI to experimental data indicated the optimal bin size for information capture in the CA3-CA1 system was 40 ms, which may provide some insight into the spatiotemporal nature of encoding in the rat hippocampus. On simulated data, time-delayed MI showed peak values at appropriate time lags in positively correlated, negatively correlated, and complexly correlated data. Cross-correlation showed peak and troughs with positively correlated and negatively correlated data, but failed to capture some higher order correlations. CONCLUSIONS Comparison of time-delayed MI to cross-correlation in identification of functionally dependent neurons indicates that the methods are not equivalent. Time-delayed MI appeared to capture some interactions between CA3-CA1 neurons at physiologically plausible time delays missed by cross-correlation. It should be considered as a method for identification of functional dependence between neurons and may be useful

  15. Relativity time-delay experiments utilizing 'Mariner' spacecraft

    NASA Technical Reports Server (NTRS)

    Esposito, P. B.; Anderson, J. D.

    1974-01-01

    Relativity predicts that the transit time of a signal propagated from the earth to a spacecraft and retransmitted back to earth ought to exhibit an additional, variable time delay. The present work describes some of the analytical techniques employed in experiments using Mariner spacecraft designed to test the accuracy of this prediction. Two types of data are analyzed in these relativity experiments; these include phase-coherent, two-way Doppler shift and round-trip, transit-time measurements. Results of Mariner 6 and 7 relativistic time-delay experiments are in agreement with Einstein's theory of general relativity with an uncertainty of 3%.

  16. Time-Varying Delay Estimation Applied to the Surface Electromyography Signals Using the Parametric Approach

    NASA Astrophysics Data System (ADS)

    Luu, Gia Thien; Boualem, Abdelbassit; Duy, Tran Trung; Ravier, Philippe; Butteli, Olivier

    Muscle Fiber Conduction Velocity (MFCV) can be calculated from the time delay between the surface electromyographic (sEMG) signals recorded by electrodes aligned with the fiber direction. In order to take into account the non-stationarity during the dynamic contraction (the most daily life situation) of the data, the developed methods have to consider that the MFCV changes over time, which induces time-varying delays and the data is non-stationary (change of Power Spectral Density (PSD)). In this paper, the problem of TVD estimation is considered using a parametric method. First, the polynomial model of TVD has been proposed. Then, the TVD model parameters are estimated by using a maximum likelihood estimation (MLE) strategy solved by a deterministic optimization technique (Newton) and stochastic optimization technique, called simulated annealing (SA). The performance of the two techniques is also compared. We also derive two appropriate Cramer-Rao Lower Bounds (CRLB) for the estimated TVD model parameters and for the TVD waveforms. Monte-Carlo simulation results show that the estimation of both the model parameters and the TVD function is unbiased and that the variance obtained is close to the derived CRBs. A comparison with non-parametric approaches of the TVD estimation is also presented and shows the superiority of the method proposed.

  17. Time delays in flight simulator visual displays

    NASA Technical Reports Server (NTRS)

    Crane, D. F.

    1980-01-01

    It is pointed out that the effects of delays of less than 100 msec in visual displays on pilot dynamic response and system performance are of particular interest at this time because improvements in the latest computer-generated imagery (CGI) systems are expected to reduce CGI displays delays to this range. Attention is given to data which quantify the effects of display delays in the range of 0-100 msec on system stability and performance, and pilot dynamic response for a particular choice of aircraft dynamics, display, controller, and task. The conventional control system design methods are reviewed, the pilot response data presented, and data for long delays, all suggest lead filter compensation of display delay. Pilot-aircraft system crossover frequency information guides compensation filter specification.

  18. Consensus-based distributed estimation in multi-agent systems with time delay

    NASA Astrophysics Data System (ADS)

    Abdelmawgoud, Ahmed

    During the last years, research in the field of cooperative control of swarm of robots, especially Unmanned Aerial Vehicles (UAV); have been improved due to the increase of UAV applications. The ability to track targets using UAVs has a wide range of applications not only civilian but also military as well. For civilian applications, UAVs can perform tasks including, but not limited to: map an unknown area, weather forecasting, land survey, and search and rescue missions. On the other hand, for military personnel, UAV can track and locate a variety of objects, including the movement of enemy vehicles. Consensus problems arise in a number of applications including coordination of UAVs, information processing in wireless sensor networks, and distributed multi-agent optimization. We consider a widely studied consensus algorithms for processing sensed data by different sensors in wireless sensor networks of dynamic agents. Every agent involved in the network forms a weighted average of its own estimated value of some state with the values received from its neighboring agents. We introduced a novelty of consensus-based distributed estimation algorithms. We propose a new algorithm to reach a consensus given time delay constraints. The proposed algorithm performance was observed in a scenario where a swarm of UAVs measuring the location of a ground maneuvering target. We assume that each UAV computes its state prediction and shares it with its neighbors only. However, the shared information applied to different agents with variant time delays. The entire group of UAVs must reach a consensus on target state. Different scenarios were also simulated to examine the effectiveness and performance in terms of overall estimation error, disagreement between delayed and non-delayed agents, and time to reach a consensus for each parameter contributing on the proposed algorithm.

  19. Time-delayed feedback control of coherence resonance chimeras

    NASA Astrophysics Data System (ADS)

    Zakharova, Anna; Semenova, Nadezhda; Anishchenko, Vadim; Schöll, Eckehard

    2017-11-01

    Using the model of a FitzHugh-Nagumo system in the excitable regime, we investigate the influence of time-delayed feedback on noise-induced chimera states in a network with nonlocal coupling, i.e., coherence resonance chimeras. It is shown that time-delayed feedback allows for the control of the range of parameter values where these chimera states occur. Moreover, for the feedback delay close to the intrinsic period of the system, we find a novel regime which we call period-two coherence resonance chimera.

  20. Introduction to Focus Issue: Time-delay dynamics

    NASA Astrophysics Data System (ADS)

    Erneux, Thomas; Javaloyes, Julien; Wolfrum, Matthias; Yanchuk, Serhiy

    2017-11-01

    The field of dynamical systems with time delay is an active research area that connects practically all scientific disciplines including mathematics, physics, engineering, biology, neuroscience, physiology, economics, and many others. This Focus Issue brings together contributions from both experimental and theoretical groups and emphasizes a large variety of applications. In particular, lasers and optoelectronic oscillators subject to time-delayed feedbacks have been explored by several authors for their specific dynamical output, but also because they are ideal test-beds for experimental studies of delay induced phenomena. Topics include the control of cavity solitons, as light spots in spatially extended systems, new devices for chaos communication or random number generation, higher order locking phenomena between delay and laser oscillation period, and systematic bifurcation studies of mode-locked laser systems. Moreover, two original theoretical approaches are explored for the so-called Low Frequency Fluctuations, a particular chaotical regime in laser output which has attracted a lot of interest for more than 30 years. Current hot problems such as the synchronization properties of networks of delay-coupled units, novel stabilization techniques, and the large delay limit of a delay differential equation are also addressed in this special issue. In addition, analytical and numerical tools for bifurcation problems with or without noise and two reviews on concrete questions are proposed. The first review deals with the rich dynamics of simple delay climate models for El Nino Southern Oscillations, and the second review concentrates on neuromorphic photonic circuits where optical elements are used to emulate spiking neurons. Finally, two interesting biological problems are considered in this Focus Issue, namely, multi-strain epidemic models and the interaction of glucose and insulin for more effective treatment.

  1. Determining the optimal window length for pattern recognition-based myoelectric control: balancing the competing effects of classification error and controller delay.

    PubMed

    Smith, Lauren H; Hargrove, Levi J; Lock, Blair A; Kuiken, Todd A

    2011-04-01

    Pattern recognition-based control of myoelectric prostheses has shown great promise in research environments, but has not been optimized for use in a clinical setting. To explore the relationship between classification error, controller delay, and real-time controllability, 13 able-bodied subjects were trained to operate a virtual upper-limb prosthesis using pattern recognition of electromyogram (EMG) signals. Classification error and controller delay were varied by training different classifiers with a variety of analysis window lengths ranging from 50 to 550 ms and either two or four EMG input channels. Offline analysis showed that classification error decreased with longer window lengths (p < 0.01 ). Real-time controllability was evaluated with the target achievement control (TAC) test, which prompted users to maneuver the virtual prosthesis into various target postures. The results indicated that user performance improved with lower classification error (p < 0.01 ) and was reduced with longer controller delay (p < 0.01 ), as determined by the window length. Therefore, both of these effects should be considered when choosing a window length; it may be beneficial to increase the window length if this results in a reduced classification error, despite the corresponding increase in controller delay. For the system employed in this study, the optimal window length was found to be between 150 and 250 ms, which is within acceptable controller delays for conventional multistate amplitude controllers.

  2. A comparison of control modes for time-delayed remote manipulation

    NASA Technical Reports Server (NTRS)

    Starr, G. P.

    1982-01-01

    Transmission time delay in the communication channel of a manual control system is investigated. A time delay can exist in remote manipulation systems, caused by long communication distances or bandwidth limitations. Ferrell 1 conducted the first research in time-delayed manipulation using a two degree-of-freedom manipulator. His subjects, working at time delays of 1.0, 2.1, and 3.2 s, could accomplish tasks even requiring great accuracy. The subjects spontaneously adopted a pattern of moving cautiously, then waiting to see the results of their actions. In experiments with a six degree-of-freedom master-slave manipulator system and time delays of 1.0 to 6 s, Black 2 saw that subjects tried to use the move-and-wait strategy; but there were often difficulties. The subjects seemed to have a problem in holding the master arm stationary while waiting for feedback. Any undesired drifting of the master arm introduced a discrepancy between the positions of the master and slave. This discrepancy was not perceived because of the time delay. The subject would then begin his next move with an inherent error. The difficulty of effectively using the move-and-wait strategy with a master-slave manipulator suggested that rate control might be a more effective control mode with time delay.

  3. The time delay in strong gravitational lensing with Gauss-Bonnet correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Man, Jingyun; Cheng, Hongbo, E-mail: jingyunman@mail.ecust.edu.cn, E-mail: hbcheng@ecust.edu.cn

    2014-11-01

    The time delay between two relativistic images in the strong gravitational lensing governed by Gauss-Bonnet gravity is studied. We make a complete analytical derivation of the expression of time delay in presence of Gauss-Bonnet coupling. With respect to Schwarzschild, the time delay decreases as a consequence of the shrinking of the photon sphere. As the coupling increases, the second term in the time delay expansion becomes more relevant. Thus time delay in strong limit encodes some new information about geometry in five-dimensional spacetime with Gauss-Bonnet correction.

  4. Delay Analysis and Optimization of Bandwidth Request under Unicast Polling in IEEE 802.16e over Gilbert-Elliot Error Channel

    NASA Astrophysics Data System (ADS)

    Hwang, Eunju; Kim, Kyung Jae; Roijers, Frank; Choi, Bong Dae

    In the centralized polling mode in IEEE 802.16e, a base station (BS) polls mobile stations (MSs) for bandwidth reservation in one of three polling modes; unicast, multicast, or broadcast pollings. In unicast polling, the BS polls each individual MS to allow to transmit a bandwidth request packet. This paper presents an analytical model for the unicast polling of bandwidth request in IEEE 802.16e networks over Gilbert-Elliot error channel. We derive the probability distribution for the delay of bandwidth requests due to wireless transmission errors and find the loss probability of request packets due to finite retransmission attempts. By using the delay distribution and the loss probability, we optimize the number of polling slots within a frame and the maximum retransmission number while satisfying QoS on the total loss probability which combines two losses: packet loss due to the excess of maximum retransmission and delay outage loss due to the maximum tolerable delay bound. In addition, we obtain the utilization of polling slots, which is defined as the ratio of the number of polling slots used for the MS's successful transmission to the total number of polling slots used by the MS over a long run time. Analysis results are shown to well match with simulation results. Numerical results give examples of the optimal number of polling slots within a frame and the optimal maximum retransmission number depending on delay bounds, the number of MSs, and the channel conditions.

  5. Pulse-parameter dependence of nuclear ``attosecond time delays''

    NASA Astrophysics Data System (ADS)

    Armstrong, Greg; Ursrey, D.; Hernandez, J. V.; Anis, F.; Severt, T.; Zohrabi, M.; Berry, Ben; Feizollah, Peyman; Jochim, Bethany; Kanaka Raju, P.; McKenna, J.; Gaire, B.; Carnes, K. D.; Ben-Itzhak, I.; Esry, B. D.

    2017-04-01

    One of the main goals of strong-field photodissociation is the control of chemical reactions. Recent experiments have successfully controlled the spatial asymmetry in D2+using two-color interferometry. These experiments achieved vibrational resolution, and so were able to determine the spatial asymmetry of a number of vibrational states as a function of two-color delay. The relative phase in the delay-dependent spatial asymmetry obtained in these experiments may be used to define a time delay in dissociation from adjacent vibrational states - a technique used previously to produce relative time delays in atomic ionization from the photoelectron spectrum. Further two-color measurements in this direction are being planned. As a guide to these experiments, we aim to determine theoretically the dependence of such delays on laser intensity, pulse length, and pulse shape. We also identify the parameters that maximize the contrast in the delay-dependent spatial asymmetry. This work is supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy under Contract No. DE-FG02-86ER13191.

  6. Optimal scan timing and intravenous route for contrast-enhanced computed tomography in patients after Fontan operation.

    PubMed

    Park, Eun-Ah; Lee, Whal; Chung, Se-Young; Yin, Yong Hu; Chung, Jin Wook; Park, Jae Hyung

    2010-01-01

    To determine the optimal scan timing and adequate intravenous route for patients having undergone the Fontan operation. A total of 88 computed tomographic images in 49 consecutive patients who underwent the Fontan operation were retrospectively evaluated and divided into 7 groups: group 1, bolus-tracking method with either intravenous route (n = 20); group 2, 1-minute-delay scan with single antecubital route (n = 36); group 3, 1-minute-delay scan with both antecubital routes (n = 2); group 4, 1-minute-delay scan with foot vein route (n = 3); group 5, 1-minute-delay scan with simultaneous infusion via both antecubital and foot vein routes (n = 2); group 6, 3-minute-delay scan with single antecubital route (n = 22); and group 7, 3-minute-delay scan with foot vein route (n = 3). The presence of beam-hardening artifact, uniform enhancement, and optimal enhancement was evaluated at the right pulmonary artery (RPA), left pulmonary artery (LPA), and Fontan tract. Optimal enhancement was determined when evaluation of thrombus was possible. Standard deviation was measured at the RPA, LPA, and Fontan tract. Beam-hardening artifacts of the RPA, LPA, and Fontan tract were frequently present in groups 1, 4, and 5. The success rate of uniform and optimal enhancement was highest (100%) in groups 6 and 7, followed by group 2 (75%). An SD of less than 30 Hounsfield unit for the pulmonary artery and Fontan tract was found in groups 3, 6, and 7. The optimal enhancement of the pulmonary arteries and Fontan tract can be achieved by a 3-minute-delay scan irrespective of the intravenous route location.

  7. Time delay measurement in the frequency domain

    DOE PAGES

    Durbin, Stephen M.; Liu, Shih -Chieh; Dufresne, Eric M.; ...

    2015-08-06

    Pump–probe studies at synchrotrons using X-ray and laser pulses require accurate determination of the time delay between pulses. This becomes especially important when observing ultrafast responses with lifetimes approaching or even less than the X-ray pulse duration (~100 ps). The standard approach of inspecting the time response of a detector sensitive to both types of pulses can have limitations due to dissimilar pulse profiles and other experimental factors. Here, a simple alternative is presented, where the frequency response of the detector is monitored versus time delay. Measurements readily demonstrate a time resolution of ~1 ps. Improved precision is possible bymore » simply extending the data acquisition time.« less

  8. Time delay in atomic photoionization with circularly polarized light

    NASA Astrophysics Data System (ADS)

    Ivanov, I. A.; Kheifets, A. S.

    2013-03-01

    We study time delay in atomic photoionization by circularly polarized light. By considering the Li atom in an excited 2p state, we demonstrate a strong time-delay asymmetry between the photoemission of the target electrons that are co- and counter-rotating with the electromagnetic field in the polarization plane. In addition, we observe the time-delay sensitivity to the polar angle of the photoelectron emission in the polarization plane. This modulation depends on the shape and duration of the electromagnetic pulse.

  9. PRECISION TIME-DELAY GENERATOR

    DOEpatents

    Carr, B.J.; Peckham, V.D.

    1959-06-16

    A precision time-delay generator circuit with low jitter is described. The first thyratron has a series resonant circuit and a diode which is connected to the second thyratron. The first thyratron is triggered at the begin-ning of a time delay and a capacitor is discharged through the first thyratron and the diode, thereby, triggering the second thyratron. (T.R.H.) l6l9O The instrument described can measure pressures between sea level and 300,000 ft. The pressure- sensing transducer of the instrument is a small cylindrical tube with a thin foil of titanium-tritium fastened around the inside of the tube. Output is a digital signal which can be used for storage or telemetering more conveniently than an analog signal. (W.D.M.) l6l9l An experimental study was made on rolling contacts in the temperature range of 550 to 1000 deg F. Variables such as material composition, hardness, and operating conditions were investigated in a rolling test stand. Ball bearing tests were run to determine the effect of design parameters, bearing materials, lubricants, and operating conditions. (auth)

  10. Spin-dependent delay time in ferromagnet/insulator/ferromagnet heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, ZhengWei; Zheng Shi, De; Lv, HouXiang

    2014-07-07

    We study theoretically spin-dependent group delay and dwell time in ferromagnet/insulator/ferromagnet (FM/I/FM) heterostructure. The results indicate that, when the electrons with different spin orientations tunnel through the FM/I/FM junction, the spin-up process and the spin-down process are separated on the time scales. As the self-interference delay has the spin-dependent features, the variations of spin-dependent dwell-time and spin-dependent group-delay time with the structure parameters appear different features, especially, in low incident energy range. These different features show up as that the group delay times for the spin-up electrons are always longer than those for spin-down electrons when the barrier height ormore » incident energy increase. In contrast, the dwell times for the spin-up electrons are longer (shorter) than those for spin-down electrons when the barrier heights (the incident energy) are under a certain value. When the barrier heights (the incident energy) exceed a certain value, the dwell times for the spin-up electrons turn out to be shorter (longer) than those for spin-down electrons. In addition, the group delay time and the dwell time for spin-up and down electrons also relies on the comparative direction of magnetization in two FM layers and tends to saturation with the thickness of the barrier.« less

  11. Finite-time stability of neutral-type neural networks with random time-varying delays

    NASA Astrophysics Data System (ADS)

    Ali, M. Syed; Saravanan, S.; Zhu, Quanxin

    2017-11-01

    This paper is devoted to the finite-time stability analysis of neutral-type neural networks with random time-varying delays. The randomly time-varying delays are characterised by Bernoulli stochastic variable. This result can be extended to analysis and design for neutral-type neural networks with random time-varying delays. On the basis of this paper, we constructed suitable Lyapunov-Krasovskii functional together and established a set of sufficient linear matrix inequalities approach to guarantee the finite-time stability of the system concerned. By employing the Jensen's inequality, free-weighting matrix method and Wirtinger's double integral inequality, the proposed conditions are derived and two numerical examples are addressed for the effectiveness of the developed techniques.

  12. Direct SQP-methods for solving optimal control problems with delays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goellmann, L.; Bueskens, C.; Maurer, H.

    The maximum principle for optimal control problems with delays leads to a boundary value problem (BVP) which is retarded in the state and advanced in the costate function. Based on shooting techniques, solution methods for this type of BVP have been proposed. In recent years, direct optimization methods have been favored for solving control problems without delays. Direct methods approximate the control and the state over a fixed mesh and solve the resulting NLP-problem with SQP-methods. These methods dispense with the costate function and have shown to be robust and efficient. In this paper, we propose a direct SQP-method formore » retarded control problems. In contrast to conventional direct methods, only the control variable is approximated by e.g. spline-functions. The state is computed via a high order Runge-Kutta type algorithm and does not enter explicitly the NLP-problem through an equation. This approach reduces the number of optimization variables considerably and is implementable even on a PC. Our method is illustrated by the numerical solution of retarded control problems with constraints. In particular, we consider the control of a continuous stirred tank reactor which has been solved by dynamic programming. This example illustrates the robustness and efficiency of the proposed method. Open questions concerning sufficient conditions and convergence of discretized NLP-problems are discussed.« less

  13. A distributed approach for optimizing cascaded classifier topologies in real-time stream mining systems.

    PubMed

    Foo, Brian; van der Schaar, Mihaela

    2010-11-01

    In this paper, we discuss distributed optimization techniques for configuring classifiers in a real-time, informationally-distributed stream mining system. Due to the large volume of streaming data, stream mining systems must often cope with overload, which can lead to poor performance and intolerable processing delay for real-time applications. Furthermore, optimizing over an entire system of classifiers is a difficult task since changing the filtering process at one classifier can impact both the feature values of data arriving at classifiers further downstream and thus, the classification performance achieved by an ensemble of classifiers, as well as the end-to-end processing delay. To address this problem, this paper makes three main contributions: 1) Based on classification and queuing theoretic models, we propose a utility metric that captures both the performance and the delay of a binary filtering classifier system. 2) We introduce a low-complexity framework for estimating the system utility by observing, estimating, and/or exchanging parameters between the inter-related classifiers deployed across the system. 3) We provide distributed algorithms to reconfigure the system, and analyze the algorithms based on their convergence properties, optimality, information exchange overhead, and rate of adaptation to non-stationary data sources. We provide results using different video classifier systems.

  14. Anticontrol of chaos in continuous-time systems via time-delay feedback.

    PubMed

    Wang, Xiao Fan; Chen, Guanrong; Yu, Xinghuo

    2000-12-01

    In this paper, a systematic design approach based on time-delay feedback is developed for anticontrol of chaos in a continuous-time system. This anticontrol method can drive a finite-dimensional, continuous-time, autonomous system from nonchaotic to chaotic, and can also enhance the existing chaos of an originally chaotic system. Asymptotic analysis is used to establish an approximate relationship between a time-delay differential equation and a discrete map. Anticontrol of chaos is then accomplished based on this relationship and the differential-geometry control theory. Several examples are given to verify the effectiveness of the methodology and to illustrate the systematic design procedure. (c) 2000 American Institute of Physics.

  15. Delay time in a single barrier for a movable quantum shutter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, Alberto

    2010-05-15

    The transient solution and delay time for a {delta} potential scatterer with a movable quantum shutter is calculated by solving analytically the time-dependent Schroedinger equation. The delay time is analyzed as a function of the distance between the shutter and the potential barrier and also as a function of the distance between the potential barrier and the detector. In both cases, it is found that the delay time exhibits a dynamical behavior and that it tends to a saturation value {Delta}t{sub sat} in the limit of very short distances, which represents the maximum delay produced by the potential barrier nearmore » the interaction region. The phase time {tau}{sub {theta},} on the other hand, is not an appropriate time scale for measuring the time delay near the interaction region, except if the shutter is moved far away from the potential. The role played by the antibound state of the system on the behavior of the delay time is also discussed.« less

  16. On the theory of singular optimal controls in dynamic systems with control delay

    NASA Astrophysics Data System (ADS)

    Mardanov, M. J.; Melikov, T. K.

    2017-05-01

    An optimal control problem with a control delay is considered, and a more broad class of singular (in classical sense) controls is investigated. Various sequences of necessary conditions for the optimality of singular controls in recurrent form are obtained. These optimality conditions include analogues of the Kelley, Kopp-Moyer, R. Gabasov, and equality-type conditions. In the proof of the main results, the variation of the control is defined using Legendre polynomials.

  17. Tunable delay time and Hartman effect in graphene magnetic barriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ban, Yue; Wang, Lin-Jun; Chen, Xi, E-mail: xchen@shu.edu.cn

    2015-04-28

    Tunable group delay and Hartman effect have been investigated for massless Dirac electrons in graphene magnetic barriers. In the presence of magnetic field, dwell time is found to be equal to net group delay plus the group delay contributing from the lateral shifts. The group delay times are discussed in both cases of normal and oblique incidence, to clarify the nature of Hartman effect. In addition, the group delay in transmission can be modulated from subluminality to superluminality by adjusting the magnetic field, which may also lead to potential applications in graphene-based microelectronics.

  18. Control of amplitude chimeras by time delay in oscillator networks

    NASA Astrophysics Data System (ADS)

    Gjurchinovski, Aleksandar; Schöll, Eckehard; Zakharova, Anna

    2017-04-01

    We investigate the influence of time-delayed coupling in a ring network of nonlocally coupled Stuart-Landau oscillators upon chimera states, i.e., space-time patterns with coexisting partially coherent and partially incoherent domains. We focus on amplitude chimeras, which exhibit incoherent behavior with respect to the amplitude rather than the phase and are transient patterns, and we show that their lifetime can be significantly enhanced by coupling delay. To characterize their transition to phase-lag synchronization (coherent traveling waves) and other coherent structures, we generalize the Kuramoto order parameter. Contrasting the results for instantaneous coupling with those for constant coupling delay, for time-varying delay, and for distributed-delay coupling, we demonstrate that the lifetime of amplitude chimera states and related partially incoherent states can be controlled, i.e., deliberately reduced or increased, depending upon the type of coupling delay.

  19. The phantom robot - Predictive displays for teleoperation with time delay

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K.; Kim, Won S.; Venema, Steven C.

    1990-01-01

    An enhanced teleoperation technique for time-delayed bilateral teleoperator control is discussed. The control technique selected for time delay is based on the use of a high-fidelity graphics phantom robot that is being controlled in real time (without time delay) against the static task image. Thus, the motion of the phantom robot image on the monitor predicts the motion of the real robot. The real robot's motion will follow the phantom robot's motion on the monitor with the communication time delay implied in the task. Real-time high-fidelity graphics simulation of a PUMA arm is generated and overlaid on the actual camera view of the arm. A simple camera calibration technique is used for calibrated graphics overlay. A preliminary experiment is performed with the predictive display by using a very simple tapping task. The results with this simple task indicate that predictive display enhances the human operator's telemanipulation task performance significantly during free motion when there is a long time delay. It appears, however, that either two-view or stereoscopic predictive displays are necessary for general three-dimensional tasks.

  20. Optimal Time Advance In Terminal Area Arrivals: Throughput vs. Fuel Savings

    NASA Technical Reports Server (NTRS)

    Sadovsky, Alexander V .; Swenson, Harry N.; Haskell, William B.; Rakas, Jasenka

    2011-01-01

    The current operational practice in scheduling air traffic arriving at an airport is to adjust flight schedules by delay, i.e. a postponement of an aircrafts arrival at a scheduled location, to manage safely the FAA-mandated separation constraints between aircraft. To meet the observed and forecast growth in traffic demand, however, the practice of time advance (speeding up an aircraft toward a scheduled location) is envisioned for future operations as a practice additional to delay. Time advance has two potential advantages. The first is the capability to minimize, or at least reduce, the excess separation (the distances between pairs of aircraft immediately in-trail) and thereby to increase the throughput of the arriving traffic. The second is to reduce the total traffic delay when the traffic sample is below saturation density. A cost associated with time advance is the fuel expenditure required by an aircraft to speed up. We present an optimal control model of air traffic arriving in a terminal area and solve it using the Pontryagin Maximum Principle. The admissible controls allow time advance, as well as delay, some of the way. The cost function reflects the trade-off between minimizing two competing objectives: excess separation (negatively correlated with throughput) and fuel burn. A number of instances are solved using three different methods, to demonstrate consistency of solutions.

  1. Predictive display design for the vehicles with time delay in dynamic response

    NASA Astrophysics Data System (ADS)

    Efremov, A. V.; Tiaglik, M. S.; Irgaleev, I. H.; Efremov, E. V.

    2018-02-01

    The two ways for the improvement of flying qualities are considered: the predictive display (PD) and the predictive display integrated with the flight control system (FCS). The both ways allow to transforming the controlled element dynamics in the crossover frequency range, to improve the accuracy of tracking and to suppress the effect of time delay in the vehicle response too. The technique for optimization of the predictive law is applied to the landing task. The results of the mathematical modeling and experimental investigations carried out for this task are considered in the paper.

  2. On Extended Dissipativity of Discrete-Time Neural Networks With Time Delay.

    PubMed

    Feng, Zhiguang; Zheng, Wei Xing

    2015-12-01

    In this brief, the problem of extended dissipativity analysis for discrete-time neural networks with time-varying delay is investigated. The definition of extended dissipativity of discrete-time neural networks is proposed, which unifies several performance measures, such as the H∞ performance, passivity, l2 - l∞ performance, and dissipativity. By introducing a triple-summable term in Lyapunov function, the reciprocally convex approach is utilized to bound the forward difference of the triple-summable term and then the extended dissipativity criterion for discrete-time neural networks with time-varying delay is established. The derived condition guarantees not only the extended dissipativity but also the stability of the neural networks. Two numerical examples are given to demonstrate the reduced conservatism and effectiveness of the obtained results.

  3. Time delay can facilitate coherence in self-driven interacting-particle systems

    NASA Astrophysics Data System (ADS)

    Sun, Yongzheng; Lin, Wei; Erban, Radek

    2014-12-01

    Directional switching in a self-propelled particle model with delayed interactions is investigated. It is shown that the average switching time is an increasing function of time delay. The presented results are applied to studying collective animal behavior. It is argued that self-propelled particle models with time delays can explain the state-dependent diffusion coefficient measured in experiments with locust groups. The theory is further generalized to heterogeneous groups where each individual can respond to its environment with a different time delay.

  4. Goodwin accelerator model revisited with fixed time delays

    NASA Astrophysics Data System (ADS)

    Matsumoto, Akio; Merlone, Ugo; Szidarovszky, Ferenc

    2018-05-01

    Dynamics of Goodwin's accelerator business cycle model is reconsidered. The model is characterized by a nonlinear accelerator and an investment time delay. The role of the nonlinearity for the birth of persistent oscillations is fully discussed in the existing literature. On the other hand, not much of the role of the delay has yet been revealed. The purpose of this paper is to show that the delay really matters. In the original framework of Goodwin [6], it is first demonstrated that there is a threshold value of the delay: limit cycles arise for smaller values than the threshold and so do sawtooth oscillations for larger values. In the extended framework in which a consumption or saving delay, in addition to the investment delay, is introduced, three main results are demonstrated under assumption of the identical length of investment and consumption delays. The dynamics with consumption delay is basically the same as that of the single delay model. Second, in the case of saving delay, the steady state can coexist with the stable and unstable limit cycles in the stable case. Third, in the unstable case, there is an interval of delay in which the limit cycle or the sawtooth oscillation emerges depending on the choice of the constant initial function.

  5. Supervising Remote Humanoids Across Intermediate Time Delay

    NASA Technical Reports Server (NTRS)

    Hambuchen, Kimberly; Bluethmann, William; Goza, Michael; Ambrose, Robert; Rabe, Kenneth; Allan, Mark

    2006-01-01

    The President's Vision for Space Exploration, laid out in 2004, relies heavily upon robotic exploration of the lunar surface in early phases of the program. Prior to the arrival of astronauts on the lunar surface, these robots will be required to be controlled across space and time, posing a considerable challenge for traditional telepresence techniques. Because time delays will be measured in seconds, not minutes as is the case for Mars Exploration, uploading the plan for a day seems excessive. An approach for controlling humanoids under intermediate time delay is presented. This approach uses software running within a ground control cockpit to predict an immersed robot supervisor's motions which the remote humanoid autonomously executes. Initial results are presented.

  6. Kalman Filters for Time Delay of Arrival-Based Source Localization

    NASA Astrophysics Data System (ADS)

    Klee, Ulrich; Gehrig, Tobias; McDonough, John

    2006-12-01

    In this work, we propose an algorithm for acoustic source localization based on time delay of arrival (TDOA) estimation. In earlier work by other authors, an initial closed-form approximation was first used to estimate the true position of the speaker followed by a Kalman filtering stage to smooth the time series of estimates. In the proposed algorithm, this closed-form approximation is eliminated by employing a Kalman filter to directly update the speaker's position estimate based on the observed TDOAs. In particular, the TDOAs comprise the observation associated with an extended Kalman filter whose state corresponds to the speaker's position. We tested our algorithm on a data set consisting of seminars held by actual speakers. Our experiments revealed that the proposed algorithm provides source localization accuracy superior to the standard spherical and linear intersection techniques. Moreover, the proposed algorithm, although relying on an iterative optimization scheme, proved efficient enough for real-time operation.

  7. Sensitivity analysis of dynamic biological systems with time-delays.

    PubMed

    Wu, Wu Hsiung; Wang, Feng Sheng; Chang, Maw Shang

    2010-10-15

    Mathematical modeling has been applied to the study and analysis of complex biological systems for a long time. Some processes in biological systems, such as the gene expression and feedback control in signal transduction networks, involve a time delay. These systems are represented as delay differential equation (DDE) models. Numerical sensitivity analysis of a DDE model by the direct method requires the solutions of model and sensitivity equations with time-delays. The major effort is the computation of Jacobian matrix when computing the solution of sensitivity equations. The computation of partial derivatives of complex equations either by the analytic method or by symbolic manipulation is time consuming, inconvenient, and prone to introduce human errors. To address this problem, an automatic approach to obtain the derivatives of complex functions efficiently and accurately is necessary. We have proposed an efficient algorithm with an adaptive step size control to compute the solution and dynamic sensitivities of biological systems described by ordinal differential equations (ODEs). The adaptive direct-decoupled algorithm is extended to solve the solution and dynamic sensitivities of time-delay systems describing by DDEs. To save the human effort and avoid the human errors in the computation of partial derivatives, an automatic differentiation technique is embedded in the extended algorithm to evaluate the Jacobian matrix. The extended algorithm is implemented and applied to two realistic models with time-delays: the cardiovascular control system and the TNF-α signal transduction network. The results show that the extended algorithm is a good tool for dynamic sensitivity analysis on DDE models with less user intervention. By comparing with direct-coupled methods in theory, the extended algorithm is efficient, accurate, and easy to use for end users without programming background to do dynamic sensitivity analysis on complex biological systems with time-delays.

  8. Generating chaos for discrete time-delayed systems via impulsive control.

    PubMed

    Guan, Zhi-Hong; Liu, Na

    2010-03-01

    Generating chaos for a class of discrete time-delayed systems via impulsive control is investigated in this paper. With the augmented matrix method, the time-delay impulsive systems can be transformed into a new class of linear discrete impulsive systems. Based on the largest Lyapunov exponent and the boundedness of the systems, some theoretical results about the chaotification for the discrete impulsive systems with time delay are derived and an example is given to visualize the satisfactory control performance.

  9. Using Constant Time Delay to Teach Braille Word Recognition

    ERIC Educational Resources Information Center

    Hooper, Jonathan; Ivy, Sarah; Hatton, Deborah

    2014-01-01

    Introduction: Constant time delay has been identified as an evidence-based practice to teach print sight words and picture recognition (Browder, Ahlbrim-Delzell, Spooner, Mims, & Baker, 2009). For the study presented here, we tested the effectiveness of constant time delay to teach new braille words. Methods: A single-subject multiple baseline…

  10. An adaptive robust controller for time delay maglev transportation systems

    NASA Astrophysics Data System (ADS)

    Milani, Reza Hamidi; Zarabadipour, Hassan; Shahnazi, Reza

    2012-12-01

    For engineering systems, uncertainties and time delays are two important issues that must be considered in control design. Uncertainties are often encountered in various dynamical systems due to modeling errors, measurement noises, linearization and approximations. Time delays have always been among the most difficult problems encountered in process control. In practical applications of feedback control, time delay arises frequently and can severely degrade closed-loop system performance and in some cases, drives the system to instability. Therefore, stability analysis and controller synthesis for uncertain nonlinear time-delay systems are important both in theory and in practice and many analytical techniques have been developed using delay-dependent Lyapunov function. In the past decade the magnetic and levitation (maglev) transportation system as a new system with high functionality has been the focus of numerous studies. However, maglev transportation systems are highly nonlinear and thus designing controller for those are challenging. The main topic of this paper is to design an adaptive robust controller for maglev transportation systems with time-delay, parametric uncertainties and external disturbances. In this paper, an adaptive robust control (ARC) is designed for this purpose. It should be noted that the adaptive gain is derived from Lyapunov-Krasovskii synthesis method, therefore asymptotic stability is guaranteed.

  11. H0 from ten well-measured time delay lenses

    NASA Astrophysics Data System (ADS)

    Rathna Kumar, S.; Stalin, C. S.; Prabhu, T. P.

    2015-08-01

    In this work, we present a homogeneous curve-shifting analysis using the difference-smoothing technique of the publicly available light curves of 24 gravitationally lensed quasars, for which time delays have been reported in the literature. The uncertainty of each measured time delay was estimated using realistic simulated light curves. The recipe for generating such simulated light curves with known time delays in a plausible range around the measured time delay is introduced here. We identified 14 gravitationally lensed quasars that have light curves of sufficiently good quality to enable the measurement of at least one time delay between the images, adjacent to each other in terms of arrival-time order, to a precision of better than 20% (including systematic errors). We modeled the mass distribution of ten of those systems that have known lens redshifts, accurate astrometric data, and sufficiently simple mass distribution, using the publicly available PixeLens code to infer a value of H0 of 68.1 ± 5.9 km s-1 Mpc-1 (1σ uncertainty, 8.7% precision) for a spatially flat universe having Ωm = 0.3 and ΩΛ = 0.7. We note here that the lens modeling approach followed in this work is a relatively simple one and does not account for subtle systematics such as those resulting from line-of-sight effects and hence our H0 estimate should be considered as indicative.

  12. Time Delay in the Kuramoto Model of Coupled Oscillators

    NASA Astrophysics Data System (ADS)

    Yeung, M. K. Stephen; Strogatz, Steven H.

    1999-01-01

    We generalize the Kuramoto model of coupled oscillators to allow time-delayed interactions. New phenomena include bistability between synchronized and incoherent states, and unsteady solutions with time-dependent order parameters. We derive exact formulas for the stability boundaries of the incoherent and synchronized states, as a function of the delay, in the special case where the oscillators are identical. The experimental implications of the model are discussed for populations of chirping crickets, where the finite speed of sound causes communication delays, and for physical systems such as coupled phase-locked loops or lasers.

  13. Optimism and positive and negative feelings in parents of young children with developmental delay.

    PubMed

    Kurtz-Nelson, E; McIntyre, L L

    2017-07-01

    Parents' positive and negative feelings about their young children influence both parenting behaviour and child problem behaviour. Research has not previously examined factors that contribute to positive and negative feelings in parents of young children with developmental delay (DD). The present study sought to examine whether optimism, a known protective factor for parents of children with DD, was predictive of positive and negative feelings for these parents. Data were collected from 119 parents of preschool-aged children with developmental delay. Two separate hierarchical linear regression analyses were conducted to determine if optimism significantly predicted positive feelings and negative feelings and whether optimism moderated relations between parenting stress and parent feelings. Increased optimism was found to predict increased positive feelings and decreased negative feelings after controlling for child problem behaviour and parenting stress. In addition, optimism was found to moderate the relation between parenting stress and positive feelings. Results suggest that optimism may impact how parents perceive their children with DD. Future research should examine how positive and negative feelings impact positive parenting behaviour and the trajectory of problem behaviour specifically for children with DD. © 2017 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.

  14. Lesions Responsible for Delayed Oral Transit Time in Post-stroke Dysphagia.

    PubMed

    Moon, Hyun Im; Yoon, Seo Yeon; Yi, Tae Im; Jeong, Yoon Jeong; Cho, Tae Hwan

    2018-06-01

    Some stroke patients show oral phase dysphagia, characterized by a markedly prolonged oral transit time that hinders oral feeding. The aim of this study was to clarify the clinical characteristics and lesions responsible for delayed swallowing. We reviewed 90 patients with stroke. The oral processing time plus the postfaucial aggregation time required to swallow semisolid food was assessed. The patients were divided into two groups according to oral transit time, and we analyzed the differences in characteristics such as demographic factors, lesion factors, and cognitive function. Logistic regression analyses were performed to examine the predictors of delayed oral transit time. Lesion location and volume were measured on brain magnetic resonance images. We generated statistic maps of lesions related to delayed oral phase in swallowing using voxel-based lesion symptom mapping (VLSM). The group of patients who showed delayed oral transit time had significantly low cognitive function. Also, in a regression model, delayed oral phase was predicted with low K-MMSE (Korean version of the Mini Mental Status Exam). Using VLSM, we found the lesion location to be associated with delayed oral phase after adjusting for K-MMSE score. Although these results did not reach statistical significance, they showed the lesion pattern with predominant distribution in the left frontal lobe. Delayed oral phase in post-stroke patients was not negligible clinically. Patients' cognitive impairments affect the oral transit time. When adjusting it, we found a trend that the lesion responsible for delayed oral phase was located in the left frontal lobe, though the association did not reach significance. The delay might be related to praxis function.

  15. Slow-light, band-edge waveguides for tunable time delays.

    PubMed

    Povinelli, M; Johnson, Steven; Joannopoulos, J

    2005-09-05

    We propose the use of slow-light, band-edge waveguides for compact, integrated, tunable optical time delays. We show that slow group velocities at the photonic band edge give rise to large changes in time delay for small changes in refractive index, thereby shrinking device size. Figures of merit are introduced to quantify the sensitivity, as well as the accompanying signal degradation due to dispersion. It is shown that exact calculations of the figures of merit for a realistic, three-dimensional grating structure are well predicted by a simple quadratic-band model, simplifying device design. We present adiabatic taper designs that attain <0.1% reflection in short lengths of 10 to 20 times the grating period. We show further that cascading two gratings compensates for signal dispersion and gives rise to a constant tunable time delay across bandwidths greater than 100GHz. Given typical loss values for silicon-on-insulator waveguides, we estimate that gratings can be designed to exhibit tunable delays in the picosecond range using current fabrication technology.

  16. On Selberg's trace formula: chaos, resonances and time delays

    NASA Astrophysics Data System (ADS)

    Lévay, Péter

    2000-06-01

    The quantization of the chaotic geodesic motion on Riemann surfaces Σg,κ of constant negative curvature with genus g and a finite number of points κ infinitely far away (cusps) describing scattering channels is investigated. It is shown that terms in Selberg's trace formula describing scattering states can be expressed in terms of a renormalized time delay. This quantity is the time delay associated with the surface in question minus the time delay corresponding to the scattering problem on the Poincaré upper half-plane uniformizing our surface. Poles in these quantities give rise to resonances reflecting the chaos of the underlying classical dynamics. Our results are illustrated for the surfaces Σ1,1 (Gutzwiller's leaky torus), Σ0,3 (pants), and a class of Σg,2 surfaces. The generalization covering the inclusion of an integer B≥2 magnetic field is also presented. It is shown that the renormalized time delay is not dependent on the magnetic field. This shows that the semiclassical dynamics with an integer magnetic field is the same as the free dynamics.

  17. Micromachined silicon parallel acoustic delay lines as time-delayed ultrasound detector array for real-time photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Cho, Y.; Chang, C.-C.; Wang, L. V.; Zou, J.

    2016-02-01

    This paper reports the development of a new 16-channel parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT). The PADLs were directly fabricated from single-crystalline silicon substrates using deep reactive ion etching. Compared with other acoustic delay lines (e.g., optical fibers), the micromachined silicon PADLs offer higher acoustic transmission efficiency, smaller form factor, easier assembly, and mass production capability. To demonstrate its real-time photoacoustic imaging capability, the silicon PADL array was interfaced with one single-element ultrasonic transducer followed by one channel of data acquisition electronics to receive 16 channels of photoacoustic signals simultaneously. A PAT image of an optically-absorbing target embedded in an optically-scattering phantom was reconstructed, which matched well with the actual size of the imaged target. Because the silicon PADL array allows a signal-to-channel reduction ratio of 16:1, it could significantly simplify the design and construction of ultrasonic receivers for real-time PAT.

  18. Losing track of time through delayed body representations.

    PubMed

    Fritz, Thomas H; Steixner, Agnes; Boettger, Joachim; Villringer, Arno

    2015-01-01

    The ability to keep track of time is perceived as crucial in most human societies. However, to lose track of time may also serve an important social role, associated with recreational purpose. To this end a number of social technologies are employed, some of which may relate to a manipulation of time perception through a modulation of body representation. Here, we investigated an influence of real-time or delayed videos of own-body representations on time perception in an experimental setup with virtual mirrors. Seventy participants were asked to either stay in the installation until they thought that a defined time (90 s) had passed, or they were encouraged to stay in the installation as long as they wanted and after exiting were asked to estimate the duration of their stay. Results show that a modulation of body representation by time-delayed representations of the mirror-video displays influenced time perception. Furthermore, these time-delayed conditions were associated with a greater sense of arousal and intoxication. We suggest that feeding in references to the immediate past into working memory could be the underlying mental mechanism mediating the observed modulation of time perception. We argue that such an influence on time perception would probably not only be achieved visually, but might also work with acoustic references to the immediate past (e.g., with music).

  19. Stochastic nonlinear time series forecasting using time-delay reservoir computers: performance and universality.

    PubMed

    Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo

    2014-07-01

    Reservoir computing is a recently introduced machine learning paradigm that has already shown excellent performances in the processing of empirical data. We study a particular kind of reservoir computers called time-delay reservoirs that are constructed out of the sampling of the solution of a time-delay differential equation and show their good performance in the forecasting of the conditional covariances associated to multivariate discrete-time nonlinear stochastic processes of VEC-GARCH type as well as in the prediction of factual daily market realized volatilities computed with intraday quotes, using as training input daily log-return series of moderate size. We tackle some problems associated to the lack of task-universality for individually operating reservoirs and propose a solution based on the use of parallel arrays of time-delay reservoirs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. A Strain-Sonde Technique for the Measurement of Mechanical Time-Delay Fuze Function Times and Performance

    DTIC Science & Technology

    1983-09-01

    AD IV) MEMORANDUM REPORT ARBRL-MR-03309 N(Supersedes IMR No. 760) A STRAIN -SONDE TECHNIQUE FOR THE MEASUREMENT OF MECHANICAL TIME- DELAY FUZE...and BkuWel) S. TYPE OF REPORT & PERIOD COVERED A STRAIN -SONDE TECHNIQUE FOR THE MEASUREMENT OF Final MECHANICAL TIME-DELAY FUZE FUNCTION TIMES AND S...nmber) M577 Mechanical Time-Delay Fuze F"/FM Telemeter Interlock Pin Release Semiconductor Strain Gage Rotor Signal Condition Amplifier Firing Pin In

  1. Bifurcation Analysis and Optimal Harvesting of a Delayed Predator-Prey Model

    NASA Astrophysics Data System (ADS)

    Tchinda Mouofo, P.; Djidjou Demasse, R.; Tewa, J. J.; Aziz-Alaoui, M. A.

    A delay predator-prey model is formulated with continuous threshold prey harvesting and Holling response function of type III. Global qualitative and bifurcation analyses are combined to determine the global dynamics of the model. The positive invariance of the non-negative orthant is proved and the uniform boundedness of the trajectories. Stability of equilibria is investigated and the existence of some local bifurcations is established: saddle-node bifurcation, Hopf bifurcation. We use optimal control theory to provide the correct approach to natural resource management. Results are also obtained for optimal harvesting. Numerical simulations are given to illustrate the results.

  2. Kalman filters for fractional discrete-time stochastic systems along with time-delay in the observation signal

    NASA Astrophysics Data System (ADS)

    Torabi, H.; Pariz, N.; Karimpour, A.

    2016-02-01

    This paper investigates fractional Kalman filters when time-delay is entered in the observation signal in the discrete-time stochastic fractional order state-space representation. After investigating the common fractional Kalman filter, we try to derive a fractional Kalman filter for time-delay fractional systems. A detailed derivation is given. Fractional Kalman filters will be used to estimate recursively the states of fractional order state-space systems based on minimizing the cost function when there is a constant time delay (d) in the observation signal. The problem will be solved by converting the filtering problem to a usual d-step prediction problem for delay-free fractional systems.

  3. Stability analysis of fractional-order Hopfield neural networks with time delays.

    PubMed

    Wang, Hu; Yu, Yongguang; Wen, Guoguang

    2014-07-01

    This paper investigates the stability for fractional-order Hopfield neural networks with time delays. Firstly, the fractional-order Hopfield neural networks with hub structure and time delays are studied. Some sufficient conditions for stability of the systems are obtained. Next, two fractional-order Hopfield neural networks with different ring structures and time delays are developed. By studying the developed neural networks, the corresponding sufficient conditions for stability of the systems are also derived. It is shown that the stability conditions are independent of time delays. Finally, numerical simulations are given to illustrate the effectiveness of the theoretical results obtained in this paper. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Factorization and the synthesis of optimal feedback kernels for differential-delay systems

    NASA Technical Reports Server (NTRS)

    Milman, Mark M.; Scheid, Robert E.

    1987-01-01

    A combination of ideas from the theories of operator Riccati equations and Volterra factorizations leads to the derivation of a novel, relatively simple set of hyperbolic equations which characterize the optimal feedback kernel for the finite-time regulator problem for autonomous differential-delay systems. Analysis of these equations elucidates the underlying structure of the feedback kernel and leads to the development of fast and accurate numerical methods for its computation. Unlike traditional formulations based on the operator Riccati equation, the gain is characterized by means of classical solutions of the derived set of equations. This leads to the development of approximation schemes which are analogous to what has been accomplished for systems of ordinary differential equations with given initial conditions.

  5. A new approach to approximating the linear quadratic optimal control law for hereditary systems with control delays

    NASA Technical Reports Server (NTRS)

    Milman, M. H.

    1985-01-01

    A factorization approach is presented for deriving approximations to the optimal feedback gain for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the feedback kernels.

  6. Pneumatic shutoff and time-delay valve operates at controlled rate

    NASA Technical Reports Server (NTRS)

    Horning, J. L.; Tomlinson, L. E.

    1966-01-01

    Shutoff and time delay valve, which incorporates a metering spool that moves at constant velocity under pneumatic pressure and spring compression, increases fluid-flow area at a uniform rate. Diaphragm areas, control cavity volume, and bleed-orifice size may be varied to give any desired combination of time delay and spool travel time.

  7. Radiation dependence of inverter propagation delay from timing sampler measurements

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Blaes, B. R.; Lin, Y.-S.

    1989-01-01

    A timing sampler consisting of 14 four-stage inverter-pair chains with different load capacitances was fabricated in 1.6-micron n-well CMOS and irradiated with cobalt-60 at 10 rad(Si)/s. For this CMOS process the measured results indicate that the rising delay increases by about 2.2 ns/Mrad(Si) and the falling delay increase is very small, i.e., less than 300 ps/Mrad(Si). The amount of radiation-induced delay depends on the size of the load capacitance. The maximum value observed for this effect was 5.65 ns/pF-Mrad(Si). Using a sensitivity analysis, the sensitivity of the rising delay to radiation can be explained by a simple timing model and the radiation sensitivity of dc MOSFET parameters. This same approach could not explain the insensitivity of the falling delay to radiation. This may be due to a failure of the timing model and/or trapping effects.

  8. Caregivers as Teachers: Using Constant Time Delay To Teach Adults How To Use Constant Time Delay.

    ERIC Educational Resources Information Center

    Wall, Maureen E.; Gast, David L.

    1997-01-01

    A study involving four caregivers evaluated the effectiveness of a systematic instructional procedure known as constant time delay (CTD) in teaching caregivers how to use CTD to teach their adolescent or adult children, siblings, or clients with disabilities, response chain skills. Results found the procedure to be effective. (CR)

  9. Local Stability of AIDS Epidemic Model Through Treatment and Vertical Transmission with Time Delay

    NASA Astrophysics Data System (ADS)

    Novi W, Cascarilla; Lestari, Dwi

    2016-02-01

    This study aims to explain stability of the spread of AIDS through treatment and vertical transmission model. Human with HIV need a time to positively suffer AIDS. The existence of a time, human with HIV until positively suffer AIDS can be delayed for a time so that the model acquired is the model with time delay. The model form is a nonlinear differential equation with time delay, SIPTA (susceptible-infected-pre AIDS-treatment-AIDS). Based on SIPTA model analysis results the disease free equilibrium point and the endemic equilibrium point. The disease free equilibrium point with and without time delay are local asymptotically stable if the basic reproduction number is less than one. The endemic equilibrium point will be local asymptotically stable if the time delay is less than the critical value of delay, unstable if the time delay is more than the critical value of delay, and bifurcation occurs if the time delay is equal to the critical value of delay.

  10. Finite time synchronization of memristor-based Cohen-Grossberg neural networks with mixed delays.

    PubMed

    Chen, Chuan; Li, Lixiang; Peng, Haipeng; Yang, Yixian

    2017-01-01

    Finite time synchronization, which means synchronization can be achieved in a settling time, is desirable in some practical applications. However, most of the published results on finite time synchronization don't include delays or only include discrete delays. In view of the fact that distributed delays inevitably exist in neural networks, this paper aims to investigate the finite time synchronization of memristor-based Cohen-Grossberg neural networks (MCGNNs) with both discrete delay and distributed delay (mixed delays). By means of a simple feedback controller and novel finite time synchronization analysis methods, several new criteria are derived to ensure the finite time synchronization of MCGNNs with mixed delays. The obtained criteria are very concise and easy to verify. Numerical simulations are presented to demonstrate the effectiveness of our theoretical results.

  11. Typical teleoperator time delay profiles, phase 2. [remotely controlled manipulator arms

    NASA Technical Reports Server (NTRS)

    Wetherington, R. D.; Walsh, J. R.

    1974-01-01

    The results of the second phase of a study on time delays in communications systems applicable to the teleoperator program are presented. Estimates of the maximum time delays that will be encountered and presents time delay profiles are given for (1) ground control to teleoperator in low earth orbit, (2) ground control to teleoperator in geosynchronous orbit, and (3) low earth orbit control to teleoperator in low earth orbit.

  12. Firing patterns transition and desynchronization induced by time delay in neural networks

    NASA Astrophysics Data System (ADS)

    Huang, Shoufang; Zhang, Jiqian; Wang, Maosheng; Hu, Chin-Kun

    2018-06-01

    We used the Hindmarsh-Rose (HR) model (Hindmarsh and Rose, 1984) to study the effect of time delay on the transition of firing behaviors and desynchronization in neural networks. As time delay is increased, neural networks exhibit diversity of firing behaviors, including regular spiking or bursting and firing patterns transitions (FPTs). Meanwhile, the desynchronization of firing and unstable bursting with decreasing amplitude in neural system, are also increasingly enhanced with the increase of time delay. Furthermore, we also studied the effect of coupling strength and network randomness on these phenomena. Our results imply that time delays can induce transition and desynchronization of firing behaviors in neural networks. These findings provide new insight into the role of time delay in the firing activities of neural networks, and can help to better understand the firing phenomena in complex systems of neural networks. A possible mechanism in brain that can cause the increase of time delay is discussed.

  13. Immunization Route Dictates Cross-Priming Efficiency and Impacts the Optimal Timing of Adjuvant Delivery

    PubMed Central

    Bouvier, Isabelle; Jusforgues-Saklani, Hélène; Lim, Annick; Lemaître, Fabrice; Lemercier, Brigitte; Auriau, Charlotte; Nicola, Marie-Anne; Leroy, Sandrine; Law, Helen K.; Bandeira, Antonio; Moon, James J.; Bousso, Philippe; Albert, Matthew L.

    2011-01-01

    Delivery of cell-associated antigen represents an important strategy for vaccination. While many experimental models have been developed in order to define the critical parameters for efficient cross-priming, few have utilized quantitative methods that permit the study of the endogenous repertoire. Comparing different strategies of immunization, we report that local delivery of cell-associated antigen results in delayed T cell cross-priming due to the increased time required for antigen capture and presentation. In comparison, delivery of disseminated antigen resulted in rapid T cell priming. Surprisingly, local injection of cell-associated antigen, while slower, resulted in the differentiation of a more robust, polyfunctional, effector response. We also evaluated the combination of cell-associated antigen with poly I:C delivery and observed an immunization route-specific effect regarding the optimal timing of innate immune stimulation. These studies highlight the importance of considering the timing and persistence of antigen presentation, and suggest that intradermal injection with delayed adjuvant delivery is the optimal strategy for achieving CD8+ T cell cross-priming. PMID:22566860

  14. Time delay induced different synchronization patterns in repulsively coupled chaotic oscillators

    NASA Astrophysics Data System (ADS)

    Yao, Chenggui; Yi, Ming; Shuai, Jianwei

    2013-09-01

    Time delayed coupling plays a crucial role in determining the system's dynamics. We here report that the time delay induces transition from the asynchronous state to the complete synchronization (CS) state in the repulsively coupled chaotic oscillators. In particular, by changing the coupling strength or time delay, various types of synchronous patterns, including CS, antiphase CS, antiphase synchronization (ANS), and phase synchronization, can be generated. In the transition regions between different synchronous patterns, bistable synchronous oscillators can be observed. Furthermore, we show that the time-delay-induced phase flip bifurcation is of key importance for the emergence of CS. All these findings may light on our understanding of neuronal synchronization and information processing in the brain.

  15. H∞ control problem of linear periodic piecewise time-delay systems

    NASA Astrophysics Data System (ADS)

    Xie, Xiaochen; Lam, James; Li, Panshuo

    2018-04-01

    This paper investigates the H∞ control problem based on exponential stability and weighted L2-gain analyses for a class of continuous-time linear periodic piecewise systems with time delay. A periodic piecewise Lyapunov-Krasovskii functional is developed by integrating a discontinuous time-varying matrix function with two global terms. By applying the improved constraints to the stability and L2-gain analyses, sufficient delay-dependent exponential stability and weighted L2-gain criteria are proposed for the periodic piecewise time-delay system. Based on these analyses, an H∞ control scheme is designed under the considerations of periodic state feedback control input and iterative optimisation. Finally, numerical examples are presented to illustrate the effectiveness of our proposed conditions.

  16. Data Assimilation by delay-coordinate nudging

    NASA Astrophysics Data System (ADS)

    Pazo, Diego; Lopez, Juan Manuel; Carrassi, Alberto

    2016-04-01

    A new nudging method for data assimilation, delay-coordinate nudging, is presented. Delay-coordinate nudging makes explicit use of present and past observations in the formulation of the forcing driving the model evolution at each time-step. Numerical experiments with a low order chaotic system show that the new method systematically outperforms standard nudging in different model and observational scenarios, also when using an un-optimized formulation of the delay-nudging coefficients. A connection between the optimal delay and the dominant Lyapunov exponent of the dynamics is found based on heuristic arguments and is confirmed by the numerical results, providing a guideline for the practical implementation of the algorithm. Delay-coordinate nudging preserves the easiness of implementation, the intuitive functioning and the reduced computational cost of the standard nudging, making it a potential alternative especially in the field of seasonal-to-decadal predictions with large Earth system models that limit the use of more sophisticated data assimilation procedures.

  17. Finite-Time Stabilization and Adaptive Control of Memristor-Based Delayed Neural Networks.

    PubMed

    Wang, Leimin; Shen, Yi; Zhang, Guodong

    Finite-time stability problem has been a hot topic in control and system engineering. This paper deals with the finite-time stabilization issue of memristor-based delayed neural networks (MDNNs) via two control approaches. First, in order to realize the stabilization of MDNNs in finite time, a delayed state feedback controller is proposed. Then, a novel adaptive strategy is applied to the delayed controller, and finite-time stabilization of MDNNs can also be achieved by using the adaptive control law. Some easily verified algebraic criteria are derived to ensure the stabilization of MDNNs in finite time, and the estimation of the settling time functional is given. Moreover, several finite-time stability results as our special cases for both memristor-based neural networks (MNNs) without delays and neural networks are given. Finally, three examples are provided for the illustration of the theoretical results.Finite-time stability problem has been a hot topic in control and system engineering. This paper deals with the finite-time stabilization issue of memristor-based delayed neural networks (MDNNs) via two control approaches. First, in order to realize the stabilization of MDNNs in finite time, a delayed state feedback controller is proposed. Then, a novel adaptive strategy is applied to the delayed controller, and finite-time stabilization of MDNNs can also be achieved by using the adaptive control law. Some easily verified algebraic criteria are derived to ensure the stabilization of MDNNs in finite time, and the estimation of the settling time functional is given. Moreover, several finite-time stability results as our special cases for both memristor-based neural networks (MNNs) without delays and neural networks are given. Finally, three examples are provided for the illustration of the theoretical results.

  18. Measurement of time delay for a prospectively gated CT simulator.

    PubMed

    Goharian, M; Khan, R F H

    2010-04-01

    For the management of mobile tumors, respiratory gating is the ideal option, both during imaging and during therapy. The major advantage of respiratory gating during imaging is that it is possible to create a single artifact-free CT data-set during a selected phase of the patient's breathing cycle. The purpose of the present work is to present a simple technique to measure the time delay during acquisition of a prospectively gated CT. The time delay of a Philips Brilliance BigBore (Philips Medical Systems, Madison, WI) scanner attached to a Varian Real-Time Position Management (RPM) system (Varian Medical Systems, Palo Alto, CA) was measured. Two methods were used to measure the CT time delay: using a motion phantom and using a recorded data file from the RPM system. In the first technique, a rotating wheel phantom was altered by placing two plastic balls on its axis and rim, respectively. For a desired gate, the relative positions of the balls were measured from the acquired CT data and converted into corresponding phases. Phase difference was calculated between the measured phases and the desired phases. Using period of motion, the phase difference was converted into time delay. The Varian RPM system provides an external breathing signal; it also records transistor-transistor logic (TTL) 'X-Ray ON' status signal from the CT scanner in a text file. The TTL 'X-Ray ON' indicates the start of CT image acquisition. Thus, knowledge of the start time of CT acquisition, combined with the real-time phase and amplitude data from the external respiratory signal, provides time-stamping of all images in an axial CT scan. The TTL signal with time-stamp was used to calculate when (during the breathing cycle) a slice was recorded. Using the two approaches, the time delay between the prospective gating signal and CT simulator has been determined to be 367 +/- 40 ms. The delay requires corrections both at image acquisition and while setting gates for the treatment delivery

  19. Finite-time robust stabilization of uncertain delayed neural networks with discontinuous activations via delayed feedback control.

    PubMed

    Wang, Leimin; Shen, Yi; Sheng, Yin

    2016-04-01

    This paper is concerned with the finite-time robust stabilization of delayed neural networks (DNNs) in the presence of discontinuous activations and parameter uncertainties. By using the nonsmooth analysis and control theory, a delayed controller is designed to realize the finite-time robust stabilization of DNNs with discontinuous activations and parameter uncertainties, and the upper bound of the settling time functional for stabilization is estimated. Finally, two examples are provided to demonstrate the effectiveness of the theoretical results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Wigner-Eisenbud-Smith photoionization time delay due to autoioinization resonances

    NASA Astrophysics Data System (ADS)

    Deshmukh, P. C.; Kumar, A.; Varma, H. R.; Banerjee, S.; Manson, Steven T.; Dolmatov, V. K.; Kheifets, A. S.

    2018-03-01

    An empirical ansatz for the complex photoionization amplitude and Wigner-Eisenbud-Smith time delay in the vicinity of a Fano autoionization resonance are proposed to evaluate and interpret the time delay in the resonant region. The utility of this expression is evaluated in comparison with accurate numerical calculations employing the ab initio relativistic random phase approximation and relativistic multichannel quantum defect theory. The indisputably good qualitative agreement (and semiquantitative agreement) between corresponding results of the proposed model and results produced by the ab initio theories proves the usability of the model. In addition, the phenomenology of the time delay in the vicinity of multichannel autoionizing resonances is detailed.

  1. Optimal Timing for Laparoscopic Cholecystectomy After Endoscopic Retrograde Cholangiopancreatography: A Systematic Review.

    PubMed

    Friis, C; Rothman, J P; Burcharth, J; Rosenberg, J

    2018-06-01

    Endoscopic retrograde cholangiopancreatography followed by laparoscopic cholecystectomy is often used as definitive treatment for common bile duct stones. The aim of this study was to investigate the optimal time interval between endoscopic retrograde cholangiopancreatography and laparoscopic cholecystectomy. PubMed and Embase were searched for studies comparing different time delays between endoscopic retrograde cholangiopancreatography and laparoscopic cholecystectomy. Observational studies and randomized controlled trials were included. Primary outcome was conversion rate from laparoscopic to open cholecystectomy and secondary outcomes were complications, mortality, operating time, and length of stay. A total of 14 studies with a total of 1930 patients were included. The pooled estimate revealed an increase from a 4.2% conversion rate when laparoscopic cholecystectomy was performed within 24 h of endoscopic retrograde cholangiopancreatography to 7.6% for 24-72 h delay to 12.3% when performed within 2 weeks, to 12.3% for 2-6 weeks, and to a 14% conversion rate when operation was delayed more than 6 weeks. According to this systematic review, it is preferable to perform cholecystectomy within 24 h of endoscopic retrograde cholangiopancreatography to reduce conversion rate. Early laparoscopic cholecystectomy does not increase mortality, perioperative complications, or length of stay and on the contrary it reduces the risk of reoccurrence and progression of disease in the delay between endoscopic retrograde cholangiopancreatography and laparoscopic cholecystectomy.

  2. Applying behavioral insights to delay school start times.

    PubMed

    Kohl Malone, Susan; Ziporyn, Terra; Buttenheim, Alison M

    2017-12-01

    Healthy People 2020 established a national objective to increase the proportion of 9th-to-12th-grade students reporting sufficient sleep. A salient approach for achieving this objective is to delay middle and high school start times. Despite decades of research supporting the benefits of delayed school start times on adolescent sleep, health, and well-being, progress has been slow. Accelerating progress will require new approaches incorporating strategies that influence how school policy decisions are made. In this commentary, we introduce four strategies that influence decision-making processes and demonstrate how they can be applied to efforts aimed at changing school start time policies. Copyright © 2017 National Sleep Foundation. All rights reserved.

  3. MSW Variable Time-Delay Techniques.

    DTIC Science & Technology

    1982-07-01

    21 I, 5. RITAXIAL GEOWTH O COG FILKS G0 film growth by lpe was Investigated as a possible nouagnetic, dielectric spacer sediun between two YG fls...using two yttrium iron garnet films sandwiching simple single finger transducers. Difficulties In exciting the symetric forward volume mode are explained...direction. Measurements of time delay versus frequency are presented for epitaxially grown Yttrium Iron Garnet (YIG) films . Finally, transducer coupling

  4. Experiments with arbitrary networks in time-multiplexed delay systems

    NASA Astrophysics Data System (ADS)

    Hart, Joseph D.; Schmadel, Don C.; Murphy, Thomas E.; Roy, Rajarshi

    2017-12-01

    We report a new experimental approach using an optoelectronic feedback loop to investigate the dynamics of oscillators coupled on large complex networks with arbitrary topology. Our implementation is based on a single optoelectronic feedback loop with time delays. We use the space-time interpretation of systems with time delay to create large networks of coupled maps. Others have performed similar experiments using high-pass filters to implement the coupling; this restricts the network topology to the coupling of only a few nearest neighbors. In our experiment, the time delays and coupling are implemented on a field-programmable gate array, allowing the creation of networks with arbitrary coupling topology. This system has many advantages: the network nodes are truly identical, the network is easily reconfigurable, and the network dynamics occur at high speeds. We use this system to study cluster synchronization and chimera states in both small and large networks of different topologies.

  5. Radar wideband digital beamforming based on time delay and phase compensation

    NASA Astrophysics Data System (ADS)

    Fu, Wei; Jiang, Defu

    2018-07-01

    In conventional phased array radars, analogue time delay devices and phase shifters have been used for wideband beamforming. These methods suffer from insertion losses, gain mismatches and delay variations, and they occupy a large chip area. To solve these problems, a compact architecture of digital array antennas based on subarrays was considered. In this study, the receiving beam patterns of wideband linear frequency modulation (LFM) signals were constructed by applying analogue stretch processing via mixing with delayed reference signals at the subarray level. Subsequently, narrowband digital time delaying and phase compensation of the tone signals were implemented with reduced arithmetic complexity. Due to the differences in amplitudes, phases and time delays between channels, severe performance degradation of the beam patterns occurred without corrections. To achieve good beamforming performance, array calibration was performed in each channel to adjust the amplitude, frequency and phase of the tone signal. Using a field-programmable gate array, wideband LFM signals and finite impulse response filters with continuously adjustable time delays were implemented in a polyphase structure. Simulations and experiments verified the feasibility and effectiveness of the proposed digital beamformer.

  6. Delay-time distribution in the scattering of time-narrow wave packets (II)—quantum graphs

    NASA Astrophysics Data System (ADS)

    Smilansky, Uzy; Schanz, Holger

    2018-02-01

    We apply the framework developed in the preceding paper in this series (Smilansky 2017 J. Phys. A: Math. Theor. 50 215301) to compute the time-delay distribution in the scattering of ultra short radio frequency pulses on complex networks of transmission lines which are modeled by metric (quantum) graphs. We consider wave packets which are centered at high wave number and comprise many energy levels. In the limit of pulses of very short duration we compute upper and lower bounds to the actual time-delay distribution of the radiation emerging from the network using a simplified problem where time is replaced by the discrete count of vertex-scattering events. The classical limit of the time-delay distribution is also discussed and we show that for finite networks it decays exponentially, with a decay constant which depends on the graph connectivity and the distribution of its edge lengths. We illustrate and apply our theory to a simple model graph where an algebraic decay of the quantum time-delay distribution is established.

  7. Discrete-time bidirectional associative memory neural networks with variable delays

    NASA Astrophysics Data System (ADS)

    Liang, variable delays [rapid communication] J.; Cao, J.; Ho, D. W. C.

    2005-02-01

    Based on the linear matrix inequality (LMI), some sufficient conditions are presented in this Letter for the existence, uniqueness and global exponential stability of the equilibrium point of discrete-time bidirectional associative memory (BAM) neural networks with variable delays. Some of the stability criteria obtained in this Letter are delay-dependent, and some of them are delay-independent, they are less conservative than the ones reported so far in the literature. Furthermore, the results provide one more set of easily verified criteria for determining the exponential stability of discrete-time BAM neural networks.

  8. An institutional study of time delays for symptomatic carotid endarterectomy.

    PubMed

    Charbonneau, Philippe; Bonaventure, Paule Lessard; Drudi, Laura M; Beaudoin, Nathalie; Blair, Jean-François; Elkouri, Stéphane

    2016-12-01

    The aim of this study was to assess time delays between first cerebrovascular symptoms and carotid endarterectomy (CEA) at a single center and to systematically evaluate causes of these delays. Consecutive adult patients who underwent CEAs between January 2010 and September 2011 at a single university-affiliated center (Centre Hospitalier de l'Université Montréal-Hôtel-Dieu Hospital, Montreal) were identified from a clinical database and operative records. Covariates of interest were extracted from electronic medical records. Timing and nature of the first cerebrovascular symptoms were also documented. The first medical contact and pathway of referral were also assessed. When possible, the ABCD 2 score (age, blood pressure, clinical features, duration of symptoms, and diabetes) was calculated to calculate further risk of stroke. The nonparametric Wilcoxon test was used to assess differences in time intervals between two variables. The Kruskal-Wallis test was used to assess differences in time intervals in comparing more than two variables. A multivariate linear regression analysis was performed using covariates that were determined to be statistically significant in our sensitivity analyses. The cohort consisted of 111 patients with documented symptomatic carotid stenosis undergoing surgical intervention. Thirty-nine percent of all patients were operated on within 2 weeks from the first cerebrovascular symptoms. The median time between the occurrence of the first neurologic symptom and the CEA procedure was 25 (interquartile range [IQR], 11-85) days. The patient-dependent delay, defined as the median delay between the first neurologic symptom and the first medical contact, was 1 (IQR, 0-14) day. The medical-dependent delay was defined as the time interval between the first medical contact and CEA. This included the delay between the first medical contact and the request for surgery consultation (median, 3 [IQR, 1-10] days). The multivariate regression model

  9. General relation between the group delay and dwell time in multicomponent electron systems

    NASA Astrophysics Data System (ADS)

    Zhai, Feng; Lu, Junqiang

    2016-10-01

    For multicomponent electron scattering states, we derive a general relation between the Wigner group delay and the Bohmian dwell time. It is found that the definition of group delay should account for the phase of the spinor wave functions of propagating modes. The difference between the group delay and dwell time comes from both the interference delay and the decaying modes. For barrier tunneling of helical electrons on a surface of topological insulators, our calculations including the trigonal-warping term show that the decaying modes can contribute greatly to the group delay. The derived relation between the group delay and the dwell time is helpful to unify the two definitions of tunneling time in a quite general situation.

  10. Towards Supervising Remote Dexterous Robots Across Time Delay

    NASA Technical Reports Server (NTRS)

    Hambuchen, Kimberly; Bluethmann, William; Goza, Michael; Ambrose, Robert; Wheeler, Kevin; Rabe, Ken

    2006-01-01

    The President s Vision for Space Exploration, laid out in 2004, relies heavily upon robotic exploration of the lunar surface in early phases of the program. Prior to the arrival of astronauts on the lunar surface, these robots will be required to be controlled across space and time, posing a considerable challenge for traditional telepresence techniques. Because time delays will be measured in seconds, not minutes as is the case for Mars Exploration, uploading the plan for a day seems excessive. An approach for controlling dexterous robots under intermediate time delay is presented, in which software running within a ground control cockpit predicts the intention of an immersed robot supervisor, then the remote robot autonomously executes the supervisor s intended tasks. Initial results are presented.

  11. Influence of coal particles on ignition delay times of methane-air mixture

    NASA Astrophysics Data System (ADS)

    Fedorov, A. V.; Tropin, D. A.

    2018-03-01

    The results of numerical investigation of the ignition of a stoichiometric methane-air mixture in the presence of carbon particles with diameters of 20-52 μm in the temperature range 950-1150 K and pressures of 1.5-2.0 MPa are presented. The calculated data of the ignition delay times of coal particles in the coal particles/air mixture and of the ignition delay times of methane and coal particles in the methane/coal particles /air mixture are compared with the experimental ones. A satisfactory agreement of the data on the coal particles ignition delay times and methane ignition delay times in all the mixtures considered is shown.

  12. Optimal time for initiating extracorporeal membrane oxygenation.

    PubMed

    Haile, Dawit T; Schears, Gregory J

    2009-09-01

    The technical evolution of extracorporeal membrane oxygenation (ECMO) coincides with the vast improvement in intensive care medicine of the past 4 decades. Extracorporeal circulatory technology substitutes for acutely failed cardiac or pulmonary function until these organs regain sustainable function through goal-oriented intensive care practice. The technology has been validated to improve survival in select patients who would otherwise have 100% mortality. This is by far the most complex life-sustaining technology employed and thus can contribute significant risks such that the decision to institute ECMO requires prompt risk and benefit analysis. Delaying the institution of ECMO may cause irreversible pulmonary and cardiac injuries in addition to other organs. Therefore, the optimal time of initiating ECMO support is crucial to the survival of a critically ill patient.

  13. Strong Lens Time Delay Challenge. I. Experimental Design

    NASA Astrophysics Data System (ADS)

    Dobler, Gregory; Fassnacht, Christopher D.; Treu, Tommaso; Marshall, Phil; Liao, Kai; Hojjati, Alireza; Linder, Eric; Rumbaugh, Nicholas

    2015-02-01

    The time delays between point-like images in gravitational lens systems can be used to measure cosmological parameters. The number of lenses with measured time delays is growing rapidly; the upcoming Large Synoptic Survey Telescope (LSST) will monitor ~103 strongly lensed quasars. In an effort to assess the present capabilities of the community, to accurately measure the time delays, and to provide input to dedicated monitoring campaigns and future LSST cosmology feasibility studies, we have invited the community to take part in a "Time Delay Challenge" (TDC). The challenge is organized as a set of "ladders," each containing a group of simulated data sets to be analyzed blindly by participating teams. Each rung on a ladder consists of a set of realistic mock observed lensed quasar light curves, with the rungs' data sets increasing in complexity and realism. The initial challenge described here has two ladders, TDC0 and TDC1. TDC0 has a small number of data sets, and is designed to be used as a practice set by the participating teams. The (non-mandatory) deadline for completion of TDC0 was the TDC1 launch date, 2013 December 1. The TDC1 deadline was 2014 July 1. Here we give an overview of the challenge, we introduce a set of metrics that will be used to quantify the goodness of fit, efficiency, precision, and accuracy of the algorithms, and we present the results of TDC0. Thirteen teams participated in TDC0 using 47 different methods. Seven of those teams qualified for TDC1, which is described in the companion paper.

  14. STRONG LENS TIME DELAY CHALLENGE. I. EXPERIMENTAL DESIGN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobler, Gregory; Fassnacht, Christopher D.; Rumbaugh, Nicholas

    2015-02-01

    The time delays between point-like images in gravitational lens systems can be used to measure cosmological parameters. The number of lenses with measured time delays is growing rapidly; the upcoming Large Synoptic Survey Telescope (LSST) will monitor ∼10{sup 3} strongly lensed quasars. In an effort to assess the present capabilities of the community, to accurately measure the time delays, and to provide input to dedicated monitoring campaigns and future LSST cosmology feasibility studies, we have invited the community to take part in a ''Time Delay Challenge'' (TDC). The challenge is organized as a set of ''ladders'', each containing a groupmore » of simulated data sets to be analyzed blindly by participating teams. Each rung on a ladder consists of a set of realistic mock observed lensed quasar light curves, with the rungs' data sets increasing in complexity and realism. The initial challenge described here has two ladders, TDC0 and TDC1. TDC0 has a small number of data sets, and is designed to be used as a practice set by the participating teams. The (non-mandatory) deadline for completion of TDC0 was the TDC1 launch date, 2013 December 1. The TDC1 deadline was 2014 July 1. Here we give an overview of the challenge, we introduce a set of metrics that will be used to quantify the goodness of fit, efficiency, precision, and accuracy of the algorithms, and we present the results of TDC0. Thirteen teams participated in TDC0 using 47 different methods. Seven of those teams qualified for TDC1, which is described in the companion paper.« less

  15. COSMOGRAIL XVII: Time Delays for the Quadruply Imaged Quasar PG 1115+080

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonvin, V.; et al.

    We present time-delay estimates for the quadruply imaged quasar PG 1115+080. Our resuls are based on almost daily observations for seven months at the ESO MPIA 2.2m telescope at La Silla Observatory, reaching a signal-to-noise ratio of about 1000 per quasar image. In addition, we re-analyse existing light curves from the literature that we complete with an additional three seasons of monitoring with the Mercator telescope at La Palma Observatory. When exploring the possible source of bias we consider the so-called microlensing time delay, a potential source of systematic error so far never directly accounted for in previous time-delay publications.more » In fifteen years of data on PG 1115+080, we find no strong evidence of microlensing time delay. Therefore not accounting for this effect, our time-delay estimates on the individual data sets are in good agreement with each other and with the literature. Combining the data sets, we obtain the most precise time-delay estimates to date on PG 1115+080, with Dt(AB) = 8.3+1.5-1.6 days (18.7% precision), Dt(AC) = 9.9+1.1-1.1 days (11.1%) and Dt(BC) = 18.8+1.6-1.6 days (8.5%). Turning these time delays into cosmological constraints is done in a companion paper that makes use of ground-based Adaptive Optics (AO) with the Keck telescope.« less

  16. Detection of time delays and directional interactions based on time series from complex dynamical systems

    NASA Astrophysics Data System (ADS)

    Ma, Huanfei; Leng, Siyang; Tao, Chenyang; Ying, Xiong; Kurths, Jürgen; Lai, Ying-Cheng; Lin, Wei

    2017-07-01

    Data-based and model-free accurate identification of intrinsic time delays and directional interactions is an extremely challenging problem in complex dynamical systems and their networks reconstruction. A model-free method with new scores is proposed to be generally capable of detecting single, multiple, and distributed time delays. The method is applicable not only to mutually interacting dynamical variables but also to self-interacting variables in a time-delayed feedback loop. Validation of the method is carried out using physical, biological, and ecological models and real data sets. Especially, applying the method to air pollution data and hospital admission records of cardiovascular diseases in Hong Kong reveals the major air pollutants as a cause of the diseases and, more importantly, it uncovers a hidden time delay (about 30-40 days) in the causal influence that previous studies failed to detect. The proposed method is expected to be universally applicable to ascertaining and quantifying subtle interactions (e.g., causation) in complex systems arising from a broad range of disciplines.

  17. Nonlinear Estimation of Discrete-Time Signals Under Random Observation Delay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caballero-Aguila, R.; Jimenez-Lopez, J. D.; Hermoso-Carazo, A.

    2008-11-06

    This paper presents an approximation to the nonlinear least-squares estimation problem of discrete-time stochastic signals using nonlinear observations with additive white noise which can be randomly delayed by one sampling time. The observation delay is modelled by a sequence of independent Bernoulli random variables whose values, zero or one, indicate that the real observation arrives on time or it is delayed and, hence, the available measurement to estimate the signal is not up-to-date. Assuming that the state-space model generating the signal is unknown and only the covariance functions of the processes involved in the observation equation are ready for use,more » a filtering algorithm based on linear approximations of the real observations is proposed.« less

  18. Numerical simulation of time delay interferometry for a LISA-like mission with the simplification of having only one interferometer

    NASA Astrophysics Data System (ADS)

    Dhurandhar, S. V.; Ni, W.-T.; Wang, G.

    2013-01-01

    In order to attain the requisite sensitivity for LISA, laser frequency noise must be suppressed below the secondary noises such as the optical path noise, acceleration noise etc. In a previous paper (Dhurandhar, S.V., Nayak, K.R., Vinet, J.-Y. Time delay interferometry for LISA with one arm dysfunctional. Class. Quantum Grav. 27, 135013, 2010), we have found a large family of second-generation analytic solutions of time delay interferometry with one arm dysfunctional, and we also estimated the laser noise due to residual time-delay semi-analytically from orbit perturbations due to Earth. Since other planets and solar-system bodies also perturb the orbits of LISA spacecraft and affect the time delay interferometry (TDI), we simulate the time delay numerically in this paper for all solutions with the generation number n ⩽ 3. We have worked out a set of 3-year optimized mission orbits of LISA spacecraft starting at January 1, 2021 using the CGC2.7 ephemeris framework. We then use this numerical solution to calculate the residual optical path differences in the second-generation solutions of our previous paper, and compare with the semi-analytic error estimate. The accuracy of this calculation is better than 1 cm (or 30 ps). The maximum path length difference, for all configuration calculated, is below 1 m (3 ns). This is well below the limit under which the laser frequency noise is required to be suppressed. The numerical simulation in this paper can be applied to other space-borne interferometers for gravitational wave detection with the simplification of having only one interferometer.

  19. The time-delayed inverted pendulum: Implications for human balance control

    NASA Astrophysics Data System (ADS)

    Milton, John; Cabrera, Juan Luis; Ohira, Toru; Tajima, Shigeru; Tonosaki, Yukinori; Eurich, Christian W.; Campbell, Sue Ann

    2009-06-01

    The inverted pendulum is frequently used as a starting point for discussions of how human balance is maintained during standing and locomotion. Here we examine three experimental paradigms of time-delayed balance control: (1) mechanical inverted time-delayed pendulum, (2) stick balancing at the fingertip, and (3) human postural sway during quiet standing. Measurements of the transfer function (mechanical stick balancing) and the two-point correlation function (Hurst exponent) for the movements of the fingertip (real stick balancing) and the fluctuations in the center of pressure (postural sway) demonstrate that the upright fixed point is unstable in all three paradigms. These observations imply that the balanced state represents a more complex and bounded time-dependent state than a fixed-point attractor. Although mathematical models indicate that a sufficient condition for instability is for the time delay to make a corrective movement, τn, be greater than a critical delay τc that is proportional to the length of the pendulum, this condition is satisfied only in the case of human stick balancing at the fingertip. Thus it is suggested that a common cause of instability in all three paradigms stems from the difficulty of controlling both the angle of the inverted pendulum and the position of the controller simultaneously using time-delayed feedback. Considerations of the problematic nature of control in the presence of delay and random perturbations ("noise") suggest that neural control for the upright position likely resembles an adaptive-type controller in which the displacement angle is allowed to drift for small displacements with active corrections made only when θ exceeds a threshold. This mechanism draws attention to an overlooked type of passive control that arises from the interplay between retarded variables and noise.

  20. Free-running waveform characterization using a delay-time tunable laser based delay-line-free electro-optic sampling oscilloscope

    NASA Astrophysics Data System (ADS)

    Lin, Gong-Ru

    2002-12-01

    We develop a delay-line-free and frequency traceable electro-optic sampling oscilloscope by use of a digital phase-locked loop phase shifter (PLL-PS) controlled delay-time-tunable gain-switched laser diode (GSLD). The home-made voltage-controllable PLL-PS exhibits a linear transfer function with ultra-wide phase shifting range of ±350° and tuning error of <±5%, which benefits the advantages of frequency tracking to free-running signals with suppressed timing-jitter. The maximum delay-time of PLL-PS controlled GSLD is up to 1.95 periods by changing the controlling voltage ( VREF) from -3.5 to 3.5 V, which corresponds to 3.9 ns at repetition frequency of 500 MHz. The tuning responsivity and resolution are about 0.56 ns/V and 0.15˜0.2 ps, respectively. The maximum delay-time switching bandwidth of 100 Hz is determined under the control of a saw-tooth modulated VREF function. The waveform sampling of microwave PECL signals generated from a free-running digital frequency divider is performed with acceptable measuring deviation.

  1. Effects of time delay and pitch control sensitivity in the flared landing

    NASA Technical Reports Server (NTRS)

    Berthe, C. J.; Chalk, C. R.; Wingarten, N. C.; Grantham, W.

    1986-01-01

    Between December 1985 and January 1986, a flared landing program was conducted, using the USAF Total In-Flight simulator airplane, to examine time delay effects in a formal manner. Results show that as pitch sensitivity is increased, tolerance to time delay decreases. With the proper selection of pitch sensitivity, Level I performance was maintained with time delays ranging from 150 milliseconds to greater than 300 milliseconds. With higher sensitivity, configurations with Level I performance at 150 milliseconds degraded to level 2 at 200 milliseconds. When metrics of time delay and pitch sensitivity effects are applied to enhance previously developed predictive criteria, the result is an improved prediction technique which accounts for significant closed loop items.

  2. Time delay estimation using new spectral and adaptive filtering methods with applications to underwater target detection

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammed A.

    1997-11-01

    In this dissertation, we present several novel approaches for detection and identification of targets of arbitrary shapes from the acoustic backscattered data and using the incident waveform. This problem is formulated as time- delay estimation and sinusoidal frequency estimation problems which both have applications in many other important areas in signal processing. Solving time-delay estimation problem allows the identification of the specular components in the backscattered signal from elastic and non-elastic targets. Thus, accurate estimation of these time delays would help in determining the existence of certain clues for detecting targets. Several new methods for solving these two problems in the time, frequency and wavelet domains are developed. In the time domain, a new block fast transversal filter (BFTF) is proposed for a fast implementation of the least squares (LS) method. This BFTF algorithm is derived by using data-related constrained block-LS cost function to guarantee global optimality. The new soft-constrained algorithm provides an efficient way of transferring weight information between blocks of data and thus it is computationally very efficient compared with other LS- based schemes. Additionally, the tracking ability of the algorithm can be controlled by varying the block length and/or a soft constrained parameter. The effectiveness of this algorithm is tested on several underwater acoustic backscattered data for elastic targets and non-elastic (cement chunk) objects. In the frequency domain, the time-delay estimation problem is converted to a sinusoidal frequency estimation problem by using the discrete Fourier transform. Then, the lagged sample covariance matrices of the resulting signal are computed and studied in terms of their eigen- structure. These matrices are shown to be robust and effective in extracting bases for the signal and noise subspaces. New MUSIC and matrix pencil-based methods are derived these subspaces. The effectiveness

  3. Generation of wideband chaos with suppressed time-delay signature by delayed self-interference.

    PubMed

    Wang, Anbang; Yang, Yibiao; Wang, Bingjie; Zhang, Beibei; Li, Lei; Wang, Yuncai

    2013-04-08

    We demonstrate experimentally and numerically a method using the incoherent delayed self-interference (DSI) of chaotic light from a semiconductor laser with optical feedback to generate wideband chaotic signal. The results show that, the DSI can eliminate the domination of laser relaxation oscillation existing in the chaotic laser light and therefore flatten and widen the power spectrum. Furthermore, the DSI depresses the time-delay signature induced by external cavity modes and improves the symmetry of probability distribution by more than one magnitude. We also experimentally show that this DSI signal is beneficial to the random number generation.

  4. The effects of time delays on a telepathology user interface.

    PubMed Central

    Carr, D.; Hasegawa, H.; Lemmon, D.; Plaisant, C.

    1992-01-01

    Telepathology enables a pathologist to examine physically distant tissue samples by microscope operation over a communication link. Communication links can impose time delays which cause difficulties in controlling the remote device. Such difficulties were found in a microscope teleoperation system. Since the user interface is critical to pathologist's acceptance of telepathology, we redesigned the user interface for this system, built two different versions (a keypad whose movement commands operated by specifying a start command followed by a stop command and a trackball interface whose movement commands were incremental and directly proportional to the rotation of the trackball). We then conducted a pilot study to determine the effect of time delays on the new user interfaces. In our experiment, the keypad was the faster interface when the time delay is short. There was no evidence to favor either the keypad or trackball when the time delay was longer. Inexperienced participants benefitted by allowing them to move long distances over the microscope slide by dragging the field-of-view indicator on the touchscreen control panel. The experiment suggests that changes could be made to the trackball interface which would improve its performance. PMID:1482878

  5. Wigner time delay in photodetachment of Tm-and in photoionization of Yb: A comparative study

    NASA Astrophysics Data System (ADS)

    Saha, Soumyajit; Jose, Jobin; Deshmukh, Pranawa; Dolmatov, Valeriy; Kheifets, Anatoli; Manson, Steven

    2017-04-01

    Preliminary studies of Wigner time delay in photodetachment spectra of negative ions have been reported. Photodetachment time delay for some dipole channels of Tm- and of Cl- were calculated using relativistic random phase approximation (RRPA). Comparisons between photodetachment time delay of Cl- and photoionization time delay of Ar were made. We investigate the photodetachment time delay for all three relativistically split nd -> ɛ f channels of Tm- and for nd -> ɛ f channels of Yb (isoelectronic to Tm-) using RRPA. We study the effect of the shape resonance, brought about by the centrifugal barrier potential, on photodetachment time delay. A negative ion is a good laboratory for studying the effects of shape resonances on time delay since the phase is unaffected by the Coulomb component. Wigner time delay in photodetachment of Tm- and in photoionization of Yb: A comparative study.

  6. Effect of Time Delay on Recognition Memory for Pictures: The Modulatory Role of Emotion

    PubMed Central

    Wang, Bo

    2014-01-01

    This study investigated the modulatory role of emotion in the effect of time delay on recognition memory for pictures. Participants viewed neutral, positive and negative pictures, and took a recognition memory test 5 minutes, 24 hours, or 1 week after learning. The findings are: 1) For neutral, positive and negative pictures, overall recognition accuracy in the 5-min delay did not significantly differ from that in the 24-h delay. For neutral and positive pictures, overall recognition accuracy in the 1-week delay was lower than in the 24-h delay; for negative pictures, overall recognition in the 24-h and 1-week delay did not significantly differ. Therefore negative emotion modulates the effect of time delay on recognition memory, maintaining retention of overall recognition accuracy only within a certain frame of time. 2) For the three types of pictures, recollection and familiarity in the 5-min delay did not significantly differ from that in the 24-h and the 1-week delay. Thus emotion does not appear to modulate the effect of time delay on recollection and familiarity. However, recollection in the 24-h delay was higher than in the 1-week delay, whereas familiarity in the 24-h delay was lower than in the 1-week delay. PMID:24971457

  7. Noise and time delay induce critical point in a bistable system

    NASA Astrophysics Data System (ADS)

    Zhang, Jianqiang; Nie, Linru; Yu, Lilong; Zhang, Xinyu

    2014-07-01

    We study relaxation time Tc of time-delayed bistable system driven by two cross-correlated Gaussian white noises that one is multiplicative and the other is additive. By means of numerical calculations, the results indicate that: (i) Combination of noise and time delay can induce two critical points about the relaxation time at some certain noise cross-correlation strength λ under the condition that the multiplicative intensity D equals to the additive noise intensity α. (ii) For each fixed D or α, there are two symmetrical critical points which locates in the regions of positive and negative correlations, respectively. Namely, as λ equals to the critical value λc, Tc is independent of the delay time and the result of Tc versus τ is a horizontal line, but as |λ|>|λc| (or |λ|<|λc|), the relaxation time Tc monotonically increases (or decreases) with the delay time increasing. (iii) In the presence of D = α, the change of λc with D is two symmetrical curves about the axis of λc = 0, and the critical value λc is close to zero for a smaller D, which approaches to +1 or -1 for a greater D.

  8. The rates and time-delay distribution of multiply imaged supernovae behind lensing clusters

    NASA Astrophysics Data System (ADS)

    Li, Xue; Hjorth, Jens; Richard, Johan

    2012-11-01

    Time delays of gravitationally lensed sources can be used to constrain the mass model of a deflector and determine cosmological parameters. We here present an analysis of the time-delay distribution of multiply imaged sources behind 17 strong lensing galaxy clusters with well-calibrated mass models. We find that for time delays less than 1000 days, at z = 3.0, their logarithmic probability distribution functions are well represented by P(log Δt) = 5.3 × 10-4Δttilde beta/M2502tilde beta, with tilde beta = 0.77, where M250 is the projected cluster mass inside 250 kpc (in 1014M⊙), and tilde beta is the power-law slope of the distribution. The resultant probability distribution function enables us to estimate the time-delay distribution in a lensing cluster of known mass. For a cluster with M250 = 2 × 1014M⊙, the fraction of time delays less than 1000 days is approximately 3%. Taking Abell 1689 as an example, its dark halo and brightest galaxies, with central velocity dispersions σ>=500kms-1, mainly produce large time delays, while galaxy-scale mass clumps are responsible for generating smaller time delays. We estimate the probability of observing multiple images of a supernova in the known images of Abell 1689. A two-component model of estimating the supernova rate is applied in this work. For a magnitude threshold of mAB = 26.5, the yearly rate of Type Ia (core-collapse) supernovae with time delays less than 1000 days is 0.004±0.002 (0.029±0.001). If the magnitude threshold is lowered to mAB ~ 27.0, the rate of core-collapse supernovae suitable for time delay observation is 0.044±0.015 per year.

  9. BOLD delay times using group delay in sickle cell disease

    NASA Astrophysics Data System (ADS)

    Coloigner, Julie; Vu, Chau; Bush, Adam; Borzage, Matt; Rajagopalan, Vidya; Lepore, Natasha; Wood, John

    2016-03-01

    Sickle cell disease (SCD) is an inherited blood disorder that effects red blood cells, which can lead to vasoocclusion, ischemia and infarct. This disease often results in neurological damage and strokes, leading to morbidity and mortality. Functional Magnetic Resonance Imaging (fMRI) is a non-invasive technique for measuring and mapping the brain activity. Blood Oxygenation Level-Dependent (BOLD) signals contain also information about the neurovascular coupling, vascular reactivity, oxygenation and blood propagation. Temporal relationship between BOLD fluctuations in different parts of the brain provides also a mean to investigate the blood delay information. We used the induced desaturation as a label to profile transit times through different brain areas, reflecting oxygen utilization of tissue. In this study, we aimed to compare blood flow propagation delay times between these patients and healthy subjects in areas vascularized by anterior, middle and posterior cerebral arteries. In a group comparison analysis with control subjects, BOLD changes in these areas were found to be almost simultaneous and shorter in the SCD patients, because of their increased brain blood flow. Secondly, the analysis of a patient with a stenosis on the anterior cerebral artery indicated that signal of the area vascularized by this artery lagged the MCA signal. These findings suggest that sickle cell disease causes blood propagation modifications, and that these changes could be used as a biomarker of vascular damage.

  10. Effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks.

    PubMed

    Sun, Xiaojuan; Perc, Matjaž; Kurths, Jürgen

    2017-05-01

    In this paper, we study effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks. Our focus is on the impact of two parameters, namely the time delay τ and the probability of partial time delay p delay , whereby the latter determines the probability with which a connection between two neurons is delayed. Our research reveals that partial time delays significantly affect phase synchronization in this system. In particular, partial time delays can either enhance or decrease phase synchronization and induce synchronization transitions with changes in the mean firing rate of neurons, as well as induce switching between synchronized neurons with period-1 firing to synchronized neurons with period-2 firing. Moreover, in comparison to a neuronal network where all connections are delayed, we show that small partial time delay probabilities have especially different influences on phase synchronization of neuronal networks.

  11. Two-actor conflict with time delay: A dynamical model

    NASA Astrophysics Data System (ADS)

    Qubbaj, Murad R.; Muneepeerakul, Rachata

    2012-11-01

    Recent mathematical dynamical models of the conflict between two different actors, be they nations, groups, or individuals, have been developed that are capable of predicting various outcomes depending on the chosen feedback strategies, initial conditions, and the previous states of the actors. In addition to these factors, this paper examines the effect of time delayed feedback on the conflict dynamics. Our analysis shows that under certain initial and feedback conditions, a stable neutral equilibrium of conflict may destabilize for some critical values of time delay, and the two actors may evolve to new emotional states. We investigate the results by constructing critical delay surfaces for different sets of parameters and analyzing results from numerical simulations. These results provide new insights regarding conflict and conflict resolution and may help planners in adjusting and assessing their strategic decisions.

  12. Real-time estimation of ionospheric delay using GPS measurements

    NASA Astrophysics Data System (ADS)

    Lin, Lao-Sheng

    1997-12-01

    When radio waves such as the GPS signals propagate through the ionosphere, they experience an extra time delay. The ionospheric delay can be eliminated (to the first order) through a linear combination of L1 and L2 observations from dual-frequency GPS receivers. Taking advantage of this dispersive principle, one or more dual- frequency GPS receivers can be used to determine a model of the ionospheric delay across a region of interest and, if implemented in real-time, can support single-frequency GPS positioning and navigation applications. The research objectives of this thesis were: (1) to develop algorithms to obtain accurate absolute Total Electron Content (TEC) estimates from dual-frequency GPS observables, and (2) to develop an algorithm to improve the accuracy of real-time ionosphere modelling. In order to fulfil these objectives, four algorithms have been proposed in this thesis. A 'multi-day multipath template technique' is proposed to mitigate the pseudo-range multipath effects at static GPS reference stations. This technique is based on the assumption that the multipath disturbance at a static station will be constant if the physical environment remains unchanged from day to day. The multipath template, either single-day or multi-day, can be generated from the previous days' GPS data. A 'real-time failure detection and repair algorithm' is proposed to detect and repair the GPS carrier phase 'failures', such as the occurrence of cycle slips. The proposed algorithm uses two procedures: (1) application of a statistical test on the state difference estimated from robust and conventional Kalman filters in order to detect and identify the carrier phase failure, and (2) application of a Kalman filter algorithm to repair the 'identified carrier phase failure'. A 'L1/L2 differential delay estimation algorithm' is proposed to estimate GPS satellite transmitter and receiver L1/L2 differential delays. This algorithm, based on the single-site modelling technique, is

  13. Approximating the linear quadratic optimal control law for hereditary systems with delays in the control

    NASA Technical Reports Server (NTRS)

    Milman, Mark H.

    1987-01-01

    The fundamental control synthesis issue of establishing a priori convergence rates of approximation schemes for feedback controllers for a class of distributed parameter systems is addressed within the context of hereditary systems. Specifically, a factorization approach is presented for deriving approximations to the optimal feedback gains for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the controls, trajectories and feedback kernels. Two algorithms are derived from the basic approximation scheme, including a fast algorithm, in the time-invariant case. A numerical example is also considered.

  14. Approximating the linear quadratic optimal control law for hereditary systems with delays in the control

    NASA Technical Reports Server (NTRS)

    Milman, Mark H.

    1988-01-01

    The fundamental control synthesis issue of establishing a priori convergence rates of approximation schemes for feedback controllers for a class of distributed parameter systems is addressed within the context of hereditary schemes. Specifically, a factorization approach is presented for deriving approximations to the optimal feedback gains for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the controls, trajectories and feedback kernels. Two algorithms are derived from the basic approximation scheme, including a fast algorithm, in the time-invariant case. A numerical example is also considered.

  15. Accurate time delay technology in simulated test for high precision laser range finder

    NASA Astrophysics Data System (ADS)

    Chen, Zhibin; Xiao, Wenjian; Wang, Weiming; Xue, Mingxi

    2015-10-01

    With the continuous development of technology, the ranging accuracy of pulsed laser range finder (LRF) is higher and higher, so the maintenance demand of LRF is also rising. According to the dominant ideology of "time analog spatial distance" in simulated test for pulsed range finder, the key of distance simulation precision lies in the adjustable time delay. By analyzing and comparing the advantages and disadvantages of fiber and circuit delay, a method was proposed to improve the accuracy of the circuit delay without increasing the count frequency of the circuit. A high precision controllable delay circuit was designed by combining the internal delay circuit and external delay circuit which could compensate the delay error in real time. And then the circuit delay accuracy could be increased. The accuracy of the novel circuit delay methods proposed in this paper was actually measured by a high sampling rate oscilloscope actual measurement. The measurement result shows that the accuracy of the distance simulated by the circuit delay is increased from +/- 0.75m up to +/- 0.15m. The accuracy of the simulated distance is greatly improved in simulated test for high precision pulsed range finder.

  16. Bounded Linear Stability Analysis - A Time Delay Margin Estimation Approach for Adaptive Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Ishihara, Abraham K.; Krishnakumar, Kalmanje Srinlvas; Bakhtiari-Nejad, Maryam

    2009-01-01

    This paper presents a method for estimating time delay margin for model-reference adaptive control of systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent the conventional model-reference adaptive law by a locally bounded linear approximation within a small time window using the comparison lemma. The locally bounded linear approximation of the combined adaptive system is cast in a form of an input-time-delay differential equation over a small time window. The time delay margin of this system represents a local stability measure and is computed analytically by a matrix measure method, which provides a simple analytical technique for estimating an upper bound of time delay margin. Based on simulation results for a scalar model-reference adaptive control system, both the bounded linear stability method and the matrix measure method are seen to provide a reasonably accurate and yet not too conservative time delay margin estimation.

  17. Finite-time mixed outer synchronization of complex networks with coupling time-varying delay.

    PubMed

    He, Ping; Ma, Shu-Hua; Fan, Tao

    2012-12-01

    This article is concerned with the problem of finite-time mixed outer synchronization (FMOS) of complex networks with coupling time-varying delay. FMOS is a recently developed generalized synchronization concept, i.e., in which different state variables of the corresponding nodes can evolve into finite-time complete synchronization, finite-time anti-synchronization, and even amplitude finite-time death simultaneously for an appropriate choice of the controller gain matrix. Some novel stability criteria for the synchronization between drive and response complex networks with coupling time-varying delay are derived using the Lyapunov stability theory and linear matrix inequalities. And a simple linear state feedback synchronization controller is designed as a result. Numerical simulations for two coupled networks of modified Chua's circuits are then provided to demonstrate the effectiveness and feasibility of the proposed complex networks control and synchronization schemes and then compared with the proposed results and the previous schemes for accuracy.

  18. Wigner time-delay distribution in chaotic cavities and freezing transition.

    PubMed

    Texier, Christophe; Majumdar, Satya N

    2013-06-21

    Using the joint distribution for proper time delays of a chaotic cavity derived by Brouwer, Frahm, and Beenakker [Phys. Rev. Lett. 78, 4737 (1997)], we obtain, in the limit of the large number of channels N, the large deviation function for the distribution of the Wigner time delay (the sum of proper times) by a Coulomb gas method. We show that the existence of a power law tail originates from narrow resonance contributions, related to a (second order) freezing transition in the Coulomb gas.

  19. Multi-objective LQR with optimum weight selection to design FOPID controllers for delayed fractional order processes.

    PubMed

    Das, Saptarshi; Pan, Indranil; Das, Shantanu

    2015-09-01

    An optimal trade-off design for fractional order (FO)-PID controller is proposed with a Linear Quadratic Regulator (LQR) based technique using two conflicting time domain objectives. A class of delayed FO systems with single non-integer order element, exhibiting both sluggish and oscillatory open loop responses, have been controlled here. The FO time delay processes are handled within a multi-objective optimization (MOO) formalism of LQR based FOPID design. A comparison is made between two contemporary approaches of stabilizing time-delay systems withinLQR. The MOO control design methodology yields the Pareto optimal trade-off solutions between the tracking performance and total variation (TV) of the control signal. Tuning rules are formed for the optimal LQR-FOPID controller parameters, using median of the non-dominated Pareto solutions to handle delayed FO processes. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Real-time correction of beamforming time delay errors in abdominal ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Rigby, K. W.

    2000-04-01

    The speed of sound varies with tissue type, yet commercial ultrasound imagers assume a constant sound speed. Sound speed variation in abdominal fat and muscle layers is widely believed to be largely responsible for poor contrast and resolution in some patients. The simplest model of the abdominal wall assumes that it adds a spatially varying time delay to the ultrasound wavefront. The adequacy of this model is controversial. We describe an adaptive imaging system consisting of a GE LOGIQ 700 imager connected to a multi- processor computer. Arrival time errors for each beamforming channel, estimated by correlating each channel signal with the beamsummed signal, are used to correct the imager's beamforming time delays at the acoustic frame rate. A multi- row transducer provides two-dimensional sampling of arrival time errors. We observe significant improvement in abdominal images of healthy male volunteers: increased contrast of blood vessels, increased visibility of the renal capsule, and increased brightness of the liver.

  1. Describing-function analysis of a ripple regulator with slew-rate limits and time delays

    NASA Technical Reports Server (NTRS)

    Wester, Gene W.

    1990-01-01

    The effects of time delays and slew-rate limits on the steady-state operating points and performance of a free-running ripple regulator are evaluated using describing-function analysis. The describing function of an ideal comparator (no time delays or slew rate limits) has no phase shift and is independent of frequency. It is found that turn-on delay and turn-off delay have different effects on gain and phase and cannot be combined. Comparator hysteresis affects both gain and phase; likewise, time delays generally affect both gain and phase. It is found that the effective time delay around the feedback loop is one half the sum of turn-on and turn-off delays, regardless of whether the delays are caused by storage time or slew rate limits. Expressions are formulated for the switching frequency, switch duty ratio, dc output, and output ripple. For the case of no hysteresis, a simple, graphical solution for the switching frequency is possible, and the resulting switching frequency is independent of first-order variations of input or load.

  2. Reduced order modelling in searches for continuous gravitational waves - I. Barycentring time delays

    NASA Astrophysics Data System (ADS)

    Pitkin, M.; Doolan, S.; McMenamin, L.; Wette, K.

    2018-06-01

    The frequencies and phases of emission from extra-solar sources measured by Earth-bound observers are modulated by the motions of the observer with respect to the source, and through relativistic effects. These modulations depend critically on the source's sky-location. Precise knowledge of the modulations are required to coherently track the source's phase over long observations, for example, in pulsar timing, or searches for continuous gravitational waves. The modulations can be modelled as sky-location and time-dependent time delays that convert arrival times at the observer to the inertial frame of the source, which can often be the Solar system barycentre. We study the use of reduced order modelling for speeding up the calculation of this time delay for any sky-location. We find that the time delay model can be decomposed into just four basis vectors, and with these the delay for any sky-location can be reconstructed to sub-nanosecond accuracy. When compared to standard routines for time delay calculation in gravitational wave searches, using the reduced basis can lead to speed-ups of 30 times. We have also studied components of time delays for sources in binary systems. Assuming eccentricities <0.25, we can reconstruct the delays to within 100 s of nanoseconds, with best case speed-ups of a factor of 10, or factors of two when interpolating the basis for different orbital periods or time stamps. In long-duration phase-coherent searches for sources with sky-position uncertainties, or binary parameter uncertainties, these speed-ups could allow enhancements in their scopes without large additional computational burdens.

  3. The Effects of Aging on Time Reproduction in Delayed Free-Recall

    ERIC Educational Resources Information Center

    Rakitin, B.C.; Stern, Y.; Malapani, C.

    2005-01-01

    The experiments presented here demonstrate that normal aging amplifies differences in time production occurring in delayed free-recall testing. Experiment 1 compared the time production ability of two healthy aged groups as well as college-aged participants. During the test session, which followed a 24-h delay and omitted all feedback and examples…

  4. Effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks

    NASA Astrophysics Data System (ADS)

    Sun, Xiaojuan; Perc, Matjaž; Kurths, Jürgen

    2017-05-01

    In this paper, we study effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks. Our focus is on the impact of two parameters, namely the time delay τ and the probability of partial time delay pdelay, whereby the latter determines the probability with which a connection between two neurons is delayed. Our research reveals that partial time delays significantly affect phase synchronization in this system. In particular, partial time delays can either enhance or decrease phase synchronization and induce synchronization transitions with changes in the mean firing rate of neurons, as well as induce switching between synchronized neurons with period-1 firing to synchronized neurons with period-2 firing. Moreover, in comparison to a neuronal network where all connections are delayed, we show that small partial time delay probabilities have especially different influences on phase synchronization of neuronal networks.

  5. Childhood ADHD and Delayed Reinforcement: A Direct Comparison of Performance on Hypothetical and Real-Time Delay Tasks.

    PubMed

    Yu, Xue; Sonuga-Barke, Edmund

    2016-07-28

    Individuals with ADHD have been shown to prefer smaller sooner over larger later rewards. This has been explained in terms of abnormally steeper discounting of the value of delayed reinforcers. Evidence for this comes from different experimental paradigms. In some, participants experience delay in the laboratory (real-time delay tasks; R-TD), in others they imagine the delay to reinforcers (hypothetical delay tasks; HD). We directly contrasted the performance of 7- to 12-year-old children with ADHD (n = 23) and matched controls (n = 23) on R-TD and HD tasks with monetary rewards. Children with ADHD displayed steeper temporal discounting on the R-TD, but not the HD tasks. These findings suggest that the experience of waiting prior to the delivery of rewards is an important determinant of heightened temporal discounting in ADHD-a finding consistent with models that emphasize the aversive nature of delay for children. © The Author(s) 2016.

  6. Finite-dimensional modeling of network-induced delays for real-time control systems

    NASA Technical Reports Server (NTRS)

    Ray, Asok; Halevi, Yoram

    1988-01-01

    In integrated control systems (ICS), a feedback loop is closed by the common communication channel, which multiplexes digital data from the sensor to the controller and from the controller to the actuator along with the data traffic from other control loops and management functions. Due to asynchronous time-division multiplexing in the network access protocols, time-varying delays are introduced in the control loop, which degrade the system dynamic performance and are a potential source of instability. The delayed control system is represented by a finite-dimensional, time-varying, discrete-time model which is less complex than the existing continuous-time models for time-varying delays; this approach allows for simpler schemes for analysis and simulation of the ICS.

  7. Time delay in the Kuramoto model of coupled-phase oscillators

    NASA Astrophysics Data System (ADS)

    Yeung, Man Kit Stephen

    1999-10-01

    The Kuramoto model is a mean-field model of coupled phase oscillators with distributed natural frequencies. It was proposed to study collective synchronization in large systems of nonlinear oscillators. Here we generalize this model to allow time-delayed interactions. Despite the delay, synchronization is still possible. We derive exact stability conditions for the incoherent state, and for synchronized states and clustering states in the special case of noiseless identical oscillators. We also study the bifurcations of these states. We find that the incoherent state loses stability in a Hopf bifurcation. In the absence of noise, this leads to partial synchrony, where some oscillators are entrained to a common frequency. New phenomena caused by the delay include multistability among synchronization, incoherence, and clustering; and unsteady solutions with time-dependent order parameters. The experimental implications of the model are discussed for populations of chirping crickets, where the finite speed of sound causes communication delays, and for physical systems such as coupled phase- locked loops, lasers, and communication satellites.

  8. Impulsive stabilization and impulsive synchronization of discrete-time delayed neural networks.

    PubMed

    Chen, Wu-Hua; Lu, Xiaomei; Zheng, Wei Xing

    2015-04-01

    This paper investigates the problems of impulsive stabilization and impulsive synchronization of discrete-time delayed neural networks (DDNNs). Two types of DDNNs with stabilizing impulses are studied. By introducing the time-varying Lyapunov functional to capture the dynamical characteristics of discrete-time impulsive delayed neural networks (DIDNNs) and by using a convex combination technique, new exponential stability criteria are derived in terms of linear matrix inequalities. The stability criteria for DIDNNs are independent of the size of time delay but rely on the lengths of impulsive intervals. With the newly obtained stability results, sufficient conditions on the existence of linear-state feedback impulsive controllers are derived. Moreover, a novel impulsive synchronization scheme for two identical DDNNs is proposed. The novel impulsive synchronization scheme allows synchronizing two identical DDNNs with unknown delays. Simulation results are given to validate the effectiveness of the proposed criteria of impulsive stabilization and impulsive synchronization of DDNNs. Finally, an application of the obtained impulsive synchronization result for two identical chaotic DDNNs to a secure communication scheme is presented.

  9. Estimation of time-delayed mutual information and bias for irregularly and sparsely sampled time-series

    PubMed Central

    Albers, D. J.; Hripcsak, George

    2012-01-01

    A method to estimate the time-dependent correlation via an empirical bias estimate of the time-delayed mutual information for a time-series is proposed. In particular, the bias of the time-delayed mutual information is shown to often be equivalent to the mutual information between two distributions of points from the same system separated by infinite time. Thus intuitively, estimation of the bias is reduced to estimation of the mutual information between distributions of data points separated by large time intervals. The proposed bias estimation techniques are shown to work for Lorenz equations data and glucose time series data of three patients from the Columbia University Medical Center database. PMID:22536009

  10. Superluminal and negative delay times in isotropic-anisotropic one-dimensional photonic crystal

    NASA Astrophysics Data System (ADS)

    Ouchani, N.; El Moussaouy, A.; Aynaou, H.; El Hassouani, Y.; El Boudouti, E. H.; Djafari-Rouhani, B.

    2017-11-01

    In this work, we investigate the possibility of superluminal and negative delay times for electromagnetic wave propagation in a linear and passive periodic structure consisting of alternating isotropic and anisotropic media. This phenomenon is due to the birefringence of the anisotropic layers of the structure. By adjusting the orientations of these layers, the delay times of transmitted waves can be controlled from subluminality to superluminality and vice versa. Numerical results indicate that the apparent superluminal propagation of light occurs inside the photonic band-gaps when the principal axes of the anisotropic layers are parallel or perpendicular to the fixed axes. For other orientations of these layers, tunneling and superluminal regimes appear inside the photonic bandgaps and in the allowed bands for frequencies close to the transmission minima. The effect of the number of unit cells of the photonic crystal structure on the propagation of light with superluminal and negative delay times is also investigated. We show that the structure exhibits the Hartman effect in which the tunneling delay time of the electromagnetic wave through the photonic band-gap of the structure converges asymptotically to a finite value with increasing the number of layers. The Green's function approach has been used to derive the transmission and reflection coefficients, the density of states, and the delay times of electromagnetic waves propagating through the structure. The control of the magnitude and the sign of the delay time of light propagation represent a key point in slow and fast light technologies. The proposed structure in this study represents a new system for controlling the delay times of wave propagation without a need of active or non-linear media as well as lossy or asymmetric periodic structures.

  11. Automatic transponder. [measurement of the internal delay time of a transponder

    NASA Technical Reports Server (NTRS)

    Anderson, R. E.; Brisken, A. F.; Lewis, J. R. (Inventor)

    1977-01-01

    A method and apparatus for the automatic, remote measurement of the internal delay time of a transponder at the time of operation is provided. A small portion of the transmitted signal of the transponder is converted to the receive signal frequency of the transponder and supplied to the input of the transponder. The elapsed time between the receive signal locally generated and the receive signal causing the transmission of the transmitted signal is measured, said time being representative of or equal to the internal delay time of the transponder at the time of operation.

  12. When good pigeons make bad decisions: Choice with probabilistic delays and outcomes.

    PubMed

    Pisklak, Jeffrey M; McDevitt, Margaret A; Dunn, Roger M; Spetch, Marcia L

    2015-11-01

    Pigeons chose between an (optimal) alternative that sometimes provided food after a 10-s delay and other times after a 40-s delay and another (suboptimal) alternative that sometimes provided food after 10 s but other times no food after 40 s. When outcomes were not signaled during the delays, pigeons strongly preferred the optimal alternative. When outcomes were signaled, choices of the suboptimal alternative increased and most pigeons preferred the alternative that provided no food after the long delay despite the cost in terms of obtained food. The pattern of results was similar whether the short delays occurred on 25% or 50% of the trials. Shortening the 40-s delay to food sharply reduced suboptimal choices, but shortening the delay to no food had little effect. The results suggest that a signaled delay to no food does not punish responding in probabilistic choice procedures. The findings are discussed in terms of conditioned reinforcement by signals for good news. © Society for the Experimental Analysis of Behavior.

  13. Estimation of nonlinear pilot model parameters including time delay.

    NASA Technical Reports Server (NTRS)

    Schiess, J. R.; Roland, V. R.; Wells, W. R.

    1972-01-01

    Investigation of the feasibility of using a Kalman filter estimator for the identification of unknown parameters in nonlinear dynamic systems with a time delay. The problem considered is the application of estimation theory to determine the parameters of a family of pilot models containing delayed states. In particular, the pilot-plant dynamics are described by differential-difference equations of the retarded type. The pilot delay, included as one of the unknown parameters to be determined, is kept in pure form as opposed to the Pade approximations generally used for these systems. Problem areas associated with processing real pilot response data are included in the discussion.

  14. Time delay spectrum conditioner

    DOEpatents

    Greiner, Norman R.

    1980-01-01

    A device for delaying specified frequencies of a multiple frequency laser beam. The device separates the multiple frequency beam into a series of spatially separated single frequency beams. The propagation distance of the single frequency beam is subsequently altered to provide the desired delay for each specific frequency. Focusing reflectors can be utilized to provide a simple but nonadjustable system or, flat reflectors with collimating and focusing optics can be utilized to provide an adjustable system.

  15. CORRECTING FOR INTERSTELLAR SCATTERING DELAY IN HIGH-PRECISION PULSAR TIMING: SIMULATION RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palliyaguru, Nipuni; McLaughlin, Maura; Stinebring, Daniel

    2015-12-20

    Light travel time changes due to gravitational waves (GWs) may be detected within the next decade through precision timing of millisecond pulsars. Removal of frequency-dependent interstellar medium (ISM) delays due to dispersion and scattering is a key issue in the detection process. Current timing algorithms routinely correct pulse times of arrival (TOAs) for time-variable delays due to cold plasma dispersion. However, none of the major pulsar timing groups correct for delays due to scattering from multi-path propagation in the ISM. Scattering introduces a frequency-dependent phase change in the signal that results in pulse broadening and arrival time delays. Any methodmore » to correct the TOA for interstellar propagation effects must be based on multi-frequency measurements that can effectively separate dispersion and scattering delay terms from frequency-independent perturbations such as those due to a GW. Cyclic spectroscopy, first described in an astronomical context by Demorest (2011), is a potentially powerful tool to assist in this multi-frequency decomposition. As a step toward a more comprehensive ISM propagation delay correction, we demonstrate through a simulation that we can accurately recover impulse response functions (IRFs), such as those that would be introduced by multi-path scattering, with a realistic signal-to-noise ratio (S/N). We demonstrate that timing precision is improved when scatter-corrected TOAs are used, under the assumptions of a high S/N and highly scattered signal. We also show that the effect of pulse-to-pulse “jitter” is not a serious problem for IRF reconstruction, at least for jitter levels comparable to those observed in several bright pulsars.« less

  16. Improved Stability and Stabilization Results for Stochastic Synchronization of Continuous-Time Semi-Markovian Jump Neural Networks With Time-Varying Delay.

    PubMed

    Wei, Yanling; Park, Ju H; Karimi, Hamid Reza; Tian, Yu-Chu; Jung, Hoyoul; Yanling Wei; Park, Ju H; Karimi, Hamid Reza; Yu-Chu Tian; Hoyoul Jung; Tian, Yu-Chu; Wei, Yanling; Jung, Hoyoul; Karimi, Hamid Reza; Park, Ju H

    2018-06-01

    Continuous-time semi-Markovian jump neural networks (semi-MJNNs) are those MJNNs whose transition rates are not constant but depend on the random sojourn time. Addressing stochastic synchronization of semi-MJNNs with time-varying delay, an improved stochastic stability criterion is derived in this paper to guarantee stochastic synchronization of the response systems with the drive systems. This is achieved through constructing a semi-Markovian Lyapunov-Krasovskii functional together as well as making use of a novel integral inequality and the characteristics of cumulative distribution functions. Then, with a linearization procedure, controller synthesis is carried out for stochastic synchronization of the drive-response systems. The desired state-feedback controller gains can be determined by solving a linear matrix inequality-based optimization problem. Simulation studies are carried out to demonstrate the effectiveness and less conservatism of the presented approach.

  17. Reconstructions of parameters of radiophysical chaotic generator with delayed feedback from short time series

    NASA Astrophysics Data System (ADS)

    Ishbulatov, Yu. M.; Karavaev, A. S.; Kiselev, A. R.; Semyachkina-Glushkovskaya, O. V.; Postnov, D. E.; Bezruchko, B. P.

    2018-04-01

    A method for the reconstruction of time-delayed feedback system is investigated, which is based on the detection of synchronous response of a slave time-delay system with respect to the driving from the master system under study. The structure of the driven system is similar to the structure of the studied time-delay system, but the feedback circuit is broken in the driven system. The method efficiency is tested using short and noisy data gained from an electronic chaotic oscillator with time-delayed feedback.

  18. Economy with the time delay of information flow—The stock market case

    NASA Astrophysics Data System (ADS)

    Miśkiewicz, Janusz

    2012-02-01

    Any decision process requires information about the past and present state of the system, but in an economy acquiring data and processing it is an expensive and time-consuming task. Therefore, the state of the system is often measured over some legal interval, analysed after the end of well defined time periods and the results announced much later before any strategic decision is envisaged. The various time delay roles have to be crucially examined. Here, a model of stock market coupled with an economy is investigated to emphasise the role of the time delay span on the information flow. It is shown that the larger the time delay the more important the collective behaviour of agents since one observes time oscillations in the absolute log-return autocorrelations.

  19. Area/latency optimized early output asynchronous full adders and relative-timed ripple carry adders.

    PubMed

    Balasubramanian, P; Yamashita, S

    2016-01-01

    This article presents two area/latency optimized gate level asynchronous full adder designs which correspond to early output logic. The proposed full adders are constructed using the delay-insensitive dual-rail code and adhere to the four-phase return-to-zero handshaking. For an asynchronous ripple carry adder (RCA) constructed using the proposed early output full adders, the relative-timing assumption becomes necessary and the inherent advantages of the relative-timed RCA are: (1) computation with valid inputs, i.e., forward latency is data-dependent, and (2) computation with spacer inputs involves a bare minimum constant reverse latency of just one full adder delay, thus resulting in the optimal cycle time. With respect to different 32-bit RCA implementations, and in comparison with the optimized strong-indication, weak-indication, and early output full adder designs, one of the proposed early output full adders achieves respective reductions in latency by 67.8, 12.3 and 6.1 %, while the other proposed early output full adder achieves corresponding reductions in area by 32.6, 24.6 and 6.9 %, with practically no power penalty. Further, the proposed early output full adders based asynchronous RCAs enable minimum reductions in cycle time by 83.4, 15, and 8.8 % when considering carry-propagation over the entire RCA width of 32-bits, and maximum reductions in cycle time by 97.5, 27.4, and 22.4 % for the consideration of a typical carry chain length of 4 full adder stages, when compared to the least of the cycle time estimates of various strong-indication, weak-indication, and early output asynchronous RCAs of similar size. All the asynchronous full adders and RCAs were realized using standard cells in a semi-custom design fashion based on a 32/28 nm CMOS process technology.

  20. Impact of Partial Time Delay on Temporal Dynamics of Watts-Strogatz Small-World Neuronal Networks

    NASA Astrophysics Data System (ADS)

    Yan, Hao; Sun, Xiaojuan

    2017-06-01

    In this paper, we mainly discuss effects of partial time delay on temporal dynamics of Watts-Strogatz (WS) small-world neuronal networks by controlling two parameters. One is the time delay τ and the other is the probability of partial time delay pdelay. Temporal dynamics of WS small-world neuronal networks are discussed with the aid of temporal coherence and mean firing rate. With the obtained simulation results, it is revealed that for small time delay τ, the probability pdelay could weaken temporal coherence and increase mean firing rate of neuronal networks, which indicates that it could improve neuronal firings of the neuronal networks while destroying firing regularity. For large time delay τ, temporal coherence and mean firing rate do not have great changes with respect to pdelay. Time delay τ always has great influence on both temporal coherence and mean firing rate no matter what is the value of pdelay. Moreover, with the analysis of spike trains and histograms of interspike intervals of neurons inside neuronal networks, it is found that the effects of partial time delays on temporal coherence and mean firing rate could be the result of locking between the period of neuronal firing activities and the value of time delay τ. In brief, partial time delay could have great influence on temporal dynamics of the neuronal networks.

  1. Finite-time resilient decentralized control for interconnected impulsive switched systems with neutral delay.

    PubMed

    Ren, Hangli; Zong, Guangdeng; Hou, Linlin; Yang, Yi

    2017-03-01

    This paper is concerned with the problem of finite-time control for a class of interconnected impulsive switched systems with neutral delay in which the time-varying delay appears in both the state and the state derivative. The concepts of finite-time boundedness and finite-time stability are respectively extended to interconnected impulsive switched systems with neutral delay for the first time. By applying the average dwell time method, sufficient conditions are first derived to cope with the problem of finite-time boundedness and finite-time stability for interconnected impulsive switched systems with neutral delay. In addition, the purpose of finite-time resilient decentralized control is to construct a resilient decentralized state-feedback controller such that the closed-loop system is finite-time bounded and finite-time stable. All the conditions are formulated in terms of linear matrix inequalities to ensure finite-time boundedness and finite-time stability of the given system. Finally, an example is presented to illustrate the effectiveness of the proposed approach. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Tunable Optical True-Time Delay Devices Would Exploit EIT

    NASA Technical Reports Server (NTRS)

    Kulikov, Igor; DiDomenico, Leo; Lee, Hwang

    2004-01-01

    Tunable optical true-time delay devices that would exploit electromagnetically induced transparency (EIT) have been proposed. Relative to prior true-time delay devices (for example, devices based on ferroelectric and ferromagnetic materials) and electronically controlled phase shifters, the proposed devices would offer much greater bandwidths. In a typical envisioned application, an optical pulse would be modulated with an ultra-wideband radio-frequency (RF) signal that would convey the information that one seeks to communicate, and it would be required to couple differently delayed replicas of the RF signal to the radiating elements of a phased-array antenna. One or more of the proposed devices would be used to impose the delays and/or generate the delayed replicas of the RF-modulated optical pulse. The beam radiated or received by the antenna would be steered by use of a microprocessor-based control system that would adjust operational parameters of the devices to tune the delays to the required values. EIT is a nonlinear quantum optical interference effect that enables the propagation of light through an initially opaque medium. A suitable medium must have, among other properties, three quantum states (see Figure 1): an excited state (state 3), an upper ground state (state 2), and a lower ground state (state 1). These three states must form a closed system that exhibits no decays to other states in the presence of either or both of two laser beams: (1) a probe beam having the wavelength corresponding to the photon energy equal to the energy difference between states 3 and 1; and (2) a coupling beam having the wavelength corresponding to the photon energy equal to the energy difference between states 3 and 2. The probe beam is the one that is pulsed and modulated with an RF signal.

  3. Robotic reactions: delay-induced patterns in autonomous vehicle systems.

    PubMed

    Orosz, Gábor; Moehlis, Jeff; Bullo, Francesco

    2010-02-01

    Fundamental design principles are presented for vehicle systems governed by autonomous cruise control devices. By analyzing the corresponding delay differential equations, it is shown that for any car-following model short-wavelength oscillations can appear due to robotic reaction times, and that there are tradeoffs between the time delay and the control gains. The analytical findings are demonstrated on an optimal velocity model using numerical continuation and numerical simulation.

  4. Robotic reactions: Delay-induced patterns in autonomous vehicle systems

    NASA Astrophysics Data System (ADS)

    Orosz, Gábor; Moehlis, Jeff; Bullo, Francesco

    2010-02-01

    Fundamental design principles are presented for vehicle systems governed by autonomous cruise control devices. By analyzing the corresponding delay differential equations, it is shown that for any car-following model short-wavelength oscillations can appear due to robotic reaction times, and that there are tradeoffs between the time delay and the control gains. The analytical findings are demonstrated on an optimal velocity model using numerical continuation and numerical simulation.

  5. Time-dependent local density approximation study of iodine photoionization delay

    NASA Astrophysics Data System (ADS)

    Magrakvelidze, Maia; Chakraborty, Himadri

    2017-04-01

    We investigate dipole quantum phases and Wigner-Smith (WS) time delays in the photoionization of iodine using Kohn-Sham time-dependent local density approximation (TDLDA) with the Leeuwen and Baerends exchange-correlation functional. Study of the effects of electron correlations on the absolute as well as relative delays in emissions from both valence 5p and 5s, and core 4d, 4p and 4s levels has been carried out. Particular emphasis is paid to unravel the role of correlations to induce structures in the delay as a function of energy at resonances and Cooper minima. The results should encourage attosecond measurements of iodine photoemission and probe the WS-temporal landscape of an open-shell atomic system. This work was supported by the U.S. National Science Foundation.

  6. Maximum principle for a stochastic delayed system involving terminal state constraints.

    PubMed

    Wen, Jiaqiang; Shi, Yufeng

    2017-01-01

    We investigate a stochastic optimal control problem where the controlled system is depicted as a stochastic differential delayed equation; however, at the terminal time, the state is constrained in a convex set. We firstly introduce an equivalent backward delayed system depicted as a time-delayed backward stochastic differential equation. Then a stochastic maximum principle is obtained by virtue of Ekeland's variational principle. Finally, applications to a state constrained stochastic delayed linear-quadratic control model and a production-consumption choice problem are studied to illustrate the main obtained result.

  7. Gravitational lensing, time delay, and gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Mao, Shude

    1992-01-01

    The probability distributions of time delay in gravitational lensing by point masses and isolated galaxies (modeled as singular isothermal spheres) are studied. For point lenses (all with the same mass) the probability distribution is broad, and with a peak at delta(t) of about 50 S; for singular isothermal spheres, the probability distribution is a rapidly decreasing function with increasing time delay, with a median delta(t) equals about 1/h month, and its behavior depends sensitively on the luminosity function of galaxies. The present simplified calculation is particularly relevant to the gamma-ray bursts if they are of cosmological origin. The frequency of 'recurrent' bursts due to gravitational lensing by galaxies is probably between 0.05 and 0.4 percent. Gravitational lensing can be used as a test of the cosmological origin of gamma-ray bursts.

  8. A late wake time phase delays the human dim light melatonin rhythm.

    PubMed

    Burgess, Helen J; Eastman, Charmane I

    2006-03-13

    Short sleep/dark durations, due to late bedtimes or early wake times or both, are common in modern society. We have previously shown that a series of days with a late bedtime phase delays the human dim light melatonin rhythm, as compared to a series of days with an early bedtime, despite a fixed wake time. Here we compared the effect of an early versus late wake time with a fixed bedtime on the human dim light melatonin rhythm. Fourteen healthy subjects experienced 2 weeks of short 6h nights with an early wake time fixed at their habitual weekday wake time and 2 weeks of long 9 h nights with a wake time that occurred 3h later than the early wake time, in counterbalanced order. We found that after 2 weeks with the late wake time, the dim light melatonin onset delayed by 2.4 h and the dim light melatonin offset delayed by 2.6 h (both p < 0.001), as compared to after 2 weeks with the early wake time. These results highlight the substantial influence that wake time, likely via the associated morning light exposure, has on the timing of the human circadian clock. Furthermore, the results suggest that when people truncate their sleep by waking early their circadian clocks phase advance and when people wake late their circadian clocks phase delay.

  9. Non-Gaussian noise-weakened stability in a foraging colony system with time delay

    NASA Astrophysics Data System (ADS)

    Dong, Xiaohui; Zeng, Chunhua; Yang, Fengzao; Guan, Lin; Xie, Qingshuang; Duan, Weilong

    2018-02-01

    In this paper, the dynamical properties in a foraging colony system with time delay and non-Gaussian noise were investigated. Using delay Fokker-Planck approach, the stationary probability distribution (SPD), the associated relaxation time (ART) and normalization correlation function (NCF) are obtained, respectively. The results show that: (i) the time delay and non-Gaussian noise can induce transition from a single peak to double peaks in the SPD, i.e., a type of bistability occurring in a foraging colony system where time delay and non-Gaussian noise not only cause transitions between stable states, but also construct the states themselves. Numerical simulations are presented and are in good agreement with the approximate theoretical results; (ii) there exists a maximum in the ART as a function of the noise intensity, this maximum for ART is identified as the characteristic of the non-Gaussian noise-weakened stability of the foraging colonies in the steady state; (iii) the ART as a function of the noise correlation time exhibits a maximum and a minimum, where the minimum for ART is identified as the signature of the non-Gaussian noise-enhanced stability of the foraging colonies; and (iv) the time delay can enhance the stability of the foraging colonies in the steady state, while the departure from Gaussian noise can weaken it, namely, the time delay and departure from Gaussian noise play opposite roles in ART or NCF.

  10. Robust passivity analysis for discrete-time recurrent neural networks with mixed delays

    NASA Astrophysics Data System (ADS)

    Huang, Chuan-Kuei; Shu, Yu-Jeng; Chang, Koan-Yuh; Shou, Ho-Nien; Lu, Chien-Yu

    2015-02-01

    This article considers the robust passivity analysis for a class of discrete-time recurrent neural networks (DRNNs) with mixed time-delays and uncertain parameters. The mixed time-delays that consist of both the discrete time-varying and distributed time-delays in a given range are presented, and the uncertain parameters are norm-bounded. The activation functions are assumed to be globally Lipschitz continuous. Based on new bounding technique and appropriate type of Lyapunov functional, a sufficient condition is investigated to guarantee the existence of the desired robust passivity condition for the DRNNs, which can be derived in terms of a family of linear matrix inequality (LMI). Some free-weighting matrices are introduced to reduce the conservatism of the criterion by using the bounding technique. A numerical example is given to illustrate the effectiveness and applicability.

  11. Time delay compensation for closed-loop insulin delivery systems: a simulation study.

    PubMed

    Reboldi, G P; Home, P D; Calabrese, G; Fabietti, P G; Brunetti, P; Massi Benedetti, M

    1991-06-01

    Closed loop insulin therapy certainly represents the best possible approach to insulin replacement. However, present limitations preclude wider application of the so-called artificial pancreas. Therefore, a thorough understanding of these limitations is needed to design better systems for future long-term use. The present simulation study was design: to obtain better information on the impact of the measurement delay of currently available closed-loop devices both during closed-loop insulin delivery and blood glucose clamp studies, and to design and test a time delay compensator based on the method originally described by O.J. Smith. Simulations were performed on a Compaq Deskpro 486/25 personal computer under MS-DOS operating system using Simnon rel. 3.00 software. There was a direct relationship between measurement delay and amount of insulin delivered, i.e., the longer the delay the higher the insulin dose needed to control a rise in blood glucose; the closed-loop response in presence of a time delay was qualitatively impaired both during insulin delivery and blood glucose clamp studies; time delay compensation was effective in reducing the insulin dose and improving controller stability during the early phase of clamp studies. However, the robustness of a Smith's predictor-based controller should be carefully evaluated before implementation in closed-loop systems can be considered.

  12. Symmetry, Hopf bifurcation, and the emergence of cluster solutions in time delayed neural networks.

    PubMed

    Wang, Zhen; Campbell, Sue Ann

    2017-11-01

    We consider the networks of N identical oscillators with time delayed, global circulant coupling, modeled by a system of delay differential equations with Z N symmetry. We first study the existence of Hopf bifurcations induced by the coupling time delay and then use symmetric Hopf bifurcation theory to determine how these bifurcations lead to different patterns of symmetric cluster oscillations. We apply our results to a case study: a network of FitzHugh-Nagumo neurons with diffusive coupling. For this model, we derive the asymptotic stability, global asymptotic stability, absolute instability, and stability switches of the equilibrium point in the plane of coupling time delay (τ) and excitability parameter (a). We investigate the patterns of cluster oscillations induced by the time delay and determine the direction and stability of the bifurcating periodic orbits by employing the multiple timescales method and normal form theory. We find that in the region where stability switching occurs, the dynamics of the system can be switched from the equilibrium point to any symmetric cluster oscillation, and back to equilibrium point as the time delay is increased.

  13. Time delay and noise explaining the behaviour of the cell growth in fermentation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayuobi, Tawfiqullah; Rosli, Norhayati; Bahar, Arifah

    2015-02-03

    This paper proposes to investigate the interplay between time delay and external noise in explaining the behaviour of the microbial growth in batch fermentation process. Time delay and noise are modelled jointly via stochastic delay differential equations (SDDEs). The typical behaviour of cell concentration in batch fermentation process under this model is investigated. Milstein scheme is applied for solving this model numerically. Simulation results illustrate the effects of time delay and external noise in explaining the lag and stationary phases, respectively for the cell growth of fermentation process.

  14. Time delay and noise explaining the behaviour of the cell growth in fermentation process

    NASA Astrophysics Data System (ADS)

    Ayuobi, Tawfiqullah; Rosli, Norhayati; Bahar, Arifah; Salleh, Madihah Md

    2015-02-01

    This paper proposes to investigate the interplay between time delay and external noise in explaining the behaviour of the microbial growth in batch fermentation process. Time delay and noise are modelled jointly via stochastic delay differential equations (SDDEs). The typical behaviour of cell concentration in batch fermentation process under this model is investigated. Milstein scheme is applied for solving this model numerically. Simulation results illustrate the effects of time delay and external noise in explaining the lag and stationary phases, respectively for the cell growth of fermentation process.

  15. Adaptive neural control for a class of nonlinear time-varying delay systems with unknown hysteresis.

    PubMed

    Liu, Zhi; Lai, Guanyu; Zhang, Yun; Chen, Xin; Chen, Chun Lung Philip

    2014-12-01

    This paper investigates the fusion of unknown direction hysteresis model with adaptive neural control techniques in face of time-delayed continuous time nonlinear systems without strict-feedback form. Compared with previous works on the hysteresis phenomenon, the direction of the modified Bouc-Wen hysteresis model investigated in the literature is unknown. To reduce the computation burden in adaptation mechanism, an optimized adaptation method is successfully applied to the control design. Based on the Lyapunov-Krasovskii method, two neural-network-based adaptive control algorithms are constructed to guarantee that all the system states and adaptive parameters remain bounded, and the tracking error converges to an adjustable neighborhood of the origin. In final, some numerical examples are provided to validate the effectiveness of the proposed control methods.

  16. Spatio-temporal phenomena in complex systems with time delays

    NASA Astrophysics Data System (ADS)

    Yanchuk, Serhiy; Giacomelli, Giovanni

    2017-03-01

    Real-world systems can be strongly influenced by time delays occurring in self-coupling interactions, due to unavoidable finite signal propagation velocities. When the delays become significantly long, complicated high-dimensional phenomena appear and a simple extension of the methods employed in low-dimensional dynamical systems is not feasible. We review the general theory developed in this case, describing the main destabilization mechanisms, the use of visualization tools, and commenting on the most important and effective dynamical indicators as well as their properties in different regimes. We show how a suitable approach, based on a comparison with spatio-temporal systems, represents a powerful instrument for disclosing the very basic mechanism of long-delay systems. Various examples from different models and a series of recent experiments are reported.

  17. Downhole delay assembly for blasting with series delay

    DOEpatents

    Ricketts, Thomas E.

    1982-01-01

    A downhole delay assembly is provided which can be placed into a blasthole for initiation of explosive in the blasthole. The downhole delay assembly includes at least two detonating time delay devices in series in order to effect a time delay of longer than about 200 milliseconds in a round of explosions. The downhole delay assembly provides a protective housing to prevent detonation of explosive in the blasthole in response to the detonation of the first detonating time delay device. There is further provided a connection between the first and second time delay devices. The connection is responsive to the detonation of the first detonating time delay device and initiates the second detonating time delay device. A plurality of such downhole delay assemblies are placed downhole in unfragmented formation and are initiated simultaneously for providing a round of explosive expansions. The explosive expansions can be used to form an in situ oil shale retort containing a fragmented permeable mass of formation particles.

  18. Cascading Delay Risk of Airline Workforce Deployments with Crew Pairing and Schedule Optimization.

    PubMed

    Chung, Sai Ho; Ma, Hoi Lam; Chan, Hing Kai

    2017-08-01

    This article concerns the assignment of buffer time between two connected flights and the number of reserve crews in crew pairing to mitigate flight disruption due to flight arrival delay. Insufficient crew members for a flight will lead to flight disruptions such as delays or cancellations. In reality, most of these disruption cases are due to arrival delays of the previous flights. To tackle this problem, many research studies have examined the assignment method based on the historical flight arrival delay data of the concerned flights. However, flight arrival delays can be triggered by numerous factors. Accordingly, this article proposes a new forecasting approach using a cascade neural network, which considers a massive amount of historical flight arrival and departure data. The approach also incorporates learning ability so that unknown relationships behind the data can be revealed. Based on the expected flight arrival delay, the buffer time can be determined and a new dynamic reserve crew strategy can then be used to determine the required number of reserve crews. Numerical experiments are carried out based on one year of flight data obtained from 112 airports around the world. The results demonstrate that by predicting the flight departure delay as the input for the prediction of the flight arrival delay, the prediction accuracy can be increased. Moreover, by using the new dynamic reserve crew strategy, the total crew cost can be reduced. This significantly benefits airlines in flight schedule stability and cost saving in the current big data era. © 2016 Society for Risk Analysis.

  19. Dissipativity and stability analysis of fractional-order complex-valued neural networks with time delay.

    PubMed

    Velmurugan, G; Rakkiyappan, R; Vembarasan, V; Cao, Jinde; Alsaedi, Ahmed

    2017-02-01

    As we know, the notion of dissipativity is an important dynamical property of neural networks. Thus, the analysis of dissipativity of neural networks with time delay is becoming more and more important in the research field. In this paper, the authors establish a class of fractional-order complex-valued neural networks (FCVNNs) with time delay, and intensively study the problem of dissipativity, as well as global asymptotic stability of the considered FCVNNs with time delay. Based on the fractional Halanay inequality and suitable Lyapunov functions, some new sufficient conditions are obtained that guarantee the dissipativity of FCVNNs with time delay. Moreover, some sufficient conditions are derived in order to ensure the global asymptotic stability of the addressed FCVNNs with time delay. Finally, two numerical simulations are posed to ensure that the attention of our main results are valuable. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Relativistic features and time delay of laser-induced tunnel ionization

    NASA Astrophysics Data System (ADS)

    Yakaboylu, Enderalp; Klaiber, Michael; Bauke, Heiko; Hatsagortsyan, Karen Z.; Keitel, Christoph H.

    2013-12-01

    The electron dynamics in the classically forbidden region during relativistic tunnel ionization is investigated. The classical forbidden region in the relativistic regime is identified by defining a gauge-invariant total-energy operator. Introducing position-dependent energy levels inside the tunneling barrier, we demonstrate that the relativistic tunnel ionization can be well described by a one-dimensional intuitive picture. This picture predicts that, in contrast to the well-known nonrelativistic regime, the ionized electron wave packet arises with a momentum shift along the laser's propagation direction. This is compatible with results from a strong-field approximation calculation where the binding potential is assumed to be zero ranged. Further, the tunneling time delay, stemming from Wigner's definition, is investigated for model configurations of tunneling and compared with results obtained from the exact propagator. By adapting Wigner's time delay definition to the ionization process, the tunneling time is investigated in the deep-tunneling and in the near-threshold-tunneling regimes. It is shown that while in the deep-tunneling regime signatures of the tunneling time delay are not measurable at remote distance, they are detectable, however, in the latter regime.

  1. A comprehensive review of prehospital and in-hospital delay times in acute stroke care.

    PubMed

    Evenson, K R; Foraker, R E; Morris, D L; Rosamond, W D

    2009-06-01

    The purpose of this study was to systematically review and summarize prehospital and in-hospital stroke evaluation and treatment delay times. We identified 123 unique peer-reviewed studies published from 1981 to 2007 of prehospital and in-hospital delay time for evaluation and treatment of patients with stroke, transient ischemic attack, or stroke-like symptoms. Based on studies of 65 different population groups, the weighted Poisson regression indicated a 6.0% annual decline (P<0.001) in hours/year for prehospital delay, defined from symptom onset to emergency department arrival. For in-hospital delay, the weighted Poisson regression models indicated no meaningful changes in delay time from emergency department arrival to emergency department evaluation (3.1%, P=0.49 based on 12 population groups). There was a 10.2% annual decline in hours/year from emergency department arrival to neurology evaluation or notification (P=0.23 based on 16 population groups) and a 10.7% annual decline in hours/year for delay time from emergency department arrival to initiation of computed tomography (P=0.11 based on 23 population groups). Only one study reported on times from arrival to computed tomography scan interpretation, two studies on arrival to drug administration, and no studies on arrival to transfer to an in-patient setting, precluding generalizations. Prehospital delay continues to contribute the largest proportion of delay time. The next decade provides opportunities to establish more effective community-based interventions worldwide. It will be crucial to have effective stroke surveillance systems in place to better understand and improve both prehospital and in-hospital delays for acute stroke care.

  2. Programmable Differential Delay Circuit With Fine Delay Adjustment

    DOEpatents

    DeRyckere, John F.; Jenkins, Philip Nord; Cornett, Frank Nolan

    2002-07-09

    Circuitry that provides additional delay to early arriving signals such that all data signals arrive at a receiving latch with same path delay. The delay of a forwarded clock reference is also controlled such that the capturing clock edge will be optimally positioned near quadrature (depending on latch setup/hold requirements). The circuitry continuously adapts to data and clock path delay changes and digital filtering of phase measurements reduce errors brought on by jittering data edges. The circuitry utilizes only the minimum amount of delay necessary to achieve objective thereby limiting any unintended jitter. Particularly, this programmable differential delay circuit with fine delay adjustment is designed to allow the skew between ASICS to be minimized. This includes skew between data bits, between data bits and clocks as well as minimizing the overall skew in a channel between ASICS.

  3. The VLBI time delay function for synchronous orbits

    NASA Technical Reports Server (NTRS)

    Rosenbaum, B.

    1972-01-01

    The VLBI is a satellite tracking technique that to date was applied largely to the tracking of synchronous orbits. These orbits are favorable for VLBI in that the remote satellite range allows continuous viewing from widely separated stations. The primary observable, geometric time delay is the time difference for signal propagation between satellite and baseline terminals. Extraordinary accuracy in angular position data on the satellite can be obtained by observation from baselines of continental dimensions. In satellite tracking though the common objective is to derive orbital elements. A question arises as to how the baseline vector bears on the accuracy of determining the elements. Our approach to this question is to derive an analytic expression for the time delay function in terms of Kepler elements and station coordinates. The analysis, which is for simplicity based on elliptic motion, shows that the resolution for the inclination of the orbital plane depends on the magnitude of the baseline polar component and the resolution for in-plane elements depends on the magnitude of a projected equatorial baseline component.

  4. Spacecraft stability and control using new techniques for periodic and time-delayed systems

    NASA Astrophysics Data System (ADS)

    NAzari, Morad

    This dissertation addresses various problems in spacecraft stability and control using specialized theoretical and numerical techniques for time-periodic and time-delayed systems. First, the effects of energy dissipation are considered in the dual-spin spacecraft, where the damper masses in the platform (?) and the rotor (?) cause energy loss in the system. Floquet theory is employed to obtain stability charts for different relative spin rates of the subsystem [special characters omitted] with respect to the subsystem [special characters omitted]. Further, the stability and bifurcation of delayed feedback spin stabilization of a rigid spacecraft is investigated. The spin is stabilized about the principal axis of the intermediate moment of inertia using a simple delayed feedback control law. In particular, linear stability is analyzed via the exponential-polynomial characteristic equations and then the method of multiple scales is used to obtain the normal form of the Hopf bifurcation. Next, the dynamics of a rigid spacecraft with nonlinear delayed multi-actuator feedback control are studied, where a nonlinear feedback controller using an inverse dynamics approach is sought for the controlled system to have the desired linear delayed closed-loop dynamics (CLD). Later, three linear state feedback control strategies based on Chebyshev spectral collocation and the Lyapunov Floquet transformation (LFT) are explored for regulation control of linear periodic time delayed systems. First , a delayed feedback control law with discrete delay is implemented and the stability of the closed-loop response is investigated in the parameter space of available control gains using infinite-dimensional Floquet theory. Second, the delay differential equation (DDE) is discretized into a large set of ordinary differential equations (ODEs) using the Chebyshev spectral continuous time approximation (CSCTA) and delayed feedback with distributed delay is applied. The third strategy involves

  5. Transformation from a pure time delay to a mixed time and phase delay representation in the auditory forebrain pathway.

    PubMed

    Vonderschen, Katrin; Wagner, Hermann

    2012-04-25

    Birds and mammals exploit interaural time differences (ITDs) for sound localization. Subsequent to ITD detection by brainstem neurons, ITD processing continues in parallel midbrain and forebrain pathways. In the barn owl, both ITD detection and processing in the midbrain are specialized to extract ITDs independent of frequency, which amounts to a pure time delay representation. Recent results have elucidated different mechanisms of ITD detection in mammals, which lead to a representation of small ITDs in high-frequency channels and large ITDs in low-frequency channels, resembling a phase delay representation. However, the detection mechanism does not prevent a change in ITD representation at higher processing stages. Here we analyze ITD tuning across frequency channels with pure tone and noise stimuli in neurons of the barn owl's auditory arcopallium, a nucleus at the endpoint of the forebrain pathway. To extend the analysis of ITD representation across frequency bands to a large neural population, we employed Fourier analysis for the spectral decomposition of ITD curves recorded with noise stimuli. This method was validated using physiological as well as model data. We found that low frequencies convey sensitivity to large ITDs, whereas high frequencies convey sensitivity to small ITDs. Moreover, different linear phase frequency regimes in the high-frequency and low-frequency ranges suggested an independent convergence of inputs from these frequency channels. Our results are consistent with ITD being remodeled toward a phase delay representation along the forebrain pathway. This indicates that sensory representations may undergo substantial reorganization, presumably in relation to specific behavioral output.

  6. Longitudinal Outcomes of Start Time Delay on Sleep, Behavior, and Achievement in High School

    PubMed Central

    Thacher, Pamela V.; Onyper, Serge V.

    2016-01-01

    Study Objectives: To establish whether sleep, health, mood, behavior, and academics improved after a 45-minute delay in high school start time, and whether changes persisted longitudinally. Methods: We collected data from school records and student self-report across a number of domains at baseline (May 2012) and at two follow-up time points (November 2012 and May 2013), at a public high school in upstate New York. Students enrolled during academic years (AY) 2011–2012 and 2012–2013 completed the Pittsburgh Sleep Quality Index; the DASS-21; the “Owl-Lark” Scale; the Daytime Sleepiness Index; and a brief self-report of health. Reports from school records regarding attendance, tardiness, disciplinary violations, and academic performance were collected for AY 2010–2011 through 2013–2014. Results: Students delayed but did not extend their sleep period; we found lasting improvements in tardiness and disciplinary violations after the start-time delay, but no changes to other variables. At the first follow-up, students reported 20 minutes longer sleep, driven by later rise times and stable bed times. At the second follow-up, students maintained later rise times but delayed bedtimes, returning total sleep to baseline levels. A delay in rise time, paralleling the delay in the start time that occurred, resulted in less tardiness and decreased disciplinary incidents, but larger improvements to sleep patterns may be necessary to affect health, attendance, sleepiness, and academic performance. Conclusions: Later start times improved tardiness and disciplinary issues at this school district. A delay in start time may be a necessary but not sufficient means to increase sleep time and may depend on preexisting individual differences. Commentary: A commentary on this article appears in this issue on page 267. Citation: Thacher PV, Onyper SV. Longitudinal outcomes of start time delay on sleep, behavior, and achievement in high school. SLEEP 2016;39(2):271–281. PMID

  7. Using Time Delay to Teach Literacy to Students with Severe Developmental Disabilities

    ERIC Educational Resources Information Center

    Browder, Diane; Ahlgrim-Delzell, Lynn; Spooner, Fred; Mims, Pamela J.; Baker, Joshua N.

    2009-01-01

    A review of the literature was conducted for articles published between 1975 and 2007 on the application of time delay as an instructional procedure to teach word and picture recognition to students with severe developmental disabilities in an effort to evaluate time delay as an evidence-based practice. A total of 30 experiments were analyzed…

  8. Absorption dynamics and delay time in complex potentials

    NASA Astrophysics Data System (ADS)

    Villavicencio, Jorge; Romo, Roberto; Hernández-Maldonado, Alberto

    2018-05-01

    The dynamics of absorption is analyzed by using an exactly solvable model that deals with an analytical solution to Schrödinger’s equation for cutoff initial plane waves incident on a complex absorbing potential. A dynamical absorption coefficient which allows us to explore the dynamical loss of particles from the transient to the stationary regime is derived. We find that the absorption process is characterized by the emission of a series of damped periodic pulses in time domain, associated with damped Rabi-type oscillations with a characteristic frequency, ω = (E + ε)/ℏ, where E is the energy of the incident waves and ‑ε is energy of the quasidiscrete state of the system induced by the absorptive part of the Hamiltonian; the width γ of this resonance governs the amplitude of the pulses. The resemblance of the time-dependent absorption coefficient with a real decay process is discussed, in particular the transition from exponential to nonexponential regimes, a well-known feature of quantum decay. We have also analyzed the effect of the absorptive part of the potential on the dynamical delay time, which behaves differently from the one observed in attractive real delta potentials, exhibiting two regimes: time advance and time delay.

  9. Insensitivity of synchronization to network structure in chaotic pendulum systems with time-delay coupling.

    PubMed

    Yao, Chenggui; Zhan, Meng; Shuai, Jianwei; Ma, Jun; Kurths, Jürgen

    2017-12-01

    It has been generally believed that both time delay and network structure could play a crucial role in determining collective dynamical behaviors in complex systems. In this work, we study the influence of coupling strength, time delay, and network topology on synchronization behavior in delay-coupled networks of chaotic pendulums. Interestingly, we find that the threshold value of the coupling strength for complete synchronization in such networks strongly depends on the time delay in the coupling, but appears to be insensitive to the network structure. This lack of sensitivity was numerically tested in several typical regular networks, such as different locally and globally coupled ones as well as in several complex networks, such as small-world and scale-free networks. Furthermore, we find that the emergence of a synchronous periodic state induced by time delay is of key importance for the complete synchronization.

  10. Nonlinear Time Delayed Feedback Control of Aeroelastic Systems: A Functional Approach

    NASA Technical Reports Server (NTRS)

    Marzocca, Piergiovanni; Librescu, Liviu; Silva, Walter A.

    2003-01-01

    In addition to its intrinsic practical importance, nonlinear time delayed feedback control applied to lifting surfaces can result in interesting aeroelastic behaviors. In this paper, nonlinear aeroelastic response to external time-dependent loads and stability boundary for actively controlled lifting surfaces, in an incompressible flow field, are considered. The structural model and the unsteady aerodynamics are considered linear. The implications of the presence of time delays in the linear/nonlinear feedback control and of geometrical parameters on the aeroelasticity of lifting surfaces are analyzed and conclusions on their implications are highlighted.

  11. Editorial Commentary: "Defer No Time, Delays Have Dangerous Ends" (Henry VI, Shakespeare): Delayed Anterior Cruciate Ligament Reconstruction Has Consequences.

    PubMed

    Siegel, Mark G

    2018-06-01

    There continues to be controversy over the timing of anterior cruciate ligament (ACL) surgery. Early or delayed intervention after ACL injury is a topic that has not been settled. The issue is whether ACL tears should have surgery performed in an expedient manner. Or is delay an option with no repercussions to the health of the knee? My associates in nonsurgical specialties wave the New England Journal of Medicine to support their view that surgery is not needed. I routinely espouse the literature confirming that delay of surgery may cause future damage. It is now established that a failure to intervene in a timely manner does cause additional damage. I stand vindicated and can affirm to my colleagues that I have found the answer. There is no longer any doubt or equivocation. Delay in reconstructing an unstable knee does cause damage. Copyright © 2018 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  12. Basins of attraction of the bistable region of time-delayed cutting dynamics

    NASA Astrophysics Data System (ADS)

    Yan, Yao; Xu, Jian; Wiercigroch, Marian

    2017-09-01

    This paper investigates the effects of bistability in a nonsmooth time-delayed dynamical system, which is often manifested in science and engineering. Previous studies on cutting dynamics have demonstrated persistent coexistence of chatter and chatter-free responses in a bistable region located in the linearly stable zone. As there is no widely accepted definition of basins of attraction for time-delayed systems, bistable regions are coined as unsafe zones (UZs). Hence, we have attempted to define the basins of attraction and stability basins for a typical delayed system to get insight into the bistability in systems with time delays. Special attention was paid to the influences of delayed initial conditions, starting points, and states at time zero on the long-term dynamics of time-delayed systems. By using this concept, it has been confirmed that the chatter is prone to occur when the waviness frequency in the workpiece surface coincides with the effective natural frequency of the cutting process. Further investigations unveil a thin "boundary layer" inside the UZ in the immediate vicinity of the stability boundary, in which we observe an extremely fast growth of the chatter basin stability. The results reveal that the system is more stable when the initial cutting depth is smaller. The physics of the tool deflection at the instant of the tool-workpiece engagement is used to evaluate the cutting safety, and the safe level could be zero when the geometry of tool engagement is unfavorable. Finally, the basins of attraction are used to quench the chatter by a single strike, where the resultant "islands" offer an opportunity to suppress the chatter even when the cutting is very close to the stability boundary.

  13. CAN LARGE TIME DELAYS OBSERVED IN LIGHT CURVES OF CORONAL LOOPS BE EXPLAINED IN IMPULSIVE HEATING?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lionello, Roberto; Linker, Jon A.; Mikić, Zoran

    The light curves of solar coronal loops often peak first in channels associated with higher temperatures and then in those associated with lower temperatures. The delay times between the different narrowband EUV channels have been measured for many individual loops and recently for every pixel of an active region observation. The time delays between channels for an active region exhibit a wide range of values. The maximum time delay in each channel pair can be quite large, i.e., >5000 s. These large time delays make-up 3%–26% (depending on the channel pair) of the pixels where a trustworthy, positive time delaymore » is measured. It has been suggested that these time delays can be explained by simple impulsive heating, i.e., a short burst of energy that heats the plasma to a high temperature, after which the plasma is allowed to cool through radiation and conduction back to its original state. In this paper, we investigate whether the largest observed time delays can be explained by this hypothesis by simulating a series of coronal loops with different heating rates, loop lengths, abundances, and geometries to determine the range of expected time delays between a set of four EUV channels. We find that impulsive heating cannot address the largest time delays observed in two of the channel pairs and that the majority of the large time delays can only be explained by long, expanding loops with photospheric abundances. Additional observations may rule out these simulations as an explanation for the long time delays. We suggest that either the time delays found in this manner may not be representative of real loop evolution, or that the impulsive heating and cooling scenario may be too simple to explain the observations, and other potential heating scenarios must be explored.« less

  14. Stability of uncertain impulsive complex-variable chaotic systems with time-varying delays.

    PubMed

    Zheng, Song

    2015-09-01

    In this paper, the robust exponential stabilization of uncertain impulsive complex-variable chaotic delayed systems is considered with parameters perturbation and delayed impulses. It is assumed that the considered complex-variable chaotic systems have bounded parametric uncertainties together with the state variables on the impulses related to the time-varying delays. Based on the theories of adaptive control and impulsive control, some less conservative and easily verified stability criteria are established for a class of complex-variable chaotic delayed systems with delayed impulses. Some numerical simulations are given to validate the effectiveness of the proposed criteria of impulsive stabilization for uncertain complex-variable chaotic delayed systems. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Longitudinal Outcomes of Start Time Delay on Sleep, Behavior, and Achievement in High School.

    PubMed

    Thacher, Pamela V; Onyper, Serge V

    2016-02-01

    To establish whether sleep, health, mood, behavior, and academics improved after a 45-minute delay in high school start time, and whether changes persisted longitudinally. We collected data from school records and student self-report across a number of domains at baseline (May 2012) and at two follow-up time points (November 2012 and May 2013), at a public high school in upstate New York. Students enrolled during academic years (AY) 2011-2012 and 2012-2013 completed the Pittsburgh Sleep Quality Index; the DASS-21; the "Owl-Lark" Scale; the Daytime Sleepiness Index; and a brief self-report of health. Reports from school records regarding attendance, tardiness, disciplinary violations, and academic performance were collected for AY 2010-2011 through 2013-2014. Students delayed but did not extend their sleep period; we found lasting improvements in tardiness and disciplinary violations after the start-time delay, but no changes to other variables. At the first follow-up, students reported 20 minutes longer sleep, driven by later rise times and stable bed times. At the second follow-up, students maintained later rise times but delayed bedtimes, returning total sleep to baseline levels. A delay in rise time, paralleling the delay in the start time that occurred, resulted in less tardiness and decreased disciplinary incidents, but larger improvements to sleep patterns may be necessary to affect health, attendance, sleepiness, and academic performance. Later start times improved tardiness and disciplinary issues at this school district. A delay in start time may be a necessary but not sufficient means to increase sleep time and may depend on preexisting individual differences. A commentary on this article appears in this issue on page 267. © 2016 Associated Professional Sleep Societies, LLC.

  16. Arbitrary digital pulse sequence generator with delay-loop timing

    NASA Astrophysics Data System (ADS)

    Hošák, Radim; Ježek, Miroslav

    2018-04-01

    We propose an idea of an electronic multi-channel arbitrary digital sequence generator with temporal granularity equal to two clock cycles. We implement the generator with 32 channels using a low-cost ARM microcontroller and demonstrate its capability to produce temporal delays ranging from tens of nanoseconds to hundreds of seconds, with 24 ns timing granularity and linear scaling of delay with respect to the number of delay loop iterations. The generator is optionally synchronized with an external clock source to provide 100 ps jitter and overall sequence repeatability within the whole temporal range. The generator is fully programmable and able to produce digital sequences of high complexity. The concept of the generator can be implemented using different microcontrollers and applied for controlling of various optical, atomic, and nuclear physics measurement setups.

  17. An active balance board system with real-time control of stiffness and time-delay to assess mechanisms of postural stability.

    PubMed

    Cruise, Denise R; Chagdes, James R; Liddy, Joshua J; Rietdyk, Shirley; Haddad, Jeffrey M; Zelaznik, Howard N; Raman, Arvind

    2017-07-26

    Increased time-delay in the neuromuscular system caused by neurological disorders, concussions, or advancing age is an important factor contributing to balance loss (Chagdes et al., 2013, 2016a,b). We present the design and fabrication of an active balance board system that allows for a systematic study of stiffness and time-delay induced instabilities in standing posture. Although current commercial balance boards allow for variable stiffness, they do not allow for manipulation of time-delay. Having two controllable parameters can more accurately determine the cause of balance deficiencies, and allows us to induce instabilities even in healthy populations. An inverted pendulum model of human posture on such an active balance board predicts that reduced board rotational stiffness destabilizes upright posture through board tipping, and limit cycle oscillations about the upright position emerge as feedback time-delay is increased. We validate these two mechanisms of instability on the designed balance board, showing that rotational stiffness and board time-delay induced the predicted postural instabilities in healthy, young adults. Although current commercial balance boards utilize control of rotational stiffness, real-time control of both stiffness and time-delay on an active balance board is a novel and innovative manipulation to reveal balance deficiencies and potentially improve individualized balance training by targeting multiple dimensions contributing to standing balance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The effect of visual-motion time delays on pilot performance in a pursuit tracking task

    NASA Technical Reports Server (NTRS)

    Miller, G. K., Jr.; Riley, D. R.

    1976-01-01

    A study has been made to determine the effect of visual-motion time delays on pilot performance of a simulated pursuit tracking task. Three interrelated major effects have been identified: task difficulty, motion cues, and time delays. As task difficulty, as determined by airplane handling qualities or target frequency, increases, the amount of acceptable time delay decreases. However, when relatively complete motion cues are included in the simulation, the pilot can maintain his performance for considerably longer time delays. In addition, the number of degrees of freedom of motion employed is a significant factor.

  19. Consistency properties of chaotic systems driven by time-delayed feedback

    NASA Astrophysics Data System (ADS)

    Jüngling, T.; Soriano, M. C.; Oliver, N.; Porte, X.; Fischer, I.

    2018-04-01

    Consistency refers to the property of an externally driven dynamical system to respond in similar ways to similar inputs. In a delay system, the delayed feedback can be considered as an external drive to the undelayed subsystem. We analyze the degree of consistency in a generic chaotic system with delayed feedback by means of the auxiliary system approach. In this scheme an identical copy of the nonlinear node is driven by exactly the same signal as the original, allowing us to verify complete consistency via complete synchronization. In the past, the phenomenon of synchronization in delay-coupled chaotic systems has been widely studied using correlation functions. Here, we analytically derive relationships between characteristic signatures of the correlation functions in such systems and unequivocally relate them to the degree of consistency. The analytical framework is illustrated and supported by numerical calculations of the logistic map with delayed feedback for different replica configurations. We further apply the formalism to time series from an experiment based on a semiconductor laser with a double fiber-optical feedback loop. The experiment constitutes a high-quality replica scheme for studying consistency of the delay-driven laser and confirms the general theoretical results.

  20. Modelling and tuning for a time-delayed vibration absorber with friction

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxu; Xu, Jian; Ji, Jinchen

    2018-06-01

    This paper presents an integrated analytical and experimental study to the modelling and tuning of a time-delayed vibration absorber (TDVA) with friction. In system modelling, this paper firstly applies the method of averaging to obtain the frequency response function (FRF), and then uses the derived FRF to evaluate the fitness of different friction models. After the determination of the system model, this paper employs the obtained FRF to evaluate the vibration absorption performance with respect to tunable parameters. A significant feature of the TDVA with friction is that its stability is dependent on the excitation parameters. To ensure the stability of the time-delayed control, this paper defines a sufficient condition for stability estimation. Experimental measurements show that the dynamic response of the TDVA with friction can be accurately predicted and the time-delayed control can be precisely achieved by using the modelling and tuning technique provided in this paper.

  1. Delay-controlled primary and stochastic resonances of the SD oscillator with stiffness nonlinearities

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Cao, Qingjie

    2018-03-01

    This work presents analytical studies of the stiffness nonlinearities SD (smooth and discontinuous) oscillator under displacement and velocity feedback control with a time delay. The SD oscillator can capture the qualitative characteristics of quasi-zero-stiffness and negative-stiffness. We focus mainly on the primary resonance of the quasi-zero-stiffness SD oscillator and the stochastic resonance (SR) of the negative-stiffness SD oscillator. Using the averaging method, we have been analyzed the amplitude response of the quasi-zero-stiffness SD oscillator. In this regard, the optimum time delay for changing the control intensity according to the optimization standard proposed can be obtained. For the optimum time delay, increasing the displacement feedback intensity is advantageous to suppress the vibrations in resonant regime where vibration isolation is needed, however, increasing the velocity feedback intensity is advantageous to strengthen the vibrations. Moreover, the effects of time-delayed feedback on the SR of the negative-stiffness SD oscillator are investigated under harmonic forcing and Gaussian white noise, based on the Langevin and Fokker-Planck approaches. The time-delayed feedback can enhance the SR phenomenon where vibrational energy harvesting is needed. This paper established the relationship between the parameters and vibration properties of a stiffness nonlinearities SD which provides the guidance for optimizing time-delayed control for vibration isolation and vibrational energy harvesting of the nonlinear systems.

  2. Compensating Unknown Time-Varying Delay in Opto-Electronic Platform Tracking Servo System.

    PubMed

    Xie, Ruihong; Zhang, Tao; Li, Jiaquan; Dai, Ming

    2017-05-09

    This paper investigates the problem of compensating miss-distance delay in opto-electronic platform tracking servo system. According to the characteristic of LOS (light-of-sight) motion, we setup the Markovian process model and compensate this unknown time-varying delay by feed-forward forecasting controller based on robust H∞ control. Finally, simulation based on double closed-loop PI (Proportion Integration) control system indicates that the proposed method is effective for compensating unknown time-varying delay. Tracking experiments on the opto-electronic platform indicate that RMS (root-mean-square) error is 1.253 mrad when tracking 10° 0.2 Hz signal.

  3. Time-resolved coherent Raman spectroscopy by high-speed pump-probe delay scanning.

    PubMed

    Domingue, S R; Winters, D G; Bartels, R A

    2014-07-15

    Using a spinning window pump-probe delay scanner, we demonstrate a means of acquiring time-resolved vibrational spectra at rates up to 700 Hz. The time-dependent phase shift accumulated by the probe pulse in the presence of a coherently vibrating sample gives rise to a Raman-induced frequency shifting readily detectable in a balanced detector. This rapid delay scanning system represents a 23-fold increase in averaging speed and is >10× faster than state-of-the-art voice coil delay lines. These advancements make pump-probe spectroscopy a more practical means of imaging complex media.

  4. Force-reflection and shared compliant control in operating telemanipulators with time delay

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Hannaford, Blake; Bejczy, Antal K.

    1992-01-01

    The performance of an advanced telemanipulation system in the presence of a wide range of time delays between a master control station and a slave robot is quantified. The contemplated applications include multiple satellite links to LEO, geosynchronous operation, spacecraft local area networks, and general-purpose computer-based short-distance designs. The results of high-precision peg-in-hole tasks performed by six test operators indicate that task performance decreased linearly with introduced time delays for both kinesthetic force feedback (KFF) and shared compliant control (SCC). The rate of this decrease was substantially improved with SCC compared to KFF. Task performance at delays above 1 s was not possible using KFF. SCC enabled task performance for such delays, which are realistic values for ground-controlled remote manipulation of telerobots in space.

  5. Tone-assisted time delay interferometry on GRACE Follow-On

    NASA Astrophysics Data System (ADS)

    Francis, Samuel P.; Shaddock, Daniel A.; Sutton, Andrew J.; de Vine, Glenn; Ware, Brent; Spero, Robert E.; Klipstein, William M.; McKenzie, Kirk

    2015-07-01

    We have demonstrated the viability of using the Laser Ranging Interferometer on the Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) space mission to test key aspects of the interspacecraft interferometry proposed for detecting gravitational waves. The Laser Ranging Interferometer on GRACE-FO will be the first demonstration of interspacecraft interferometry. GRACE-FO shares many similarities with proposed space-based gravitational wave detectors based on the Laser Interferometer Space Antenna (LISA) concept. Given these similarities, GRACE-FO provides a unique opportunity to test novel interspacecraft interferometry techniques that a LISA-like mission will use. The LISA Experience from GRACE-FO Optical Payload (LEGOP) is a project developing tests of arm locking and time delay interferometry (TDI), two frequency stabilization techniques, that could be performed on GRACE-FO. In the proposed LEGOP TDI demonstration one GRACE-FO spacecraft will have a free-running laser while the laser on the other spacecraft will be locked to a cavity. It is proposed that two one-way interspacecraft phase measurements will be combined with an appropriate delay in order to produce a round-trip, dual one-way ranging (DOWR) measurement independent of the frequency noise of the free-running laser. This paper describes simulated and experimental tests of a tone-assisted TDI ranging (TDIR) technique that uses a least-squares fitting algorithm and fractional-delay interpolation to find and implement the delays needed to form the DOWR TDI combination. The simulation verifies tone-assisted TDIR works under GRACE-FO conditions. Using simulated GRACE-FO signals the tone-assisted TDIR algorithm estimates the time-varying interspacecraft range with a rms error of ±0.2 m , suppressing the free-running laser frequency noise by 8 orders of magnitude. The experimental results demonstrate the practicability of the technique, measuring the delay at the 6 ns level in the presence of a

  6. Noninvasive, automatic optimization strategy in cardiac resynchronization therapy.

    PubMed

    Reumann, Matthias; Osswald, Brigitte; Doessel, Olaf

    2007-07-01

    Optimization of cardiac resynchronization therapy (CRT) is still unsolved. It has been shown that optimal electrode position,atrioventricular (AV) and interventricular (VV) delays improve the success of CRT and reduce the number of non-responders. However, no automatic, noninvasive optimization strategy exists to date. Cardiac resynchronization therapy was simulated on the Visible Man and a patient data-set including fiber orientation and ventricular heterogeneity. A cellular automaton was used for fast computation of ventricular excitation. An AV block and a left bundle branch block were simulated with 100%, 80% and 60% interventricular conduction velocity. A right apical and 12 left ventricular lead positions were set. Sequential optimization and optimization with the downhill simplex algorithm (DSA) were carried out. The minimal error between isochrones of the physiologic excitation and the therapy was computed automatically and leads to an optimal lead position and timing. Up to 1512 simulations were carried out per pathology per patient. One simulation took 4 minutes on an Apple Macintosh 2 GHz PowerPC G5. For each electrode pair an optimal pacemaker delay was found. The DSA reduced the number of simulations by an order of magnitude and the AV-delay and VV - delay were determined with a much higher resolution. The findings are well comparable with clinical studies. The presented computer model of CRT automatically evaluates an optimal lead position and AV-delay and VV-delay, which can be used to noninvasively plan an optimal therapy for an individual patient. The application of the DSA reduces the simulation time so that the strategy is suitable for pre-operative planning in clinical routine. Future work will focus on clinical evaluation of the computer models and integration of patient data for individualized therapy planning and optimization.

  7. Lag and anticipating synchronization without time-delay coupling.

    PubMed

    Corron, Ned J; Blakely, Jonathan N; Pethel, Shawn D

    2005-06-01

    We describe a new method for achieving approximate lag and anticipating synchronization in unidirectionally coupled chaotic oscillators. The method uses a specific parameter mismatch between the drive and response that is a first-order approximation to true time-delay coupling. As a result, an adjustable lag or anticipation effect can be achieved without the need for a variable delay line, making the method simpler and more economical to implement in many physical systems. We present a stability analysis, demonstrate the method numerically, and report experimental observation of the effect in radio-frequency electronic oscillators. In the circuit experiments, both lag and anticipation are controlled by tuning a single capacitor in the response oscillator.

  8. Academic delay of gratification, self-efficacy, and time management among academically unprepared college students.

    PubMed

    Bembenutty, Héfer

    2009-04-01

    This study examined the associations between academic delay of gratification, self-efficacy beliefs, and time management among academically unprepared college students participating in a summer-immersion program. This study also examined whether the relation of self-efficacy with time management is mediated by academic delay of gratification. Analysis indicated that self-efficacy was directly associated with time management, as delay of gratification served to mediate this effect partially. Self-efficacy emerged as the strongest positive predictor of academic achievement.

  9. Delay decomposition at a single server queue with constant service time and multiple inputs. [Waiting time on computer network

    NASA Technical Reports Server (NTRS)

    Ziegler, C.; Schilling, D. L.

    1977-01-01

    Two networks consisting of single server queues, each with a constant service time, are considered. The external inputs to each network are assumed to follow some general probability distribution. Several interesting equivalencies that exist between the two networks considered are derived. This leads to the introduction of an important concept in delay decomposition. It is shown that the waiting time experienced by a customer can be decomposed into two basic components called self delay and interference delay.

  10. Improving time-delay cosmography with spatially resolved kinematics

    NASA Astrophysics Data System (ADS)

    Shajib, Anowar J.; Treu, Tommaso; Agnello, Adriano

    2018-01-01

    Strongly gravitational lensed quasars can be used to measure the so-called time-delay distance DΔt, and thus the Hubble constant H0 and other cosmological parameters. Stellar kinematics of the deflector galaxy play an essential role in this measurement by: (i) helping break the mass-sheet degeneracy; (ii) determining in principle the angular diameter distance Dd to the deflector and thus further improving the cosmological constraints. In this paper we simulate observations of lensed quasars with integral field spectrographs and show that spatially resolved kinematics of the deflector enables further progress by helping break the mass-anisotropy degeneracy. Furthermore, we use our simulations to obtain realistic error estimates with current/upcoming instruments like OSIRIS on Keck and NIRSPEC on the James Webb Space Telescope for both distances (typically ∼6 per cent on DΔt and ∼10 per cent on Dd). We use the error estimates to compute cosmological forecasts for the sample of nine lenses that currently have well-measured time delays and deep Hubble Space Telescope images and for a sample of 40 lenses that is projected to be available in a few years through follow-up of candidates found in ongoing wide field surveys. We find that H0 can be measured with 2 per cent (1 per cent) precision from nine (40) lenses in a flat Λcold dark matter cosmology. We study several other cosmological models beyond the flat Λcold dark matter model and find that time-delay lenses with spatially resolved kinematics can greatly improve the precision of the cosmological parameters measured by cosmic microwave background data.

  11. Effect of delayed polymerization time and bracket manipulation on orthodontic bracket bonding

    NASA Astrophysics Data System (ADS)

    Ponikvar, Michael J.

    This study examined the effect of bracket manipulation in combination with delayed polymerization times on orthodontic bracket shear bond strength and degree of resin composite conversion. Orthodontics brackets were bonded to extracted third molars in a simulated oral environment after a set period of delayed polymerization time and bracket manipulation. After curing the bracket adhesive, each bracket underwent shear bond strength testing followed by micro-Raman spectroscopy analysis to measure the degree of conversion of the resin composite. Results demonstrated the shear bond strength and the degree of conversion of ceramic brackets did not vary over time. However, with stainless steel brackets there was a significant effect (p ≤ 0.05) of delay time on shear bond strength between the 0.5 min and 10 min bracket groups. In addition, stainless steel brackets showed significant differences related to degree of conversion over time between the 0.5 min and 5 min groups, in addition to the 0.5 min and 10 min groups. This investigation suggests that delaying bracket adhesive polymerization up to a period of 10 min then adjusting the orthodontic bracket may increase both shear bond strength and degree of conversion of stainless steel brackets while having no effect on ceramic brackets.

  12. Finite-Time Stability for Fractional-Order Bidirectional Associative Memory Neural Networks with Time Delays

    NASA Astrophysics Data System (ADS)

    Xu, Chang-Jin; Li, Pei-Luan; Pang, Yi-Cheng

    2017-02-01

    This paper is concerned with fractional-order bidirectional associative memory (BAM) neural networks with time delays. Applying Laplace transform, the generalized Gronwall inequality and estimates of Mittag-Leffler functions, some sufficient conditions which ensure the finite-time stability of fractional-order bidirectional associative memory neural networks with time delays are obtained. Two examples with their simulations are given to illustrate the theoretical findings. Our results are new and complement previously known results. Supported by National Natural Science Foundation of China under Grant Nos.~61673008, 11261010, 11101126, Project of High-Level Innovative Talents of Guizhou Province ([2016]5651), Natural Science and Technology Foundation of Guizhou Province (J[2015]2025 and J[2015]2026), 125 Special Major Science and Technology of Department of Education of Guizhou Province ([2012]011) and Natural Science Foundation of the Education Department of Guizhou Province (KY[2015]482)

  13. Joint Transmit and Receive Filter Optimization for Sub-Nyquist Delay-Doppler Estimation

    NASA Astrophysics Data System (ADS)

    Lenz, Andreas; Stein, Manuel S.; Swindlehurst, A. Lee

    2018-05-01

    In this article, a framework is presented for the joint optimization of the analog transmit and receive filter with respect to a parameter estimation problem. At the receiver, conventional signal processing systems restrict the two-sided bandwidth of the analog pre-filter $B$ to the rate of the analog-to-digital converter $f_s$ to comply with the well-known Nyquist-Shannon sampling theorem. In contrast, here we consider a transceiver that by design violates the common paradigm $B\\leq f_s$. To this end, at the receiver, we allow for a higher pre-filter bandwidth $B>f_s$ and study the achievable parameter estimation accuracy under a fixed sampling rate when the transmit and receive filter are jointly optimized with respect to the Bayesian Cram\\'{e}r-Rao lower bound. For the case of delay-Doppler estimation, we propose to approximate the required Fisher information matrix and solve the transceiver design problem by an alternating optimization algorithm. The presented approach allows us to explore the Pareto-optimal region spanned by transmit and receive filters which are favorable under a weighted mean squared error criterion. We also discuss the computational complexity of the obtained transceiver design by visualizing the resulting ambiguity function. Finally, we verify the performance of the optimized designs by Monte-Carlo simulations of a likelihood-based estimator.

  14. Finite-time and fixed-time synchronization analysis of inertial memristive neural networks with time-varying delays.

    PubMed

    Wei, Ruoyu; Cao, Jinde; Alsaedi, Ahmed

    2018-02-01

    This paper investigates the finite-time synchronization and fixed-time synchronization problems of inertial memristive neural networks with time-varying delays. By utilizing the Filippov discontinuous theory and Lyapunov stability theory, several sufficient conditions are derived to ensure finite-time synchronization of inertial memristive neural networks. Then, for the purpose of making the setting time independent of initial condition, we consider the fixed-time synchronization. A novel criterion guaranteeing the fixed-time synchronization of inertial memristive neural networks is derived. Finally, three examples are provided to demonstrate the effectiveness of our main results.

  15. Impact of time delays on oscillatory dynamics of interlinked positive and negative feedback loops

    NASA Astrophysics Data System (ADS)

    Huang, Bo; Tian, Xinyu; Liu, Feng; Wang, Wei

    2016-11-01

    Interlinking a positive feedback loop (PFL) with a negative feedback loop (NFL) constitutes a typical motif in genetic networks, performing various functions in cell signaling. How time delay in feedback regulation affects the dynamics of such systems still remains unclear. Here, we investigate three systems of interlinked PFL and NFL with time delays: a synthetic genetic oscillator, a three-node circuit, and a simplified single-node model. The stability of steady states and the routes to oscillation in the single-node model are analyzed in detail. The amplitude and period of oscillations vary with a pointwise periodicity over a range of time delay. Larger-amplitude oscillations can be induced when the PFL has an appropriately long delay, in comparison with the PFL with no delay or short delay; this conclusion holds true for all the three systems. We unravel the underlying mechanism for the above effects via analytical derivation under a limiting condition. We also develop a stochastic algorithm for simulating a single reaction with two delays and show that robust oscillations can be maintained by the PFL with a properly long delay in the single-node system. This work presents an effective method for constructing robust large-amplitude oscillators and interprets why similar circuit architectures are engaged in timekeeping systems such as circadian clocks.

  16. Takagi-Sugeno fuzzy model based robust dissipative control for uncertain flexible spacecraft with saturated time-delay input.

    PubMed

    Xu, Shidong; Sun, Guanghui; Sun, Weichao

    2017-01-01

    In this paper, the problem of robust dissipative control is investigated for uncertain flexible spacecraft based on Takagi-Sugeno (T-S) fuzzy model with saturated time-delay input. Different from most existing strategies, T-S fuzzy approximation approach is used to model the nonlinear dynamics of flexible spacecraft. Simultaneously, the physical constraints of system, like input delay, input saturation, and parameter uncertainties, are also taken care of in the fuzzy model. By employing Lyapunov-Krasovskii method and convex optimization technique, a novel robust controller is proposed to implement rest-to-rest attitude maneuver for flexible spacecraft, and the guaranteed dissipative performance enables the uncertain closed-loop system to reject the influence of elastic vibrations and external disturbances. Finally, an illustrative design example integrated with simulation results are provided to confirm the applicability and merits of the developed control strategy. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Passivity of memristive BAM neural networks with leakage and additive time-varying delays

    NASA Astrophysics Data System (ADS)

    Wang, Weiping; Wang, Meiqi; Luo, Xiong; Li, Lixiang; Zhao, Wenbing; Liu, Linlin; Ping, Yuan

    2018-02-01

    This paper investigates the passivity of memristive bidirectional associate memory neural networks (MBAMNNs) with leakage and additive time-varying delays. Based on some useful inequalities and appropriate Lyapunov-Krasovskii functionals (LKFs), several delay-dependent conditions for passivity performance are obtained in linear matrix inequalities (LMIs). Moreover, the leakage delays as well as additive delays are considered separately. Finally, numerical simulations are provided to demonstrate the feasibility of the theoretical results.

  18. Precise Time Delays from Strongly Gravitationally Lensed Type Ia Supernovae with Chromatically Microlensed Images

    NASA Astrophysics Data System (ADS)

    Goldstein, Daniel A.; Nugent, Peter E.; Kasen, Daniel N.; Collett, Thomas E.

    2018-03-01

    Time delays between the multiple images of strongly gravitationally lensed Type Ia supernovae (glSNe Ia) have the potential to deliver precise cosmological constraints, but the effects of microlensing on time delay extraction have not been studied in detail. Here we quantify the effect of microlensing on the glSN Ia yield of the Large Synoptic Survey Telescope (LSST) and the effect of microlensing on the precision and accuracy of time delays that can be extracted from LSST glSNe Ia. Microlensing has a negligible effect on the LSST glSN Ia yield, but it can be increased by a factor of ∼2 over previous predictions to 930 systems using a novel photometric identification technique based on spectral template fitting. Crucially, the microlensing of glSNe Ia is achromatic until three rest-frame weeks after the explosion, making the early-time color curves microlensing-insensitive time delay indicators. By fitting simulated flux and color observations of microlensed glSNe Ia with their underlying, unlensed spectral templates, we forecast the distribution of absolute time delay error due to microlensing for LSST, which is unbiased at the sub-percent level and peaked at 1% for color curve observations in the achromatic phase, while for light-curve observations it is comparable to state-of-the-art mass modeling uncertainties (4%). About 70% of LSST glSN Ia images should be discovered during the achromatic phase, indicating that microlensing time delay uncertainties can be minimized if prompt multicolor follow-up observations are obtained. Accounting for microlensing, the 1–2 day time delay on the recently discovered glSN Ia iPTF16geu can be measured to 40% precision, limiting its cosmological utility.

  19. Precise Time Delays from Strongly Gravitationally Lensed Type Ia Supernovae with Chromatically Microlensed Images

    DOE PAGES

    Goldstein, Daniel A.; Nugent, Peter E.; Kasen, Daniel N.; ...

    2018-03-01

    Time delays between the multiple images of strongly gravitationally lensed Type Ia supernovae (glSNe Ia) have the potential to deliver precise cosmological constraints, but the effects of microlensing on time delay extraction have not been studied in detail. Here we quantify the effect of microlensing on the glSN Ia yield of the Large Synoptic Survey Telescope (LSST) and the effect of microlensing on the precision and accuracy of time delays that can be extracted from LSST glSNe Ia. Microlensing has a negligible effect on the LSST glSN Ia yield, but it can be increased by a factor of ~2 overmore » previous predictions to 930 systems using a novel photometric identification technique based on spectral template fitting. Crucially, the microlensing of glSNe Ia is achromatic until three rest-frame weeks after the explosion, making the early-time color curves microlensing-insensitive time delay indicators. By fitting simulated flux and color observations of microlensed glSNe Ia with their underlying, unlensed spectral templates, we forecast the distribution of absolute time delay error due to microlensing for LSST, which is unbiased at the sub-percent level and peaked at 1% for color curve observations in the achromatic phase, while for light-curve observations it is comparable to state-of-the-art mass modeling uncertainties (4%). About 70% of LSST glSN Ia images should be discovered during the achromatic phase, indicating that microlensing time delay uncertainties can be minimized if prompt multicolor follow-up observations are obtained. Lastly, accounting for microlensing, the 1-2 day time delay on the recently discovered glSN Ia iPTF16geu can be measured to 40% precision, limiting its cosmological utility.« less

  20. Precise Time Delays from Strongly Gravitationally Lensed Type Ia Supernovae with Chromatically Microlensed Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldstein, Daniel A.; Nugent, Peter E.; Kasen, Daniel N.

    Time delays between the multiple images of strongly gravitationally lensed Type Ia supernovae (glSNe Ia) have the potential to deliver precise cosmological constraints, but the effects of microlensing on time delay extraction have not been studied in detail. Here we quantify the effect of microlensing on the glSN Ia yield of the Large Synoptic Survey Telescope (LSST) and the effect of microlensing on the precision and accuracy of time delays that can be extracted from LSST glSNe Ia. Microlensing has a negligible effect on the LSST glSN Ia yield, but it can be increased by a factor of ~2 overmore » previous predictions to 930 systems using a novel photometric identification technique based on spectral template fitting. Crucially, the microlensing of glSNe Ia is achromatic until three rest-frame weeks after the explosion, making the early-time color curves microlensing-insensitive time delay indicators. By fitting simulated flux and color observations of microlensed glSNe Ia with their underlying, unlensed spectral templates, we forecast the distribution of absolute time delay error due to microlensing for LSST, which is unbiased at the sub-percent level and peaked at 1% for color curve observations in the achromatic phase, while for light-curve observations it is comparable to state-of-the-art mass modeling uncertainties (4%). About 70% of LSST glSN Ia images should be discovered during the achromatic phase, indicating that microlensing time delay uncertainties can be minimized if prompt multicolor follow-up observations are obtained. Lastly, accounting for microlensing, the 1-2 day time delay on the recently discovered glSN Ia iPTF16geu can be measured to 40% precision, limiting its cosmological utility.« less

  1. Stability analysis for discrete-time stochastic memristive neural networks with both leakage and probabilistic delays.

    PubMed

    Liu, Hongjian; Wang, Zidong; Shen, Bo; Huang, Tingwen; Alsaadi, Fuad E

    2018-06-01

    This paper is concerned with the globally exponential stability problem for a class of discrete-time stochastic memristive neural networks (DSMNNs) with both leakage delays as well as probabilistic time-varying delays. For the probabilistic delays, a sequence of Bernoulli distributed random variables is utilized to determine within which intervals the time-varying delays fall at certain time instant. The sector-bounded activation function is considered in the addressed DSMNN. By taking into account the state-dependent characteristics of the network parameters and choosing an appropriate Lyapunov-Krasovskii functional, some sufficient conditions are established under which the underlying DSMNN is globally exponentially stable in the mean square. The derived conditions are made dependent on both the leakage and the probabilistic delays, and are therefore less conservative than the traditional delay-independent criteria. A simulation example is given to show the effectiveness of the proposed stability criterion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Power-rate synchronization of coupled genetic oscillators with unbounded time-varying delay.

    PubMed

    Alofi, Abdulaziz; Ren, Fengli; Al-Mazrooei, Abdullah; Elaiw, Ahmed; Cao, Jinde

    2015-10-01

    In this paper, a new synchronization problem for the collective dynamics among genetic oscillators with unbounded time-varying delay is investigated. The dynamical system under consideration consists of an array of linearly coupled identical genetic oscillators with each oscillators having unbounded time-delays. A new concept called power-rate synchronization, which is different from both the asymptotical synchronization and the exponential synchronization, is put forward to facilitate handling the unbounded time-varying delays. By using a combination of the Lyapunov functional method, matrix inequality techniques and properties of Kronecker product, we derive several sufficient conditions that ensure the coupled genetic oscillators to be power-rate synchronized. The criteria obtained in this paper are in the form of matrix inequalities. Illustrative example is presented to show the effectiveness of the obtained results.

  3. Optimal timing for managed relocation of species faced with climate change

    NASA Astrophysics Data System (ADS)

    McDonald-Madden, Eve; Runge, Michael C.; Possingham, Hugh P.; Martin, Tara G.

    2011-08-01

    Managed relocation is a controversial climate-adaptation strategy to combat negative climate change impacts on biodiversity. While the scientific community debates the merits of managed relocation, species are already being moved to new areas predicted to be more suitable under climate change. To inform these moves, we construct a quantitative decision framework to evaluate the timing of relocation in the face of climate change. We find that the optimal timing depends on many factors, including the size of the population, the demographic costs of translocation and the expected carrying capacities over time in the source and destination habitats. In some settings, such as when a small population would benefit from time to grow before risking translocation losses, haste is ill advised. We also find that active adaptive management is valuable when the effect of climate change on source habitat is uncertain, and leads to delayed movement.

  4. Structural Properties and Estimation of Delay Systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Kwong, R. H. S.

    1975-01-01

    Two areas in the theory of delay systems were studied: structural properties and their applications to feedback control, and optimal linear and nonlinear estimation. The concepts of controllability, stabilizability, observability, and detectability were investigated. The property of pointwise degeneracy of linear time-invariant delay systems is considered. Necessary and sufficient conditions for three dimensional linear systems to be made pointwise degenerate by delay feedback were obtained, while sufficient conditions for this to be possible are given for higher dimensional linear systems. These results were applied to obtain solvability conditions for the minimum time output zeroing control problem by delay feedback. A representation theorem is given for conditional moment functionals of general nonlinear stochastic delay systems, and stochastic differential equations are derived for conditional moment functionals satisfying certain smoothness properties.

  5. Nucleus accumbens core lesions induce sub-optimal choice and reduce sensitivity to magnitude and delay in impulsive choice tasks

    PubMed Central

    Steele, Catherine C.; Peterson, Jennifer R.; Marshall, Andrew T.; Stuebing, Sarah L.; Kirkpatrick, Kimberly

    2017-01-01

    The nucleus accumbens core (NAc) has long been recognized as an important contributor to the computation of reward value that is critical for impulsive choice behavior. Impulsive choice refers to choosing a smaller-sooner (SS) over a larger-later (LL) reward when the LL is more optimal in terms of the rate of reward delivery. Two experiments examined the role of the NAc in impulsive choice and its component processes of delay and magnitude processing. Experiment 1 delivered an impulsive choice task with manipulations of LL reward magnitude, followed by a reward magnitude discrimination task. Experiment 2 tested impulsive choice under manipulations of LL delay, followed by temporal bisection and progressive interval tasks. NAc lesions, in comparison to sham control lesions, produced suboptimal preferences that resulted in lower reward earning rates, and led to reduced sensitivity to magnitude and delay within the impulsive choice task. The secondary tasks revealed intact reward magnitude and delay discrimination abilities, but the lesion rats persisted in responding more as the progressive interval increased during the session. The results suggest that the NAc is most critical for demonstrating good sensitivity to magnitude and delay, and adjusting behavior accordingly. Ultimately, the NAc lesions induced suboptimal choice behavior rather than simply promoting impulsive choice, suggesting that an intact NAc is necessary for optimal decision making. PMID:29146281

  6. Predicting fluctuations-caused regime shifts in a time delayed dynamics of an invading species

    NASA Astrophysics Data System (ADS)

    Xie, Qingshuang; Wang, Tonghuan; Zeng, Chunhua; Dong, Xiaohui; Guan, Lin

    2018-03-01

    In this paper, we investigate early warning signals (EWS) of regime shifts in a density-dependent invading population model with time delay, in which the population density is assumed to be disturbed by intrinsic and extrinsic fluctuations. It is shown that the time delay and noises can cause the regime shifts between low and high population density states. The regime shift time (RST) as a function of noise intensity exhibits a maximum, which identifies the signature of the noise-enhanced stability of the low density state, while the time delay weakens the stability of the low density state. Applying the Kramers time technique, we also discuss the intersection point of the RST between low and high population density states, i.e., a critical point in the RST is found. Therefore, the critical point may give an EWS of regime shifts from one alternative state to another one for the changes in the noise parameters and time delay.

  7. Piloted simulator study of allowable time delays in large-airplane response

    NASA Technical Reports Server (NTRS)

    Grantham, William D.; Bert T.?aetingas, Stephen A.dings with ran; Bert T.?aetingas, Stephen A.dings with ran

    1987-01-01

    A piloted simulation was performed to determine the permissible time delay and phase shift in the flight control system of a specific large transport-type airplane. The study was conducted with a six degree of freedom ground-based simulator and a math model similar to an advanced wide-body jet transport. Time delays in discrete and lagged form were incorporated into the longitudinal, lateral, and directional control systems of the airplane. Three experienced pilots flew simulated approaches and landings with random localizer and glide slope offsets during instrument tracking as their principal evaluation task. Results of the present study suggest a level 1 (satisfactory) handling qualities limit for the effective time delay of 0.15 sec in both the pitch and roll axes, as opposed to a 0.10-sec limit of the present specification (MIL-F-8785C) for both axes. Also, the present results suggest a level 2 (acceptable but unsatisfactory) handling qualities limit for an effective time delay of 0.82 sec and 0.57 sec for the pitch and roll axes, respectively, as opposed to 0.20 sec of the present specifications for both axes. In the area of phase shift between cockpit input and control surface deflection,the results of this study, flown in turbulent air, suggest less severe phase shift limitations for the approach and landing task-approximately 50 deg. in pitch and 40 deg. in roll - as opposed to 15 deg. of the present specifications for both axes.

  8. Generation of flat wideband chaos with suppressed time delay signature by using optical time lens.

    PubMed

    Jiang, Ning; Wang, Chao; Xue, Chenpeng; Li, Guilan; Lin, Shuqing; Qiu, Kun

    2017-06-26

    We propose a flat wideband chaos generation scheme that shows excellent time delay signature suppression effect, by injecting the chaotic output of general external cavity semiconductor laser into an optical time lens module composed of a phase modulator and two dispersive units. The numerical results demonstrate that by properly setting the parameters of the driving signal of phase modulator and the accumulated dispersion of dispersive units, the relaxation oscillation in chaos can be eliminated, wideband chaos generation with an efficient bandwidth up to several tens of GHz can be achieved, and the RF spectrum of generated chaotic signal is nearly as flat as uniform distribution. Moreover, the periodicity of chaos induced by the external cavity modes can be simultaneously destructed by the optical time lens module, based on this the time delay signature can be completely suppressed.

  9. Numerical bifurcation analysis of immunological models with time delays

    NASA Astrophysics Data System (ADS)

    Luzyanina, Tatyana; Roose, Dirk; Bocharov, Gennady

    2005-12-01

    In recent years, a large number of mathematical models that are described by delay differential equations (DDEs) have appeared in the life sciences. To analyze the models' dynamics, numerical methods are necessary, since analytical studies can only give limited results. In turn, the availability of efficient numerical methods and software packages encourages the use of time delays in mathematical modelling, which may lead to more realistic models. We outline recently developed numerical methods for bifurcation analysis of DDEs and illustrate the use of these methods in the analysis of a mathematical model of human hepatitis B virus infection.

  10. Investigation of the delay time distribution of high power microwave surface flashover

    NASA Astrophysics Data System (ADS)

    Foster, J.; Krompholz, H.; Neuber, A.

    2011-01-01

    Characterizing and modeling the statistics associated with the initiation of gas breakdown has proven to be difficult due to a variety of rather unexplored phenomena involved. Experimental conditions for high power microwave window breakdown for pressures on the order of 100 to several 100 torr are complex: there are little to no naturally occurring free electrons in the breakdown region. The initial electron generation rate, from an external source, for example, is time dependent and so is the charge carrier amplification in the increasing radio frequency (RF) field amplitude with a rise time of 50 ns, which can be on the same order as the breakdown delay time. The probability of reaching a critical electron density within a given time period is composed of the statistical waiting time for the appearance of initiating electrons in the high-field region and the build-up of an avalanche with an inherent statistical distribution of the electron number. High power microwave breakdown and its delay time is of critical importance, since it limits the transmission through necessary windows, especially for high power, high altitude, low pressure applications. The delay time distribution of pulsed high power microwave surface flashover has been examined for nitrogen and argon as test gases for pressures ranging from 60 to 400 torr, with and without external UV illumination. A model has been developed for predicting the discharge delay time for these conditions. The results provide indications that field induced electron generation, other than standard field emission, plays a dominant role, which might be valid for other gas discharge types as well.

  11. Integrated Planning for Telepresence With Time Delays

    NASA Technical Reports Server (NTRS)

    Johnston, Mark; Rabe, Kenneth

    2009-01-01

    A conceptual "intelligent assistant" and an artificial-intelligence computer program that implements the intelligent assistant have been developed to improve control exerted by a human supervisor over a robot that is so distant that communication between the human and the robot involves significant signal-propagation delays. The goal of the effort is not only to help the human supervisor monitor and control the state of the robot, but also to improve the efficiency of the robot by allowing the supervisor to "work ahead". The intelligent assistant is an integrated combination of an artificial-intelligence planner and a monitor of states of both the human supervisor and the remote robot. The novelty of the system lies in the way it uses the planner to reason about the states at both ends of the time delay. The purpose served by the assistant is to provide advice to the human supervisor about current and future activities, derived from a sequence of high-level goals to be achieved.

  12. Existence and Stability of Traveling Waves for Degenerate Reaction-Diffusion Equation with Time Delay

    NASA Astrophysics Data System (ADS)

    Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue

    2018-01-01

    This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0 . Furthermore, we prove the global existence and uniqueness of C^{α ,β } -solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1 -space. The exponential convergence rate is also derived.

  13. Existence and Stability of Traveling Waves for Degenerate Reaction-Diffusion Equation with Time Delay

    NASA Astrophysics Data System (ADS)

    Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue

    2018-06-01

    This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0. Furthermore, we prove the global existence and uniqueness of C^{α ,β }-solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1-space. The exponential convergence rate is also derived.

  14. Impact of delaying school start time on adolescent sleep, mood, and behavior.

    PubMed

    Owens, Judith A; Belon, Katherine; Moss, Patricia

    2010-07-01

    To examine the impact of a 30-minute delay in school start time on adolescents' sleep, mood, and behavior. Participants completed the online retrospective Sleep Habits Survey before and after a change in school start time. An independent high school in Rhode Island. Students (n = 201) in grades 9 through 12. Intervention Institution of a delay in school start time from 8 to 8:30 am. Sleep patterns and behavior, daytime sleepiness, mood, data from the Health Center, and absences/tardies. After the start time delay, mean school night sleep duration increased by 45 minutes, and average bedtime advanced by 18 minutes (95% confidence interval, 7-29 minutes [t(423) = 3.36; P < .001]); the percentage of students getting less than 7 hours of sleep decreased by 79.4%, and those reporting at least 8 hours of sleep increased from 16.4% to 54.7%. Students reported significantly more satisfaction with sleep and experienced improved motivation. Daytime sleepiness, fatigue, and depressed mood were all reduced. Most health-related variables, including Health Center visits for fatigue-related complaints, and class attendance also improved. A modest delay in school start time was associated with significant improvements in measures of adolescent alertness, mood, and health. The results of this study support the potential benefits of adjusting school schedules to adolescents' sleep needs, circadian rhythm, and developmental stage.

  15. Effects of delayed polymerization time and bracket manipulation on orthodontic resin modified glass ionomer adhesive

    NASA Astrophysics Data System (ADS)

    Gilbert, Danielle Wiggins

    This study examined the effect of varying delayed polymerization times in combination with bracket manipulation on shear bond strength (SBS), degree of conversion (DC), and adhesive remnant index (ARI) score when using a resin modified glass ionomer (RMGI) adhesive. Specimens were divided into three groups of clinically relevant delay times (0.5, 2, and 4-min) to simulate the delay that frequently occurs between bracket placement and manipulation and subsequent light curing. Based on an analysis of variance (alpha=.05), the SBS was not significantly different between the three groups. While one of the goals of this study was to be the first study to quantify DC of RMGI using Raman microspectroscopy, several challenges, including weak peak signal with and without fluorescence, were encountered and as a result, DC could not be determined. A significant difference (p<0.05) in ARI score was detected between the 0.5-min and 4.0-min delay groups with more adhesive remaining on the bracket with increasing delay time. A Spearman correlation between SBS and ARI indicated no positive association between SBS and ARI measures across delay times. The results of this study suggest that clinically relevant delay times of 0.5, 2, and 4-min do not negatively impact the SBS of a RMGI adhesive. However, with increasing delay time, the results suggest that more adhesive might remain on the bracket during debonding. With more adhesive remaining on the bracket, this could be beneficial in that less adhesive needs to be removed from enamel by grinding at the time of bracket removal when orthodontic treatment is completed.

  16. Effects of stochastic time-delayed feedback on a dynamical system modeling a chemical oscillator.

    PubMed

    González Ochoa, Héctor O; Perales, Gualberto Solís; Epstein, Irving R; Femat, Ricardo

    2018-05-01

    We examine how stochastic time-delayed negative feedback affects the dynamical behavior of a model oscillatory reaction. We apply constant and stochastic time-delayed negative feedbacks to a point Field-Körös-Noyes photosensitive oscillator and compare their effects. Negative feedback is applied in the form of simulated inhibitory electromagnetic radiation with an intensity proportional to the concentration of oxidized light-sensitive catalyst in the oscillator. We first characterize the system under nondelayed inhibitory feedback; then we explore and compare the effects of constant (deterministic) versus stochastic time-delayed feedback. We find that the oscillatory amplitude, frequency, and waveform are essentially preserved when low-dispersion stochastic delayed feedback is used, whereas small but measurable changes appear when a large dispersion is applied.

  17. Effects of stochastic time-delayed feedback on a dynamical system modeling a chemical oscillator

    NASA Astrophysics Data System (ADS)

    González Ochoa, Héctor O.; Perales, Gualberto Solís; Epstein, Irving R.; Femat, Ricardo

    2018-05-01

    We examine how stochastic time-delayed negative feedback affects the dynamical behavior of a model oscillatory reaction. We apply constant and stochastic time-delayed negative feedbacks to a point Field-Körös-Noyes photosensitive oscillator and compare their effects. Negative feedback is applied in the form of simulated inhibitory electromagnetic radiation with an intensity proportional to the concentration of oxidized light-sensitive catalyst in the oscillator. We first characterize the system under nondelayed inhibitory feedback; then we explore and compare the effects of constant (deterministic) versus stochastic time-delayed feedback. We find that the oscillatory amplitude, frequency, and waveform are essentially preserved when low-dispersion stochastic delayed feedback is used, whereas small but measurable changes appear when a large dispersion is applied.

  18. Using time-delay to improve social play skills with peers for children with autism.

    PubMed

    Liber, Daniella B; Frea, William D; Symon, Jennifer B G

    2008-02-01

    Interventions that teach social communication and play skills are crucial for the development of children with autism. The time delay procedure is effective in teaching language acquisition, social use of language, discrete behaviors, and chained activities to individuals with autism and developmental delays. In this study, three boys with autism, attending a non-public school, were taught play activities that combined a play sequence with requesting peer assistance, using a graduated time delay procedure. A multiple-baseline across subjects design demonstrated the success of this procedure to teach multiple-step social play sequences. Results indicated an additional gain of an increase in pretend play by one of the participants. Two also demonstrated a generalization of the skills learned through the time delay procedure.

  19. Relativistic effects in photoionization: Wigner time delay for the noble gases and IIB atoms

    NASA Astrophysics Data System (ADS)

    Banerjee, Sourav; Deshmukh, Pranawa; Dolmatov, Valeriy; Kheifets, Anatoli; Manson, Steven

    2017-04-01

    Time delay in atomic photoionization has been observed in several experiments, and various theoretical and experimental approaches are developing rapidly to obtain a better understanding of this phenomena. Theoretical methods that account for many body correlations include the relativistic random phase approximation (RRPA) and its non-relativistic analogue, RPAE. Calculations using RRPA are performed and the impact of relativistic interactions on Wigner time delay are explored via comparison of this result with RPAE results. In addition, results on Wigner time delay for Zn Cd and Hg are presented.

  20. Synchronization of fractional-order complex-valued neural networks with time delay.

    PubMed

    Bao, Haibo; Park, Ju H; Cao, Jinde

    2016-09-01

    This paper deals with the problem of synchronization of fractional-order complex-valued neural networks with time delays. By means of linear delay feedback control and a fractional-order inequality, sufficient conditions are obtained to guarantee the synchronization of the drive-response systems. Numerical simulations are provided to show the effectiveness of the obtained results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Time-frequency model for echo-delay resolution in wideband biosonar.

    PubMed

    Neretti, Nicola; Sanderson, Mark I; Intrator, Nathan; Simmons, James A

    2003-04-01

    A time/frequency model of the bat's auditory system was developed to examine the basis for the fine (approximately 2 micros) echo-delay resolution of big brown bats (Eptesicus fuscus), and its performance at resolving closely spaced FM sonar echoes in the bat's 20-100-kHz band at different signal-to-noise ratios was computed. The model uses parallel bandpass filters spaced over this band to generate envelopes that individually can have much lower bandwidth than the bat's ultrasonic sonar sounds and still achieve fine delay resolution. Because fine delay separations are inside the integration time of the model's filters (approximately 250-300 micros), resolving them means using interference patterns along the frequency dimension (spectral peaks and notches). The low bandwidth content of the filter outputs is suitable for relay of information to higher auditory areas that have intrinsically poor temporal response properties. If implemented in fully parallel analog-digital hardware, the model is computationally extremely efficient and would improve resolution in military and industrial sonar receivers.

  2. How time delay and network design shape response patterns in biochemical negative feedback systems.

    PubMed

    Börsch, Anastasiya; Schaber, Jörg

    2016-08-24

    Negative feedback in combination with time delay can bring about both sustained oscillations and adaptive behaviour in cellular networks. Here, we study which design features of systems with delayed negative feedback shape characteristic response patterns with special emphasis on the role of time delay. To this end, we analyse generic two-dimensional delay differential equations describing the dynamics of biochemical signal-response networks. We investigate the influence of several design features on the stability of the model equilibrium, i.e., presence of auto-inhibition and/or mass conservation and the kind and/or strength of the delayed negative feedback. We show that auto-inhibition and mass conservation have a stabilizing effect, whereas increasing abruptness and decreasing feedback threshold have a de-stabilizing effect on the model equilibrium. Moreover, applying our theoretical analysis to the mammalian p53 system we show that an auto-inhibitory feedback can decouple period and amplitude of an oscillatory response, whereas the delayed feedback can not. Our theoretical framework provides insight into how time delay and design features of biochemical networks act together to elicit specific characteristic response patterns. Such insight is useful for constructing synthetic networks and controlling their behaviour in response to external stimulation.

  3. TIMEDELN: A programme for the detection and parametrization of overlapping resonances using the time-delay method

    NASA Astrophysics Data System (ADS)

    Little, Duncan A.; Tennyson, Jonathan; Plummer, Martin; Noble, Clifford J.; Sunderland, Andrew G.

    2017-06-01

    TIMEDELN implements the time-delay method of determining resonance parameters from the characteristic Lorentzian form displayed by the largest eigenvalues of the time-delay matrix. TIMEDELN constructs the time-delay matrix from input K-matrices and analyses its eigenvalues. This new version implements multi-resonance fitting and may be run serially or as a high performance parallel code with three levels of parallelism. TIMEDELN takes K-matrices from a scattering calculation, either read from a file or calculated on a dynamically adjusted grid, and calculates the time-delay matrix. This is then diagonalized, with the largest eigenvalue representing the longest time-delay experienced by the scattering particle. A resonance shows up as a characteristic Lorentzian form in the time-delay: the programme searches the time-delay eigenvalues for maxima and traces resonances when they pass through different eigenvalues, separating overlapping resonances. It also performs the fitting of the calculated data to the Lorentzian form and outputs resonance positions and widths. Any remaining overlapping resonances can be fitted jointly. The branching ratios of decay into the open channels can also be found. The programme may be run serially or in parallel with three levels of parallelism. The parallel code modules are abstracted from the main physics code and can be used independently.

  4. State estimator for multisensor systems with irregular sampling and time-varying delays

    NASA Astrophysics Data System (ADS)

    Peñarrocha, I.; Sanchis, R.; Romero, J. A.

    2012-08-01

    This article addresses the state estimation in linear time-varying systems with several sensors with different availability, randomly sampled in time and whose measurements have a time-varying delay. The approach is based on a modification of the Kalman filter with the negative-time measurement update strategy, avoiding running back the full standard Kalman filter, the use of full augmented order models or the use of reorganisation techniques, leading to a lower implementation cost algorithm. The update equations are run every time a new measurement is available, independently of the time when it was taken. The approach is useful for networked control systems, systems with long delays and scarce measurements and for out-of-sequence measurements.

  5. Time delay and long-range connection induced synchronization transitions in Newman-Watts small-world neuronal networks.

    PubMed

    Qian, Yu

    2014-01-01

    The synchronization transitions in Newman-Watts small-world neuronal networks (SWNNs) induced by time delay τ and long-range connection (LRC) probability P have been investigated by synchronization parameter and space-time plots. Four distinct parameter regions, that is, asynchronous region, transition region, synchronous region, and oscillatory region have been discovered at certain LRC probability P = 1.0 as time delay is increased. Interestingly, desynchronization is observed in oscillatory region. More importantly, we consider the spatiotemporal patterns obtained in delayed Newman-Watts SWNNs are the competition results between long-range drivings (LRDs) and neighboring interactions. In addition, for moderate time delay, the synchronization of neuronal network can be enhanced remarkably by increasing LRC probability. Furthermore, lag synchronization has been found between weak synchronization and complete synchronization as LRC probability P is a little less than 1.0. Finally, the two necessary conditions, moderate time delay and large numbers of LRCs, are exposed explicitly for synchronization in delayed Newman-Watts SWNNs.

  6. Time Delay and Long-Range Connection Induced Synchronization Transitions in Newman-Watts Small-World Neuronal Networks

    PubMed Central

    Qian, Yu

    2014-01-01

    The synchronization transitions in Newman-Watts small-world neuronal networks (SWNNs) induced by time delay and long-range connection (LRC) probability have been investigated by synchronization parameter and space-time plots. Four distinct parameter regions, that is, asynchronous region, transition region, synchronous region, and oscillatory region have been discovered at certain LRC probability as time delay is increased. Interestingly, desynchronization is observed in oscillatory region. More importantly, we consider the spatiotemporal patterns obtained in delayed Newman-Watts SWNNs are the competition results between long-range drivings (LRDs) and neighboring interactions. In addition, for moderate time delay, the synchronization of neuronal network can be enhanced remarkably by increasing LRC probability. Furthermore, lag synchronization has been found between weak synchronization and complete synchronization as LRC probability is a little less than 1.0. Finally, the two necessary conditions, moderate time delay and large numbers of LRCs, are exposed explicitly for synchronization in delayed Newman-Watts SWNNs. PMID:24810595

  7. H∞ state estimation for discrete-time memristive recurrent neural networks with stochastic time-delays

    NASA Astrophysics Data System (ADS)

    Liu, Hongjian; Wang, Zidong; Shen, Bo; Alsaadi, Fuad E.

    2016-07-01

    This paper deals with the robust H∞ state estimation problem for a class of memristive recurrent neural networks with stochastic time-delays. The stochastic time-delays under consideration are governed by a Bernoulli-distributed stochastic sequence. The purpose of the addressed problem is to design the robust state estimator such that the dynamics of the estimation error is exponentially stable in the mean square, and the prescribed ? performance constraint is met. By utilizing the difference inclusion theory and choosing a proper Lyapunov-Krasovskii functional, the existence condition of the desired estimator is derived. Based on it, the explicit expression of the estimator gain is given in terms of the solution to a linear matrix inequality. Finally, a numerical example is employed to demonstrate the effectiveness and applicability of the proposed estimation approach.

  8. Estimation of time- and state-dependent delays and other parameters in functional differential equations

    NASA Technical Reports Server (NTRS)

    Murphy, K. A.

    1988-01-01

    A parameter estimation algorithm is developed which can be used to estimate unknown time- or state-dependent delays and other parameters (e.g., initial condition) appearing within a nonlinear nonautonomous functional differential equation. The original infinite dimensional differential equation is approximated using linear splines, which are allowed to move with the variable delay. The variable delays are approximated using linear splines as well. The approximation scheme produces a system of ordinary differential equations with nice computational properties. The unknown parameters are estimated within the approximating systems by minimizing a least-squares fit-to-data criterion. Convergence theorems are proved for time-dependent delays and state-dependent delays within two classes, which say essentially that fitting the data by using approximations will, in the limit, provide a fit to the data using the original system. Numerical test examples are presented which illustrate the method for all types of delay.

  9. Estimation of time- and state-dependent delays and other parameters in functional differential equations

    NASA Technical Reports Server (NTRS)

    Murphy, K. A.

    1990-01-01

    A parameter estimation algorithm is developed which can be used to estimate unknown time- or state-dependent delays and other parameters (e.g., initial condition) appearing within a nonlinear nonautonomous functional differential equation. The original infinite dimensional differential equation is approximated using linear splines, which are allowed to move with the variable delay. The variable delays are approximated using linear splines as well. The approximation scheme produces a system of ordinary differential equations with nice computational properties. The unknown parameters are estimated within the approximating systems by minimizing a least-squares fit-to-data criterion. Convergence theorems are proved for time-dependent delays and state-dependent delays within two classes, which say essentially that fitting the data by using approximations will, in the limit, provide a fit to the data using the original system. Numerical test examples are presented which illustrate the method for all types of delay.

  10. The option value of delay in health technology assessment.

    PubMed

    Eckermann, Simon; Willan, Andrew R

    2008-01-01

    Processes of health technology assessment (HTA) inform decisions under uncertainty about whether to invest in new technologies based on evidence of incremental effects, incremental cost, and incremental net benefit monetary (INMB). An option value to delaying such decisions to wait for further evidence is suggested in the usual case of interest, in which the prior distribution of INMB is positive but uncertain. of estimating the option value of delaying decisions to invest have previously been developed when investments are irreversible with an uncertain payoff over time and information is assumed fixed. However, in HTA decision uncertainty relates to information (evidence) on the distribution of INMB. This article demonstrates that the option value of delaying decisions to allow collection of further evidence can be estimated as the expected value of sample of information (EVSI). For irreversible decisions, delay and trial (DT) is demonstrated to be preferred to adopt and no trial (AN) when the EVSI exceeds expected costs of information, including expected opportunity costs of not treating patients with the new therapy. For reversible decisions, adopt and trial (AT) becomes a potentially optimal strategy, but costs of reversal are shown to reduce the EVSI of this strategy due to both a lower probability of reversal being optimal and lower payoffs when reversal is optimal. Hence, decision makers are generally shown to face joint research and reimbursement decisions (AN, DT and AT), with the optimal choice dependent on costs of reversal as well as opportunity costs of delay and the distribution of prior INMB.

  11. Analysis of Delays in Transmitting Time Code Using an Automated Computer Time Distribution System

    DTIC Science & Technology

    1999-12-01

    jlevine@clock. bldrdoc.gov Abstract An automated computer time distribution system broadcasts standard tune to users using computers and modems via...contributed to &lays - sofhareplatform (50% of the delay), transmission speed of time- codes (25OA), telephone network (lS%), modem and others (10’4). The... modems , and telephone lines. Users dial the ACTS server to receive time traceable to the national time scale of Singapore, UTC(PSB). The users can in

  12. Microcontroller based system for electrical breakdown time delay measurement in gas-filled devices.

    PubMed

    Pejović, Milić M; Denić, Dragan B; Pejović, Momčilo M; Nešić, Nikola T; Vasović, Nikola

    2010-10-01

    This paper presents realization of a digital embedded system for measuring electrical breakdown time delay. The proposed system consists of three major parts: dc voltage supply, analog subsystem, and a digital subsystem. Any dc power source with the range from 100 to 1000 V can be used in this application. The analog subsystem should provide fast and accurate voltage switching on the testing device as well as transform the signals that represent the voltage pulse on the device and the device breakdown into the form suitable for detection by a digital subsystem. The insulated gate bipolar transistor IRG4PH40KD driven by TC429 MOSFET driver is used for high voltage switching on the device. The aim of a digital subsystem is to detect the signals from the analog subsystem and to measure the elapsed time between their occurrences. Moreover, the digital subsystem controls various parameters that influence time delay and provides fast data storage for a large number of measured data. For this propose, we used the PIC18F4550 microcontroller with a full-speed compatible universal serial bus (USB) engine. Operation of this system is verified on different commercial and custom made gas devices with different structure and breakdown mechanisms. The electrical breakdown time delay measurements have been carried out as a function of several parameters, which dominantly influence electrical breakdown time delay. The obtained results have been verified using statistical methods, and they show good agreement with the theory. The proposed system shows good repeatability, sensitivity, and stability for measuring the electrical breakdown time delay.

  13. Teleoperation with large time delay using a prevision system

    NASA Astrophysics Data System (ADS)

    Bergamasco, Massimo; De Paolis, Lucio; Ciancio, Stefano; Pinna, Sebastiano

    1997-12-01

    In teleoperation technology various techniques have been proposed in order to alleviate the effects of time delayed communication and to avoid the instability of the system. This paper describes a different approach to robotic teleoperation with large-time delay and a teleoperation system, based on teleprogramming paradigm, has been developed with the intent to improve the slave autonomy and to decrease the amount of information exchanged between master and slave system. The goal concept, specific of AI, has been used. In order to minimize the total task completion time has been introduced a prevision system, called Merlino, able to know in advance the slave's choices taking into account both the operator's actions and the information about the remote environment. The prevision system allows, in case of environment changes, to understand if the slave can solve the goal. Otherwise, Merlino is able to signal a 'fail situation.' Some experiments have been carried out by means of an advanced human-machine interface with force feedback, designed at PERCRO Laboratory of Scuola Superiore S. Anna, which gives a better sensation of presence in the remote environment.

  14. Optimal timing for managed relocation of species faced with climate change

    USGS Publications Warehouse

    McDonald Madden, Eve; Runge, Michael C.; Possingham, Hugh P.; Martin, Tara G.

    2011-01-01

    Managed relocation is a controversial climate-adaptation strategy to combat negative climate change impacts on biodiversity. While the scientific community debates the merits of managed relocation1,2,3,4,5,6,7,8,9,10,11,12, species are already being moved to new areas predicted to be more suitable under climate change13,14. To inform these moves, we construct a quantitative decision framework to evaluate the timing of relocation in the face of climate change. We find that the optimal timing depends on many factors, including the size of the population, the demographic costs of translocation and the expected carrying capacities over time in the source and destination habitats. In some settings, such as when a small population would benefit from time to grow before risking translocation losses, haste is ill advised. We also find that active adaptive management15,16 is valuable when the effect of climate change on source habitat is uncertain, and leads to delayed movement.

  15. Time-optimal excitation of maximum quantum coherence: Physical limits and pulse sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Köcher, S. S.; Institute of Energy and Climate Research; Heydenreich, T.

    Here we study the optimum efficiency of the excitation of maximum quantum (MaxQ) coherence using analytical and numerical methods based on optimal control theory. The theoretical limit of the achievable MaxQ amplitude and the minimum time to achieve this limit are explored for a set of model systems consisting of up to five coupled spins. In addition to arbitrary pulse shapes, two simple pulse sequence families of practical interest are considered in the optimizations. Compared to conventional approaches, substantial gains were found both in terms of the achieved MaxQ amplitude and in pulse sequence durations. For a model system, theoreticallymore » predicted gains of a factor of three compared to the conventional pulse sequence were experimentally demonstrated. Motivated by the numerical results, also two novel analytical transfer schemes were found: Compared to conventional approaches based on non-selective pulses and delays, double-quantum coherence in two-spin systems can be created twice as fast using isotropic mixing and hard spin-selective pulses. Also it is proved that in a chain of three weakly coupled spins with the same coupling constants, triple-quantum coherence can be created in a time-optimal fashion using so-called geodesic pulses.« less

  16. Application of Time-Delay Absorber to Suppress Vibration of a Dynamical System to Tuned Excitation.

    PubMed

    El-Ganaini, W A A; El-Gohary, H A

    2014-08-01

    In this work, we present a comprehensive investigation of the time delay absorber effects on the control of a dynamical system represented by a cantilever beam subjected to tuned excitation forces. Cantilever beam is one of the most widely used system in too many engineering applications, such as mechanical and civil engineering. The main aim of this work is to control the vibration of the beam at simultaneous internal and combined resonance condition, as it is the worst resonance case. Control is conducted via time delay absorber to suppress chaotic vibrations. Time delays often appear in many control systems in the state, in the control input, or in the measurements. Time delay commonly exists in various engineering, biological, and economical systems because of the finite speed of the information processing. It is a source of performance degradation and instability. Multiple time scale perturbation method is applied to obtain a first order approximation for the nonlinear differential equations describing the system behavior. The different resonance cases are reported and studied numerically. The stability of the steady-state solution at the selected worst resonance case is investigated applying Runge-Kutta fourth order method and frequency response equations via Matlab 7.0 and Maple11. Time delay absorber is effective, but within a specified range of time delay. It is the critical factor in selecting such absorber. Time delay absorber is better than the ordinary one as from the effectiveness point of view. The effects of the different absorber parameters on the system behavior and stability are studied numerically. A comparison with the available published work showed a close agreement with some previously published work.

  17. Cyclic additional optical true time delay for microwave beam steering with spectral filtering.

    PubMed

    Cao, Z; Lu, R; Wang, Q; Tessema, N; Jiao, Y; van den Boom, H P A; Tangdiongga, E; Koonen, A M J

    2014-06-15

    Optical true time delay (OTTD) is an attractive way to realize microwave beam steering (MBS) due to its inherent features of broadband, low-loss, and compactness. In this Letter, we propose a novel OTTD approach named cyclic additional optical true time delay (CAO-TTD). It applies additional integer delays of the microwave carrier frequency to achieve spectral filtering but without disturbing the spatial filtering (beam steering). Based on such concept, a broadband MBS scheme for high-capacity wireless communication is proposed, which allows the tuning of both spectral filtering and spatial filtering. The experimental results match well with the theoretical analysis.

  18. Delay decomposition at a single server queue with constant service time and multiple inputs

    NASA Technical Reports Server (NTRS)

    Ziegler, C.; Schilling, D. L.

    1978-01-01

    Two network consisting of single server queues, each with a constant service time, are considered. The external inputs to each network are assumed to follow some general probability distribution. Several interesting equivalencies that exist between the two networks considered are derived. This leads to the introduction of an important concept in delay decomposition. It is shown that the waiting time experienced by a customer can be decomposed into two basic components called self-delay and interference delay.

  19. Analyzing Impact Factors of Airport Taxiing Delay Based on Ads-B Data

    NASA Astrophysics Data System (ADS)

    Li, J.; Wang, X.; Xu, Y.; Li, Q.; He, C.; Li, Y.

    2017-09-01

    Identifying the factors that cause taxiing delay on airports is a prerequisite for optimizing aircraft taxiing schemes, and helps improve the efficiency of taxiing system. Few of current studies had quantified the potential influencing factors and further investigated their intrinsic relationship. In view of these problems, this paper uses ADS-B data to calculate taxiing delay time by restoring taxiing route and identifying key status points, and further analyzes the impact factors of airport taxiing delay by investigating the relationship between delay time and environmental data such as weather, wind, visibility etc. The case study in Guangzhou Baiyun Airport validates the effectiveness of the proposed method.

  20. Pre-school children with and without developmental delay: behaviour problems and parenting stress over time.

    PubMed

    Baker, B L; McIntyre, L L; Blacher, J; Crnic, K; Edelbrock, C; Low, C

    2003-01-01

    Children with intellectual disability are at heightened risk for behaviour problems and diagnosed mental disorder. The present authors studied the early manifestation and continuity of problem behaviours in 205 pre-school children with and without developmental delays. Behaviour problems were quite stable over the year from age 36-48 months. Children with developmental delays were rated higher on behaviour problems than their non-delayed peers, and were three times as likely to score in the clinical range. Mothers and fathers showed high agreement in their rating of child problems, especially in the delayed group. Parenting stress was also higher in the delayed group, but was related to the extent of behaviour problems rather than to the child's developmental delay. Over time, a transactional model fit the relationship between parenting stress and behaviour problems: high parenting stress contributed to a worsening in child behaviour problems over time, and high child behaviour problems contributed to a worsening in parenting stress. Findings for mothers and fathers were quite similar.

  1. A new delay-independent condition for global robust stability of neural networks with time delays.

    PubMed

    Samli, Ruya

    2015-06-01

    This paper studies the problem of robust stability of dynamical neural networks with discrete time delays under the assumptions that the network parameters of the neural system are uncertain and norm-bounded, and the activation functions are slope-bounded. By employing the results of Lyapunov stability theory and matrix theory, new sufficient conditions for the existence, uniqueness and global asymptotic stability of the equilibrium point for delayed neural networks are presented. The results reported in this paper can be easily tested by checking some special properties of symmetric matrices associated with the parameter uncertainties of neural networks. We also present a numerical example to show the effectiveness of the proposed theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Burst wait time simulation of CALIBAN reactor at delayed super-critical state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humbert, P.; Authier, N.; Richard, B.

    2012-07-01

    In the past, the super prompt critical wait time probability distribution was measured on CALIBAN fast burst reactor [4]. Afterwards, these experiments were simulated with a very good agreement by solving the non-extinction probability equation [5]. Recently, the burst wait time probability distribution has been measured at CEA-Valduc on CALIBAN at different delayed super-critical states [6]. However, in the delayed super-critical case the non-extinction probability does not give access to the wait time distribution. In this case it is necessary to compute the time dependent evolution of the full neutron count number probability distribution. In this paper we present themore » point model deterministic method used to calculate the probability distribution of the wait time before a prescribed count level taking into account prompt neutrons and delayed neutron precursors. This method is based on the solution of the time dependent adjoint Kolmogorov master equations for the number of detections using the generating function methodology [8,9,10] and inverse discrete Fourier transforms. The obtained results are then compared to the measurements and Monte-Carlo calculations based on the algorithm presented in [7]. (authors)« less

  3. Security-enhanced chaos communication with time-delay signature suppression and phase encryption.

    PubMed

    Xue, Chenpeng; Jiang, Ning; Lv, Yunxin; Wang, Chao; Li, Guilan; Lin, Shuqing; Qiu, Kun

    2016-08-15

    A security-enhanced chaos communication scheme with time delay signature (TDS) suppression and phase-encrypted feedback light is proposed, in virtue of dual-loop feedback with independent high-speed phase modulation. We numerically investigate the property of TDS suppression in the intensity and phase space and quantitatively discuss security of the proposed system by calculating the bit error rate of eavesdroppers who try to crack the system by directly filtering the detected signal or by using a similar semiconductor laser to synchronize the link signal and extract the data. The results show that TDS embedded in the chaotic carrier can be well suppressed by properly setting the modulation frequency, which can keep the time delay a secret from the eavesdropper. Moreover, because the feedback light is encrypted, without the accurate time delay and key, the eavesdropper cannot reconstruct the symmetric operation conditions and decode the correct data.

  4. Improving Procedure Start Times and Decreasing Delays in Interventional Radiology: A Department's Quality Improvement Initiative.

    PubMed

    Villarreal, Monica C; Rostad, Bradley S; Wright, Richard; Applegate, Kimberly E

    2015-12-01

    To identify and reduce reasons for delays in procedure start times, particularly the first cases of the day, within the interventional radiology (IR) divisions of the Department of Radiology using principles of continuous quality improvement. An interdisciplinary team representative of the IR and preprocedure/postprocedure care area (PPCA) health care personnel, managers, and data analysts was formed. A standardized form was used to document both inpatient and outpatient progress through the PPCA and IR workflow in six rooms and to document reasons for delays. Data generated were used to identify key problems areas, implement improvement interventions, and monitor their effects. Project duration was 6 months. The average number of on-time starts for the first case of the day increased from 23% to 56% (P value < .01). The average number of on-time, scheduled outpatients increased from 30% to 45% (P value < .01). Patient wait time to arrive at treatment room once they were ready for their procedure was reduced on average by 10 minutes (P value < .01). Patient care delay duration per 100 patients was reduced from 30.3 to 21.6 hours (29% reduction). Number of patient care delays per 100 patients was reduced from 46.6 to 40.1 (17% reduction). Top reasons for delay included waiting for consent (26% of delays duration) and laboratory tests (12%). Many complex factors contribute to procedure start time delays within an IR practice. A data-driven and patient-centered, interdisciplinary team approach was effective in reducing delays in IR. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  5. Robust stability for stochastic bidirectional associative memory neural networks with time delays

    NASA Astrophysics Data System (ADS)

    Shu, H. S.; Lv, Z. W.; Wei, G. L.

    2008-02-01

    In this paper, the asymptotic stability is considered for a class of uncertain stochastic bidirectional associative memory neural networks with time delays and parameter uncertainties. The delays are time-invariant and the uncertainties are norm-bounded that enter into all network parameters. The aim of this paper is to establish easily verifiable conditions under which the delayed neural network is robustly asymptotically stable in the mean square for all admissible parameter uncertainties. By employing a Lyapunov-Krasovskii functional and conducting the stochastic analysis, a linear matrix inequality matrix inequality (LMI) approach is developed to derive the stability criteria. The proposed criteria can be easily checked by the Matlab LMI toolbox. A numerical example is given to demonstrate the usefulness of the proposed criteria.

  6. Constructing Hopf bifurcation lines for the stability of nonlinear systems with two time delays

    NASA Astrophysics Data System (ADS)

    Nguimdo, Romain Modeste

    2018-03-01

    Although the plethora real-life systems modeled by nonlinear systems with two independent time delays, the algebraic expressions for determining the stability of their fixed points remain the Achilles' heel. Typically, the approach for studying the stability of delay systems consists in finding the bifurcation lines separating the stable and unstable parameter regions. This work deals with the parametric construction of algebraic expressions and their use for the determination of the stability boundaries of fixed points in nonlinear systems with two independent time delays. In particular, we concentrate on the cases for which the stability of the fixed points can be ascertained from a characteristic equation corresponding to that of scalar two-delay differential equations, one-component dual-delay feedback, or nonscalar differential equations with two delays for which the characteristic equation for the stability analysis can be reduced to that of a scalar case. Then, we apply our obtained algebraic expressions to identify either the parameter regions of stable microwaves generated by dual-delay optoelectronic oscillators or the regions of amplitude death in identical coupled oscillators.

  7. The effect of visual-motion time-delays on pilot performance in a simulated pursuit tracking task

    NASA Technical Reports Server (NTRS)

    Miller, G. K., Jr.; Riley, D. R.

    1977-01-01

    An experimental study was made to determine the effect on pilot performance of time delays in the visual and motion feedback loops of a simulated pursuit tracking task. Three major interrelated factors were identified: task difficulty either in the form of airplane handling qualities or target frequency, the amount and type of motion cues, and time delay itself. In general, the greater the task difficulty, the smaller the time delay that could exist without degrading pilot performance. Conversely, the greater the motion fidelity, the greater the time delay that could be tolerated. The effect of motion was, however, pilot dependent.

  8. Opto-VLSI-based photonic true-time delay architecture for broadband adaptive nulling in phased array antennas.

    PubMed

    Juswardy, Budi; Xiao, Feng; Alameh, Kamal

    2009-03-16

    This paper proposes a novel Opto-VLSI-based tunable true-time delay generation unit for adaptively steering the nulls of microwave phased array antennas. Arbitrary single or multiple true-time delays can simultaneously be synthesized for each antenna element by slicing an RF-modulated broadband optical source and routing specific sliced wavebands through an Opto-VLSI processor to a high-dispersion fiber. Experimental results are presented, which demonstrate the principle of the true-time delay unit through the generation of 5 arbitrary true-time delays of up to 2.5 ns each. (c) 2009 Optical Society of America

  9. Global synchronization in finite time for fractional-order neural networks with discontinuous activations and time delays.

    PubMed

    Peng, Xiao; Wu, Huaiqin; Song, Ka; Shi, Jiaxin

    2017-10-01

    This paper is concerned with the global Mittag-Leffler synchronization and the synchronization in finite time for fractional-order neural networks (FNNs) with discontinuous activations and time delays. Firstly, the properties with respect to Mittag-Leffler convergence and convergence in finite time, which play a critical role in the investigation of the global synchronization of FNNs, are developed, respectively. Secondly, the novel state-feedback controller, which includes time delays and discontinuous factors, is designed to realize the synchronization goal. By applying the fractional differential inclusion theory, inequality analysis technique and the proposed convergence properties, the sufficient conditions to achieve the global Mittag-Leffler synchronization and the synchronization in finite time are addressed in terms of linear matrix inequalities (LMIs). In addition, the upper bound of the setting time of the global synchronization in finite time is explicitly evaluated. Finally, two examples are given to demonstrate the validity of the proposed design method and theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Synchronization in a chaotic neural network with time delay depending on the spatial distance between neurons

    NASA Astrophysics Data System (ADS)

    Tang, Guoning; Xu, Kesheng; Jiang, Luoluo

    2011-10-01

    The synchronization is investigated in a two-dimensional Hindmarsh-Rose neuronal network by introducing a global coupling scheme with time delay, where the length of time delay is proportional to the spatial distance between neurons. We find that the time delay always disturbs synchronization of the neuronal network. When both the coupling strength and length of time delay per unit distance (i.e., enlargement factor) are large enough, the time delay induces the abnormal membrane potential oscillations in neurons. Specifically, the abnormal membrane potential oscillations for the symmetrically placed neurons form an antiphase, so that the large coupling strength and enlargement factor lead to the desynchronization of the neuronal network. The complete and intermittently complete synchronization of the neuronal network are observed for the right choice of parameters. The physical mechanism underlying these phenomena is analyzed.

  11. Stochastic resonance in a tumor-immune system subject to bounded noises and time delay

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Mei, Dong-Cheng

    2014-12-01

    Immunotherapy is one of the most recent approaches in cancer therapy. A mathematical model of tumor-immune interaction, subject to a periodic immunotherapy treatment (imitated by a periodic signal), correlative and bounded stochastic fluctuations and time delays, is investigated by numerical simulations for its signal power amplification (SPA). Within the tailored parameter regime, the synchronous response of tumor growth to the immunotherapy, stochastic resonance (SR), versus both the noises and delays is obtained. The details are as follows (i) the peak values of SPA versus the noise intensity (A) in the proliferation term of tumor cells decrease as the frequency of periodic signal increases, i.e. an increase of the frequency restrains the SR; (ii) an increase of the amplitude of periodic signal restrains the SR versus A, but boosts up the SR versus the noise intensity B in the immune term; (iii) there is an optimum cross-correlated degree between the two bounded noises, at which the system exhibits the strongest SR versus the delay time τα(the reaction time of tumor cell population to their surrounding environment constraints); (iv) upon increasing the delay time τα, double SR versus the delay time τβ (the time taken by both the tumor antigen identification and tumor-stimulated proliferation of effectors) emerges. These results may be helpful for an immunotherapy treatment for the sufferer.

  12. 24 CFR 50.34 - Time delays for exceptional circumstances.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 1 2013-04-01 2013-04-01 false Time delays for exceptional circumstances. 50.34 Section 50.34 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development PROTECTION AND ENHANCEMENT OF ENVIRONMENTAL QUALITY Environmental Assessments...

  13. 24 CFR 50.34 - Time delays for exceptional circumstances.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 1 2014-04-01 2014-04-01 false Time delays for exceptional circumstances. 50.34 Section 50.34 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development PROTECTION AND ENHANCEMENT OF ENVIRONMENTAL QUALITY Environmental Assessments...

  14. 24 CFR 50.34 - Time delays for exceptional circumstances.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Time delays for exceptional circumstances. 50.34 Section 50.34 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development PROTECTION AND ENHANCEMENT OF ENVIRONMENTAL QUALITY Environmental Assessments...

  15. 24 CFR 50.34 - Time delays for exceptional circumstances.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 1 2011-04-01 2011-04-01 false Time delays for exceptional circumstances. 50.34 Section 50.34 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development PROTECTION AND ENHANCEMENT OF ENVIRONMENTAL QUALITY Environmental Assessments...

  16. 24 CFR 50.34 - Time delays for exceptional circumstances.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 1 2012-04-01 2012-04-01 false Time delays for exceptional circumstances. 50.34 Section 50.34 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development PROTECTION AND ENHANCEMENT OF ENVIRONMENTAL QUALITY Environmental Assessments...

  17. Robust preview control for a class of uncertain discrete-time systems with time-varying delay.

    PubMed

    Li, Li; Liao, Fucheng

    2018-02-01

    This paper proposes a concept of robust preview tracking control for uncertain discrete-time systems with time-varying delay. Firstly, a model transformation is employed for an uncertain discrete system with time-varying delay. Then, the auxiliary variables related to the system state and input are introduced to derive an augmented error system that includes future information on the reference signal. This leads to the tracking problem being transformed into a regulator problem. Finally, for the augmented error system, a sufficient condition of asymptotic stability is derived and the preview controller design method is proposed based on the scaled small gain theorem and linear matrix inequality (LMI) technique. The method proposed in this paper not only solves the difficulty problem of applying the difference operator to the time-varying matrices but also simplifies the structure of the augmented error system. The numerical simulation example also illustrates the effectiveness of the results presented in the paper. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Multiple-parameter bifurcation analysis in a Kuramoto model with time delay and distributed shear

    NASA Astrophysics Data System (ADS)

    Niu, Ben; Zhang, Jiaming; Wei, Junjie

    2018-05-01

    In this paper, time delay effect and distributed shear are considered in the Kuramoto model. On the Ott-Antonsen's manifold, through analyzing the associated characteristic equation of the reduced functional differential equation, the stability boundary of the incoherent state is derived in multiple-parameter space. Moreover, very rich dynamical behavior such as stability switches inducing synchronization switches can occur in this equation. With the loss of stability, Hopf bifurcating coherent states arise, and the criticality of Hopf bifurcations is determined by applying the normal form theory and the center manifold theorem. On one hand, theoretical analysis indicates that the width of shear distribution and time delay can both eliminate the synchronization then lead the Kuramoto model to incoherence. On the other, time delay can induce several coexisting coherent states. Finally, some numerical simulations are given to support the obtained results where several bifurcation diagrams are drawn, and the effect of time delay and shear is discussed.

  19. Robust outer synchronization between two nonlinear complex networks with parametric disturbances and mixed time-varying delays

    NASA Astrophysics Data System (ADS)

    Zhang, Chuan; Wang, Xingyuan; Luo, Chao; Li, Junqiu; Wang, Chunpeng

    2018-03-01

    In this paper, we focus on the robust outer synchronization problem between two nonlinear complex networks with parametric disturbances and mixed time-varying delays. Firstly, a general complex network model is proposed. Besides the nonlinear couplings, the network model in this paper can possess parametric disturbances, internal time-varying delay, discrete time-varying delay and distributed time-varying delay. Then, according to the robust control strategy, linear matrix inequality and Lyapunov stability theory, several outer synchronization protocols are strictly derived. Simple linear matrix controllers are designed to driver the response network synchronize to the drive network. Additionally, our results can be applied on the complex networks without parametric disturbances. Finally, by utilizing the delayed Lorenz chaotic system as the dynamics of all nodes, simulation examples are given to demonstrate the effectiveness of our theoretical results.

  20. Estimating Real-Time Zenith Tropospheric Delay over Africa Using IGS-RTS Products

    NASA Astrophysics Data System (ADS)

    Abdelazeem, M.

    2017-12-01

    Zenith Tropospheric Delay (ZTD) is a crucial parameter for atmospheric modeling, severe weather monitoring and forecasting applications. Currently, the international global navigation satellite system (GNSS) real-time service (IGS-RTS) products are used extensively in real-time atmospheric modeling applications. The objective of this study is to develop a real time zenith tropospheric delay estimation model over Africa using the IGS-RTS products. The real-time ZTDs are estimated based on the real-time precise point positioning (PPP) solution. GNSS observations from a number of reference stations are processed over a period of 7 days. Then, the estimated real-time ZTDs are compared with the IGS tropospheric products counterparts. The findings indicate that the estimated real-time ZTDs have millimeter level accuracy in comparison with the IGS counterparts.

  1. Microcontroller based system for electrical breakdown time delay measurement in gas-filled devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pejovic, Milic M.; Denic, Dragan B.; Pejovic, Momcilo M.

    2010-10-15

    This paper presents realization of a digital embedded system for measuring electrical breakdown time delay. The proposed system consists of three major parts: dc voltage supply, analog subsystem, and a digital subsystem. Any dc power source with the range from 100 to 1000 V can be used in this application. The analog subsystem should provide fast and accurate voltage switching on the testing device as well as transform the signals that represent the voltage pulse on the device and the device breakdown into the form suitable for detection by a digital subsystem. The insulated gate bipolar transistor IRG4PH40KD driven bymore » TC429 MOSFET driver is used for high voltage switching on the device. The aim of a digital subsystem is to detect the signals from the analog subsystem and to measure the elapsed time between their occurrences. Moreover, the digital subsystem controls various parameters that influence time delay and provides fast data storage for a large number of measured data. For this propose, we used the PIC18F4550 microcontroller with a full-speed compatible universal serial bus (USB) engine. Operation of this system is verified on different commercial and custom made gas devices with different structure and breakdown mechanisms. The electrical breakdown time delay measurements have been carried out as a function of several parameters, which dominantly influence electrical breakdown time delay. The obtained results have been verified using statistical methods, and they show good agreement with the theory. The proposed system shows good repeatability, sensitivity, and stability for measuring the electrical breakdown time delay.« less

  2. New exponential synchronization criteria for time-varying delayed neural networks with discontinuous activations.

    PubMed

    Cai, Zuowei; Huang, Lihong; Zhang, Lingling

    2015-05-01

    This paper investigates the problem of exponential synchronization of time-varying delayed neural networks with discontinuous neuron activations. Under the extended Filippov differential inclusion framework, by designing discontinuous state-feedback controller and using some analytic techniques, new testable algebraic criteria are obtained to realize two different kinds of global exponential synchronization of the drive-response system. Moreover, we give the estimated rate of exponential synchronization which depends on the delays and system parameters. The obtained results extend some previous works on synchronization of delayed neural networks not only with continuous activations but also with discontinuous activations. Finally, numerical examples are provided to show the correctness of our analysis via computer simulations. Our method and theoretical results have a leading significance in the design of synchronized neural network circuits involving discontinuous factors and time-varying delays. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Finite-time synchronization for memristor-based neural networks with time-varying delays.

    PubMed

    Abdurahman, Abdujelil; Jiang, Haijun; Teng, Zhidong

    2015-09-01

    Memristive network exhibits state-dependent switching behaviors due to the physical properties of memristor, which is an ideal tool to mimic the functionalities of the human brain. In this paper, finite-time synchronization is considered for a class of memristor-based neural networks with time-varying delays. Based on the theory of differential equations with discontinuous right-hand side, several new sufficient conditions ensuring the finite-time synchronization of memristor-based chaotic neural networks are obtained by using analysis technique, finite time stability theorem and adding a suitable feedback controller. Besides, the upper bounds of the settling time of synchronization are estimated. Finally, a numerical example is given to show the effectiveness and feasibility of the obtained results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. A Real-Time Brain-Machine Interface Combining Motor Target and Trajectory Intent Using an Optimal Feedback Control Design

    PubMed Central

    Shanechi, Maryam M.; Williams, Ziv M.; Wornell, Gregory W.; Hu, Rollin C.; Powers, Marissa; Brown, Emery N.

    2013-01-01

    Real-time brain-machine interfaces (BMI) have focused on either estimating the continuous movement trajectory or target intent. However, natural movement often incorporates both. Additionally, BMIs can be modeled as a feedback control system in which the subject modulates the neural activity to move the prosthetic device towards a desired target while receiving real-time sensory feedback of the state of the movement. We develop a novel real-time BMI using an optimal feedback control design that jointly estimates the movement target and trajectory of monkeys in two stages. First, the target is decoded from neural spiking activity before movement initiation. Second, the trajectory is decoded by combining the decoded target with the peri-movement spiking activity using an optimal feedback control design. This design exploits a recursive Bayesian decoder that uses an optimal feedback control model of the sensorimotor system to take into account the intended target location and the sensory feedback in its trajectory estimation from spiking activity. The real-time BMI processes the spiking activity directly using point process modeling. We implement the BMI in experiments consisting of an instructed-delay center-out task in which monkeys are presented with a target location on the screen during a delay period and then have to move a cursor to it without touching the incorrect targets. We show that the two-stage BMI performs more accurately than either stage alone. Correct target prediction can compensate for inaccurate trajectory estimation and vice versa. The optimal feedback control design also results in trajectories that are smoother and have lower estimation error. The two-stage decoder also performs better than linear regression approaches in offline cross-validation analyses. Our results demonstrate the advantage of a BMI design that jointly estimates the target and trajectory of movement and more closely mimics the sensorimotor control system. PMID:23593130

  5. Methane oxidation behind reflected shock waves: Ignition delay times measured by pressure and flame band emission

    NASA Technical Reports Server (NTRS)

    Brabbs, T. A.; Robertson, T. F.

    1986-01-01

    Ignition delay data were recorded for three methane-oxygen-argon mixtures (phi = 0.5, 1.0, 2.0) for the temperature range 1500 to 1920 K. Quiet pressure trances enabled us to obtain delay times for the start of the experimental pressure rise. These times were in good agreement with those obtained from the flame band emission at 3700 A. The data correlated well with the oxygen and methane dependence of Lifshitz, but showed a much stronger temperature dependence (phi = 0.5 delta E = 51.9, phi = 1.0 delta = 58.8, phi = 2.0 delta E = 58.7 Kcal). The effect of probe location on the delay time measurement was studied. It appears that the probe located 83 mm from the reflecting surface measured delay times which may not be related to the initial temperature and pressure. It was estimated that for a probe located 7 mm from the reflecting surface, the measured delay time would be about 10 microseconds too short, and it was suggested that delay times less than 100 microsecond should not be used. The ignition period was defined as the time interval between start of the experimental pressure rise and 50 percent of the ignition pressure. This time interval was measured for three gas mixtures and found to be similar (40 to 60 micro sec) for phi = 1.0 and 0.5 but much longer (100 to 120) microsecond for phi = 2.0. It was suggested that the ignition period would be very useful to the kinetic modeler in judging the agreement between experimental and calculated delay times.

  6. Time-delayed transition of normal-to-abnormal glow in pin-to-water discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, S.-Y.; Byeon, Y.-S.; Yoo, S.

    2016-08-15

    Time-delayed transition of normal-to-abnormal glow was investigated in discharge between spoke-like pins and ultrapure water by applying AC-driven power at a frequency of 14.3 kHz at atmospheric pressure. The normal-to-abnormal transition can be recognized from the slope changes of current density, gas temperature, electrode temperature, and OH density. The slope changes took place in tens of minutes rather than just after discharge, in other words, the transition was delayed. The time-delay of the transition was caused by the interaction between the plasma and water. The plasma affected water properties, and then the water affected plasma properties.

  7. Semiclassical relation between open trajectories and periodic orbits for the Wigner time delay.

    PubMed

    Kuipers, Jack; Sieber, Martin

    2008-04-01

    The Wigner time delay of a classically chaotic quantum system can be expressed semiclassically either in terms of pairs of scattering trajectories that enter and leave the system or in terms of the periodic orbits trapped inside the system. We show how these two pictures are related on the semiclassical level. We start from the semiclassical formula with the scattering trajectories and derive from it all terms in the periodic orbit formula for the time delay. The main ingredient in this calculation are correlations between scattering trajectories which are due to trajectories that approach the trapped periodic orbits closely. The equivalence between the two pictures is also demonstrated by considering correlation functions of the time delay. A corresponding calculation for the conductance gives no periodic orbit contributions in leading order.

  8. Global exponential stability for switched memristive neural networks with time-varying delays.

    PubMed

    Xin, Youming; Li, Yuxia; Cheng, Zunshui; Huang, Xia

    2016-08-01

    This paper considers the problem of exponential stability for switched memristive neural networks (MNNs) with time-varying delays. Different from most of the existing papers, we model a memristor as a continuous system, and view switched MNNs as switched neural networks with uncertain time-varying parameters. Based on average dwell time technique, mode-dependent average dwell time technique and multiple Lyapunov-Krasovskii functional approach, two conditions are derived to design the switching signal and guarantee the exponential stability of the considered neural networks, which are delay-dependent and formulated by linear matrix inequalities (LMIs). Finally, the effectiveness of the theoretical results is demonstrated by two numerical examples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Microwave time delays for the dual L-C-band feed system

    NASA Technical Reports Server (NTRS)

    Chen, J.

    1989-01-01

    A new dual-frequency feed system at Goldstone is designed to receive the Phobos spacecraft signal at L-band (1668 + or - 40 MHz) and transmit to the spacecraft at C-band (5008.75 + or - 5.00 MHz) simultaneously. Hence, calculations of the time delay from the C-band range calibration coupler to the phase center of the L-C dual feed and back to the L-band range calibration coupler are required to correct the range measurements. Time delays of the elements in the dual-frequency feed system are obtained mostly from computer calculations and partly from experimental measurements. The method used and results obtained are described.

  10. Towards an atrio-ventricular delay optimization assessed by a computer model for cardiac resynchronization therapy

    NASA Astrophysics Data System (ADS)

    Ojeda, David; Le Rolle, Virginie; Tse Ve Koon, Kevin; Thebault, Christophe; Donal, Erwan; Hernández, Alfredo I.

    2013-11-01

    In this paper, lumped-parameter models of the cardiovascular system, the cardiac electrical conduction system and a pacemaker are coupled to generate mitral ow pro les for di erent atrio-ventricular delay (AVD) con gurations, in the context of cardiac resynchronization therapy (CRT). First, we perform a local sensitivity analysis of left ventricular and left atrial parameters on mitral ow characteristics, namely E and A wave amplitude, mitral ow duration, and mitral ow time integral. Additionally, a global sensitivity analysis over all model parameters is presented to screen for the most relevant parameters that a ect the same mitral ow characteristics. Results provide insight on the in uence of left ventricle and atrium in uence on mitral ow pro les. This information will be useful for future parameter estimation of the model that could reproduce the mitral ow pro les and cardiovascular hemodynamics of patients undergoing AVD optimization during CRT.

  11. Discovery of time-delayed gene regulatory networks based on temporal gene expression profiling

    PubMed Central

    Li, Xia; Rao, Shaoqi; Jiang, Wei; Li, Chuanxing; Xiao, Yun; Guo, Zheng; Zhang, Qingpu; Wang, Lihong; Du, Lei; Li, Jing; Li, Li; Zhang, Tianwen; Wang, Qing K

    2006-01-01

    Background It is one of the ultimate goals for modern biological research to fully elucidate the intricate interplays and the regulations of the molecular determinants that propel and characterize the progression of versatile life phenomena, to name a few, cell cycling, developmental biology, aging, and the progressive and recurrent pathogenesis of complex diseases. The vast amount of large-scale and genome-wide time-resolved data is becoming increasing available, which provides the golden opportunity to unravel the challenging reverse-engineering problem of time-delayed gene regulatory networks. Results In particular, this methodological paper aims to reconstruct regulatory networks from temporal gene expression data by using delayed correlations between genes, i.e., pairwise overlaps of expression levels shifted in time relative each other. We have thus developed a novel model-free computational toolbox termed TdGRN (Time-delayed Gene Regulatory Network) to address the underlying regulations of genes that can span any unit(s) of time intervals. This bioinformatics toolbox has provided a unified approach to uncovering time trends of gene regulations through decision analysis of the newly designed time-delayed gene expression matrix. We have applied the proposed method to yeast cell cycling and human HeLa cell cycling and have discovered most of the underlying time-delayed regulations that are supported by multiple lines of experimental evidence and that are remarkably consistent with the current knowledge on phase characteristics for the cell cyclings. Conclusion We established a usable and powerful model-free approach to dissecting high-order dynamic trends of gene-gene interactions. We have carefully validated the proposed algorithm by applying it to two publicly available cell cycling datasets. In addition to uncovering the time trends of gene regulations for cell cycling, this unified approach can also be used to study the complex gene regulations related to

  12. Time-optimal control with finite bandwidth

    NASA Astrophysics Data System (ADS)

    Hirose, M.; Cappellaro, P.

    2018-04-01

    Time-optimal control theory provides recipes to achieve quantum operations with high fidelity and speed, as required in quantum technologies such as quantum sensing and computation. While technical advances have achieved the ultrastrong driving regime in many physical systems, these capabilities have yet to be fully exploited for the precise control of quantum systems, as other limitations, such as the generation of higher harmonics or the finite response time of the control apparatus, prevent the implementation of theoretical time-optimal control. Here we present a method to achieve time-optimal control of qubit systems that can take advantage of fast driving beyond the rotating wave approximation. We exploit results from time-optimal control theory to design driving protocols that can be implemented with realistic, finite-bandwidth control fields, and we find a relationship between bandwidth limitations and achievable control fidelity.

  13. Optimal timing in biological processes

    USGS Publications Warehouse

    Williams, B.K.; Nichols, J.D.

    1984-01-01

    A general approach for obtaining solutions to a class of biological optimization problems is provided. The general problem is one of determining the appropriate time to take some action, when the action can be taken only once during some finite time frame. The approach can also be extended to cover a number of other problems involving animal choice (e.g., mate selection, habitat selection). Returns (assumed to index fitness) are treated as random variables with time-specific distributions, and can be either observable or unobservable at the time action is taken. In the case of unobservable returns, the organism is assumed to base decisions on some ancillary variable that is associated with returns. Optimal policies are derived for both situations and their properties are discussed. Various extensions are also considered, including objective functions based on functions of returns other than the mean, nonmonotonic relationships between the observable variable and returns; possible death of the organism before action is taken; and discounting of future returns. A general feature of the optimal solutions for many of these problems is that an organism should be very selective (i.e., should act only when returns or expected returns are relatively high) at the beginning of the time frame and should become less and less selective as time progresses. An example of the application of optimal timing to a problem involving the timing of bird migration is discussed, and a number of other examples for which the approach is applicable are described.

  14. Adaptive developmental delay in Chagas disease vectors: an evolutionary ecology approach.

    PubMed

    Menu, Frédéric; Ginoux, Marine; Rajon, Etienne; Lazzari, Claudio R; Rabinovich, Jorge E

    2010-05-25

    The developmental time of vector insects is important in population dynamics, evolutionary biology, epidemiology and in their responses to global climatic change. In the triatomines (Triatominae, Reduviidae), vectors of Chagas disease, evolutionary ecology concepts, which may allow for a better understanding of their biology, have not been applied. Despite delay in the molting in some individuals observed in triatomines, no effort was made to explain this variability. We applied four methods: (1) an e-mail survey sent to 30 researchers with experience in triatomines, (2) a statistical description of the developmental time of eleven triatomine species, (3) a relationship between development time pattern and climatic inter-annual variability, (4) a mathematical optimization model of evolution of developmental delay (diapause). 85.6% of responses informed on prolonged developmental times in 5(th) instar nymphs, with 20 species identified with remarkable developmental delays. The developmental time analysis showed some degree of bi-modal pattern of the development time of the 5(th) instars in nine out of eleven species but no trend between development time pattern and climatic inter-annual variability was observed. Our optimization model predicts that the developmental delays could be due to an adaptive risk-spreading diapause strategy, only if survival throughout the diapause period and the probability of random occurrence of "bad" environmental conditions are sufficiently high. Developmental delay may not be a simple non-adaptive phenotypic plasticity in development time, and could be a form of adaptive diapause associated to a physiological mechanism related to the postponement of the initiation of reproduction, as an adaptation to environmental stochasticity through a spreading of risk (bet-hedging) strategy. We identify a series of parameters that can be measured in the field and laboratory to test this hypothesis. The importance of these findings is discussed in

  15. Impact of time delay on the dynamics of SEIR epidemic model using cellular automata

    NASA Astrophysics Data System (ADS)

    Sharma, Natasha; Gupta, Arvind Kumar

    2017-04-01

    The delay of an infectious disease is significant when aiming to predict its strength and spreading patterns. In this paper the SEIR ​(susceptible-exposed-infected-recovered) epidemic spread with time delay is analyzed through a two-dimensional cellular automata model. The time delay corresponding to the infectious span, predominantly, includes death during the latency period in due course of infection. The advancement of whole system is described by SEIR transition function complemented with crucial factors like inhomogeneous population distribution, birth and disease independent mortality. Moreover, to reflect more realistic population dynamics some stochastic parameters like population movement and connections at local level are also considered. The existence and stability of disease free equilibrium is investigated. Two prime behavioral patterns of disease dynamics is found depending on delay. The critical value of delay, beyond which there are notable variations in spread patterns, is computed. The influence of important parameters affecting the disease dynamics on basic reproduction number is also examined. The results obtained show that delay plays an affirmative role to control disease progression in an infected host.

  16. On the optimal identification of tag sets in time-constrained RFID configurations.

    PubMed

    Vales-Alonso, Javier; Bueno-Delgado, María Victoria; Egea-López, Esteban; Alcaraz, Juan José; Pérez-Mañogil, Juan Manuel

    2011-01-01

    In Radio Frequency Identification facilities the identification delay of a set of tags is mainly caused by the random access nature of the reading protocol, yielding a random identification time of the set of tags. In this paper, the cumulative distribution function of the identification time is evaluated using a discrete time Markov chain for single-set time-constrained passive RFID systems, namely those ones where a single group of tags is assumed to be in the reading area and only for a bounded time (sojourn time) before leaving. In these scenarios some tags in a set may leave the reader coverage area unidentified. The probability of this event is obtained from the cumulative distribution function of the identification time as a function of the sojourn time. This result provides a suitable criterion to minimize the probability of losing tags. Besides, an identification strategy based on splitting the set of tags in smaller subsets is also considered. Results demonstrate that there are optimal splitting configurations that reduce the overall identification time while keeping the same probability of losing tags.

  17. Telepresence, time delay, and adaptation

    NASA Technical Reports Server (NTRS)

    Held, Richard; Durlach, Nathaniel

    1989-01-01

    Displays are now being used extensively throughout the society. More and more time is spent watching television, movies, computer screens, etc. Furthermore, in an increasing number of cases, the observer interacts with the display and plays the role of operator as well as observer. To a large extent, the normal behavior in the normal environment can also be thought of in these same terms. Taking liberties with Shakespeare, it might be said, all the world's a display and all the individuals in it are operators in and on the display. Within this general context of interactive display systems, a discussion is began with a conceptual overview of a particular class of such systems, namely, teleoperator systems. The notion is considered of telepresence and the factors that limit telepresence, including decorrelation between the: (1) motor output of the teleoperator as sensed directly via the kinesthetic/tactual system, and (2) the motor output of the teleoperator as sensed indirectly via feedback from the slave robot, i.e., via a visual display of the motor actions of the slave robot. Finally, the deleterious effect of time delay (a particular decorrelation) on sensory-motor adaptation (an important phenomenon related to telepresence) is examined.

  18. Enhanced robust finite-time passivity for Markovian jumping discrete-time BAM neural networks with leakage delay.

    PubMed

    Sowmiya, C; Raja, R; Cao, Jinde; Rajchakit, G; Alsaedi, Ahmed

    2017-01-01

    This paper is concerned with the problem of enhanced results on robust finite-time passivity for uncertain discrete-time Markovian jumping BAM delayed neural networks with leakage delay. By implementing a proper Lyapunov-Krasovskii functional candidate, the reciprocally convex combination method together with linear matrix inequality technique, several sufficient conditions are derived for varying the passivity of discrete-time BAM neural networks. An important feature presented in our paper is that we utilize the reciprocally convex combination lemma in the main section and the relevance of that lemma arises from the derivation of stability by using Jensen's inequality. Further, the zero inequalities help to propose the sufficient conditions for finite-time boundedness and passivity for uncertainties. Finally, the enhancement of the feasible region of the proposed criteria is shown via numerical examples with simulation to illustrate the applicability and usefulness of the proposed method.

  19. The hyperbolic step potential: Anti-bound states, SUSY partners and Wigner time delays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gadella, M.; Kuru, Ş.; Negro, J., E-mail: jnegro@fta.uva.es

    We study the scattering produced by a one dimensional hyperbolic step potential, which is exactly solvable and shows an unusual interest because of its asymmetric character. The analytic continuation of the scattering matrix in the momentum representation has a branch cut and an infinite number of simple poles on the negative imaginary axis which are related with the so called anti-bound states. This model does not show resonances. Using the wave functions of the anti-bound states, we obtain supersymmetric (SUSY) partners which are the series of Rosen–Morse II potentials. We have computed the Wigner reflection and transmission time delays formore » the hyperbolic step and such SUSY partners. Our results show that the more bound states a partner Hamiltonian has the smaller is the time delay. We also have evaluated time delays for the hyperbolic step potential in the classical case and have obtained striking similitudes with the quantum case. - Highlights: • The scattering matrix of hyperbolic step potential is studied. • The scattering matrix has a branch cut and an infinite number of poles. • The poles are associated to anti-bound states. • Susy partners using antibound states are computed. • Wigner time delays for the hyperbolic step and partner potentials are compared.« less

  20. Delayed reverberation through time windows as a key to cerebellar function.

    PubMed

    Kistler, W M; Leo van Hemmen, J

    1999-11-01

    We present a functional model of the cerebellum comprising cerebellar cortex, inferior olive, deep cerebellar nuclei, and brain stem nuclei. The discerning feature of the model being time coding, we consistently describe the system in terms of postsynaptic potentials, synchronous action potentials, and propagation delays. We show by means of detailed single-neuron modeling that (i) Golgi cells can fulfill a gating task in that they form short and well-defined time windows within which granule cells can reach firing threshold, thus organizing neuronal activity in discrete 'time slices', and that (ii) rebound firing in cerebellar nuclei cells is a robust mechanism leading to a delayed reverberation of Purkinje cell activity through cerebellar-reticular projections back to the cerebellar cortex. Computer simulations of the whole cerebellar network consisting of several thousand neurons reveal that reverberation in conjunction with long-term plasticity at the parallel fiber-Purkinje cell synapses enables the system to learn, store, and recall spatio-temporal patterns of neuronal activity. Climbing fiber spikes act both as a synchronization and as a teacher signal, not as an error signal. They are due to intrinsic oscillatory properties of inferior olivary neurons and to delayed reverberation within the network. In addition to clear experimental predictions the present theory sheds new light on a number of experimental observation such as the synchronicity of climbing fiber spikes and provides a novel explanation of how the cerebellum solves timing tasks on a time scale of several hundreds of milliseconds.

  1. Delay decomposition approach to [Formula: see text] filtering analysis of genetic oscillator networks with time-varying delays.

    PubMed

    Revathi, V M; Balasubramaniam, P

    2016-04-01

    In this paper, the [Formula: see text] filtering problem is treated for N coupled genetic oscillator networks with time-varying delays and extrinsic molecular noises. Each individual genetic oscillator is a complex dynamical network that represents the genetic oscillations in terms of complicated biological functions with inner or outer couplings denote the biochemical interactions of mRNAs, proteins and other small molecules. Throughout the paper, first, by constructing appropriate delay decomposition dependent Lyapunov-Krasovskii functional combined with reciprocal convex approach, improved delay-dependent sufficient conditions are obtained to ensure the asymptotic stability of the filtering error system with a prescribed [Formula: see text] performance. Second, based on the above analysis, the existence of the designed [Formula: see text] filters are established in terms of linear matrix inequalities with Kronecker product. Finally, numerical examples including a coupled Goodwin oscillator model are inferred to illustrate the effectiveness and less conservatism of the proposed techniques.

  2. Stability Criteria for Differential Equations with Variable Time Delays

    ERIC Educational Resources Information Center

    Schley, D.; Shail, R.; Gourley, S. A.

    2002-01-01

    Time delays are an important aspect of mathematical modelling, but often result in highly complicated equations which are difficult to treat analytically. In this paper it is shown how careful application of certain undergraduate tools such as the Method of Steps and the Principle of the Argument can yield significant results. Certain delay…

  3. Stability analysis for uncertain switched neural networks with time-varying delay.

    PubMed

    Shen, Wenwen; Zeng, Zhigang; Wang, Leimin

    2016-11-01

    In this paper, stability for a class of uncertain switched neural networks with time-varying delay is investigated. By exploring the mode-dependent properties of each subsystem, all the subsystems are categorized into stable and unstable ones. Based on Lyapunov-like function method and average dwell time technique, some delay-dependent sufficient conditions are derived to guarantee the exponential stability of considered uncertain switched neural networks. Compared with general results, our proposed approach distinguishes the stable and unstable subsystems rather than viewing all subsystems as being stable, thus getting less conservative criteria. Finally, two numerical examples are provided to show the validity and the advantages of the obtained results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Using time-delayed mutual information to discover and interpret temporal correlation structure in complex populations

    NASA Astrophysics Data System (ADS)

    Albers, D. J.; Hripcsak, George

    2012-03-01

    This paper addresses how to calculate and interpret the time-delayed mutual information (TDMI) for a complex, diversely and sparsely measured, possibly non-stationary population of time-series of unknown composition and origin. The primary vehicle used for this analysis is a comparison between the time-delayed mutual information averaged over the population and the time-delayed mutual information of an aggregated population (here, aggregation implies the population is conjoined before any statistical estimates are implemented). Through the use of information theoretic tools, a sequence of practically implementable calculations are detailed that allow for the average and aggregate time-delayed mutual information to be interpreted. Moreover, these calculations can also be used to understand the degree of homo or heterogeneity present in the population. To demonstrate that the proposed methods can be used in nearly any situation, the methods are applied and demonstrated on the time series of glucose measurements from two different subpopulations of individuals from the Columbia University Medical Center electronic health record repository, revealing a picture of the composition of the population as well as physiological features.

  5. Time optimal paths for high speed maneuvering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reister, D.B.; Lenhart, S.M.

    1993-01-01

    Recent theoretical results have completely solved the problem of determining the minimum length path for a vehicle with a minimum turning radius moving from an initial configuration to a final configuration. Time optimal paths for a constant speed vehicle are a subset of the minimum length paths. This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed vehicle. The time optimal paths consist of sequences of axes of circles and straight lines. The maximum principle introduces concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature ofmore » the time optimal paths. We explore the properties of the optimal paths and present some experimental results for a mobile robot following an optimal path.« less

  6. Rank One Strange Attractors in Periodically Kicked Predator-Prey System with Time-Delay

    NASA Astrophysics Data System (ADS)

    Yang, Wenjie; Lin, Yiping; Dai, Yunxian; Zhao, Huitao

    2016-06-01

    This paper is devoted to the study of the problem of rank one strange attractor in a periodically kicked predator-prey system with time-delay. Our discussion is based on the theory of rank one maps formulated by Wang and Young. Firstly, we develop the rank one chaotic theory to delayed systems. It is shown that strange attractors occur when the delayed system undergoes a Hopf bifurcation and encounters an external periodic force. Then we use the theory to the periodically kicked predator-prey system with delay, deriving the conditions for Hopf bifurcation and rank one chaos along with the results of numerical simulations.

  7. Synchronization of Heterogeneous Oscillators by Noninvasive Time-Delayed Cross Coupling.

    PubMed

    Jüngling, Thomas; Fischer, Ingo; Schöll, Eckehard; Just, Wolfram

    2015-11-06

    We demonstrate that nonidentical systems, in particular, nonlinear oscillators with different time scales, can be synchronized if a mutual coupling via time-delayed control signals is implemented. Each oscillator settles on an unstable state, say a fixed point or an unstable periodic orbit, with a coupling force which vanishes in the long time limit. We present the underlying theoretical considerations and numerical simulations, and, moreover, demonstrate the concept experimentally in nonlinear electronic oscillators.

  8. Amplitude death and synchronized states in nonlinear time-delay systems coupled through mean-field diffusion

    NASA Astrophysics Data System (ADS)

    Banerjee, Tanmoy; Biswas, Debabrata

    2013-12-01

    We explore and experimentally demonstrate the phenomena of amplitude death (AD) and the corresponding transitions through synchronized states that lead to AD in coupled intrinsic time-delayed hyperchaotic oscillators interacting through mean-field diffusion. We identify a novel synchronization transition scenario leading to AD, namely transitions among AD, generalized anticipatory synchronization (GAS), complete synchronization (CS), and generalized lag synchronization (GLS). This transition is mediated by variation of the difference of intrinsic time-delays associated with the individual systems and has no analogue in non-delayed systems or coupled oscillators with coupling time-delay. We further show that, for equal intrinsic time-delays, increasing coupling strength results in a transition from the unsynchronized state to AD state via in-phase (complete) synchronized states. Using Krasovskii-Lyapunov theory, we derive the stability conditions that predict the parametric region of occurrence of GAS, GLS, and CS; also, using a linear stability analysis, we derive the condition of occurrence of AD. We use the error function of proper synchronization manifold and a modified form of the similarity function to provide the quantitative support to GLS and GAS. We demonstrate all the scenarios in an electronic circuit experiment; the experimental time-series, phase-plane plots, and generalized autocorrelation function computed from the experimental time series data are used to confirm the occurrence of all the phenomena in the coupled oscillators.

  9. Effect of the scattering delay on time-dependent photon migration in turbid media.

    PubMed

    Yaroslavsky, I V; Yaroslavsky, A N; Tuchin, V V; Schwarzmaier, H J

    1997-09-01

    We modified the diffusion approximation of the time-dependent radiative transfer equation to account for a finite scattering delay time. Under the usual assumptions of the diffusion approximation, the effect of the scattering delay leads to a simple renormalization of the light velocity that appears in the diffusion equation. Accuracy of the model was evaluated by comparison with Monte Carlo simulations in the frequency domain for a semi-infinite geometry. A good agreement is demonstrated for both matched and mismatched boundary conditions when the distance from the source is sufficiently large. The modified diffusion model predicts that the neglect of the scattering delay when the optical properties of the turbid material are derived from normalized frequency- or time-domain measurements should result in an underestimation of the absorption coefficient and an overestimation of the transport coefficient. These observations are consistent with the published experimental data.

  10. Cross-cultural comparisons of delay discounting of gain and loss.

    PubMed

    Ishii, Keiko; Gang, Lili; Takahashi, Taiki

    2016-11-01

    People generally tend to discount future outcomes in favor of smaller but immediate gains (i.e., delay discounting). The present research examined cultural similarities and differences in delay discounting of gain and loss between Chinese and Japanese, based on a q-exponential model of intertemporal choice. Using a hypothetical situation, we asked 65 Japanese participants and 51 Chinese participants to choose between receiving (or paying) a different amount of money immediately or with a specified delay (1 week, 2 weeks, 1 month, 6 months, 1 year, 5 years, and 25 years). For each delay, participants completed a series of 40 binary choices for gain or loss. Regardless of cultures, the q-exponential model was the optimal model. Both impulsivity and time-inconsistency were higher for future gains than for future losses. In addition to the cultural similarities, Chinese participants discounted future gains and losses more steeply than did Japanese. In contrast, Japanese participants were more time-inconsistent in delay discounting than were Chinese, suggesting that the reduction in their subjective value depended relatively on delay.

  11. Fixed-base simulator study of the effect of time delays in visual cues on pilot tracking performance

    NASA Technical Reports Server (NTRS)

    Queijo, M. J.; Riley, D. R.

    1975-01-01

    Factors were examined which determine the amount of time delay acceptable in the visual feedback loop in flight simulators. Acceptable time delays are defined as delays which significantly affect neither the results nor the manner in which the subject 'flies' the simulator. The subject tracked a target aircraft as it oscillated sinusoidally in a vertical plane only. The pursuing aircraft was permitted five degrees of freedom. Time delays of from 0.047 to 0.297 second were inserted in the visual feedback loop. A side task was employed to maintain the workload constant and to insure that the pilot was fully occupied during the experiment. Tracking results were obtained for 17 aircraft configurations having different longitudinal short-period characteristics. Results show a positive correlation between improved handling qualities and a longer acceptable time delay.

  12. Improved synchronization criteria for time-delayed chaotic Lur'e systems using sampled-data control

    NASA Astrophysics Data System (ADS)

    Duan, Wenyong; Li, Yan; Fu, Xiaorong; Du, Baozhu

    2017-02-01

    This paper is concerned with the synchronization for a class of time-delayed chaotic Lur’e systems using sampled-data control. Both of time-varying and time-invariant delays are considered. New criteria are proposed in terms of linear matrix inequalities (LMIs) by employing a modified LKF combined with the delay-fraction theory and some novel terms. The criteria are less conservative than some previous ones and a longer sampling period is achieved under the new results. Furthermore, the derived conditions are employed to design a sampled-data controller. The desired controller gain matrix can be obtained by means of the LMI approach. Finally, a numerical examples and simulations on Chua’s circuit is presented to show the effectiveness of the proposed approach.

  13. Transition Delay in Hypersonic Boundary Layers via Optimal Perturbations

    NASA Technical Reports Server (NTRS)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei

    2016-01-01

    The effect of nonlinear optimal streaks on disturbance growth in a Mach 6 axisymmetric flow over a 7deg half-angle cone is investigated in an e ort to expand the range of available techniques for transition control. Plane-marching parabolized stability equations are used to characterize the boundary layer instability in the presence of azimuthally periodic streaks. The streaks are observed to stabilize nominally planar Mack mode instabilities, although oblique Mack mode disturbances are destabilized. Experimentally measured transition onset in the absence of any streaks correlates with an amplification factor of N = 6 for the planar Mack modes. For high enough streak amplitudes, the transition threshold of N = 6 is not reached by the Mack mode instabilities within the length of the cone, but subharmonic first mode instabilities, which are destabilized by the presence of the streaks, reach N = 6 near the end of the cone. These results suggest a passive flow control strategy of using micro vortex generators to induce streaks that would delay transition in hypersonic boundary layers.

  14. Wet tropospheric delays forecast based on Vienna Mapping Function time series analysis

    NASA Astrophysics Data System (ADS)

    Rzepecka, Zofia; Kalita, Jakub

    2016-04-01

    It is well known that the dry part of the zenith tropospheric delay (ZTD) is much easier to model than the wet part (ZTW). The aim of the research is applying stochastic modeling and prediction of ZTW using time series analysis tools. Application of time series analysis enables closer understanding of ZTW behavior as well as short-term prediction of future ZTW values. The ZTW data used for the studies were obtained from the GGOS service hold by Vienna technical University. The resolution of the data is six hours. ZTW for the years 2010 -2013 were adopted for the study. The International GNSS Service (IGS) permanent stations LAMA and GOPE, located in mid-latitudes, were admitted for the investigations. Initially the seasonal part was separated and modeled using periodic signals and frequency analysis. The prominent annual and semi-annual signals were removed using sines and consines functions. The autocorrelation of the resulting signal is significant for several days (20-30 samples). The residuals of this fitting were further analyzed and modeled with ARIMA processes. For both the stations optimal ARMA processes based on several criterions were obtained. On this basis predicted ZTW values were computed for one day ahead, leaving the white process residuals. Accuracy of the prediction can be estimated at about 3 cm.

  15. Delay and déjà vu: timing and repetition increase the power of false evidence.

    PubMed

    Wright, Deborah S; Wade, Kimberley A; Watson, Derrick G

    2013-08-01

    False images and videos can induce people to believe in and remember events that never happened. Using a novel method, we examined whether the timing of false evidence would influence its effect (Experiment 1) and determined the relationship between timing and repetition (Experiment 2). Subjects completed a hazard perception driving test and were falsely accused of cheating. Some subjects were shown a fake video or photograph of the cheating either after a 9-min delay (Experiment 1) or more than once with or without a delay (Experiment 2). Subjects were more likely to falsely believe that they had cheated and to provide details about how the cheating happened when the false evidence was delayed or repeated-especially when repeated over time-relative to controls. The results show that even a strikingly short delay between an event and when false evidence is disclosed can distort people's beliefs and that repeating false evidence over a brief delay fosters false beliefs more so than without a delay. These findings have theoretical implications for metacognitive models of autobiographical memory and practical implications for police interrogations.

  16. Stability and chaotification of vibration isolation floating raft systems with time-delayed feedback control.

    PubMed

    Li, Y L; Xu, D L; Fu, Y M; Zhou, J X

    2011-09-01

    This paper presents a systematic study on the stability of a two-dimensional vibration isolation floating raft system with a time-delayed feedback control. Based on the generalized Sturm criterion, the critical control gain for the delay-independent stability region and critical time delays for the stability switches are derived. The critical conditions can provide a theoretical guidance of chaotification design for line spectra reduction. Numerical simulations verify the correctness of the approach. Bifurcation analyses reveal that chaotification is more likely to occur in unstable region defined by these critical conditions, and the stiffness of the floating raft and mass ratio are the sensitive parameters to reduce critical control gain.

  17. LQG control of a deformable mirror adaptive optics system with time-delayed measurements

    NASA Astrophysics Data System (ADS)

    Anderson, David J.

    1991-12-01

    This thesis proposes a linear quadratic Gaussian (LQG) control law for a ground-based deformable mirror adaptive optics system. The incoming image wavefront is distorted, primarily in phase, due to the turbulent effects of the earth's atmosphere. The adaptive optics system attempts to compensate for the distortion with a deformable mirror. A Hartman wavefront sensor measures the degree of distortion in the image wavefront. The measurements are input to a Kalman filter which estimates the system states. The state estimates are processed by a linear quadratic regulator which generates the appropriate control voltages to apply to the deformable mirror actuators. The dynamics model for the atmospheric phase distortion consists of 14 Zernike coefficient states; each modeled as a first-order linear time-invariant shaping filter driven by zero-mean white Gaussian noise. The dynamics of the deformable mirror are also model as 14 Zernike coefficients with first-order deterministic dynamics. A significant reduction in total wavefront phase distortion is achieved in the presence of time-delayed measurements. Wavefront sensor sampling rate is the major factor limiting system performance. The Multimode Simulation for Optimal Filter Evaluation (MSOFE) software is the performance evaluation tool of choice for this research.

  18. Integrated Planning for Telepresence with Time Delays

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.; Rabe, Kenneth J.

    2006-01-01

    Integrated planning and execution of teleoperations in space with time delays is shown. The topics include: 1) The Problem; 2) Future Robot Surgery? 3) Approach Overview; 4) Robonaut; 5) Normal Planning and Execution; 6) Planner Context; 7) Implementation; 8) Use of JSHOP2; 9) Monitoring and Testing GUI; 10) Normal sequence: first the supervisor acts; 11) then the robot; 12) Robot might be late; 13) Supervisor can work ahead; 14) Deviations from Plan; 15) Robot State Change Example; 16) Accomplished goals skipped in replan; 17) Planning continuity; 18) Supervisor Deviation From Plan; 19) Intentional Deviation; and 20) Infeasible states.

  19. Internet Teleoperation of a Robot with Streaming Buffer System under Varying Time Delays

    NASA Astrophysics Data System (ADS)

    Park, Jahng-Hyon; Shin, Wanjae

    It is known that existence of irregular transmission time delay is a major bottleneck for application of advanced robot control schemes to internet telerobotic systems. In the internet teleoperation system, the irregular transmission time delay causes a critical problem, which includes instability and inaccuracy. This paper suggests a practical internet teleoperation system with streaming buffer system, which consists of a buffer, a buffer manager, and a control timer. The proposed system converts the irregular transmission time delay to a constant. So, the system effectively transmits the control input to a remote site to operate a robot stably and accurately. This feature enables short control input intervals. That means the entire system has a large control bandwidth. The validity of the proposed method is demonstrated by experiments of teleoperation from USC (University of Southern California in U. S.A.) to HYU (Hanyang Univ. in Korea) through the Internet. The proposed method is also demonstrated by experiments of teleoperation through the wireless internet.

  20. Stability switches of arbitrary high-order consensus in multiagent networks with time delays.

    PubMed

    Yang, Bo

    2013-01-01

    High-order consensus seeking, in which individual high-order dynamic agents share a consistent view of the objectives and the world in a distributed manner, finds its potential broad applications in the field of cooperative control. This paper presents stability switches analysis of arbitrary high-order consensus in multiagent networks with time delays. By employing a frequency domain method, we explicitly derive analytical equations that clarify a rigorous connection between the stability of general high-order consensus and the system parameters such as the network topology, communication time-delays, and feedback gains. Particularly, our results provide a general and a fairly precise notion of how increasing communication time-delay causes the stability switches of consensus. Furthermore, under communication constraints, the stability and robustness problems of consensus algorithms up to third order are discussed in details to illustrate our central results. Numerical examples and simulation results for fourth-order consensus are provided to demonstrate the effectiveness of our theoretical results.

  1. Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics.

    PubMed

    Lutz, Barry; Liang, Tinny; Fu, Elain; Ramachandran, Sujatha; Kauffman, Peter; Yager, Paul

    2013-07-21

    Lateral flow tests (LFTs) are an ingenious format for rapid and easy-to-use diagnostics, but they are fundamentally limited to assay chemistries that can be reduced to a single chemical step. In contrast, most laboratory diagnostic assays rely on multiple timed steps carried out by a human or a machine. Here, we use dissolvable sugar applied to paper to create programmable flow delays and present a paper network topology that uses these time delays to program automated multi-step fluidic protocols. Solutions of sucrose at different concentrations (10-70% of saturation) were added to paper strips and dried to create fluidic time delays spanning minutes to nearly an hour. A simple folding card format employing sugar delays was shown to automate a four-step fluidic process initiated by a single user activation step (folding the card); this device was used to perform a signal-amplified sandwich immunoassay for a diagnostic biomarker for malaria. The cards are capable of automating multi-step assay protocols normally used in laboratories, but in a rapid, low-cost, and easy-to-use format.

  2. Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics

    PubMed Central

    Lutz, Barry; Liang, Tinny; Fu, Elain; Ramachandran, Sujatha; Kauffman, Peter; Yager, Paul

    2013-01-01

    Lateral flow tests (LFTs) are an ingenious format for rapid and easy-to-use diagnostics, but they are fundamentally limited to assay chemistries that can be reduced to a single chemical step. In contrast, most laboratory diagnostic assays rely on multiple timed steps carried out by a human or a machine. Here, we use dissolvable sugar applied to paper to create programmable flow delays and present a paper network topology that uses these time delays to program automated multi-step fluidic protocols. Solutions of sucrose at different concentrations (10-70% of saturation) were added to paper strips and dried to create fluidic time delays spanning minutes to nearly an hour. A simple folding card format employing sugar delays was shown to automate a four-step fluidic process initiated by a single user activation step (folding the card); this device was used to perform a signal-amplified sandwich immunoassay for a diagnostic biomarker for malaria. The cards are capable of automating multi-step assay protocols normally used in laboratories, but in a rapid, low-cost, and easy-to-use format. PMID:23685876

  3. Robust stability of interval bidirectional associative memory neural network with time delays.

    PubMed

    Liao, Xiaofeng; Wong, Kwok-wo

    2004-04-01

    In this paper, the conventional bidirectional associative memory (BAM) neural network with signal transmission delay is intervalized in order to study the bounded effect of deviations in network parameters and external perturbations. The resultant model is referred to as a novel interval dynamic BAM (IDBAM) model. By combining a number of different Lyapunov functionals with the Razumikhin technique, some sufficient conditions for the existence of unique equilibrium and robust stability are derived. These results are fairly general and can be verified easily. To go further, we extend our investigation to the time-varying delay case. Some robust stability criteria for BAM with perturbations of time-varying delays are derived. Besides, our approach for the analysis allows us to consider several different types of activation functions, including piecewise linear sigmoids with bounded activations as well as the usual C1-smooth sigmoids. We believe that the results obtained have leading significance in the design and application of BAM neural networks.

  4. Subwavelength grating enabled on-chip ultra-compact optical true time delay line

    PubMed Central

    Wang, Junjia; Ashrafi, Reza; Adams, Rhys; Glesk, Ivan; Gasulla, Ivana; Capmany, José; Chen, Lawrence R.

    2016-01-01

    An optical true time delay line (OTTDL) is a basic photonic building block that enables many microwave photonic and optical processing operations. The conventional design for an integrated OTTDL that is based on spatial diversity uses a length-variable waveguide array to create the optical time delays, which can introduce complexities in the integrated circuit design. Here we report the first ever demonstration of an integrated index-variable OTTDL that exploits spatial diversity in an equal length waveguide array. The approach uses subwavelength grating waveguides in silicon-on-insulator (SOI), which enables the realization of OTTDLs having a simple geometry and that occupy a compact chip area. Moreover, compared to conventional wavelength-variable delay lines with a few THz operation bandwidth, our index-variable OTTDL has an extremely broad operation bandwidth practically exceeding several tens of THz, which supports operation for various input optical signals with broad ranges of central wavelength and bandwidth. PMID:27457024

  5. Subwavelength grating enabled on-chip ultra-compact optical true time delay line.

    PubMed

    Wang, Junjia; Ashrafi, Reza; Adams, Rhys; Glesk, Ivan; Gasulla, Ivana; Capmany, José; Chen, Lawrence R

    2016-07-26

    An optical true time delay line (OTTDL) is a basic photonic building block that enables many microwave photonic and optical processing operations. The conventional design for an integrated OTTDL that is based on spatial diversity uses a length-variable waveguide array to create the optical time delays, which can introduce complexities in the integrated circuit design. Here we report the first ever demonstration of an integrated index-variable OTTDL that exploits spatial diversity in an equal length waveguide array. The approach uses subwavelength grating waveguides in silicon-on-insulator (SOI), which enables the realization of OTTDLs having a simple geometry and that occupy a compact chip area. Moreover, compared to conventional wavelength-variable delay lines with a few THz operation bandwidth, our index-variable OTTDL has an extremely broad operation bandwidth practically exceeding several tens of THz, which supports operation for various input optical signals with broad ranges of central wavelength and bandwidth.

  6. Customization of the acoustic field produced by a piezoelectric array through interelement delays

    PubMed Central

    Chitnis, Parag V.; Barbone, Paul E.; Cleveland, Robin O.

    2008-01-01

    A method for producing a prescribed acoustic pressure field from a piezoelectric array was investigated. The array consisted of 170 elements placed on the inner surface of a 15 cm radius spherical cap. Each element was independently driven by using individual pulsers each capable of generating 1.2 kV. Acoustic field customization was achieved by independently controlling the time when each element was excited. The set of time delays necessary to produce a particular acoustic field was determined by using an optimization scheme. The acoustic field at the focal plane was simulated by using the angular spectrum method, and the optimization searched for the time delays that minimized the least squared difference between the magnitudes of the simulated and desired pressure fields. The acoustic field was shaped in two different ways: the −6 dB focal width was increased to different desired widths and the ring-shaped pressure distributions of various prescribed diameters were produced. For both cases, the set of delays resulting from the respective optimization schemes were confirmed to yield the desired pressure distributions by using simulations and measurements. The simulations, however, predicted peak positive pressures roughly half those obtained from the measurements, which was attributed to the exclusion of nonlinearity in the simulations. PMID:18537369

  7. Time Delay Embedding Increases Estimation Precision of Models of Intraindividual Variability

    ERIC Educational Resources Information Center

    von Oertzen, Timo; Boker, Steven M.

    2010-01-01

    This paper investigates the precision of parameters estimated from local samples of time dependent functions. We find that "time delay embedding," i.e., structuring data prior to analysis by constructing a data matrix of overlapping samples, increases the precision of parameter estimates and in turn statistical power compared to standard…

  8. A position- and time-sensitive photon-counting detector with delay- line read-out

    NASA Astrophysics Data System (ADS)

    Jagutzki, Ottmar; Dangendorf, Volker; Lauck, Ronald; Czasch, Achim; Milnes, James

    2007-05-01

    We have developed image intensifier tubes with delay-anode read-out for time- and position-sensitive photon counting. The timing precision is better than 1 ns with 1000x1000 pixels position resolution and up to one megacounts/s processing rate. Large format detectors of 40 and 75 mm active diameter with internal helical-wire delay-line anodes have been produced and specified. A different type of 40 and 25 mm tubes with semi-conducting screen for image charge read-out allow for an economic and robust tube design and for placing the read-out anodes outside the sealed housing. Two types of external delay-line anodes, i.e. pick-up electrodes for the image charge, have been tested. We present tests of the detector and anode performance. Due to the low background this technique is well suited for applications with very low light intensity and especially if a precise time tagging for each photon is required. As an example we present the application of scintillator read-out in time-of-flight (TOF) neutron radiography. Further applications so far are Fluorescence Life-time Microscopy (FLIM) and Astronomy.

  9. The giant acoustic atom - a single quantum system with a deterministic time delay

    NASA Astrophysics Data System (ADS)

    Guo, Lingzhen; Grimsmo, Arne; Frisk Kockum, Anton; Pletyukhov, Mikhail; Johansson, Göran

    2017-04-01

    We investigate the quantum dynamics of a single transmon qubit coupled to surface acoustic waves (SAWs) via two distant connection points. Since the acoustic speed is five orders of magnitude slower than the speed of light, the travelling time between the two connection points needs to be taken into account. Therefore, we treat the transmon qubit as a giant atom with a deterministic time delay. We find that the spontaneous emission of the system, formed by the giant atom and the SAWs between its connection points, initially follows a polynomial decay law instead of an exponential one, as would be the case for a small atom. We obtain exact analytical results for the scattering properties of the giant atom up to two-phonon processes by using a diagrammatic approach. The time delay gives rise to novel features in the reflection, transmission, power spectra, and second-order correlation functions of the system. Furthermore, we find the short-time dynamics of the giant atom for arbitrary drive strength by a numerically exact method for open quantum systems with a finite-time-delay feedback loop. L. G. acknowledges financial support from Carl-Zeiss Stiftung (0563-2.8/508/2).

  10. Development of a subway operation incident delay model using accelerated failure time approaches.

    PubMed

    Weng, Jinxian; Zheng, Yang; Yan, Xuedong; Meng, Qiang

    2014-12-01

    This study aims to develop a subway operational incident delay model using the parametric accelerated time failure (AFT) approach. Six parametric AFT models including the log-logistic, lognormal and Weibull models, with fixed and random parameters are built based on the Hong Kong subway operation incident data from 2005 to 2012, respectively. In addition, the Weibull model with gamma heterogeneity is also considered to compare the model performance. The goodness-of-fit test results show that the log-logistic AFT model with random parameters is most suitable for estimating the subway incident delay. First, the results show that a longer subway operation incident delay is highly correlated with the following factors: power cable failure, signal cable failure, turnout communication disruption and crashes involving a casualty. Vehicle failure makes the least impact on the increment of subway operation incident delay. According to these results, several possible measures, such as the use of short-distance and wireless communication technology (e.g., Wifi and Zigbee) are suggested to shorten the delay caused by subway operation incidents. Finally, the temporal transferability test results show that the developed log-logistic AFT model with random parameters is stable over time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Dwell time-based stabilisation of switched delay systems using free-weighting matrices

    NASA Astrophysics Data System (ADS)

    Koru, Ahmet Taha; Delibaşı, Akın; Özbay, Hitay

    2018-01-01

    In this paper, we present a quasi-convex optimisation method to minimise an upper bound of the dwell time for stability of switched delay systems. Piecewise Lyapunov-Krasovskii functionals are introduced and the upper bound for the derivative of Lyapunov functionals is estimated by free-weighting matrices method to investigate non-switching stability of each candidate subsystems. Then, a sufficient condition for the dwell time is derived to guarantee the asymptotic stability of the switched delay system. Once these conditions are represented by a set of linear matrix inequalities , dwell time optimisation problem can be formulated as a standard quasi-convex optimisation problem. Numerical examples are given to illustrate the improvements over previously obtained dwell time bounds. Using the results obtained in the stability case, we present a nonlinear minimisation algorithm to synthesise the dwell time minimiser controllers. The algorithm solves the problem with successive linearisation of nonlinear conditions.

  12. Optical delay encoding for fast timing and detector signal multiplexing in PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, Alexander M.; Levin, Craig S., E-mail: cslevin@stanford.edu; Molecular Imaging Program at Stanford

    2015-08-15

    Purpose: The large number of detector channels in modern positron emission tomography (PET) scanners poses a challenge in terms of readout electronics complexity. Multiplexing schemes are typically implemented to reduce the number of physical readout channels, but often result in performance degradation. Novel methods of multiplexing in PET must be developed to avoid this data degradation. The preservation of fast timing information is especially important for time-of-flight PET. Methods: A new multiplexing scheme based on encoding detector interaction events with a series of extremely fast overlapping optical pulses with precise delays is demonstrated in this work. Encoding events in thismore » way potentially allows many detector channels to be simultaneously encoded onto a single optical fiber that is then read out by a single digitizer. A two channel silicon photomultiplier-based prototype utilizing this optical delay encoding technique along with dual threshold time-over-threshold is demonstrated. Results: The optical encoding and multiplexing prototype achieves a coincidence time resolution of 160 ps full width at half maximum (FWHM) and an energy resolution of 13.1% FWHM at 511 keV with 3 × 3 × 5 mm{sup 3} LYSO crystals. All interaction information for both detectors, including timing, energy, and channel identification, is encoded onto a single optical fiber with little degradation. Conclusions: Optical delay encoding and multiplexing technology could lead to time-of-flight PET scanners with fewer readout channels and simplified data acquisition systems.« less

  13. Optimal Signal Processing of Frequency-Stepped CW Radar Data

    NASA Technical Reports Server (NTRS)

    Ybarra, Gary A.; Wu, Shawkang M.; Bilbro, Griff L.; Ardalan, Sasan H.; Hearn, Chase P.; Neece, Robert T.

    1995-01-01

    An optimal signal processing algorithm is derived for estimating the time delay and amplitude of each scatterer reflection using a frequency-stepped CW system. The channel is assumed to be composed of abrupt changes in the reflection coefficient profile. The optimization technique is intended to maximize the target range resolution achievable from any set of frequency-stepped CW radar measurements made in such an environment. The algorithm is composed of an iterative two-step procedure. First, the amplitudes of the echoes are optimized by solving an overdetermined least squares set of equations. Then, a nonlinear objective function is scanned in an organized fashion to find its global minimum. The result is a set of echo strengths and time delay estimates. Although this paper addresses the specific problem of resolving the time delay between the first two echoes, the derivation is general in the number of echoes. Performance of the optimization approach is illustrated using measured data obtained from an HP-X510 network analyzer. It is demonstrated that the optimization approach offers a significant resolution enhancement over the standard processing approach that employs an IFFT. Degradation in the performance of the algorithm due to suboptimal model order selection and the effects of additive white Gaussion noise are addressed.

  14. Optimal Signal Processing of Frequency-Stepped CW Radar Data

    NASA Technical Reports Server (NTRS)

    Ybarra, Gary A.; Wu, Shawkang M.; Bilbro, Griff L.; Ardalan, Sasan H.; Hearn, Chase P.; Neece, Robert T.

    1995-01-01

    An optimal signal processing algorithm is derived for estimating the time delay and amplitude of each scatterer reflection using a frequency-stepped CW system. The channel is assumed to be composed of abrupt changes in the reflection coefficient profile. The optimization technique is intended to maximize the target range resolution achievable from any set of frequency-stepped CW radar measurements made in such an environment. The algorithm is composed of an iterative two-step procedure. First, the amplitudes of the echoes are optimized by solving an overdetermined least squares set of equations. Then, a nonlinear objective function is scanned in an organized fashion to find its global minimum. The result is a set of echo strengths and time delay estimates. Although this paper addresses the specific problem of resolving the time delay between the two echoes, the derivation is general in the number of echoes. Performance of the optimization approach is illustrated using measured data obtained from an HP-851O network analyzer. It is demonstrated that the optimization approach offers a significant resolution enhancement over the standard processing approach that employs an IFFT. Degradation in the performance of the algorithm due to suboptimal model order selection and the effects of additive white Gaussion noise are addressed.

  15. Relations between Self Regulation, Future Time Perspective and the Delay of Gratification in University Students

    ERIC Educational Resources Information Center

    Avci, Suleyman

    2013-01-01

    The present study was conducted on 508 (331 female, 144 male) first grade university students in order to investigate the relations between self regulation, the future time perspectives, and the delay of gratification in the academic field. A future time perspective scale, an academic delay of gratification scale and a motivational strategies for…

  16. The spacing effect in immediate and delayed free recall.

    PubMed

    Godbole, Namrata R; Delaney, Peter F; Verkoeijen, Peter P J L

    2014-01-01

    Spacing repetitions improves learning relative to massing repetitions (the spacing effect). While most studies have examined the spacing effect at short retention intervals, there are contradictory claims about its fate at a delay. Certain empirical findings suggest that the spacing effect persists at a delay. However, a recent theoretical account proposes that in free recall the spacing effect should disappear at a delay. The few studies that have examined the spacing effect at a delay are sub-optimally designed, preventing an unbiased conclusion. The current study used incidental learning and controlled recency and encoding strategy in order to examine the effect of delay on the recall of spaced items within a free recall paradigm. The results demonstrated that the spacing effect persists after a delay. The results point to an important dissociation between intentional forgetting and context-change designs (which produce more forgetting of spaced than massed items) and the passage of time (which produces similar forgetting of spaced and massed items).

  17. Wave-variable framework for networked robotic systems with time delays and packet losses

    NASA Astrophysics Data System (ADS)

    Puah, Seng-Ming; Liu, Yen-Chen

    2017-05-01

    This paper investigates the problem of networked control system for nonlinear robotic manipulators under time delays and packet loss by using passivity technique. With the utilisation of wave variables and a passive remote controller, the networked robotic system is demonstrated to be stable with guaranteed position regulation. For the input/output signals of robotic systems, a discretisation block is exploited to convert continuous-time signals to discrete-time signals, and vice versa. Subsequently, we propose a packet management, called wave-variable modulation, to cope with the proposed networked robotic system under time delays and packet losses. Numerical examples and experimental results are presented to demonstrate the performance of the proposed wave-variable-based networked robotic systems.

  18. Predictor-based control for an inverted pendulum subject to networked time delay.

    PubMed

    Ghommam, J; Mnif, F

    2017-03-01

    The inverted pendulum is considered as a special class of underactuated mechanical systems with two degrees of freedom and a single control input. This mechanical configuration allows to transform the underactuated system into a nonlinear system that is referred to as the normal form, whose control design techniques for stabilization are well known. In the presence of time delays, these control techniques may result in inadequate behavior and may even cause finite escape time in the controlled system. In this paper, a constructive method is presented to design a controller for an inverted pendulum characterized by a time-delayed balance control. First, the partial feedback linearization control for the inverted pendulum is modified and coupled with a state predictor to compensate for the delay. Several coordinate transformations are processed to transform the estimated partial linearized system into an upper-triangular form. Second, nested saturation and backstepping techniques are combined to derive the control law of the transformed system that would complete the design of the whole control input. The effectiveness of the proposed technique is illustrated by numerical simulations. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Dynamical Behaviors in Complex-Valued Love Model With or Without Time Delays

    NASA Astrophysics Data System (ADS)

    Deng, Wei; Liao, Xiaofeng; Dong, Tao

    2017-12-01

    In this paper, a novel version of nonlinear model, i.e. a complex-valued love model with two time delays between two individuals in a love affair, has been proposed. A notable feature in this model is that we separate the emotion of one individual into real and imaginary parts to represent the variation and complexity of psychophysiological emotion in romantic relationship instead of just real domain, and make our model much closer to reality. This is because love is a complicated cognitive and social phenomenon, full of complexity, diversity and unpredictability, which refers to the coexistence of different aspects of feelings, states and attitudes ranging from joy and trust to sadness and disgust. By analyzing associated characteristic equation of linearized equations for our model, it is found that the Hopf bifurcation occurs when the sum of time delays passes through a sequence of critical value. Stability of bifurcating cyclic love dynamics is also derived by applying the normal form theory and the center manifold theorem. In addition, it is also shown that, for some appropriate chosen parameters, chaotic behaviors can appear even without time delay.

  20. Tuning algorithms for fractional order internal model controllers for time delay processes

    NASA Astrophysics Data System (ADS)

    Muresan, Cristina I.; Dutta, Abhishek; Dulf, Eva H.; Pinar, Zehra; Maxim, Anca; Ionescu, Clara M.

    2016-03-01

    This paper presents two tuning algorithms for fractional-order internal model control (IMC) controllers for time delay processes. The two tuning algorithms are based on two specific closed-loop control configurations: the IMC control structure and the Smith predictor structure. In the latter, the equivalency between IMC and Smith predictor control structures is used to tune a fractional-order IMC controller as the primary controller of the Smith predictor structure. Fractional-order IMC controllers are designed in both cases in order to enhance the closed-loop performance and robustness of classical integer order IMC controllers. The tuning procedures are exemplified for both single-input-single-output as well as multivariable processes, described by first-order and second-order transfer functions with time delays. Different numerical examples are provided, including a general multivariable time delay process. Integer order IMC controllers are designed in each case, as well as fractional-order IMC controllers. The simulation results show that the proposed fractional-order IMC controller ensures an increased robustness to modelling uncertainties. Experimental results are also provided, for the design of a multivariable fractional-order IMC controller in a Smith predictor structure for a quadruple-tank system.

  1. Approximation-based adaptive tracking control of pure-feedback nonlinear systems with multiple unknown time-varying delays.

    PubMed

    Wang, Min; Ge, Shuzhi Sam; Hong, Keum-Shik

    2010-11-01

    This paper presents adaptive neural tracking control for a class of non-affine pure-feedback systems with multiple unknown state time-varying delays. To overcome the design difficulty from non-affine structure of pure-feedback system, mean value theorem is exploited to deduce affine appearance of state variables x(i) as virtual controls α(i), and of the actual control u. The separation technique is introduced to decompose unknown functions of all time-varying delayed states into a series of continuous functions of each delayed state. The novel Lyapunov-Krasovskii functionals are employed to compensate for the unknown functions of current delayed state, which is effectively free from any restriction on unknown time-delay functions and overcomes the circular construction of controller caused by the neural approximation of a function of u and [Formula: see text] . Novel continuous functions are introduced to overcome the design difficulty deduced from the use of one adaptive parameter. To achieve uniformly ultimate boundedness of all the signals in the closed-loop system and tracking performance, control gains are effectively modified as a dynamic form with a class of even function, which makes stability analysis be carried out at the present of multiple time-varying delays. Simulation studies are provided to demonstrate the effectiveness of the proposed scheme.

  2. Generalized Projective Synchronization between Two Complex Networks with Time-Varying Coupling Delay

    NASA Astrophysics Data System (ADS)

    Sun, Mei; Zeng, Chang-Yan; Tian, Li-Xin

    2009-01-01

    Generalized projective synchronization (GPS) between two complex networks with time-varying coupling delay is investigated. Based on the Lyapunov stability theory, a nonlinear controller and adaptive updated laws are designed. Feasibility of the proposed scheme is proven in theory. Moreover, two numerical examples are presented, using the energy resource system and Lü's system [Physica A 382 (2007) 672] as the nodes of the networks. GPS between two energy resource complex networks with time-varying coupling delay is achieved. This study can widen the application range of the generalized synchronization methods and will be instructive for the demand-supply of energy resource in some regions of China.

  3. Causes of delay in door-to-balloon time in south-east Asian patients undergoing primary percutaneous coronary intervention.

    PubMed

    Sim, Wen Jun; Ang, An Shing; Tan, Mae Chyi; Xiang, Wen Wei; Foo, David; Loh, Kwok Kong; Jafary, Fahim Haider; Watson, Timothy James; Ong, Paul Jau Lueng; Ho, Hee Hwa

    2017-01-01

    To evaluate causes and impact of delay in the door-to-balloon (D2B) time for patients undergoing primary percutaneous coronary intervention (PPCI). From January 2009 to December 2012, 1268 patients (86% male, mean age of 58 ± 12 years) presented to our hospital for ST-elevation myocardial infarction (STEMI) and underwent PPCI. They were divided into two groups: Non-delay defined as D2B time ≤ 90 mins and delay group defined as D2B time > 90 mins. Data were collected retrospectively on baseline clinical characteristics, mode of presentation, angiographic findings, therapeutic modality and inhospital outcome. 202 patients had delay in D2B time. There were more female patients in the delay group. They were older and tend to self-present to hospital. They were less likely to be smokers and have a higher prevalence of prior MI. The incidence of posterior MI was higher in the delay group. They also had a higher incidence of triple vessel disease. The 3 most common reasons for D2B delay was delay in the emergency department (39%), atypical clinical presentation (37.6%) and unstable medical condition requiring stabilisation/computed tomographic imaging (26.7%). The inhospital mortality was numerically higher in the delay group (7.4% versus 4.8%, p = 0.12). Delay in D2B occurred in 16% of our patients undergoing PPCI. Several key factors for delay were identified and warrant further intervention.

  4. A dynamic IS-LM business cycle model with two time delays in capital accumulation equation

    NASA Astrophysics Data System (ADS)

    Zhou, Lujun; Li, Yaqiong

    2009-06-01

    In this paper, we analyze a augmented IS-LM business cycle model with the capital accumulation equation that two time delays are considered in investment processes according to Kalecki's idea. Applying stability switch criteria and Hopf bifurcation theory, we prove that time delays cause the equilibrium to lose or gain stability and Hopf bifurcation occurs.

  5. Teleseismic P-wave Delay Time Tomography of the southern Superior Province and Midcontinent Rift System (MRS) Region

    NASA Astrophysics Data System (ADS)

    Bollmann, T. A.; van der Lee, S.; Frederiksen, A. W.; Wolin, E.; Aleqabi, G. I.; Revenaugh, J.; Wiens, D. A.; Darbyshire, F. A.

    2014-12-01

    The Superior Province Rifting Earthscope Experiment (SPREE) and the northern midwest footprint of USArray's Transportable Array recorded continuous ground motion for a period of 2.5 years. From around 400 M>5.5 teleseismic earthquakes recorded at 337 stations, we measured body wave delay times for 255 of these earthquakes. The P wave delays are accumulated over more than 45 thousand wave paths with turning points in the lower mantle. We combine these delay times with a similar number delay times used in previous tomographic studies of the study region. The latter delay times stem from fewer stations, including Polaris and CNSN stations, and nearly a thousand earthquakes. We combine these two sets of delay times to image the three-dimensional distribution of seismic velocity variations beneath the southern Superior Province and surrounding provinces. This combined data coverage is illustrated in the accompanying figure for a total number of 447 stations . The coverage and the combined delays form the best configuration yet to image the three-dimensional distribution of seismic P and S-wave velocity variations beneath the southern Superior and surrounding provinces. Closely spaced stations (~12 km) along and across the MRS provide higher resolving power for lithospheric structure beneath the rift system. Conforming to expectations that the entire region is underlain by thick, cool lithosphere, a mean delay of -.55 +/- .54 s. This is very similar to the mean delays -.6s +/- .37s measured for this region before 2012. Event corrections range from -.2 +/-.54 s and correlate with tectonics for 80% of the earthquakes. An inversion of these nearly one hundred thousand P and around thirty thousand S-wave delay times for high-resolution P and S-wave velocity structure, respectively, does not show structures that are obviously related to the crustal signature of the MRS. None of structures imaged, align with or have a similar shape to the high Mid-continent Gravity Anomaly

  6. The WS transform for the Kuramoto model with distributed amplitudes, phase lag and time delay

    NASA Astrophysics Data System (ADS)

    Lohe, M. A.

    2017-12-01

    We apply the Watanabe-Strogatz (WS) transform to a generalized Kuramoto model with distributed parameters describing the amplitude of oscillation, phase lag, and time delay at each node of the system. The model has global coupling and identical frequencies, but allows for repulsive interactions at arbitrary nodes leading to conformist-contrarian phenomena together with variable amplitude and time-delay effects. We show how to determine the initial values of the WS system for any initial conditions for the Kuramoto system, and investigate the asymptotic behaviour of the WS variables. For the case of zero time delay the possible asymptotic configurations are determined by the sign of a single parameter μ which measures whether or not the attractive nodes dominate the repulsive nodes. If μ>0 the system completely synchronizes from general initial conditions, whereas if μ<0 one of two types of phase-locked synchronization occurs, depending on the initial values, while for μ=0 periodic solutions can occur. For the case of arbitrary non-uniform time delays we derive a stability condition for completely synchronized solutions.

  7. Break-before-make CMOS inverter for power-efficient delay implementation.

    PubMed

    Puhan, Janez; Raič, Dušan; Tuma, Tadej; Bűrmen, Árpád

    2014-01-01

    A modified static CMOS inverter with two inputs and two outputs is proposed to reduce short-circuit current in order to increment delay and reduce power overhead where slow operation is required. The circuit is based on bidirectional delay element connected in series with the PMOS and NMOS switching transistors. It provides differences in the dynamic response so that the direct-path current in the next stage is reduced. The switching transistors are never ON at the same time. Characteristics of various delay element implementations are presented and verified by circuit simulations. Global optimization procedure is used to obtain the most power-efficient transistor sizing. The performance of the modified CMOS inverter chain is compared to standard implementation for various delays. The energy (charge) per delay is reduced up to 40%. The use of the proposed delay element is demonstrated by implementing a low-power delay line and a leading-edge detector cell.

  8. Break-before-Make CMOS Inverter for Power-Efficient Delay Implementation

    PubMed Central

    Raič, Dušan

    2014-01-01

    A modified static CMOS inverter with two inputs and two outputs is proposed to reduce short-circuit current in order to increment delay and reduce power overhead where slow operation is required. The circuit is based on bidirectional delay element connected in series with the PMOS and NMOS switching transistors. It provides differences in the dynamic response so that the direct-path current in the next stage is reduced. The switching transistors are never ON at the same time. Characteristics of various delay element implementations are presented and verified by circuit simulations. Global optimization procedure is used to obtain the most power-efficient transistor sizing. The performance of the modified CMOS inverter chain is compared to standard implementation for various delays. The energy (charge) per delay is reduced up to 40%. The use of the proposed delay element is demonstrated by implementing a low-power delay line and a leading-edge detector cell. PMID:25538951

  9. Effect of processing time delay on the dose response of Kodak EDR2 film.

    PubMed

    Childress, Nathan L; Rosen, Isaac I

    2004-08-01

    Kodak EDR2 film is a widely used two-dimensional dosimeter for intensity modulated radiotherapy (IMRT) measurements. Our clinical use of EDR2 film for IMRT verifications revealed variations and uncertainties in dose response that were larger than expected, given that we perform film calibrations for every experimental measurement. We found that the length of time between film exposure and processing can affect the absolute dose response of EDR2 film by as much as 4%-6%. EDR2 films were exposed to 300 cGy using 6 and 18 MV 10 x 10 cm2 fields and then processed after time delays ranging from 2 min to 24 h. An ion chamber measured the relative dose for these film exposures. The ratio of optical density (OD) to dose stabilized after 3 h. Compared to its stable value, the film response was 4%-6% lower at 2 min and 1% lower at 1 h. The results of the 4 min and 1 h processing time delays were verified with a total of four different EDR2 film batches. The OD/dose response for XV2 films was consistent for time periods of 4 min and 1 h between exposure and processing. To investigate possible interactions of the processing time delay effect with dose, single EDR2 films were irradiated to eight different dose levels between 45 and 330 cGy using smaller 3 x 3 cm2 areas. These films were processed after time delays of 1, 3, and 6 h, using 6 and 18 MV photon qualities. The results at all dose levels were consistent, indicating that there is no change in the processing time delay effect for different doses. The difference in the time delay effect between the 6 and 18 MV measurements was negligible for all experiments. To rule out bias in selecting film regions for OD measurement, we compared the use of a specialized algorithm that systematically determines regions of interest inside the 10 x 10 cm2 exposure areas to manually selected regions of interest. There was a maximum difference of only 0.07% between the manually and automatically selected regions, indicating that the use of

  10. Controlling state explosion during automatic verification of delay-insensitive and delay-constrained VLSI systems using the POM verifier

    NASA Technical Reports Server (NTRS)

    Probst, D.; Jensen, L.

    1991-01-01

    Delay-insensitive VLSI systems have a certain appeal on the ground due to difficulties with clocks; they are even more attractive in space. We answer the question, is it possible to control state explosion arising from various sources during automatic verification (model checking) of delay-insensitive systems? State explosion due to concurrency is handled by introducing a partial-order representation for systems, and defining system correctness as a simple relation between two partial orders on the same set of system events (a graph problem). State explosion due to nondeterminism (chiefly arbitration) is handled when the system to be verified has a clean, finite recurrence structure. Backwards branching is a further optimization. The heart of this approach is the ability, during model checking, to discover a compact finite presentation of the verified system without prior composition of system components. The fully-implemented POM verification system has polynomial space and time performance on traditional asynchronous-circuit benchmarks that are exponential in space and time for other verification systems. We also sketch the generalization of this approach to handle delay-constrained VLSI systems.

  11. Use of Constant Time Delay and Attentional Responses with Adolescents.

    ERIC Educational Resources Information Center

    Wolery, Mark; And Others

    1991-01-01

    This study examined effectiveness of a constant time delay (CTD) procedure in teaching social studies and health facts to five adolescents with learning or behavioral disorders. Students were given praise with and without additional information. Results indicated CTD procedures were reliable and effective, and students acquired nontargeted as well…

  12. Multiplicity counting from fission detector signals with time delay effects

    NASA Astrophysics Data System (ADS)

    Nagy, L.; Pázsit, I.; Pál, L.

    2018-03-01

    In recent work, we have developed the theory of using the first three auto- and joint central moments of the currents of up to three fission chambers to extract the singles, doubles and triples count rates of traditional multiplicity counting (Pázsit and Pál, 2016; Pázsit et al., 2016). The objective is to elaborate a method for determining the fissile mass, neutron multiplication, and (α, n) neutron emission rate of an unknown assembly of fissile material from the statistics of the fission chamber signals, analogous to the traditional multiplicity counting methods with detectors in the pulse mode. Such a method would be an alternative to He-3 detector systems, which would be free from the dead time problems that would be encountered in high counting rate applications, for example the assay of spent nuclear fuel. A significant restriction of our previous work was that all neutrons born in a source event (spontaneous fission) were assumed to be detected simultaneously, which is not fulfilled in reality. In the present work, this restriction is eliminated, by assuming an independent, identically distributed random time delay for all neutrons arising from one source event. Expressions are derived for the same auto- and joint central moments of the detector current(s) as in the previous case, expressed with the singles, doubles, and triples (S, D and T) count rates. It is shown that if the time-dispersion of neutron detections is of the same order of magnitude as the detector pulse width, as they typically are in measurements of fast neutrons, the multiplicity rates can still be extracted from the moments of the detector current, although with more involved calibration factors. The presented formulae, and hence also the performance of the proposed method, are tested by both analytical models of the time delay as well as with numerical simulations. Methods are suggested also for the modification of the method for large time delay effects (for thermalised neutrons).

  13. Optimal timing of coronary angiography and potential intervention in non-ST-elevation acute coronary syndromes.

    PubMed

    Katritsis, Demosthenes G; Siontis, George C M; Kastrati, Adnan; van't Hof, Arnoud W J; Neumann, Franz-Josef; Siontis, Konstantinos C M; Ioannidis, John P A

    2011-01-01

    An invasive approach is superior to medical management for the treatment of patients with acute coronary syndromes without ST-segment elevation (NSTE-ACS), but the optimal timing of coronary angiography and subsequent intervention, if indicated, has not been settled. We conducted a meta-analysis of randomized trials addressing the optimal timing (early vs. delayed) of coronary angiography in NSTE-ACS. Four trials with 4013 patients were eligible (ABOARD, ELISA, ISAR-COOL, TIMACS), and data for longer follow-up periods than those published became available for this meta-analysis by the ELISA and ISAR-COOL investigators. The median time from admission or randomization to coronary angiography ranged from 1.16 to 14 h in the early and 20.8-86 h in the delayed strategy group. No statistically significant difference of risk of death [random effects risk ratio (RR) 0.85, 95% confidence interval (CI) 0.64-1.11] or myocardial infarction (MI) (RR 0.94, 95% CI 0.61-1.45) was detected between the two strategies. Early intervention significantly reduced the risk for recurrent ischaemia (RR 0.59, 95% CI 0.38-0.92, P = 0.02) and the duration of hospital stay (by 28%, 95% CI 22-35%, P < 0.001). Furthermore, decreased major bleeding events (RR 0.78, 95% CI 0.57-1.07, P = 0.13), and less major events (death, MI, or stroke) (RR 0.91, 95% CI 0.82-1.01, P = 0.09) were observed with the early strategy but these differences were not nominally significant. Early coronary angiography and potential intervention reduces the risk of recurrent ischaemia, and shortens hospital stay in patients with NSTE-ACS.

  14. Time delay and magnification centroid due to gravitational lensing by black holes and naked singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virbhadra, K. S.; Keeton, C. R.; Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854

    We model the massive dark object at the center of the Galaxy as a Schwarzschild black hole as well as Janis-Newman-Winicour naked singularities, characterized by the mass and scalar charge parameters, and study gravitational lensing (particularly time delay, magnification centroid, and total magnification) by them. We find that the lensing features are qualitatively similar (though quantitatively different) for Schwarzschild black holes, weakly naked, and marginally strongly naked singularities. However, the lensing characteristics of strongly naked singularities are qualitatively very different from those due to Schwarzschild black holes. The images produced by Schwarzschild black hole lenses and weakly naked and marginallymore » strongly naked singularity lenses always have positive time delays. On the other hand, strongly naked singularity lenses can give rise to images with positive, zero, or negative time delays. In particular, for a large angular source position the direct image (the outermost image on the same side as the source) due to strongly naked singularity lensing always has a negative time delay. We also found that the scalar field decreases the time delay and increases the total magnification of images; this result could have important implications for cosmology. As the Janis-Newman-Winicour metric also describes the exterior gravitational field of a scalar star, naked singularities as well as scalar star lenses, if these exist in nature, will serve as more efficient cosmic telescopes than regular gravitational lenses.« less

  15. Global Synchronization of Multiple Recurrent Neural Networks With Time Delays via Impulsive Interactions.

    PubMed

    Yang, Shaofu; Guo, Zhenyuan; Wang, Jun

    2017-07-01

    In this paper, new results on the global synchronization of multiple recurrent neural networks (NNs) with time delays via impulsive interactions are presented. Impulsive interaction means that a number of NNs communicate with each other at impulse instants only, while they are independent at the remaining time. The communication topology among NNs is not required to be always connected and can switch ON and OFF at different impulse instants. By using the concept of sequential connectivity and the properties of stochastic matrices, a set of sufficient conditions depending on time delays is derived to ascertain global synchronization of multiple continuous-time recurrent NNs. In addition, a counterpart on the global synchronization of multiple discrete-time NNs is also discussed. Finally, two examples are presented to illustrate the results.

  16. Global exponential stability of BAM neural networks with time-varying delays: The discrete-time case

    NASA Astrophysics Data System (ADS)

    Raja, R.; Marshal Anthoni, S.

    2011-02-01

    This paper deals with the problem of stability analysis for a class of discrete-time bidirectional associative memory (BAM) neural networks with time-varying delays. By employing the Lyapunov functional and linear matrix inequality (LMI) approach, a new sufficient conditions is proposed for the global exponential stability of discrete-time BAM neural networks. The proposed LMI based results can be easily checked by LMI control toolbox. Moreover, an example is also provided to demonstrate the effectiveness of the proposed method.

  17. The effects of resonances on time delay estimation for water leak detection in plastic pipes

    NASA Astrophysics Data System (ADS)

    Almeida, Fabrício C. L.; Brennan, Michael J.; Joseph, Phillip F.; Gao, Yan; Paschoalini, Amarildo T.

    2018-04-01

    In the use of acoustic correlation methods for water leak detection, sensors are placed at pipe access points either side of a suspected leak, and the peak in the cross-correlation function of the measured signals gives the time difference (delay) between the arrival times of the leak noise at the sensors. Combining this information with the speed at which the leak noise propagates along the pipe, gives an estimate for the location of the leak with respect to one of the measurement positions. It is possible for the structural dynamics of the pipe system to corrupt the time delay estimate, which results in the leak being incorrectly located. In this paper, data from test-rigs in the United Kingdom and Canada are used to demonstrate this phenomenon, and analytical models of resonators are coupled with a pipe model to replicate the experimental results. The model is then used to investigate which of the two commonly used correlation algorithms, the Basic Cross-Correlation (BCC) function or the Phase Transform (PHAT), is more robust to the undesirable structural dynamics of the pipe system. It is found that time delay estimation is highly sensitive to the frequency bandwidth over which the analysis is conducted. Moreover, it is found that the PHAT is particularly sensitive to the presence of resonances and can give an incorrect time delay estimate, whereas the BCC function is found to be much more robust, giving a consistently accurate time delay estimate for a range of dynamic conditions.

  18. Analysis of actuator delay and its effect on uncertainty quantification for real-time hybrid simulation

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Xu, Weijie; Guo, Tong; Chen, Kai

    2017-10-01

    Uncertainties in structure properties can result in different responses in hybrid simulations. Quantification of the effect of these uncertainties would enable researchers to estimate the variances of structural responses observed from experiments. This poses challenges for real-time hybrid simulation (RTHS) due to the existence of actuator delay. Polynomial chaos expansion (PCE) projects the model outputs on a basis of orthogonal stochastic polynomials to account for influences of model uncertainties. In this paper, PCE is utilized to evaluate effect of actuator delay on the maximum displacement from real-time hybrid simulation of a single degree of freedom (SDOF) structure when accounting for uncertainties in structural properties. The PCE is first applied for RTHS without delay to determine the order of PCE, the number of sample points as well as the method for coefficients calculation. The PCE is then applied to RTHS with actuator delay. The mean, variance and Sobol indices are compared and discussed to evaluate the effects of actuator delay on uncertainty quantification for RTHS. Results show that the mean and the variance of the maximum displacement increase linearly and exponentially with respect to actuator delay, respectively. Sensitivity analysis through Sobol indices also indicates the influence of the single random variable decreases while the coupling effect increases with the increase of actuator delay.

  19. Single-shot transient absorption spectroscopy with a 45  ps pump-probe time delay range.

    PubMed

    Wilson, Kelly S; Wong, Cathy Y

    2018-02-01

    We report a single-shot transient absorption apparatus that successfully uses a tilted pump pulse to spatially encode a 45 ps pump-probe time delay. The time delay range is significantly improved over other reported instruments by using a spatial light modulator to flatten the intensity of the excitation field at the sample position. The full time delay range of the instrument is demonstrated by measuring a long-lived dye. A signal-to-noise ratio of >35 is attained in 8 s. This advance will enable the measurement of excited state dynamics of systems that are not at structural equilibrium.

  20. Micromachined silicon acoustic delay line with improved structural stability and acoustic directivity for real-time photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Cho, Young; Kumar, Akhil; Xu, Song; Zou, Jun

    2017-03-01

    Recent studies have shown that micromachined silicon acoustic delay lines can provide a promising solution to achieve real-time photoacoustic tomography without the need for complex transducer arrays and data acquisition electronics. However, as its length increases to provide longer delay time, the delay line becomes more vulnerable to structural instability due to reduced mechanical stiffness. In addition, the small cross-section area of the delay line results in a large acoustic acceptance angle and therefore poor directivity. To address these two issues, this paper reports the design, fabrication, and testing of a new silicon acoustic delay line enhanced with 3D printed polymer micro linker structures. First, mechanical deformation of the silicon acoustic delay line (with and without linker structures) under gravity was simulated by using finite element method. Second, the acoustic crosstalk and acoustic attenuation caused by the polymer micro linker structures were evaluated with both numerical simulation and ultrasound transmission testing. The result shows that the use of the polymer micro linker structures significantly improves the structural stability of the silicon acoustic delay lines without creating additional acoustic attenuation and crosstalk. In addition, a new tapered design for the input terminal of the delay line was also investigate to improve its acoustic directivity by reducing the acoustic acceptance angle. These two improvements are expected to provide an effective solution to eliminate current limitations on the achievable acoustic delay time and out-of-plane imaging resolution of micromachined silicon acoustic delay line arrays.

  1. Piloted simulator study of allowable time delay in pitch flight control system of a transport airplane with negative static stability

    NASA Technical Reports Server (NTRS)

    Grantham, William D.; Smith, Paul M.; Person, Lee H., Jr.; Meyer, Robert T.; Tingas, Stephen A.

    1987-01-01

    A piloted simulation study was conducted to determine the permissible time delay in the flight control system of a 10-percent statically unstable transport airplane during cruise flight conditions. The math model used for the simulation was a derivative Lockheed L-1011 wide-body jet transport. Data were collected and analyzed from a total of 137 cruising flights in both calm- and turbulent-air conditions. Results of this piloted simulation study verify previous findings that show present military specifications for allowable control-system time delay may be too stringent when applied to transport-size airplanes. Also, the degree of handling-qualities degradation due to time delay is shown to be strongly dependent on the source of the time delay in an advanced flight control system. Maximum allowable time delay for each source of time delay in the control system, in addition to a less stringent overall maximum level of time delay, should be considered for large aircraft. Preliminary results also suggest that adverse effects of control-system time delay may be at least partially offset by variations in control gearing. It is recommended that the data base include different airplane baselines, control systems, and piloting tasks with many pilots participating, so that a reasonable set of limits for control-system time delay can be established to replace the military specification limits currently being used.

  2. Relation between Time Perspective and Delay Discounting: A Literature Review

    ERIC Educational Resources Information Center

    Teuscher, Ursina; Mitchell, Suzanne H.

    2011-01-01

    In this article, we examine the relation between delay discounting and future time perspective by reviewing how these concepts have been measured and quantified in order to assess their conceptual similarities. The extent to which the different measures are empirically related is reviewed by describing studies that have assessed both constructs…

  3. Modulating resonance behaviors by noise recycling in bistable systems with time delay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Zhongkui, E-mail: sunzk2008@gmail.com; Xu, Wei; Yang, Xiaoli

    In this paper, the impact of noise recycling on resonance behaviors is studied theoretically and numerically in a prototypical bistable system with delayed feedback. According to the interior cooperating and interacting activity of noise recycling, a theory has been proposed by reducing the non-Markovian problem into a two-state model, wherein both the master equation and the transition rates depend on not only the current state but also the earlier two states due to the recycling lag and the feedback delay. By virtue of this theory, the formulae of the power spectrum density and the linear response function have been foundmore » analytically. And the theoretical results are well verified by numerical simulations. It has been demonstrated that both the recycling lag and the feedback delay play a crucial role in the resonance behaviors. In addition, the results also suggest an alternative scheme to modulate or control the coherence or stochastic resonance in bistable systems with time delay.« less

  4. Solvability of some partial functional integrodifferential equations with finite delay and optimal controls in Banach spaces.

    PubMed

    Ezzinbi, Khalil; Ndambomve, Patrice

    2016-01-01

    In this work, we consider the control system governed by some partial functional integrodifferential equations with finite delay in Banach spaces. We assume that the undelayed part admits a resolvent operator in the sense of Grimmer. Firstly, some suitable conditions are established to guarantee the existence and uniqueness of mild solutions for a broad class of partial functional integrodifferential infinite dimensional control systems. Secondly, it is proved that, under generally mild conditions of cost functional, the associated Lagrange problem has an optimal solution, and that for each optimal solution there is a minimizing sequence of the problem that converges to the optimal solution with respect to the trajectory, the control, and the functional in appropriate topologies. Our results extend and complement many other important results in the literature. Finally, a concrete example of application is given to illustrate the effectiveness of our main results.

  5. Homeostatic plasticity for single node delay-coupled reservoir computing.

    PubMed

    Toutounji, Hazem; Schumacher, Johannes; Pipa, Gordon

    2015-06-01

    Supplementing a differential equation with delays results in an infinite-dimensional dynamical system. This property provides the basis for a reservoir computing architecture, where the recurrent neural network is replaced by a single nonlinear node, delay-coupled to itself. Instead of the spatial topology of a network, subunits in the delay-coupled reservoir are multiplexed in time along one delay span of the system. The computational power of the reservoir is contingent on this temporal multiplexing. Here, we learn optimal temporal multiplexing by means of a biologically inspired homeostatic plasticity mechanism. Plasticity acts locally and changes the distances between the subunits along the delay, depending on how responsive these subunits are to the input. After analytically deriving the learning mechanism, we illustrate its role in improving the reservoir's computational power. To this end, we investigate, first, the increase of the reservoir's memory capacity. Second, we predict a NARMA-10 time series, showing that plasticity reduces the normalized root-mean-square error by more than 20%. Third, we discuss plasticity's influence on the reservoir's input-information capacity, the coupling strength between subunits, and the distribution of the readout coefficients.

  6. Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers.

    PubMed

    Chin, Sanghoon; Thévenaz, Luc; Sancho, Juan; Sales, Salvador; Capmany, José; Berger, Perrine; Bourderionnet, Jérôme; Dolfi, Daniel

    2010-10-11

    We experimentally demonstrate a novel technique to process broadband microwave signals, using all-optically tunable true time delay in optical fibers. The configuration to achieve true time delay basically consists of two main stages: photonic RF phase shifter and slow light, based on stimulated Brillouin scattering in fibers. Dispersion properties of fibers are controlled, separately at optical carrier frequency and in the vicinity of microwave signal bandwidth. This way time delay induced within the signal bandwidth can be manipulated to correctly act as true time delay with a proper phase compensation introduced to the optical carrier. We completely analyzed the generated true time delay as a promising solution to feed phased array antenna for radar systems and to develop dynamically reconfigurable microwave photonic filters.

  7. Impulsive synchronization of stochastic reaction-diffusion neural networks with mixed time delays.

    PubMed

    Sheng, Yin; Zeng, Zhigang

    2018-07-01

    This paper discusses impulsive synchronization of stochastic reaction-diffusion neural networks with Dirichlet boundary conditions and hybrid time delays. By virtue of inequality techniques, theories of stochastic analysis, linear matrix inequalities, and the contradiction method, sufficient criteria are proposed to ensure exponential synchronization of the addressed stochastic reaction-diffusion neural networks with mixed time delays via a designed impulsive controller. Compared with some recent studies, the neural network models herein are more general, some restrictions are relaxed, and the obtained conditions enhance and generalize some published ones. Finally, two numerical simulations are performed to substantiate the validity and merits of the developed theoretical analysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. The ignition delay times of hydrogen/silan/air mixtures at low temperatures

    NASA Astrophysics Data System (ADS)

    Tropin, D. A.; Bochenkov, E. S.; Fedorov, A. V.

    2018-03-01

    In the paper the ignition delay times of hydrogen-silane-air mixtures at low pressures from 0.4 atm to 1 atm and mixture temperatures from 300 K to 900 K using the detailed kinetic mechanisms were calculated. It was shown that dependencies of ignition delay time on temperature are non-monotonic. In these dependences a region of "negative temperature coefficient" is presented. The effect of the mixture pressure and the silane concentration in the mixture on the length of this region was revealed. It was shown that the increasing of the silane concentration in the mixture, as well as the increasing the mixture pressure, leads to increasing of the "negative temperature coefficient" region length.

  9. Study on statistical breakdown delay time in argon gas using a W-band millimeter-wave gyrotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dongsung; Yu, Dongho; Choe, MunSeok

    2016-04-15

    In this study, we investigated plasma initiation delay times for argon volume breakdown at the W-band frequency regime. The threshold electric field is defined as the minimum electric field amplitude needed for plasma breakdown at various pressures. The measured statistical delay time showed an excellent agreement with the theoretical Gaussian distribution and the theoretically estimated formative delay time. Also, we demonstrated that the normalized effective electric field as a function of the product of pressure and formative time shows an outstanding agreement to that of 1D particle-in-cell simulation coupled with a Monte Carlo collision model [H. C. Kim and J.more » P. Verboncoeur, Phys. Plasmas 13, 123506 (2006)].« less

  10. Robust output feedback H∞ control for networked control systems based on the occurrence probabilities of time delays

    NASA Astrophysics Data System (ADS)

    Guo, Chenyu; Zhang, Weidong; Bao, Jie

    2012-02-01

    This article is concerned with the problem of robust H ∞ output feedback control for a kind of networked control systems with time-varying network-induced delays. Instead of using boundaries of time delays to represent all time delays, the occurrence probability of each time delay is considered in H∞ stability analysis and stabilisation. The problem addressed is the design of an output feedback controller such that, for all admissible uncertainties, the resulting closed-loop system is stochastically stable for the zero disturbance input and also simultaneously achieves a prescribed H∞ performance level. It is shown that less conservativeness is obtained. A set of linear matrix inequalities is given to solve the corresponding controller design problem. An example is provided to show the effectiveness and applicability of the proposed method.

  11. Synchronization of Coupled Dynamical Systems: Tolerance to Weak Connectivity and Arbitrarily Bounded Time-Varying Delays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Ziyang; Yang, Tao; Li, Guoqi

    We study synchronization of coupled linear systems over networks with weak connectivity and time-varying delays. We focus on the case that the internal dynamics are time-varying but non-expansive. Both uniformly connected and infinitely connected communication topologies are considered. A new concept of P-synchronization is introduced and we first show that global asymptotic P-synchronization can be achieved over directed networks with uniform joint connectivity and arbitrarily bounded delays. We then study the case of the infinitely jointly connected communication topology. In particular, for the undirected communication topologies, it turns out that the existence of a uniform time interval for the communicationmore » topology is not necessary and P-synchronization can be achieved when the time varying delays are arbitrarily bounded. Simulations are given to validate the theoretical results.« less

  12. A Distributed Algorithm for Economic Dispatch Over Time-Varying Directed Networks With Delays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Tao; Lu, Jie; Wu, Di

    In power system operation, economic dispatch problem (EDP) is designed to minimize the total generation cost while meeting the demand and satisfying generator capacity limits. This paper proposes an algorithm based on the gradient-push method to solve the EDP in a distributed manner over communication networks potentially with time-varying topologies and communication delays. It has been shown that the proposed method is guaranteed to solve the EDP if the time-varying directed communication network is uniformly jointly strongly connected. Moreover, the proposed algorithm is also able to handle arbitrarily large but bounded time delays on communication links. Numerical simulations are usedmore » to illustrate and validate the proposed algorithm.« less

  13. Distinguishing time-delayed causal interactions using convergent cross mapping

    PubMed Central

    Ye, Hao; Deyle, Ethan R.; Gilarranz, Luis J.; Sugihara, George

    2015-01-01

    An important problem across many scientific fields is the identification of causal effects from observational data alone. Recent methods (convergent cross mapping, CCM) have made substantial progress on this problem by applying the idea of nonlinear attractor reconstruction to time series data. Here, we expand upon the technique of CCM by explicitly considering time lags. Applying this extended method to representative examples (model simulations, a laboratory predator-prey experiment, temperature and greenhouse gas reconstructions from the Vostok ice core, and long-term ecological time series collected in the Southern California Bight), we demonstrate the ability to identify different time-delayed interactions, distinguish between synchrony induced by strong unidirectional-forcing and true bidirectional causality, and resolve transitive causal chains. PMID:26435402

  14. Multiple Time-Point 68Ga-PSMA I&T PET/CT for Characterization of Primary Prostate Cancer: Value of Early Dynamic and Delayed Imaging.

    PubMed

    Schmuck, Sebastian; Mamach, Martin; Wilke, Florian; von Klot, Christoph A; Henkenberens, Christoph; Thackeray, James T; Sohns, Jan M; Geworski, Lilli; Ross, Tobias L; Wester, Hans-Juergen; Christiansen, Hans; Bengel, Frank M; Derlin, Thorsten

    2017-06-01

    The aims of this study were to gain mechanistic insights into prostate cancer biology using dynamic imaging and to evaluate the usefulness of multiple time-point Ga-prostate-specific membrane antigen (PSMA) I&T PET/CT for the assessment of primary prostate cancer before prostatectomy. Twenty patients with prostate cancer underwent Ga-PSMA I&T PET/CT before prostatectomy. The PET protocol consisted of early dynamic pelvic imaging, followed by static scans at 60 and 180 minutes postinjection (p.i.). SUVs, time-activity curves, quantitative analysis based on a 2-tissue compartment model, Patlak analysis, histopathology, and Gleason grading were compared between prostate cancer and benign prostate gland. Primary tumors were identified on both early dynamic and delayed imaging in 95% of patients. Tracer uptake was significantly higher in prostate cancer compared with benign prostate tissue at any time point (P ≤ 0.0003) and increased over time. Consequently, the tumor-to-nontumor ratio within the prostate gland improved over time (2.8 at 10 minutes vs 17.1 at 180 minutes p.i.). Tracer uptake at both 60 and 180 minutes p.i. was significantly higher in patients with higher Gleason scores (P < 0.01). The influx rate (Ki) was higher in prostate cancer than in reference prostate gland (0.055 [r = 0.998] vs 0.017 [r = 0.996]). Primary prostate cancer is readily identified on early dynamic and static delayed Ga-PSMA ligand PET images. The tumor-to-nontumor ratio in the prostate gland improves over time, supporting a role of delayed imaging for optimal visualization of prostate cancer.

  15. Analysis and optimization of RC delay in vertical nanoplate FET

    NASA Astrophysics Data System (ADS)

    Woo, Changbeom; Ko, Kyul; Kim, Jongsu; Kim, Minsoo; Kang, Myounggon; Shin, Hyungcheol

    2017-10-01

    In this paper, we have analyzed short channel effects (SCEs) and RC delay with Vertical nanoplate FET (VNFET) using 3-D Technology computer-aided design (TCAD) simulation. The device is based on International Technology Road-map for Semiconductor (ITRS) 2013 recommendations, and it has initially gate length (LG) of 12.2 nm, channel thickness (Tch) of 4 nm, and spacer length (LSD) of 6 nm. To obtain improved performance by reducing RC delay, each dimension is adjusted (LG = 12.2 nm, Tch = 6 nm, LSD = 11.9 nm). It has each characteristic in this dimension (Ion/Ioff = 1.64 × 105, Subthreshold swing (S.S.) = 73 mV/dec, Drain-induced barrier lowering (DIBL) = 60 mV/V, and RC delay = 0.214 ps). Furthermore, with long shallow trench isolation (STI) length and thick insulator thickness (Ti), we can reduce RC delay from 0.214 ps to 0.163 ps. It is about a 23.8% reduction. Without decreasing drain current, there is a reduction of RC delay as reducing outer fringing capacitance (Cof). Finally, when source/drain spacer length is set to be different, we have verified RC delay to be optimum.

  16. Global exponential stability of BAM neural networks with time-varying delays and diffusion terms

    NASA Astrophysics Data System (ADS)

    Wan, Li; Zhou, Qinghua

    2007-11-01

    The stability property of bidirectional associate memory (BAM) neural networks with time-varying delays and diffusion terms are considered. By using the method of variation parameter and inequality technique, the delay-independent sufficient conditions to guarantee the uniqueness and global exponential stability of the equilibrium solution of such networks are established.

  17. Inherent Association Between Academic Delay of Gratification, Future Time Perspective, and Self-Regulated Learning

    ERIC Educational Resources Information Center

    Bembenutty, Hefer; Karabenick, Stuart A.

    2004-01-01

    We review the association between delay of gratification and future time perspective (FTP), which can be incorporated within the theoretical perspective of self-regulation of learning. We propose that delay of gratification in academic contexts, along with facilitative beliefs about the future, increase the likelihood of completing academic tasks.…

  18. Experimental relevance of global properties of time-delayed feedback control.

    PubMed

    von Loewenich, Clemens; Benner, Hartmut; Just, Wolfram

    2004-10-22

    We show by means of theoretical considerations and electronic circuit experiments that time-delayed feedback control suffers from severe global constraints if transitions at the control boundaries are discontinuous. Subcritical behavior gives rise to small basins of attraction and thus limits the control performance. The reported properties are, on the one hand, universal since the mechanism is based on general arguments borrowed from bifurcation theory and, on the other hand, directly visible in experimental time series.

  19. Stochastic resonance in a time-delayed feedback tristable system and its application in fault diagnosis

    NASA Astrophysics Data System (ADS)

    Shi, Peiming; Yuan, Danzhen; Han, Dongying; Zhang, Ying; Fu, Rongrong

    2018-06-01

    Stochastic resonance (SR) phenomena in a time-delayed feedback tristable system driven by Gaussian white noise are investigated by simulating the potential function, mean first-passage time (MFPT), and signal-to-noise ratio (SNR) of the system. Through the use of a short delay time, the generalized potential function and stationary probability density function (PDF) are obtained. The delay feedback term has a significant effect on both equations, and that the parameters b, c, and d have different effects on the three wells of the potential function. The MFPT is calculated, which plays an extremely important role in research on particles escape rates. We find that the delay feedback term can affect the noise enhanced stability (NES). In addition, the SR characteristics are studied by the index of SNR. The simulation demonstrates that SNR is a non-monotonic distributed and that the peak SNR value can be attained by adjusting the appropriate parameters. Finally, the proposed theory is combined with a variable step method and applied to the detection of high frequencies in experiments. The result indicates that the fault frequency can be identified, and that the energy of the fault signal can be enhanced under suitable delay feedback parameters.

  20. Simulation analysis of the effect of initial delay on flight delay diffusion

    NASA Astrophysics Data System (ADS)

    Que, Zufu; Yao, Hongguang; Yue, Wei

    2018-01-01

    The initial delay of the flight is an important factor affecting the spread of flight delays, so clarifying their relationship conduces to control flight delays in the aeronautical network. Through establishing a model of the chain aviation network and making simulation analysis of the effects of initial delay on the delay longitudinal diffusion, it’s found that the number of delayed airports in the air network, the total delay time and the average delay time of the delayed airport are generally positively correlated with the initial delay. This indicates that the occurrence of the initial delay should be avoided or reduced as much as possible to improve the punctuality of the flight.

  1. Using Video to Bridge the Gap Between Problem Behavior and a Delayed Time-out Procedure.

    PubMed

    Coppage, Sara; Meindl, James N

    2017-09-01

    Treatment plans focused on problem behavior often include punishment contingencies to decrease problem behavior. Immediate punishers are typically more effective than delayed punishers, but immediate delivery of a punisher is not always possible. Strategies need to be developed to increase the suppressive effects of delayed punishers. This study demonstrated the effectiveness of a treatment package involving replaying a video recording of problem behavior immediately before delivering a 15 min delayed time-out. This treatment package may prove to be an accessible and inexpensive strategy when using delayed punishers.

  2. Simultaneous learning of instantaneous and time-delayed genetic interactions using novel information theoretic scoring technique

    PubMed Central

    2012-01-01

    Background Understanding gene interactions is a fundamental question in systems biology. Currently, modeling of gene regulations using the Bayesian Network (BN) formalism assumes that genes interact either instantaneously or with a certain amount of time delay. However in reality, biological regulations, both instantaneous and time-delayed, occur simultaneously. A framework that can detect and model both these two types of interactions simultaneously would represent gene regulatory networks more accurately. Results In this paper, we introduce a framework based on the Bayesian Network (BN) formalism that can represent both instantaneous and time-delayed interactions between genes simultaneously. A novel scoring metric having firm mathematical underpinnings is also proposed that, unlike other recent methods, can score both interactions concurrently and takes into account the reality that multiple regulators can regulate a gene jointly, rather than in an isolated pair-wise manner. Further, a gene regulatory network (GRN) inference method employing an evolutionary search that makes use of the framework and the scoring metric is also presented. Conclusion By taking into consideration the biological fact that both instantaneous and time-delayed regulations can occur among genes, our approach models gene interactions with greater accuracy. The proposed framework is efficient and can be used to infer gene networks having multiple orders of instantaneous and time-delayed regulations simultaneously. Experiments are carried out using three different synthetic networks (with three different mechanisms for generating synthetic data) as well as real life networks of Saccharomyces cerevisiae, E. coli and cyanobacteria gene expression data. The results show the effectiveness of our approach. PMID:22691450

  3. Distributed optimisation problem with communication delay and external disturbance

    NASA Astrophysics Data System (ADS)

    Tran, Ngoc-Tu; Xiao, Jiang-Wen; Wang, Yan-Wu; Yang, Wu

    2017-12-01

    This paper investigates the distributed optimisation problem for the multi-agent systems (MASs) with the simultaneous presence of external disturbance and the communication delay. To solve this problem, a two-step design scheme is introduced. In the first step, based on the internal model principle, the internal model term is constructed to compensate the disturbance asymptotically. In the second step, a distributed optimisation algorithm is designed to solve the distributed optimisation problem based on the MASs with the simultaneous presence of disturbance and communication delay. Moreover, in the proposed algorithm, each agent interacts with its neighbours through the connected topology and the delay occurs during the information exchange. By utilising Lyapunov-Krasovskii functional, the delay-dependent conditions are derived for both slowly and fast time-varying delay, respectively, to ensure the convergence of the algorithm to the optimal solution of the optimisation problem. Several numerical simulation examples are provided to illustrate the effectiveness of the theoretical results.

  4. STRONG LENS TIME DELAY CHALLENGE. II. RESULTS OF TDC1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Kai; Treu, Tommaso; Marshall, Phil

    2015-02-10

    We present the results of the first strong lens time delay challenge. The motivation, experimental design, and entry level challenge are described in a companion paper. This paper presents the main challenge, TDC1, which consisted of analyzing thousands of simulated light curves blindly. The observational properties of the light curves cover the range in quality obtained for current targeted efforts (e.g., COSMOGRAIL) and expected from future synoptic surveys (e.g., LSST), and include simulated systematic errors. Seven teams participated in TDC1, submitting results from 78 different method variants. After describing each method, we compute and analyze basic statistics measuring accuracy (ormore » bias) A, goodness of fit χ{sup 2}, precision P, and success rate f. For some methods we identify outliers as an important issue. Other methods show that outliers can be controlled via visual inspection or conservative quality control. Several methods are competitive, i.e., give |A| < 0.03, P < 0.03, and χ{sup 2} < 1.5, with some of the methods already reaching sub-percent accuracy. The fraction of light curves yielding a time delay measurement is typically in the range f = 20%-40%. It depends strongly on the quality of the data: COSMOGRAIL-quality cadence and light curve lengths yield significantly higher f than does sparser sampling. Taking the results of TDC1 at face value, we estimate that LSST should provide around 400 robust time-delay measurements, each with P < 0.03 and |A| < 0.01, comparable to current lens modeling uncertainties. In terms of observing strategies, we find that A and f depend mostly on season length, while P depends mostly on cadence and campaign duration.« less

  5. Inference of time-delayed gene regulatory networks based on dynamic Bayesian network hybrid learning method

    PubMed Central

    Yu, Bin; Xu, Jia-Meng; Li, Shan; Chen, Cheng; Chen, Rui-Xin; Wang, Lei; Zhang, Yan; Wang, Ming-Hui

    2017-01-01

    Gene regulatory networks (GRNs) research reveals complex life phenomena from the perspective of gene interaction, which is an important research field in systems biology. Traditional Bayesian networks have a high computational complexity, and the network structure scoring model has a single feature. Information-based approaches cannot identify the direction of regulation. In order to make up for the shortcomings of the above methods, this paper presents a novel hybrid learning method (DBNCS) based on dynamic Bayesian network (DBN) to construct the multiple time-delayed GRNs for the first time, combining the comprehensive score (CS) with the DBN model. DBNCS algorithm first uses CMI2NI (conditional mutual inclusive information-based network inference) algorithm for network structure profiles learning, namely the construction of search space. Then the redundant regulations are removed by using the recursive optimization algorithm (RO), thereby reduce the false positive rate. Secondly, the network structure profiles are decomposed into a set of cliques without loss, which can significantly reduce the computational complexity. Finally, DBN model is used to identify the direction of gene regulation within the cliques and search for the optimal network structure. The performance of DBNCS algorithm is evaluated by the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in Escherichia coli, and compared with other state-of-the-art methods. The experimental results show the rationality of the algorithm design and the outstanding performance of the GRNs. PMID:29113310

  6. Inference of time-delayed gene regulatory networks based on dynamic Bayesian network hybrid learning method.

    PubMed

    Yu, Bin; Xu, Jia-Meng; Li, Shan; Chen, Cheng; Chen, Rui-Xin; Wang, Lei; Zhang, Yan; Wang, Ming-Hui

    2017-10-06

    Gene regulatory networks (GRNs) research reveals complex life phenomena from the perspective of gene interaction, which is an important research field in systems biology. Traditional Bayesian networks have a high computational complexity, and the network structure scoring model has a single feature. Information-based approaches cannot identify the direction of regulation. In order to make up for the shortcomings of the above methods, this paper presents a novel hybrid learning method (DBNCS) based on dynamic Bayesian network (DBN) to construct the multiple time-delayed GRNs for the first time, combining the comprehensive score (CS) with the DBN model. DBNCS algorithm first uses CMI2NI (conditional mutual inclusive information-based network inference) algorithm for network structure profiles learning, namely the construction of search space. Then the redundant regulations are removed by using the recursive optimization algorithm (RO), thereby reduce the false positive rate. Secondly, the network structure profiles are decomposed into a set of cliques without loss, which can significantly reduce the computational complexity. Finally, DBN model is used to identify the direction of gene regulation within the cliques and search for the optimal network structure. The performance of DBNCS algorithm is evaluated by the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in Escherichia coli , and compared with other state-of-the-art methods. The experimental results show the rationality of the algorithm design and the outstanding performance of the GRNs.

  7. Universal photonic quantum computation via time-delayed feedback

    PubMed Central

    Pichler, Hannes; Choi, Soonwon; Zoller, Peter; Lukin, Mikhail D.

    2017-01-01

    We propose and analyze a deterministic protocol to generate two-dimensional photonic cluster states using a single quantum emitter via time-delayed quantum feedback. As a physical implementation, we consider a single atom or atom-like system coupled to a 1D waveguide with a distant mirror, where guided photons represent the qubits, while the mirror allows the implementation of feedback. We identify the class of many-body quantum states that can be produced using this approach and characterize them in terms of 2D tensor network states. PMID:29073057

  8. Non-predictor control of a class of feedforward nonlinear systems with unknown time-varying delays

    NASA Astrophysics Data System (ADS)

    Koo, Min-Sung; Choi, Ho-Lim

    2016-08-01

    This paper generalises the several recent results on the control of feedforward time-delay nonlinear systems. First, in view of system formulation, there are unknown time-varying delays in both states and main control input. Also, the considered nonlinear system has extended feedforward nonlinearities. Second, in view of control solution, our proposed controller is a non-predictor feedback controller whereas smith-predictor type controllers are used in the several existing results. Moreover, our controller does not need any information on the unknown delays except their upper bounds. Thus, our result has certain merits in both system formulation and control solution perspective. The analysis and example are given for clear illustration.

  9. Gompertzian stochastic model with delay effect to cervical cancer growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazlan, Mazma Syahidatul Ayuni binti; Rosli, Norhayati binti; Bahar, Arifah

    2015-02-03

    In this paper, a Gompertzian stochastic model with time delay is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing the simulated result and the clinical data of cervical cancer growth. Low values of Mean-Square Error (MSE) of Gompertzian stochastic model with delay effect indicate good fits.

  10. Fixed-time synchronization of memristor-based BAM neural networks with time-varying discrete delay.

    PubMed

    Chen, Chuan; Li, Lixiang; Peng, Haipeng; Yang, Yixian

    2017-12-01

    This paper is devoted to studying the fixed-time synchronization of memristor-based BAM neural networks (MBAMNNs) with discrete delay. Fixed-time synchronization means that synchronization can be achieved in a fixed time for any initial values of the considered systems. In the light of the double-layer structure of MBAMNNs, we design two similar feedback controllers. Based on Lyapunov stability theories, several criteria are established to guarantee that the drive and response MBAMNNs can realize synchronization in a fixed time. In particular, by changing the parameters of controllers, this fixed time can be adjusted to some desired value in advance, irrespective of the initial values of MBAMNNs. Numerical simulations are included to validate the derived results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A Method for Measuring the Effective Throughput Time Delay in Simulated Displays Involving Manual Control

    NASA Technical Reports Server (NTRS)

    Jewell, W. F.; Clement, W. F.

    1984-01-01

    The advent and widespread use of the computer-generated image (CGI) device to simulate visual cues has a mixed impact on the realism and fidelity of flight simulators. On the plus side, CGIs provide greater flexibility in scene content than terrain boards and closed circuit television based visual systems, and they have the potential for a greater field of view. However, on the minus side, CGIs introduce into the visual simulation relatively long time delays. In many CGIs, this delay is as much as 200 ms, which is comparable to the inherent delay time of the pilot. Because most GCIs use multiloop processing and smoothing algorithms and are linked to a multiloop host computer, it is seldom possible to identify a unique throughput time delay, and it is therefore difficult to quantify the performance of the closed loop pilot simulator system relative to the real world task. A method to address these issues using the critical task tester is described. Some empirical results from applying the method are presented, and a novel technique for improving the performance of GCIs is discussed.

  12. Synchronization of Coupled Dynamical Systems: Tolerance to Weak Connectivity and Arbitrarily Bounded Time-Varying Delays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Ziyang; Yang, Tao; Li, Guoqi

    Here, we study synchronization of coupled linear systems over networks with weak connectivity and nonuniform time-varying delays. We focus on the case where the internal dynamics are time-varying but non-expansive (stable dynamics with a quadratic Lyapunov function). Both uniformly jointly connected and infinitely jointly connected communication topologies are considered. A new concept of quadratic synchronization is introduced. We first show that global asymptotic quadratic synchronization can be achieved over directed networks with uniform joint connectivity and arbitrarily bounded delays. We then study the case of infinitely jointly connected communication topology. In particular, for the undirected communication topologies, it turns outmore » that the existence of a uniform time interval for the jointly connected communication topology is not necessary and quadratic synchronization can be achieved when the time-varying nonuniform delays are arbitrarily bounded. Finally, simulation results are provided to validate the theoretical results.« less

  13. Synchronization of Coupled Dynamical Systems: Tolerance to Weak Connectivity and Arbitrarily Bounded Time-Varying Delays

    DOE PAGES

    Meng, Ziyang; Yang, Tao; Li, Guoqi; ...

    2017-09-18

    Here, we study synchronization of coupled linear systems over networks with weak connectivity and nonuniform time-varying delays. We focus on the case where the internal dynamics are time-varying but non-expansive (stable dynamics with a quadratic Lyapunov function). Both uniformly jointly connected and infinitely jointly connected communication topologies are considered. A new concept of quadratic synchronization is introduced. We first show that global asymptotic quadratic synchronization can be achieved over directed networks with uniform joint connectivity and arbitrarily bounded delays. We then study the case of infinitely jointly connected communication topology. In particular, for the undirected communication topologies, it turns outmore » that the existence of a uniform time interval for the jointly connected communication topology is not necessary and quadratic synchronization can be achieved when the time-varying nonuniform delays are arbitrarily bounded. Finally, simulation results are provided to validate the theoretical results.« less

  14. Effects of time delays on stability and Hopf bifurcation in a fractional ring-structured network with arbitrary neurons

    NASA Astrophysics Data System (ADS)

    Huang, Chengdai; Cao, Jinde; Xiao, Min; Alsaedi, Ahmed; Hayat, Tasawar

    2018-04-01

    This paper is comprehensively concerned with the dynamics of a class of high-dimension fractional ring-structured neural networks with multiple time delays. Based on the associated characteristic equation, the sum of time delays is regarded as the bifurcation parameter, and some explicit conditions for describing delay-dependent stability and emergence of Hopf bifurcation of such networks are derived. It reveals that the stability and bifurcation heavily relies on the sum of time delays for the proposed networks, and the stability performance of such networks can be markedly improved by selecting carefully the sum of time delays. Moreover, it is further displayed that both the order and the number of neurons can extremely influence the stability and bifurcation of such networks. The obtained criteria enormously generalize and improve the existing work. Finally, numerical examples are presented to verify the efficiency of the theoretical results.

  15. Manipulating flexible parts using a teleoperated system with time delay: An experiment

    NASA Technical Reports Server (NTRS)

    Kotoku, T.; Takamune, K.; Tanie, K.; Komoriya, K.; Matsuhira, N.; Asakura, M.; Bamba, H.

    1994-01-01

    This paper reports experiments involving the handling of flexible parts (e.g. wires) when using a teleoperated system with time delay. The task is principally a peg-in-hole task involving the wrapping of a wire around two posts on the task-board. It is difficult to estimate the effects of the flexible parts; therefore, on-line teleoperation is indispensable for this class of unpredictable task. We first propose a teleoperation system based on the predictive image display, then describe an experimental teleoperation testbed with a four second transmission time delay. Finally, we report on wire handling operations that were performed to evaluate the performance of this system. Those experiments will contribute to future advanced experiments for the MITI ETS-7 mission.

  16. Delay times of a LiDAR-guided precision sprayer control system

    USDA-ARS?s Scientific Manuscript database

    Accurate flow control systems in triggering sprays against detected targets are needed for precision variable-rate sprayer development. System delay times due to the laser-sensor data buffer, software operation, and hydraulic-mechanical component response were determined for a control system used fo...

  17. Improved result on stability analysis of discrete stochastic neural networks with time delay

    NASA Astrophysics Data System (ADS)

    Wu, Zhengguang; Su, Hongye; Chu, Jian; Zhou, Wuneng

    2009-04-01

    This Letter investigates the problem of exponential stability for discrete stochastic time-delay neural networks. By defining a novel Lyapunov functional, an improved delay-dependent exponential stability criterion is established in terms of linear matrix inequality (LMI) approach. Meanwhile, the computational complexity of the newly established stability condition is reduced because less variables are involved. Numerical example is given to illustrate the effectiveness and the benefits of the proposed method.

  18. Fine Output Voltage Control Method considering Time-Delay of Digital Inverter System for X-ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Shibata, Junji; Kaneko, Kazuhide; Ohishi, Kiyoshi; Ando, Itaru; Ogawa, Mina; Takano, Hiroshi

    This paper proposes a new output voltage control for an inverter system, which has time-delay and nonlinear load. In the next generation X-ray computed tomography of a medical device (X-ray CT) that uses the contactless power transfer method, the feedback signal often contains time-delay due to AD/DA conversion and error detection/correction time. When the PID controller of the inverter system is received the adverse effects of the time-delay, the controller often has an overshoot and a oscillated response. In order to overcome this problem, this paper proposes a compensation method based on the Smith predictor for an inverter system having a time-delay and the nonlinear loads which are the diode bridge rectifier and X-ray tube. The proposed compensation method consists of the hybrid Smith predictor system based on an equivalent analog circuit and DSP. The experimental results confirm the validity of the proposed system.

  19. Extreme fluctuations in stochastic network coordination with time delays

    NASA Astrophysics Data System (ADS)

    Hunt, D.; Molnár, F.; Szymanski, B. K.; Korniss, G.

    2015-12-01

    We study the effects of uniform time delays on the extreme fluctuations in stochastic synchronization and coordination problems with linear couplings in complex networks. We obtain the average size of the fluctuations at the nodes from the behavior of the underlying modes of the network. We then obtain the scaling behavior of the extreme fluctuations with system size, as well as the distribution of the extremes on complex networks, and compare them to those on regular one-dimensional lattices. For large complex networks, when the delay is not too close to the critical one, fluctuations at the nodes effectively decouple, and the limit distributions converge to the Fisher-Tippett-Gumbel density. In contrast, fluctuations in low-dimensional spatial graphs are strongly correlated, and the limit distribution of the extremes is the Airy density. Finally, we also explore the effects of nonlinear couplings on the stability and on the extremes of the synchronization landscapes.

  20. Stability and delay sensitivity of neutral fractional-delay systems.

    PubMed

    Xu, Qi; Shi, Min; Wang, Zaihua

    2016-08-01

    This paper generalizes the stability test method via integral estimation for integer-order neutral time-delay systems to neutral fractional-delay systems. The key step in stability test is the calculation of the number of unstable characteristic roots that is described by a definite integral over an interval from zero to a sufficient large upper limit. Algorithms for correctly estimating the upper limits of the integral are given in two concise ways, parameter dependent or independent. A special feature of the proposed method is that it judges the stability of fractional-delay systems simply by using rough integral estimation. Meanwhile, the paper shows that for some neutral fractional-delay systems, the stability is extremely sensitive to the change of time delays. Examples are given for demonstrating the proposed method as well as the delay sensitivity.