Time optimal paths for high speed maneuvering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reister, D.B.; Lenhart, S.M.
1993-01-01
Recent theoretical results have completely solved the problem of determining the minimum length path for a vehicle with a minimum turning radius moving from an initial configuration to a final configuration. Time optimal paths for a constant speed vehicle are a subset of the minimum length paths. This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed vehicle. The time optimal paths consist of sequences of axes of circles and straight lines. The maximum principle introduces concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature ofmore » the time optimal paths. We explore the properties of the optimal paths and present some experimental results for a mobile robot following an optimal path.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reister, D.B.; Lenhart, S.M.
Recent theoretical results have completely solved the problem of determining the minimum length path for a vehicle with a minimum turning radius moving from an initial configuration to a final configuration. Time optimal paths for a constant speed vehicle are a subset of the minimum length paths. This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed vehicle. The time optimal paths consist of sequences of axes of circles and straight lines. The maximum principle introduces concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature ofmore » the time optimal paths. We explore the properties of the optimal paths and present some experimental results for a mobile robot following an optimal path.« less
Energy-optimal path planning by stochastic dynamically orthogonal level-set optimization
NASA Astrophysics Data System (ADS)
Subramani, Deepak N.; Lermusiaux, Pierre F. J.
2016-04-01
A stochastic optimization methodology is formulated for computing energy-optimal paths from among time-optimal paths of autonomous vehicles navigating in a dynamic flow field. Based on partial differential equations, the methodology rigorously leverages the level-set equation that governs time-optimal reachability fronts for a given relative vehicle-speed function. To set up the energy optimization, the relative vehicle-speed and headings are considered to be stochastic and new stochastic Dynamically Orthogonal (DO) level-set equations are derived. Their solution provides the distribution of time-optimal reachability fronts and corresponding distribution of time-optimal paths. An optimization is then performed on the vehicle's energy-time joint distribution to select the energy-optimal paths for each arrival time, among all stochastic time-optimal paths for that arrival time. Numerical schemes to solve the reduced stochastic DO level-set equations are obtained, and accuracy and efficiency considerations are discussed. These reduced equations are first shown to be efficient at solving the governing stochastic level-sets, in part by comparisons with direct Monte Carlo simulations. To validate the methodology and illustrate its accuracy, comparisons with semi-analytical energy-optimal path solutions are then completed. In particular, we consider the energy-optimal crossing of a canonical steady front and set up its semi-analytical solution using a energy-time nested nonlinear double-optimization scheme. We then showcase the inner workings and nuances of the energy-optimal path planning, considering different mission scenarios. Finally, we study and discuss results of energy-optimal missions in a wind-driven barotropic quasi-geostrophic double-gyre ocean circulation.
Energy Optimal Path Planning: Integrating Coastal Ocean Modelling with Optimal Control
NASA Astrophysics Data System (ADS)
Subramani, D. N.; Haley, P. J., Jr.; Lermusiaux, P. F. J.
2016-02-01
A stochastic optimization methodology is formulated for computing energy-optimal paths from among time-optimal paths of autonomous vehicles navigating in a dynamic flow field. To set up the energy optimization, the relative vehicle speed and headings are considered to be stochastic, and new stochastic Dynamically Orthogonal (DO) level-set equations that govern their stochastic time-optimal reachability fronts are derived. Their solution provides the distribution of time-optimal reachability fronts and corresponding distribution of time-optimal paths. An optimization is then performed on the vehicle's energy-time joint distribution to select the energy-optimal paths for each arrival time, among all stochastic time-optimal paths for that arrival time. The accuracy and efficiency of the DO level-set equations for solving the governing stochastic level-set reachability fronts are quantitatively assessed, including comparisons with independent semi-analytical solutions. Energy-optimal missions are studied in wind-driven barotropic quasi-geostrophic double-gyre circulations, and in realistic data-assimilative re-analyses of multiscale coastal ocean flows. The latter re-analyses are obtained from multi-resolution 2-way nested primitive-equation simulations of tidal-to-mesoscale dynamics in the Middle Atlantic Bight and Shelbreak Front region. The effects of tidal currents, strong wind events, coastal jets, and shelfbreak fronts on the energy-optimal paths are illustrated and quantified. Results showcase the opportunities for longer-duration missions that intelligently utilize the ocean environment to save energy, rigorously integrating ocean forecasting with optimal control of autonomous vehicles.
On computing the global time-optimal motions of robotic manipulators in the presence of obstacles
NASA Technical Reports Server (NTRS)
Shiller, Zvi; Dubowsky, Steven
1991-01-01
A method for computing the time-optimal motions of robotic manipulators is presented that considers the nonlinear manipulator dynamics, actuator constraints, joint limits, and obstacles. The optimization problem is reduced to a search for the time-optimal path in the n-dimensional position space. A small set of near-optimal paths is first efficiently selected from a grid, using a branch and bound search and a series of lower bound estimates on the traveling time along a given path. These paths are further optimized with a local path optimization to yield the global optimal solution. Obstacles are considered by eliminating the collision points from the tessellated space and by adding a penalty function to the motion time in the local optimization. The computational efficiency of the method stems from the reduced dimensionality of the searched spaced and from combining the grid search with a local optimization. The method is demonstrated in several examples for two- and six-degree-of-freedom manipulators with obstacles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reister, D.B.
This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed unicycle. The time optimal paths consist of sequences of arcs of circles and straight lines. The maximum principle introduced concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature of the time optimal paths. 10 refs., 6 figs.
Optimal impulsive time-fixed orbital rendezvous and interception with path constraints
NASA Technical Reports Server (NTRS)
Taur, D.-R.; Prussing, J. E.; Coverstone-Carroll, V.
1990-01-01
Minimum-fuel, impulsive, time-fixed solutions are obtained for the problem of orbital rendezvous and interception with interior path constraints. Transfers between coplanar circular orbits in an inverse-square gravitational field are considered, subject to a circular path constraint representing a minimum or maximum permissible orbital radius. Primer vector theory is extended to incorporate path constraints. The optimal number of impulses, their times and positions, and the presence of initial or final coasting arcs are determined. The existence of constraint boundary arcs and boundary points is investigated as well as the optimality of a class of singular arc solutions. To illustrate the complexities introduced by path constraints, an analysis is made of optimal rendezvous in field-free space subject to a minimum radius constraint.
Energy-optimal path planning in the coastal ocean
NASA Astrophysics Data System (ADS)
Subramani, Deepak N.; Haley, Patrick J.; Lermusiaux, Pierre F. J.
2017-05-01
We integrate data-driven ocean modeling with the stochastic Dynamically Orthogonal (DO) level-set optimization methodology to compute and study energy-optimal paths, speeds, and headings for ocean vehicles in the Middle-Atlantic Bight (MAB) region. We hindcast the energy-optimal paths from among exact time-optimal paths for the period 28 August 2006 to 9 September 2006. To do so, we first obtain a data-assimilative multiscale reanalysis, combining ocean observations with implicit two-way nested multiresolution primitive-equation simulations of the tidal-to-mesoscale dynamics in the region. Second, we solve the reduced-order stochastic DO level-set partial differential equations (PDEs) to compute the joint probability of minimum arrival time, vehicle-speed time series, and total energy utilized. Third, for each arrival time, we select the vehicle-speed time series that minimize the total energy utilization from the marginal probability of vehicle-speed and total energy. The corresponding energy-optimal path and headings are obtained through the exact particle-backtracking equation. Theoretically, the present methodology is PDE-based and provides fundamental energy-optimal predictions without heuristics. Computationally, it is 3-4 orders of magnitude faster than direct Monte Carlo methods. For the missions considered, we analyze the effects of the regional tidal currents, strong wind events, coastal jets, shelfbreak front, and other local circulations on the energy-optimal paths. Results showcase the opportunities for vehicles that intelligently utilize the ocean environment to minimize energy usage, rigorously integrating ocean forecasting with optimal control of autonomous vehicles.
Fast exploration of an optimal path on the multidimensional free energy surface
Chen, Changjun
2017-01-01
In a reaction, determination of an optimal path with a high reaction rate (or a low free energy barrier) is important for the study of the reaction mechanism. This is a complicated problem that involves lots of degrees of freedom. For simple models, one can build an initial path in the collective variable space by the interpolation method first and then update the whole path constantly in the optimization. However, such interpolation method could be risky in the high dimensional space for large molecules. On the path, steric clashes between neighboring atoms could cause extremely high energy barriers and thus fail the optimization. Moreover, performing simulations for all the snapshots on the path is also time-consuming. In this paper, we build and optimize the path by a growing method on the free energy surface. The method grows a path from the reactant and extends its length in the collective variable space step by step. The growing direction is determined by both the free energy gradient at the end of the path and the direction vector pointing at the product. With fewer snapshots on the path, this strategy can let the path avoid the high energy states in the growing process and save the precious simulation time at each iteration step. Applications show that the presented method is efficient enough to produce optimal paths on either the two-dimensional or the twelve-dimensional free energy surfaces of different small molecules. PMID:28542475
Time optimized path-choice in the termite hunting ant Megaponera analis.
Frank, Erik T; Hönle, Philipp O; Linsenmair, K Eduard
2018-05-10
Trail network systems among ants have received a lot of scientific attention due to their various applications in problem solving of networks. Recent studies have shown that ants select the fastest available path when facing different velocities on different substrates, rather than the shortest distance. The progress of decision-making by these ants is determined by pheromone-based maintenance of paths, which is a collective decision. However, path optimization through individual decision-making remains mostly unexplored. Here we present the first study of time-optimized path selection via individual decision-making by scout ants. Megaponera analis scouts search for termite foraging sites and lead highly organized raid columns to them. The path of the scout determines the path of the column. Through installation of artificial roads around M. analis nests we were able to influence the pathway choice of the raids. After road installation 59% of all recorded raids took place completely or partly on the road, instead of the direct, i.e. distance-optimized, path through grass from the nest to the termites. The raid velocity on the road was more than double the grass velocity, the detour thus saved 34.77±23.01% of the travel time compared to a hypothetical direct path. The pathway choice of the ants was similar to a mathematical model of least time allowing us to hypothesize the underlying mechanisms regulating the behavior. Our results highlight the importance of individual decision-making in the foraging behavior of ants and show a new procedure of pathway optimization. © 2018. Published by The Company of Biologists Ltd.
Surface Navigation Using Optimized Waypoints and Particle Swarm Optimization
NASA Technical Reports Server (NTRS)
Birge, Brian
2013-01-01
The design priority for manned space exploration missions is almost always placed on human safety. Proposed manned surface exploration tasks (lunar, asteroid sample returns, Mars) have the possibility of astronauts traveling several kilometers away from a home base. Deviations from preplanned paths are expected while exploring. In a time-critical emergency situation, there is a need to develop an optimal home base return path. The return path may or may not be similar to the outbound path, and what defines optimal may change with, and even within, each mission. A novel path planning algorithm and prototype program was developed using biologically inspired particle swarm optimization (PSO) that generates an optimal path of traversal while avoiding obstacles. Applications include emergency path planning on lunar, Martian, and/or asteroid surfaces, generating multiple scenarios for outbound missions, Earth-based search and rescue, as well as human manual traversal and/or path integration into robotic control systems. The strategy allows for a changing environment, and can be re-tasked at will and run in real-time situations. Given a random extraterrestrial planetary or small body surface position, the goal was to find the fastest (or shortest) path to an arbitrary position such as a safe zone or geographic objective, subject to possibly varying constraints. The problem requires a workable solution 100% of the time, though it does not require the absolute theoretical optimum. Obstacles should be avoided, but if they cannot be, then the algorithm needs to be smart enough to recognize this and deal with it. With some modifications, it works with non-stationary error topologies as well.
Real-time Collision Avoidance and Path Optimizer for Semi-autonomous UAVs.
NASA Astrophysics Data System (ADS)
Hawary, A. F.; Razak, N. A.
2018-05-01
Whilst UAV offers a potentially cheaper and more localized observation platform than current satellite or land-based approaches, it requires an advance path planner to reveal its true potential, particularly in real-time missions. Manual control by human will have limited line-of-sights and prone to errors due to careless and fatigue. A good alternative solution is to equip the UAV with semi-autonomous capabilities that able to navigate via a pre-planned route in real-time fashion. In this paper, we propose an easy-and-practical path optimizer based on the classical Travelling Salesman Problem and adopts a brute force search method to re-optimize the route in the event of collisions using range finder sensor. The former utilizes a Simple Genetic Algorithm and the latter uses Nearest Neighbour algorithm. Both algorithms are combined to optimize the route and avoid collision at once. Although many researchers proposed various path planning algorithms, we find that it is difficult to integrate on a basic UAV model and often lacks of real-time collision detection optimizer. Therefore, we explore a practical benefit from this approach using on-board Arduino and Ardupilot controllers by manually emulating the motion of an actual UAV model prior to test on the flying site. The result showed that the range finder sensor provides a real-time data to the algorithm to find a collision-free path and eventually optimized the route successfully.
Modified dwell time optimization model and its applications in subaperture polishing.
Dong, Zhichao; Cheng, Haobo; Tam, Hon-Yuen
2014-05-20
The optimization of dwell time is an important procedure in deterministic subaperture polishing. We present a modified optimization model of dwell time by iterative and numerical method, assisted by extended surface forms and tool paths for suppressing the edge effect. Compared with discrete convolution and linear equation models, the proposed model has essential compatibility with arbitrary tool paths, multiple tool influence functions (TIFs) in one optimization, and asymmetric TIFs. The emulational fabrication of a Φ200 mm workpiece by the proposed model yields a smooth, continuous, and non-negative dwell time map with a root-mean-square (RMS) convergence rate of 99.6%, and the optimization costs much less time. By the proposed model, influences of TIF size and path interval to convergence rate and polishing time are optimized, respectively, for typical low and middle spatial-frequency errors. Results show that (1) the TIF size is nonlinear inversely proportional to convergence rate and polishing time. A TIF size of ~1/7 workpiece size is preferred; (2) the polishing time is less sensitive to path interval, but increasing the interval markedly reduces the convergence rate. A path interval of ~1/8-1/10 of the TIF size is deemed to be appropriate. The proposed model is deployed on a JR-1800 and MRF-180 machine. Figuring results of Φ920 mm Zerodur paraboloid and Φ100 mm Zerodur plane by them yield RMS of 0.016λ and 0.013λ (λ=632.8 nm), respectively, and thereby validate the feasibility of proposed dwell time model used for subaperture polishing.
Singular-Arc Time-Optimal Trajectory of Aircraft in Two-Dimensional Wind Field
NASA Technical Reports Server (NTRS)
Nguyen, Nhan
2006-01-01
This paper presents a study of a minimum time-to-climb trajectory analysis for aircraft flying in a two-dimensional altitude dependent wind field. The time optimal control problem possesses a singular control structure when the lift coefficient is taken as a control variable. A singular arc analysis is performed to obtain an optimal control solution on the singular arc. Using a time-scale separation with the flight path angle treated as a fast state, the dimensionality of the optimal control solution is reduced by eliminating the lift coefficient control. A further singular arc analysis is used to decompose the original optimal control solution into the flight path angle solution and a trajectory solution as a function of the airspeed and altitude. The optimal control solutions for the initial and final climb segments are computed using a shooting method with known starting values on the singular arc The numerical results of the shooting method show that the optimal flight path angle on the initial and final climb segments are constant. The analytical approach provides a rapid means for analyzing a time optimal trajectory for aircraft performance.
The Study of Intelligent Vehicle Navigation Path Based on Behavior Coordination of Particle Swarm.
Han, Gaining; Fu, Weiping; Wang, Wen
2016-01-01
In the behavior dynamics model, behavior competition leads to the shock problem of the intelligent vehicle navigation path, because of the simultaneous occurrence of the time-variant target behavior and obstacle avoidance behavior. Considering the safety and real-time of intelligent vehicle, the particle swarm optimization (PSO) algorithm is proposed to solve these problems for the optimization of weight coefficients of the heading angle and the path velocity. Firstly, according to the behavior dynamics model, the fitness function is defined concerning the intelligent vehicle driving characteristics, the distance between intelligent vehicle and obstacle, and distance of intelligent vehicle and target. Secondly, behavior coordination parameters that minimize the fitness function are obtained by particle swarm optimization algorithms. Finally, the simulation results show that the optimization method and its fitness function can improve the perturbations of the vehicle planning path and real-time and reliability.
The Study of Intelligent Vehicle Navigation Path Based on Behavior Coordination of Particle Swarm
Han, Gaining; Fu, Weiping; Wang, Wen
2016-01-01
In the behavior dynamics model, behavior competition leads to the shock problem of the intelligent vehicle navigation path, because of the simultaneous occurrence of the time-variant target behavior and obstacle avoidance behavior. Considering the safety and real-time of intelligent vehicle, the particle swarm optimization (PSO) algorithm is proposed to solve these problems for the optimization of weight coefficients of the heading angle and the path velocity. Firstly, according to the behavior dynamics model, the fitness function is defined concerning the intelligent vehicle driving characteristics, the distance between intelligent vehicle and obstacle, and distance of intelligent vehicle and target. Secondly, behavior coordination parameters that minimize the fitness function are obtained by particle swarm optimization algorithms. Finally, the simulation results show that the optimization method and its fitness function can improve the perturbations of the vehicle planning path and real-time and reliability. PMID:26880881
Computing the optimal path in stochastic dynamical systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauver, Martha; Forgoston, Eric, E-mail: eric.forgoston@montclair.edu; Billings, Lora
2016-08-15
In stochastic systems, one is often interested in finding the optimal path that maximizes the probability of escape from a metastable state or of switching between metastable states. Even for simple systems, it may be impossible to find an analytic form of the optimal path, and in high-dimensional systems, this is almost always the case. In this article, we formulate a constructive methodology that is used to compute the optimal path numerically. The method utilizes finite-time Lyapunov exponents, statistical selection criteria, and a Newton-based iterative minimizing scheme. The method is applied to four examples. The first example is a two-dimensionalmore » system that describes a single population with internal noise. This model has an analytical solution for the optimal path. The numerical solution found using our computational method agrees well with the analytical result. The second example is a more complicated four-dimensional system where our numerical method must be used to find the optimal path. The third example, although a seemingly simple two-dimensional system, demonstrates the success of our method in finding the optimal path where other numerical methods are known to fail. In the fourth example, the optimal path lies in six-dimensional space and demonstrates the power of our method in computing paths in higher-dimensional spaces.« less
A systematic FPGA acceleration design for applications based on convolutional neural networks
NASA Astrophysics Data System (ADS)
Dong, Hao; Jiang, Li; Li, Tianjian; Liang, Xiaoyao
2018-04-01
Most FPGA accelerators for convolutional neural network are designed to optimize the inner acceleration and are ignored of the optimization for the data path between the inner accelerator and the outer system. This could lead to poor performance in applications like real time video object detection. We propose a brand new systematic FPFA acceleration design to solve this problem. This design takes the data path optimization between the inner accelerator and the outer system into consideration and optimizes the data path using techniques like hardware format transformation, frame compression. It also takes fixed-point, new pipeline technique to optimize the inner accelerator. All these make the final system's performance very good, reaching about 10 times the performance comparing with the original system.
Distribution path robust optimization of electric vehicle with multiple distribution centers
Hao, Wei; He, Ruichun; Jia, Xiaoyan; Pan, Fuquan; Fan, Jing; Xiong, Ruiqi
2018-01-01
To identify electrical vehicle (EV) distribution paths with high robustness, insensitivity to uncertainty factors, and detailed road-by-road schemes, optimization of the distribution path problem of EV with multiple distribution centers and considering the charging facilities is necessary. With the minimum transport time as the goal, a robust optimization model of EV distribution path with adjustable robustness is established based on Bertsimas’ theory of robust discrete optimization. An enhanced three-segment genetic algorithm is also developed to solve the model, such that the optimal distribution scheme initially contains all road-by-road path data using the three-segment mixed coding and decoding method. During genetic manipulation, different interlacing and mutation operations are carried out on different chromosomes, while, during population evolution, the infeasible solution is naturally avoided. A part of the road network of Xifeng District in Qingyang City is taken as an example to test the model and the algorithm in this study, and the concrete transportation paths are utilized in the final distribution scheme. Therefore, more robust EV distribution paths with multiple distribution centers can be obtained using the robust optimization model. PMID:29518169
Quad-rotor flight path energy optimization
NASA Astrophysics Data System (ADS)
Kemper, Edward
Quad-Rotor unmanned areal vehicles (UAVs) have been a popular area of research and development in the last decade, especially with the advent of affordable microcontrollers like the MSP 430 and the Raspberry Pi. Path-Energy Optimization is an area that is well developed for linear systems. In this thesis, this idea of path-energy optimization is extended to the nonlinear model of the Quad-rotor UAV. The classical optimization technique is adapted to the nonlinear model that is derived for the problem at hand, coming up with a set of partial differential equations and boundary value conditions to solve these equations. Then, different techniques to implement energy optimization algorithms are tested using simulations in Python. First, a purely nonlinear approach is used. This method is shown to be computationally intensive, with no practical solution available in a reasonable amount of time. Second, heuristic techniques to minimize the energy of the flight path are tested, using Ziegler-Nichols' proportional integral derivative (PID) controller tuning technique. Finally, a brute force look-up table based PID controller is used. Simulation results of the heuristic method show that both reliable control of the system and path-energy optimization are achieved in a reasonable amount of time.
Optimal Paths in Gliding Flight
NASA Astrophysics Data System (ADS)
Wolek, Artur
Underwater gliders are robust and long endurance ocean sampling platforms that are increasingly being deployed in coastal regions. This new environment is characterized by shallow waters and significant currents that can challenge the mobility of these efficient (but traditionally slow moving) vehicles. This dissertation aims to improve the performance of shallow water underwater gliders through path planning. The path planning problem is formulated for a dynamic particle (or "kinematic car") model. The objective is to identify the path which satisfies specified boundary conditions and minimizes a particular cost. Several cost functions are considered. The problem is addressed using optimal control theory. The length scales of interest for path planning are within a few turn radii. First, an approach is developed for planning minimum-time paths, for a fixed speed glider, that are sub-optimal but are guaranteed to be feasible in the presence of unknown time-varying currents. Next the minimum-time problem for a glider with speed controls, that may vary between the stall speed and the maximum speed, is solved. Last, optimal paths that minimize change in depth (equivalently, maximize range) are investigated. Recognizing that path planning alone cannot overcome all of the challenges associated with significant currents and shallow waters, the design of a novel underwater glider with improved capabilities is explored. A glider with a pneumatic buoyancy engine (allowing large, rapid buoyancy changes) and a cylindrical moving mass mechanism (generating large pitch and roll moments) is designed, manufactured, and tested to demonstrate potential improvements in speed and maneuverability.
NASA Technical Reports Server (NTRS)
Jacob, H. G.
1972-01-01
An optimization method has been developed that computes the optimal open loop inputs for a dynamical system by observing only its output. The method reduces to static optimization by expressing the inputs as series of functions with parameters to be optimized. Since the method is not concerned with the details of the dynamical system to be optimized, it works for both linear and nonlinear systems. The method and the application to optimizing longitudinal landing paths for a STOL aircraft with an augmented wing are discussed. Noise, fuel, time, and path deviation minimizations are considered with and without angle of attack, acceleration excursion, flight path, endpoint, and other constraints.
Grey-Theory-Based Optimization Model of Emergency Logistics Considering Time Uncertainty.
Qiu, Bao-Jian; Zhang, Jiang-Hua; Qi, Yuan-Tao; Liu, Yang
2015-01-01
Natural disasters occur frequently in recent years, causing huge casualties and property losses. Nowadays, people pay more and more attention to the emergency logistics problems. This paper studies the emergency logistics problem with multi-center, multi-commodity, and single-affected-point. Considering that the path near the disaster point may be damaged, the information of the state of the paths is not complete, and the travel time is uncertainty, we establish the nonlinear programming model that objective function is the maximization of time-satisfaction degree. To overcome these drawbacks: the incomplete information and uncertain time, this paper firstly evaluates the multiple roads of transportation network based on grey theory and selects the reliable and optimal path. Then simplify the original model under the scenario that the vehicle only follows the optimal path from the emergency logistics center to the affected point, and use Lingo software to solve it. The numerical experiments are presented to show the feasibility and effectiveness of the proposed method.
Grey-Theory-Based Optimization Model of Emergency Logistics Considering Time Uncertainty
Qiu, Bao-Jian; Zhang, Jiang-Hua; Qi, Yuan-Tao; Liu, Yang
2015-01-01
Natural disasters occur frequently in recent years, causing huge casualties and property losses. Nowadays, people pay more and more attention to the emergency logistics problems. This paper studies the emergency logistics problem with multi-center, multi-commodity, and single-affected-point. Considering that the path near the disaster point may be damaged, the information of the state of the paths is not complete, and the travel time is uncertainty, we establish the nonlinear programming model that objective function is the maximization of time-satisfaction degree. To overcome these drawbacks: the incomplete information and uncertain time, this paper firstly evaluates the multiple roads of transportation network based on grey theory and selects the reliable and optimal path. Then simplify the original model under the scenario that the vehicle only follows the optimal path from the emergency logistics center to the affected point, and use Lingo software to solve it. The numerical experiments are presented to show the feasibility and effectiveness of the proposed method. PMID:26417946
Self-organization and solution of shortest-path optimization problems with memristive networks
NASA Astrophysics Data System (ADS)
Pershin, Yuriy V.; Di Ventra, Massimiliano
2013-07-01
We show that memristive networks, namely networks of resistors with memory, can efficiently solve shortest-path optimization problems. Indeed, the presence of memory (time nonlocality) promotes self organization of the network into the shortest possible path(s). We introduce a network entropy function to characterize the self-organized evolution, show the solution of the shortest-path problem and demonstrate the healing property of the solution path. Finally, we provide an algorithm to solve the traveling salesman problem. Similar considerations apply to networks of memcapacitors and meminductors, and networks with memory in various dimensions.
Energy-Aware Multipath Routing Scheme Based on Particle Swarm Optimization in Mobile Ad Hoc Networks
Robinson, Y. Harold; Rajaram, M.
2015-01-01
Mobile ad hoc network (MANET) is a collection of autonomous mobile nodes forming an ad hoc network without fixed infrastructure. Dynamic topology property of MANET may degrade the performance of the network. However, multipath selection is a great challenging task to improve the network lifetime. We proposed an energy-aware multipath routing scheme based on particle swarm optimization (EMPSO) that uses continuous time recurrent neural network (CTRNN) to solve optimization problems. CTRNN finds the optimal loop-free paths to solve link disjoint paths in a MANET. The CTRNN is used as an optimum path selection technique that produces a set of optimal paths between source and destination. In CTRNN, particle swarm optimization (PSO) method is primly used for training the RNN. The proposed scheme uses the reliability measures such as transmission cost, energy factor, and the optimal traffic ratio between source and destination to increase routing performance. In this scheme, optimal loop-free paths can be found using PSO to seek better link quality nodes in route discovery phase. PSO optimizes a problem by iteratively trying to get a better solution with regard to a measure of quality. The proposed scheme discovers multiple loop-free paths by using PSO technique. PMID:26819966
An improved multi-paths optimization method for video stabilization
NASA Astrophysics Data System (ADS)
Qin, Tao; Zhong, Sheng
2018-03-01
For video stabilization, the difference between original camera motion path and the optimized one is proportional to the cropping ratio and warping ratio. A good optimized path should preserve the moving tendency of the original one meanwhile the cropping ratio and warping ratio of each frame should be kept in a proper range. In this paper we use an improved warping-based motion representation model, and propose a gauss-based multi-paths optimization method to get a smoothing path and obtain a stabilized video. The proposed video stabilization method consists of two parts: camera motion path estimation and path smoothing. We estimate the perspective transform of adjacent frames according to warping-based motion representation model. It works well on some challenging videos where most previous 2D methods or 3D methods fail for lacking of long features trajectories. The multi-paths optimization method can deal well with parallax, as we calculate the space-time correlation of the adjacent grid, and then a kernel of gauss is used to weigh the motion of adjacent grid. Then the multi-paths are smoothed while minimize the crop ratio and the distortion. We test our method on a large variety of consumer videos, which have casual jitter and parallax, and achieve good results.
Miklós, István; Darling, Aaron E
2009-06-22
Inversions are among the most common mutations acting on the order and orientation of genes in a genome, and polynomial-time algorithms exist to obtain a minimal length series of inversions that transform one genome arrangement to another. However, the minimum length series of inversions (the optimal sorting path) is often not unique as many such optimal sorting paths exist. If we assume that all optimal sorting paths are equally likely, then statistical inference on genome arrangement history must account for all such sorting paths and not just a single estimate. No deterministic polynomial algorithm is known to count the number of optimal sorting paths nor sample from the uniform distribution of optimal sorting paths. Here, we propose a stochastic method that uniformly samples the set of all optimal sorting paths. Our method uses a novel formulation of parallel Markov chain Monte Carlo. In practice, our method can quickly estimate the total number of optimal sorting paths. We introduce a variant of our approach in which short inversions are modeled to be more likely, and we show how the method can be used to estimate the distribution of inversion lengths and breakpoint usage in pathogenic Yersinia pestis. The proposed method has been implemented in a program called "MC4Inversion." We draw comparison of MC4Inversion to the sampler implemented in BADGER and a previously described importance sampling (IS) technique. We find that on high-divergence data sets, MC4Inversion finds more optimal sorting paths per second than BADGER and the IS technique and simultaneously avoids bias inherent in the IS technique.
Optimizing Retransmission Threshold in Wireless Sensor Networks
Bi, Ran; Li, Yingshu; Tan, Guozhen; Sun, Liang
2016-01-01
The retransmission threshold in wireless sensor networks is critical to the latency of data delivery in the networks. However, existing works on data transmission in sensor networks did not consider the optimization of the retransmission threshold, and they simply set the same retransmission threshold for all sensor nodes in advance. The method did not take link quality and delay requirement into account, which decreases the probability of a packet passing its delivery path within a given deadline. This paper investigates the problem of finding optimal retransmission thresholds for relay nodes along a delivery path in a sensor network. The object of optimizing retransmission thresholds is to maximize the summation of the probability of the packet being successfully delivered to the next relay node or destination node in time. A dynamic programming-based distributed algorithm for finding optimal retransmission thresholds for relay nodes along a delivery path in the sensor network is proposed. The time complexity is OnΔ·max1≤i≤n{ui}, where ui is the given upper bound of the retransmission threshold of sensor node i in a given delivery path, n is the length of the delivery path and Δ is the given upper bound of the transmission delay of the delivery path. If Δ is greater than the polynomial, to reduce the time complexity, a linear programming-based (1+pmin)-approximation algorithm is proposed. Furthermore, when the ranges of the upper and lower bounds of retransmission thresholds are big enough, a Lagrange multiplier-based distributed O(1)-approximation algorithm with time complexity O(1) is proposed. Experimental results show that the proposed algorithms have better performance. PMID:27171092
An improved hierarchical A * algorithm in the optimization of parking lots
NASA Astrophysics Data System (ADS)
Wang, Yong; Wu, Junjuan; Wang, Ying
2017-08-01
In the parking lot parking path optimization, the traditional evaluation index is the shortest distance as the best index and it does not consider the actual road conditions. Now, the introduction of a more practical evaluation index can not only simplify the hardware design of the boot system but also save the software overhead. Firstly, we establish the parking lot network graph RPCDV mathematical model and all nodes in the network is divided into two layers which were constructed using different evaluation function base on the improved hierarchical A * algorithm which improves the time optimal path search efficiency and search precision of the evaluation index. The final results show that for different sections of the program attribute parameter algorithm always faster the time to find the optimal path.
The approach for shortest paths in fire succor based on component GIS technology
NASA Astrophysics Data System (ADS)
Han, Jie; Zhao, Yong; Dai, K. W.
2007-06-01
Fire safety is an important issue for the national economy and people's living. Efficiency and exactness of fire department succor directly relate to safety of peoples' lives and property. Many disadvantages of the traditional fire system have been emerged in practical applications. The preparation of pumpers is guided by wireless communication or wire communication, so its real-time and accurate performances are much poorer. The information about the reported fire, such as the position, disaster and map, et al., for alarm and command was processed by persons, which slows the reaction speed and delays the combat opportunity. In order to solve these disadvantages, it has an important role to construct a modern fire command center based on high technology. The construction of modern fire command center can realize the modernization and automation of fire command and management. It will play a great role in protecting safety of peoples' lives and property. The center can enhance battle ability and can reduce the direct and indirect loss of fire damage at most. With the development of science technology, Geographic Information System (GIS) has becoming a new information industry for hardware production, software development, data collection, space analysis and counseling. With the popularization of computers and the development of GIS, GIS has gained increasing broad applications for its strong functionality. Network analysis is one of the most important functions of GIS, and the most elementary and pivotal issue of network analysis is the calculation of shortest paths. The shortest paths are mostly applied to some emergent systems such as 119 fire alarms. These systems mainly require that the computation time of the optimal path should be 1-3 seconds. And during traveling, the next running path of the vehicles should be calculated in time. So the implement of the shortest paths must have a high efficiency. In this paper, the component GIS technology was applied to collect and record the data information (such as, the situation of this disaster, map and road status et al) of the reported fire firstly. The ant colony optimization was used to calculate the shortest path of fire succor secondly. The optimization results were sent to the pumpers, which can let pumpers choose the shortest paths intelligently and come to fire position with least time. The programming method for shortest paths is proposed in section 3. There are three parts in this section. The elementary framework of the proposed programming method is presented in part one. The systematic framework of GIS component is described in part two. The ant colony optimization employed is presented in part three. In section 4, a simple application instance was presented to demonstrate the proposed programming method. There are three parts in this section. The distributed Web application based on component GIS was described in part one. The optimization results without traffic constraint were presented in part two. The optimization results with traffic constraint were presented in part three. The contributions of this paper can be summarized as follows. (1) It proposed an effective approach for shortest paths in fire succor based on component GIS technology. This proposed approach can achieve the real-time decisions of shortest paths for fire succor. (2) It applied the ant colony optimization to implement the shortest path decision. The traffic information was considered in the shortest path decision using ant colony optimization. The final application instance suggests that the proposed approach is feasible, correct and valid.
NASA Astrophysics Data System (ADS)
Liu, Wei; Ma, Shunjian; Sun, Mingwei; Yi, Haidong; Wang, Zenghui; Chen, Zengqiang
2016-08-01
Path planning plays an important role in aircraft guided systems. Multiple no-fly zones in the flight area make path planning a constrained nonlinear optimization problem. It is necessary to obtain a feasible optimal solution in real time. In this article, the flight path is specified to be composed of alternate line segments and circular arcs, in order to reformulate the problem into a static optimization one in terms of the waypoints. For the commonly used circular and polygonal no-fly zones, geometric conditions are established to determine whether or not the path intersects with them, and these can be readily programmed. Then, the original problem is transformed into a form that can be solved by the sequential quadratic programming method. The solution can be obtained quickly using the Sparse Nonlinear OPTimizer (SNOPT) package. Mathematical simulations are used to verify the effectiveness and rapidity of the proposed algorithm.
Darling, Aaron E.
2009-01-01
Inversions are among the most common mutations acting on the order and orientation of genes in a genome, and polynomial-time algorithms exist to obtain a minimal length series of inversions that transform one genome arrangement to another. However, the minimum length series of inversions (the optimal sorting path) is often not unique as many such optimal sorting paths exist. If we assume that all optimal sorting paths are equally likely, then statistical inference on genome arrangement history must account for all such sorting paths and not just a single estimate. No deterministic polynomial algorithm is known to count the number of optimal sorting paths nor sample from the uniform distribution of optimal sorting paths. Here, we propose a stochastic method that uniformly samples the set of all optimal sorting paths. Our method uses a novel formulation of parallel Markov chain Monte Carlo. In practice, our method can quickly estimate the total number of optimal sorting paths. We introduce a variant of our approach in which short inversions are modeled to be more likely, and we show how the method can be used to estimate the distribution of inversion lengths and breakpoint usage in pathogenic Yersinia pestis. The proposed method has been implemented in a program called “MC4Inversion.” We draw comparison of MC4Inversion to the sampler implemented in BADGER and a previously described importance sampling (IS) technique. We find that on high-divergence data sets, MC4Inversion finds more optimal sorting paths per second than BADGER and the IS technique and simultaneously avoids bias inherent in the IS technique. PMID:20333186
Payne, Velma L; Medvedeva, Olga; Legowski, Elizabeth; Castine, Melissa; Tseytlin, Eugene; Jukic, Drazen; Crowley, Rebecca S
2009-11-01
Determine effects of a limited-enforcement intelligent tutoring system in dermatopathology on student errors, goals and solution paths. Determine if limited enforcement in a medical tutoring system inhibits students from learning the optimal and most efficient solution path. Describe the type of deviations from the optimal solution path that occur during tutoring, and how these deviations change over time. Determine if the size of the problem-space (domain scope), has an effect on learning gains when using a tutor with limited enforcement. Analyzed data mined from 44 pathology residents using SlideTutor-a Medical Intelligent Tutoring System in Dermatopathology that teaches histopathologic diagnosis and reporting skills based on commonly used diagnostic algorithms. Two subdomains were included in the study representing sub-algorithms of different sizes and complexities. Effects of the tutoring system on student errors, goal states and solution paths were determined. Students gradually increase the frequency of steps that match the tutoring system's expectation of expert performance. Frequency of errors gradually declines in all categories of error significance. Student performance frequently differs from the tutor-defined optimal path. However, as students continue to be tutored, they approach the optimal solution path. Performance in both subdomains was similar for both errors and goal differences. However, the rate at which students progress toward the optimal solution path differs between the two domains. Tutoring in superficial perivascular dermatitis, the larger and more complex domain was associated with a slower rate of approximation towards the optimal solution path. Students benefit from a limited-enforcement tutoring system that leverages diagnostic algorithms but does not prevent alternative strategies. Even with limited enforcement, students converge toward the optimal solution path.
Distributed Method to Optimal Profile Descent
NASA Astrophysics Data System (ADS)
Kim, Geun I.
Current ground automation tools for Optimal Profile Descent (OPD) procedures utilize path stretching and speed profile change to maintain proper merging and spacing requirements at high traffic terminal area. However, low predictability of aircraft's vertical profile and path deviation during decent add uncertainty to computing estimated time of arrival, a key information that enables the ground control center to manage airspace traffic effectively. This paper uses an OPD procedure that is based on a constant flight path angle to increase the predictability of the vertical profile and defines an OPD optimization problem that uses both path stretching and speed profile change while largely maintaining the original OPD procedure. This problem minimizes the cumulative cost of performing OPD procedures for a group of aircraft by assigning a time cost function to each aircraft and a separation cost function to a pair of aircraft. The OPD optimization problem is then solved in a decentralized manner using dual decomposition techniques under inter-aircraft ADS-B mechanism. This method divides the optimization problem into more manageable sub-problems which are then distributed to the group of aircraft. Each aircraft solves its assigned sub-problem and communicate the solutions to other aircraft in an iterative process until an optimal solution is achieved thus decentralizing the computation of the optimization problem.
Predictor laws for pictorial flight displays
NASA Technical Reports Server (NTRS)
Grunwald, A. J.
1985-01-01
Two predictor laws are formulated and analyzed: (1) a circular path law based on constant accelerations perpendicular to the path and (2) a predictor law based on state transition matrix computations. It is shown that for both methods the predictor provides the essential lead zeros for the path-following task. However, in contrast to the circular path law, the state transition matrix law furnishes the system with additional zeros that entirely cancel out the higher-frequency poles of the vehicle dynamics. On the other hand, the circular path law yields a zero steady-state error in following a curved trajectory with a constant radius. A combined predictor law is suggested that utilizes the advantages of both methods. A simple analysis shows that the optimal prediction time mainly depends on the level of precision required in the path-following task, and guidelines for determining the optimal prediction time are given.
Extended shortest path selection for package routing of complex networks
NASA Astrophysics Data System (ADS)
Ye, Fan; Zhang, Lei; Wang, Bing-Hong; Liu, Lu; Zhang, Xing-Yi
The routing strategy plays a very important role in complex networks such as Internet system and Peer-to-Peer networks. However, most of the previous work concentrates only on the path selection, e.g. Flooding and Random Walk, or finding the shortest path (SP) and rarely considering the local load information such as SP and Distance Vector Routing. Flow-based Routing mainly considers load balance and still cannot achieve best optimization. Thus, in this paper, we propose a novel dynamic routing strategy on complex network by incorporating the local load information into SP algorithm to enhance the traffic flow routing optimization. It was found that the flow in a network is greatly affected by the waiting time of the network, so we should not consider only choosing optimized path for package transformation but also consider node congestion. As a result, the packages should be transmitted with a global optimized path with smaller congestion and relatively short distance. Analysis work and simulation experiments show that the proposed algorithm can largely enhance the network flow with the maximum throughput within an acceptable calculating time. The detailed analysis of the algorithm will also be provided for explaining the efficiency.
Neighboring extremals of dynamic optimization problems with path equality constraints
NASA Technical Reports Server (NTRS)
Lee, A. Y.
1988-01-01
Neighboring extremals of dynamic optimization problems with path equality constraints and with an unknown parameter vector are considered in this paper. With some simplifications, the problem is reduced to solving a linear, time-varying two-point boundary-value problem with integral path equality constraints. A modified backward sweep method is used to solve this problem. Two example problems are solved to illustrate the validity and usefulness of the solution technique.
Luo, He; Liang, Zhengzheng; Zhu, Moning; Hu, Xiaoxuan; Wang, Guoqiang
2018-01-01
Wind has a significant effect on the control of fixed-wing unmanned aerial vehicles (UAVs), resulting in changes in their ground speed and direction, which has an important influence on the results of integrated optimization of UAV task allocation and path planning. The objective of this integrated optimization problem changes from minimizing flight distance to minimizing flight time. In this study, the Euclidean distance between any two targets is expanded to the Dubins path length, considering the minimum turning radius of fixed-wing UAVs. According to the vector relationship between wind speed, UAV airspeed, and UAV ground speed, a method is proposed to calculate the flight time of UAV between targets. On this basis, a variable-speed Dubins path vehicle routing problem (VS-DP-VRP) model is established with the purpose of minimizing the time required for UAVs to visit all the targets and return to the starting point. By designing a crossover operator and mutation operator, the genetic algorithm is used to solve the model, the results of which show that an effective UAV task allocation and path planning solution under steady wind can be provided.
Liang, Zhengzheng; Zhu, Moning; Hu, Xiaoxuan; Wang, Guoqiang
2018-01-01
Wind has a significant effect on the control of fixed-wing unmanned aerial vehicles (UAVs), resulting in changes in their ground speed and direction, which has an important influence on the results of integrated optimization of UAV task allocation and path planning. The objective of this integrated optimization problem changes from minimizing flight distance to minimizing flight time. In this study, the Euclidean distance between any two targets is expanded to the Dubins path length, considering the minimum turning radius of fixed-wing UAVs. According to the vector relationship between wind speed, UAV airspeed, and UAV ground speed, a method is proposed to calculate the flight time of UAV between targets. On this basis, a variable-speed Dubins path vehicle routing problem (VS-DP-VRP) model is established with the purpose of minimizing the time required for UAVs to visit all the targets and return to the starting point. By designing a crossover operator and mutation operator, the genetic algorithm is used to solve the model, the results of which show that an effective UAV task allocation and path planning solution under steady wind can be provided. PMID:29561888
NASA Astrophysics Data System (ADS)
Zeng, Wenhui; Yi, Jin; Rao, Xiao; Zheng, Yun
2017-11-01
In this article, collision-avoidance path planning for multiple car-like robots with variable motion is formulated as a two-stage objective optimization problem minimizing both the total length of all paths and the task's completion time. Accordingly, a new approach based on Pythagorean Hodograph (PH) curves and Modified Harmony Search algorithm is proposed to solve the two-stage path-planning problem subject to kinematic constraints such as velocity, acceleration, and minimum turning radius. First, a method of path planning based on PH curves for a single robot is proposed. Second, a mathematical model of the two-stage path-planning problem for multiple car-like robots with variable motion subject to kinematic constraints is constructed that the first-stage minimizes the total length of all paths and the second-stage minimizes the task's completion time. Finally, a modified harmony search algorithm is applied to solve the two-stage optimization problem. A set of experiments demonstrate the effectiveness of the proposed approach.
NASA Astrophysics Data System (ADS)
Hartatik; Purbayu, A.; Triyono, L.
2018-03-01
Major problem that often occurs in waste transportation in each region is the route of garbage transportation. Determination of this route should become a major concern because it affects fuel consumption and also the working time from the employee. Therefore, in this research we will develop an application to optimize with pigeonhole and dijsktra algorithm. Pigeonhole algorithm is used to determine which garbage trucks should be taken in a particular TPS. Time optimization is done by determining the shortest path that can be skipped for each garbage truck. Data generated from Pigeonhole then used to determine the shortest path by using Dijkstra algorithm.
Aircraft path planning for optimal imaging using dynamic cost functions
NASA Astrophysics Data System (ADS)
Christie, Gordon; Chaudhry, Haseeb; Kochersberger, Kevin
2015-05-01
Unmanned aircraft development has accelerated with recent technological improvements in sensing and communications, which has resulted in an "applications lag" for how these aircraft can best be utilized. The aircraft are becoming smaller, more maneuverable and have longer endurance to perform sensing and sampling missions, but operating them aggressively to exploit these capabilities has not been a primary focus in unmanned systems development. This paper addresses a means of aerial vehicle path planning to provide a realistic optimal path in acquiring imagery for structure from motion (SfM) reconstructions and performing radiation surveys. This method will allow SfM reconstructions to occur accurately and with minimal flight time so that the reconstructions can be executed efficiently. An assumption is made that we have 3D point cloud data available prior to the flight. A discrete set of scan lines are proposed for the given area that are scored based on visibility of the scene. Our approach finds a time-efficient path and calculates trajectories between scan lines and over obstacles encountered along those scan lines. Aircraft dynamics are incorporated into the path planning algorithm as dynamic cost functions to create optimal imaging paths in minimum time. Simulations of the path planning algorithm are shown for an urban environment. We also present our approach for image-based terrain mapping, which is able to efficiently perform a 3D reconstruction of a large area without the use of GPS data.
Comparison of Genetic Algorithm and Hill Climbing for Shortest Path Optimization Mapping
NASA Astrophysics Data System (ADS)
Fronita, Mona; Gernowo, Rahmat; Gunawan, Vincencius
2018-02-01
Traveling Salesman Problem (TSP) is an optimization to find the shortest path to reach several destinations in one trip without passing through the same city and back again to the early departure city, the process is applied to the delivery systems. This comparison is done using two methods, namely optimization genetic algorithm and hill climbing. Hill Climbing works by directly selecting a new path that is exchanged with the neighbour's to get the track distance smaller than the previous track, without testing. Genetic algorithms depend on the input parameters, they are the number of population, the probability of crossover, mutation probability and the number of generations. To simplify the process of determining the shortest path supported by the development of software that uses the google map API. Tests carried out as much as 20 times with the number of city 8, 16, 24 and 32 to see which method is optimal in terms of distance and time computation. Based on experiments conducted with a number of cities 3, 4, 5 and 6 producing the same value and optimal distance for the genetic algorithm and hill climbing, the value of this distance begins to differ with the number of city 7. The overall results shows that these tests, hill climbing are more optimal to number of small cities and the number of cities over 30 optimized using genetic algorithms.
NASA Astrophysics Data System (ADS)
Hu, Xuemin; Chen, Long; Tang, Bo; Cao, Dongpu; He, Haibo
2018-02-01
This paper presents a real-time dynamic path planning method for autonomous driving that avoids both static and moving obstacles. The proposed path planning method determines not only an optimal path, but also the appropriate acceleration and speed for a vehicle. In this method, we first construct a center line from a set of predefined waypoints, which are usually obtained from a lane-level map. A series of path candidates are generated by the arc length and offset to the center line in the s - ρ coordinate system. Then, all of these candidates are converted into Cartesian coordinates. The optimal path is selected considering the total cost of static safety, comfortability, and dynamic safety; meanwhile, the appropriate acceleration and speed for the optimal path are also identified. Various types of roads, including single-lane roads and multi-lane roads with static and moving obstacles, are designed to test the proposed method. The simulation results demonstrate the effectiveness of the proposed method, and indicate its wide practical application to autonomous driving.
Thermal Stability of Al2O3/Silicone Composites as High-Temperature Encapsulants
NASA Astrophysics Data System (ADS)
Yao, Yiying
Underwater gliders are robust and long endurance ocean sampling platforms that are increasingly being deployed in coastal regions. This new environment is characterized by shallow waters and significant currents that can challenge the mobility of these efficient (but traditionally slow moving) vehicles. This dissertation aims to improve the performance of shallow water underwater gliders through path planning. The path planning problem is formulated for a dynamic particle (or "kinematic car") model. The objective is to identify the path which satisfies specified boundary conditions and minimizes a particular cost. Several cost functions are considered. The problem is addressed using optimal control theory. The length scales of interest for path planning are within a few turn radii. First, an approach is developed for planning minimum-time paths, for a fixed speed glider, that are sub-optimal but are guaranteed to be feasible in the presence of unknown time-varying currents. Next the minimum-time problem for a glider with speed controls, that may vary between the stall speed and the maximum speed, is solved. Last, optimal paths that minimize change in depth (equivalently, maximize range) are investigated. Recognizing that path planning alone cannot overcome all of the challenges associated with significant currents and shallow waters, the design of a novel underwater glider with improved capabilities is explored. A glider with a pneumatic buoyancy engine (allowing large, rapid buoyancy changes) and a cylindrical moving mass mechanism (generating large pitch and roll moments) is designed, manufactured, and tested to demonstrate potential improvements in speed and maneuverability.
A new optimal seam method for seamless image stitching
NASA Astrophysics Data System (ADS)
Xue, Jiale; Chen, Shengyong; Cheng, Xu; Han, Ying; Zhao, Meng
2017-07-01
A novel optimal seam method which aims to stitch those images with overlapping area more seamlessly has been propos ed. Considering the traditional gradient domain optimal seam method and fusion algorithm result in bad color difference measurement and taking a long time respectively, the input images would be converted to HSV space and a new energy function is designed to seek optimal stitching path. To smooth the optimal stitching path, a simplified pixel correction and weighted average method are utilized individually. The proposed methods exhibit performance in eliminating the stitching seam compared with the traditional gradient optimal seam and high efficiency with multi-band blending algorithm.
A Comparison of Risk Sensitive Path Planning Methods for Aircraft Emergency Landing
NASA Technical Reports Server (NTRS)
Meuleau, Nicolas; Plaunt, Christian; Smith, David E.; Smith, Tristan
2009-01-01
Determining the best site to land a damaged aircraft presents some interesting challenges for standard path planning techniques. There are multiple possible locations to consider, the space is 3-dimensional with dynamics, the criteria for a good path is determined by overall risk rather than distance or time, and optimization really matters, since an improved path corresponds to greater expected survival rate. We have investigated a number of different path planning methods for solving this problem, including cell decomposition, visibility graphs, probabilistic road maps (PRMs), and local search techniques. In their pure form, none of these techniques have proven to be entirely satisfactory - some are too slow or unpredictable, some produce highly non-optimal paths or do not find certain types of paths, and some do not cope well with the dynamic constraints when controllability is limited. In the end, we are converging towards a hybrid technique that involves seeding a roadmap with a layered visibility graph, using PRM to extend that roadmap, and using local search to further optimize the resulting paths. We describe the techniques we have investigated, report on our experiments with these techniques, and discuss when and why various techniques were unsatisfactory.
Liouville action as path-integral complexity: from continuous tensor networks to AdS/CFT
NASA Astrophysics Data System (ADS)
Caputa, Pawel; Kundu, Nilay; Miyaji, Masamichi; Takayanagi, Tadashi; Watanabe, Kento
2017-11-01
We propose an optimization procedure for Euclidean path-integrals that evaluate CFT wave functionals in arbitrary dimensions. The optimization is performed by minimizing certain functional, which can be interpreted as a measure of computational complexity, with respect to background metrics for the path-integrals. In two dimensional CFTs, this functional is given by the Liouville action. We also formulate the optimization for higher dimensional CFTs and, in various examples, find that the optimized hyperbolic metrics coincide with the time slices of expected gravity duals. Moreover, if we optimize a reduced density matrix, the geometry becomes two copies of the entanglement wedge and reproduces the holographic entanglement entropy. Our approach resembles a continuous tensor network renormalization and provides a concrete realization of the proposed interpretation of AdS/CFT as tensor networks. The present paper is an extended version of our earlier report arXiv:1703.00456 and includes many new results such as evaluations of complexity functionals, energy stress tensor, higher dimensional extensions and time evolutions of thermofield double states.
Stochastic Evolutionary Algorithms for Planning Robot Paths
NASA Technical Reports Server (NTRS)
Fink, Wolfgang; Aghazarian, Hrand; Huntsberger, Terrance; Terrile, Richard
2006-01-01
A computer program implements stochastic evolutionary algorithms for planning and optimizing collision-free paths for robots and their jointed limbs. Stochastic evolutionary algorithms can be made to produce acceptably close approximations to exact, optimal solutions for path-planning problems while often demanding much less computation than do exhaustive-search and deterministic inverse-kinematics algorithms that have been used previously for this purpose. Hence, the present software is better suited for application aboard robots having limited computing capabilities (see figure). The stochastic aspect lies in the use of simulated annealing to (1) prevent trapping of an optimization algorithm in local minima of an energy-like error measure by which the fitness of a trial solution is evaluated while (2) ensuring that the entire multidimensional configuration and parameter space of the path-planning problem is sampled efficiently with respect to both robot joint angles and computation time. Simulated annealing is an established technique for avoiding local minima in multidimensional optimization problems, but has not, until now, been applied to planning collision-free robot paths by use of low-power computers.
Optimal guidance with obstacle avoidance for nap-of-the-earth flight
NASA Technical Reports Server (NTRS)
Pekelsma, Nicholas J.
1988-01-01
The development of automatic guidance is discussed for helicopter Nap-of-the-Earth (NOE) and near-NOE flight. It deals with algorithm refinements relating to automated real-time flight path planning and to mission planning. With regard to path planning, it relates rotorcraft trajectory characteristics to the NOE computation scheme and addresses real-time computing issues and both ride quality issues and pilot-vehicle interfaces. The automated mission planning algorithm refinements include route optimization, automatic waypoint generation, interactive applications, and provisions for integrating the results into the real-time path planning software. A microcomputer based mission planning workstation was developed and is described. Further, the application of Defense Mapping Agency (DMA) digital terrain to both the mission planning workstation and to automatic guidance is both discussed and illustrated.
Cooperative path planning for multi-USV based on improved artificial bee colony algorithm
NASA Astrophysics Data System (ADS)
Cao, Lu; Chen, Qiwei
2018-03-01
Due to the complex constraints, more uncertain factors and critical real-time demand of path planning for multiple unmanned surface vehicle (multi-USV), an improved artificial bee colony (I-ABC) algorithm were proposed to solve the model of cooperative path planning for multi-USV. First the Voronoi diagram of battle field space is conceived to generate the optimal area of USVs paths. Then the chaotic searching algorithm is used to initialize the collection of paths, which is regard as foods of the ABC algorithm. With the limited data, the initial collection can search the optimal area of paths perfectly. Finally simulations of the multi-USV path planning under various threats have been carried out. Simulation results verify that the I-ABC algorithm can improve the diversity of nectar source and the convergence rate of algorithm. It can increase the adaptability of dynamic battlefield and unexpected threats for USV.
Transition path time distributions for Lévy flights
NASA Astrophysics Data System (ADS)
Janakiraman, Deepika
2018-07-01
This paper presents a study of transition path time distributions for Lévy noise-induced barrier crossing. Transition paths are short segments of the reactive trajectories and span the barrier region of the potential without spilling into the reactant/product wells. The time taken to traverse this segment is referred to as the transition path time. Since the transition path is devoid of excursions in the minimum, the corresponding time will give the exclusive barrier crossing time, unlike . This work explores the distribution of transition path times for superdiffusive barrier crossing, analytically. This is made possible by approximating the barrier by an inverted parabola. Using this approximation, the distributions are evaluated in both over- and under-damped limits of friction. The short-time behaviour of the distributions, provide analytical evidence for single-step transition events—a feature in Lévy-barrier crossing as observed in prior simulation studies. The average transition path time is calculated as a function of the Lévy index (α), and the optimal value of α leading to minimum average transition path time is discussed, in both the limits of friction. Langevin dynamics simulations corroborating with the analytical results are also presented.
Aircraft Trajectory Optimization and Contrails Avoidance in the Presence of Winds
NASA Technical Reports Server (NTRS)
Ng, Hok K.; Chen, Neil Y.
2010-01-01
There are indications that persistent contrails can lead to adverse climate change, although the complete effect on climate forcing is still uncertain. A flight trajectory optimization algorithm with fuel and contrails models, which develops alternative flight paths, provides policy makers the necessary data to make tradeoffs between persistent contrails mitigation and aircraft fuel consumption. This study develops an algorithm that calculates wind-optimal trajectories for cruising aircraft while avoiding the regions of airspace prone to persistent contrails formation. The optimal trajectories are developed by solving a non-linear optimal control problem with path constraints. The regions of airspace favorable to persistent contrails formation are modeled as penalty areas that aircraft should avoid and are adjustable. The tradeoff between persistent contrails formation and additional fuel consumption is investigated, with and without altitude optimization, for 12 city-pairs in the continental United States. Without altitude optimization, the reduction in contrail travel times is gradual with increase in total fuel consumption. When altitude is optimized, a two percent increase in total fuel consumption can reduce the total travel times through contrail regions by more than six times. Allowing further increase in fuel consumption does not seem to result in proportionate decrease in contrail travel times.
NASA Astrophysics Data System (ADS)
Zhou, Rongwei
Underwater gliders are robust and long endurance ocean sampling platforms that are increasingly being deployed in coastal regions. This new environment is characterized by shallow waters and significant currents that can challenge the mobility of these efficient (but traditionally slow moving) vehicles. This dissertation aims to improve the performance of shallow water underwater gliders through path planning. The path planning problem is formulated for a dynamic particle (or "kinematic car") model. The objective is to identify the path which satisfies specified boundary conditions and minimizes a particular cost. Several cost functions are considered. The problem is addressed using optimal control theory. The length scales of interest for path planning are within a few turn radii. First, an approach is developed for planning minimum-time paths, for a fixed speed glider, that are sub-optimal but are guaranteed to be feasible in the presence of unknown time-varying currents. Next the minimum-time problem for a glider with speed controls, that may vary between the stall speed and the maximum speed, is solved. Last, optimal paths that minimize change in depth (equivalently, maximize range) are investigated. Recognizing that path planning alone cannot overcome all of the challenges associated with significant currents and shallow waters, the design of a novel underwater glider with improved capabilities is explored. A glider with a pneumatic buoyancy engine (allowing large, rapid buoyancy changes) and a cylindrical moving mass mechanism (generating large pitch and roll moments) is designed, manufactured, and tested to demonstrate potential improvements in speed and maneuverability.
Optimal Path Determination for Flying Vehicle to Search an Object
NASA Astrophysics Data System (ADS)
Heru Tjahjana, R.; Heri Soelistyo U, R.; Ratnasari, L.; Irawanto, B.
2018-01-01
In this paper, a method to determine optimal path for flying vehicle to search an object is proposed. Background of the paper is controlling air vehicle to search an object. Optimal path determination is one of the most popular problem in optimization. This paper describe model of control design for a flying vehicle to search an object, and focus on the optimal path that used to search an object. In this paper, optimal control model is used to control flying vehicle to make the vehicle move in optimal path. If the vehicle move in optimal path, then the path to reach the searched object also optimal. The cost Functional is one of the most important things in optimal control design, in this paper the cost functional make the air vehicle can move as soon as possible to reach the object. The axis reference of flying vehicle uses N-E-D (North-East-Down) coordinate system. The result of this paper are the theorems which say that the cost functional make the control optimal and make the vehicle move in optimal path are proved analytically. The other result of this paper also shows the cost functional which used is convex. The convexity of the cost functional is use for guarantee the existence of optimal control. This paper also expose some simulations to show an optimal path for flying vehicle to search an object. The optimization method which used to find the optimal control and optimal path vehicle in this paper is Pontryagin Minimum Principle.
Research on Taxiway Path Optimization Based on Conflict Detection
Zhou, Hang; Jiang, Xinxin
2015-01-01
Taxiway path planning is one of the effective measures to make full use of the airport resources, and the optimized paths can ensure the safety of the aircraft during the sliding process. In this paper, the taxiway path planning based on conflict detection is considered. Specific steps are shown as follows: firstly, make an improvement on A * algorithm, the conflict detection strategy is added to search for the shortest and safe path in the static taxiway network. Then, according to the sliding speed of aircraft, a time table for each node is determined and the safety interval is treated as the constraint to judge whether there is a conflict or not. The intelligent initial path planning model is established based on the results. Finally, make an example in an airport simulation environment, detect and relieve the conflict to ensure the safety. The results indicate that the model established in this paper is effective and feasible. Meanwhile, make comparison with the improved A*algorithm and other intelligent algorithms, conclude that the improved A*algorithm has great advantages. It could not only optimize taxiway path, but also ensure the safety of the sliding process and improve the operational efficiency. PMID:26226485
Research on Taxiway Path Optimization Based on Conflict Detection.
Zhou, Hang; Jiang, Xinxin
2015-01-01
Taxiway path planning is one of the effective measures to make full use of the airport resources, and the optimized paths can ensure the safety of the aircraft during the sliding process. In this paper, the taxiway path planning based on conflict detection is considered. Specific steps are shown as follows: firstly, make an improvement on A * algorithm, the conflict detection strategy is added to search for the shortest and safe path in the static taxiway network. Then, according to the sliding speed of aircraft, a time table for each node is determined and the safety interval is treated as the constraint to judge whether there is a conflict or not. The intelligent initial path planning model is established based on the results. Finally, make an example in an airport simulation environment, detect and relieve the conflict to ensure the safety. The results indicate that the model established in this paper is effective and feasible. Meanwhile, make comparison with the improved A*algorithm and other intelligent algorithms, conclude that the improved A*algorithm has great advantages. It could not only optimize taxiway path, but also ensure the safety of the sliding process and improve the operational efficiency.
Social Milieu Oriented Routing: A New Dimension to Enhance Network Security in WSNs.
Liu, Lianggui; Chen, Li; Jia, Huiling
2016-02-19
In large-scale wireless sensor networks (WSNs), in order to enhance network security, it is crucial for a trustor node to perform social milieu oriented routing to a target a trustee node to carry out trust evaluation. This challenging social milieu oriented routing with more than one end-to-end Quality of Trust (QoT) constraint has proved to be NP-complete. Heuristic algorithms with polynomial and pseudo-polynomial-time complexities are often used to deal with this challenging problem. However, existing solutions cannot guarantee the efficiency of searching; that is, they can hardly avoid obtaining partial optimal solutions during a searching process. Quantum annealing (QA) uses delocalization and tunneling to avoid falling into local minima without sacrificing execution time. This has been proven a promising way to many optimization problems in recently published literatures. In this paper, for the first time, with the help of a novel approach, that is, configuration path-integral Monte Carlo (CPIMC) simulations, a QA-based optimal social trust path (QA_OSTP) selection algorithm is applied to the extraction of the optimal social trust path in large-scale WSNs. Extensive experiments have been conducted, and the experiment results demonstrate that QA_OSTP outperforms its heuristic opponents.
Optimal symmetric flight with an intermediate vehicle model
NASA Technical Reports Server (NTRS)
Menon, P. K. A.; Kelley, H. J.; Cliff, E. M.
1983-01-01
Optimal flight in the vertical plane with a vehicle model intermediate in complexity between the point-mass and energy models is studied. Flight-path angle takes on the role of a control variable. Range-open problems feature subarcs of vertical flight and singular subarcs. The class of altitude-speed-range-time optimization problems with fuel expenditure unspecified is investigated and some interesting phenomena uncovered. The maximum-lift-to-drag glide appears as part of the family, final-time-open, with appropriate initial and terminal transient exceeding level-flight drag, some members exhibiting oscillations. Oscillatory paths generally fail the Jacobi test for durations exceeding a period and furnish a minimum only for short-duration problems.
NASA Astrophysics Data System (ADS)
Vu, Duy-Duc; Monies, Frédéric; Rubio, Walter
2018-05-01
A large number of studies, based on 3-axis end milling of free-form surfaces, seek to optimize tool path planning. Approaches try to optimize the machining time by reducing the total tool path length while respecting the criterion of the maximum scallop height. Theoretically, the tool path trajectories that remove the most material follow the directions in which the machined width is the largest. The free-form surface is often considered as a single machining area. Therefore, the optimization on the entire surface is limited. Indeed, it is difficult to define tool trajectories with optimal feed directions which generate largest machined widths. Another limiting point of previous approaches for effectively reduce machining time is the inadequate choice of the tool. Researchers use generally a spherical tool on the entire surface. However, the gains proposed by these different methods developed with these tools lead to relatively small time savings. Therefore, this study proposes a new method, using toroidal milling tools, for generating toolpaths in different regions on the machining surface. The surface is divided into several regions based on machining intervals. These intervals ensure that the effective radius of the tool, at each cutter-contact points on the surface, is always greater than the radius of the tool in an optimized feed direction. A parallel plane strategy is then used on the sub-surfaces with an optimal specific feed direction for each sub-surface. This method allows one to mill the entire surface with efficiency greater than with the use of a spherical tool. The proposed method is calculated and modeled using Maple software to find optimal regions and feed directions in each region. This new method is tested on a free-form surface. A comparison is made with a spherical cutter to show the significant gains obtained with a toroidal milling cutter. Comparisons with CAM software and experimental validations are also done. The results show the efficiency of the method.
Modeling of tool path for the CNC sheet cutting machines
NASA Astrophysics Data System (ADS)
Petunin, Aleksandr A.
2015-11-01
In the paper the problem of tool path optimization for CNC (Computer Numerical Control) cutting machines is considered. The classification of the cutting techniques is offered. We also propose a new classification of toll path problems. The tasks of cost minimization and time minimization for standard cutting technique (Continuous Cutting Problem, CCP) and for one of non-standard cutting techniques (Segment Continuous Cutting Problem, SCCP) are formalized. We show that the optimization tasks can be interpreted as discrete optimization problem (generalized travel salesman problem with additional constraints, GTSP). Formalization of some constraints for these tasks is described. For the solution GTSP we offer to use mathematical model of Prof. Chentsov based on concept of a megalopolis and dynamic programming.
Ruan, D; Dong, P; Low, D; Sheng, K
2012-06-01
To develop and investigate a continuous path optimization methodology to traverse prescribed non-coplanar IMRT beams with variant SADs, by orchestrating the couch and gantry movement with zero-collision, minimal patient motion consequence and machine travel time. We convert the given collision zone definition and the prescribed beam location/angles to a tumor-centric coordinate, and represent the traversing path as a continuous open curve. We proceed to optimize a composite objective function consisting of (1) a strong attraction energy to ensure all prescribed beams are en-route, (2) a penalty for patient-motion inducing couch motion, and (3) a penalty for travel-time inducing overall path-length. Feasibility manifold is defined as complement to collision zone and the optimization is performed with a level set representation evolved with variational flows. The proposed method has been implemented and tested on clinically derived data. In the absence of any existing solutions for the same problem, we validate by: (1) visual inspecting the generated path rendered in the 3D tumor-centric coordinates, and (2) comparing with a traveling-salesman (TSP) solution obtained from relaxing the variant SADs and continuous collision-avoidance requirement. The proposed method has generated delivery paths that are smooth and intuitively appealing. Under relaxed settings, our results outperform the generic TSP solutions and agree with specially tuned versions. We have proposed a novel systematic approach that automatically determines the continuous path to cover non-coplanar, varying SAD IMRT beams. The proposed approach accommodates patient-specific collision zone definition and ensures its avoidance continuously. The differential penalty to couch and gantry motions allows customizable tradeoff between patient geometry stability and delivery efficiency. This development paves the path to achieve safe, accurate and efficient non-coplanar IMRT delivery with the advanced robotic controls in new-generation C-arm systems, enabling practical harvesting of the dose benefit offered by non-coplanar, variant SAD IMRT treatment. © 2012 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vandewouw, Marlee M., E-mail: marleev@mie.utoronto
Purpose: Continuous dose delivery in radiation therapy treatments has been shown to decrease total treatment time while improving the dose conformity and distribution homogeneity over the conventional step-and-shoot approach. The authors develop an inverse treatment planning method for Gamma Knife® Perfexion™ that continuously delivers dose along a path in the target. Methods: The authors’ method is comprised of two steps: find a path within the target, then solve a mixed integer optimization model to find the optimal collimator configurations and durations along the selected path. Robotic path-finding techniques, specifically, simultaneous localization and mapping (SLAM) using an extended Kalman filter, aremore » used to obtain a path that travels sufficiently close to selected isocentre locations. SLAM is novelly extended to explore a 3D, discrete environment, which is the target discretized into voxels. Further novel extensions are incorporated into the steering mechanism to account for target geometry. Results: The SLAM method was tested on seven clinical cases and compared to clinical, Hamiltonian path continuous delivery, and inverse step-and-shoot treatment plans. The SLAM approach improved dose metrics compared to the clinical plans and Hamiltonian path continuous delivery plans. Beam-on times improved over clinical plans, and had mixed performance compared to Hamiltonian path continuous plans. The SLAM method is also shown to be robust to path selection inaccuracies, isocentre selection, and dose distribution. Conclusions: The SLAM method for continuous delivery provides decreased total treatment time and increased treatment quality compared to both clinical and inverse step-and-shoot plans, and outperforms existing path methods in treatment quality. It also accounts for uncertainty in treatment planning by accommodating inaccuracies.« less
Conception et analyse d'un systeme d'optimisation de plans de vol pour les avions
NASA Astrophysics Data System (ADS)
Maazoun, Wissem
The main objective of this thesis is to develop an optimization method for the preparation of flight plans for aircrafts. The flight plan minimizes all costs associated with the flight. We determine an optimal path for an airplane from a departure airport to a destination airport. The optimal path minimizes the sum of all costs, i.e. the cost of fuel added to the cost of time (wages, rental of the aircraft, arrival delays, etc.). The optimal trajectory is obtained by considering all possible trajectories on a 3D graph (longitude, latitude and altitude) where the altitude levels are separated by 2,000 feet, and by applying a shortest path algorithm. The main task was to accurately compute fuel consumption on each edge of the graph, making sure that each arc has a minimal cost and is covered in a realistic way from the point of view of control, i.e. in accordance with the rules of navigation. To compute the cost of an arc, we take into account weather conditions (temperature, pressure, wind components, etc.). The optimization of each arc is done via the evaluation of an optimum speed that takes all costs into account. Each arc of the graph typically includes several sub-phases of the flight, e.g. altitude change, speed change, and constant speed and altitude. In the initial climb and the final descent phases, the costs are determined by considering altitude changes at constant CAS (Calibrated Air Speed) or constant Mach number. CAS and Mach number are adjusted to minimize cost. The aerodynamic model used is the one proposed by Eurocontrol, which uses the BADA (Base of Aircraft Data) tables. This model is based on the total energy equation that determines the instantaneous fuel consumption. Calculations on each arc are done by solving a system of differential equations that systematically takes all costs into account. To compute the cost of an arc, we must know the time to go through it, which is generally unknown. To have well-posed boundary conditions, we use the horizontal displacement as the independent variable of the system of differential equations. We consider the velocity components of the wind in a 3D system of coordinates to compute the instantaneous ground speed of the aircraft. To consider the cost of time, we use the cost index. The cost of an arc depends on the aircraft mass at the beginning of this arc, and this mass depends on the path. As we consider all possible paths, the cost of an arc must be computed for each trajectory to which it belongs. For a long-distance flight, the number of arcs to be considered in the graph is large and therefore the cost of an arc is typically computed many times. Our algorithm computes the costs of one million arcs in seconds while having a high accuracy. The determination of the optimal trajectory can therefore be done in a short time. To get the optimal path, the mass of the aircraft at the departure point must also be optimal. It is therefore necessary to know the optimal amount of fuel for the journey. The aircraft mass is known only at the arrival point. This mass is the mass of the aircraft including passengers, cargo and reserve fuel mass. The optimal path is determined by calculating backwards, i.e. from the arrival point to the departure point. For the determination of the optimal trajectory, we use an elliptical grid that has focal points at the departure and arrival points. The use of this grid is essential for the construction of a direct and acyclic graph. We use the Bellman-Ford algorithm on a DAG to determine the shortest path. This algorithm is easy to implement and results in short computation times. Our algorithm computes an optimal trajectory with an optimal cost for each arc. Altitude changes are done optimally with respect to the mass of the aircraft and the cost of time. Our algorithm gives the mass, speed, altitude and total cost at any point of the trajectory as well as the optimal profiles of climb and descent. A prototype has been implemented in C. We made simulations of all types of possible arcs and of several complete trajectories to illustrate the behaviour of the algorithm.
A comparison of optimal and noise-abatement trajectories of a tilt-rotor aircraft
NASA Technical Reports Server (NTRS)
Schmitz, F. H.; Stepniewski, W. Z.; Gibs, J.; Hinterkeuser, W. Z.
1972-01-01
The potential benefits of flight path control to optimize performance and/or reduce the noise of a tilt-rotor aircraft operating in the takeoff and landing phases of flight are investigated. A theoretical performance-acoustic model is developed and then mathematically flown to yield representative takeoff and landing profiles. Minimum-time and minimum-fuel trajectories are compared to proposed noise-abatement profiles to assess the reductions in annoyance possible through flight path control. Significant reductions are feasible if a nearly vertical-takeoff flight profile is flown near the landing site; however, the time expended and fuel consumed increase.
Alternative Constraint Handling Technique for Four-Bar Linkage Path Generation
NASA Astrophysics Data System (ADS)
Sleesongsom, S.; Bureerat, S.
2018-03-01
This paper proposes an extension of a new concept for path generation from our previous work by adding a new constraint handling technique. The propose technique was initially designed for problems without prescribed timing by avoiding the timing constraint, while remain constraints are solving with a new constraint handling technique. The technique is one kind of penalty technique. The comparative study is optimisation of path generation problems are solved using self-adaptive population size teaching-learning based optimization (SAP-TLBO) and original TLBO. In this study, two traditional path generation test problem are used to test the proposed technique. The results show that the new technique can be applied with the path generation problem without prescribed timing and gives better results than the previous technique. Furthermore, SAP-TLBO outperforms the original one.
Energy aware path planning in complex four dimensional environments
NASA Astrophysics Data System (ADS)
Chakrabarty, Anjan
This dissertation addresses the problem of energy-aware path planning for small autonomous vehicles. While small autonomous vehicles can perform missions that are too risky (or infeasible) for larger vehicles, the missions are limited by the amount of energy that can be carried on board the vehicle. Path planning techniques that either minimize energy consumption or exploit energy available in the environment can thus increase range and endurance. Path planning is complicated by significant spatial (and potentially temporal) variations in the environment. While the main focus is on autonomous aircraft, this research also addresses autonomous ground vehicles. Range and endurance of small unmanned aerial vehicles (UAVs) can be greatly improved by utilizing energy from the atmosphere. Wind can be exploited to minimize energy consumption of a small UAV. But wind, like any other atmospheric component , is a space and time varying phenomenon. To effectively use wind for long range missions, both exploration and exploitation of wind is critical. This research presents a kinematics based tree algorithm which efficiently handles the four dimensional (three spatial and time) path planning problem. The Kinematic Tree algorithm provides a sequence of waypoints, airspeeds, heading and bank angle commands for each segment of the path. The planner is shown to be resolution complete and computationally efficient. Global optimality of the cost function cannot be claimed, as energy is gained from the atmosphere, making the cost function inadmissible. However the Kinematic Tree is shown to be optimal up to resolution if the cost function is admissible. Simulation results show the efficacy of this planning method for a glider in complex real wind data. Simulation results verify that the planner is able to extract energy from the atmosphere enabling long range missions. The Kinematic Tree planning framework, developed to minimize energy consumption of UAVs, is applied for path planning in ground robots. In traditional path planning problem the focus is on obstacle avoidance and navigation. The optimal Kinematic Tree algorithm named Kinematic Tree* is shown to find optimal paths to reach the destination while avoiding obstacles. A more challenging path planning scenario arises for planning in complex terrain. This research shows how the Kinematic Tree* algorithm can be extended to find minimum energy paths for a ground vehicle in difficult mountainous terrain.
An improved reaction path optimization method using a chain of conformations
NASA Astrophysics Data System (ADS)
Asada, Toshio; Sawada, Nozomi; Nishikawa, Takuya; Koseki, Shiro
2018-05-01
The efficient fast path optimization (FPO) method is proposed to optimize the reaction paths on energy surfaces by using chains of conformations. No artificial spring force is used in the FPO method to ensure the equal spacing of adjacent conformations. The FPO method is applied to optimize the reaction path on two model potential surfaces. The use of this method enabled the optimization of the reaction paths with a drastically reduced number of optimization cycles for both potentials. It was also successfully utilized to define the MEP of the isomerization of the glycine molecule in water by FPO method.
Optimization of Supersonic Transport Trajectories
NASA Technical Reports Server (NTRS)
Ardema, Mark D.; Windhorst, Robert; Phillips, James
1998-01-01
This paper develops a near-optimal guidance law for generating minimum fuel, time, or cost fixed-range trajectories for supersonic transport aircraft. The approach uses a choice of new state variables along with singular perturbation techniques to time-scale decouple the dynamic equations into multiple equations of single order (second order for the fast dynamics). Application of the maximum principle to each of the decoupled equations, as opposed to application to the original coupled equations, avoids the two point boundary value problem and transforms the problem from one of a functional optimization to one of multiple function optimizations. It is shown that such an approach produces well known aircraft performance results such as minimizing the Brequet factor for minimum fuel consumption and the energy climb path. Furthermore, the new state variables produce a consistent calculation of flight path angle along the trajectory, eliminating one of the deficiencies in the traditional energy state approximation. In addition, jumps in the energy climb path are smoothed out by integration of the original dynamic equations at constant load factor. Numerical results performed for a supersonic transport design show that a pushover dive followed by a pullout at nominal load factors are sufficient maneuvers to smooth the jump.
A real-time path rating calculation tool powered by HPC
DOE Office of Scientific and Technical Information (OSTI.GOV)
If transmission path ratings are determined in real time and optimized control methods can be implemented, congestion problems can be more effectively managed using the existing transmission assets, reducing congestion costs, avoiding capital expenditures for new physical assets, increasing revenues from the existing system, and maintaining reliability. In just one illustrative case, a BPA study has shown that a 1000-MW rating increase for a transmission path generates $15M in annual revenue, even if only 25% of the increased margin can be tapped for just 25% of the year.
Path Planning For A Class Of Cutting Operations
NASA Astrophysics Data System (ADS)
Tavora, Jose
1989-03-01
Optimizing processing time in some contour-cutting operations requires solving the so-called no-load path problem. This problem is formulated and an approximate resolution method (based on heuristic search techniques) is described. Results for real-life instances (clothing layouts in the apparel industry) are presented and evaluated.
An Optimization Principle for Deriving Nonequilibrium Statistical Models of Hamiltonian Dynamics
NASA Astrophysics Data System (ADS)
Turkington, Bruce
2013-08-01
A general method for deriving closed reduced models of Hamiltonian dynamical systems is developed using techniques from optimization and statistical estimation. Given a vector of resolved variables, selected to describe the macroscopic state of the system, a family of quasi-equilibrium probability densities on phase space corresponding to the resolved variables is employed as a statistical model, and the evolution of the mean resolved vector is estimated by optimizing over paths of these densities. Specifically, a cost function is constructed to quantify the lack-of-fit to the microscopic dynamics of any feasible path of densities from the statistical model; it is an ensemble-averaged, weighted, squared-norm of the residual that results from submitting the path of densities to the Liouville equation. The path that minimizes the time integral of the cost function determines the best-fit evolution of the mean resolved vector. The closed reduced equations satisfied by the optimal path are derived by Hamilton-Jacobi theory. When expressed in terms of the macroscopic variables, these equations have the generic structure of governing equations for nonequilibrium thermodynamics. In particular, the value function for the optimization principle coincides with the dissipation potential that defines the relation between thermodynamic forces and fluxes. The adjustable closure parameters in the best-fit reduced equations depend explicitly on the arbitrary weights that enter into the lack-of-fit cost function. Two particular model reductions are outlined to illustrate the general method. In each example the set of weights in the optimization principle contracts into a single effective closure parameter.
Hierarchical heuristic search using a Gaussian mixture model for UAV coverage planning.
Lin, Lanny; Goodrich, Michael A
2014-12-01
During unmanned aerial vehicle (UAV) search missions, efficient use of UAV flight time requires flight paths that maximize the probability of finding the desired subject. The probability of detecting the desired subject based on UAV sensor information can vary in different search areas due to environment elements like varying vegetation density or lighting conditions, making it likely that the UAV can only partially detect the subject. This adds another dimension of complexity to the already difficult (NP-Hard) problem of finding an optimal search path. We present a new class of algorithms that account for partial detection in the form of a task difficulty map and produce paths that approximate the payoff of optimal solutions. The algorithms use the mode goodness ratio heuristic that uses a Gaussian mixture model to prioritize search subregions. The algorithms search for effective paths through the parameter space at different levels of resolution. We compare the performance of the new algorithms against two published algorithms (Bourgault's algorithm and LHC-GW-CONV algorithm) in simulated searches with three real search and rescue scenarios, and show that the new algorithms outperform existing algorithms significantly and can yield efficient paths that yield payoffs near the optimal.
Multiagent Flight Control in Dynamic Environments with Cooperative Coevolutionary Algorithms
NASA Technical Reports Server (NTRS)
Knudson, Matthew D.; Colby, Mitchell; Tumer, Kagan
2014-01-01
Dynamic flight environments in which objectives and environmental features change with respect to time pose a difficult problem with regards to planning optimal flight paths. Path planning methods are typically computationally expensive, and are often difficult to implement in real time if system objectives are changed. This computational problem is compounded when multiple agents are present in the system, as the state and action space grows exponentially. In this work, we use cooperative coevolutionary algorithms in order to develop policies which control agent motion in a dynamic multiagent unmanned aerial system environment such that goals and perceptions change, while ensuring safety constraints are not violated. Rather than replanning new paths when the environment changes, we develop a policy which can map the new environmental features to a trajectory for the agent while ensuring safe and reliable operation, while providing 92% of the theoretically optimal performance
Multiagent Flight Control in Dynamic Environments with Cooperative Coevolutionary Algorithms
NASA Technical Reports Server (NTRS)
Colby, Mitchell; Knudson, Matthew D.; Tumer, Kagan
2014-01-01
Dynamic environments in which objectives and environmental features change with respect to time pose a difficult problem with regards to planning optimal paths through these environments. Path planning methods are typically computationally expensive, and are often difficult to implement in real time if system objectives are changed. This computational problem is compounded when multiple agents are present in the system, as the state and action space grows exponentially with the number of agents in the system. In this work, we use cooperative coevolutionary algorithms in order to develop policies which control agent motion in a dynamic multiagent unmanned aerial system environment such that goals and perceptions change, while ensuring safety constraints are not violated. Rather than replanning new paths when the environment changes, we develop a policy which can map the new environmental features to a trajectory for the agent while ensuring safe and reliable operation, while providing 92% of the theoretically optimal performance.
Application of particle swarm optimization in path planning of mobile robot
NASA Astrophysics Data System (ADS)
Wang, Yong; Cai, Feng; Wang, Ying
2017-08-01
In order to realize the optimal path planning of mobile robot in unknown environment, a particle swarm optimization algorithm based on path length as fitness function is proposed. The location of the global optimal particle is determined by the minimum fitness value, and the robot moves along the points of the optimal particles to the target position. The process of moving to the target point is done with MATLAB R2014a. Compared with the standard particle swarm optimization algorithm, the simulation results show that this method can effectively avoid all obstacles and get the optimal path.
NASA Technical Reports Server (NTRS)
Rowe, Neil C.; Lewis, David H.
1989-01-01
Path planning is an important issue for space robotics. Finding safe and energy-efficient paths in the presence of obstacles and other constraints can be complex although important. High-level (large-scale) path planning for robotic vehicles was investigated in three-dimensional space with obstacles, accounting for: (1) energy costs proportional to path length; (2) turn costs where paths change trajectory abruptly; and (3) safety costs for the danger associated with traversing a particular path due to visibility or invisibility from a fixed set of observers. Paths optimal with respect to these cost factors are found. Autonomous or semi-autonomous vehicles were considered operating either in a space environment around satellites and space platforms, or aircraft, spacecraft, or smart missiles operating just above lunar and planetary surfaces. One class of applications concerns minimizing detection, as for example determining the best way to make complex modifications to a satellite without being observed by hostile sensors; another example is verifying there are no paths (holes) through a space defense system. Another class of applications concerns maximizing detection, as finding a good trajectory between mountain ranges of a planet while staying reasonably close to the surface, or finding paths for a flight between two locations that maximize the average number of triangulation points available at any time along the path.
Shortest path problem on a grid network with unordered intermediate points
NASA Astrophysics Data System (ADS)
Saw, Veekeong; Rahman, Amirah; Eng Ong, Wen
2017-10-01
We consider a shortest path problem with single cost factor on a grid network with unordered intermediate points. A two stage heuristic algorithm is proposed to find a feasible solution path within a reasonable amount of time. To evaluate the performance of the proposed algorithm, computational experiments are performed on grid maps of varying size and number of intermediate points. Preliminary results for the problem are reported. Numerical comparisons against brute forcing show that the proposed algorithm consistently yields solutions that are within 10% of the optimal solution and uses significantly less computation time.
Self-consistent collective coordinate for reaction path and inertial mass
NASA Astrophysics Data System (ADS)
Wen, Kai; Nakatsukasa, Takashi
2016-11-01
We propose a numerical method to determine the optimal collective reaction path for a nucleus-nucleus collision, based on the adiabatic self-consistent collective coordinate (ASCC) method. We use an iterative method, combining the imaginary-time evolution and the finite amplitude method, for the solution of the ASCC coupled equations. It is applied to the simplest case, α -α scattering. We determine the collective path, the potential, and the inertial mass. The results are compared with other methods, such as the constrained Hartree-Fock method, Inglis's cranking formula, and the adiabatic time-dependent Hartree-Fock (ATDHF) method.
Neural Architectures for Control
NASA Technical Reports Server (NTRS)
Peterson, James K.
1991-01-01
The cerebellar model articulated controller (CMAC) neural architectures are shown to be viable for the purposes of real-time learning and control. Software tools for the exploration of CMAC performance are developed for three hardware platforms, the MacIntosh, the IBM PC, and the SUN workstation. All algorithm development was done using the C programming language. These software tools were then used to implement an adaptive critic neuro-control design that learns in real-time how to back up a trailer truck. The truck backer-upper experiment is a standard performance measure in the neural network literature, but previously the training of the controllers was done off-line. With the CMAC neural architectures, it was possible to train the neuro-controllers on-line in real-time on a MS-DOS PC 386. CMAC neural architectures are also used in conjunction with a hierarchical planning approach to find collision-free paths over 2-D analog valued obstacle fields. The method constructs a coarse resolution version of the original problem and then finds the corresponding coarse optimal path using multipass dynamic programming. CMAC artificial neural architectures are used to estimate the analog transition costs that dynamic programming requires. The CMAC architectures are trained in real-time for each obstacle field presented. The coarse optimal path is then used as a baseline for the construction of a fine scale optimal path through the original obstacle array. These results are a very good indication of the potential power of the neural architectures in control design. In order to reach as wide an audience as possible, we have run a seminar on neuro-control that has met once per week since 20 May 1991. This seminar has thoroughly discussed the CMAC architecture, relevant portions of classical control, back propagation through time, and adaptive critic designs.
A star recognition method based on the Adaptive Ant Colony algorithm for star sensors.
Quan, Wei; Fang, Jiancheng
2010-01-01
A new star recognition method based on the Adaptive Ant Colony (AAC) algorithm has been developed to increase the star recognition speed and success rate for star sensors. This method draws circles, with the center of each one being a bright star point and the radius being a special angular distance, and uses the parallel processing ability of the AAC algorithm to calculate the angular distance of any pair of star points in the circle. The angular distance of two star points in the circle is solved as the path of the AAC algorithm, and the path optimization feature of the AAC is employed to search for the optimal (shortest) path in the circle. This optimal path is used to recognize the stellar map and enhance the recognition success rate and speed. The experimental results show that when the position error is about 50″, the identification success rate of this method is 98% while the Delaunay identification method is only 94%. The identification time of this method is up to 50 ms.
Epidemic extinction paths in complex networks
NASA Astrophysics Data System (ADS)
Hindes, Jason; Schwartz, Ira B.
2017-05-01
We study the extinction of long-lived epidemics on finite complex networks induced by intrinsic noise. Applying analytical techniques to the stochastic susceptible-infected-susceptible model, we predict the distribution of large fluctuations, the most probable or optimal path through a network that leads to a disease-free state from an endemic state, and the average extinction time in general configurations. Our predictions agree with Monte Carlo simulations on several networks, including synthetic weighted and degree-distributed networks with degree correlations, and an empirical high school contact network. In addition, our approach quantifies characteristic scaling patterns for the optimal path and distribution of large fluctuations, both near and away from the epidemic threshold, in networks with heterogeneous eigenvector centrality and degree distributions.
Epidemic extinction paths in complex networks.
Hindes, Jason; Schwartz, Ira B
2017-05-01
We study the extinction of long-lived epidemics on finite complex networks induced by intrinsic noise. Applying analytical techniques to the stochastic susceptible-infected-susceptible model, we predict the distribution of large fluctuations, the most probable or optimal path through a network that leads to a disease-free state from an endemic state, and the average extinction time in general configurations. Our predictions agree with Monte Carlo simulations on several networks, including synthetic weighted and degree-distributed networks with degree correlations, and an empirical high school contact network. In addition, our approach quantifies characteristic scaling patterns for the optimal path and distribution of large fluctuations, both near and away from the epidemic threshold, in networks with heterogeneous eigenvector centrality and degree distributions.
A Flexible Toolkit Supporting Knowledge-based Tactical Planning for Ground Forces
2011-06-01
assigned to each of the Special Areas to model its temporal behaviour . In Figure 5 an optimal path going over two defined intermediate points is...which area can be reached by an armoured infantry platoon within a given time interval, which path should be taken by a support unit to minimize...al. 2008]. Although trained commanders and staff personnel may achieve very accurate planning results, time consuming procedures are excluded when
Heterogeneous Data Fusion Method to Estimate Travel Time Distributions in Congested Road Networks
Lam, William H. K.; Li, Qingquan
2017-01-01
Travel times in congested urban road networks are highly stochastic. Provision of travel time distribution information, including both mean and variance, can be very useful for travelers to make reliable path choice decisions to ensure higher probability of on-time arrival. To this end, a heterogeneous data fusion method is proposed to estimate travel time distributions by fusing heterogeneous data from point and interval detectors. In the proposed method, link travel time distributions are first estimated from point detector observations. The travel time distributions of links without point detectors are imputed based on their spatial correlations with links that have point detectors. The estimated link travel time distributions are then fused with path travel time distributions obtained from the interval detectors using Dempster-Shafer evidence theory. Based on fused path travel time distribution, an optimization technique is further introduced to update link travel time distributions and their spatial correlations. A case study was performed using real-world data from Hong Kong and showed that the proposed method obtained accurate and robust estimations of link and path travel time distributions in congested road networks. PMID:29210978
Heterogeneous Data Fusion Method to Estimate Travel Time Distributions in Congested Road Networks.
Shi, Chaoyang; Chen, Bi Yu; Lam, William H K; Li, Qingquan
2017-12-06
Travel times in congested urban road networks are highly stochastic. Provision of travel time distribution information, including both mean and variance, can be very useful for travelers to make reliable path choice decisions to ensure higher probability of on-time arrival. To this end, a heterogeneous data fusion method is proposed to estimate travel time distributions by fusing heterogeneous data from point and interval detectors. In the proposed method, link travel time distributions are first estimated from point detector observations. The travel time distributions of links without point detectors are imputed based on their spatial correlations with links that have point detectors. The estimated link travel time distributions are then fused with path travel time distributions obtained from the interval detectors using Dempster-Shafer evidence theory. Based on fused path travel time distribution, an optimization technique is further introduced to update link travel time distributions and their spatial correlations. A case study was performed using real-world data from Hong Kong and showed that the proposed method obtained accurate and robust estimations of link and path travel time distributions in congested road networks.
NASA Astrophysics Data System (ADS)
Cao, Haotian; Song, Xiaolin; Zhao, Song; Bao, Shan; Huang, Zhi
2017-08-01
Automated driving has received a broad of attentions from the academia and industry, since it is effective to greatly reduce the severity of potential traffic accidents and achieve the ultimate automobile safety and comfort. This paper presents an optimal model-based trajectory following architecture for highly automated vehicle in its driving tasks such as automated guidance or lane keeping, which includes a velocity-planning module, a steering controller and a velocity-tracking controller. The velocity-planning module considering the optimal time-consuming and passenger comforts simultaneously could generate a smooth velocity profile. The robust sliding mode control (SMC) steering controller with adaptive preview time strategy could not only track the target path well, but also avoid a big lateral acceleration occurred in its path-tracking progress due to a fuzzy-adaptive preview time mechanism introduced. In addition, an SMC controller with input-output linearisation method for velocity tracking is built and validated. Simulation results show this trajectory following architecture are effective and feasible for high automated driving vehicle, comparing with the Driver-in-the-Loop simulations performed by an experienced driver and novice driver, respectively. The simulation results demonstrate that the present trajectory following architecture could plan a satisfying longitudinal speed profile, track the target path well and safely when dealing with different road geometry structure, it ensures a good time efficiency and driving comfort simultaneously.
Rouseff, Daniel; Badiey, Mohsen; Song, Aijun
2009-11-01
The performance of a communications equalizer is quantified in terms of the number of acoustic paths that are treated as usable signal. The analysis uses acoustical and oceanographic data collected off the Hawaiian Island of Kauai. Communication signals were measured on an eight-element vertical array at two different ranges, 1 and 2 km, and processed using an equalizer based on passive time-reversal signal processing. By estimating the Rayleigh parameter, it is shown that all paths reflected by the sea surface at both ranges undergo incoherent scattering. It is demonstrated that some of these incoherently scattered paths are still useful for coherent communications. At range of 1 km, optimal communications performance is achieved when six acoustic paths are retained and all paths with more than one reflection off the sea surface are rejected. Consistent with a model that ignores loss from near-surface bubbles, the performance improves by approximately 1.8 dB when increasing the number of retained paths from four to six. The four-path results though are more stable and require less frequent channel estimation. At range of 2 km, ray refraction is observed and communications performance is optimal when some paths with two sea-surface reflections are retained.
Springback effects during single point incremental forming: Optimization of the tool path
NASA Astrophysics Data System (ADS)
Giraud-Moreau, Laurence; Belchior, Jérémy; Lafon, Pascal; Lotoing, Lionel; Cherouat, Abel; Courtielle, Eric; Guines, Dominique; Maurine, Patrick
2018-05-01
Incremental sheet forming is an emerging process to manufacture sheet metal parts. This process is more flexible than conventional one and well suited for small batch production or prototyping. During the process, the sheet metal blank is clamped by a blank-holder and a small-size smooth-end hemispherical tool moves along a user-specified path to deform the sheet incrementally. Classical three-axis CNC milling machines, dedicated structure or serial robots can be used to perform the forming operation. Whatever the considered machine, large deviations between the theoretical shape and the real shape can be observed after the part unclamping. These deviations are due to both the lack of stiffness of the machine and residual stresses in the part at the end of the forming stage. In this paper, an optimization strategy of the tool path is proposed in order to minimize the elastic springback induced by residual stresses after unclamping. A finite element model of the SPIF process allowing the shape prediction of the formed part with a good accuracy is defined. This model, based on appropriated assumptions, leads to calculation times which remain compatible with an optimization procedure. The proposed optimization method is based on an iterative correction of the tool path. The efficiency of the method is shown by an improvement of the final shape.
Optimization of educational paths for higher education
NASA Astrophysics Data System (ADS)
Tarasyev, Alexandr A.; Agarkov, Gavriil; Medvedev, Aleksandr
2017-11-01
In our research, we combine the theory of economic behavior and the methodology of increasing efficiency of the human capital to estimate the optimal educational paths. We provide an optimization model for higher education process to analyze possible educational paths for each rational individual. The preferences of each rational individual are compared to the best economically possible educational path. The main factor of the individual choice, which is formed by the formation of optimal educational path, deals with higher salaries level in the chosen economic sector after graduation. Another factor that influences on the economic profit is the reduction of educational costs or the possibility of the budget support for the student. The main outcome of this research consists in correction of the governmental policy of investment in human capital based on the results of educational paths optimal control.
The terminal area automated path generation problem
NASA Technical Reports Server (NTRS)
Hsin, C.-C.
1977-01-01
The automated terminal area path generation problem in the advanced Air Traffic Control System (ATC), has been studied. Definitions, input, output and the interrelationships with other ATC functions have been discussed. Alternatives in modeling the problem have been identified. Problem formulations and solution techniques are presented. In particular, the solution of a minimum effort path stretching problem (path generation on a given schedule) has been carried out using the Newton-Raphson trajectory optimization method. Discussions are presented on the effect of different delivery time, aircraft entry position, initial guess on the boundary conditions, etc. Recommendations are made on real-world implementations.
Development of Advanced Methods of Structural and Trajectory Analysis for Transport Aircraft
NASA Technical Reports Server (NTRS)
Ardema, Mark D.; Windhorst, Robert; Phillips, James
1998-01-01
This paper develops a near-optimal guidance law for generating minimum fuel, time, or cost fixed-range trajectories for supersonic transport aircraft. The approach uses a choice of new state variables along with singular perturbation techniques to time-scale decouple the dynamic equations into multiple equations of single order (second order for the fast dynamics). Application of the maximum principle to each of the decoupled equations, as opposed to application to the original coupled equations, avoids the two point boundary value problem and transforms the problem from one of a functional optimization to one of multiple function optimizations. It is shown that such an approach produces well known aircraft performance results such as minimizing the Brequet factor for minimum fuel consumption and the energy climb path. Furthermore, the new state variables produce a consistent calculation of flight path angle along the trajectory, eliminating one of the deficiencies in the traditional energy state approximation. In addition, jumps in the energy climb path are smoothed out by integration of the original dynamic equations at constant load factor. Numerical results performed for a supersonic transport design show that a pushover dive followed by a pullout at nominal load factors are sufficient maneuvers to smooth the jump.
JPL-ANTOPT antenna structure optimization program
NASA Technical Reports Server (NTRS)
Strain, D. M.
1994-01-01
New antenna path-length error and pointing-error structure optimization codes were recently added to the MSC/NASTRAN structural analysis computer program. Path-length and pointing errors are important measured of structure-related antenna performance. The path-length and pointing errors are treated as scalar displacements for statics loading cases. These scalar displacements can be subject to constraint during the optimization process. Path-length and pointing-error calculations supplement the other optimization and sensitivity capabilities of NASTRAN. The analysis and design functions were implemented as 'DMAP ALTERs' to the Design Optimization (SOL 200) Solution Sequence of MSC-NASTRAN, Version 67.5.
Zhang, Bo; Duan, Haibin
2017-01-01
Three-dimension path planning of uninhabited combat aerial vehicle (UCAV) is a complicated optimal problem, which mainly focused on optimizing the flight route considering the different types of constrains under complex combating environment. A novel predator-prey pigeon-inspired optimization (PPPIO) is proposed to solve the UCAV three-dimension path planning problem in dynamic environment. Pigeon-inspired optimization (PIO) is a new bio-inspired optimization algorithm. In this algorithm, map and compass operator model and landmark operator model are used to search the best result of a function. The prey-predator concept is adopted to improve global best properties and enhance the convergence speed. The characteristics of the optimal path are presented in the form of a cost function. The comparative simulation results show that our proposed PPPIO algorithm is more efficient than the basic PIO, particle swarm optimization (PSO), and different evolution (DE) in solving UCAV three-dimensional path planning problems.
From the physics of interacting polymers to optimizing routes on the London Underground
Yeung, Chi Ho; Saad, David; Wong, K. Y. Michael
2013-01-01
Optimizing paths on networks is crucial for many applications, ranging from subway traffic to Internet communication. Because global path optimization that takes account of all path choices simultaneously is computationally hard, most existing routing algorithms optimize paths individually, thus providing suboptimal solutions. We use the physics of interacting polymers and disordered systems to analyze macroscopic properties of generic path optimization problems and derive a simple, principled, generic, and distributed routing algorithm capable of considering all individual path choices simultaneously. We demonstrate the efficacy of the algorithm by applying it to: (i) random graphs resembling Internet overlay networks, (ii) travel on the London Underground network based on Oyster card data, and (iii) the global airport network. Analytically derived macroscopic properties give rise to insightful new routing phenomena, including phase transitions and scaling laws, that facilitate better understanding of the appropriate operational regimes and their limitations, which are difficult to obtain otherwise. PMID:23898198
From the physics of interacting polymers to optimizing routes on the London Underground.
Yeung, Chi Ho; Saad, David; Wong, K Y Michael
2013-08-20
Optimizing paths on networks is crucial for many applications, ranging from subway traffic to Internet communication. Because global path optimization that takes account of all path choices simultaneously is computationally hard, most existing routing algorithms optimize paths individually, thus providing suboptimal solutions. We use the physics of interacting polymers and disordered systems to analyze macroscopic properties of generic path optimization problems and derive a simple, principled, generic, and distributed routing algorithm capable of considering all individual path choices simultaneously. We demonstrate the efficacy of the algorithm by applying it to: (i) random graphs resembling Internet overlay networks, (ii) travel on the London Underground network based on Oyster card data, and (iii) the global airport network. Analytically derived macroscopic properties give rise to insightful new routing phenomena, including phase transitions and scaling laws, that facilitate better understanding of the appropriate operational regimes and their limitations, which are difficult to obtain otherwise.
Impulsive noise suppression in color images based on the geodesic digital paths
NASA Astrophysics Data System (ADS)
Smolka, Bogdan; Cyganek, Boguslaw
2015-02-01
In the paper a novel filtering design based on the concept of exploration of the pixel neighborhood by digital paths is presented. The paths start from the boundary of a filtering window and reach its center. The cost of transitions between adjacent pixels is defined in the hybrid spatial-color space. Then, an optimal path of minimum total cost, leading from pixels of the window's boundary to its center is determined. The cost of an optimal path serves as a degree of similarity of the central pixel to the samples from the local processing window. If a pixel is an outlier, then all the paths starting from the window's boundary will have high costs and the minimum one will also be high. The filter output is calculated as a weighted mean of the central pixel and an estimate constructed using the information on the minimum cost assigned to each image pixel. So, first the costs of optimal paths are used to build a smoothed image and in the second step the minimum cost of the central pixel is utilized for construction of the weights of a soft-switching scheme. The experiments performed on a set of standard color images, revealed that the efficiency of the proposed algorithm is superior to the state-of-the-art filtering techniques in terms of the objective restoration quality measures, especially for high noise contamination ratios. The proposed filter, due to its low computational complexity, can be applied for real time image denoising and also for the enhancement of video streams.
NASA Astrophysics Data System (ADS)
Chamitoff, Gregory E.; Saenz-Otero, Alvar; Katz, Jacob G.; Ulrich, Steve; Morrell, Benjamin J.; Gibbens, Peter W.
2018-01-01
This paper presents the development of a real-time path-planning optimization approach to controlling the motion of space-based robots. The algorithm is capable of planning three dimensional trajectories for a robot to navigate within complex surroundings that include numerous static and dynamic obstacles, path constraints and performance limitations. The methodology employs a unique transformation that enables rapid generation of feasible solutions for complex geometries, making it suitable for application to real-time operations and dynamic environments. This strategy was implemented on the Synchronized Position Hold Engage Reorient Experimental Satellite (SPHERES) test-bed on the International Space Station (ISS), and experimental testing was conducted onboard the ISS during Expedition 17 by the first author. Lessons learned from the on-orbit tests were used to further refine the algorithm for future implementations.
NASA Astrophysics Data System (ADS)
Bonchiş, N.; Balint, Şt.
2010-09-01
In this paper the Ramsey optimal growth of the capital stock and consumption on finite horizon is analyzed when the growth rate of consumers is strictly positive. The main purpose is to establish the dependence of the optimal capital stock and consumption evolution on the growth rate of consumers. The analysis reveals: for any initial value k0≥0 there exists a unique optimal evolution path of length N+1 for the capital stock; if k0 is strictly positive then all the elements of the optimal capital stock evolution path are strictly positives except the last one which is zero; the optimal capital stock evolution of length N+1 starting from k0≥0 satisfies the Euler equation; the value function VN is strictly increasing, strictly concave and continuous on R+. The family of functions {VN-T}T = 0…N-1 satisfies the Bellman equation and it is the unique solution of this equation which is both continuous and satisfies the transversality condition. The Mangasarian Lemma is also satisfied. For N tending to infinity the optimal evolution path of length N of the capital stock tends to those on the infinite time horizon. For any k0>0 the value function in k0 decreases when the consumers growth rate increases.
Research on cutting path optimization of sheet metal parts based on ant colony algorithm
NASA Astrophysics Data System (ADS)
Wu, Z. Y.; Ling, H.; Li, L.; Wu, L. H.; Liu, N. B.
2017-09-01
In view of the disadvantages of the current cutting path optimization methods of sheet metal parts, a new method based on ant colony algorithm was proposed in this paper. The cutting path optimization problem of sheet metal parts was taken as the research object. The essence and optimization goal of the optimization problem were presented. The traditional serial cutting constraint rule was improved. The cutting constraint rule with cross cutting was proposed. The contour lines of parts were discretized and the mathematical model of cutting path optimization was established. Thus the problem was converted into the selection problem of contour lines of parts. Ant colony algorithm was used to solve the problem. The principle and steps of the algorithm were analyzed.
NASA Technical Reports Server (NTRS)
Lax, F. M.
1975-01-01
A time-controlled navigation system applicable to the descent phase of flight for airline transport aircraft was developed and simulated. The design incorporates the linear discrete-time sampled-data version of the linearized continuous-time system describing the aircraft's aerodynamics. Using optimal linear quadratic control techniques, an optimal deterministic control regulator which is implementable on an airborne computer is designed. The navigation controller assists the pilot in complying with assigned times of arrival along a four-dimensional flight path in the presence of wind disturbances. The strategic air traffic control concept is also described, followed by the design of a strategic control descent path. A strategy for determining possible times of arrival at specified waypoints along the descent path and for generating the corresponding route-time profiles that are within the performance capabilities of the aircraft is presented. Using a mathematical model of the Boeing 707-320B aircraft along with a Boeing 707 cockpit simulator interfaced with an Adage AGT-30 digital computer, a real-time simulation of the complete aircraft aerodynamics was achieved. The strategic four-dimensional navigation controller for longitudinal dynamics was tested on the nonlinear aircraft model in the presence of 15, 30, and 45 knot head-winds. The results indicate that the controller preserved the desired accuracy and precision of a time-controlled aircraft navigation system.
Optimal short-range trajectories for helicopters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slater, G.L.; Erzberger, H.
1982-12-01
An optimal flight path algorithm using a simplified altitude state model and a priori climb cruise descent flight profile was developed and applied to determine minimum fuel and minimum cost trajectories for a helicopter flying a fixed range trajectory. In addition, a method was developed for obtaining a performance model in simplified form which is based on standard flight manual data and which is applicable to the computation of optimal trajectories. The entire performance optimization algorithm is simple enough that on line trajectory optimization is feasible with a relatively small computer. The helicopter model used is the Silorsky S-61N. Themore » results show that for this vehicle the optimal flight path and optimal cruise altitude can represent a 10% fuel saving on a minimum fuel trajectory. The optimal trajectories show considerable variability because of helicopter weight, ambient winds, and the relative cost trade off between time and fuel. In general, reasonable variations from the optimal velocities and cruise altitudes do not significantly degrade the optimal cost. For fuel optimal trajectories, the optimum cruise altitude varies from the maximum (12,000 ft) to the minimum (0 ft) depending on helicopter weight.« less
On scheduling task systems with variable service times
NASA Astrophysics Data System (ADS)
Maset, Richard G.; Banawan, Sayed A.
1993-08-01
Several strategies have been proposed for developing optimal and near-optimal schedules for task systems (jobs consisting of multiple tasks that can be executed in parallel). Most such strategies, however, implicitly assume deterministic task service times. We show that these strategies are much less effective when service times are highly variable. We then evaluate two strategies—one adaptive, one static—that have been proposed for retaining high performance despite such variability. Both strategies are extensions of critical path scheduling, which has been found to be efficient at producing near-optimal schedules. We found the adaptive approach to be quite effective.
Energy management during the space shuttle transition
NASA Technical Reports Server (NTRS)
Stengel, R. F.
1972-01-01
An approach to calculating optimal, gliding flight paths of the type associated with the space shuttle's transition from entry to cruising flight is presented. Kinetic energy and total energy (per unit weight) replace velocity and time in the dynamic equations, reducing the dimension and complexity of the problem. The capability for treating integral and terminal penalties (as well as Mach number effects) is retained in the numerical optimization; hence, stability and control boundaries can be observed as trajectories to the desired final energy, flight path angle, and range are determined. Numerical results show that the jump to the front-side of the L/D curve need not be made until the end of the transition and that the dynamic model provides a conservative range estimate. Alternatives for real time trajectory control are discussed.
Research on NC laser combined cutting optimization model of sheet metal parts
NASA Astrophysics Data System (ADS)
Wu, Z. Y.; Zhang, Y. L.; Li, L.; Wu, L. H.; Liu, N. B.
2017-09-01
The optimization problem for NC laser combined cutting of sheet metal parts was taken as the research object in this paper. The problem included two contents: combined packing optimization and combined cutting path optimization. In the problem of combined packing optimization, the method of “genetic algorithm + gravity center NFP + geometric transformation” was used to optimize the packing of sheet metal parts. In the problem of combined cutting path optimization, the mathematical model of cutting path optimization was established based on the parts cutting constraint rules of internal contour priority and cross cutting. The model played an important role in the optimization calculation of NC laser combined cutting.
The Time Window Vehicle Routing Problem Considering Closed Route
NASA Astrophysics Data System (ADS)
Irsa Syahputri, Nenna; Mawengkang, Herman
2017-12-01
The Vehicle Routing Problem (VRP) determines the optimal set of routes used by a fleet of vehicles to serve a given set of customers on a predefined graph; the objective is to minimize the total travel cost (related to the travel times or distances) and operational cost (related to the number of vehicles used). In this paper we study a variant of the predefined graph: given a weighted graph G and vertices a and b, and given a set X of closed paths in G, find the minimum total travel cost of a-b path P such that no path in X is a subpath of P. Path P is allowed to repeat vertices and edges. We use integer programming model to describe the problem. A feasible neighbourhood approach is proposed to solve the model
Optimized path planning for soft tissue resection via laser vaporization
NASA Astrophysics Data System (ADS)
Ross, Weston; Cornwell, Neil; Tucker, Matthew; Mann, Brian; Codd, Patrick
2018-02-01
Robotic and robotic-assisted surgeries are becoming more prevalent with the promise of improving surgical outcomes through increased precision, reduced operating times, and minimally invasive procedures. The handheld laser scalpel in neurosurgery has been shown to provide a more gentle approach to tissue manipulation on or near critical structures over classical tooling, though difficulties of control have prevented large scale adoption of the tool. This paper presents a novel approach to generating a cutting path for the volumetric resection of tissue using a computer-guided laser scalpel. A soft tissue ablation simulator is developed and used in conjunction with an optimization routine to select parameters which maximize the total resection of target tissue while minimizing the damage to surrounding tissue. The simulator predicts the ablative properties of tissue from an interrogation cut for tuning and simulates the removal of a tumorous tissue embedded on the surface of healthy tissue using a laser scalpel. We demonstrate the ability to control depth and smoothness of cut using genetic algorithms to optimize the ablation parameters and cutting path. The laser power level, cutting rate and spacing between cuts are optimized over multiple surface cuts to achieve the desired resection volumes.
NASA Astrophysics Data System (ADS)
Zhao, Dang-Jun; Song, Zheng-Yu
2017-08-01
This study proposes a multiphase convex programming approach for rapid reentry trajectory generation that satisfies path, waypoint and no-fly zone (NFZ) constraints on Common Aerial Vehicles (CAVs). Because the time when the vehicle reaches the waypoint is unknown, the trajectory of the vehicle is divided into several phases according to the prescribed waypoints, rendering a multiphase optimization problem with free final time. Due to the requirement of rapidity, the minimum flight time of each phase index is preferred over other indices in this research. The sequential linearization is used to approximate the nonlinear dynamics of the vehicle as well as the nonlinear concave path constraints on the heat rate, dynamic pressure, and normal load; meanwhile, the convexification techniques are proposed to relax the concave constraints on control variables. Next, the original multiphase optimization problem is reformulated as a standard second-order convex programming problem. Theoretical analysis is conducted to show that the original problem and the converted problem have the same solution. Numerical results are presented to demonstrate that the proposed approach is efficient and effective.
A Hybrid Metaheuristic DE/CS Algorithm for UCAV Three-Dimension Path Planning
Wang, Gaige; Guo, Lihong; Duan, Hong; Wang, Heqi; Liu, Luo; Shao, Mingzhen
2012-01-01
Three-dimension path planning for uninhabited combat air vehicle (UCAV) is a complicated high-dimension optimization problem, which primarily centralizes on optimizing the flight route considering the different kinds of constrains under complicated battle field environments. A new hybrid metaheuristic differential evolution (DE) and cuckoo search (CS) algorithm is proposed to solve the UCAV three-dimension path planning problem. DE is applied to optimize the process of selecting cuckoos of the improved CS model during the process of cuckoo updating in nest. The cuckoos can act as an agent in searching the optimal UCAV path. And then, the UCAV can find the safe path by connecting the chosen nodes of the coordinates while avoiding the threat areas and costing minimum fuel. This new approach can accelerate the global convergence speed while preserving the strong robustness of the basic CS. The realization procedure for this hybrid metaheuristic approach DE/CS is also presented. In order to make the optimized UCAV path more feasible, the B-Spline curve is adopted for smoothing the path. To prove the performance of this proposed hybrid metaheuristic method, it is compared with basic CS algorithm. The experiment shows that the proposed approach is more effective and feasible in UCAV three-dimension path planning than the basic CS model. PMID:23193383
A hybrid metaheuristic DE/CS algorithm for UCAV three-dimension path planning.
Wang, Gaige; Guo, Lihong; Duan, Hong; Wang, Heqi; Liu, Luo; Shao, Mingzhen
2012-01-01
Three-dimension path planning for uninhabited combat air vehicle (UCAV) is a complicated high-dimension optimization problem, which primarily centralizes on optimizing the flight route considering the different kinds of constrains under complicated battle field environments. A new hybrid metaheuristic differential evolution (DE) and cuckoo search (CS) algorithm is proposed to solve the UCAV three-dimension path planning problem. DE is applied to optimize the process of selecting cuckoos of the improved CS model during the process of cuckoo updating in nest. The cuckoos can act as an agent in searching the optimal UCAV path. And then, the UCAV can find the safe path by connecting the chosen nodes of the coordinates while avoiding the threat areas and costing minimum fuel. This new approach can accelerate the global convergence speed while preserving the strong robustness of the basic CS. The realization procedure for this hybrid metaheuristic approach DE/CS is also presented. In order to make the optimized UCAV path more feasible, the B-Spline curve is adopted for smoothing the path. To prove the performance of this proposed hybrid metaheuristic method, it is compared with basic CS algorithm. The experiment shows that the proposed approach is more effective and feasible in UCAV three-dimension path planning than the basic CS model.
Barbagallo, Simone; Corradi, Luca; de Ville de Goyet, Jean; Iannucci, Marina; Porro, Ivan; Rosso, Nicola; Tanfani, Elena; Testi, Angela
2015-05-17
The Operating Room (OR) is a key resource of all major hospitals, but it also accounts for up 40% of resource costs. Improving cost effectiveness, while maintaining a quality of care, is a universal objective. These goals imply an optimization of planning and a scheduling of the activities involved. This is highly challenging due to the inherent variable and unpredictable nature of surgery. A Business Process Modeling Notation (BPMN 2.0) was used for the representation of the "OR Process" (being defined as the sequence of all of the elementary steps between "patient ready for surgery" to "patient operated upon") as a general pathway ("path"). The path was then both further standardized as much as possible and, at the same time, keeping all of the key-elements that would allow one to address or define the other steps of planning, and the inherent and wide variability in terms of patient specificity. The path was used to schedule OR activity, room-by-room, and day-by-day, feeding the process from a "waiting list database" and using a mathematical optimization model with the objective of ending up in an optimized planning. The OR process was defined with special attention paid to flows, timing and resource involvement. Standardization involved a dynamics operation and defined an expected operating time for each operation. The optimization model has been implemented and tested on real clinical data. The comparison of the results reported with the real data, shows that by using the optimization model, allows for the scheduling of about 30% more patients than in actual practice, as well as to better exploit the OR efficiency, increasing the average operating room utilization rate up to 20%. The optimization of OR activity planning is essential in order to manage the hospital's waiting list. Optimal planning is facilitated by defining the operation as a standard pathway where all variables are taken into account. By allowing a precise scheduling, it feeds the process of planning and, further up-stream, the management of a waiting list in an interactive and bi-directional dynamic process.
Real-time path planning and autonomous control for helicopter autorotation
NASA Astrophysics Data System (ADS)
Yomchinda, Thanan
Autorotation is a descending maneuver that can be used to recover helicopters in the event of total loss of engine power; however it is an extremely difficult and complex maneuver. The objective of this work is to develop a real-time system which provides full autonomous control for autorotation landing of helicopters. The work includes the development of an autorotation path planning method and integration of the path planner with a primary flight control system. The trajectory is divided into three parts: entry, descent and flare. Three different optimization algorithms are used to generate trajectories for each of these segments. The primary flight control is designed using a linear dynamic inversion control scheme, and a path following control law is developed to track the autorotation trajectories. Details of the path planning algorithm, trajectory following control law, and autonomous autorotation system implementation are presented. The integrated system is demonstrated in real-time high fidelity simulations. Results indicate feasibility of the capability of the algorithms to operate in real-time and of the integrated systems ability to provide safe autorotation landings. Preliminary simulations of autonomous autorotation on a small UAV are presented which will lead to a final hardware demonstration of the algorithms.
[Research on the preparative method of Arctigenin].
Zhang, Li-Ying; Yang, Yi-Shun; Zhang, Tong; Ding, Yue; Cai, Zhen-Zhen; Tao, Jian-Sheng
2012-03-01
To research on the preparation of Arctigenin in vitro. Took enzyme concentration, time course and substrate concentration as investigation factors, used Box-Behnken design-response surface methodology to optimize the enzyme hydrolysis path of Arctigenin. The best operational path for Arctigenin was as follows: the temperature was 50 degrees C, pH was 4.8, enzyme concentration was 0.44 U/mL, time course was 46.81 min, substrate concentration was 0.29 mg/mL, the conversion rate was 90.94%. This research can be regarded as a referencein preparing Arctigenin in vitro.
Solving fuzzy shortest path problem by genetic algorithm
NASA Astrophysics Data System (ADS)
Syarif, A.; Muludi, K.; Adrian, R.; Gen, M.
2018-03-01
Shortest Path Problem (SPP) is known as one of well-studied fields in the area Operations Research and Mathematical Optimization. It has been applied for many engineering and management designs. The objective is usually to determine path(s) in the network with minimum total cost or traveling time. In the past, the cost value for each arc was usually assigned or estimated as a deteministic value. For some specific real world applications, however, it is often difficult to determine the cost value properly. One way of handling such uncertainty in decision making is by introducing fuzzy approach. With this situation, it will become difficult to solve the problem optimally. This paper presents the investigations on the application of Genetic Algorithm (GA) to a new SPP model in which the cost values are represented as Triangular Fuzzy Number (TFN). We adopts the concept of ranking fuzzy numbers to determine how good the solutions. Here, by giving his/her degree value, the decision maker can determine the range of objective value. This would be very valuable for decision support system in the real world applications.Simulation experiments were carried out by modifying several test problems with 10-25 nodes. It is noted that the proposed approach is capable attaining a good solution with different degree of optimism for the tested problems.
Genetic Algorithm for Traveling Salesman Problem with Modified Cycle Crossover Operator
Mohamd Shoukry, Alaa; Gani, Showkat
2017-01-01
Genetic algorithms are evolutionary techniques used for optimization purposes according to survival of the fittest idea. These methods do not ensure optimal solutions; however, they give good approximation usually in time. The genetic algorithms are useful for NP-hard problems, especially the traveling salesman problem. The genetic algorithm depends on selection criteria, crossover, and mutation operators. To tackle the traveling salesman problem using genetic algorithms, there are various representations such as binary, path, adjacency, ordinal, and matrix representations. In this article, we propose a new crossover operator for traveling salesman problem to minimize the total distance. This approach has been linked with path representation, which is the most natural way to represent a legal tour. Computational results are also reported with some traditional path representation methods like partially mapped and order crossovers along with new cycle crossover operator for some benchmark TSPLIB instances and found improvements. PMID:29209364
Genetic Algorithm for Traveling Salesman Problem with Modified Cycle Crossover Operator.
Hussain, Abid; Muhammad, Yousaf Shad; Nauman Sajid, M; Hussain, Ijaz; Mohamd Shoukry, Alaa; Gani, Showkat
2017-01-01
Genetic algorithms are evolutionary techniques used for optimization purposes according to survival of the fittest idea. These methods do not ensure optimal solutions; however, they give good approximation usually in time. The genetic algorithms are useful for NP-hard problems, especially the traveling salesman problem. The genetic algorithm depends on selection criteria, crossover, and mutation operators. To tackle the traveling salesman problem using genetic algorithms, there are various representations such as binary, path, adjacency, ordinal, and matrix representations. In this article, we propose a new crossover operator for traveling salesman problem to minimize the total distance. This approach has been linked with path representation, which is the most natural way to represent a legal tour. Computational results are also reported with some traditional path representation methods like partially mapped and order crossovers along with new cycle crossover operator for some benchmark TSPLIB instances and found improvements.
Path integrals and large deviations in stochastic hybrid systems.
Bressloff, Paul C; Newby, Jay M
2014-04-01
We construct a path-integral representation of solutions to a stochastic hybrid system, consisting of one or more continuous variables evolving according to a piecewise-deterministic dynamics. The differential equations for the continuous variables are coupled to a set of discrete variables that satisfy a continuous-time Markov process, which means that the differential equations are only valid between jumps in the discrete variables. Examples of stochastic hybrid systems arise in biophysical models of stochastic ion channels, motor-driven intracellular transport, gene networks, and stochastic neural networks. We use the path-integral representation to derive a large deviation action principle for a stochastic hybrid system. Minimizing the associated action functional with respect to the set of all trajectories emanating from a metastable state (assuming that such a minimization scheme exists) then determines the most probable paths of escape. Moreover, evaluating the action functional along a most probable path generates the so-called quasipotential used in the calculation of mean first passage times. We illustrate the theory by considering the optimal paths of escape from a metastable state in a bistable neural network.
Optimization of IBF parameters based on adaptive tool-path algorithm
NASA Astrophysics Data System (ADS)
Deng, Wen Hui; Chen, Xian Hua; Jin, Hui Liang; Zhong, Bo; Hou, Jin; Li, An Qi
2018-03-01
As a kind of Computer Controlled Optical Surfacing(CCOS) technology. Ion Beam Figuring(IBF) has obvious advantages in the control of surface accuracy, surface roughness and subsurface damage. The superiority and characteristics of IBF in optical component processing are analyzed from the point of view of removal mechanism. For getting more effective and automatic tool path with the information of dwell time, a novel algorithm is proposed in this thesis. Based on the removal functions made through our IBF equipment and the adaptive tool-path, optimized parameters are obtained through analysis the residual error that would be created in the polishing process. A Φ600 mm plane reflector element was used to be a simulation instance. The simulation result shows that after four combinations of processing, the surface accuracy of PV (Peak Valley) value and the RMS (Root Mean Square) value was reduced to 4.81 nm and 0.495 nm from 110.22 nm and 13.998 nm respectively in the 98% aperture. The result shows that the algorithm and optimized parameters provide a good theoretical for high precision processing of IBF.
Analysis of explicit model predictive control for path-following control
2018-01-01
In this paper, explicit Model Predictive Control(MPC) is employed for automated lane-keeping systems. MPC has been regarded as the key to handle such constrained systems. However, the massive computational complexity of MPC, which employs online optimization, has been a major drawback that limits the range of its target application to relatively small and/or slow problems. Explicit MPC can reduce this computational burden using a multi-parametric quadratic programming technique(mp-QP). The control objective is to derive an optimal front steering wheel angle at each sampling time so that autonomous vehicles travel along desired paths, including straight, circular, and clothoid parts, at high entry speeds. In terms of the design of the proposed controller, a method of choosing weighting matrices in an optimization problem and the range of horizons for path-following control are described through simulations. For the verification of the proposed controller, simulation results obtained using other control methods such as MPC, Linear-Quadratic Regulator(LQR), and driver model are employed, and CarSim, which reflects the features of a vehicle more realistically than MATLAB/Simulink, is used for reliable demonstration. PMID:29534080
Analysis of explicit model predictive control for path-following control.
Lee, Junho; Chang, Hyuk-Jun
2018-01-01
In this paper, explicit Model Predictive Control(MPC) is employed for automated lane-keeping systems. MPC has been regarded as the key to handle such constrained systems. However, the massive computational complexity of MPC, which employs online optimization, has been a major drawback that limits the range of its target application to relatively small and/or slow problems. Explicit MPC can reduce this computational burden using a multi-parametric quadratic programming technique(mp-QP). The control objective is to derive an optimal front steering wheel angle at each sampling time so that autonomous vehicles travel along desired paths, including straight, circular, and clothoid parts, at high entry speeds. In terms of the design of the proposed controller, a method of choosing weighting matrices in an optimization problem and the range of horizons for path-following control are described through simulations. For the verification of the proposed controller, simulation results obtained using other control methods such as MPC, Linear-Quadratic Regulator(LQR), and driver model are employed, and CarSim, which reflects the features of a vehicle more realistically than MATLAB/Simulink, is used for reliable demonstration.
Serial robot for the trajectory optimization and error compensation of TMT mask exchange system
NASA Astrophysics Data System (ADS)
Wang, Jianping; Zhang, Feifan; Zhou, Zengxiang; Zhai, Chao
2015-10-01
Mask exchange system is the main part of Multi-Object Broadband Imaging Echellette (MOBIE) on the Thirty Meter Telescope (TMT). According to the conception of the TMT mask exchange system, the pre-design was introduced in the paper which was based on IRB 140 robot. The stiffness model of IRB 140 in SolidWorks was analyzed under different gravity vectors for further error compensation. In order to find the right location and path planning, the robot and the mask cassette model was imported into MOBIE model to perform different schemes simulation. And obtained the initial installation position and routing. Based on these initial parameters, IRB 140 robot was operated to simulate the path and estimate the mask exchange time. Meanwhile, MATLAB and ADAMS software were used to perform simulation analysis and optimize the route to acquire the kinematics parameters and compare with the experiment results. After simulation and experimental research mentioned in the paper, the theoretical reference was acquired which could high efficient improve the structure of the mask exchange system parameters optimization of the path and precision of the robot position.
NASA Astrophysics Data System (ADS)
WANG, Qingrong; ZHU, Changfeng; LI, Ying; ZHANG, Zhengkun
2017-06-01
Considering the time dependence of emergency logistic network and complexity of the environment that the network exists in, in this paper the time dependent network optimization theory and robust discrete optimization theory are combined, and the emergency logistics dynamic network optimization model with characteristics of robustness is built to maximize the timeliness of emergency logistics. On this basis, considering the complexity of dynamic network and the time dependence of edge weight, an improved ant colony algorithm is proposed to realize the coupling of the optimization algorithm and the network time dependence and robustness. Finally, a case study has been carried out in order to testify validity of this robustness optimization model and its algorithm, and the value of different regulation factors was analyzed considering the importance of the value of the control factor in solving the optimal path. Analysis results show that this model and its algorithm above-mentioned have good timeliness and strong robustness.
A Comparison of Two Path Planners for Planetary Rovers
NASA Technical Reports Server (NTRS)
Tarokh, M.; Shiller, Z.; Hayati, S.
1999-01-01
The paper presents two path planners suitable for planetary rovers. The first is based on fuzzy description of the terrain, and genetic algorithm to find a traversable path in a rugged terrain. The second planner uses a global optimization method with a cost function that is the path distance divided by the velocity limit obtained from the consideration of the rover static and dynamic stability. A description of both methods is provided, and the results of paths produced are given which show the effectiveness of the path planners in finding near optimal paths. The features of the methods and their suitability and application for rover path planning are compared
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, R.S.
1989-06-01
For a vehicle operating across arbitrarily-contoured terrain, finding the most fuel-efficient route between two points can be viewed as a high-level global path-planning problem with traversal costs and stability dependent on the direction of travel (anisotropic). The problem assumes a two-dimensional polygonal map of homogeneous cost regions for terrain representation constructed from elevation information. The anisotropic energy cost of vehicle motion has a non-braking component dependent on horizontal distance, a braking component dependent on vertical distance, and a constant path-independent component. The behavior of minimum-energy paths is then proved to be restricted to a small, but optimal set of traversalmore » types. An optimal-path-planning algorithm, using a heuristic search technique, reduces the infinite number of paths between the start and goal points to a finite number by generating sequences of goal-feasible window lists from analyzing the polygonal map and applying pruning criteria. The pruning criteria consist of visibility analysis, heading analysis, and region-boundary constraints. Each goal-feasible window lists specifies an associated convex optimization problem, and the best of all locally-optimal paths through the goal-feasible window lists is the globally-optimal path. These ideas have been implemented in a computer program, with results showing considerably better performance than the exponential average-case behavior predicted.« less
Namboodiri, Vijay Mohan K; Levy, Joshua M; Mihalas, Stefan; Sims, David W; Hussain Shuler, Marshall G
2016-08-02
Understanding the exploration patterns of foragers in the wild provides fundamental insight into animal behavior. Recent experimental evidence has demonstrated that path lengths (distances between consecutive turns) taken by foragers are well fitted by a power law distribution. Numerous theoretical contributions have posited that "Lévy random walks"-which can produce power law path length distributions-are optimal for memoryless agents searching a sparse reward landscape. It is unclear, however, whether such a strategy is efficient for cognitively complex agents, from wild animals to humans. Here, we developed a model to explain the emergence of apparent power law path length distributions in animals that can learn about their environments. In our model, the agent's goal during search is to build an internal model of the distribution of rewards in space that takes into account the cost of time to reach distant locations (i.e., temporally discounting rewards). For an agent with such a goal, we find that an optimal model of exploration in fact produces hyperbolic path lengths, which are well approximated by power laws. We then provide support for our model by showing that humans in a laboratory spatial exploration task search space systematically and modify their search patterns under a cost of time. In addition, we find that path length distributions in a large dataset obtained from free-ranging marine vertebrates are well described by our hyperbolic model. Thus, we provide a general theoretical framework for understanding spatial exploration patterns of cognitively complex foragers.
Enhancing The Science Collection Capability Of Nasas Lunar Reconnaissance Orbiter (LRO)
2017-12-01
dog-leg maneuver. The optimal control concept can be used to automate maneuver design with bright object avoidance. 6.1 Introduction Attitude maneuver...plan can be executed and the science objectives satisfied, rapid slew maneuvers are developed using optimal control theory. A key challenge to the...rapid slew is meeting operational constraints, which are treated as path constraints in optimal control . It is shown that the slew time for a payload
NASA Astrophysics Data System (ADS)
Marhadi, Kun Saptohartyadi
Structural optimization for damage tolerance under various unforeseen damage scenarios is computationally challenging. It couples non-linear progressive failure analysis with sampling-based stochastic analysis of random damage. The goal of this research was to understand the relationship between alternate load paths available in a structure and its damage tolerance, and to use this information to develop computationally efficient methods for designing damage tolerant structures. Progressive failure of a redundant truss structure subjected to small random variability was investigated to identify features that correlate with robustness and predictability of the structure's progressive failure. The identified features were used to develop numerical surrogate measures that permit computationally efficient deterministic optimization to achieve robustness and predictability of progressive failure. Analysis of damage tolerance on designs with robust progressive failure indicated that robustness and predictability of progressive failure do not guarantee damage tolerance. Damage tolerance requires a structure to redistribute its load to alternate load paths. In order to investigate the load distribution characteristics that lead to damage tolerance in structures, designs with varying degrees of damage tolerance were generated using brute force stochastic optimization. A method based on principal component analysis was used to describe load distributions (alternate load paths) in the structures. Results indicate that a structure that can develop alternate paths is not necessarily damage tolerant. The alternate load paths must have a required minimum load capability. Robustness analysis of damage tolerant optimum designs indicates that designs are tailored to specified damage. A design Optimized under one damage specification can be sensitive to other damages not considered. Effectiveness of existing load path definitions and characterizations were investigated for continuum structures. A load path definition using a relative compliance change measure (U* field) was demonstrated to be the most useful measure of load path. This measure provides quantitative information on load path trajectories and qualitative information on the effectiveness of the load path. The use of the U* description of load paths in optimizing structures for effective load paths was investigated.
Extended charge banking model of dual path shocks for implantable cardioverter defibrillators
Dosdall, Derek J; Sweeney, James D
2008-01-01
Background Single path defibrillation shock methods have been improved through the use of the Charge Banking Model of defibrillation, which predicts the response of the heart to shocks as a simple resistor-capacitor (RC) circuit. While dual path defibrillation configurations have significantly reduced defibrillation thresholds, improvements to dual path defibrillation techniques have been limited to experimental observations without a practical model to aid in improving dual path defibrillation techniques. Methods The Charge Banking Model has been extended into a new Extended Charge Banking Model of defibrillation that represents small sections of the heart as separate RC circuits, uses a weighting factor based on published defibrillation shock field gradient measures, and implements a critical mass criteria to predict the relative efficacy of single and dual path defibrillation shocks. Results The new model reproduced the results from several published experimental protocols that demonstrated the relative efficacy of dual path defibrillation shocks. The model predicts that time between phases or pulses of dual path defibrillation shock configurations should be minimized to maximize shock efficacy. Discussion Through this approach the Extended Charge Banking Model predictions may be used to improve dual path and multi-pulse defibrillation techniques, which have been shown experimentally to lower defibrillation thresholds substantially. The new model may be a useful tool to help in further improving dual path and multiple pulse defibrillation techniques by predicting optimal pulse durations and shock timing parameters. PMID:18673561
NASA Astrophysics Data System (ADS)
Hardy, Jason; Campbell, Mark; Miller, Isaac; Schimpf, Brian
2008-10-01
The local path planner implemented on Cornell's 2007 DARPA Urban Challenge entry vehicle Skynet utilizes a novel mixture of discrete and continuous path planning steps to facilitate a safe, smooth, and human-like driving behavior. The planner first solves for a feasible path through the local obstacle map using a grid based search algorithm. The resulting path is then refined using a cost-based nonlinear optimization routine with both hard and soft constraints. The behavior of this optimization is influenced by tunable weighting parameters which govern the relative cost contributions assigned to different path characteristics. This paper studies the sensitivity of the vehicle's performance to these path planner weighting parameters using a data driven simulation based on logged data from the National Qualifying Event. The performance of the path planner in both the National Qualifying Event and in the Urban Challenge is also presented and analyzed.
An Analysis of Mathematical Models to Improve Counter-Drug Smuggling Operations
2014-09-01
users. The target input file for the optimization algorithm has one segment of one target path on each row. Thus, if a target travels along a path...organization TOS time on station TSP Travelling Salesperson Problem USCG United States Coast Guard USN United States Navy UCONN University...of Connecticut UNCLOS United Nations Convention on Law of the Sea xv EXECUTIVE SUMMARY This research is motivated by the ongoing efforts of the
jFuzz: A Concolic Whitebox Fuzzer for Java
NASA Technical Reports Server (NTRS)
Jayaraman, Karthick; Harvison, David; Ganesh, Vijay; Kiezun, Adam
2009-01-01
We present jFuzz, a automatic testing tool for Java programs. jFuzz is a concolic whitebox fuzzer, built on the NASA Java PathFinder, an explicit-state Java model checker, and a framework for developing reliability and analysis tools for Java. Starting from a seed input, jFuzz automatically and systematically generates inputs that exercise new program paths. jFuzz uses a combination of concrete and symbolic execution, and constraint solving. Time spent on solving constraints can be significant. We implemented several well-known optimizations and name-independent caching, which aggressively normalizes the constraints to reduce the number of calls to the constraint solver. We present preliminary results due to the optimizations, and demonstrate the effectiveness of jFuzz in creating good test inputs. The source code of jFuzz is available as part of the NASA Java PathFinder. jFuzz is intended to be a research testbed for investigating new testing and analysis techniques based on concrete and symbolic execution. The source code of jFuzz is available as part of the NASA Java PathFinder.
NASA Astrophysics Data System (ADS)
Hoomod, Haider K.; Kareem Jebur, Tuka
2018-05-01
Mobile ad hoc networks (MANETs) play a critical role in today’s wireless ad hoc network research and consist of active nodes that can be in motion freely. Because it consider very important problem in this network, we suggested proposed method based on modified radial basis function networks RBFN and Self-Organizing Map SOM. These networks can be improved by the use of clusters because of huge congestion in the whole network. In such a system, the performance of MANET is improved by splitting the whole network into various clusters using SOM. The performance of clustering is improved by the cluster head selection and number of clusters. Modified Radial Based Neural Network is very simple, adaptable and efficient method to increase the life time of nodes, packet delivery ratio and the throughput of the network will increase and connection become more useful because the optimal path has the best parameters from other paths including the best bitrate and best life link with minimum delays. Proposed routing algorithm depends on the group of factors and parameters to select the path between two points in the wireless network. The SOM clustering average time (1-10 msec for stall nodes) and (8-75 msec for mobile nodes). While the routing time range (92-510 msec).The proposed system is faster than the Dijkstra by 150-300%, and faster from the RBFNN (without modify) by 145-180%.
NASA Technical Reports Server (NTRS)
Ng, Hok K.; Grabbe, Shon; Mukherjee, Avijit
2010-01-01
The optimization of traffic flows in congested airspace with varying convective weather is a challenging problem. One approach is to generate shortest routes between origins and destinations while meeting airspace capacity constraint in the presence of uncertainties, such as weather and airspace demand. This study focuses on development of an optimal flight path search algorithm that optimizes national airspace system throughput and efficiency in the presence of uncertainties. The algorithm is based on dynamic programming and utilizes the predicted probability that an aircraft will deviate around convective weather. It is shown that the running time of the algorithm increases linearly with the total number of links between all stages. The optimal routes minimize a combination of fuel cost and expected cost of route deviation due to convective weather. They are considered as alternatives to the set of coded departure routes which are predefined by FAA to reroute pre-departure flights around weather or air traffic constraints. A formula, which calculates predicted probability of deviation from a given flight path, is also derived. The predicted probability of deviation is calculated for all path candidates. Routes with the best probability are selected as optimal. The predicted probability of deviation serves as a computable measure of reliability in pre-departure rerouting. The algorithm can also be extended to automatically adjust its design parameters to satisfy the desired level of reliability.
NASA Astrophysics Data System (ADS)
Sandhu, Amit
A sequential quadratic programming method is proposed for solving nonlinear optimal control problems subject to general path constraints including mixed state-control and state only constraints. The proposed algorithm further develops on the approach proposed in [1] with objective to eliminate the use of a high number of time intervals for arriving at an optimal solution. This is done by introducing an adaptive time discretization to allow formation of a desirable control profile without utilizing a lot of intervals. The use of fewer time intervals reduces the computation time considerably. This algorithm is further used in this thesis to solve a trajectory planning problem for higher elevation Mars landing.
A comparison of time-optimal interception trajectories for the F-8 and F-15
NASA Technical Reports Server (NTRS)
Calise, Anthony J.; Pettengill, James B.
1990-01-01
The simulation results of a real time control algorithm for onboard computation of time-optimal intercept trajectories for the F-8 and F-15 aircraft are given. Due to the inherent aerodynamic and propulsion differences in the aircraft, there are major differences in their optimal trajectories. The significant difference in the two aircrafts are their flight envelopes. The F-8's optimal cruise velocity is thrust limited, while the F-15's optimal cruise velocity is at the intersection of the Mach and dynamic pressure constraint boundaries. This inherent difference necessitated the development of a proportional thrust controller for use as the F-15 approaches it's optimal cruise energy. Documented here is the application of singular perturbation theory to the trajectory optimization problem, along with a summary of the control algorithms. Numerical results for the two aircraft are compared to illustrate the performance of the minimum time algorithm, and to compute the resulting flight paths.
Implications of path tolerance and path characteristics on critical vehicle manoeuvres
NASA Astrophysics Data System (ADS)
Lundahl, K.; Frisk, E.; Nielsen, L.
2017-12-01
Path planning and path following are core components in safe autonomous driving. Typically, a path planner provides a path with some tolerance on how tightly the path should be followed. Based on that, and other path characteristics, for example, sharpness of curves, a speed profile needs to be assigned so that the vehicle can stay within the given tolerance without going unnecessarily slow. Here, such trajectory planning is based on optimal control formulations where critical cases arise as on-the-limit solutions. The study focuses on heavy commercial vehicles, causing rollover to be of a major concern, due to the relatively high centre of gravity. Several results are obtained on required model complexity depending on path characteristics, for example, quantification of required path tolerance for a simple model to be sufficient, quantification of when yaw inertia needs to be considered in more detail, and how the curvature rate of change interplays with available friction. Overall, in situations where the vehicle is subject to a wide range of driving conditions, from good transport roads to more tricky avoidance manoeuvres, the requirements on the path following will vary. For this, the provided results form a basis for real-time path following.
Smell Detection Agent Based Optimization Algorithm
NASA Astrophysics Data System (ADS)
Vinod Chandra, S. S.
2016-09-01
In this paper, a novel nature-inspired optimization algorithm has been employed and the trained behaviour of dogs in detecting smell trails is adapted into computational agents for problem solving. The algorithm involves creation of a surface with smell trails and subsequent iteration of the agents in resolving a path. This algorithm can be applied in different computational constraints that incorporate path-based problems. Implementation of the algorithm can be treated as a shortest path problem for a variety of datasets. The simulated agents have been used to evolve the shortest path between two nodes in a graph. This algorithm is useful to solve NP-hard problems that are related to path discovery. This algorithm is also useful to solve many practical optimization problems. The extensive derivation of the algorithm can be enabled to solve shortest path problems.
Decomposition technique and optimal trajectories for the aeroassisted flight experiment
NASA Technical Reports Server (NTRS)
Miele, A.; Wang, T.; Deaton, A. W.
1990-01-01
An actual geosynchronous Earth orbit-to-low Earth orbit (GEO-to-LEO) transfer is considered with reference to the aeroassisted flight experiment (AFE) spacecraft, and optimal trajectories are determined by minimizing the total characteristic velocity. The optimization is performed with respect to the time history of the controls (angle of attack and angle of bank), the entry path inclination and the flight time being free. Two transfer maneuvers are considered: direct ascent (DA) to LEO and indirect ascent (IA) to LEO via parking Earth orbit (PEO). By taking into account certain assumptions, the complete system can be decoupled into two subsystems: one describing the longitudinal motion and one describing the lateral motion. The angle of attack history, the entry path inclination, and the flight time are determined via the longitudinal motion subsystem. In this subsystem, the difference between the instantaneous bank angle and a constant bank angle is minimized in the least square sense subject to the specified orbital inclination requirement. Both the angles of attack and the angle of bank are shown to be constant. This result has considerable importance in the design of nominal trajectories to be used in the guidance of AFE and aeroassisted orbital transfer (AOT) vehicles.
NASA Astrophysics Data System (ADS)
Tavakoli, A.; Naeini, H. Moslemi; Roohi, Amir H.; Gollo, M. Hoseinpour; Shahabad, Sh. Imani
2018-01-01
In the 3D laser forming process, developing an appropriate laser scan pattern for producing specimens with high quality and uniformity is critical. This study presents certain principles for developing scan paths. Seven scan path parameters are considered, including: (1) combined linear or curved path; (2) type of combined linear path; (3) order of scan sequences; (4) the position of the start point in each scan; (5) continuous or discontinuous scan path; (6) direction of scan path; and (7) angular arrangement of combined linear scan paths. Regarding these path parameters, ten combined linear scan patterns are presented. Numerical simulations show continuous hexagonal, scan pattern, scanning from outer to inner path, is the optimized. In addition, it is observed the position of the start point and the angular arrangement of scan paths is the most effective path parameters. Also, further experimentations show four sequences due to creat symmetric condition enhance the height of the bowl-shaped products and uniformity. Finally, the optimized hexagonal pattern was compared with the similar circular one. In the hexagonal scan path, distortion value and standard deviation rather to edge height of formed specimen is very low, and the edge height despite of decreasing length of scan path increases significantly compared to the circular scan path. As a result, four-sequence hexagonal scan pattern is proposed as the optimized perimeter scan path to produce bowl-shaped product.
Richmond, Amos; Cheng-Wu, Zhang; Zarmi, Yair
2003-07-01
The interrelationships between the optical path in flat plate reactors and photosynthetic productivity were elucidated. In preliminary works, a great surge in photosynthetic productivity was attained in flat plate photoreactors with an ultra short (e.g. 1.0 cm) optical path, in which extremely high culture density was facilitated by vigorous stirring and strong light. This surge in net photosynthetic efficiency was associated with a very significant increase in the optimal population density facilitated by the very short optical path (OP). A salient feature of these findings concerns the necessity to address growth inhibition (GI) which becomes increasingly manifested as cell concentration rises above a certain, species-specific, threshold (e.g. 1-2 billion cells of Nannochloropsis sp. ml(-1)). Indeed, ultrahigh cell density cultures may be established and sustained only if growth inhibition is continuously, or at least frequently, removed. Nannochloropsis culture from which GI was not removed, yielded 60 mg(-1) h(-1), yielding 260 mg l(-1) h(-1) when GI was removed. Two basic factors crucial for obtaining maximal photosynthetic productivity and efficiency in strong photon irradiance are defined: (1) areal cell density must be optimal, as high as possible (cell growth inhibition having been eliminated), insuring the average photon irradiance (I(av)) available per cell is falling at the end of the linear phase of the PI(av) curve, relating rate of photosynthesis to I(av), i.e. approximately photon irradiance per cell. (2) The light-dark (L-D) cycle period, which is determined by travel time of cells between the dark and the light volumes along the optical path, should be made as short as practically feasible, so as to approach, as much as possible the photosynthetic unit turnover time. This is obtainable in flat plate reactors by reducing the OP to as small a magnitude as is practically feasible.
Aircraft symmetric flight optimization. [gradient techniques for supersonic aircraft control
NASA Technical Reports Server (NTRS)
Falco, M.; Kelley, H. J.
1973-01-01
Review of the development of gradient techniques and their application to aircraft optimal performance computations in the vertical plane of flight. Results obtained using the method of gradients are presented for attitude- and throttle-control programs which extremize the fuel, range, and time performance indices subject to various trajectory and control constraints, including boundedness of engine throttle control. A penalty function treatment of state inequality constraints which generally appear in aircraft performance problems is outlined. Numerical results for maximum-range, minimum-fuel, and minimum-time climb paths for a hypothetical supersonic turbojet interceptor are presented and discussed. In addition, minimum-fuel climb paths subject to various levels of ground overpressure intensity constraint are indicated for a representative supersonic transport. A variant of the Gel'fand-Tsetlin 'method of ravines' is reviewed, and two possibilities for further development of continuous gradient processes are cited - namely, a projection version of conjugate gradients and a curvilinear search.
NASA Technical Reports Server (NTRS)
Robertson, Franklin R.; Fitzjarrald, Dan E.; Kummerow, Christian D.; Arnold, James E. (Technical Monitor)
2002-01-01
Considerable uncertainty surrounds the issue of whether precipitation over the tropical oceans (30 deg N/S) systematically changes with interannual sea-surface temperature (SST) anomalies that accompany El Nino (warm) and La Nina (cold) events. Time series of rainfall estimates from the Tropical Rainfall Measuring Mission (TRMM Precipitation Radar (PR) over the tropical oceans show marked differences with estimates from two TRMM Microwave Imager (TMI) passive microwave algorithms. We show that path-integrated attenuation derived from the effects of precipitation on the radar return from the ocean surface exhibits interannual variability that agrees closely with the TMI time series. Further analysis of the frequency distribution of PR (2A25 product) rain rates suggests that the algorithm incorporates the attenuation measurement in a very conservative fashion so as to optimize the instantaneous rain rates. Such an optimization appears to come at the expense of monitoring interannual climate variability.
Optimal Path Planning Program for Autonomous Speed Sprayer in Orchard Using Order-Picking Algorithm
NASA Astrophysics Data System (ADS)
Park, T. S.; Park, S. J.; Hwang, K. Y.; Cho, S. I.
This study was conducted to develop a software program which computes optimal path for autonomous navigation in orchard, especially for speed sprayer. Possibilities of autonomous navigation in orchard were shown by other researches which have minimized distance error between planned path and performed path. But, research of planning an optimal path for speed sprayer in orchard is hardly founded. In this study, a digital map and a database for orchard which contains GPS coordinate information (coordinates of trees and boundary of orchard) and entity information (heights and widths of trees, radius of main stem of trees, disease of trees) was designed. An orderpicking algorithm which has been used for management of warehouse was used to calculate optimum path based on the digital map. Database for digital map was created by using Microsoft Access and graphic interface for database was made by using Microsoft Visual C++ 6.0. It was possible to search and display information about boundary of an orchard, locations of trees, daily plan for scattering chemicals and plan optimal path on different orchard based on digital map, on each circumstance (starting speed sprayer in different location, scattering chemicals for only selected trees).
Path optimization with limited sensing ability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Sung Ha, E-mail: kang@math.gatech.edu; Kim, Seong Jun, E-mail: skim396@math.gatech.edu; Zhou, Haomin, E-mail: hmzhou@math.gatech.edu
2015-10-15
We propose a computational strategy to find the optimal path for a mobile sensor with limited coverage to traverse a cluttered region. The goal is to find one of the shortest feasible paths to achieve the complete scan of the environment. We pose the problem in the level set framework, and first consider a related question of placing multiple stationary sensors to obtain the full surveillance of the environment. By connecting the stationary locations using the nearest neighbor strategy, we form the initial guess for the path planning problem of the mobile sensor. Then the path is optimized by reducingmore » its length, via solving a system of ordinary differential equations (ODEs), while maintaining the complete scan of the environment. Furthermore, we use intermittent diffusion, which converts the ODEs into stochastic differential equations (SDEs), to find an optimal path whose length is globally minimal. To improve the computation efficiency, we introduce two techniques, one to remove redundant connecting points to reduce the dimension of the system, and the other to deal with the entangled path so the solution can escape the local traps. Numerical examples are shown to illustrate the effectiveness of the proposed method.« less
Optimization for Service Routes of Pallet Service Center Based on the Pallet Pool Mode
He, Shiwei; Song, Rui
2016-01-01
Service routes optimization (SRO) of pallet service center should meet customers' demand firstly and then, through the reasonable method of lines organization, realize the shortest path of vehicle driving. The routes optimization of pallet service center is similar to the distribution problems of vehicle routing problem (VRP) and Chinese postman problem (CPP), but it has its own characteristics. Based on the relevant research results, the conditions of determining the number of vehicles, the one way of the route, the constraints of loading, and time windows are fully considered, and a chance constrained programming model with stochastic constraints is constructed taking the shortest path of all vehicles for a delivering (recycling) operation as an objective. For the characteristics of the model, a hybrid intelligent algorithm including stochastic simulation, neural network, and immune clonal algorithm is designed to solve the model. Finally, the validity and rationality of the optimization model and algorithm are verified by the case. PMID:27528865
A Stochastic Approach to Path Planning in the Weighted-Region Problem
1991-03-01
polynomial time. However, the polyhedrons in this three-dimensional obstacle-avoidance problem are all obstacles (i.e. travel is not permitted within...them). Therefore, optimal paths tend to avoid their vertices, and settle into closest approach tangents across polyhedron edges. So, in a sense...intersection update map database with new vertex for this edge 3. IF (C1 > D) and (C2 > D) THEN edge intersects ellipse at two points OR edge is
Environmental policies to enhance technological change in the electricity sector
NASA Astrophysics Data System (ADS)
Sunol Del Rio, Eric
International agreements on climate change mitigation set quantitative carbon emission reduction targets in a country for a given year with respect to a given base year. A central question is then on what time do the new clean and costly technologies need to start functioning to comply with the agreed targets, and under what incentive does the market implement them. The planner's economic problem is to design an incentive that makes the new clean technology less costly than the vintage polluting facility, at the precise time in order to comply with the agreements at minimum cost. Chapter 1 reviews the literature on efficient allocation of pollution, discussing its validity to explain induced technological change. It then presents a simple model of technological change showing that market power determes the optimal adoption time of a new technology. Chapter 2 analyzes the effectiveness of carbon costs in accelerating technological change under different paths of technological progress. Furthermore, the paper examines the influence of market conditions. It shows that emission charges do reduce the firm's optimal adoption time when investment cost paths for the new technology are convex. On the contrary, emission charges may delay the optimal the switching time of a technology when the investment cost path is concave. Chapter 3 explores the results of Chapter 2 in an agent-based model. Simulations of firms adjusting their output a la Cournot show that the effectiveness of carbon costs in accelerating technological change is highly dependant on the number of firms in the market. Moreover, the shape of the technological progress curve is determinant: the effects of carbon charges are not linear on carbon price, and become more uncertain the more concave the investment cost path is. These results show that policies aiming at internalizing pollution costs enhance technological change at very different rates, depending on the actual market conditions in the industry and the dynamics of technological progress. This has profound implications in policy design: not only do carbon charges need to be used with precaution in oligopolistic industries, but also its effectiveness depends on the inner dynamics of cleaner technological alternatives.
NASA Astrophysics Data System (ADS)
Sidibe, Souleymane
The implementation and monitoring of operational flight plans is a major occupation for a crew of commercial flights. The purpose of this operation is to set the vertical and lateral trajectories followed by airplane during phases of flight: climb, cruise, descent, etc. These trajectories are subjected to conflicting economical constraints: minimization of flight time and minimization of fuel consumed and environmental constraints. In its task of mission planning, the crew is assisted by the Flight Management System (FMS) which is used to construct the path to follow and to predict the behaviour of the aircraft along the flight plan. The FMS considered in our research, particularly includes an optimization model of flight only by calculating the optimal speed profile that minimizes the overall cost of flight synthesized by a criterion of cost index following a steady cruising altitude. However, the model based solely on optimization of the speed profile is not sufficient. It is necessary to expand the current optimization for simultaneous optimization of the speed and altitude in order to determine an optimum cruise altitude that minimizes the overall cost when the path is flown with the optimal speed profile. Then, a new program was developed. The latter is based on the method of dynamic programming invented by Bellman to solve problems of optimal paths. In addition, the improvement passes through research new patterns of trajectories integrating ascendant cruises and using the lateral plane with the effect of the weather: wind and temperature. Finally, for better optimization, the program takes into account constraint of flight domain of aircrafts which utilize the FMS.
A Robot Trajectory Optimization Approach for Thermal Barrier Coatings Used for Free-Form Components
NASA Astrophysics Data System (ADS)
Cai, Zhenhua; Qi, Beichun; Tao, Chongyuan; Luo, Jie; Chen, Yuepeng; Xie, Changjun
2017-10-01
This paper is concerned with a robot trajectory optimization approach for thermal barrier coatings. As the requirements of high reproducibility of complex workpieces increase, an optimal thermal spraying trajectory should not only guarantee an accurate control of spray parameters defined by users (e.g., scanning speed, spray distance, scanning step, etc.) to achieve coating thickness homogeneity but also help to homogenize the heat transfer distribution on the coating surface. A mesh-based trajectory generation approach is introduced in this work to generate path curves on a free-form component. Then, two types of meander trajectories are generated by performing a different connection method. Additionally, this paper presents a research approach for introducing the heat transfer analysis into the trajectory planning process. Combining heat transfer analysis with trajectory planning overcomes the defects of traditional trajectory planning methods (e.g., local over-heating), which helps form the uniform temperature field by optimizing the time sequence of path curves. The influence of two different robot trajectories on the process of heat transfer is estimated by coupled FEM models which demonstrates the effectiveness of the presented optimization approach.
Differential-Evolution Control Parameter Optimization for Unmanned Aerial Vehicle Path Planning
Kok, Kai Yit; Rajendran, Parvathy
2016-01-01
The differential evolution algorithm has been widely applied on unmanned aerial vehicle (UAV) path planning. At present, four random tuning parameters exist for differential evolution algorithm, namely, population size, differential weight, crossover, and generation number. These tuning parameters are required, together with user setting on path and computational cost weightage. However, the optimum settings of these tuning parameters vary according to application. Instead of trial and error, this paper presents an optimization method of differential evolution algorithm for tuning the parameters of UAV path planning. The parameters that this research focuses on are population size, differential weight, crossover, and generation number. The developed algorithm enables the user to simply define the weightage desired between the path and computational cost to converge with the minimum generation required based on user requirement. In conclusion, the proposed optimization of tuning parameters in differential evolution algorithm for UAV path planning expedites and improves the final output path and computational cost. PMID:26943630
Teleconnection Paths via Climate Network Direct Link Detection.
Zhou, Dong; Gozolchiani, Avi; Ashkenazy, Yosef; Havlin, Shlomo
2015-12-31
Teleconnections describe remote connections (typically thousands of kilometers) of the climate system. These are of great importance in climate dynamics as they reflect the transportation of energy and climate change on global scales (like the El Niño phenomenon). Yet, the path of influence propagation between such remote regions, and weighting associated with different paths, are only partially known. Here we propose a systematic climate network approach to find and quantify the optimal paths between remotely distant interacting locations. Specifically, we separate the correlations between two grid points into direct and indirect components, where the optimal path is found based on a minimal total cost function of the direct links. We demonstrate our method using near surface air temperature reanalysis data, on identifying cross-latitude teleconnections and their corresponding optimal paths. The proposed method may be used to quantify and improve our understanding regarding the emergence of climate patterns on global scales.
Dynamic path planning for mobile robot based on particle swarm optimization
NASA Astrophysics Data System (ADS)
Wang, Yong; Cai, Feng; Wang, Ying
2017-08-01
In the contemporary, robots are used in many fields, such as cleaning, medical treatment, space exploration, disaster relief and so on. The dynamic path planning of robot without collision is becoming more and more the focus of people's attention. A new method of path planning is proposed in this paper. Firstly, the motion space model of the robot is established by using the MAKLINK graph method. Then the A* algorithm is used to get the shortest path from the start point to the end point. Secondly, this paper proposes an effective method to detect and avoid obstacles. When an obstacle is detected on the shortest path, the robot will choose the nearest safety point to move. Moreover, calculate the next point which is nearest to the target. Finally, the particle swarm optimization algorithm is used to optimize the path. The experimental results can prove that the proposed method is more effective.
Waste vinegar residue as substrate for phytase production.
Wang, Zhi-Hong; Dong, Xiao-Fang; Zhang, Guo-Qing; Tong, Jian-Ming; Zhang, Qi; Xu, Shang-Zhong
2011-12-01
Waste vinegar residue, the by-product of vinegar processing, was used as substrate for phytase production from Aspergillus ficuum NTG-23 in solid-state fermentation to investigate the potential for the efficient re-utilization or recycling of waste vinegar residue. Statistical designs were applied in the processing of phytase production. First, a Plackett-Burman (PB) design was used to evaluate eleven parameters: glucose, starch, wheat bran, (NH(4))(2)SO(4), NH(4)NO(3), tryptone, soybean meal, MgSO(4)·7H(2)O, CaCl(2)·7H(2)O, FeSO(4)·7H(2)O, incubation time. The PB experiments showed that there were three significant factors: glucose, soybean meal and incubation time. The closest values to the optimum point were then derived by steepest ascent path. Finally, a mathematical model was created and validated to explain the behavioural process after these three significant factors were optimized using response surface methodology (RSM). The best phytase activity was attained using the following conditions: glucose (7.2%), soybean meal (5.1%), and incubation time (271 h). The phytase activity was 7.34-fold higher due to optimization by PB design, steepest ascent path design and RSM. The phytase activity was enhanced 0.26-fold in comparison with the results by the second step of steepest ascent path design. The results indicate that with waste vinegar residue as a substrate higher production of phytase from Aspergillus ficuum NTG-23 could be obtained through an optimization process and that this method might be applied to an integrated system for recycling of the waste vinegar residue.
Namboodiri, Vijay Mohan K.; Levy, Joshua M.; Mihalas, Stefan; Sims, David W.; Hussain Shuler, Marshall G.
2016-01-01
Understanding the exploration patterns of foragers in the wild provides fundamental insight into animal behavior. Recent experimental evidence has demonstrated that path lengths (distances between consecutive turns) taken by foragers are well fitted by a power law distribution. Numerous theoretical contributions have posited that “Lévy random walks”—which can produce power law path length distributions—are optimal for memoryless agents searching a sparse reward landscape. It is unclear, however, whether such a strategy is efficient for cognitively complex agents, from wild animals to humans. Here, we developed a model to explain the emergence of apparent power law path length distributions in animals that can learn about their environments. In our model, the agent’s goal during search is to build an internal model of the distribution of rewards in space that takes into account the cost of time to reach distant locations (i.e., temporally discounting rewards). For an agent with such a goal, we find that an optimal model of exploration in fact produces hyperbolic path lengths, which are well approximated by power laws. We then provide support for our model by showing that humans in a laboratory spatial exploration task search space systematically and modify their search patterns under a cost of time. In addition, we find that path length distributions in a large dataset obtained from free-ranging marine vertebrates are well described by our hyperbolic model. Thus, we provide a general theoretical framework for understanding spatial exploration patterns of cognitively complex foragers. PMID:27385831
Crossing fitness canyons by a finite population
NASA Astrophysics Data System (ADS)
Saakian, David B.; Bratus, Alexander S.; Hu, Chin-Kun
2017-06-01
We consider the Wright-Fisher model of the finite population evolution on a fitness landscape defined in the sequence space by a path of nearly neutral mutations. We study a specific structure of the fitness landscape: One of the intermediate mutations on the mutation path results in either a large fitness value (climbing up a fitness hill) or a low fitness value (crossing a fitness canyon), the rest of the mutations besides the last one are neutral, and the last sequence has much higher fitness than any intermediate sequence. We derive analytical formulas for the first arrival time of the mutant with two point mutations. For the first arrival problem for the further mutants in the case of canyon crossing, we analytically deduce how the mean first arrival time scales with the population size and fitness difference. The location of the canyon on the path of sequences has a crucial role. If the canyon is at the beginning of the path, then it significantly prolongs the first arrival time; otherwise it just slightly changes it. Furthermore, the fitness hill at the beginning of the path strongly prolongs the arrival time period; however, the hill located near the end of the path shortens it. We optimize the first arrival time by applying a nonzero selection to the intermediate sequences. We extend our results and provide a scaling for the valley crossing time via the depth of the canyon and population size in the case of a fitness canyon at the first position. Our approach is useful for understanding some complex evolution systems, e.g., the evolution of cancer.
NASA Technical Reports Server (NTRS)
1991-01-01
Seagull Technology, Inc., Sunnyvale, CA, produced a computer program under a Langley Research Center Small Business Innovation Research (SBIR) grant called STAFPLAN (Seagull Technology Advanced Flight Plan) that plans optimal trajectory routes for small to medium sized airlines to minimize direct operating costs while complying with various airline operating constraints. STAFPLAN incorporates four input databases, weather, route data, aircraft performance, and flight-specific information (times, payload, crew, fuel cost) to provide the correct amount of fuel optimal cruise altitude, climb and descent points, optimal cruise speed, and flight path.
Mission-directed path planning for planetary rover exploration
NASA Astrophysics Data System (ADS)
Tompkins, Paul
2005-07-01
Robotic rovers uniquely benefit planetary exploration---they enable regional exploration with the precision of in-situ measurements, a combination impossible from an orbiting spacecraft or fixed lander. Mission planning for planetary rover exploration currently utilizes sophisticated software for activity planning and scheduling, but simplified path planning and execution approaches tailored for localized operations to individual targets. This approach is insufficient for the investigation of multiple, regionally distributed targets in a single command cycle. Path planning tailored for this task must consider the impact of large scale terrain on power, speed and regional access; the effect of route timing on resource availability; the limitations of finite resource capacity and other operational constraints on vehicle range and timing; and the mutual influence between traverses and upstream and downstream stationary activities. Encapsulating this reasoning in an efficient autonomous planner would allow a rover to continue operating rationally despite significant deviations from an initial plan. This research presents mission-directed path planning that enables an autonomous, strategic reasoning capability for robotic explorers. Planning operates in a space of position, time and energy. Unlike previous hierarchical approaches, it treats these dimensions simultaneously to enable globally-optimal solutions. The approach calls on a near incremental search algorithm designed for planning and re-planning under global constraints, in spaces of higher than two dimensions. Solutions under this method specify routes that avoid terrain obstacles, optimize the collection and use of rechargable energy, satisfy local and global mission constraints, and account for the time and energy of interleaved mission activities. Furthermore, the approach efficiently re-plans in response to updates in vehicle state and world models, and is well suited to online operation aboard a robot. Simulations exhibit that the new methodology succeeds where conventional path planners would fail. Three planetary-relevant field experiments demonstrate the power of mission-directed path planning in directing actual exploration robots. Offline mission-directed planning sustained a solar-powered rover in a 24-hour sun-synchronous traverse. Online planning and re-planning enabled full navigational autonomy of over 1 kilometer, and supported the execution of science activities distributed over hundreds of meters.
Path optimization method for the sign problem
NASA Astrophysics Data System (ADS)
Ohnishi, Akira; Mori, Yuto; Kashiwa, Kouji
2018-03-01
We propose a path optimization method (POM) to evade the sign problem in the Monte-Carlo calculations for complex actions. Among many approaches to the sign problem, the Lefschetz-thimble path-integral method and the complex Langevin method are promising and extensively discussed. In these methods, real field variables are complexified and the integration manifold is determined by the flow equations or stochastically sampled. When we have singular points of the action or multiple critical points near the original integral surface, however, we have a risk to encounter the residual and global sign problems or the singular drift term problem. One of the ways to avoid the singular points is to optimize the integration path which is designed not to hit the singular points of the Boltzmann weight. By specifying the one-dimensional integration-path as z = t +if(t)(f ɛ R) and by optimizing f(t) to enhance the average phase factor, we demonstrate that we can avoid the sign problem in a one-variable toy model for which the complex Langevin method is found to fail. In this proceedings, we propose POM and discuss how we can avoid the sign problem in a toy model. We also discuss the possibility to utilize the neural network to optimize the path.
Design of Quiet Rotorcraft Approach Trajectories
NASA Technical Reports Server (NTRS)
Padula, Sharon L.; Burley, Casey L.; Boyd, D. Douglas, Jr.; Marcolini, Michael A.
2009-01-01
A optimization procedure for identifying quiet rotorcraft approach trajectories is proposed and demonstrated. The procedure employs a multi-objective genetic algorithm in order to reduce noise and create approach paths that will be acceptable to pilots and passengers. The concept is demonstrated by application to two different helicopters. The optimized paths are compared with one another and to a standard 6-deg approach path. The two demonstration cases validate the optimization procedure but highlight the need for improved noise prediction techniques and for additional rotorcraft acoustic data sets.
Converging Towards the Optimal Path to Extinction
2011-01-01
the reproductive rate R0 should be greater than but very close to 1. However, most real diseases have R0 larger than 1.5, which translates into a...can analytically find an expression for the action along the optimal path. The expression for the action is a function of k and the reproductive number...the optimal path for a range of values of the reproductive number R0. In contrast to the prior two examples, here the action must be computed
Algorithms for constructing optimal paths and statistical analysis of passenger traffic
NASA Astrophysics Data System (ADS)
Trofimov, S. P.; Druzhinina, N. G.; Trofimova, O. G.
2018-01-01
Several existing information systems of urban passenger transport (UPT) are considered. Author’s UPT network model is presented. To a passenger a new service is offered that is the best path from one stop to another stop at a specified time. The algorithm and software implementation for finding the optimal path are presented. The algorithm uses the current UPT schedule. The article also describes the algorithm of statistical analysis of trip payments by the electronic E-cards. The algorithm allows obtaining the density of passenger traffic during the day. This density is independent of the network topology and UPT schedules. The resulting density of the traffic flow can solve a number of practical problems. In particular, the forecast for the overflow of passenger transport in the «rush» hours, the quantitative comparison of different topologies transport networks, constructing of the best UPT timetable. The efficiency of the proposed integrated approach is demonstrated by the example of the model town with arbitrary dimensions.
AUCTION MECHANISMS FOR IMPLEMENTING TRADABLE NETWORK PERMIT MARKETS
NASA Astrophysics Data System (ADS)
Wada, Kentaro; Akamatsu, Takashi
This paper proposes a new auction mechanism for implementing the tradable network permit markets. Assuming that each user makes a trip from an origin to a destination along a path in a specific time period, we design an auction mechanism that enables each user to purchase a bundle of permits corresponding to a set of links in the user's preferred path. The objective of the proposed mechanism is to achieve a socially optimal state with minimal revelation of users' private information. In order to achieve this, the mechanism employs an evolutionary approach that has an auction phase and a path capacity adjustment phase, which are repeated on a day-to-day basis. We prove that the proposed mechanism has the following desirable properties: (1) truthful bidding is the dominant strategy for each user and (2) the proposed mechanism converges to an approximate socially optimal state in the sense that the achieved value of the social surplus reaches its maximum value when the number of users is large.
Rapid, parallel path planning by propagating wavefronts of spiking neural activity
Ponulak, Filip; Hopfield, John J.
2013-01-01
Efficient path planning and navigation is critical for animals, robotics, logistics and transportation. We study a model in which spatial navigation problems can rapidly be solved in the brain by parallel mental exploration of alternative routes using propagating waves of neural activity. A wave of spiking activity propagates through a hippocampus-like network, altering the synaptic connectivity. The resulting vector field of synaptic change then guides a simulated animal to the appropriate selected target locations. We demonstrate that the navigation problem can be solved using realistic, local synaptic plasticity rules during a single passage of a wavefront. Our model can find optimal solutions for competing possible targets or learn and navigate in multiple environments. The model provides a hypothesis on the possible computational mechanisms for optimal path planning in the brain, at the same time it is useful for neuromorphic implementations, where the parallelism of information processing proposed here can fully be harnessed in hardware. PMID:23882213
NASA Astrophysics Data System (ADS)
Kurosaki, Yuzuru; Artamonov, Maxim; Ho, Tak-San; Rabitz, Herschel
2009-07-01
Quantum wave packet optimal control simulations with intense laser pulses have been carried out for studying molecular isomerization dynamics of a one-dimensional (1D) reaction-path model involving a dominant competing dissociation channel. The 1D intrinsic reaction coordinate model mimics the ozone open→cyclic ring isomerization along the minimum energy path that successively connects the ozone cyclic ring minimum, the transition state (TS), the open (global) minimum, and the dissociative O2+O asymptote on the O3 ground-state A1' potential energy surface. Energetically, the cyclic ring isomer, the TS barrier, and the O2+O dissociation channel lie at ˜0.05, ˜0.086, and ˜0.037 hartree above the open isomer, respectively. The molecular orientation of the modeled ozone is held constant with respect to the laser-field polarization and several optimal fields are found that all produce nearly perfect isomerization. The optimal control fields are characterized by distinctive high temporal peaks as well as low frequency components, thereby enabling abrupt transfer of the time-dependent wave packet over the TS from the open minimum to the targeted ring minimum. The quick transition of the ozone wave packet avoids detrimental leakage into the competing O2+O channel. It is possible to obtain weaker optimal laser fields, resulting in slower transfer of the wave packets over the TS, when a reduced level of isomerization is satisfactory.
Optimal Recovery Trajectories for Automatic Ground Collision Avoidance Systems (Auto GCAS)
2015-03-01
the Multi-Trajectory path uses a sphere buffer (with a 350 ft radius) around each time point in the propagated path. Hence, the yellow Xs indicate the...the HUD as well as a matrix/line of Xs on the radar electro optical (REO) display. Enhanced ground clobber (EGC) mechanization was integrated on the F...reachable in the timespan t ∈ [t0, tf ], and dthreshold is a scalar user-defined terrain buffer. For the work de- veloped herein, dthreshold was set to 350
2017-03-01
OCW from ages 25–30 based on the 2015 U.S. Department of Health and Human Services Report and the Navy’s biennial Pregnancy and Parenthood Survey ... Survey , adds the 83 optimal childbearing window (OCW) to illustrate how pregnancy timing would align between ages 25–30 on each SWO career path. Each...U.S. Department of Health and Human Services report and the biennial U.S. Navy Pregnancy and Parenthood Survey , a majority of women are having
NASA Astrophysics Data System (ADS)
Bhardwaj, Manish; McCaughan, Leon; Olkhovets, Anatoli; Korotky, Steven K.
2006-12-01
We formulate an analytic framework for the restoration performance of path-based restoration schemes in planar mesh networks. We analyze various switch architectures and signaling schemes and model their total restoration interval. We also evaluate the network global expectation value of the time to restore a demand as a function of network parameters. We analyze a wide range of nominally capacity-optimal planar mesh networks and find our analytic model to be in good agreement with numerical simulation data.
NASA Astrophysics Data System (ADS)
Leung, Nelson; Abdelhafez, Mohamed; Koch, Jens; Schuster, David
2017-04-01
We implement a quantum optimal control algorithm based on automatic differentiation and harness the acceleration afforded by graphics processing units (GPUs). Automatic differentiation allows us to specify advanced optimization criteria and incorporate them in the optimization process with ease. We show that the use of GPUs can speedup calculations by more than an order of magnitude. Our strategy facilitates efficient numerical simulations on affordable desktop computers and exploration of a host of optimization constraints and system parameters relevant to real-life experiments. We demonstrate optimization of quantum evolution based on fine-grained evaluation of performance at each intermediate time step, thus enabling more intricate control on the evolution path, suppression of departures from the truncated model subspace, as well as minimization of the physical time needed to perform high-fidelity state preparation and unitary gates.
Optimal multiguidance integration in insect navigation.
Hoinville, Thierry; Wehner, Rüdiger
2018-03-13
In the last decades, desert ants have become model organisms for the study of insect navigation. In finding their way, they use two major navigational routines: path integration using a celestial compass and landmark guidance based on sets of panoramic views of the terrestrial environment. It has been claimed that this information would enable the insect to acquire and use a centralized cognitive map of its foraging terrain. Here, we present a decentralized architecture, in which the concurrently operating path integration and landmark guidance routines contribute optimally to the directions to be steered, with "optimal" meaning maximizing the certainty (reliability) of the combined information. At any one time during its journey, the animal computes a path integration (global) vector and landmark guidance (local) vector, in which the length of each vector is proportional to the certainty of the individual estimates. Hence, these vectors represent the limited knowledge that the navigator has at any one place about the direction of the goal. The sum of the global and local vectors indicates the navigator's optimal directional estimate. Wherever applied, this decentralized model architecture is sufficient to simulate the results of quite a number of diverse cue-conflict experiments, which have recently been performed in various behavioral contexts by different authors in both desert ants and honeybees. They include even those experiments that have deliberately been designed by former authors to strengthen the evidence for a metric cognitive map in bees.
Robust Flight Path Determination for Mars Precision Landing Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Bayard, David S.; Kohen, Hamid
1997-01-01
This paper documents the application of genetic algorithms (GAs) to the problem of robust flight path determination for Mars precision landing. The robust flight path problem is defined here as the determination of the flight path which delivers a low-lift open-loop controlled vehicle to its desired final landing location while minimizing the effect of perturbations due to uncertainty in the atmospheric model and entry conditions. The genetic algorithm was capable of finding solutions which reduced the landing error from 111 km RMS radial (open-loop optimal) to 43 km RMS radial (optimized with respect to perturbations) using 200 hours of computation on an Ultra-SPARC workstation. Further reduction in the landing error is possible by going to closed-loop control which can utilize the GA optimized paths as nominal trajectories for linearization.
In Search of the Optimal Path: How Learners at Task Use an Online Dictionary
ERIC Educational Resources Information Center
Hamel, Marie-Josee
2012-01-01
We have analyzed circa 180 navigation paths followed by six learners while they performed three language encoding tasks at the computer using an online dictionary prototype. Our hypothesis was that learners who follow an "optimal path" while navigating within the dictionary, using its search and look-up functions, would have a high chance of…
Research on global path planning based on ant colony optimization for AUV
NASA Astrophysics Data System (ADS)
Wang, Hong-Jian; Xiong, Wei
2009-03-01
Path planning is an important issue for autonomous underwater vehicles (AUVs) traversing an unknown environment such as a sea floor, a jungle, or the outer celestial planets. For this paper, global path planning using large-scale chart data was studied, and the principles of ant colony optimization (ACO) were applied. This paper introduced the idea of a visibility graph based on the grid workspace model. It also brought a series of pheromone updating rules for the ACO planning algorithm. The operational steps of the ACO algorithm are proposed as a model for a global path planning method for AUV. To mimic the process of smoothing a planned path, a cutting operator and an insertion-point operator were designed. Simulation results demonstrated that the ACO algorithm is suitable for global path planning. The system has many advantages, including that the operating path of the AUV can be quickly optimized, and it is shorter, safer, and smoother. The prototype system successfully demonstrated the feasibility of the concept, proving it can be applied to surveys of unstructured unmanned environments.
UAV path planning using artificial potential field method updated by optimal control theory
NASA Astrophysics Data System (ADS)
Chen, Yong-bo; Luo, Guan-chen; Mei, Yue-song; Yu, Jian-qiao; Su, Xiao-long
2016-04-01
The unmanned aerial vehicle (UAV) path planning problem is an important assignment in the UAV mission planning. Based on the artificial potential field (APF) UAV path planning method, it is reconstructed into the constrained optimisation problem by introducing an additional control force. The constrained optimisation problem is translated into the unconstrained optimisation problem with the help of slack variables in this paper. The functional optimisation method is applied to reform this problem into an optimal control problem. The whole transformation process is deduced in detail, based on a discrete UAV dynamic model. Then, the path planning problem is solved with the help of the optimal control method. The path following process based on the six degrees of freedom simulation model of the quadrotor helicopters is introduced to verify the practicability of this method. Finally, the simulation results show that the improved method is more effective in planning path. In the planning space, the length of the calculated path is shorter and smoother than that using traditional APF method. In addition, the improved method can solve the dead point problem effectively.
Maximum cycle work output optimization for generalized radiative law Otto cycle engines
NASA Astrophysics Data System (ADS)
Xia, Shaojun; Chen, Lingen; Sun, Fengrui
2016-11-01
An Otto cycle internal combustion engine which includes thermal and friction losses is investigated by finite-time thermodynamics, and the optimization objective is the maximum cycle work output. The thermal energy transfer from the working substance to the cylinder inner wall follows the generalized radiative law (q∝Δ (Tn)). Under the condition that all of the fuel consumption, the compression ratio and the cycle period are given, the optimal piston trajectories for both the examples with unlimited and limited accelerations on every stroke are determined, and the cycle-period distribution among all strokes is also optimized. Numerical calculation results for the case of radiative law are provided and compared with those obtained for the cases of Newtonian law and linear phenomenological law. The results indicate that the optimal piston trajectory on each stroke contains three sections, which consist of an original maximum-acceleration and a terminal maximum-deceleration parts; for the case of radiative law, optimizing the piston motion path can achieve an improvement of more than 20% in both the cycle-work output and the second-law efficiency of the Otto cycle compared with the conventional near-sinusoidal operation, and heat transfer mechanisms have both qualitative and quantitative influences on the optimal paths of piston movements.
Interactive multi-objective path planning through a palette-based user interface
NASA Astrophysics Data System (ADS)
Shaikh, Meher T.; Goodrich, Michael A.; Yi, Daqing; Hoehne, Joseph
2016-05-01
n a problem where a human uses supervisory control to manage robot path-planning, there are times when human does the path planning, and if satisfied commits those paths to be executed by the robot, and the robot executes that plan. In planning a path, the robot often uses an optimization algorithm that maximizes or minimizes an objective. When a human is assigned the task of path planning for robot, the human may care about multiple objectives. This work proposes a graphical user interface (GUI) designed for interactive robot path-planning when an operator may prefer one objective over others or care about how multiple objectives are traded off. The GUI represents multiple objectives using the metaphor of an artist's palette. A distinct color is used to represent each objective, and tradeoffs among objectives are balanced in a manner that an artist mixes colors to get the desired shade of color. Thus, human intent is analogous to the artist's shade of color. We call the GUI an "Adverb Palette" where the word "Adverb" represents a specific type of objective for the path, such as the adverbs "quickly" and "safely" in the commands: "travel the path quickly", "make the journey safely". The novel interactive interface provides the user an opportunity to evaluate various alternatives (that tradeoff between different objectives) by allowing her to visualize the instantaneous outcomes that result from her actions on the interface. In addition to assisting analysis of various solutions given by an optimization algorithm, the palette has additional feature of allowing the user to define and visualize her own paths, by means of waypoints (guiding locations) thereby spanning variety for planning. The goal of the Adverb Palette is thus to provide a way for the user and robot to find an acceptable solution even though they use very different representations of the problem. Subjective evaluations suggest that even non-experts in robotics can carry out the planning tasks with a great deal of flexibility using the adverb palette.
NASA Astrophysics Data System (ADS)
Kröger, Martin
2005-06-01
We present an algorithm which returns a shortest path and related number of entanglements for a given configuration of a polymeric system in 2 or 3 dimensions. Rubinstein and Helfand, and later Everaers et al. introduced a concept to extract primitive paths for dense polymeric melts made of linear chains (a multiple disconnected multibead 'path'), where each primitive path is defined as a path connecting the (space-fixed) ends of a polymer under the constraint of non-interpenetration (excluded volume) between primitive paths of different chains, such that the multiple disconnected path fulfills a minimization criterion. The present algorithm uses geometrical operations and provides a—model independent—efficient approximate solution to this challenging problem. Primitive paths are treated as 'infinitely' thin (we further allow for finite thickness to model excluded volume), and tensionless lines rather than multibead chains, excluded volume is taken into account without a force law. The present implementation allows to construct a shortest multiple disconnected path (SP) for 2D systems (polymeric chain within spherical obstacles) and an optimal SP for 3D systems (collection of polymeric chains). The number of entanglements is then simply obtained from the SP as either the number of interior kinks, or from the average length of a line segment. Further, information about structure and potentially also the dynamics of entanglements is immediately available from the SP. We apply the method to study the 'concentration' dependence of the degree of entanglement in phantom chain systems. Program summaryTitle of program:Z Catalogue number:ADVG Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVG Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: Silicon Graphics (Irix), Sun (Solaris), PC (Linux) Operating systems or monitors under which the program has been tested: UNIX, Linux Program language used: USANSI Fortran 77 and Fortran 90 Memory required to execute with typical data: 1 MByte No. of lines in distributed program, including test data, etc.: 10 660 No. of bytes in distributed program, including test data, etc.: 119 551 Distribution formet:tar.gz Nature of physical problem: The problem is to obtain primitive paths substantiating a shortest multiple disconnected path (SP) for a given polymer configuration (chains of particles, with or without additional single particles as obstacles for the 2D case). Primitive paths are here defined as in [M. Rubinstein, E. Helfand, J. Chem. Phys. 82 (1985) 2477; R. Everaers, S.K. Sukumaran, G.S. Grest, C. Svaneborg, A. Sivasubramanian, K. Kremer, Science 303 (2004) 823] as the shortest line (path) respecting 'topological' constraints (from neighboring polymers or point obstacles) between ends of polymers. There is a unique solution for the 2D case. For the 3D case it is unique if we construct a primitive path of a single chain embedded within fixed line obstacles [J.S.B. Mitchell, Geometric shortest paths and network optimization, in: J.-R. Sack, J. Urrutia (Eds.), Handbook of Computational Geometry, Elsevier, Amsterdam, 2000, pp. 633-701]. For a large 3D configuration made of several chains, short is meant to be the Euclidean shortest multiple disconnected path (SP) where primitive paths are constructed for all chains simultaneously. While the latter problem, in general, does not possess a unique solution, the algorithm must return a locally optimal solution, robust against minor displacements of the disconnected path and chain re-labeling. The problem is solved if the number of kinks (or entanglements Z), explicitly deduced from the SP, is quite insensitive to the exact conformation of the SP which allows to estimate Z with a small error. Efficient method of solution: Primitive paths are constructed from the given polymer configuration (a non-shortest multiple disconnected path, including obstacles, if present) by first replacing each polymer contour by a line with a number of 'kinks' (beads, nodes) and 'segments' (edges). To obtain primitive paths, defined to be uncrossable by any other objects (neighboring primitive paths, line or point obstacles), the algorithm minimizes the length of all primitive paths consecutively, until a final minimum Euclidean length of the SP is reached. Fast geometric operations rather than dynamical methods are used to minimize the contour lengths of the primitive paths. Neighbor lists are used to keep track of potentially intersecting segments of other chains. Periodic boundary conditions are employed. A finite small line thickness is used in order to make sure that entanglements are not 'lost' due to finite precision of representation of numbers. Restrictions on the complexity of the problem: For a single chain embedded within fixed line or point obstacles, the algorithm returns the exact SP. For more complex problems, the algorithm returns a locally optimal SP. Except for exotic, probably rare, configurations it turns out that different locally optimal SPs possess quite an identical number of nodes. In general, the problem constructing the SP is known to be NP-hard [J.S.B. Mitchell, Geometric shortest paths and network optimization, in: J.-R. Sack, J. Urrutia (Eds.), Handbook of Computational Geometry, Elsevier, Amsterdam, 2000, pp. 633-701], and we offer a solution which should suffice to analyze physical problems, and gives an estimate about the precision and uniqueness of the result (from a standard deviation by varying the parameter: cyclicswitch). The program is NOT restricted to handle systems for which segment lengths of the SP exceed half the box size. Typical running time: Typical running times are approximately two orders of magnitude shorter compared with the ones needed for a corresponding molecular dynamics approach, and scale mostly linearly with system size. We provide a benchmark table.
Distributed Optimization of Multi-Agent Systems: Framework, Local Optimizer, and Applications
NASA Astrophysics Data System (ADS)
Zu, Yue
Convex optimization problem can be solved in a centralized or distributed manner. Compared with centralized methods based on single-agent system, distributed algorithms rely on multi-agent systems with information exchanging among connected neighbors, which leads to great improvement on the system fault tolerance. Thus, a task within multi-agent system can be completed with presence of partial agent failures. By problem decomposition, a large-scale problem can be divided into a set of small-scale sub-problems that can be solved in sequence/parallel. Hence, the computational complexity is greatly reduced by distributed algorithm in multi-agent system. Moreover, distributed algorithm allows data collected and stored in a distributed fashion, which successfully overcomes the drawbacks of using multicast due to the bandwidth limitation. Distributed algorithm has been applied in solving a variety of real-world problems. Our research focuses on the framework and local optimizer design in practical engineering applications. In the first one, we propose a multi-sensor and multi-agent scheme for spatial motion estimation of a rigid body. Estimation performance is improved in terms of accuracy and convergence speed. Second, we develop a cyber-physical system and implement distributed computation devices to optimize the in-building evacuation path when hazard occurs. The proposed Bellman-Ford Dual-Subgradient path planning method relieves the congestion in corridor and the exit areas. At last, highway traffic flow is managed by adjusting speed limits to minimize the fuel consumption and travel time in the third project. Optimal control strategy is designed through both centralized and distributed algorithm based on convex problem formulation. Moreover, a hybrid control scheme is presented for highway network travel time minimization. Compared with no controlled case or conventional highway traffic control strategy, the proposed hybrid control strategy greatly reduces total travel time on test highway network.
Liu, Qingshan; Wang, Jun
2011-04-01
This paper presents a one-layer recurrent neural network for solving a class of constrained nonsmooth optimization problems with piecewise-linear objective functions. The proposed neural network is guaranteed to be globally convergent in finite time to the optimal solutions under a mild condition on a derived lower bound of a single gain parameter in the model. The number of neurons in the neural network is the same as the number of decision variables of the optimization problem. Compared with existing neural networks for optimization, the proposed neural network has a couple of salient features such as finite-time convergence and a low model complexity. Specific models for two important special cases, namely, linear programming and nonsmooth optimization, are also presented. In addition, applications to the shortest path problem and constrained least absolute deviation problem are discussed with simulation results to demonstrate the effectiveness and characteristics of the proposed neural network.
NASA Astrophysics Data System (ADS)
Humphries, Nicolas E.
2015-09-01
The comprehensive review of Lévy patterns observed in the moves and pauses of a vast array of organisms by Reynolds [1] makes clear a need to attempt to unify phenomena to understand how organism movement may have evolved. However, I would contend that the research on Lévy 'movement patterns' we detect in time series of animal movements has to a large extent been misunderstood. The statistical techniques, such as Maximum Likelihood Estimation, used to detect these patterns look only at the statistical distribution of move step-lengths and not at the actual pattern, or structure, of the movement path. The path structure is lost altogether when move step-lengths are sorted prior to analysis. Likewise, the simulated movement paths, with step-lengths drawn from a truncated power law distribution in order to test characteristics of the path, such as foraging efficiency, in no way match the actual paths, or trajectories, of real animals. These statistical distributions are, therefore, null models of searching or foraging activity. What has proved surprising about these step-length distributions is the extent to which they improve the efficiency of random searches over simple Brownian motion. It has been shown unequivocally that a power law distribution of move step lengths is more efficient, in terms of prey items located per unit distance travelled, than any other distribution of move step-lengths so far tested (up to 3 times better than Brownian), and over a range of prey field densities spanning more than 4 orders of magnitude [2].
Calibration of neural networks using genetic algorithms, with application to optimal path planning
NASA Technical Reports Server (NTRS)
Smith, Terence R.; Pitney, Gilbert A.; Greenwood, Daniel
1987-01-01
Genetic algorithms (GA) are used to search the synaptic weight space of artificial neural systems (ANS) for weight vectors that optimize some network performance function. GAs do not suffer from some of the architectural constraints involved with other techniques and it is straightforward to incorporate terms into the performance function concerning the metastructure of the ANS. Hence GAs offer a remarkably general approach to calibrating ANS. GAs are applied to the problem of calibrating an ANS that finds optimal paths over a given surface. This problem involves training an ANS on a relatively small set of paths and then examining whether the calibrated ANS is able to find good paths between arbitrary start and end points on the surface.
Path Planning Method in Multi-obstacle Marine Environment
NASA Astrophysics Data System (ADS)
Zhang, Jinpeng; Sun, Hanxv
2017-12-01
In this paper, an improved algorithm for particle swarm optimization is proposed for the application of underwater robot in the complex marine environment. Not only did consider to avoid obstacles when path planning, but also considered the current direction and the size effect on the performance of the robot dynamics. The algorithm uses the trunk binary tree structure to construct the path search space and A * heuristic search method is used in the search space to find a evaluation standard path. Then the particle swarm algorithm to optimize the path by adjusting evaluation function, which makes the underwater robot in the current navigation easier to control, and consume less energy.
Jiang, Yuyi; Shao, Zhiqing; Guo, Yi
2014-01-01
A complex computing problem can be solved efficiently on a system with multiple computing nodes by dividing its implementation code into several parallel processing modules or tasks that can be formulated as directed acyclic graph (DAG) problems. The DAG jobs may be mapped to and scheduled on the computing nodes to minimize the total execution time. Searching an optimal DAG scheduling solution is considered to be NP-complete. This paper proposed a tuple molecular structure-based chemical reaction optimization (TMSCRO) method for DAG scheduling on heterogeneous computing systems, based on a very recently proposed metaheuristic method, chemical reaction optimization (CRO). Comparing with other CRO-based algorithms for DAG scheduling, the design of tuple reaction molecular structure and four elementary reaction operators of TMSCRO is more reasonable. TMSCRO also applies the concept of constrained critical paths (CCPs), constrained-critical-path directed acyclic graph (CCPDAG) and super molecule for accelerating convergence. In this paper, we have also conducted simulation experiments to verify the effectiveness and efficiency of TMSCRO upon a large set of randomly generated graphs and the graphs for real world problems. PMID:25143977
Jiang, Yuyi; Shao, Zhiqing; Guo, Yi
2014-01-01
A complex computing problem can be solved efficiently on a system with multiple computing nodes by dividing its implementation code into several parallel processing modules or tasks that can be formulated as directed acyclic graph (DAG) problems. The DAG jobs may be mapped to and scheduled on the computing nodes to minimize the total execution time. Searching an optimal DAG scheduling solution is considered to be NP-complete. This paper proposed a tuple molecular structure-based chemical reaction optimization (TMSCRO) method for DAG scheduling on heterogeneous computing systems, based on a very recently proposed metaheuristic method, chemical reaction optimization (CRO). Comparing with other CRO-based algorithms for DAG scheduling, the design of tuple reaction molecular structure and four elementary reaction operators of TMSCRO is more reasonable. TMSCRO also applies the concept of constrained critical paths (CCPs), constrained-critical-path directed acyclic graph (CCPDAG) and super molecule for accelerating convergence. In this paper, we have also conducted simulation experiments to verify the effectiveness and efficiency of TMSCRO upon a large set of randomly generated graphs and the graphs for real world problems.
Thermodynamic metrics and optimal paths.
Sivak, David A; Crooks, Gavin E
2012-05-11
A fundamental problem in modern thermodynamics is how a molecular-scale machine performs useful work, while operating away from thermal equilibrium without excessive dissipation. To this end, we derive a friction tensor that induces a Riemannian manifold on the space of thermodynamic states. Within the linear-response regime, this metric structure controls the dissipation of finite-time transformations, and bestows optimal protocols with many useful properties. We discuss the connection to the existing thermodynamic length formalism, and demonstrate the utility of this metric by solving for optimal control parameter protocols in a simple nonequilibrium model.
Development and demonstration of an on-board mission planner for helicopters
NASA Technical Reports Server (NTRS)
Deutsch, Owen L.; Desai, Mukund
1988-01-01
Mission management tasks can be distributed within a planning hierarchy, where each level of the hierarchy addresses a scope of action, and associated time scale or planning horizon, and requirements for plan generation response time. The current work is focused on the far-field planning subproblem, with a scope and planning horizon encompassing the entire mission and with a response time required to be about two minutes. The far-feld planning problem is posed as a constrained optimization problem and algorithms and structural organizations are proposed for the solution. Algorithms are implemented in a developmental environment, and performance is assessed with respect to optimality and feasibility for the intended application and in comparison with alternative algorithms. This is done for the three major components of far-field planning: goal planning, waypoint path planning, and timeline management. It appears feasible to meet performance requirements on a 10 Mips flyable processor (dedicated to far-field planning) using a heuristically-guided simulated annealing technique for the goal planner, a modified A* search for the waypoint path planner, and a speed scheduling technique developed for this project.
Optimized Flight Path for Localization Using Line of Bearing
2015-03-26
minimizing the semi-major axis of the error ellipse. (a) Thin Ellipse (area = 1000 · π) (b) Fat Ellipse (area = 1020 · π) Figure 15. Comparison of Ellipse...California, San Diego, 2012. [5] Deghat, Mohammad, Iman Shames , Brian D. O. Anderson, and Changbin Yu. “Target Localization and Circumnavigation Using...Real-Time Optimal Control for Bearing-Only Trajectory Planning”, International Journal of Micro Air Vehicles, 2014. [12] Shames , Iman, Baris Fidan
Kamihigashi, Takashi
2017-01-01
Given a sequence [Formula: see text] of measurable functions on a σ -finite measure space such that the integral of each [Formula: see text] as well as that of [Formula: see text] exists in [Formula: see text], we provide a sufficient condition for the following inequality to hold: [Formula: see text] Our condition is considerably weaker than sufficient conditions known in the literature such as uniform integrability (in the case of a finite measure) and equi-integrability. As an application, we obtain a new result on the existence of an optimal path for deterministic infinite-horizon optimization problems in discrete time.
Traffic protection in MPLS networks using an off-line flow optimization model
NASA Astrophysics Data System (ADS)
Krzesinski, Anthony E.; Muller, Karen E.
2002-07-01
MPLS-based recovery is intended to effect rapid and complete restoration of traffic affected by a fault in an MPLS network. Two MPLS-based recovery models have been proposed: IP re-routing which establishes recovery paths on demand, and protection switching which works with pre-established recovery paths. IP re-routing is robust and frugal since no resources are pre-committed but is inherently slower than protection switching which is intended to offer high reliability to premium services where fault recovery takes place at the 100 ms time scale. We present a model of protection switching in MPLS networks. A variant of the flow deviation method is used to find and capacitate a set of optimal label switched paths. The traffic is routed over a set of working LSPs. Global repair is implemented by reserving a set of pre-established recovery LSPs. An analytic model is used to evaluate the MPLS-based recovery mechanisms in response to bi-directional link failures. A simulation model is used to evaluate the MPLS recovery cycle in terms of the time needed to restore the traffic after a uni-directional link failure. The models are applied to evaluate the effectiveness of protection switching in networks consisting of between 20 and 100 nodes.
Fermat's principle of least time predicts refraction of ant trails at substrate borders.
Oettler, Jan; Schmid, Volker S; Zankl, Niko; Rey, Olivier; Dress, Andreas; Heinze, Jürgen
2013-01-01
Fermat's principle of least time states that light rays passing through different media follow the fastest (and not the most direct) path between two points, leading to refraction at medium borders. Humans intuitively employ this rule, e.g., when a lifeguard has to infer the fastest way to traverse both beach and water to reach a swimmer in need. Here, we tested whether foraging ants also follow Fermat's principle when forced to travel on two surfaces that differentially affected the ants' walking speed. Workers of the little fire ant, Wasmannia auropunctata, established "refracted" pheromone trails to a food source. These trails deviated from the most direct path, but were not different to paths predicted by Fermat's principle. Our results demonstrate a new aspect of decentralized optimization and underline the versatility of the simple yet robust rules governing the self-organization of group-living animals.
Fermat’s Principle of Least Time Predicts Refraction of Ant Trails at Substrate Borders
Zankl, Niko; Rey, Olivier; Dress, Andreas; Heinze, Jürgen
2013-01-01
Fermat’s principle of least time states that light rays passing through different media follow the fastest (and not the most direct) path between two points, leading to refraction at medium borders. Humans intuitively employ this rule, e.g., when a lifeguard has to infer the fastest way to traverse both beach and water to reach a swimmer in need. Here, we tested whether foraging ants also follow Fermat’s principle when forced to travel on two surfaces that differentially affected the ants’ walking speed. Workers of the little fire ant, Wasmannia auropunctata, established “refracted” pheromone trails to a food source. These trails deviated from the most direct path, but were not different to paths predicted by Fermat’s principle. Our results demonstrate a new aspect of decentralized optimization and underline the versatility of the simple yet robust rules governing the self-organization of group-living animals. PMID:23527263
An Energy-Aware Trajectory Optimization Layer for sUAS
NASA Astrophysics Data System (ADS)
Silva, William A.
The focus of this work is the implementation of an energy-aware trajectory optimization algorithm that enables small unmanned aircraft systems (sUAS) to operate in unknown, dynamic severe weather environments. The software is designed as a component of an Energy-Aware Dynamic Data Driven Application System (EA-DDDAS) for sUAS. This work addresses the challenges of integrating and executing an online trajectory optimization algorithm during mission operations in the field. Using simplified aircraft kinematics, the energy-aware algorithm enables extraction of kinetic energy from measured winds to optimize thrust use and endurance during flight. The optimization layer, based upon a nonlinear program formulation, extracts energy by exploiting strong wind velocity gradients in the wind field, a process known as dynamic soaring. The trajectory optimization layer extends the energy-aware path planner developed by Wenceslao Shaw-Cortez te{Shaw-cortez2013} to include additional mission configurations, simulations with a 6-DOF model, and validation of the system with flight testing in June 2015 in Lubbock, Texas. The trajectory optimization layer interfaces with several components within the EA-DDDAS to provide an sUAS with optimal flight trajectories in real-time during severe weather. As a result, execution timing, data transfer, and scalability are considered in the design of the software. Severe weather also poses a measure of unpredictability to the system with respect to communication between systems and available data resources during mission operations. A heuristic mission tree with different cost functions and constraints is implemented to provide a level of adaptability to the optimization layer. Simulations and flight experiments are performed to assess the efficacy of the trajectory optimization layer. The results are used to assess the feasibility of flying dynamic soaring trajectories with existing controllers as well as to verify the interconnections between EA-DDDAS components. Results also demonstrate the usage of the trajectory optimization layer in conjunction with a lattice-based path planner as a method of guiding the optimization layer and stitching together subsequent trajectories.
Method of interplanetary trajectory optimization for the spacecraft with low thrust and swing-bys
NASA Astrophysics Data System (ADS)
Konstantinov, M. S.; Thein, M.
2017-07-01
The method developed to avoid the complexity of solving the multipoint boundary value problem while optimizing interplanetary trajectories of the spacecraft with electric propulsion and a sequence of swing-bys is presented in the paper. This method is based on the use of the preliminary problem solutions for the impulsive trajectories. The preliminary problem analyzed at the first stage of the study is formulated so that the analysis and optimization of a particular flight path is considered as the unconstrained minimum in the space of the selectable parameters. The existing methods can effectively solve this problem and make it possible to identify rational flight paths (the sequence of swing-bys) to receive the initial approximation for the main characteristics of the flight path (dates, values of the hyperbolic excess velocity, etc.). These characteristics can be used to optimize the trajectory of the spacecraft with electric propulsion. The special feature of the work is the introduction of the second (intermediate) stage of the research. At this stage some characteristics of the analyzed flight path (e.g. dates of swing-bys) are fixed and the problem is formulated so that the trajectory of the spacecraft with electric propulsion is optimized on selected sites of the flight path. The end-to-end optimization is carried out at the third (final) stage of the research. The distinctive feature of this stage is the analysis of the full set of optimal conditions for the considered flight path. The analysis of the characteristics of the optimal flight trajectories to Jupiter with Earth, Venus and Mars swing-bys for the spacecraft with electric propulsion are presented. The paper shows that the spacecraft weighing more than 7150 kg can be delivered into the vicinity of Jupiter along the trajectory with two Earth swing-bys by use of the space transportation system based on the "Angara A5" rocket launcher, the chemical upper stage "KVTK" and the electric propulsion system with input electrical power of 100 kW.
Optimization of magnet end-winding geometry
NASA Astrophysics Data System (ADS)
Reusch, Michael F.; Weissenburger, Donald W.; Nearing, James C.
1994-03-01
A simple, almost entirely analytic, method for the optimization of stress-reduced magnet-end winding paths for ribbon-like superconducting cable is presented. This technique is based on characterization of these paths as developable surfaces, i.e., surfaces whose intrinsic geometry is flat. The method is applicable to winding mandrels of arbitrary geometry. Computational searches for optimal winding paths are easily implemented via the technique. Its application to the end configuration of cylindrical Superconducting Super Collider (SSC)-type magnets is discussed. The method may be useful for other engineering problems involving the placement of thin sheets of material.
Cost minimizing of cutting process for CNC thermal and water-jet machines
NASA Astrophysics Data System (ADS)
Tavaeva, Anastasia; Kurennov, Dmitry
2015-11-01
This paper deals with optimization problem of cutting process for CNC thermal and water-jet machines. The accuracy of objective function parameters calculation for optimization problem is investigated. This paper shows that working tool path speed is not constant value. One depends on some parameters that are described in this paper. The relations of working tool path speed depending on the numbers of NC programs frames, length of straight cut, configuration part are presented. Based on received results the correction coefficients for working tool speed are defined. Additionally the optimization problem may be solved by using mathematical model. Model takes into account the additional restrictions of thermal cutting (choice of piercing and output tool point, precedence condition, thermal deformations). At the second part of paper the non-standard cutting techniques are considered. Ones may lead to minimizing of cutting cost and time compared with standard cutting techniques. This paper considers the effectiveness of non-standard cutting techniques application. At the end of the paper the future research works are indicated.
Online optimal obstacle avoidance for rotary-wing autonomous unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Kang, Keeryun
This thesis presents an integrated framework for online obstacle avoidance of rotary-wing unmanned aerial vehicles (UAVs), which can provide UAVs an obstacle field navigation capability in a partially or completely unknown obstacle-rich environment. The framework is composed of a LIDAR interface, a local obstacle grid generation, a receding horizon (RH) trajectory optimizer, a global shortest path search algorithm, and a climb rate limit detection logic. The key feature of the framework is the use of an optimization-based trajectory generation in which the obstacle avoidance problem is formulated as a nonlinear trajectory optimization problem with state and input constraints over the finite range of the sensor. This local trajectory optimization is combined with a global path search algorithm which provides a useful initial guess to the nonlinear optimization solver. Optimization is the natural process of finding the best trajectory that is dynamically feasible, safe within the vehicle's flight envelope, and collision-free at the same time. The optimal trajectory is continuously updated in real time by the numerical optimization solver, Nonlinear Trajectory Generation (NTG), which is a direct solver based on the spline approximation of trajectory for dynamically flat systems. In fact, the overall approach of this thesis to finding the optimal trajectory is similar to the model predictive control (MPC) or the receding horizon control (RHC), except that this thesis followed a two-layer design; thus, the optimal solution works as a guidance command to be followed by the controller of the vehicle. The framework is implemented in a real-time simulation environment, the Georgia Tech UAV Simulation Tool (GUST), and integrated in the onboard software of the rotary-wing UAV test-bed at Georgia Tech. Initially, the 2D vertical avoidance capability of real obstacles was tested in flight. The flight test evaluations were extended to the benchmark tests for 3D avoidance capability over the virtual obstacles, and finally it was demonstrated on real obstacles located at the McKenna MOUT site in Fort Benning, Georgia. Simulations and flight test evaluations demonstrate the feasibility of the developed framework for UAV applications involving low-altitude flight in an urban area.
A bat algorithm with mutation for UCAV path planning.
Wang, Gaige; Guo, Lihong; Duan, Hong; Liu, Luo; Wang, Heqi
2012-01-01
Path planning for uninhabited combat air vehicle (UCAV) is a complicated high dimension optimization problem, which mainly centralizes on optimizing the flight route considering the different kinds of constrains under complicated battle field environments. Original bat algorithm (BA) is used to solve the UCAV path planning problem. Furthermore, a new bat algorithm with mutation (BAM) is proposed to solve the UCAV path planning problem, and a modification is applied to mutate between bats during the process of the new solutions updating. Then, the UCAV can find the safe path by connecting the chosen nodes of the coordinates while avoiding the threat areas and costing minimum fuel. This new approach can accelerate the global convergence speed while preserving the strong robustness of the basic BA. The realization procedure for original BA and this improved metaheuristic approach BAM is also presented. To prove the performance of this proposed metaheuristic method, BAM is compared with BA and other population-based optimization methods, such as ACO, BBO, DE, ES, GA, PBIL, PSO, and SGA. The experiment shows that the proposed approach is more effective and feasible in UCAV path planning than the other models.
NASA Astrophysics Data System (ADS)
Mebrahitom, A.; Rizuan, D.; Azmir, M.; Nassif, M.
2016-02-01
High speed milling is one of the recent technologies used to produce mould inserts due to the need for high surface finish. It is a faster machining process where it uses a small side step and a small down step combined with very high spindle speed and feed rate. In order to effectively use the HSM capabilities, optimizing the tool path strategies and machining parameters is an important issue. In this paper, six different tool path strategies have been investigated on the surface finish and machining time of a rectangular cavities of ESR Stavax material. CAD/CAM application of CATIA V5 machining module for pocket milling of the cavities was used for process planning.
NASA Technical Reports Server (NTRS)
Athans, M.
1974-01-01
A design concept of the dynamic control of aircraft in the near terminal area is discussed. An arbitrary set of nominal air routes, with possible multiple merging points, all leading to a single runway, is considered. The system allows for the automated determination of acceleration/deceleration of aircraft along the nominal air routes, as well as for the automated determination of path-stretching delay maneuvers. In addition to normal operating conditions, the system accommodates: (1) variable commanded separations over the outer marker to allow for takeoffs and between successive landings and (2) emergency conditions under which aircraft in distress have priority. The system design is based on a combination of three distinct optimal control problems involving a standard linear-quadratic problem, a parameter optimization problem, and a minimum-time rendezvous problem.
Simulation based optimized beam velocity in additive manufacturing
NASA Astrophysics Data System (ADS)
Vignat, Frédéric; Béraud, Nicolas; Villeneuve, François
2017-08-01
Manufacturing good parts with additive technologies rely on melt pool dimension and temperature and are controlled by manufacturing strategies often decided on machine side. Strategies are built on beam path and variable energy input. Beam path are often a mix of contour and hatching strategies filling the contours at each slice. Energy input depend on beam intensity and speed and is determined from simple thermal models to control melt pool dimensions and temperature and ensure porosity free material. These models take into account variation in thermal environment such as overhanging surfaces or back and forth hatching path. However not all the situations are correctly handled and precision is limited. This paper proposes new method to determine energy input from full built chamber 3D thermal simulation. Using the results of the simulation, energy is modified to keep melt pool temperature in a predetermined range. The paper present first an experimental method to determine the optimal range of temperature. In a second part the method to optimize the beam speed from the simulation results is presented. Finally, the optimized beam path is tested in the EBM machine and built part are compared with part built with ordinary beam path.
Generalized gradient algorithm for trajectory optimization
NASA Technical Reports Server (NTRS)
Zhao, Yiyuan; Bryson, A. E.; Slattery, R.
1990-01-01
The generalized gradient algorithm presented and verified as a basis for the solution of trajectory optimization problems improves the performance index while reducing path equality constraints, and terminal equality constraints. The algorithm is conveniently divided into two phases, of which the first, 'feasibility' phase yields a solution satisfying both path and terminal constraints, while the second, 'optimization' phase uses the results of the first phase as initial guesses.
Nonequilibrium steady state of a weakly-driven Kardar–Parisi–Zhang equation
NASA Astrophysics Data System (ADS)
Meerson, Baruch; Sasorov, Pavel V.; Vilenkin, Arkady
2018-05-01
We consider an infinite interface of d > 2 dimensions, governed by the Kardar–Parisi–Zhang (KPZ) equation with a weak Gaussian noise which is delta-correlated in time and has short-range spatial correlations. We study the probability distribution of the interface height H at a point of the substrate, when the interface is initially flat. We show that, in stark contrast with the KPZ equation in d < 2, this distribution approaches a non-equilibrium steady state. The time of relaxation toward this state scales as the diffusion time over the correlation length of the noise. We study the steady-state distribution using the optimal-fluctuation method. The typical, small fluctuations of height are Gaussian. For these fluctuations the activation path of the system coincides with the time-reversed relaxation path, and the variance of can be found from a minimization of the (nonlocal) equilibrium free energy of the interface. In contrast, the tails of are nonequilibrium, non-Gaussian and strongly asymmetric. To determine them we calculate, analytically and numerically, the activation paths of the system, which are different from the time-reversed relaxation paths. We show that the slower-decaying tail of scales as , while the faster-decaying tail scales as . The slower-decaying tail has important implications for the statistics of directed polymers in random potential.
A Method to Analyze and Optimize the Load Sharing of Split Path Transmissions
NASA Technical Reports Server (NTRS)
Krantz, Timothy L.
1996-01-01
Split-path transmissions are promising alternatives to the common planetary transmissions for rotorcraft. Heretofore, split-path designs proposed for or used in rotorcraft have featured load-sharing devices that add undesirable weight and complexity to the designs. A method was developed to analyze and optimize the load sharing in split-path transmissions without load-sharing devices. The method uses the clocking angle as a design parameter to optimize for equal load sharing. In addition, the clocking angle tolerance necessary to maintain acceptable load sharing can be calculated. The method evaluates the effects of gear-shaft twisting and bending, tooth bending, Hertzian deformations within bearings, and movement of bearing supports on load sharing. It was used to study the NASA split-path test gearbox and the U.S. Army's Comanche helicopter main rotor gearbox. Acceptable load sharing was found to be achievable and maintainable by using proven manufacturing processes. The analytical results compare favorably to available experimental data.
Online POMDP Algorithms for Very Large Observation Spaces
2017-06-06
stochastic optimization: From sets to paths." In Advances in Neural Information Processing Systems, pp. 1585- 1593 . 2015. • Luo, Yuanfu, Haoyu Bai...and Wee Sun Lee. "Adaptive stochastic optimization: From sets to paths." In Advances in Neural Information Processing Systems, pp. 1585- 1593 . 2015
NASA Astrophysics Data System (ADS)
Wang, Fu; Liu, Bo; Zhang, Lijia; Xin, Xiangjun; Tian, Qinghua; Zhang, Qi; Rao, Lan; Tian, Feng; Luo, Biao; Liu, Yingjun; Tang, Bao
2016-10-01
Elastic Optical Networks are considered to be a promising technology for future high-speed network. In this paper, we propose a RSA algorithm based on the ant colony optimization of minimum consecutiveness loss (ACO-MCL). Based on the effect of the spectrum consecutiveness loss on the pheromone in the ant colony optimization, the path and spectrum of the minimal impact on the network are selected for the service request. When an ant arrives at the destination node from the source node along a path, we assume that this path is selected for the request. We calculate the consecutiveness loss of candidate-neighbor link pairs along this path after the routing and spectrum assignment. Then, the networks update the pheromone according to the value of the consecutiveness loss. We save the path with the smallest value. After multiple iterations of the ant colony optimization, the final selection of the path is assigned for the request. The algorithms are simulated in different networks. The results show that ACO-MCL algorithm performs better in blocking probability and spectrum efficiency than other algorithms. Moreover, the ACO-MCL algorithm can effectively decrease spectrum fragmentation and enhance available spectrum consecutiveness. Compared with other algorithms, the ACO-MCL algorithm can reduce the blocking rate by at least 5.9% in heavy load.
Feedback control for fuel-optimal descents using singular perturbation techniques
NASA Technical Reports Server (NTRS)
Price, D. B.
1984-01-01
In response to rising fuel costs and reduced profit margins for the airline companies, the optimization of the paths flown by transport aircraft has been considered. It was found that application of optimal control theory to the considered problem can result in savings in fuel, time, and direct operating costs. The best solution to the aircraft trajectory problem is an onboard real-time feedback control law. The present paper presents a technique which shows promise of becoming a part of a complete solution. The application of singular perturbation techniques to the problem is discussed, taking into account the benefits and some problems associated with them. A different technique for handling the descent part of a trajectory is also discussed.
Optimal guidance for the space shuttle transition
NASA Technical Reports Server (NTRS)
Stengel, R. F.
1972-01-01
A guidance method for the space shuttle's transition from hypersonic entry to subsonic cruising flight is presented. The method evolves from a numerical trajectory optimization technique in which kinetic energy and total energy (per unit weight) replace velocity and time in the dynamic equations. This allows the open end-time problem to be transformed to one of fixed terminal energy. In its ultimate form, E-Guidance obtains energy balance (including dynamic-pressure-rate damping) and path length control by angle-of-attack modulation and cross-range control by roll angle modulation. The guidance functions also form the basis for a pilot display of instantaneous maneuver limits and destination. Numerical results illustrate the E-Guidance concept and the optimal trajectories on which it is based.
Robust Path Planning and Feedback Design Under Stochastic Uncertainty
NASA Technical Reports Server (NTRS)
Blackmore, Lars
2008-01-01
Autonomous vehicles require optimal path planning algorithms to achieve mission goals while avoiding obstacles and being robust to uncertainties. The uncertainties arise from exogenous disturbances, modeling errors, and sensor noise, which can be characterized via stochastic models. Previous work defined a notion of robustness in a stochastic setting by using the concept of chance constraints. This requires that mission constraint violation can occur with a probability less than a prescribed value.In this paper we describe a novel method for optimal chance constrained path planning with feedback design. The approach optimizes both the reference trajectory to be followed and the feedback controller used to reject uncertainty. Our method extends recent results in constrained control synthesis based on convex optimization to solve control problems with nonconvex constraints. This extension is essential for path planning problems, which inherently have nonconvex obstacle avoidance constraints. Unlike previous approaches to chance constrained path planning, the new approach optimizes the feedback gain as wellas the reference trajectory.The key idea is to couple a fast, nonconvex solver that does not take into account uncertainty, with existing robust approaches that apply only to convex feasible regions. By alternating between robust and nonrobust solutions, the new algorithm guarantees convergence to a global optimum. We apply the new method to an unmanned aircraft and show simulation results that demonstrate the efficacy of the approach.
Sensory Agreement Guides Kinetic Energy Optimization of Arm Movements during Object Manipulation.
Farshchiansadegh, Ali; Melendez-Calderon, Alejandro; Ranganathan, Rajiv; Murphey, Todd D; Mussa-Ivaldi, Ferdinando A
2016-04-01
The laws of physics establish the energetic efficiency of our movements. In some cases, like locomotion, the mechanics of the body dominate in determining the energetically optimal course of action. In other tasks, such as manipulation, energetic costs depend critically upon the variable properties of objects in the environment. Can the brain identify and follow energy-optimal motions when these motions require moving along unfamiliar trajectories? What feedback information is required for such optimal behavior to occur? To answer these questions, we asked participants to move their dominant hand between different positions while holding a virtual mechanical system with complex dynamics (a planar double pendulum). In this task, trajectories of minimum kinetic energy were along curvilinear paths. Our findings demonstrate that participants were capable of finding the energy-optimal paths, but only when provided with veridical visual and haptic information pertaining to the object, lacking which the trajectories were executed along rectilinear paths.
Path Searching Based Fault Automated Recovery Scheme for Distribution Grid with DG
NASA Astrophysics Data System (ADS)
Xia, Lin; Qun, Wang; Hui, Xue; Simeng, Zhu
2016-12-01
Applying the method of path searching based on distribution network topology in setting software has a good effect, and the path searching method containing DG power source is also applicable to the automatic generation and division of planned islands after the fault. This paper applies path searching algorithm in the automatic division of planned islands after faults: starting from the switch of fault isolation, ending in each power source, and according to the line load that the searching path traverses and the load integrated by important optimized searching path, forming optimized division scheme of planned islands that uses each DG as power source and is balanced to local important load. Finally, COBASE software and distribution network automation software applied are used to illustrate the effectiveness of the realization of such automatic restoration program.
Garner, Melissa J; McGregor, Bonnie A; Murphy, Karly M; Koenig, Alex L; Dolan, Emily D; Albano, Denise
2015-12-01
Breast cancer risk is a chronic stressor associated with depression. Optimism is associated with lower levels of depression among breast cancer survivors. However, to our knowledge, no studies have explored the relationship between optimism and depression among women at risk for breast cancer. We hypothesized that women at risk for breast cancer who have higher levels of optimism would report lower levels of depression and that social support would mediate this relationship. Participants (N = 199) with elevated distress were recruited from the community and completed self-report measures of depression, optimism, and social support. Participants were grouped based on their family history of breast cancer. Path analysis was used to examine the cross-sectional relationship between optimism, social support, and depressive symptoms in each group. Results indicated that the variance in depressive symptoms was partially explained through direct paths from optimism and social support among women with a family history of breast cancer. The indirect path from optimism to depressive symptoms via social support was significant (β = -.053; 90% CI = -.099 to -.011, p = .037) in this group. However, among individuals without a family history of breast cancer, the indirect path from optimism to depressive symptoms via social support was not significant. These results suggest that social support partially mediates the relationship between optimism and depression among women at risk for breast cancer. Social support may be an important intervention target to reduce depression among women at risk for breast cancer. Copyright © 2015 John Wiley & Sons, Ltd.
Optimizing Mars Airplane Trajectory with the Application Navigation System
NASA Technical Reports Server (NTRS)
Frumkin, Michael; Riley, Derek
2004-01-01
Planning complex missions requires a number of programs to be executed in concert. The Application Navigation System (ANS), developed in the NAS Division, can execute many interdependent programs in a distributed environment. We show that the ANS simplifies user effort and reduces time in optimization of the trajectory of a martian airplane. We use a software package, Cart3D, to evaluate trajectories and a shortest path algorithm to determine the optimal trajectory. ANS employs the GridScape to represent the dynamic state of the available computer resources. Then, ANS uses a scheduler to dynamically assign ready task to machine resources and the GridScape for tracking available resources and forecasting completion time of running tasks. We demonstrate system capability to schedule and run the trajectory optimization application with efficiency exceeding 60% on 64 processors.
NASA Astrophysics Data System (ADS)
Pradhan, Moumita; Pradhan, Dinesh; Bandyopadhyay, G.
2010-10-01
Fuzzy System has demonstrated their ability to solve different kinds of problem in various application domains. There is an increasing interest to apply fuzzy concept to improve tasks of any system. Here case study of a thermal power plant is considered. Existing time estimation represents time to complete tasks. Applying fuzzy linear approach it becomes clear that after each confidence level least time is taken to complete tasks. As time schedule is less than less amount of cost is needed. Objective of this paper is to show how one system becomes more efficient in applying Fuzzy Linear approach. In this paper we want to optimize the time estimation to perform all tasks in appropriate time schedules. For the case study, optimistic time (to), pessimistic time (tp), most likely time(tm) is considered as data collected from thermal power plant. These time estimates help to calculate expected time(te) which represents time to complete particular task to considering all happenings. Using project evaluation and review technique (PERT) and critical path method (CPM) concept critical path duration (CPD) of this project is calculated. This tells that the probability of fifty percent of the total tasks can be completed in fifty days. Using critical path duration and standard deviation of the critical path, total completion of project can be completed easily after applying normal distribution. Using trapezoidal rule from four time estimates (to, tm, tp, te), we can calculate defuzzyfied value of time estimates. For range of fuzzy, we consider four confidence interval level say 0.4, 0.6, 0.8,1. From our study, it is seen that time estimates at confidence level between 0.4 and 0.8 gives the better result compared to other confidence levels.
NASA Technical Reports Server (NTRS)
Calise, A. J.; Flandro, G. A.; Corban, J. E.
1990-01-01
General problems associated with on-board trajectory optimization, propulsion system cycle selection, and with the synthesis of guidance laws were addressed for an ascent to low-earth-orbit of an air-breathing single-stage-to-orbit vehicle. The NASA Generic Hypersonic Aerodynamic Model Example and the Langley Accelerator aerodynamic sets were acquired and implemented. Work related to the development of purely analytic aerodynamic models was also performed at a low level. A generic model of a multi-mode propulsion system was developed that includes turbojet, ramjet, scramjet, and rocket engine cycles. Provisions were made in the dynamic model for a component of thrust normal to the flight path. Computational results, which characterize the nonlinear sensitivity of scramjet performance to changes in vehicle angle of attack, were obtained and incorporated into the engine model. Additional trajectory constraints were introduced: maximum dynamic pressure; maximum aerodynamic heating rate per unit area; angle of attack and lift limits; and limits on acceleration both along and normal to the flight path. The remainder of the effort focused on required modifications to a previously derived algorithm when the model complexity cited above was added. In particular, analytic switching conditions were derived which, under appropriate assumptions, govern optimal transition from one propulsion mode to another for two cases: the case in which engine cycle operations can overlap, and the case in which engine cycle operations are mutually exclusive. The resulting guidance algorithm was implemented in software and exercised extensively. It was found that the approximations associated with the assumed time scale separation employed in this work are reasonable except over the Mach range from roughly 5 to 8. This phenomenon is due to the very large thrust capability of scramjets in this Mach regime when sized to meet the requirement for ascent to orbit. By accounting for flight path angle and flight path angle rate in construction of the flight path over this Mach range, the resulting algorithm provides the means for rapid near-optimal trajectory generation and propulsion cycle selection over the entire Mach range from take-off to orbit.
Singular perturbation techniques for real time aircraft trajectory optimization and control
NASA Technical Reports Server (NTRS)
Calise, A. J.; Moerder, D. D.
1982-01-01
The usefulness of singular perturbation methods for developing real time computer algorithms to control and optimize aircraft flight trajectories is examined. A minimum time intercept problem using F-8 aerodynamic and propulsion data is used as a baseline. This provides a framework within which issues relating to problem formulation, solution methodology and real time implementation are examined. Theoretical questions relating to separability of dynamics are addressed. With respect to implementation, situations leading to numerical singularities are identified, and procedures for dealing with them are outlined. Also, particular attention is given to identifying quantities that can be precomputed and stored, thus greatly reducing the on-board computational load. Numerical results are given to illustrate the minimum time algorithm, and the resulting flight paths. An estimate is given for execution time and storage requirements.
A Bat Algorithm with Mutation for UCAV Path Planning
Wang, Gaige; Guo, Lihong; Duan, Hong; Liu, Luo; Wang, Heqi
2012-01-01
Path planning for uninhabited combat air vehicle (UCAV) is a complicated high dimension optimization problem, which mainly centralizes on optimizing the flight route considering the different kinds of constrains under complicated battle field environments. Original bat algorithm (BA) is used to solve the UCAV path planning problem. Furthermore, a new bat algorithm with mutation (BAM) is proposed to solve the UCAV path planning problem, and a modification is applied to mutate between bats during the process of the new solutions updating. Then, the UCAV can find the safe path by connecting the chosen nodes of the coordinates while avoiding the threat areas and costing minimum fuel. This new approach can accelerate the global convergence speed while preserving the strong robustness of the basic BA. The realization procedure for original BA and this improved metaheuristic approach BAM is also presented. To prove the performance of this proposed metaheuristic method, BAM is compared with BA and other population-based optimization methods, such as ACO, BBO, DE, ES, GA, PBIL, PSO, and SGA. The experiment shows that the proposed approach is more effective and feasible in UCAV path planning than the other models. PMID:23365518
2013-01-01
The free-energy landscape can provide a quantitative description of folding dynamics, if determined as a function of an optimally chosen reaction coordinate. Here, we construct the optimal coordinate and the associated free-energy profile for all-helical proteins HP35 and its norleucine (Nle/Nle) double mutant, based on realistic equilibrium folding simulations [Piana et al. Proc. Natl. Acad. Sci. U.S.A.2012, 109, 17845]. From the obtained profiles, we directly determine such basic properties of folding dynamics as the configurations of the minima and transition states (TS), the formation of secondary structure and hydrophobic core during the folding process, the value of the pre-exponential factor and its relation to the transition path times, the relation between the autocorrelation times in TS and minima. We also present an investigation of the accuracy of the pre-exponential factor estimation based on the transition-path times. Four different estimations of the pre-exponential factor for both proteins give k0–1 values of approximately a few tens of nanoseconds. Our analysis gives detailed information about folding of the proteins and can serve as a rigorous common language for extensive comparison between experiment and simulation. PMID:24348206
Banushkina, Polina V; Krivov, Sergei V
2013-12-10
The free-energy landscape can provide a quantitative description of folding dynamics, if determined as a function of an optimally chosen reaction coordinate. Here, we construct the optimal coordinate and the associated free-energy profile for all-helical proteins HP35 and its norleucine (Nle/Nle) double mutant, based on realistic equilibrium folding simulations [Piana et al. Proc. Natl. Acad. Sci. U.S.A. 2012 , 109 , 17845]. From the obtained profiles, we directly determine such basic properties of folding dynamics as the configurations of the minima and transition states (TS), the formation of secondary structure and hydrophobic core during the folding process, the value of the pre-exponential factor and its relation to the transition path times, the relation between the autocorrelation times in TS and minima. We also present an investigation of the accuracy of the pre-exponential factor estimation based on the transition-path times. Four different estimations of the pre-exponential factor for both proteins give k 0 -1 values of approximately a few tens of nanoseconds. Our analysis gives detailed information about folding of the proteins and can serve as a rigorous common language for extensive comparison between experiment and simulation.
Robust Video Stabilization Using Particle Keypoint Update and l1-Optimized Camera Path
Jeon, Semi; Yoon, Inhye; Jang, Jinbeum; Yang, Seungji; Kim, Jisung; Paik, Joonki
2017-01-01
Acquisition of stabilized video is an important issue for various type of digital cameras. This paper presents an adaptive camera path estimation method using robust feature detection to remove shaky artifacts in a video. The proposed algorithm consists of three steps: (i) robust feature detection using particle keypoints between adjacent frames; (ii) camera path estimation and smoothing; and (iii) rendering to reconstruct a stabilized video. As a result, the proposed algorithm can estimate the optimal homography by redefining important feature points in the flat region using particle keypoints. In addition, stabilized frames with less holes can be generated from the optimal, adaptive camera path that minimizes a temporal total variation (TV). The proposed video stabilization method is suitable for enhancing the visual quality for various portable cameras and can be applied to robot vision, driving assistant systems, and visual surveillance systems. PMID:28208622
Optimization of carbon mitigation paths in the power sector of Shenzhen, China
NASA Astrophysics Data System (ADS)
Li, Xin; Hu, Guangxiao; Duan, Ying; Ji, Junping
2017-08-01
This paper studied the carbon mitigation paths of the power sector in Shenzhen, China from a supply-side perspective. We investigated the carbon mitigation potentials and investments of seventeen mitigation technologies in the power sector, and employed a linear programming method to optimize the mitigation paths. The results show that: 1) The total carbon mitigation potential is 5.95 MtCO2 in 2020 in which the adjustment of power supply structure, technical improvements of existing coal- and gas-fired power plant account for 87.5%,6.5% and 6.0%, respectively. 2) In the optimal path, the avoided carbon dioxide to meet the local government’s mitigation goal in power sector is 1.26 MtCO2.The adjustment of power supply structure and technical improvement of the coal-fired power plants are the driving factors of carbon mitigation, with contributions to total carbon mitigation are 72.6% and 27.4%, respectively.
Fischer, Tatjana V; Folio, Les R; Backus, Christopher E; Bunger, Rolf
2012-01-01
Penetrating trauma is frequently encountered in forward deployed military combat hospitals. Abdominal blast injuries represent nearly 11% of combat injuries, and multiplanar computed tomography imaging is optimal for injury assessment and surgical planning. We describe a multiplanar approach to assessment of blast and ballistic injuries, which allows for more expeditious detection of missile tracts and damage caused along the path. Precise delineation of the trajectory path and localization of retained fragments enables time-saving and detailed evaluation of associated tissue and vascular injury. For consistent and reproducible documentation of fragment locations in the body, we propose a localization scheme based on Cartesian coordinates to report 3-dimensional locations of fragments and demonstrating the application in three cases of abdominal blast injury.
Applications and development of new algorithms for displacement analysis using InSAR time series
NASA Astrophysics Data System (ADS)
Osmanoglu, Batuhan
Time series analysis of Synthetic Aperture Radar Interferometry (InSAR) data has become an important scientific tool for monitoring and measuring the displacement of Earth's surface due to a wide range of phenomena, including earthquakes, volcanoes, landslides, changes in ground water levels, and wetlands. Time series analysis is a product of interferometric phase measurements, which become ambiguous when the observed motion is larger than half of the radar wavelength. Thus, phase observations must first be unwrapped in order to obtain physically meaningful results. Persistent Scatterer Interferometry (PSI), Stanford Method for Persistent Scatterers (StaMPS), Short Baselines Interferometry (SBAS) and Small Temporal Baseline Subset (STBAS) algorithms solve for this ambiguity using a series of spatio-temporal unwrapping algorithms and filters. In this dissertation, I improve upon current phase unwrapping algorithms, and apply the PSI method to study subsidence in Mexico City. PSI was used to obtain unwrapped deformation rates in Mexico City (Chapter 3),where ground water withdrawal in excess of natural recharge causes subsurface, clay-rich sediments to compact. This study is based on 23 satellite SAR scenes acquired between January 2004 and July 2006. Time series analysis of the data reveals a maximum line-of-sight subsidence rate of 300mm/yr at a high enough resolution that individual subsidence rates for large buildings can be determined. Differential motion and related structural damage along an elevated metro rail was evident from the results. Comparison of PSI subsidence rates with data from permanent GPS stations indicate root mean square (RMS) agreement of 6.9 mm/yr, about the level expected based on joint data uncertainty. The Mexico City results suggest negligible recharge, implying continuing degradation and loss of the aquifer in the third largest metropolitan area in the world. Chapters 4 and 5 illustrate the link between time series analysis and three-dimensional (3-D) phase unwrapping. Chapter 4 focuses on the unwrapping path. Unwrapping algorithms can be divided into two groups, path-dependent and path-independent algorithms. Path-dependent algorithms use local unwrapping functions applied pixel-by-pixel to the dataset. In contrast, path-independent algorithms use global optimization methods such as least squares, and return a unique solution. However, when aliasing and noise are present, path-independent algorithms can underestimate the signal in some areas due to global fitting criteria. Path-dependent algorithms do not underestimate the signal, but, as the name implies, the unwrapping path can affect the result. Comparison between existing path algorithms and a newly developed algorithm based on Fisher information theory was conducted. Results indicate that Fisher information theory does indeed produce lower misfit results for most tested cases. Chapter 5 presents a new time series analysis method based on 3-D unwrapping of SAR data using extended Kalman filters. Existing methods for time series generation using InSAR data employ special filters to combine two-dimensional (2-D) spatial unwrapping with one-dimensional (1-D) temporal unwrapping results. The new method, however, combines observations in azimuth, range and time for repeat pass interferometry. Due to the pixel-by-pixel characteristic of the filter, the unwrapping path is selected based on a quality map. This unwrapping algorithm is the first application of extended Kalman filters to the 3-D unwrapping problem. Time series analyses of InSAR data are used in a variety of applications with different characteristics. Consequently, it is difficult to develop a single algorithm that can provide optimal results in all cases, given that different algorithms possess a unique set of strengths and weaknesses. Nonetheless, filter-based unwrapping algorithms such as the one presented in this dissertation have the capability of joining multiple observations into a uniform solution, which is becoming an important feature with continuously growing datasets.
A real-time intercepting beam-profile monitor for a medical cyclotron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendriks, C.; Uittenbosch, T.; Cameron, D.
2013-11-15
There is a lack of real-time continuous beam-diagnostic tools for medical cyclotrons due to high power deposition during proton irradiation. To overcome this limitation, we have developed a profile monitor that is capable of providing continuous feedback about beam shape and current in real time while it is inserted in the beam path. This enables users to optimize the beam profile and observe fluctuations in the beam over time with periodic insertion of the monitor.
Optimizing Sustainable Geothermal Heat Extraction
NASA Astrophysics Data System (ADS)
Patel, Iti; Bielicki, Jeffrey; Buscheck, Thomas
2016-04-01
Geothermal heat, though renewable, can be depleted over time if the rate of heat extraction exceeds the natural rate of renewal. As such, the sustainability of a geothermal resource is typically viewed as preserving the energy of the reservoir by weighing heat extraction against renewability. But heat that is extracted from a geothermal reservoir is used to provide a service to society and an economic gain to the provider of that service. For heat extraction used for market commodities, sustainability entails balancing the rate at which the reservoir temperature renews with the rate at which heat is extracted and converted into economic profit. We present a model for managing geothermal resources that combines simulations of geothermal reservoir performance with natural resource economics in order to develop optimal heat mining strategies. Similar optimal control approaches have been developed for managing other renewable resources, like fisheries and forests. We used the Non-isothermal Unsaturated-saturated Flow and Transport (NUFT) model to simulate the performance of a sedimentary geothermal reservoir under a variety of geologic and operational situations. The results of NUFT are integrated into the optimization model to determine the extraction path over time that maximizes the net present profit given the performance of the geothermal resource. Results suggest that the discount rate that is used to calculate the net present value of economic gain is a major determinant of the optimal extraction path, particularly for shallower and cooler reservoirs, where the regeneration of energy due to the natural geothermal heat flux is a smaller percentage of the amount of energy that is extracted from the reservoir.
Multi-hop path tracing of mobile robot with multi-range image
NASA Astrophysics Data System (ADS)
Choudhury, Ramakanta; Samal, Chandrakanta; Choudhury, Umakanta
2010-02-01
It is well known that image processing depends heavily upon image representation technique . This paper intends to find out the optimal path of mobile robots for a specified area where obstacles are predefined as well as modified. Here the optimal path is represented by using the Quad tree method. Since there has been rising interest in the use of quad tree, we have tried to use the successive subdivision of images into quadrants from which the quad tree is developed. In the quad tree, obstacles-free area and the partial filled area are represented with different notations. After development of quad tree the algorithm is used to find the optimal path by employing neighbor finding technique, with a view to move the robot from the source to destination. The algorithm, here , permeates through the entire tree, and tries to locate the common ancestor for computation. The computation and the algorithm, aim at easing the ability of the robot to trace the optimal path with the help of adjacencies between the neighboring nodes as well as determining such adjacencies in the horizontal, vertical and diagonal directions. In this paper efforts have been made to determine the movement of the adjacent block in the quad tree and to detect the transition between the blocks equal size and finally generate the result.
Career Patterns: A Twenty-Year Panel Study
ERIC Educational Resources Information Center
Biemann, Torsten; Zacher, Hannes; Feldman, Daniel C.
2012-01-01
Using 20years of employment and job mobility data from a representative German sample (N = 1259), we employ optimal matching analysis (OMA) to identify six career patterns which deviate from the traditional career path of long-term, full-time employment in one organization. Then, in further analyses, we examine which socio-demographic predictors…
Algorithms for Scheduling and Network Problems
1991-09-01
time. We already know, by Lemma 2.2.1, that WOPT = O(log( mpU )), so if we could solve this integer program optimally we would be done. However, the...Folydirat, 15:177-191, 1982. [6] I.S. Belov and Ya. N. Stolin. An algorithm in a single path operations scheduling problem. In Mathematical Economics and
2015-12-24
minimizing a weighted sum ofthe time and control effort needed to collect sensor data. This problem formulation is a modified traveling salesman ...29 2.5 The Shortest Path Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.5.1 Traveling Salesman Problem ...48 3.3.1 Initial Guess by Traveling Salesman Problem Solution
Optimization of Time-Dependent Particle Tracing Using Tetrahedral Decomposition
NASA Technical Reports Server (NTRS)
Kenwright, David; Lane, David
1995-01-01
An efficient algorithm is presented for computing particle paths, streak lines and time lines in time-dependent flows with moving curvilinear grids. The integration, velocity interpolation and step-size control are all performed in physical space which avoids the need to transform the velocity field into computational space. This leads to higher accuracy because there are no Jacobian matrix approximations or expensive matrix inversions. Integration accuracy is maintained using an adaptive step-size control scheme which is regulated by the path line curvature. The problem of cell-searching, point location and interpolation in physical space is simplified by decomposing hexahedral cells into tetrahedral cells. This enables the point location to be done analytically and substantially faster than with a Newton-Raphson iterative method. Results presented show this algorithm is up to six times faster than particle tracers which operate on hexahedral cells yet produces almost identical particle trajectories.
Interactive Learning Environment for Bio-Inspired Optimization Algorithms for UAV Path Planning
ERIC Educational Resources Information Center
Duan, Haibin; Li, Pei; Shi, Yuhui; Zhang, Xiangyin; Sun, Changhao
2015-01-01
This paper describes the development of BOLE, a MATLAB-based interactive learning environment, that facilitates the process of learning bio-inspired optimization algorithms, and that is dedicated exclusively to unmanned aerial vehicle path planning. As a complement to conventional teaching methods, BOLE is designed to help students consolidate the…
Coordinated Path-Following in the Presence of Communication Losses and Time Delays
2009-01-01
of Type I or Type II. The results are quite general in that they apply to a large class of PF control systems satisfying a certain input-to-state...Maggiore, State agreement for continuous- time coupled nonlinear systems , SIAM J. Control Optim., 46 (2007), pp. 288–307. [39] M. Mesbahi and F...40] L. Moreau, Stability of continuous- time distributed consensus algorithm, in Proceedings of the 43rd IEEE Conference on Decision and Control
Durner, Bernhard; Ehmann, Thomas; Matysik, Frank-Michael
2018-06-05
The adaption of an parallel-path poly(tetrafluoroethylene)(PTFE) ICP-nebulizer to an evaporative light scattering detector (ELSD) was realized. This was done by substituting the originally installed concentric glass nebulizer of the ELSD. The performance of both nebulizers was compared regarding nebulizer temperature, evaporator temperature, flow rate of nebulizing gas and flow rate of mobile phase of different solvents using caffeine and poly(dimethylsiloxane) (PDMS) as analytes. Both nebulizers showed similar performances but for the parallel-path PTFE nebulizer the performance was considerably better at low LC flow rates and the nebulizer lifetime was substantially increased. In general, for both nebulizers the highest sensitivity was obtained by applying the lowest possible evaporator temperature in combination with the highest possible nebulizer temperature at preferably low gas flow rates. Besides the optimization of detector parameters, response factors for various PDMS oligomers were determined and the dependency of the detector signal on molar mass of the analytes was studied. The significant improvement regarding long-term stability made the modified ELSD much more robust and saved time and money by reducing the maintenance efforts. Thus, especially in polymer HPLC, associated with a complex matrix situation, the PTFE-based parallel-path nebulizer exhibits attractive characteristics for analytical studies of polymers. Copyright © 2018. Published by Elsevier B.V.
Energy management of three-dimensional minimum-time intercept. [for aircraft flight optimization
NASA Technical Reports Server (NTRS)
Kelley, H. J.; Cliff, E. M.; Visser, H. G.
1985-01-01
A real-time computer algorithm to control and optimize aircraft flight profiles is described and applied to a three-dimensional minimum-time intercept mission. The proposed scheme has roots in two well known techniques: singular perturbations and neighboring-optimal guidance. Use of singular-perturbation ideas is made in terms of the assumed trajectory-family structure. A heading/energy family of prestored point-mass-model state-Euler solutions is used as the baseline in this scheme. The next step is to generate a near-optimal guidance law that will transfer the aircraft to the vicinity of this reference family. The control commands fed to the autopilot (bank angle and load factor) consist of the reference controls plus correction terms which are linear combinations of the altitude and path-angle deviations from reference values, weighted by a set of precalculated gains. In this respect the proposed scheme resembles neighboring-optimal guidance. However, in contrast to the neighboring-optimal guidance scheme, the reference control and state variables as well as the feedback gains are stored as functions of energy and heading in the present approach. Some numerical results comparing open-loop optimal and approximate feedback solutions are presented.
Robust Accurate Non-Invasive Analyte Monitor
Robinson, Mark R.
1998-11-03
An improved method and apparatus for determining noninvasively and in vivo one or more unknown values of a known characteristic, particularly the concentration of an analyte in human tissue. The method includes: (1) irradiating the tissue with infrared energy (400 nm-2400 nm) having at least several wavelengths in a given range of wavelengths so that there is differential absorption of at least some of the wavelengths by the tissue as a function of the wavelengths and the known characteristic, the differential absorption causeing intensity variations of the wavelengths incident from the tissue; (2) providing a first path through the tissue; (3) optimizing the first path for a first sub-region of the range of wavelengths to maximize the differential absorption by at least some of the wavelengths in the first sub-region; (4) providing a second path through the tissue; and (5) optimizing the second path for a second sub-region of the range, to maximize the differential absorption by at least some of the wavelengths in the second sub-region. In the preferred embodiment a third path through the tissue is provided for, which path is optimized for a third sub-region of the range. With this arrangement, spectral variations which are the result of tissue differences (e.g., melanin and temperature) can be reduced. At least one of the paths represents a partial transmission path through the tissue. This partial transmission path may pass through the nail of a finger once and, preferably, twice. Also included are apparatus for: (1) reducing the arterial pulsations within the tissue; and (2) maximizing the blood content i the tissue.
Infinite non-causality in active cancellation of random noise
NASA Astrophysics Data System (ADS)
Friot, Emmanuel
2006-03-01
Active cancellation of broadband random noise requires the detection of the incoming noise with some time advance. In an duct for example this advance must be larger than the delays in the secondary path from the control source to the error sensor. In this paper it is shown that, in some cases, the advance required for perfect noise cancellation is theoretically infinite because the inverse of the secondary path, which is required for control, can include an infinite non-causal response. This is shown to be the result of two mechanisms: in the single-channel case (one control source and one error sensor), this can arise because of strong echoes in the control path. In the multi-channel case this can arise even in free field simply because of an unfortunate placing of sensors and actuators. In the present paper optimal feedforward control is derived through analytical and numerical computations, in the time and frequency domains. It is shown that, in practice, the advance required for significant noise attenuation can be much larger than the secondary path delays. Practical rules are also suggested in order to prevent infinite non-causality from appearing.
Optimal trajectories of aircraft and spacecraft
NASA Technical Reports Server (NTRS)
Miele, A.
1990-01-01
Work done on algorithms for the numerical solutions of optimal control problems and their application to the computation of optimal flight trajectories of aircraft and spacecraft is summarized. General considerations on calculus of variations, optimal control, numerical algorithms, and applications of these algorithms to real-world problems are presented. The sequential gradient-restoration algorithm (SGRA) is examined for the numerical solution of optimal control problems of the Bolza type. Both the primal formulation and the dual formulation are discussed. Aircraft trajectories, in particular, the application of the dual sequential gradient-restoration algorithm (DSGRA) to the determination of optimal flight trajectories in the presence of windshear are described. Both take-off trajectories and abort landing trajectories are discussed. Take-off trajectories are optimized by minimizing the peak deviation of the absolute path inclination from a reference value. Abort landing trajectories are optimized by minimizing the peak drop of altitude from a reference value. Abort landing trajectories are optimized by minimizing the peak drop of altitude from a reference value. The survival capability of an aircraft in a severe windshear is discussed, and the optimal trajectories are found to be superior to both constant pitch trajectories and maximum angle of attack trajectories. Spacecraft trajectories, in particular, the application of the primal sequential gradient-restoration algorithm (PSGRA) to the determination of optimal flight trajectories for aeroassisted orbital transfer are examined. Both the coplanar case and the noncoplanar case are discussed within the frame of three problems: minimization of the total characteristic velocity; minimization of the time integral of the square of the path inclination; and minimization of the peak heating rate. The solution of the second problem is called nearly-grazing solution, and its merits are pointed out as a useful engineering compromise between energy requirements and aerodynamics heating requirements.
Integration across Time Determines Path Deviation Discrimination for Moving Objects
Whitaker, David; Levi, Dennis M.; Kennedy, Graeme J.
2008-01-01
Background Human vision is vital in determining our interaction with the outside world. In this study we characterize our ability to judge changes in the direction of motion of objects–a common task which can allow us either to intercept moving objects, or else avoid them if they pose a threat. Methodology/Principal Findings Observers were presented with objects which moved across a computer monitor on a linear path until the midline, at which point they changed their direction of motion, and observers were required to judge the direction of change. In keeping with the variety of objects we encounter in the real world, we varied characteristics of the moving stimuli such as velocity, extent of motion path and the object size. Furthermore, we compared performance for moving objects with the ability of observers to detect a deviation in a line which formed the static trace of the motion path, since it has been suggested that a form of static memory trace may form the basis for these types of judgment. The static line judgments were well described by a ‘scale invariant’ model in which any two stimuli which possess the same two-dimensional geometry (length/width) result in the same level of performance. Performance for the moving objects was entirely different. Irrespective of the path length, object size or velocity of motion, path deviation thresholds depended simply upon the duration of the motion path in seconds. Conclusions/Significance Human vision has long been known to integrate information across space in order to solve spatial tasks such as judgment of orientation or position. Here we demonstrate an intriguing mechanism which integrates direction information across time in order to optimize the judgment of path deviation for moving objects. PMID:18414653
Kinetic constrained optimization of the golf swing hub path.
Nesbit, Steven M; McGinnis, Ryan S
2014-12-01
This study details an optimization of the golf swing, where the hand path and club angular trajectories are manipulated. The optimization goal was to maximize club head velocity at impact within the interaction kinetic limitations (force, torque, work, and power) of the golfer as determined through the analysis of a typical swing using a two-dimensional dynamic model. The study was applied to four subjects with diverse swing capabilities and styles. It was determined that it is possible for all subjects to increase their club head velocity at impact within their respective kinetic limitations through combined modifications to their respective hand path and club angular trajectories. The manner of the modifications, the degree of velocity improvement, the amount of kinetic reduction, and the associated kinetic limitation quantities were subject dependent. By artificially minimizing selected kinetic inputs within the optimization algorithm, it was possible to identify swing trajectory characteristics that indicated relative kinetic weaknesses of a subject. Practical implications are offered based upon the findings of the study. Key PointsThe hand path trajectory is an important characteristic of the golf swing and greatly affects club head velocity and golfer/club energy transfer.It is possible to increase the energy transfer from the golfer to the club by modifying the hand path and swing trajectories without increasing the kinetic output demands on the golfer.It is possible to identify relative kinetic output strengths and weakness of a golfer through assessment of the hand path and swing trajectories.Increasing any one of the kinetic outputs of the golfer can potentially increase the club head velocity at impact.The hand path trajectory has important influences over the club swing trajectory.
Kinetic Constrained Optimization of the Golf Swing Hub Path
Nesbit, Steven M.; McGinnis, Ryan S.
2014-01-01
This study details an optimization of the golf swing, where the hand path and club angular trajectories are manipulated. The optimization goal was to maximize club head velocity at impact within the interaction kinetic limitations (force, torque, work, and power) of the golfer as determined through the analysis of a typical swing using a two-dimensional dynamic model. The study was applied to four subjects with diverse swing capabilities and styles. It was determined that it is possible for all subjects to increase their club head velocity at impact within their respective kinetic limitations through combined modifications to their respective hand path and club angular trajectories. The manner of the modifications, the degree of velocity improvement, the amount of kinetic reduction, and the associated kinetic limitation quantities were subject dependent. By artificially minimizing selected kinetic inputs within the optimization algorithm, it was possible to identify swing trajectory characteristics that indicated relative kinetic weaknesses of a subject. Practical implications are offered based upon the findings of the study. Key Points The hand path trajectory is an important characteristic of the golf swing and greatly affects club head velocity and golfer/club energy transfer. It is possible to increase the energy transfer from the golfer to the club by modifying the hand path and swing trajectories without increasing the kinetic output demands on the golfer. It is possible to identify relative kinetic output strengths and weakness of a golfer through assessment of the hand path and swing trajectories. Increasing any one of the kinetic outputs of the golfer can potentially increase the club head velocity at impact. The hand path trajectory has important influences over the club swing trajectory. PMID:25435779
Enhanced Fuel-Optimal Trajectory-Generation Algorithm for Planetary Pinpoint Landing
NASA Technical Reports Server (NTRS)
Acikmese, Behcet; Blackmore, James C.; Scharf, Daniel P.
2011-01-01
An enhanced algorithm is developed that builds on a previous innovation of fuel-optimal powered-descent guidance (PDG) for planetary pinpoint landing. The PDG problem is to compute constrained, fuel-optimal trajectories to land a craft at a prescribed target on a planetary surface, starting from a parachute cut-off point and using a throttleable descent engine. The previous innovation showed the minimal-fuel PDG problem can be posed as a convex optimization problem, in particular, as a Second-Order Cone Program, which can be solved to global optimality with deterministic convergence properties, and hence is a candidate for onboard implementation. To increase the speed and robustness of this convex PDG algorithm for possible onboard implementation, the following enhancements are incorporated: 1) Fast detection of infeasibility (i.e., control authority is not sufficient for soft-landing) for subsequent fault response. 2) The use of a piecewise-linear control parameterization, providing smooth solution trajectories and increasing computational efficiency. 3) An enhanced line-search algorithm for optimal time-of-flight, providing quicker convergence and bounding the number of path-planning iterations needed. 4) An additional constraint that analytically guarantees inter-sample satisfaction of glide-slope and non-sub-surface flight constraints, allowing larger discretizations and, hence, faster optimization. 5) Explicit incorporation of Mars rotation rate into the trajectory computation for improved targeting accuracy. These enhancements allow faster convergence to the fuel-optimal solution and, more importantly, remove the need for a "human-in-the-loop," as constraints will be satisfied over the entire path-planning interval independent of step-size (as opposed to just at the discrete time points) and infeasible initial conditions are immediately detected. Finally, while the PDG stage is typically only a few minutes, ignoring the rotation rate of Mars can introduce 10s of meters of error. By incorporating it, the enhanced PDG algorithm becomes capable of pinpoint targeting.
Using the Gurobi Solvers on the Peregrine System | High-Performance
Peregrine System Gurobi Optimizer is a suite of solvers for mathematical programming. It is licensed for ('GRB_MATLAB_PATH') >> path(path,grb) Gurobi and GAMS GAMS is a high-level modeling system for mathematical
An Optimization-Driven Analysis Pipeline to Uncover Biomarkers and Signaling Paths: Cervix Cancer.
Lorenzo, Enery; Camacho-Caceres, Katia; Ropelewski, Alexander J; Rosas, Juan; Ortiz-Mojer, Michael; Perez-Marty, Lynn; Irizarry, Juan; Gonzalez, Valerie; Rodríguez, Jesús A; Cabrera-Rios, Mauricio; Isaza, Clara
2015-06-01
Establishing how a series of potentially important genes might relate to each other is relevant to understand the origin and evolution of illnesses, such as cancer. High-throughput biological experiments have played a critical role in providing information in this regard. A special challenge, however, is that of trying to conciliate information from separate microarray experiments to build a potential genetic signaling path. This work proposes a two-step analysis pipeline, based on optimization, to approach meta-analysis aiming to build a proxy for a genetic signaling path.
Optimal Patrol to Detect Attacks at Dispersed Heterogeneous Locations
2013-12-01
path with one revisit SPR2 Shortest path with two revisits SPR3 Shortest path with three revisits TSP Traveling salesman problem UAV Unmanned aerial...path patrol pattern. Finding the shortest-path patrol pattern is an example of solving a traveling salesman problem , as described in Section 16.5 of...use of patrol paths based on the traveling salesman prob- lem (TSP), where patrollers follow the shortest Hamiltonian cycle in a graph in order to
Corrections to scaling for watersheds, optimal path cracks, and bridge lines
NASA Astrophysics Data System (ADS)
Fehr, E.; Schrenk, K. J.; Araújo, N. A. M.; Kadau, D.; Grassberger, P.; Andrade, J. S., Jr.; Herrmann, H. J.
2012-07-01
We study the corrections to scaling for the mass of the watershed, the bridge line, and the optimal path crack in two and three dimensions (2D and 3D). We disclose that these models have numerically equivalent fractal dimensions and leading correction-to-scaling exponents. We conjecture all three models to possess the same fractal dimension, namely, df=1.2168±0.0005 in 2D and df=2.487±0.003 in 3D, and the same exponent of the leading correction, Ω=0.9±0.1 and Ω=1.0±0.1, respectively. The close relations between watersheds, optimal path cracks in the strong disorder limit, and bridge lines are further supported by either heuristic or exact arguments.
Exploring chemical reaction mechanisms through harmonic Fourier beads path optimization.
Khavrutskii, Ilja V; Smith, Jason B; Wallqvist, Anders
2013-10-28
Here, we apply the harmonic Fourier beads (HFB) path optimization method to study chemical reactions involving covalent bond breaking and forming on quantum mechanical (QM) and hybrid QM∕molecular mechanical (QM∕MM) potential energy surfaces. To improve efficiency of the path optimization on such computationally demanding potentials, we combined HFB with conjugate gradient (CG) optimization. The combined CG-HFB method was used to study two biologically relevant reactions, namely, L- to D-alanine amino acid inversion and alcohol acylation by amides. The optimized paths revealed several unexpected reaction steps in the gas phase. For example, on the B3LYP∕6-31G(d,p) potential, we found that alanine inversion proceeded via previously unknown intermediates, 2-iminopropane-1,1-diol and 3-amino-3-methyloxiran-2-ol. The CG-HFB method accurately located transition states, aiding in the interpretation of complex reaction mechanisms. Thus, on the B3LYP∕6-31G(d,p) potential, the gas phase activation barriers for the inversion and acylation reactions were 50.5 and 39.9 kcal∕mol, respectively. These barriers determine the spontaneous loss of amino acid chirality and cleavage of peptide bonds in proteins. We conclude that the combined CG-HFB method further advances QM and QM∕MM studies of reaction mechanisms.
Suzuki, Kimichi; Morokuma, Keiji; Maeda, Satoshi
2017-10-05
We propose a multistructural microiteration (MSM) method for geometry optimization and reaction path calculation in large systems. MSM is a simple extension of the geometrical microiteration technique. In conventional microiteration, the structure of the non-reaction-center (surrounding) part is optimized by fixing atoms in the reaction-center part before displacements of the reaction-center atoms. In this method, the surrounding part is described as the weighted sum of multiple surrounding structures that are independently optimized. Then, geometric displacements of the reaction-center atoms are performed in the mean field generated by the weighted sum of the surrounding parts. MSM was combined with the QM/MM-ONIOM method and applied to chemical reactions in aqueous solution or enzyme. In all three cases, MSM gave lower reaction energy profiles than the QM/MM-ONIOM-microiteration method over the entire reaction paths with comparable computational costs. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Ríos, Sergio D; Castañeda, Joandiet; Torras, Carles; Farriol, Xavier; Salvadó, Joan
2013-04-01
Microalgae can grow rapidly and capture CO2 from the atmosphere to convert it into complex organic molecules such as lipids (biodiesel feedstock). High scale economically feasible microalgae based oil depends on optimizing the entire process production. This process can be divided in three very different but directly related steps (production, concentration, lipid extraction and transesterification). The aim of this study is to identify the best method of lipid extraction to undergo the potentiality of some microalgal biomass obtained from two different harvesting paths. The first path used all physicals concentration steps, and the second path was a combination of chemical and physical concentration steps. Three microalgae species were tested: Phaeodactylum tricornutum, Nannochloropsis gaditana, and Chaetoceros calcitrans One step lipid extraction-transesterification reached the same fatty acid methyl ester yield as the Bligh and Dyer and soxhlet extraction with n-hexane methods with the corresponding time, cost and solvent saving. Copyright © 2013 Elsevier Ltd. All rights reserved.
Design and Analysis of Optimal Ascent Trajectories for Stratospheric Airships
NASA Astrophysics Data System (ADS)
Mueller, Joseph Bernard
Stratospheric airships are lighter-than-air vehicles that have the potential to provide a long-duration airborne presence at altitudes of 18-22 km. Designed to operate on solar power in the calm portion of the lower stratosphere and above all regulated air traffic and cloud cover, these vehicles represent an emerging platform that resides between conventional aircraft and satellites. A particular challenge for airship operation is the planning of ascent trajectories, as the slow moving vehicle must traverse the high wind region of the jet stream. Due to large changes in wind speed and direction across altitude and the susceptibility of airship motion to wind, the trajectory must be carefully planned, preferably optimized, in order to ensure that the desired station be reached within acceptable performance bounds of flight time and energy consumption. This thesis develops optimal ascent trajectories for stratospheric airships, examines the structure and sensitivity of these solutions, and presents a strategy for onboard guidance. Optimal ascent trajectories are developed that utilize wind energy to achieve minimum-time and minimum-energy flights. The airship is represented by a three-dimensional point mass model, and the equations of motion include aerodynamic lift and drag, vectored thrust, added mass effects, and accelerations due to mass flow rate, wind rates, and Earth rotation. A representative wind profile is developed based on historical meteorological data and measurements. Trajectory optimization is performed by first defining an optimal control problem with both terminal and path constraints, then using direct transcription to develop an approximate nonlinear parameter optimization problem of finite dimension. Optimal ascent trajectories are determined using SNOPT for a variety of upwind, downwind, and crosswind launch locations. Results of extensive optimization solutions illustrate definitive patterns in the ascent path for minimum time flights across varying launch locations, and show that significant energy savings can be realized with minimum-energy flights, compared to minimum-time time flights, given small increases in flight time. The performance of the optimal trajectories are then studied with respect to solar energy production during ascent, as well as sensitivity of the solutions to small changes in drag coefficient and wind model parameters. Results of solar power model simulations indicate that solar energy is sufficient to power ascent flights, but that significant energy loss can occur for certain types of trajectories. Sensitivity to the drag and wind model is approximated through numerical simulations, showing that optimal solutions change gradually with respect to changing wind and drag parameters and providing deeper insight into the characteristics of optimal airship flights. Finally, alternative methods are developed to generate near-optimal ascent trajectories in a manner suitable for onboard implementation. The structures and characteristics of previously developed minimum-time and minimum-energy ascent trajectories are used to construct simplified trajectory models, which are efficiently solved in a smaller numerical optimization problem. Comparison of these alternative solutions to the original SNOPT solutions show excellent agreement, suggesting the alternate formulations are an effective means to develop near-optimal solutions in an onboard setting.
Design of an advanced flight planning system
NASA Technical Reports Server (NTRS)
Sorensen, J. A.; Goka, T.
1985-01-01
The demand for both fuel conservation and four-dimensional traffic management require that the preflight planning process be designed to account for advances in airborne flight management and weather forecasting. The steps and issues in designing such an advanced flight planning system are presented. Focus is placed on the different optimization options for generating the three-dimensional reference path. For the cruise phase, one can use predefined jet routes, direct routes based on a network of evenly spaced grid points, or a network where the grid points are existing navaid locations. Each choice has its own problem in determining an optimum solution. Finding the reference path is further complicated by choice of cruise altitude levels, use of a time-varying weather field, and requiring a fixed time-of-arrival (four-dimensional problem).
An on-board near-optimal climb-dash energy management
NASA Technical Reports Server (NTRS)
Weston, A. R.; Cliff, E. M.; Kelley, H. J.
1982-01-01
On-board real time flight control is studied in order to develop algorithms which are simple enough to be used in practice, for a variety of missions involving three dimensional flight. The intercept mission in symmetric flight is emphasized. Extensive computation is required on the ground prior to the mission but the ensuing on-board exploitation is extremely simple. The scheme takes advantage of the boundary layer structure common in singular perturbations, arising with the multiple time scales appropriate to aircraft dynamics. Energy modelling of aircraft is used as the starting point for the analysis. In the symmetric case, a nominal path is generated which fairs into the dash or cruise state. Feedback coefficients are found as functions of the remaining energy to go (dash energy less current energy) along the nominal path.
Information System Design Methodology Based on PERT/CPM Networking and Optimization Techniques.
ERIC Educational Resources Information Center
Bose, Anindya
The dissertation attempts to demonstrate that the program evaluation and review technique (PERT)/Critical Path Method (CPM) or some modified version thereof can be developed into an information system design methodology. The methodology utilizes PERT/CPM which isolates the basic functional units of a system and sets them in a dynamic time/cost…
User/Tutor Optimal Learning Path in E-Learning Using Comprehensive Neuro-Fuzzy Approach
ERIC Educational Resources Information Center
Fazlollahtabar, Hamed; Mahdavi, Iraj
2009-01-01
Internet evolution has affected all industrial, commercial, and especially learning activities in the new context of e-learning. Due to cost, time, or flexibility e-learning has been adopted by participators as an alternative training method. By development of computer-based devices and new methods of teaching, e-learning has emerged. The…
High-order Path Integral Monte Carlo methods for solving strongly correlated fermion problems
NASA Astrophysics Data System (ADS)
Chin, Siu A.
2015-03-01
In solving for the ground state of a strongly correlated many-fermion system, the conventional second-order Path Integral Monte Carlo method is plagued with the sign problem. This is due to the large number of anti-symmetric free fermion propagators that are needed to extract the square of the ground state wave function at large imaginary time. In this work, I show that optimized fourth-order Path Integral Monte Carlo methods, which uses no more than 5 free-fermion propagators, in conjunction with the use of the Hamiltonian energy estimator, can yield accurate ground state energies for quantum dots with up to 20 polarized electrons. The correlations are directly built-in and no explicit wave functions are needed. This work is supported by the Qatar National Research Fund NPRP GRANT #5-674-1-114.
NASA Astrophysics Data System (ADS)
Negron, L. M.; Clague, J. W.; Gorski, D.; Amaya, M. A.; Pingitore, N. E.
2013-12-01
Millimeter- and micrometer-scale permeability of fine-grained igneous rocks has generated limited research interest. Nonetheless, the scale and distribution of such micro-permeability determines fluid penetration and pathways, parameters that define both the ability to heap leach a rock and the optimal grain size for such an operation. Texas Rare Earth Resources is evaluating the possibility of heap leaching of yttrium and heavy rare earth elements (YHREE) from the peraluminous rhyolite laccolith that forms one-mile-diameter Round Top Mountain. The YHREEs in this immense, surface-exposed deposit (minimum 1.6 billion tons, Texas Bureau Economic Geology) are dilute and diffuse, suggesting leaching as the best option for recovery. The REE grade is 0.05% and YHREEs comprise more than 70% of the total REE content. The YHREEs are hosted exclusively in micron-scale yttrofluorite grains, which proved soluble in dilute sulfuric acid. Laboratory experiments showed YHREE recoveries of up to 90%. Within limits, recoveries decrease with larger grain sizes, and increase with acid strength and exposure time. Our research question centers on dissolution effectiveness: Is YHREE recovery, relative to grain size, limited by (1) diffusion time of acid into, and dissolved solids, including YHREEs, out of the micro-permeability paths inherent in the rock particles; (2) the effective lengths of the natural micro-permeability paths in the rock; or (3) the putative role of the acid in dissolving new micro-paths into the grains? The maximum grain size should not exceed twice the typical path length (unless acid creates new paths), lest YHREEs in the core of a larger grain than that not be reached by acid. If instead diffusion time is limiting, longer leach time may prove effective. Rather than perform an extensive and expensive series of laboratory leaching experiments--some of which would be several months in duration--to determine optimal grain size, we developed a technique to efficiently determine the limits of penetration of water into the rhyolite. We cut parallel-sided slabs of Round Top rhyolite at staged thickness up to 10 mm. We then wet one side and view the opposite side over time under UV light to detect breakthrough of the fluorescein dye. Because of its extremely low visual detection limits, well below the ppm level, the dye has been widely used in biochemical research, as a tracer in surface and ground water studies, in delineating invisible cracks in such structural material as motor blocks, and in detecting corneal abrasions. We have been successful in detecting breakthrough at different rhyolite thicknesses. Continuing studies focus on mapping of the 2-dimensional distribution of the permeability via hand lens and low-power microscope; use of visible light dyes; and examination of specimens pre- and post-acid leaching to determine whether acid exposure produced significant new micro-permeability.
Optimal digital dynamical decoupling for general decoherence via Walsh modulation
NASA Astrophysics Data System (ADS)
Qi, Haoyu; Dowling, Jonathan P.; Viola, Lorenza
2017-11-01
We provide a general framework for constructing digital dynamical decoupling sequences based on Walsh modulation—applicable to arbitrary qubit decoherence scenarios. By establishing equivalence between decoupling design based on Walsh functions and on concatenated projections, we identify a family of optimal Walsh sequences, which can be exponentially more efficient, in terms of the required total pulse number, for fixed cancellation order, than known digital sequences based on concatenated design. Optimal sequences for a given cancellation order are highly non-unique—their performance depending sensitively on the control path. We provide an analytic upper bound to the achievable decoupling error and show how sequences within the optimal Walsh family can substantially outperform concatenated decoupling in principle, while respecting realistic timing constraints.
Probabilistic computer model of optimal runway turnoffs
NASA Technical Reports Server (NTRS)
Schoen, M. L.; Preston, O. W.; Summers, L. G.; Nelson, B. A.; Vanderlinden, L.; Mcreynolds, M. C.
1985-01-01
Landing delays are currently a problem at major air carrier airports and many forecasters agree that airport congestion will get worse by the end of the century. It is anticipated that some types of delays can be reduced by an efficient optimal runway exist system allowing increased approach volumes necessary at congested airports. A computerized Probabilistic Runway Turnoff Model which locates exits and defines path geometry for a selected maximum occupancy time appropriate for each TERPS aircraft category is defined. The model includes an algorithm for lateral ride comfort limits.
NASA Astrophysics Data System (ADS)
Klesh, Andrew T.
This dissertation studies optimal exploration, defined as the collection of information about given objects of interest by a mobile agent (the explorer) using imperfect sensors. The key aspects of exploration are kinematics (which determine how the explorer moves in response to steering commands), energetics (which determine how much energy is consumed by motion and maneuvers), informatics (which determine the rate at which information is collected) and estimation (which determines the states of the objects). These aspects are coupled by the steering decisions of the explorer. We seek to improve exploration by finding trade-offs amongst these couplings and the components of exploration: the Mission, the Path and the Agent. A comprehensive model of exploration is presented that, on one hand, accounts for these couplings and on the other hand is simple enough to allow analysis. This model is utilized to pose and solve several exploration problems where an objective function is to be minimized. Specific functions to be considered are the mission duration and the total energy. These exploration problems are formulated as optimal control problems and necessary conditions for optimality are obtained in the form of two-point boundary value problems. An analysis of these problems reveals characteristics of optimal exploration paths. Several regimes are identified for the optimal paths including the Watchtower, Solar and Drag regime, and several non-dimensional parameters are derived that determine the appropriate regime of travel. The so-called Power Ratio is shown to predict the qualitative features of the optimal paths, provide a metric to evaluate an aircrafts design and determine an aircrafts capability for flying perpetually. Optimal exploration system drivers are identified that provide perspective as to the importance of these various regimes of flight. A bank-to-turn solar-powered aircraft flying at constant altitude on Mars is used as a specific platform for analysis using the coupled model. Flight-paths found with this platform are presented that display the optimal exploration problem characteristics. These characteristics are used to form heuristics, such as a Generalized Traveling Salesman Problem solver, to simplify the exploration problem. These heuristics are used to empirically show the successful completion of an exploration mission by a physical explorer.
NASA Astrophysics Data System (ADS)
Kasper, Axel; Van Hille, Herbert; Kuk, Sola
2018-02-01
Modern instruments for molecular diagnostics are continuously optimized for diagnostic accuracy, versatility and throughput. The latest progress in LED technology together with tailored optics solutions allows developing highly efficient photonics engines perfectly adapted to the sample under test. Super-bright chip-on-board LED light sources are a key component for such instruments providing maximum luminous intensities in a multitude of narrow spectral bands. In particular the combination of white LEDs with other narrow band LEDs allows achieving optimum efficiency outperforming traditional Xenon light sources in terms of energy consumption, heat dissipation in the system, and switching time between spectral channels. Maximum sensitivity of the diagnostic system can only be achieved with an optimized optics system for the illumination and imaging of the sample. The illumination beam path must be designed for optimum homogeneity across the field while precisely limiting the angular distribution of the excitation light. This is a necessity for avoiding spill-over to the detection beam path and guaranteeing the efficiency of the spectral filtering. The imaging optics must combine high spatial resolution, high light collection efficiency and optimized suppression of excitation light for good signal-to-noise ratio. In order to achieve minimum cross-talk between individual wells in the sample, the optics design must also consider the generation of stray light and the formation of ghost images. We discuss what parameters and limitations have to be considered in an integrated system design approach covering the full path from the light source to the detector.
Comparison of some evolutionary algorithms for optimization of the path synthesis problem
NASA Astrophysics Data System (ADS)
Grabski, Jakub Krzysztof; Walczak, Tomasz; Buśkiewicz, Jacek; Michałowska, Martyna
2018-01-01
The paper presents comparison of the results obtained in a mechanism synthesis by means of some selected evolutionary algorithms. The optimization problem considered in the paper as an example is the dimensional synthesis of the path generating four-bar mechanism. In order to solve this problem, three different artificial intelligence algorithms are employed in this study.
NASA Astrophysics Data System (ADS)
Shi, Y.; Long, Y.; Wi, X. L.
2014-04-01
When tourists visiting multiple tourist scenic spots, the travel line is usually the most effective road network according to the actual tour process, and maybe the travel line is different from planned travel line. For in the field of navigation, a proposed travel line is normally generated automatically by path planning algorithm, considering the scenic spots' positions and road networks. But when a scenic spot have a certain area and have multiple entrances or exits, the traditional described mechanism of single point coordinates is difficult to reflect these own structural features. In order to solve this problem, this paper focuses on the influence on the process of path planning caused by scenic spots' own structural features such as multiple entrances or exits, and then proposes a doubleweighted Graph Model, for the weight of both vertexes and edges of proposed Model can be selected dynamically. And then discusses the model building method, and the optimal path planning algorithm based on Dijkstra algorithm and Prim algorithm. Experimental results show that the optimal planned travel line derived from the proposed model and algorithm is more reasonable, and the travelling order and distance would be further optimized.
NASA Astrophysics Data System (ADS)
Moon, M.; Bang, Y.; Yu, K.; Kim, J.
2015-10-01
Recently, due to the increased penetration of smart devices and the development of geographic information system (GIS) technology, various route guidance services for pedestrians have been developed. However, until now, pedestrian navigation services for the people with reduced mobility (people who experience discomfort in transportation) including wheelchair users, the elderly, and pregnant women have not been provided. In this study, we present a walking disturbance index methodology for searching an optimized path for the people with reduced mobility by defining the factors that affect the walking of the people with reduced mobility and deriving the weights of these factors. In future research, we expect to be able to provide a navigation system that gives an optimized path for the people with reduced mobility using this method.
System and method for optimal load and source scheduling in context aware homes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shetty, Pradeep; Foslien Graber, Wendy; Mangsuli, Purnaprajna R.
A controller for controlling energy consumption in a home includes a constraints engine to define variables for multiple appliances in the home corresponding to various home modes and persona of an occupant of the home. A modeling engine models multiple paths of energy utilization of the multiple appliances to place the home into a desired state from a current context. An optimal scheduler receives the multiple paths of energy utilization and generates a schedule as a function of the multiple paths and a selected persona to place the home in a desired state.
Guidance of a Solar Sail Spacecraft to the Sun - L(2) Point.
NASA Astrophysics Data System (ADS)
Hur, Sun Hae
The guidance of a solar sail spacecraft along a minimum-time path from an Earth orbit to a region near the Sun-Earth L_2 libration point is investigated. Possible missions to this point include a spacecraft "listening" for possible extra-terrestrial electromagnetic signals and a science payload to study the geomagnetic tail. A key advantage of the solar sail is that it requires no fuel. The control variables are the sail angles relative to the Sun-Earth line. The thrust is very small, on the order of 1 mm/s^2, and its magnitude and direction are highly coupled. Despite this limited controllability, the "free" thrust can be used for a wide variety of terminal conditions including halo orbits. If the Moon's mass is lumped with the Earth, there are quasi-equilibrium points near L_2. However, they are unstable so that some form of station keeping is required, and the sail can provide this without any fuel usage. In the two-dimensional case, regulating about a nominal orbit is shown to require less control and result in smaller amplitude error response than regulating about a quasi-equilibrium point. In the three-dimensional halo orbit case, station keeping using periodically varying gains is demonstrated. To compute the minimum-time path, the trajectory is divided into two segments: the spiral segment and the transition segment. The spiral segment is computed using a control law that maximizes the rate of energy increase at each time. The transition segment is computed as the solution of the time-optimal control problem from the endpoint of the spiral to the terminal point. It is shown that the path resulting from this approximate strategy is very close to the exact optimal path. For the guidance problem, the approximate strategy in the spiral segment already gives a nonlinear full-state feedback law. However, for large perturbations, follower guidance using an auxiliary propulsion is used for part of the spiral. In the transition segment, neighboring extremal feedback guidance using the solar sail, with feedforward control only near the terminal point, is used to correct perturbations in the initial conditions.
What is the correct cost functional for variational data assimilation?
NASA Astrophysics Data System (ADS)
Bröcker, Jochen
2018-03-01
Variational approaches to data assimilation, and weakly constrained four dimensional variation (WC-4DVar) in particular, are important in the geosciences but also in other communities (often under different names). The cost functions and the resulting optimal trajectories may have a probabilistic interpretation, for instance by linking data assimilation with maximum aposteriori (MAP) estimation. This is possible in particular if the unknown trajectory is modelled as the solution of a stochastic differential equation (SDE), as is increasingly the case in weather forecasting and climate modelling. In this situation, the MAP estimator (or "most probable path" of the SDE) is obtained by minimising the Onsager-Machlup functional. Although this fact is well known, there seems to be some confusion in the literature, with the energy (or "least squares") functional sometimes been claimed to yield the most probable path. The first aim of this paper is to address this confusion and show that the energy functional does not, in general, provide the most probable path. The second aim is to discuss the implications in practice. Although the mentioned results pertain to stochastic models in continuous time, they do have consequences in practice where SDE's are approximated by discrete time schemes. It turns out that using an approximation to the SDE and calculating its most probable path does not necessarily yield a good approximation to the most probable path of the SDE proper. This suggest that even in discrete time, a version of the Onsager-Machlup functional should be used, rather than the energy functional, at least if the solution is to be interpreted as a MAP estimator.
Path planning and energy management of solar-powered unmanned ground vehicles
NASA Astrophysics Data System (ADS)
Kaplan, Adam
Many of the applications pertinent to unmanned vehicles, such as environmental research and analysis, communications, and information-surveillance and reconnaissance, benefit from prolonged vehicle operation time. Conventional efforts to increase the operational time of electric-powered unmanned vehicles have traditionally focused on the design of energy-efficient components and the identification of energy efficient search patterns, while little attention has been paid to the vehicle's mission-level path plan and power management. This thesis explores the formulation and generation of integrated motion-plans and power-schedules for solar-panel equipped mobile robots operating under strict energy constraints, which cannot be effectively addressed through conventional motion planning algorithms. Transit problems are considered to design time-optimal paths using both Balkcom-Mason and Pseudo-Dubins curves. Additionally, a more complicated problem to generate mission plans for vehicles which must persistently travel between certain locations, similar to the traveling salesperson problem (TSP), is presented. A comparison between one of the common motion-planning algorithms and experimental results of the prescribed algorithms, made possible by use of a test environment and mobile robot designed and developed specifically for this research, are presented and discussed.
NASA Astrophysics Data System (ADS)
Russell, Scott; Walker, David M.; Tordesillas, Antoinette
2016-03-01
A framework for the multiscale characterization of the coupled evolution of the solid grain fabric and its associated pore space in dense granular media is developed. In this framework, a pseudo-dual graph transformation of the grain contact network produces a graph of pores which can be readily interpreted as a pore space network. Survivability, a new metric succinctly summarizing the connectivity of the solid grain and pore space networks, measures material robustness. The size distribution and the connectivity of pores can be characterized quantitatively through various network properties. Assortativity characterizes the pore space with respect to the parity of the number of particles enclosing the pore. Multiscale clusters of odd parity versus even parity contact cycles alternate spatially along the shear band: these represent, respectively, local jamming and unjamming regions that continually switch positions in time throughout the failure regime. Optimal paths, established using network shortest paths in favor of large pores, provide clues on preferential paths for interstitial matter transport. In systems with higher rolling resistance at contacts, less tortuous shortest paths thread through larger pores in shear bands. Notably the structural patterns uncovered in the pore space suggest that more robust models of interstitial pore flow through deforming granular systems require a proper consideration of the evolution of in situ shear band and fracture patterns - not just globally, but also inside these localized failure zones.
Adaptive model-predictive controller for magnetic resonance guided focused ultrasound therapy.
de Bever, Joshua; Todd, Nick; Payne, Allison; Christensen, Douglas A; Roemer, Robert B
2014-11-01
Minimising treatment time and protecting healthy tissues are conflicting goals that play major roles in making magnetic resonance image-guided focused ultrasound (MRgFUS) therapies clinically practical. We have developed and tested in vivo an adaptive model-predictive controller (AMPC) that reduces treatment time, ensures safety and efficacy, and provides flexibility in treatment set-up. The controller realises time savings by modelling the heated treatment cell's future temperatures and thermal dose accumulation in order to anticipate the optimal time to switch to the next cell. Selected tissues are safeguarded by a configurable temperature constraint. Simulations quantified the time savings realised by each controller feature as well as the trade-offs between competing safety and treatment time parameters. In vivo experiments in rabbit thighs established the controller's effectiveness and reliability. In all in vivo experiments the target thermal dose of at least 240 CEM43 was delivered everywhere in the treatment volume. The controller's temperature safety limit reliably activated and constrained all protected tissues to <9 CEM43. Simulations demonstrated the path independence of the controller, and that a path which successively proceeds to the hottest untreated neighbouring cell leads to significant time savings, e.g. when compared to a concentric spiral path. Use of the AMPC produced a compounding time-saving effect; reducing the treatment cells' heating times concurrently reduced heating of normal tissues, which eliminated cooling periods. Adaptive model-predictive control can automatically deliver safe, effective MRgFUS treatments while significantly reducing treatment times.
UCAV path planning in the presence of radar-guided surface-to-air missile threats
NASA Astrophysics Data System (ADS)
Zeitz, Frederick H., III
This dissertation addresses the problem of path planning for unmanned combat aerial vehicles (UCAVs) in the presence of radar-guided surface-to-air missiles (SAMs). The radars, collocated with SAM launch sites, operate within the structure of an Integrated Air Defense System (IADS) that permits communication and cooperation between individual radars. The problem is formulated in the framework of the interaction between three sub-systems: the aircraft, the IADS, and the missile. The main features of this integrated model are: The aircraft radar cross section (RCS) depends explicitly on both the aspect and bank angles; hence, the RCS and aircraft dynamics are coupled. The probabilistic nature of IADS tracking is accounted for; namely, the probability that the aircraft has been continuously tracked by the IADS depends on the aircraft RCS and range from the perspective of each radar within the IADS. Finally, the requirement to maintain tracking prior to missile launch and during missile flyout are also modeled. Based on this model, the problem of UCAV path planning is formulated as a minimax optimal control problem, with the aircraft bank angle serving as control. Necessary conditions of optimality for this minimax problem are derived. Based on these necessary conditions, properties of the optimal paths are derived. These properties are used to discretize the dynamic optimization problem into a finite-dimensional, nonlinear programming problem that can be solved numerically. Properties of the optimal paths are also used to initialize the numerical procedure. A homotopy method is proposed to solve the finite-dimensional, nonlinear programming problem, and a heuristic method is proposed to improve the discretization during the homotopy process. Based upon the properties of numerical solutions, a method is proposed for parameterizing and storing information for later recall in flight to permit rapid replanning in response to changing threats. Illustrative examples are presented that confirm the standard flying tactics of "denying range, aspect, and aim," by yielding flight paths that "weave" to avoid long exposures of aspects with large RCS.
An Application of Multi-Criteria Shortest Path to a Customizable Hex-Map Environment
2015-03-26
forces which could act as intermediate destinations or obstacles to movement through the network. This is similar to a traveling salesman problem ...118 Abstract The shortest path problem of finding the optimal path through a complex network is well-studied in the field of operations research. This...research presents an applica- tion of the shortest path problem to a customizable map with terrain features and enemy engagement risk. The PathFinder
Research on damping properties optimization of variable-stiffness plate
NASA Astrophysics Data System (ADS)
Wen-kai, QI; Xian-tao, YIN; Cheng, SHEN
2016-09-01
This paper investigates damping optimization design of variable-stiffness composite laminated plate, which means fibre paths can be continuously curved and fibre angles are distinct for different regions. First, damping prediction model is developed based on modal dissipative energy principle and verified by comparing with modal testing results. Then, instead of fibre angles, the element stiffness and damping matrixes are translated to be design variables on the basis of novel Discrete Material Optimization (DMO) formulation, thus reducing the computation time greatly. Finally, the modal damping capacity of arbitrary order is optimized using MMA (Method of Moving Asymptotes) method. Meanwhile, mode tracking technique is employed to investigate the variation of modal shape. The convergent performance of interpolation function, first order specific damping capacity (SDC) optimization results and variation of modal shape in different penalty factor are discussed. The results show that the damping properties of the variable-stiffness plate can be increased by 50%-70% after optimization.
A real-time guidance algorithm for aerospace plane optimal ascent to low earth orbit
NASA Technical Reports Server (NTRS)
Calise, A. J.; Flandro, G. A.; Corban, J. E.
1989-01-01
Problems of onboard trajectory optimization and synthesis of suitable guidance laws for ascent to low Earth orbit of an air-breathing, single-stage-to-orbit vehicle are addressed. A multimode propulsion system is assumed which incorporates turbojet, ramjet, Scramjet, and rocket engines. An algorithm for generating fuel-optimal climb profiles is presented. This algorithm results from the application of the minimum principle to a low-order dynamic model that includes angle-of-attack effects and the normal component of thrust. Maximum dynamic pressure and maximum aerodynamic heating rate constraints are considered. Switching conditions are derived which, under appropriate assumptions, govern optimal transition from one propulsion mode to another. A nonlinear transformation technique is employed to derived a feedback controller for tracking the computed trajectory. Numerical results illustrate the nature of the resulting fuel-optimal climb paths.
Optimization research of railway passenger transfer scheme based on ant colony algorithm
NASA Astrophysics Data System (ADS)
Ni, Xiang
2018-05-01
The optimization research of railway passenger transfer scheme can provide strong support for railway passenger transport system, and its essence is path search. This paper realized the calculation of passenger transfer scheme for high speed railway when giving the time and stations of departure and arrival. The specific method that used were generating a passenger transfer service network of high-speed railway, establishing optimization model and searching by Ant Colony Algorithm. Finally, making analysis on the scheme from LanZhouxi to BeiJingXi which were based on high-speed railway network of China in 2017. The results showed that the transfer network and model had relatively high practical value and operation efficiency.
ERIC Educational Resources Information Center
Bailey, Herb; Kalman, Dan
2011-01-01
Fay and Sam go for a walk. Sam walks along the left side of the street while Fay, who walks faster, starts with Sam but walks to a point on the right side of the street and then returns to meet Sam to complete one segment of their journey. We determine Fay's optimal path minimizing segment length, and thus maximizing the number of times they meet…
Resource Allocation and Outpatient Appointment Scheduling Using Simulation Optimization
Ling, Teresa Wai Ching; Yeung, Wing Kwan
2017-01-01
This paper studies the real-life problems of outpatient clinics having the multiple objectives of minimizing resource overtime, patient waiting time, and waiting area congestion. In the clinic, there are several patient classes, each of which follows different treatment procedure flow paths through a multiphase and multiserver queuing system with scarce staff and limited space. We incorporate the stochastic factors for the probabilities of the patients being diverted into different flow paths, patient punctuality, arrival times, procedure duration, and the number of accompanied visitors. We present a novel two-stage simulation-based heuristic algorithm to assess various tactical and operational decisions for optimizing the multiple objectives. In stage I, we search for a resource allocation plan, and in stage II, we determine a block appointment schedule by patient class and a service discipline for the daily operational level. We also explore the effects of the separate strategies and their integration to identify the best possible combination. The computational experiments are designed on the basis of data from a study of an ophthalmology clinic in a public hospital. Results show that our approach significantly mitigates the undesirable outcomes by integrating the strategies and increasing the resource flexibility at the bottleneck procedures without adding resources. PMID:29104748
Resource Allocation and Outpatient Appointment Scheduling Using Simulation Optimization.
Lin, Carrie Ka Yuk; Ling, Teresa Wai Ching; Yeung, Wing Kwan
2017-01-01
This paper studies the real-life problems of outpatient clinics having the multiple objectives of minimizing resource overtime, patient waiting time, and waiting area congestion. In the clinic, there are several patient classes, each of which follows different treatment procedure flow paths through a multiphase and multiserver queuing system with scarce staff and limited space. We incorporate the stochastic factors for the probabilities of the patients being diverted into different flow paths, patient punctuality, arrival times, procedure duration, and the number of accompanied visitors. We present a novel two-stage simulation-based heuristic algorithm to assess various tactical and operational decisions for optimizing the multiple objectives. In stage I, we search for a resource allocation plan, and in stage II, we determine a block appointment schedule by patient class and a service discipline for the daily operational level. We also explore the effects of the separate strategies and their integration to identify the best possible combination. The computational experiments are designed on the basis of data from a study of an ophthalmology clinic in a public hospital. Results show that our approach significantly mitigates the undesirable outcomes by integrating the strategies and increasing the resource flexibility at the bottleneck procedures without adding resources.
Voltage scheduling for low power/energy
NASA Astrophysics Data System (ADS)
Manzak, Ali
2001-07-01
Power considerations have become an increasingly dominant factor in the design of both portable and desk-top systems. An effective way to reduce power consumption is to lower the supply voltage since voltage is quadratically related to power. This dissertation considers the problem of lowering the supply voltage at (i) the system level and at (ii) the behavioral level. At the system level, the voltage of the variable voltage processor is dynamically changed with the work load. Processors with limited sized buffers as well as those with very large buffers are considered. Given the task arrival times, deadline times, execution times, periods and switching activities, task scheduling algorithms that minimize energy or peak power are developed for the processors equipped with very large buffers. A relation between the operating voltages of the tasks for minimum energy/power is determined using the Lagrange multiplier method, and an iterative algorithm that utilizes this relation is developed. Experimental results show that the voltage assignment obtained by the proposed algorithm is very close (0.1% error) to that of the optimal energy assignment and the optimal peak power (1% error) assignment. Next, on-line and off-fine minimum energy task scheduling algorithms are developed for processors with limited sized buffers. These algorithms have polynomial time complexity and present optimal (off-line) and close-to-optimal (on-line) solutions. A procedure to calculate the minimum buffer size given information about the size of the task (maximum, minimum), execution time (best case, worst case) and deadlines is also presented. At the behavioral level, resources operating at multiple voltages are used to minimize power while maintaining the throughput. Such a scheme has the advantage of allowing modules on the critical paths to be assigned to the highest voltage levels (thus meeting the required timing constraints) while allowing modules on non-critical paths to be assigned to lower voltage levels (thus reducing the power consumption). A polynomial time resource and latency constrained scheduling algorithm is developed to distribute the available slack among the nodes such that power consumption is minimum. The algorithm is iterative and utilizes the slack based on the Lagrange multiplier method.
JMR Noise Diode Stability and Recalibration Methodology after Three Years On-Orbit
NASA Technical Reports Server (NTRS)
Brown, Shannon; Desai, Shailen; Keihm, Stephen; Ruf, Christopher
2006-01-01
The Jason Microwave Radiometer (JMR) is included on the Jason-1 ocean altimeter satellite to measure the wet tropospheric path delay (PD) experienced by the radar altimeter signal. JMR is nadir pointing and measures the radiometric brightness temperature (T(sub B)) at 18.7, 23.8 and 34.0 GHz. JMR is a Dicke radiometer and it is the first radiometer to be flown in space that uses noise diodes for calibration. Therefore, monitoring the long term stability of the noise diodes is essential. Each channel has three redundant noise diodes which are individually coupled into the antenna signal to provide an estimate of the gain. Two significant jumps in the JMR path delays, relative to ground truth, were observed around 300 and 700 days into the mission. Slow drifts in the retrieved products were also evident over the entire mission. During a recalibration effort, it was determined that a single set of calibration coefficients was not able to remove the calibration jumps and drifts, suggesting that there was a change in the hardware and time dependent coefficients would be required. To facilitate the derivation of time dependent coefficients, an optimal estimation based calibration system was developed which iteratively determines that set of calibration coefficients which minimize the RMS difference between the JMR TBs and on-Earth hot and cold absolute references. This optimal calibration algorithm was used to fine tune the front end path loss coefficients and derive a time series of the JMR noise diode brightness temperatures for each of the nine diodes. Jumps and drifts, on the order of 1% to 2%, are observed among the noise diodes in the first three years on-orbit.
Barriers and dispersal surfaces in minimum-time interception. [for optimizing aircraft flight paths
NASA Technical Reports Server (NTRS)
Rajan, N.; Ardema, M. D.
1984-01-01
A method is proposed for mapping the barrier, dispersal, and control-level surfaces for a class of minimum-time interception and pursuit-evasion problems. Minimum-time interception of a target moving in a horizontal plane is formulated in a coordinate system whose origin is at the interceptor's terminal position and whose x-axis is along the terminal line of sight. This approach makes it possible to discuss the nature of the interceptor's extremals, using its extremal trajectory maps (ETMs), independently of target motion. The game surfaces are constructed by drawing sections of the isochrones, or constant minimum-time loci, from the interceptor and target ETMs. In this way, feedback solutions for the optimal controls are obtained. An example involving the interception of a target moving in a straight line at constant speed is presented.
Optimization of Turbine Rim Seals
NASA Technical Reports Server (NTRS)
Wagner, J. H.; Tew, D. E.; Stetson, G. M.; Sabnis, J. S.
2006-01-01
Experiments are being conducted to gain an understanding of the physics of rim scale cavity ingestion in a turbine stage with the high-work, single-stage characteristics envisioned for Advanced Subsonic Transport (AST) aircraft gas turbine engines fo the early 21st century. Initial experimental measurements to be presented include time-averaged turbine rim cavity and main gas path static pressure measurements for rim seal coolant to main gas path mass flow ratios between 0 and 0.02. The ultimate objective of this work is develop improved rim seal design concepts for use in modern high-work, single sage turbines n order to minimize the use of secondary coolant flow. Toward this objective the time averaged and unsteady data to be obtained in these experiments will be used to 1) Quantify the impact of the rim cavity cooling air on the ingestion process. 2) Quantify the film cooling benefits of the rim cavity purge flow in the main gas path. 3) Quantify the impact of the cooling air on turbine efficiency. 4) Develop/evaluate both 3D CFD and analytical models of the ingestion/cooling process.
Defect-free atomic array formation using the Hungarian matching algorithm
NASA Astrophysics Data System (ADS)
Lee, Woojun; Kim, Hyosub; Ahn, Jaewook
2017-05-01
Deterministic loading of single atoms onto arbitrary two-dimensional lattice points has recently been demonstrated, where by dynamically controlling the optical-dipole potential, atoms from a probabilistically loaded lattice were relocated to target lattice points to form a zero-entropy atomic lattice. In this atom rearrangement, how to pair atoms with the target sites is a combinatorial optimization problem: brute-force methods search all possible combinations so the process is slow, while heuristic methods are time efficient but optimal solutions are not guaranteed. Here, we use the Hungarian matching algorithm as a fast and rigorous alternative to this problem of defect-free atomic lattice formation. Our approach utilizes an optimization cost function that restricts collision-free guiding paths so that atom loss due to collision is minimized during rearrangement. Experiments were performed with cold rubidium atoms that were trapped and guided with holographically controlled optical-dipole traps. The result of atom relocation from a partially filled 7 ×7 lattice to a 3 ×3 target lattice strongly agrees with the theoretical analysis: using the Hungarian algorithm minimizes the collisional and trespassing paths and results in improved performance, with over 50% higher success probability than the heuristic shortest-move method.
Surface Hold Advisor Using Critical Sections
NASA Technical Reports Server (NTRS)
Law, Caleb Hoi Kei (Inventor); Hsiao, Thomas Kun-Lung (Inventor); Mittler, Nathan C. (Inventor); Couluris, George J. (Inventor)
2013-01-01
The Surface Hold Advisor Using Critical Sections is a system and method for providing hold advisories to surface controllers to prevent gridlock and resolve crossing and merging conflicts among vehicles traversing a vertex-edge graph representing a surface traffic network on an airport surface. The Advisor performs pair-wise comparisons of current position and projected path of each vehicle with other surface vehicles to detect conflicts, determine critical sections, and provide hold advisories to traffic controllers recommending vehicles stop at entry points to protected zones around identified critical sections. A critical section defines a segment of the vertex-edge graph where vehicles are in crossing or merging or opposite direction gridlock contention. The Advisor detects critical sections without reference to scheduled, projected or required times along assigned vehicle paths, and generates hold advisories to prevent conflicts without requiring network path direction-of-movement rules and without requiring rerouting, rescheduling or other network optimization solutions.
Hopfield networks for solving Tower of Hanoi problems
NASA Astrophysics Data System (ADS)
Kaplan, G. B.; Güzeliş, Cüneyt
2001-08-01
In this paper, Hopfield neural networks have been considered in solving the Tower of Hanoi test which is used in the determining of deficit of planning capability of the human prefrontal cortex. The main difference between this paper and the ones in the literature which use neural networks is that the Tower of Hanoi problem has been formulated here as a special shortest-path problem. In the literature, some Hopfield networks are developed for solving the shortest path problem which is a combinatorial optimization problem having a diverse field of application. The approach given in this paper gives the possibility of solving the Tower of Hanoi problem using these Hopfield networks. Also, the paper proposes new Hopfield network models for the shortest path and hence the Tower of Hanoi problems and compares them to the available ones in terms of the memory and time (number of steps) needed in the simulations.
NASA Astrophysics Data System (ADS)
Guenanou, A.; Houmat, A.
2018-05-01
The optimum stacking sequence design for the maximum fundamental frequency of symmetrically laminated composite circular plates with curvilinear fibres is investigated for the first time using a layer-wise optimization method. The design variables are two fibre orientation angles per layer. The fibre paths are constructed using the method of shifted paths. The first-order shear deformation plate theory and a curved square p-element are used to calculate the objective function. The blending function method is used to model accurately the geometry of the circular plate. The equations of motion are derived using Lagrange's method. The numerical results are validated by means of a convergence test and comparison with published values for symmetrically laminated composite circular plates with rectilinear fibres. The material parameters, boundary conditions, number of layers and thickness are shown to influence the optimum solutions to different extents. The results should serve as a benchmark for optimum stacking sequences of symmetrically laminated composite circular plates with curvilinear fibres.
Derbidge, Renatus; Feiten, Linus; Conradt, Oliver; Heusser, Peter; Baumgartner, Stephan
2013-01-01
Photographs of mistletoe (Viscum album L.) berries taken by a permanently fixed camera during their development in autumn were subjected to an outline shape analysis by fitting path curves using a mathematical algorithm from projective geometry. During growth and maturation processes the shape of mistletoe berries can be described by a set of such path curves, making it possible to extract changes of shape using one parameter called Lambda. Lambda describes the outline shape of a path curve. Here we present methods and software to capture and measure these changes of form over time. The present paper describes the software used to automatize a number of tasks including contour recognition, optimization of fitting the contour via hill-climbing, derivation of the path curves, computation of Lambda and blinding the pictures for the operator. The validity of the program is demonstrated by results from three independent measurements showing circadian rhythm in mistletoe berries. The program is available as open source and will be applied in a project to analyze the chronobiology of shape in mistletoe berries and the buds of their host trees. PMID:23565255
NASA Astrophysics Data System (ADS)
Palmisano, Fabrizio; Elia, Angelo
2017-10-01
One of the main difficulties, when dealing with landslide structural vulnerability, is the diagnosis of the causes of crack patterns. This is also due to the excessive complexity of models based on classical structural mechanics that makes them inappropriate especially when there is the necessity to perform a rapid vulnerability assessment at the territorial scale. This is why, a new approach, based on a ‘simple model’ (i.e. the Load Path Method, LPM), has been proposed by Palmisano and Elia for the interpretation of the behaviour of masonry buildings subjected to landslide-induced settlements. However, the LPM is very useful for rapidly finding the 'most plausible solution' instead of the exact solution. To find the solution, optimization algorithms are necessary. In this scenario, this article aims to show how the Bidirectional Evolutionary Structural Optimization method by Huang and Xie, can be very useful to optimize the strut-and-tie models obtained by using the Load Path Method.
Path planning and parameter optimization of uniform removal in active feed polishing
NASA Astrophysics Data System (ADS)
Liu, Jian; Wang, Shaozhi; Zhang, Chunlei; Zhang, Linghua; Chen, Huanan
2015-06-01
A high-quality ultrasmooth surface is demanded in short-wave optical systems. However, the existing polishing methods have difficulties meeting the requirement on spherical or aspheric surfaces. As a new kind of small tool polishing method, active feed polishing (AFP) could attain a surface roughness of less than 0.3 nm (RMS) on spherical elements, although AFP may magnify the residual figure error or mid-frequency error. The purpose of this work is to propose an effective algorithm to realize uniform removal of the surface in the processing. At first, the principle of the AFP and the mechanism of the polishing machine are introduced. In order to maintain the processed figure error, a variable pitch spiral path planning algorithm and the dwell time-solving model are proposed. For suppressing the possible mid-frequency error, the uniformity of the synthesis tool path, which is generated by an arbitrary point at the polishing tool bottom, is analyzed and evaluated, and the angular velocity ratio of the tool spinning motion to the revolution motion is optimized. Finally, an experiment is conducted on a convex spherical surface and an ultrasmooth surface is finally acquired. In conclusion, a high-quality ultrasmooth surface can be successfully obtained with little degradation of the figure and mid-frequency errors by the algorithm.
Optimization of MLS receivers for multipath environments
NASA Technical Reports Server (NTRS)
Mcalpine, G. A.; Irwin, S. H.; NELSON; Roleyni, G.
1977-01-01
Optimal design studies of MLS angle-receivers and a theoretical design-study of MLS DME-receivers are reported. The angle-receiver results include an integration of the scan data processor and tracking filter components of the optimal receiver into a unified structure. An extensive simulation study comparing the performance of the optimal and threshold receivers in a wide variety of representative dynamical interference environments was made. The optimal receiver was generally superior. A simulation of the performance of the threshold and delay-and-compare receivers in various signal environments was performed. An analysis of combined errors due to lateral reflections from vertical structures with small differential path delays, specular ground reflections with neglible differential path delays, and thermal noise in the receivers is provided.
Singular perturbation analysis of AOTV-related trajectory optimization problems
NASA Technical Reports Server (NTRS)
Calise, Anthony J.; Bae, Gyoung H.
1990-01-01
The problem of real time guidance and optimal control of Aeroassisted Orbit Transfer Vehicles (AOTV's) was addressed using singular perturbation theory as an underlying method of analysis. Trajectories were optimized with the objective of minimum energy expenditure in the atmospheric phase of the maneuver. Two major problem areas were addressed: optimal reentry, and synergetic plane change with aeroglide. For the reentry problem, several reduced order models were analyzed with the objective of optimal changes in heading with minimum energy loss. It was demonstrated that a further model order reduction to a single state model is possible through the application of singular perturbation theory. The optimal solution for the reduced problem defines an optimal altitude profile dependent on the current energy level of the vehicle. A separate boundary layer analysis is used to account for altitude and flight path angle dynamics, and to obtain lift and bank angle control solutions. By considering alternative approximations to solve the boundary layer problem, three guidance laws were derived, each having an analytic feedback form. The guidance laws were evaluated using a Maneuvering Reentry Research Vehicle model and all three laws were found to be near optimal. For the problem of synergetic plane change with aeroglide, a difficult terminal boundary layer control problem arises which to date is found to be analytically intractable. Thus a predictive/corrective solution was developed to satisfy the terminal constraints on altitude and flight path angle. A composite guidance solution was obtained by combining the optimal reentry solution with the predictive/corrective guidance method. Numerical comparisons with the corresponding optimal trajectory solutions show that the resulting performance is very close to optimal. An attempt was made to obtain numerically optimized trajectories for the case where heating rate is constrained. A first order state variable inequality constraint was imposed on the full order AOTV point mass equations of motion, using a simple aerodynamic heating rate model.
NASA Astrophysics Data System (ADS)
Reza, S. M. Mohsin
Design options have been evaluated for the Modular Helium Reactor (MHR) for higher temperature operation. An alternative configuration for the MHR coolant inlet flow path is developed to reduce the peak vessel temperature (PVT). The coolant inlet path is shifted from the annular path between reactor core barrel and vessel wall through the permanent side reflector (PSR). The number and dimensions of coolant holes are varied to optimize the pressure drop, the inlet velocity, and the percentage of graphite removed from the PSR to create this inlet path. With the removal of ˜10% of the graphite from PSR the PVT is reduced from 541°C to 421°C. A new design for the graphite block core has been evaluated and optimized to reduce the inlet coolant temperature with the aim of further reduction of PVT. The dimensions and number of fuel rods and coolant holes, and the triangular pitch have been changed and optimized. Different packing fractions for the new core design have been used to conserve the number of fuel particles. Thermal properties for the fuel elements are calculated and incorporated into these analyses. The inlet temperature, mass flow and bypass flow are optimized to limit the peak fuel temperature (PFT) within an acceptable range. Using both of these modifications together, the PVT is reduced to ˜350°C while keeping the outlet temperature at 950°C and maintaining the PFT within acceptable limits. The vessel and fuel temperatures during low pressure conduction cooldown and high pressure conduction cooldown transients are found to be well below the design limits. The reliability and availability studies for coupled nuclear hydrogen production processes based on the sulfur iodine thermochemical process and high temperature electrolysis process have been accomplished. The fault tree models for both these processes are developed. Using information obtained on system configuration, component failure probability, component repair time and system operating modes and conditions, the system reliability and availability are assessed. Required redundancies are made to improve system reliability and to optimize the plant design for economic performance. The failure rates and outage factors of both processes are found to be well below the maximum acceptable range.
Optimal Predictive Control for Path Following of a Full Drive-by-Wire Vehicle at Varying Speeds
NASA Astrophysics Data System (ADS)
SONG, Pan; GAO, Bolin; XIE, Shugang; FANG, Rui
2017-05-01
The current research of the global chassis control problem for the full drive-by-wire vehicle focuses on the control allocation (CA) of the four-wheel-distributed traction/braking/steering systems. However, the path following performance and the handling stability of the vehicle can be enhanced a step further by automatically adjusting the vehicle speed to the optimal value. The optimal solution for the combined longitudinal and lateral motion control (MC) problem is given. First, a new variable step-size spatial transformation method is proposed and utilized in the prediction model to derive the dynamics of the vehicle with respect to the road, such that the tracking errors can be explicitly obtained over the prediction horizon at varying speeds. Second, a nonlinear model predictive control (NMPC) algorithm is introduced to handle the nonlinear coupling between any two directions of the vehicular planar motion and computes the sequence of the optimal motion states for following the desired path. Third, a hierarchical control structure is proposed to separate the motion controller into a NMPC based path planner and a terminal sliding mode control (TSMC) based path follower. As revealed through off-line simulations, the hierarchical methodology brings nearly 1700% improvement in computational efficiency without loss of control performance. Finally, the control algorithm is verified through a hardware in-the-loop simulation system. Double-lane-change (DLC) test results show that by using the optimal predictive controller, the root-mean-square (RMS) values of the lateral deviations and the orientation errors can be reduced by 41% and 30%, respectively, comparing to those by the optimal preview acceleration (OPA) driver model with the non-preview speed-tracking method. Additionally, the average vehicle speed is increased by 0.26 km/h with the peak sideslip angle suppressed to 1.9°. This research proposes a novel motion controller, which provides the full drive-by-wire vehicle with better lane-keeping and collision-avoidance capabilities during autonomous driving.
Simulation based optimization on automated fibre placement process
NASA Astrophysics Data System (ADS)
Lei, Shi
2018-02-01
In this paper, a software simulation (Autodesk TruPlan & TruFiber) based method is proposed to optimize the automate fibre placement (AFP) process. Different types of manufacturability analysis are introduced to predict potential defects. Advanced fibre path generation algorithms are compared with respect to geometrically different parts. Major manufacturing data have been taken into consideration prior to the tool paths generation to achieve high success rate of manufacturing.
Is addiction a failure of rationality?
Ferguson, Brian
2012-01-01
This note argues that addiction itself can be seen as a form of double failure, specifically the failure to stick to a predetermined optimal lifetime consumption path for an addictive commodity, which failure might be the result of bad luck, and the failure to adjust the level of consumption of the addictive commodity once the consumer is off their optimal path, which might be seen as a failure of judgment.
NASA Astrophysics Data System (ADS)
Nugraha, A. T.; Agustinah, T.
2018-01-01
Quadcopter an unstable system, underactuated and nonlinear in quadcopter control research developments become an important focus of attention. In this study, following the path control method for position on the X and Y axis, used structure-Generator Tracker Command (CGT) is tested. Attitude control and position feedback quadcopter is compared using the optimal output. The addition of the H∞ performance optimal output feedback control is used to maintain the stability and robustness of quadcopter. Iterative numerical techniques Linear Matrix Inequality (LMI) is used to find the gain controller. The following path control problems is solved using the method of LQ regulators with output feedback. Simulations show that the control system can follow the paths that have been defined in the form of a reference signal square shape. The result of the simulation suggest that the method which used can bring the yaw angle at the expected value algorithm. Quadcopter can do automatically following path with cross track error mean X=0.5 m and Y=0.2 m.
Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy
Zhao, Yongxin; Bucur, Octavian; Irshad, Humayun; Chen, Fei; Weins, Astrid; Stancu, Andreea L.; Oh, Eun-Young; DiStasio, Marcello; Torous, Vanda; Glass, Benjamin; Stillman, Isaac E.; Schnitt, Stuart J.; Beck, Andrew H.; Boyden, Edward S.
2017-01-01
Expansion microscopy (ExM), a method for improving the resolution of light microscopy by physically expanding the specimen, has not been applied to clinical tissue samples. Here we report a clinically optimized form of ExM that supports nanoscale imaging of human tissue specimens that have been fixed with formalin, embedded in paraffin, stained with hematoxylin and eosin (H&E), and/or fresh frozen. The method, which we call expansion pathology (ExPath), converts clinical samples into an ExM-compatible state, then applies an ExM protocol with protein anchoring and mechanical homogenization steps optimized for clinical samples. ExPath enables ~70 nm resolution imaging of diverse biomolecules in intact tissues using conventional diffraction-limited microscopes, and standard antibody and fluorescent DNA in situ hybridization reagents. We use ExPath for optical diagnosis of kidney minimal-change disease, which previously required electron microscopy (EM), and demonstrate high-fidelity computational discrimination between early breast neoplastic lesions that to date have challenged human judgment. ExPath may enable the routine use of nanoscale imaging in pathology and clinical research. PMID:28714966
Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy.
Zhao, Yongxin; Bucur, Octavian; Irshad, Humayun; Chen, Fei; Weins, Astrid; Stancu, Andreea L; Oh, Eun-Young; DiStasio, Marcello; Torous, Vanda; Glass, Benjamin; Stillman, Isaac E; Schnitt, Stuart J; Beck, Andrew H; Boyden, Edward S
2017-08-01
Expansion microscopy (ExM), a method for improving the resolution of light microscopy by physically expanding a specimen, has not been applied to clinical tissue samples. Here we report a clinically optimized form of ExM that supports nanoscale imaging of human tissue specimens that have been fixed with formalin, embedded in paraffin, stained with hematoxylin and eosin, and/or fresh frozen. The method, which we call expansion pathology (ExPath), converts clinical samples into an ExM-compatible state, then applies an ExM protocol with protein anchoring and mechanical homogenization steps optimized for clinical samples. ExPath enables ∼70-nm-resolution imaging of diverse biomolecules in intact tissues using conventional diffraction-limited microscopes and standard antibody and fluorescent DNA in situ hybridization reagents. We use ExPath for optical diagnosis of kidney minimal-change disease, a process that previously required electron microscopy, and we demonstrate high-fidelity computational discrimination between early breast neoplastic lesions for which pathologists often disagree in classification. ExPath may enable the routine use of nanoscale imaging in pathology and clinical research.
Efficient evaluation of atom tunneling combined with electronic structure calculations.
Ásgeirsson, Vilhjálmur; Arnaldsson, Andri; Jónsson, Hannes
2018-03-14
Methodology for finding optimal tunneling paths and evaluating tunneling rates for atomic rearrangements is described. First, an optimal JWKB tunneling path for a system with fixed energy is obtained using a line integral extension of the nudged elastic band method. Then, a calculation of the dynamics along the path is used to determine the temperature at which it corresponds to an optimal Feynman path for thermally activated tunneling (instanton) and a harmonic approximation is used to estimate the transition rate. The method is illustrated with calculations for a modified two-dimensional Müller-Brown surface but is efficient enough to be used in combination with electronic structure calculations of the energy and atomic forces in systems containing many atoms. An example is presented where tunneling is the dominant mechanism well above room temperature as an H 3 BNH 3 molecule dissociates to form H 2 . Also, a solid-state example is presented where density functional theory calculations of H atom tunneling in a Ta crystal give close agreement with experimental measurements on hydrogen diffusion over a wide range in temperature.
Non-Markovian optimal sideband cooling
NASA Astrophysics Data System (ADS)
Triana, Johan F.; Pachon, Leonardo A.
2018-04-01
Optimal control theory is applied to sideband cooling of nano-mechanical resonators. The formulation described here makes use of exact results derived by means of the path-integral approach of quantum dynamics, so that no approximation is invoked. It is demonstrated that the intricate interplay between time-dependent fields and structured thermal bath may lead to improve results of the sideband cooling by an order of magnitude. Cooling is quantified by means of the mean number of phonons of the mechanical modes as well as by the von Neumann entropy. Potencial extension to non-linear systems, by means of semiclassical methods, is briefly discussed.
Control strategies for planetary rover motion and manipulator control
NASA Technical Reports Server (NTRS)
Trautwein, W.
1973-01-01
An unusual insect-like vehicle designed for planetary surface exploration is made the occasion for a discussion of control concepts in path selection, hazard detection, obstacle negotiation, and soil sampling. A control scheme which actively articulates the pitching motion between a single-loop front module and a dual loop rear module leads to near optimal behavior in soft soil; at the same time the vehicle's front module acts as a reliable tactile forward probe with a detection range much longer than the stopping distance. Some optimal control strategies are discussed, and the photos of a working scale model are displayed.
Research on optimal investment path of transmission corridor under the global energy Internet
NASA Astrophysics Data System (ADS)
Huang, Yuehui; Li, Pai; Wang, Qi; Liu, Jichun; Gao, Han
2018-02-01
Under the background of the global energy Internet, the investment planning of transmission corridor from XinJiang to Germany is studied in this article, which passes through four countries: Kazakhstan, Russia, Belarus and Poland. Taking the specific situation of different countries into account, including the length of transmission line, unit construction cost, completion time, transmission price, state tariff, inflation rate and so on, this paper constructed a power transmission investment model. Finally, the dynamic programming method is used to simulate the example, and the optimal strategies under different objective functions are obtained.
Dietzek, Benjamin; Brüggemann, Ben; Pascher, Torbjörn; Yartsev, Arkady
2007-10-31
Using optimal control as a spectroscopic tool we decipher the details of the molecular dynamics of the essential multidimensional excited-state photoisomerization - a fundamental chemical reaction of key importance in biology. Two distinct nuclear motions are identified in addition to the overall bond-twisting motion: Initially, the reaction is dominated by motion perpendicular to the torsion coordinate. At later times, a second optically active vibration drives the system along the reaction path to the bottom of the excited-state potential. The time scales of the wavepacket motion on a different part of the excited-state potential are detailed by pump-shaped dump optimal control. This technique offers new means to control a chemical reaction far from the Franck-Condon point of absorption and to map details of excited-state reaction pathways revealing unique insights into the underlying reaction mechanism.
Traffic-engineering-aware shortest-path routing and its application in IP-over-WDM networks [Invited
NASA Astrophysics Data System (ADS)
Lee, Youngseok; Mukherjee, Biswanath
2004-03-01
Single shortest-path routing is known to perform poorly for Internet traffic engineering (TE) where the typical optimization objective is to minimize the maximum link load. Splitting traffic uniformly over equal-cost multiple shortest paths in open shortest path first and intermediate system-intermediate system protocols does not always minimize the maximum link load when multiple paths are not carefully selected for the global traffic demand matrix. However, a TE-aware shortest path among all the equal-cost multiple shortest paths between each ingress-egress pair can be selected such that the maximum link load is significantly reduced. IP routers can use the globally optimal TE-aware shortest path without any change to existing routing protocols and without any serious configuration overhead. While calculating TE-aware shortest paths, the destination-based forwarding constraint at a node should be satisfied, because an IP router will forward a packet to the next hop toward the destination by looking up the destination prefix. We present a mathematical problem formulation for finding a set of TE-aware shortest paths for the given network as an integer linear program, and we propose a simple heuristic for solving large instances of the problem. Then we explore the usage of our proposed algorithm for the integrated TE method in IP-over-WDM networks. The proposed algorithm is evaluated through simulations in IP networks as well as in IP-over-WDM networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bromberger, Seth A.; Klymko, Christine F.; Henderson, Keith A.
Betweenness centrality is a graph statistic used to nd vertices that are participants in a large number of shortest paths in a graph. This centrality measure is commonly used in path and network interdiction problems and its complete form requires the calculation of all-pairs shortest paths for each vertex. This leads to a time complexity of O(jV jjEj), which is impractical for large graphs. Estimation of betweenness centrality has focused on performing shortest-path calculations on a subset of randomly- selected vertices. This reduces the complexity of the centrality estimation to O(jSjjEj); jSj < jV j, which can be scaled appropriatelymore » based on the computing resources available. An estimation strategy that uses random selection of vertices for seed selection is fast and simple to implement, but may not provide optimal estimation of betweenness centrality when the number of samples is constrained. Our experimentation has identi ed a number of alternate seed-selection strategies that provide lower error than random selection in common scale-free graphs. These strategies are discussed and experimental results are presented.« less
Path Planning Algorithms for Autonomous Border Patrol Vehicles
NASA Astrophysics Data System (ADS)
Lau, George Tin Lam
This thesis presents an online path planning algorithm developed for unmanned vehicles in charge of autonomous border patrol. In this Pursuit-Evasion game, the unmanned vehicle is required to capture multiple trespassers on its own before any of them reach a target safe house where they are safe from capture. The problem formulation is based on Isaacs' Target Guarding problem, but extended to the case of multiple evaders. The proposed path planning method is based on Rapidly-exploring random trees (RRT) and is capable of producing trajectories within several seconds to capture 2 or 3 evaders. Simulations are carried out to demonstrate that the resulting trajectories approach the optimal solution produced by a nonlinear programming-based numerical optimal control solver. Experiments are also conducted on unmanned ground vehicles to show the feasibility of implementing the proposed online path planning algorithm on physical applications.
Tracking trade transactions in water resource systems: A node-arc optimization formulation
NASA Astrophysics Data System (ADS)
Erfani, Tohid; Huskova, Ivana; Harou, Julien J.
2013-05-01
We formulate and apply a multicommodity network flow node-arc optimization model capable of tracking trade transactions in complex water resource systems. The model uses a simple node to node network connectivity matrix and does not require preprocessing of all possible flow paths in the network. We compare the proposed node-arc formulation with an existing arc-path (flow path) formulation and explain the advantages and difficulties of both approaches. We verify the proposed formulation model on a hypothetical water distribution network. Results indicate the arc-path model solves the problem with fewer constraints, but the proposed formulation allows using a simple network connectivity matrix which simplifies modeling large or complex networks. The proposed algorithm allows converting existing node-arc hydroeconomic models that broadly represent water trading to ones that also track individual supplier-receiver relationships (trade transactions).
NASA Astrophysics Data System (ADS)
Li, Xiaohui; Sun, Zhenping; Cao, Dongpu; Liu, Daxue; He, Hangen
2017-03-01
This study proposes a novel integrated local trajectory planning and tracking control (ILTPTC) framework for autonomous vehicles driving along a reference path with obstacles avoidance. For this ILTPTC framework, an efficient state-space sampling-based trajectory planning scheme is employed to smoothly follow the reference path. A model-based predictive path generation algorithm is applied to produce a set of smooth and kinematically-feasible paths connecting the initial state with the sampling terminal states. A velocity control law is then designed to assign a speed value at each of the points along the generated paths. An objective function considering both safety and comfort performance is carefully formulated for assessing the generated trajectories and selecting the optimal one. For accurately tracking the optimal trajectory while overcoming external disturbances and model uncertainties, a combined feedforward and feedback controller is developed. Both simulation analyses and vehicle testing are performed to verify the effectiveness of the proposed ILTPTC framework, and future research is also briefly discussed.
Path planning in uncertain flow fields using ensemble method
NASA Astrophysics Data System (ADS)
Wang, Tong; Le Maître, Olivier P.; Hoteit, Ibrahim; Knio, Omar M.
2016-10-01
An ensemble-based approach is developed to conduct optimal path planning in unsteady ocean currents under uncertainty. We focus our attention on two-dimensional steady and unsteady uncertain flows, and adopt a sampling methodology that is well suited to operational forecasts, where an ensemble of deterministic predictions is used to model and quantify uncertainty. In an operational setting, much about dynamics, topography, and forcing of the ocean environment is uncertain. To address this uncertainty, the flow field is parametrized using a finite number of independent canonical random variables with known densities, and the ensemble is generated by sampling these variables. For each of the resulting realizations of the uncertain current field, we predict the path that minimizes the travel time by solving a boundary value problem (BVP), based on the Pontryagin maximum principle. A family of backward-in-time trajectories starting at the end position is used to generate suitable initial values for the BVP solver. This allows us to examine and analyze the performance of the sampling strategy and to develop insight into extensions dealing with general circulation ocean models. In particular, the ensemble method enables us to perform a statistical analysis of travel times and consequently develop a path planning approach that accounts for these statistics. The proposed methodology is tested for a number of scenarios. We first validate our algorithms by reproducing simple canonical solutions, and then demonstrate our approach in more complex flow fields, including idealized, steady and unsteady double-gyre flows.
Data-Driven Online and Real-Time Combinatorial Optimization
2013-10-30
Problem , the online Traveling Salesman Problem , and variations of the online Quota Hamil- tonian Path Problem and the online Traveling ...has the lowest competitive ratio among all algorithms of this kind. Second, we consider the Online Traveling Salesman Problem , and consider randomized...matroid secretary problem on a partition matroid. 6. Jaillet, P. and X. Lu. “Online Traveling Salesman Problems with Rejection Options”, submitted
Comparison Of Reaction Barriers In Energy And Free Energy For Enzyme Catalysis
NASA Astrophysics Data System (ADS)
Andrés Cisneros, G.; Yang, Weitao
Reaction paths on potential energy surfaces obtained from QM/MM calculations of enzymatic or solution reactions depend on the starting structure employed for the path calculations. The free energies associated with these paths should be more reliable for studying reaction mechanisms, because statistical averages are used. To investigate this, the role of enzyme environment fluctuations on reaction paths has been studied with an ab initio QM/MM method for the first step of the reaction catalyzed by 4-oxalocrotonate tautomerase (4OT). Four minimum energy paths (MEPs) are compared, which have been determined with two different methods. The first path (path A) has been determined with a procedure that combines the nudged elastic band (NEB) method and a second order parallel path optimizer recently developed in our group. The second path (path B) has also been determined by the combined procedure, however, the enzyme environment has been relaxed by molecular dynamics (MD) simulations. The third path (path C) has been determined with the coordinate driving (CD) method, using the enzyme environment from path B. We compare these three paths to a previously determined path (path D) determined with the CD method. In all four cases the QM/MM-FE method (Y. Zhang et al., JCP, 112, 3483) was employed to obtain the free energy barriers for all four paths. In the case of the combined procedure, the reaction path is approximated by a small number of images which are optimized to the MEP in parallel, which results in a reduced computational cost. However, this does not allow the FEP calculation on the MEP. In order to perform FEP calculations on these paths, we introduce a modification to the NEB method that enables the addition of as many extra images to the path as needed for the FEP calculations. The calculated potential energy barriers show differences in the activation barrier between the calculated paths of as much as 5.17 kcal/mol. However, the largest free energy barrier difference is 1.58 kcal/mol. These results show the importance of the inclusion of the environment fluctuation in the calculation of enzymatic activation barriers
Optimal path planning for a mobile robot using cuckoo search algorithm
NASA Astrophysics Data System (ADS)
Mohanty, Prases K.; Parhi, Dayal R.
2016-03-01
The shortest/optimal path planning is essential for efficient operation of autonomous vehicles. In this article, a new nature-inspired meta-heuristic algorithm has been applied for mobile robot path planning in an unknown or partially known environment populated by a variety of static obstacles. This meta-heuristic algorithm is based on the levy flight behaviour and brood parasitic behaviour of cuckoos. A new objective function has been formulated between the robots and the target and obstacles, which satisfied the conditions of obstacle avoidance and target-seeking behaviour of robots present in the terrain. Depending upon the objective function value of each nest (cuckoo) in the swarm, the robot avoids obstacles and proceeds towards the target. The smooth optimal trajectory is framed with this algorithm when the robot reaches its goal. Some simulation and experimental results are presented at the end of the paper to show the effectiveness of the proposed navigational controller.
Lau, Esther Yuet Ying; Harry Hui, C; Cheung, Shu-Fai; Lam, Jasmine
2015-11-01
Sleep and optimism are important psycho-biological and personality constructs, respectively. However, very little work has examined the causal relationship between them, and none has examined the potential mechanisms operating in the relationship. This study aimed to understand whether sleep quality was a cause or an effect of optimism, and whether depressive mood could explain the relationship. Internet survey data were collected from 987 Chinese working adults (63.4% female, 92.4% full-time workers, 27.0% married, 90.2% Hong Kong residents, mean age=32.59 at three time-points, spanning about 19 months). Measures included a Chinese attributional style questionnaire, the Pittsburgh Sleep Quality Index, and the Depression Anxiety Stress Scale. Cross-sectional analyses revealed moderate correlations among sleep quality, depressive mood, and optimism. Cross-lagged analyses showed a bidirectional causality between optimism and sleep. Path analysis demonstrated that depressive mood fully mediated the influence of optimism on sleep quality, and it partially mediated the influence of sleep quality on optimism. Optimism improves sleep. Poor sleep makes a pessimist. The effects of sleep quality on optimism could not be fully explained by depressive mood, highlighting the unique role of sleep on optimism. Understanding the mechanisms of the feedback loop of sleep quality, mood, and optimism may provide insights for clinical interventions for individuals presented with mood-related problems. Copyright © 2015 Elsevier Inc. All rights reserved.
Minimal entropy probability paths between genome families.
Ahlbrandt, Calvin; Benson, Gary; Casey, William
2004-05-01
We develop a metric for probability distributions with applications to biological sequence analysis. Our distance metric is obtained by minimizing a functional defined on the class of paths over probability measures on N categories. The underlying mathematical theory is connected to a constrained problem in the calculus of variations. The solution presented is a numerical solution, which approximates the true solution in a set of cases called rich paths where none of the components of the path is zero. The functional to be minimized is motivated by entropy considerations, reflecting the idea that nature might efficiently carry out mutations of genome sequences in such a way that the increase in entropy involved in transformation is as small as possible. We characterize sequences by frequency profiles or probability vectors, in the case of DNA where N is 4 and the components of the probability vector are the frequency of occurrence of each of the bases A, C, G and T. Given two probability vectors a and b, we define a distance function based as the infimum of path integrals of the entropy function H( p) over all admissible paths p(t), 0 < or = t< or =1, with p(t) a probability vector such that p(0)=a and p(1)=b. If the probability paths p(t) are parameterized as y(s) in terms of arc length s and the optimal path is smooth with arc length L, then smooth and "rich" optimal probability paths may be numerically estimated by a hybrid method of iterating Newton's method on solutions of a two point boundary value problem, with unknown distance L between the abscissas, for the Euler-Lagrange equations resulting from a multiplier rule for the constrained optimization problem together with linear regression to improve the arc length estimate L. Matlab code for these numerical methods is provided which works only for "rich" optimal probability vectors. These methods motivate a definition of an elementary distance function which is easier and faster to calculate, works on non-rich vectors, does not involve variational theory and does not involve differential equations, but is a better approximation of the minimal entropy path distance than the distance //b-a//(2). We compute minimal entropy distance matrices for examples of DNA myostatin genes and amino-acid sequences across several species. Output tree dendograms for our minimal entropy metric are compared with dendograms based on BLAST and BLAST identity scores.
Parallel consistent labeling algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samal, A.; Henderson, T.
Mackworth and Freuder have analyzed the time complexity of several constraint satisfaction algorithms. Mohr and Henderson have given new algorithms, AC-4 and PC-3, for arc and path consistency, respectively, and have shown that the arc consistency algorithm is optimal in time complexity and of the same order space complexity as the earlier algorithms. In this paper, they give parallel algorithms for solving node and arc consistency. They show that any parallel algorithm for enforcing arc consistency in the worst case must have O(na) sequential steps, where n is number of nodes, and a is the number of labels per node.more » They give several parallel algorithms to do arc consistency. It is also shown that they all have optimal time complexity. The results of running the parallel algorithms on a BBN Butterfly multiprocessor are also presented.« less
NASA Astrophysics Data System (ADS)
Shorikov, A. F.; Butsenko, E. V.
2017-10-01
This paper discusses the problem of multicriterial adaptive optimization the control of investment projects in the presence of several technologies. On the basis of network modeling proposed a new economic and mathematical model and a method for solving the problem of multicriterial adaptive optimization the control of investment projects in the presence of several technologies. Network economic and mathematical modeling allows you to determine the optimal time and calendar schedule for the implementation of the investment project and serves as an instrument to increase the economic potential and competitiveness of the enterprise. On a meaningful practical example, the processes of forming network models are shown, including the definition of the sequence of actions of a particular investment projecting process, the network-based work schedules are constructed. The calculation of the parameters of network models is carried out. Optimal (critical) paths have been formed and the optimal time for implementing the chosen technologies of the investment project has been calculated. It also shows the selection of the optimal technology from a set of possible technologies for project implementation, taking into account the time and cost of the work. The proposed model and method for solving the problem of managing investment projects can serve as a basis for the development, creation and application of appropriate computer information systems to support the adoption of managerial decisions by business people.
An experimental analysis on OSPF-TE convergence time
NASA Astrophysics Data System (ADS)
Huang, S.; Kitayama, K.; Cugini, F.; Paolucci, F.; Giorgetti, A.; Valcarenghi, L.; Castoldi, P.
2008-11-01
Open shortest path first (OSPF) protocol is commonly used as an interior gateway protocol (IGP) in MPLS and generalized MPLS (GMPLS) networks to determine the topology over which label-switched paths (LSPs) can be established. Traffic-engineering extensions (network states such as link bandwidth information, available wavelengths, signal quality, etc) have been recently enabled in OSPF (henceforth, called OSPF-TE) to support shortest path first (SPF) tree calculation upon different purposes, thus possibly achieving optimal path computation and helping improve resource utilization efficiency. Adding these features into routing phase can exploit the OSPF robustness, and no additional network component is required to manage the traffic-engineering information. However, this traffic-engineering enhancement also complicates OSPF behavior. Since network states change frequently upon the dynamic trafficengineered LSP setup and release, the network is easily driven from a stable state to unstable operating regimes. In this paper, we focus on studying the OSPF-TE stability in terms of convergence time. Convergence time is referred to the time spent by the network to go back to steady states upon any network state change. An external observation method (based on black-box method) is employed to estimate the convergence time. Several experimental test-beds are developed to emulate dynamic LSP setup/release, re-routing upon single-link failure. The experimental results show that with OSPF-TE the network requires more time to converge compared to the conventional OSPF protocol without TE extension. Especially, in case of wavelength-routed optical network (WRON), introducing per wavelength availability and wavelength continuity constraint to OSPF-TE suffers severe convergence time and a large number of advertised link state advertisements (LSAs). Our study implies that long convergence time and large number of LSAs flooded in the network might cause scalability problems in OSPF-TE and impose limitations on OSPF-TE applications. New solutions to mitigate the s convergence time and to reduce the amount of state information are desired in the future.
Computationally-Efficient Minimum-Time Aircraft Routes in the Presence of Winds
NASA Technical Reports Server (NTRS)
Jardin, Matthew R.
2004-01-01
A computationally efficient algorithm for minimizing the flight time of an aircraft in a variable wind field has been invented. The algorithm, referred to as Neighboring Optimal Wind Routing (NOWR), is based upon neighboring-optimal-control (NOC) concepts and achieves minimum-time paths by adjusting aircraft heading according to wind conditions at an arbitrary number of wind measurement points along the flight route. The NOWR algorithm may either be used in a fast-time mode to compute minimum- time routes prior to flight, or may be used in a feedback mode to adjust aircraft heading in real-time. By traveling minimum-time routes instead of direct great-circle (direct) routes, flights across the United States can save an average of about 7 minutes, and as much as one hour of flight time during periods of strong jet-stream winds. The neighboring optimal routes computed via the NOWR technique have been shown to be within 1.5 percent of the absolute minimum-time routes for flights across the continental United States. On a typical 450-MHz Sun Ultra workstation, the NOWR algorithm produces complete minimum-time routes in less than 40 milliseconds. This corresponds to a rate of 25 optimal routes per second. The closest comparable optimization technique runs approximately 10 times slower. Airlines currently use various trial-and-error search techniques to determine which of a set of commonly traveled routes will minimize flight time. These algorithms are too computationally expensive for use in real-time systems, or in systems where many optimal routes need to be computed in a short amount of time. Instead of operating in real-time, airlines will typically plan a trajectory several hours in advance using wind forecasts. If winds change significantly from forecasts, the resulting flights will no longer be minimum-time. The need for a computationally efficient wind-optimal routing algorithm is even greater in the case of new air-traffic-control automation concepts. For air-traffic-control automation, thousands of wind-optimal routes may need to be computed and checked for conflicts in just a few minutes. These factors motivated the need for a more efficient wind-optimal routing algorithm.
Computer-aided design/computer-aided manufacturing skull base drill.
Couldwell, William T; MacDonald, Joel D; Thomas, Charles L; Hansen, Bradley C; Lapalikar, Aniruddha; Thakkar, Bharat; Balaji, Alagar K
2017-05-01
The authors have developed a simple device for computer-aided design/computer-aided manufacturing (CAD-CAM) that uses an image-guided system to define a cutting tool path that is shared with a surgical machining system for drilling bone. Information from 2D images (obtained via CT and MRI) is transmitted to a processor that produces a 3D image. The processor generates code defining an optimized cutting tool path, which is sent to a surgical machining system that can drill the desired portion of bone. This tool has applications for bone removal in both cranial and spine neurosurgical approaches. Such applications have the potential to reduce surgical time and associated complications such as infection or blood loss. The device enables rapid removal of bone within 1 mm of vital structures. The validity of such a machining tool is exemplified in the rapid (< 3 minutes machining time) and accurate removal of bone for transtemporal (for example, translabyrinthine) approaches.
Context-sensitive trace inlining for Java.
Häubl, Christian; Wimmer, Christian; Mössenböck, Hanspeter
2013-12-01
Method inlining is one of the most important optimizations in method-based just-in-time (JIT) compilers. It widens the compilation scope and therefore allows optimizing multiple methods as a whole, which increases the performance. However, if method inlining is used too frequently, the compilation time increases and too much machine code is generated. This has negative effects on the performance. Trace-based JIT compilers only compile frequently executed paths, so-called traces, instead of whole methods. This may result in faster compilation, less generated machine code, and better optimized machine code. In the previous work, we implemented a trace recording infrastructure and a trace-based compiler for [Formula: see text], by modifying the Java HotSpot VM. Based on this work, we evaluate the effect of trace inlining on the performance and the amount of generated machine code. Trace inlining has several major advantages when compared to method inlining. First, trace inlining is more selective than method inlining, because only frequently executed paths are inlined. Second, the recorded traces may capture information about virtual calls, which simplify inlining. A third advantage is that trace information is context sensitive so that different method parts can be inlined depending on the specific call site. These advantages allow more aggressive inlining while the amount of generated machine code is still reasonable. We evaluate several inlining heuristics on the benchmark suites DaCapo 9.12 Bach, SPECjbb2005, and SPECjvm2008 and show that our trace-based compiler achieves an up to 51% higher peak performance than the method-based Java HotSpot client compiler. Furthermore, we show that the large compilation scope of our trace-based compiler has a positive effect on other compiler optimizations such as constant folding or null check elimination.
Short paths in expander graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleinberg, J.; Rubinfeld, R.
Graph expansion has proved to be a powerful general tool for analyzing the behavior of routing algorithms and the interconnection networks on which they run. We develop new routing algorithms and structural results for bounded-degree expander graphs. Our results are unified by the fact that they are all based upon, and extend, a body of work asserting that expanders are rich in short, disjoint paths. In particular, our work has consequences for the disjoint paths problem, multicommodify flow, and graph minor containment. We show: (i) A greedy algorithm for approximating the maximum disjoint paths problem achieves a polylogarithmic approximation ratiomore » in bounded-degree expanders. Although our algorithm is both deterministic and on-line, its performance guarantee is an improvement over previous bounds in expanders. (ii) For a multicommodily flow problem with arbitrary demands on a bounded-degree expander, there is a (1 + {epsilon})-optimal solution using only flow paths of polylogarithmic length. It follows that the multicommodity flow algorithm of Awerbuch and Leighton runs in nearly linear time per commodity in expanders. Our analysis is based on establishing the following: given edge weights on an expander G, one can increase some of the weights very slightly so the resulting shortest-path metric is smooth - the min-weight path between any pair of nodes uses a polylogarithmic number of edges. (iii) Every bounded-degree expander on n nodes contains every graph with O(n/log{sup O(1)} n) nodes and edges as a minor.« less
Ancient village fire escape path planning based on improved ant colony algorithm
NASA Astrophysics Data System (ADS)
Xia, Wei; Cao, Kang; Hu, QianChuan
2017-06-01
The roadways are narrow and perplexing in ancient villages, it brings challenges and difficulties for people to choose route to escape when a fire occurs. In this paper, a fire escape path planning method based on ant colony algorithm is presented according to the problem. The factors in the fire environment which influence the escape speed is introduced to improve the heuristic function of the algorithm, optimal transfer strategy, and adjustment pheromone volatile factor to improve pheromone update strategy adaptively, improve its dynamic search ability and search speed. Through simulation, the dynamic adjustment of the optimal escape path is obtained, and the method is proved to be feasible.
Capital dissipation minimization for a class of complex irreversible resource exchange processes
NASA Astrophysics Data System (ADS)
Xia, Shaojun; Chen, Lingen
2017-05-01
A model of a class of irreversible resource exchange processes (REPes) between a firm and a producer with commodity flow leakage from the producer to a competitive market is established in this paper. The REPes are assumed to obey the linear commodity transfer law (LCTL). Optimal price paths for capital dissipation minimization (CDM) (it can measure economic process irreversibility) are obtained. The averaged optimal control theory is used. The optimal REP strategy is also compared with other strategies, such as constant-firm-price operation and constant-commodity-flow operation, and effects of the amount of commodity transferred and the commodity flow leakage on the optimal REP strategy are also analyzed. The commodity prices of both the producer and the firm for the CDM of the REPes with commodity flow leakage change with the time exponentially.
Ramos, A G; García-Garrido, V J; Mancho, A M; Wiggins, S; Coca, J; Glenn, S; Schofield, O; Kohut, J; Aragon, D; Kerfoot, J; Haskins, T; Miles, T; Haldeman, C; Strandskov, N; Allsup, B; Jones, C; Shapiro, J
2018-03-15
Transoceanic Gliders are Autonomous Underwater Vehicles (AUVs) for which there is a developing and expanding range of applications in open-seas research, technology and underwater clean transport. Mature glider autonomy, operating depth (0-1000 meters) and low energy consumption without a CO 2 footprint enable evolutionary access across ocean basins. Pursuant to the first successful transatlantic glider crossing in December 2009, the Challenger Mission has opened the door to long-term, long-distance routine transoceanic AUV missions. These vehicles, which glide through the water column between 0 and 1000 meters depth, are highly sensitive to the ocean current field. Consequently, it is essential to exploit the complex space-time structure of the ocean current field in order to plan a path that optimizes scientific payoff and navigation efficiency. This letter demonstrates the capability of dynamical system theory for achieving this goal by realizing the real-time navigation strategy for the transoceanic AUV named Silbo, which is a Slocum deep-glider (0-1000 m), that crossed the North Atlantic from April 2016 to March 2017. Path planning in real time based on this approach has facilitated an impressive speed up of the AUV to unprecedented velocities resulting in major battery savings on the mission, offering the potential for routine transoceanic long duration missions.
Real-time endovascular guidewire position simulation using shortest path algorithms.
Schafer, Sebastian; Singh, Vikas; Noël, Peter B; Walczak, Alan M; Xu, Jinhui; Hoffmann, Kenneth R
2009-11-01
Treatment of vascular disease often involves endovascular interventions which use the vascular system for delivering treatment devices via a previously inserted guidewire to the diseased site. Previous studies show relative reproducibility of guidewire position after insertion, indicating that the guidewire position is constrained and could be represented by an energy minimization approach. Such representation would support the surgeon's decision process in guidewire selection. In this paper, we determine the guidewire position using a k-level graph based on 3D vessel information. Guidewire properties are incorporated into the graph as edge weights given by the local bending energy related to the local bending angle. The optimal path through this weighted directed graph is determined using a shortest path algorithm. Volumetric data of two different internal carotid artery phantoms (Ø 3.5-4.6 mm) was acquired. Two guidewires (Ø 0.33 mm) of different material properties (stainless steel, plastic-coated steel core) were inserted into the phantoms. The average RMS distance between actual and simulated guidewire positions varies from 0.9 mm (plastic coated) to 1.3 mm (stainless steel); the computation time to determine the position was <2s. The results indicate that the proposed technique yields reproducible and accurate guidewire positions within a short, clinically relevant time frame. These calculated positions may be useful in facilitating neurovascular interventions.
Image-based path planning for automated virtual colonoscopy navigation
NASA Astrophysics Data System (ADS)
Hong, Wei
2008-03-01
Virtual colonoscopy (VC) is a noninvasive method for colonic polyp screening, by reconstructing three-dimensional models of the colon using computerized tomography (CT). In virtual colonoscopy fly-through navigation, it is crucial to generate an optimal camera path for efficient clinical examination. In conventional methods, the centerline of the colon lumen is usually used as the camera path. In order to extract colon centerline, some time consuming pre-processing algorithms must be performed before the fly-through navigation, such as colon segmentation, distance transformation, or topological thinning. In this paper, we present an efficient image-based path planning algorithm for automated virtual colonoscopy fly-through navigation without the requirement of any pre-processing. Our algorithm only needs the physician to provide a seed point as the starting camera position using 2D axial CT images. A wide angle fisheye camera model is used to generate a depth image from the current camera position. Two types of navigational landmarks, safe regions and target regions are extracted from the depth images. Camera position and its corresponding view direction are then determined using these landmarks. The experimental results show that the generated paths are accurate and increase the user comfort during the fly-through navigation. Moreover, because of the efficiency of our path planning algorithm and rendering algorithm, our VC fly-through navigation system can still guarantee 30 FPS.
NASA Astrophysics Data System (ADS)
Wu, L.; Kravchinsky, V. A.; Potter, D. K.
2014-12-01
It has been a longstanding challenge in the last few decades to quantitatively reconstruct the paleogeographic evolution of East Eurasia because of its great tectonic complexities. As the core region, the major China cratons including North China Block, South China Block and Tarim Block hold the key clues for the understanding of the amalgamation history, tectonic activities and biological affinity among the component blocks and terranes in East Eurasia. Compared with the major Gondwana and Laurentia plates, however, the apparent polar wander paths of China are not well constrained due to the outdated paleomagnetic database and relatively loose pole selection process. With the recruitment of the new high-fidelity poles published in the last decade, the rejection of the low quality data and the strict implementation of Voo's grading scheme, we build an updated paleomagnetic database for the three blocks from which three types of apparent polar wander paths (APWP) are computed. Version 1 running mean paths are constructed during the pole selection and compared with those from the previous publications. Version 2 running mean and spline paths with different sliding time windows are computed from the thoroughly examined poles to find the optimal paths with the steady trend, reasonable speed for the polar drift and plate rotation. The spline paths are recommended for the plate reconstructions, however, considering the poor data coverage during certain periods. Our new China APWPs, together with the latest European reference path, the geological, geochronological and biological evidence from the studied Asian plates allow us to reevaluate the paleogeographic and tectonic history of East Eurasia.
Macroscopicity of quantum superpositions on a one-parameter unitary path in Hilbert space
NASA Astrophysics Data System (ADS)
Volkoff, T. J.; Whaley, K. B.
2014-12-01
We analyze quantum states formed as superpositions of an initial pure product state and its image under local unitary evolution, using two measurement-based measures of superposition size: one based on the optimal quantum binary distinguishability of the branches of the superposition and another based on the ratio of the maximal quantum Fisher information of the superposition to that of its branches, i.e., the relative metrological usefulness of the superposition. A general formula for the effective sizes of these states according to the branch-distinguishability measure is obtained and applied to superposition states of N quantum harmonic oscillators composed of Gaussian branches. Considering optimal distinguishability of pure states on a time-evolution path leads naturally to a notion of distinguishability time that generalizes the well-known orthogonalization times of Mandelstam and Tamm and Margolus and Levitin. We further show that the distinguishability time provides a compact operational expression for the superposition size measure based on the relative quantum Fisher information. By restricting the maximization procedure in the definition of this measure to an appropriate algebra of observables, we show that the superposition size of, e.g., NOON states and hierarchical cat states, can scale linearly with the number of elementary particles comprising the superposition state, implying precision scaling inversely with the total number of photons when these states are employed as probes in quantum parameter estimation of a 1-local Hamiltonian in this algebra.
Autonomous Control Modes and Optimized Path Guidance for Shipboard Landing in High Sea States
2016-04-28
Contract # N00014-14-C-0004 Autonomous Control Modes and Optimized Path Guidance for Shipboard Landing in High Sea States Progress Report...Aviation (ONR BAA12-SN-0028). This project addresses the Sea Based Aviation (SBA) initiative in Advanced Handling Qualities for Rotorcraft. Landing a...and a degraded visual environment, workload during the landing task begins to approach the limits of a human pilot’s capability. It is a similarly
A statistical-based scheduling algorithm in automated data path synthesis
NASA Technical Reports Server (NTRS)
Jeon, Byung Wook; Lursinsap, Chidchanok
1992-01-01
In this paper, we propose a new heuristic scheduling algorithm based on the statistical analysis of the cumulative frequency distribution of operations among control steps. It has a tendency of escaping from local minima and therefore reaching a globally optimal solution. The presented algorithm considers the real world constraints such as chained operations, multicycle operations, and pipelined data paths. The result of the experiment shows that it gives optimal solutions, even though it is greedy in nature.
Zsigraiova, Zdena; Semiao, Viriato; Beijoco, Filipa
2013-04-01
This work proposes an innovative methodology for the reduction of the operation costs and pollutant emissions involved in the waste collection and transportation. Its innovative feature lies in combining vehicle route optimization with that of waste collection scheduling. The latter uses historical data of the filling rate of each container individually to establish the daily circuits of collection points to be visited, which is more realistic than the usual assumption of a single average fill-up rate common to all the system containers. Moreover, this allows for the ahead planning of the collection scheduling, which permits a better system management. The optimization process of the routes to be travelled makes recourse to Geographical Information Systems (GISs) and uses interchangeably two optimization criteria: total spent time and travelled distance. Furthermore, rather than using average values, the relevant parameters influencing fuel consumption and pollutant emissions, such as vehicle speed in different roads and loading weight, are taken into consideration. The established methodology is applied to the glass-waste collection and transportation system of Amarsul S.A., in Barreiro. Moreover, to isolate the influence of the dynamic load on fuel consumption and pollutant emissions a sensitivity analysis of the vehicle loading process is performed. For that, two hypothetical scenarios are tested: one with the collected volume increasing exponentially along the collection path; the other assuming that the collected volume decreases exponentially along the same path. The results evidence unquestionable beneficial impacts of the optimization on both the operation costs (labor and vehicles maintenance and fuel consumption) and pollutant emissions, regardless the optimization criterion used. Nonetheless, such impact is particularly relevant when optimizing for time yielding substantial improvements to the existing system: potential reductions of 62% for the total spent time, 43% for the fuel consumption and 40% for the emitted pollutants. This results in total cost savings of 57%, labor being the greatest contributor, representing over €11,000 per year for the two vehicles collecting glass-waste. Moreover, it is shown herein that the dynamic loading process of the collection vehicle impacts on both the fuel consumption and on pollutant emissions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Light extraction efficiency of GaN-based LED with pyramid texture by using ray path analysis.
Pan, Jui-Wen; Wang, Chia-Shen
2012-09-10
We study three different gallium-nitride (GaN) based light emitting diode (LED) cases based on the different locations of the pyramid textures. In case 1, the pyramid texture is located on the sapphire top surface, in case 2, the pyramid texture is locate on the P-GaN top surface, while in case 3, the pyramid texture is located on both the sapphire and P-GaN top surfaces. We study the relationship between the light extraction efficiency (LEE) and angle of slant of the pyramid texture. The optimization of total LEE was highest for case 3 among the three cases. Moreover, the seven escape paths along which most of the escaped photon flux propagated were selected in a simulation of the LEDs. The seven escape paths were used to estimate the slant angle for the optimization of LEE and to precisely analyze the photon escape path.
PRP Comments for ICF Q1/Q2 FY17 Experiments 3/10/16
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kauffman, R.
2016-04-14
The PRP generally endorsed the Program plan during the short time for discussions. We agree that the strategy to develop a hohlraum that is symmetric and has low laser-plasma instabilities and to develop an alternative method for supporting the capsule is the best path forward for making progress in understanding ignition performance. The Program is oriented toward a milestone in 2020 for “determining the efficacy of NIF for ignition and credible physics-scaling to multi-megajoule yields for all ICF approaches.” We are concerned that the time and resources are not sufficient to vet all of the various approaches that are beingmore » pursued to make an informed decision by this date. For NIF to meet this goal, a process will be needed to to select the most promising paths forward. We recommend that the Program develop this process for selecting the path forward to optimize resources. We were glad to see that the direct drive program took our comments under consideration. We think that the proposed experiments have the program headed in a better direction. The PRP had only a short time to discuss the detailed experimental proposals. The following are comments on the detailed proposals. We did not have time to discuss them as a group. They represent individual opinions and provided to you as feedback to your proposals.« less
NASA Astrophysics Data System (ADS)
Wilson, C. E.; Keane, C. M.
2016-12-01
Students enter into geoscience graduate degree programs have specific expectations of the type of career they are working towards. Are the graduate degree programs effectively serving these students through the development of necessary skills and experiences for their desired career pathway? This question is of particular interest to parties like the National Science Foundation and other STEM agencies who are concerned about the optimal investment in the development of the science and engineering workforce. To address this question, investigation on the general trends of education and immediate career paths over time is needed. The National Science Foundation has been collecting data on education and career paths of science and engineering graduates for decades. Since 2013, AGI has been collecting data from geoscience graduates since 2013 on their education, skills development, and immediate plans after graduation through AGI's Geoscience Student Exit Survey. This presentation synthesizes the data from these two sources related to geoscience master's and doctoral graduates to look at education and career paths over time to see how they have changed over the past few decades, as well as look specifically at the immediate plans of recent graduates as they enter the geoscience workforce. This data will also give some indication of the development of skills gained from these programs through activities such as field work and research.
2015-01-01
This article reviews the topic of how to identify and develop a removable partial denture (RPD) path of placement, and provides a literature review of the concept of the RPD path of placement, also known as the path of insertion. An optimal RPD path of placement, guided by mutually parallel guide planes, ensures that the RPD flanges fit intimately over edentulous ridge structures and that the framework fits intimately with guide plane surfaces, which prevents food collecting empty spaces between the intaglio surface of the framework and intraoral surfaces, and ensures that RPD clasps engage adequate numbers of tooth undercuts to ensure RPD retention. The article covers topics such as the causes of obstructions to RPD intra-oral seating, the causes of food collecting empty spaces that may exist around an RPD, and how to identify if a guide plane is parallel with the projected RPD path of placement. The article presents a method of using a surgical operating microscope, or high magnification (6-8x or greater) binocular surgical loupes telescopes, combined with co-axial illumination, to identify a preliminary path of placement for an arch. This preliminary path of placement concept may help to guide a dentist or a dental laboratory technician when surveying a master cast of the arch to develop an RPD path of placement, or in verifying that intra-oral contouring has aligned teeth surfaces optimally with the RPD path of placement. In dentistry, a well-fitting RPD reduces long-term periodontal or structural damage to abutment teeth. PMID:25722842
Curvature Continuous and Bounded Path Planning for Fixed-Wing UAVs
Jiang, Peng; Li, Deshi; Sun, Tao
2017-01-01
Unmanned Aerial Vehicles (UAVs) play an important role in applications such as data collection and target reconnaissance. An accurate and optimal path can effectively increase the mission success rate in the case of small UAVs. Although path planning for UAVs is similar to that for traditional mobile robots, the special kinematic characteristics of UAVs (such as their minimum turning radius) have not been taken into account in previous studies. In this paper, we propose a locally-adjustable, continuous-curvature, bounded path-planning algorithm for fixed-wing UAVs. To deal with the curvature discontinuity problem, an optimal interpolation algorithm and a key-point shift algorithm are proposed based on the derivation of a curvature continuity condition. To meet the upper bound for curvature and to render the curvature extrema controllable, a local replanning scheme is designed by combining arcs and Bezier curves with monotonic curvature. In particular, a path transition mechanism is built for the replanning phase using minimum curvature circles for a planning philosophy. Numerical results demonstrate that the analytical planning algorithm can effectively generate continuous-curvature paths, while satisfying the curvature upper bound constraint and allowing UAVs to pass through all predefined waypoints in the desired mission region. PMID:28925960
Curvature Continuous and Bounded Path Planning for Fixed-Wing UAVs.
Wang, Xiaoliang; Jiang, Peng; Li, Deshi; Sun, Tao
2017-09-19
Unmanned Aerial Vehicles (UAVs) play an important role in applications such as data collection and target reconnaissance. An accurate and optimal path can effectively increase the mission success rate in the case of small UAVs. Although path planning for UAVs is similar to that for traditional mobile robots, the special kinematic characteristics of UAVs (such as their minimum turning radius) have not been taken into account in previous studies. In this paper, we propose a locally-adjustable, continuous-curvature, bounded path-planning algorithm for fixed-wing UAVs. To deal with the curvature discontinuity problem, an optimal interpolation algorithm and a key-point shift algorithm are proposed based on the derivation of a curvature continuity condition. To meet the upper bound for curvature and to render the curvature extrema controllable, a local replanning scheme is designed by combining arcs and Bezier curves with monotonic curvature. In particular, a path transition mechanism is built for the replanning phase using minimum curvature circles for a planning philosophy. Numerical results demonstrate that the analytical planning algorithm can effectively generate continuous-curvature paths, while satisfying the curvature upper bound constraint and allowing UAVs to pass through all predefined waypoints in the desired mission region.
NASA Astrophysics Data System (ADS)
Wang, Po-Jen; Keyawa, Nicholas R.; Euler, Craig
2012-01-01
In order to achieve highly accurate motion control and path planning for a mobile robot, an obstacle avoidance algorithm that provided a desired instantaneous turning radius and velocity was generated. This type of obstacle avoidance algorithm, which has been implemented in California State University Northridge's Intelligent Ground Vehicle (IGV), is known as Radial Polar Histogram (RPH). The RPH algorithm utilizes raw data in the form of a polar histogram that is read from a Laser Range Finder (LRF) and a camera. A desired open block is determined from the raw data utilizing a navigational heading and an elliptical approximation. The left and right most radii are determined from the calculated edges of the open block and provide the range of possible radial paths the IGV can travel through. In addition, the calculated obstacle edge positions allow the IGV to recognize complex obstacle arrangements and to slow down accordingly. A radial path optimization function calculates the best radial path between the left and right most radii and is sent to motion control for speed determination. Overall, the RPH algorithm allows the IGV to autonomously travel at average speeds of 3mph while avoiding all obstacles, with a processing time of approximately 10ms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reister, D.B.; Pin, F.G.
This paper addresses the problem of time-optional motions for a mobile platform in a planar environment. The platform has two non-steerable independently driven wheels. The overall mission of the robot is expressed in terms of a sequence of via points at which the platform must be at rest in a given configuration (position and orientation). The objective is to plan time-optimal trajectories between these configurations assuming an unobstructed environment. Using Pontryagin's maximum principle (PMP), we formally demonstrate that all time optimal motions of the platform for this problem occur for bang-bang controls on the wheels (at each instant, the accelerationmore » on each wheel is either at its upper or lower limit). The PMP, however, only provides necessary conditions for time optimality. To find the time optimal robot trajectories, we first parameterize the bang-bang trajectories using the switch times on the wheels (the times at which the wheel accelerations change sign). With this parameterization, we can fully search the robot trajectory space and find the switch times that will produce particular paths to a desired final configuration of the platform. We show numerically that robot trajectories with three switch times (two on one wheel, one on the other) can reach any position, while trajectories with four switch times can reach any configuration. By numerical comparison with other trajectories involving similar or greater numbers of switch times, we then identify the sets of time-optimal trajectories. These are uniquely defined using ranges of the parameters, and consist of subsets of trajectories with three switch times for the problem when the final orientation of the robot is not specified, and four switch times when a full final configuration is specified. We conclude with a description of the use of the method for trajectory planning for one of our robots.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reister, D.B.; Pin, F.G.
This paper addresses the problem of time-optional motions for a mobile platform in a planar environment. The platform has two non-steerable independently driven wheels. The overall mission of the robot is expressed in terms of a sequence of via points at which the platform must be at rest in a given configuration (position and orientation). The objective is to plan time-optimal trajectories between these configurations assuming an unobstructed environment. Using Pontryagin`s maximum principle (PMP), we formally demonstrate that all time optimal motions of the platform for this problem occur for bang-bang controls on the wheels (at each instant, the accelerationmore » on each wheel is either at its upper or lower limit). The PMP, however, only provides necessary conditions for time optimality. To find the time optimal robot trajectories, we first parameterize the bang-bang trajectories using the switch times on the wheels (the times at which the wheel accelerations change sign). With this parameterization, we can fully search the robot trajectory space and find the switch times that will produce particular paths to a desired final configuration of the platform. We show numerically that robot trajectories with three switch times (two on one wheel, one on the other) can reach any position, while trajectories with four switch times can reach any configuration. By numerical comparison with other trajectories involving similar or greater numbers of switch times, we then identify the sets of time-optimal trajectories. These are uniquely defined using ranges of the parameters, and consist of subsets of trajectories with three switch times for the problem when the final orientation of the robot is not specified, and four switch times when a full final configuration is specified. We conclude with a description of the use of the method for trajectory planning for one of our robots.« less
Campaign-level dynamic network modelling for spaceflight logistics for the flexible path concept
NASA Astrophysics Data System (ADS)
Ho, Koki; de Weck, Olivier L.; Hoffman, Jeffrey A.; Shishko, Robert
2016-06-01
This paper develops a network optimization formulation for dynamic campaign-level space mission planning. Although many past space missions have been designed mainly from a mission-level perspective, a campaign-level perspective will be important for future space exploration. In order to find the optimal campaign-level space transportation architecture, a mixed-integer linear programming (MILP) formulation with a generalized multi-commodity flow and a time-expanded network is developed. Particularly, a new heuristics-based method, a partially static time-expanded network, is developed to provide a solution quickly. The developed method is applied to a case study containing human exploration of a near-Earth object (NEO) and Mars, related to the concept of the Flexible Path. The numerical results show that using the specific combinations of propulsion technologies, in-situ resource utilization (ISRU), and other space infrastructure elements can reduce the initial mass in low-Earth orbit (IMLEO) significantly. In addition, the case study results also show that we can achieve large IMLEO reduction by designing NEO and Mars missions together as a campaign compared with designing them separately owing to their common space infrastructure pre-deployment. This research will be an important step toward efficient and flexible campaign-level space mission planning.
The Edge-Disjoint Path Problem on Random Graphs by Message-Passing.
Altarelli, Fabrizio; Braunstein, Alfredo; Dall'Asta, Luca; De Bacco, Caterina; Franz, Silvio
2015-01-01
We present a message-passing algorithm to solve a series of edge-disjoint path problems on graphs based on the zero-temperature cavity equations. Edge-disjoint paths problems are important in the general context of routing, that can be defined by incorporating under a unique framework both traffic optimization and total path length minimization. The computation of the cavity equations can be performed efficiently by exploiting a mapping of a generalized edge-disjoint path problem on a star graph onto a weighted maximum matching problem. We perform extensive numerical simulations on random graphs of various types to test the performance both in terms of path length minimization and maximization of the number of accommodated paths. In addition, we test the performance on benchmark instances on various graphs by comparison with state-of-the-art algorithms and results found in the literature. Our message-passing algorithm always outperforms the others in terms of the number of accommodated paths when considering non trivial instances (otherwise it gives the same trivial results). Remarkably, the largest improvement in performance with respect to the other methods employed is found in the case of benchmarks with meshes, where the validity hypothesis behind message-passing is expected to worsen. In these cases, even though the exact message-passing equations do not converge, by introducing a reinforcement parameter to force convergence towards a sub optimal solution, we were able to always outperform the other algorithms with a peak of 27% performance improvement in terms of accommodated paths. On random graphs, we numerically observe two separated regimes: one in which all paths can be accommodated and one in which this is not possible. We also investigate the behavior of both the number of paths to be accommodated and their minimum total length.
The Edge-Disjoint Path Problem on Random Graphs by Message-Passing
2015-01-01
We present a message-passing algorithm to solve a series of edge-disjoint path problems on graphs based on the zero-temperature cavity equations. Edge-disjoint paths problems are important in the general context of routing, that can be defined by incorporating under a unique framework both traffic optimization and total path length minimization. The computation of the cavity equations can be performed efficiently by exploiting a mapping of a generalized edge-disjoint path problem on a star graph onto a weighted maximum matching problem. We perform extensive numerical simulations on random graphs of various types to test the performance both in terms of path length minimization and maximization of the number of accommodated paths. In addition, we test the performance on benchmark instances on various graphs by comparison with state-of-the-art algorithms and results found in the literature. Our message-passing algorithm always outperforms the others in terms of the number of accommodated paths when considering non trivial instances (otherwise it gives the same trivial results). Remarkably, the largest improvement in performance with respect to the other methods employed is found in the case of benchmarks with meshes, where the validity hypothesis behind message-passing is expected to worsen. In these cases, even though the exact message-passing equations do not converge, by introducing a reinforcement parameter to force convergence towards a sub optimal solution, we were able to always outperform the other algorithms with a peak of 27% performance improvement in terms of accommodated paths. On random graphs, we numerically observe two separated regimes: one in which all paths can be accommodated and one in which this is not possible. We also investigate the behavior of both the number of paths to be accommodated and their minimum total length. PMID:26710102
Creative foraging: An experimental paradigm for studying exploration and discovery
Mayo, Avraham E.; Mayo, Ruth; Rozenkrantz, Liron; Tendler, Avichai; Alon, Uri; Noy, Lior
2017-01-01
Creative exploration is central to science, art and cognitive development. However, research on creative exploration is limited by a lack of high-resolution automated paradigms. To address this, we present such an automated paradigm, the creative foraging game, in which people search for novel and valuable solutions in a large and well-defined space made of all possible shapes made of ten connected squares. Players discovered shape categories such as digits, letters, and airplanes as well as more abstract categories. They exploited each category, then dropped it to explore once again, and so on. Aligned with a prediction of optimal foraging theory (OFT), during exploration phases, people moved along meandering paths that are about three times longer than the shortest paths between shapes; when exploiting a category of related shapes, they moved along the shortest paths. The moment of discovery of a new category was usually done at a non-prototypical and ambiguous shape, which can serve as an experimental proxy for creative leaps. People showed individual differences in their search patterns, along a continuum between two strategies: a mercurial quick-to-discover/quick-to-drop strategy and a thorough slow-to-discover/slow-to-drop strategy. Contrary to optimal foraging theory, players leave exploitation to explore again far before categories are depleted. This paradigm opens the way for automated high-resolution study of creative exploration. PMID:28767668
Research on optimal path planning algorithm of task-oriented optical remote sensing satellites
NASA Astrophysics Data System (ADS)
Liu, Yunhe; Xu, Shengli; Liu, Fengjing; Yuan, Jingpeng
2015-08-01
GEO task-oriented optical remote sensing satellite, is very suitable for long-term continuous monitoring and quick access to imaging. With the development of high resolution optical payload technology and satellite attitude control technology, GEO optical remote sensing satellites will become an important developing trend for aerospace remote sensing satellite in the near future. In the paper, we focused on GEO optical remote sensing satellite plane array stare imaging characteristics and real-time leading mission of earth observation mode, targeted on satisfying needs of the user with the minimum cost of maneuver, and put forward the optimal path planning algorithm centered on transformation from geographic coordinate space to Field of plane, and finally reduced the burden of the control system. In this algorithm, bounded irregular closed area on the ground would be transformed based on coordinate transformation relations in to the reference plane for field of the satellite payload, and then using the branch and bound method to search for feasible solutions, cutting off the non-feasible solution in the solution space based on pruning strategy; and finally trimming some suboptimal feasible solutions based on the optimization index until a feasible solution for the global optimum. Simulation and visualization presentation software testing results verified the feasibility and effectiveness of the strategy.
Optical neural network system for pose determination of spinning satellites
NASA Technical Reports Server (NTRS)
Lee, Andrew; Casasent, David
1990-01-01
An optical neural network architecture and algorithm based on a Hopfield optimization network are presented for multitarget tracking. This tracker utilizes a neuron for every possible target track, and a quadratic energy function of neural activities which is minimized using gradient descent neural evolution. The neural net tracker is demonstrated as part of a system for determining position and orientation (pose) of spinning satellites with respect to a robotic spacecraft. The input to the system is time sequence video from a single camera. Novelty detection and filtering are utilized to locate and segment novel regions from the input images. The neural net multitarget tracker determines the correspondences (or tracks) of the novel regions as a function of time, and hence the paths of object (satellite) parts. The path traced out by a given part or region is approximately elliptical in image space, and the position, shape and orientation of the ellipse are functions of the satellite geometry and its pose. Having a geometric model of the satellite, and the elliptical path of a part in image space, the three-dimensional pose of the satellite is determined. Digital simulation results using this algorithm are presented for various satellite poses and lighting conditions.
A Subsonic Aircraft Design Optimization With Neural Network and Regression Approximators
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Coroneos, Rula M.; Guptill, James D.; Hopkins, Dale A.; Haller, William J.
2004-01-01
The Flight-Optimization-System (FLOPS) code encountered difficulty in analyzing a subsonic aircraft. The limitation made the design optimization problematic. The deficiencies have been alleviated through use of neural network and regression approximations. The insight gained from using the approximators is discussed in this paper. The FLOPS code is reviewed. Analysis models are developed and validated for each approximator. The regression method appears to hug the data points, while the neural network approximation follows a mean path. For an analysis cycle, the approximate model required milliseconds of central processing unit (CPU) time versus seconds by the FLOPS code. Performance of the approximators was satisfactory for aircraft analysis. A design optimization capability has been created by coupling the derived analyzers to the optimization test bed CometBoards. The approximators were efficient reanalysis tools in the aircraft design optimization. Instability encountered in the FLOPS analyzer was eliminated. The convergence characteristics were improved for the design optimization. The CPU time required to calculate the optimum solution, measured in hours with the FLOPS code was reduced to minutes with the neural network approximation and to seconds with the regression method. Generation of the approximators required the manipulation of a very large quantity of data. Design sensitivity with respect to the bounds of aircraft constraints is easily generated.
A Macroscopic Approach to the Lane Formation Phenomenon in Pedestrian Counterflow
NASA Astrophysics Data System (ADS)
Xiong, Tao; Zhang, Peng; Wong, S. C.; Shu, Chi-Wang; Zhang, Meng-Ping
2011-10-01
We simulate pedestrian counterflow by adopting an optimal path-choice strategy and a recently observed speed-density relationship. Although the whole system is symmetric, the simulation demonstrates the segregation and formation of many walking lanes for two groups of pedestrians. The symmetry breaking is most likely triggered by a small numerical viscosity or “noise", and the segregation is associated with the minimization of travel time. The underlying physics can be compared with the “optimal self-organization" mechanism in Helbing's social force model, by which driven entities in an open system tend to minimize their interaction to enable them to reach some ordering state.
Autonomous Control Modes and Optimized Path Guidance for Shipboard Landing in High Sea States
2016-08-12
Performing Organization: The Pennsylvania State University Department of Aerospace Engineering 231C Hammond Building University Park, PA 16802 Attn...Plant Models Used in the Study The H-60 class model was developed and distributed by ART to both NAVAIR and Penn State research teams. The model...To) 07 109 I 201 4 tD 07 I 08 12016 ’t TITLE AND SUBTITLE Autonomous Control Modes and Optimized Path Guidance for Shipboard Landing in High Sea States
Autonomous Control Modes and Optimized Path Guidance for Shipboard Landing in High Sea States
2017-04-15
50 0 50 Singular Values Frequency (rad/s) S in g u la r V a lu e s ( d B ) controller . The non -output variables can be estimated by reliable linear...Contract # N00014-14-C-0004 Autonomous Control Modes and Optimized Path Guidance for Shipboard Landing in High Sea States Progress Report...recovery of a VTOL UAV. There is a clear need for additional levels of stability and control augmentation and, ultimately, fully autonomous landing
Maximal Sensitive Dependence and the Optimal Path to Epidemic Extinction
2010-01-01
1996; Elgart and Kamenev, 2004). Instead, in this article, we will employ an eikonal approximation to recast the problem in terms of an effective...a control strategy on the extinction rate can be determined by its effect on the optimal path (Dykman et al., 2008). Through the use of the eikonal ...the solution of Eqs. (6a)–(6b) in the eikonal form (Elgart and Kamenev, 2004; Doering et al., 2005; Kubo et al., 1973; Wentzell, 1976; Gang, 1987
Glow discharge based device for solving mazes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubinov, Alexander E., E-mail: dubinov-ae@yandex.ru; Mironenko, Maxim S.; Selemir, Victor D.
2014-09-15
A glow discharge based device for solving mazes has been designed and tested. The device consists of a gas discharge chamber and maze-transformer of radial-azimuth type. It allows changing of the maze pattern in a short period of time (within several minutes). The device has been tested with low pressure air. Once switched on, a glow discharge has been shown to find the shortest way through the maze from the very first attempt, even if there is a section with potential barrier for electrons on the way. It has been found that ionization waves (striations) can be excited in themore » maze along the length of the plasma channel. The dependancy of discharge voltage on the length of the optimal path through the maze has been measured. A reduction in discharge voltage with one or two potential barriers present has been found and explained. The dependency of the magnitude of discharge ignition voltage on the length of the optimal path through the maze has been measured. The reduction of the ignition voltage with the presence of one or two potential barriers has been observed and explained.« less
Gaveau, Jérémie; Paizis, Christos; Berret, Bastien; Pozzo, Thierry; Papaxanthis, Charalambos
2011-08-01
After an exposure to weightlessness, the central nervous system operates under new dynamic and sensory contexts. To find optimal solutions for rapid adaptation, cosmonauts have to decide whether parameters from the world or their body have changed and to estimate their properties. Here, we investigated sensorimotor adaptation after a spaceflight of 10 days. Five cosmonauts performed forward point-to-point arm movements in the sagittal plane 40 days before and 24 and 72 h after the spaceflight. We found that, whereas the shape of hand velocity profiles remained unaffected after the spaceflight, hand path curvature significantly increased 1 day after landing and returned to the preflight level on the third day. Control experiments, carried out by 10 subjects under normal gravity conditions, showed that loading the arm with varying loads (from 0.3 to 1.350 kg) did not affect path curvature. Therefore, changes in path curvature after spaceflight cannot be the outcome of a control process based on the subjective feeling that arm inertia was increased. By performing optimal control simulations, we found that arm kinematics after exposure to microgravity corresponded to a planning process that overestimated the gravity level and optimized movements in a hypergravity environment (∼1.4 g). With time and practice, the sensorimotor system was recalibrated to Earth's gravity conditions, and cosmonauts progressively generated accurate estimations of the body state, gravity level, and sensory consequences of the motor commands (72 h). These observations provide novel insights into how the central nervous system evaluates body (inertia) and environmental (gravity) states during sensorimotor adaptation of point-to-point arm movements after an exposure to weightlessness.
2001-12-13
6-18 6.13. Apollonius Circle for the Case of Two Unequal Power Radars . . . 6-20 6.14. Solution Triangle...Voronoi edge is an Apollonius circle [32, 19]. In this section, we are concerned with the optimality of the Voronoi path for the two radar exposure...Comparison of Cost vs. Path Length for Constrained Trajectories Around and Between Two Radars 6-18 from the two radars is an Apollonius circle
NASA Astrophysics Data System (ADS)
Han, Yan; Kun, Zhang; Jin, Wang
2016-07-01
Cognitive behaviors are determined by underlying neural networks. Many brain functions, such as learning and memory, have been successfully described by attractor dynamics. For decision making in the brain, a quantitative description of global attractor landscapes has not yet been completely given. Here, we developed a theoretical framework to quantify the landscape associated with the steady state probability distributions and associated steady state curl flux, measuring the degree of non-equilibrium through the degree of detailed balance breaking for decision making. We quantified the decision-making processes with optimal paths from the undecided attractor states to the decided attractor states, which are identified as basins of attractions, on the landscape. Both landscape and flux determine the kinetic paths and speed. The kinetics and global stability of decision making are explored by quantifying the landscape topography through the barrier heights and the mean first passage time. Our theoretical predictions are in agreement with experimental observations: more errors occur under time pressure. We quantitatively explored two mechanisms of the speed-accuracy tradeoff with speed emphasis and further uncovered the tradeoffs among speed, accuracy, and energy cost. Our results imply that there is an optimal balance among speed, accuracy, and the energy cost in decision making. We uncovered the possible mechanisms of changes of mind and how mind changes improve performance in decision processes. Our landscape approach can help facilitate an understanding of the underlying physical mechanisms of cognitive processes and identify the key factors in the corresponding neural networks. Project supported by the National Natural Science Foundation of China (Grant Nos. 21190040, 91430217, and 11305176).
NASA Astrophysics Data System (ADS)
Zaccheo, T. S.; Pernini, T.; Botos, C.; Dobler, J. T.; Blume, N.; Braun, M.; Levine, Z. H.; Pintar, A. L.
2014-12-01
This work presents a methodology for constructing 2D estimates of CO2 field concentrations from integrated open path measurements of CO2 concentrations. It provides a description of the methodology, an assessment based on simulated data and results from preliminary field trials. The Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE) system, currently under development by Exelis and AER, consists of a set of laser-based transceivers and a number of retro-reflectors coupled with a cloud-based compute environment to enable real-time monitoring of integrated CO2 path concentrations, and provides 2D maps of estimated concentrations over an extended area of interest. The GreenLITE transceiver-reflector pairs provide laser absorption spectroscopy (LAS) measurements of differential absorption due to CO2 along intersecting chords within the field of interest. These differential absorption values for the intersecting chords of horizontal path are not only used to construct estimated values of integrated concentration, but also employed in an optimal estimation technique to derive 2D maps of underlying concentration fields. This optimal estimation technique combines these sparse data with in situ measurements of wind speed/direction and an analytic plume model to provide tomographic-like reconstruction of the field of interest. This work provides an assessment of this reconstruction method and preliminary results from the Fall 2014 testing at the Zero Emissions Research and Technology (ZERT) site in Bozeman, Montana. This work is funded in part under the GreenLITE program developed under a cooperative agreement between Exelis and the National Energy and Technology Laboratory (NETL) under the Department of Energy (DOE), contract # DE-FE0012574. Atmospheric and Environmental Research, Inc. is a major partner in this development.
NASA Astrophysics Data System (ADS)
Cheng, Jun; Zhang, Jun; Tian, Jinwen
2015-12-01
Based on deep analysis of the LiveWire interactive boundary extraction algorithm, a new algorithm focusing on improving the speed of LiveWire algorithm is proposed in this paper. Firstly, the Haar wavelet transform is carried on the input image, and the boundary is extracted on the low resolution image obtained by the wavelet transform of the input image. Secondly, calculating LiveWire shortest path is based on the control point set direction search by utilizing the spatial relationship between the two control points users provide in real time. Thirdly, the search order of the adjacent points of the starting node is set in advance. An ordinary queue instead of a priority queue is taken as the storage pool of the points when optimizing their shortest path value, thus reducing the complexity of the algorithm from O[n2] to O[n]. Finally, A region iterative backward projection method based on neighborhood pixel polling has been used to convert dual-pixel boundary of the reconstructed image to single-pixel boundary after Haar wavelet inverse transform. The algorithm proposed in this paper combines the advantage of the Haar wavelet transform and the advantage of the optimal path searching method based on control point set direction search. The former has fast speed of image decomposition and reconstruction and is more consistent with the texture features of the image and the latter can reduce the time complexity of the original algorithm. So that the algorithm can improve the speed in interactive boundary extraction as well as reflect the boundary information of the image more comprehensively. All methods mentioned above have a big role in improving the execution efficiency and the robustness of the algorithm.
Harvey, Judson W.; Böhlke, John Karl; Voytek, Mary A.; Scott, Durelle; Tobias, Craig R.
2013-01-01
Stream denitrification is thought to be enhanced by hyporheic transport but there is little direct evidence from the field. To demonstrate at a field site, we injected 15NO3−, Br (conservative tracer), and SF6 (gas exchange tracer) and compared measured whole-stream denitrification with in situ hyporheic denitrification in shallow and deeper flow paths of contrasting geomorphic units. Hyporheic denitrification accounted for between 1 and 200% of whole-stream denitrification. The reaction rate constant was positively related to hyporheic exchange rate (greater substrate delivery), concentrations of substrates DOC and nitrate, microbial denitrifier abundance (nirS), and measures of granular surface area and presence of anoxic microzones. The dimensionless product of the reaction rate constant and hyporheic residence time, λhzτhz define a Damköhler number, Daden-hz that was optimal in the subset of hyporheic flow paths where Daden-hz ≈ 1. Optimal conditions exclude inefficient deep pathways transport where substrates are used up and also exclude inefficient shallow pathways that require repeated hyporheic entries and exits to complete the reaction. The whole-stream reaction significance, Rs (dimensionless), was quantified by multiplying Daden-hz by the proportion of stream discharge passing through the hyporheic zone. Together these two dimensionless metrics, one flow-path scale and the other reach-scale, quantify the whole-stream significance of hyporheic denitrification. One consequence is that the effective zone of significant denitrification often differs from the full depth of the hyporheic zone, which is one reason why whole-stream denitrification rates have not previously been explained based on total hyporheic-zone metrics such as hyporheic-zone size or residence time.
Directional hearing by linear summation of binaural inputs at the medial superior olive
van der Heijden, Marcel; Lorteije, Jeannette A. M.; Plauška, Andrius; Roberts, Michael T.; Golding, Nace L.; Borst, J. Gerard G.
2013-01-01
SUMMARY Neurons in the medial superior olive (MSO) enable sound localization by their remarkable sensitivity to submillisecond interaural time differences (ITDs). Each MSO neuron has its own “best ITD” to which it responds optimally. A difference in physical path length of the excitatory inputs from both ears cannot fully account for the ITD tuning of MSO neurons. As a result, it is still debated how these inputs interact and whether the segregation of inputs to opposite dendrites, well-timed synaptic inhibition, or asymmetries in synaptic potentials or cellular morphology further optimize coincidence detection or ITD tuning. Using in vivo whole-cell and juxtacellular recordings, we show here that ITD tuning of MSO neurons is determined by the timing of their excitatory inputs. The inputs from both ears sum linearly, whereas spike probability depends nonlinearly on the size of synaptic inputs. This simple coincidence detection scheme thus makes accurate sound localization possible. PMID:23764292
Three component vibrational time reversal communication
Anderson, Brian E.; Ulrich, Timothy J.; Ten Cate, James A.
2015-01-01
Time reversal provides an optimal prefilter matched signal to apply to a communication signal before signal transmission. Time reversal allows compensation for wave speed dispersion and can function well in reverberant environments. Time reversal can be used to focus elastic energy to each of the three components of motion independently. A pipe encased in concrete was used to demonstrate the ability to conduct communications of information using three component time reversal. Furthermore, the ability of time reversal to compensate for multi-path distortion (overcoming reverberation) will be demonstrated and the rate of signal communication will be presented. [The U.S. Department ofmore » Energy, through the LANL/LDRD Program, is gratefully acknowledged for supporting this work.]« less
A New Control Paradigm for Stochastic Differential Equations
NASA Astrophysics Data System (ADS)
Schmid, Matthias J. A.
This study presents a novel comprehensive approach to the control of dynamic systems under uncertainty governed by stochastic differential equations (SDEs). Large Deviations (LD) techniques are employed to arrive at a control law for a large class of nonlinear systems minimizing sample path deviations. Thereby, a paradigm shift is suggested from point-in-time to sample path statistics on function spaces. A suitable formal control framework which leverages embedded Freidlin-Wentzell theory is proposed and described in detail. This includes the precise definition of the control objective and comprises an accurate discussion of the adaptation of the Freidlin-Wentzell theorem to the particular situation. The new control design is enabled by the transformation of an ill-posed control objective into a well-conditioned sequential optimization problem. A direct numerical solution process is presented using quadratic programming, but the emphasis is on the development of a closed-form expression reflecting the asymptotic deviation probability of a particular nominal path. This is identified as the key factor in the success of the new paradigm. An approach employing the second variation and the differential curvature of the effective action is suggested for small deviation channels leading to the Jacobi field of the rate function and the subsequently introduced Jacobi field performance measure. This closed-form solution is utilized in combination with the supplied parametrization of the objective space. For the first time, this allows for an LD based control design applicable to a large class of nonlinear systems. Thus, Minimum Large Deviations (MLD) control is effectively established in a comprehensive structured framework. The construction of the new paradigm is completed by an optimality proof for the Jacobi field performance measure, an interpretive discussion, and a suggestion for efficient implementation. The potential of the new approach is exhibited by its extension to scalar systems subject to state-dependent noise and to systems of higher order. The suggested control paradigm is further advanced when a sequential application of MLD control is considered. This technique yields a nominal path corresponding to the minimum total deviation probability on the entire time domain. It is demonstrated that this sequential optimization concept can be unified in a single objective function which is revealed to be the Jacobi field performance index on the entire domain subject to an endpoint deviation. The emerging closed-form term replaces the previously required nested optimization and, thus, results in a highly efficient application-ready control design. This effectively substantiates Minimum Path Deviation (MPD) control. The proposed control paradigm allows the specific problem of stochastic cost control to be addressed as a special case. This new technique is employed within this study for the stochastic cost problem giving rise to Cost Constrained MPD (CCMPD) as well as to Minimum Quadratic Cost Deviation (MQCD) control. An exemplary treatment of a generic scalar nonlinear system subject to quadratic costs is performed for MQCD control to demonstrate the elementary expandability of the new control paradigm. This work concludes with a numerical evaluation of both MPD and CCMPD control for three exemplary benchmark problems. Numerical issues associated with the simulation of SDEs are briefly discussed and illustrated. The numerical examples furnish proof of the successful design. This study is complemented by a thorough review of statistical control methods, stochastic processes, Large Deviations techniques and the Freidlin-Wentzell theory, providing a comprehensive, self-contained account. The presentation of the mathematical tools and concepts is of a unique character, specifically addressing an engineering audience.
Optimizing the Compressive Strength of Strain-Hardenable Stretch-Formed Microtruss Architectures
NASA Astrophysics Data System (ADS)
Yu, Bosco; Abu Samk, Khaled; Hibbard, Glenn D.
2015-05-01
The mechanical performance of stretch-formed microtrusses is determined by both the internal strut architecture and the accumulated plastic strain during fabrication. The current study addresses the question of optimization, by taking into consideration the interdependency between fabrication path, material properties and architecture. Low carbon steel (AISI1006) and aluminum (AA3003) material systems were investigated experimentally, with good agreement between measured values and the analytical model. The compressive performance of the microtrusses was then optimized on a minimum weight basis under design constraints such as fixed starting sheet thickness and final microtruss height by satisfying the Karush-Kuhn-Tucker condition. The optimization results were summarized as carpet plots in order to meaningfully visualize the interdependency between architecture, microstructural state, and mechanical performance, enabling material and processing path selection.
Ascent trajectory optimization for stratospheric airship with thermal effects
NASA Astrophysics Data System (ADS)
Guo, Xiao; Zhu, Ming
2013-09-01
Ascent trajectory optimization with thermal effects is addressed for a stratospheric airship. Basic thermal characteristics of the stratospheric airship are introduced. Besides, the airship’s equations of motion are constructed by including the factors about aerodynamic force, added mass and wind profiles which are developed based on horizontal-wind model. For both minimum-time and minimum-energy flights during ascent, the trajectory optimization problem is described with the path and terminal constraints in different scenarios and then, is converted into a parameter optimization problem by a direct collocation method. Sparse Nonlinear OPTimizer(SNOPT) is employed as a nonlinear programming solver and two scenarios are adopted. The solutions obtained illustrate that the trajectories are greatly affected by the thermal behaviors which prolong the daytime minimum-time flights of about 20.8% compared with that of nighttime in scenario 1 and of about 10.5% in scenario 2. And there is the same trend for minimum-energy flights. For the energy consumption of minimum-time flights, 6% decrease is abstained in scenario 1 and 5% decrease in scenario 2. However, a few energy consumption reduction is achieved for minimum-energy flights. Solar radiation is the principal component and the natural wind also affects the thermal behaviors of stratospheric airship during ascent. The relationship between take-off time and performance of airship during ascent is discussed. it is found that the take-off time at dusk is best choice for stratospheric airship. And in addition, for saving energy, airship prefers to fly downwind.
A Comparison of Hybrid Approaches for Turbofan Engine Gas Path Fault Diagnosis
NASA Astrophysics Data System (ADS)
Lu, Feng; Wang, Yafan; Huang, Jinquan; Wang, Qihang
2016-09-01
A hybrid diagnostic method utilizing Extended Kalman Filter (EKF) and Adaptive Genetic Algorithm (AGA) is presented for performance degradation estimation and sensor anomaly detection of turbofan engine. The EKF is used to estimate engine component performance degradation for gas path fault diagnosis. The AGA is introduced in the integrated architecture and applied for sensor bias detection. The contributions of this work are the comparisons of Kalman Filters (KF)-AGA algorithms and Neural Networks (NN)-AGA algorithms with a unified framework for gas path fault diagnosis. The NN needs to be trained off-line with a large number of prior fault mode data. When new fault mode occurs, estimation accuracy by the NN evidently decreases. However, the application of the Linearized Kalman Filter (LKF) and EKF will not be restricted in such case. The crossover factor and the mutation factor are adapted to the fitness function at each generation in the AGA, and it consumes less time to search for the optimal sensor bias value compared to the Genetic Algorithm (GA). In a word, we conclude that the hybrid EKF-AGA algorithm is the best choice for gas path fault diagnosis of turbofan engine among the algorithms discussed.
Application of GA, PSO, and ACO algorithms to path planning of autonomous underwater vehicles
NASA Astrophysics Data System (ADS)
Aghababa, Mohammad Pourmahmood; Amrollahi, Mohammad Hossein; Borjkhani, Mehdi
2012-09-01
In this paper, an underwater vehicle was modeled with six dimensional nonlinear equations of motion, controlled by DC motors in all degrees of freedom. Near-optimal trajectories in an energetic environment for underwater vehicles were computed using a numerical solution of a nonlinear optimal control problem (NOCP). An energy performance index as a cost function, which should be minimized, was defined. The resulting problem was a two-point boundary value problem (TPBVP). A genetic algorithm (GA), particle swarm optimization (PSO), and ant colony optimization (ACO) algorithms were applied to solve the resulting TPBVP. Applying an Euler-Lagrange equation to the NOCP, a conjugate gradient penalty method was also adopted to solve the TPBVP. The problem of energetic environments, involving some energy sources, was discussed. Some near-optimal paths were found using a GA, PSO, and ACO algorithms. Finally, the problem of collision avoidance in an energetic environment was also taken into account.
SIMRAND I- SIMULATION OF RESEARCH AND DEVELOPMENT PROJECTS
NASA Technical Reports Server (NTRS)
Miles, R. F.
1994-01-01
The Simulation of Research and Development Projects program (SIMRAND) aids in the optimal allocation of R&D resources needed to achieve project goals. SIMRAND models the system subsets or project tasks as various network paths to a final goal. Each path is described in terms of task variables such as cost per hour, cost per unit, availability of resources, etc. Uncertainty is incorporated by treating task variables as probabilistic random variables. SIMRAND calculates the measure of preference for each alternative network. The networks yielding the highest utility function (or certainty equivalence) are then ranked as the optimal network paths. SIMRAND has been used in several economic potential studies at NASA's Jet Propulsion Laboratory involving solar dish power systems and photovoltaic array construction. However, any project having tasks which can be reduced to equations and related by measures of preference can be modeled. SIMRAND analysis consists of three phases: reduction, simulation, and evaluation. In the reduction phase, analytical techniques from probability theory and simulation techniques are used to reduce the complexity of the alternative networks. In the simulation phase, a Monte Carlo simulation is used to derive statistics on the variables of interest for each alternative network path. In the evaluation phase, the simulation statistics are compared and the networks are ranked in preference by a selected decision rule. The user must supply project subsystems in terms of equations based on variables (for example, parallel and series assembly line tasks in terms of number of items, cost factors, time limits, etc). The associated cumulative distribution functions and utility functions for each variable must also be provided (allowable upper and lower limits, group decision factors, etc). SIMRAND is written in Microsoft FORTRAN 77 for batch execution and has been implemented on an IBM PC series computer operating under DOS.
An Improved Simulated Annealing Technique for Enhanced Mobility in Smart Cities.
Amer, Hayder; Salman, Naveed; Hawes, Matthew; Chaqfeh, Moumena; Mihaylova, Lyudmila; Mayfield, Martin
2016-06-30
Vehicular traffic congestion is a significant problem that arises in many cities. This is due to the increasing number of vehicles that are driving on city roads of limited capacity. The vehicular congestion significantly impacts travel distance, travel time, fuel consumption and air pollution. Avoidance of traffic congestion and providing drivers with optimal paths are not trivial tasks. The key contribution of this work consists of the developed approach for dynamic calculation of optimal traffic routes. Two attributes (the average travel speed of the traffic and the roads' length) are utilized by the proposed method to find the optimal paths. The average travel speed values can be obtained from the sensors deployed in smart cities and communicated to vehicles via the Internet of Vehicles and roadside communication units. The performance of the proposed algorithm is compared to three other algorithms: the simulated annealing weighted sum, the simulated annealing technique for order preference by similarity to the ideal solution and the Dijkstra algorithm. The weighted sum and technique for order preference by similarity to the ideal solution methods are used to formulate different attributes in the simulated annealing cost function. According to the Sheffield scenario, simulation results show that the improved simulated annealing technique for order preference by similarity to the ideal solution method improves the traffic performance in the presence of congestion by an overall average of 19.22% in terms of travel time, fuel consumption and CO₂ emissions as compared to other algorithms; also, similar performance patterns were achieved for the Birmingham test scenario.
An Improved Simulated Annealing Technique for Enhanced Mobility in Smart Cities
Amer, Hayder; Salman, Naveed; Hawes, Matthew; Chaqfeh, Moumena; Mihaylova, Lyudmila; Mayfield, Martin
2016-01-01
Vehicular traffic congestion is a significant problem that arises in many cities. This is due to the increasing number of vehicles that are driving on city roads of limited capacity. The vehicular congestion significantly impacts travel distance, travel time, fuel consumption and air pollution. Avoidance of traffic congestion and providing drivers with optimal paths are not trivial tasks. The key contribution of this work consists of the developed approach for dynamic calculation of optimal traffic routes. Two attributes (the average travel speed of the traffic and the roads’ length) are utilized by the proposed method to find the optimal paths. The average travel speed values can be obtained from the sensors deployed in smart cities and communicated to vehicles via the Internet of Vehicles and roadside communication units. The performance of the proposed algorithm is compared to three other algorithms: the simulated annealing weighted sum, the simulated annealing technique for order preference by similarity to the ideal solution and the Dijkstra algorithm. The weighted sum and technique for order preference by similarity to the ideal solution methods are used to formulate different attributes in the simulated annealing cost function. According to the Sheffield scenario, simulation results show that the improved simulated annealing technique for order preference by similarity to the ideal solution method improves the traffic performance in the presence of congestion by an overall average of 19.22% in terms of travel time, fuel consumption and CO2 emissions as compared to other algorithms; also, similar performance patterns were achieved for the Birmingham test scenario. PMID:27376289
Cell transmission model of dynamic assignment for urban rail transit networks.
Xu, Guangming; Zhao, Shuo; Shi, Feng; Zhang, Feilian
2017-01-01
For urban rail transit network, the space-time flow distribution can play an important role in evaluating and optimizing the space-time resource allocation. For obtaining the space-time flow distribution without the restriction of schedules, a dynamic assignment problem is proposed based on the concept of continuous transmission. To solve the dynamic assignment problem, the cell transmission model is built for urban rail transit networks. The priority principle, queuing process, capacity constraints and congestion effects are considered in the cell transmission mechanism. Then an efficient method is designed to solve the shortest path for an urban rail network, which decreases the computing cost for solving the cell transmission model. The instantaneous dynamic user optimal state can be reached with the method of successive average. Many evaluation indexes of passenger flow can be generated, to provide effective support for the optimization of train schedules and the capacity evaluation for urban rail transit network. Finally, the model and its potential application are demonstrated via two numerical experiments using a small-scale network and the Beijing Metro network.
Upconverting nanoparticles for optimizing scintillator based detection systems
Kross, Brian; McKisson, John E; McKisson, John; Weisenberger, Andrew; Xi, Wenze; Zom, Carl
2013-09-17
An upconverting device for a scintillation detection system is provided. The detection system comprises a scintillator material, a sensor, a light transmission path between the scintillator material and the sensor, and a plurality of upconverting nanoparticles particles positioned in the light transmission path.
Collision avoidance for aircraft in abort landing
NASA Astrophysics Data System (ADS)
Mathwig, Jarret
We study the collision avoidance between two aircraft flying in the same vertical plane: a host aircraft on a glide path and an intruder aircraft on a horizontal trajectory below that of the host aircraft and heading in the opposite direction. Assuming that the intruder aircraft is uncooperative, the host aircraft executes an optimal abort landing maneuver: it applies maximum thrust setting and maximum angle of attack lifting the flight path over the original path, thereby increasing the timewise minimum distance between the two aircraft and, in this way, avoiding the potential collision. In the presence of weak constraints on the aircraft and/or the environment, the angle of attack must be brought to the maximum value and kept there until the maximin point is reached. On the other hand, in the presence of strong constraints on the aircraft and the environment, desaturation of the angle of attack might have to take place before the maximin point is reached. This thesis includes four parts. In the first part, after an introduction and review of the available literature, we reformulate and solve the one-subarc Chebyshev maximin problem as a two-subarc Bolza-Pontryagin problem in which the avoidance and the recovery maneuvers are treated simultaneously. In the second part, we develop a guidance scheme (gamma guidance) capable of approximating the optimal trajectory in real time. In the third part, we present the algorithms employed to solve the one-subarc and two-subarc problems. In the fourth part, we decompose the two-subarc Bolza-Pontryagin problem into two one-subarc problems: the avoidance problem and the recovery problem, to be solved in sequence; remarkably, for problems where the ratio of total maneuver time to avoidance time is sufficiently large (≥5), this simplified procedure predicts accurately the location of the maximin point as well as the maximin distance.
NASA Astrophysics Data System (ADS)
Li, Xiang
2016-10-01
Blood glucose monitoring is of great importance for controlling diabetes procedure and preventing the complications. At present, the clinical blood glucose concentration measurement is invasive and could be replaced by noninvasive spectroscopy analytical techniques. Among various parameters of optical fiber probe used in spectrum measuring, the measurement distance is the key one. The Monte Carlo technique is a flexible method for simulating light propagation in tissue. The simulation is based on the random walks that photons make as they travel through tissue, which are chosen by statistically sampling the probability distributions for step size and angular deflection per scattering event. The traditional method for determine the optimal distance between transmitting fiber and detector is using Monte Carlo simulation to find out the point where most photons come out. But there is a problem. In the epidermal layer there is no artery, vein or capillary vessel. Thus, when photons propagate and interactive with tissue in epidermal layer, no information is given to the photons. A new criterion is proposed to determine the optimal distance, which is named effective path length in this paper. The path length of each photons travelling in dermis is recorded when running Monte-Carlo simulation, which is the effective path length defined above. The sum of effective path length of every photon at each point is calculated. The detector should be place on the point which has most effective path length. Then the optimal measuring distance between transmitting fiber and detector is determined.
Sampling-Based Coverage Path Planning for Complex 3D Structures
2012-09-01
one such task, in which a single robot must sweep its end effector over the entirety of a known workspace. For two-dimensional environments, optimal...structures. First, we introduce a new algorithm for planning feasible coverage paths. It is more computationally efficient in problems of complex geometry...iteratively shortens and smooths a feasible coverage path; robot configurations are adjusted without violating any coverage con- straints. Third, we propose
Application of ant colony algorithm in path planning of the data center room robot
NASA Astrophysics Data System (ADS)
Wang, Yong; Ma, Jianming; Wang, Ying
2017-05-01
According to the Internet Data Center (IDC) room patrol robot as the background, the robot in the search path of autonomous obstacle avoidance and path planning ability, worked out in advance of the robot room patrol mission. The simulation experimental results show that the improved ant colony algorithm for IDC room patrol robot obstacle avoidance planning, makes the robot along an optimal or suboptimal and safe obstacle avoidance path to reach the target point to complete the task. To prove the feasibility of the method.
Rain rate duration statistics derived from the Mid-Atlantic coast rain gauge network
NASA Technical Reports Server (NTRS)
Goldhirsh, Julius
1993-01-01
A rain gauge network comprised of 10 tipping bucket rain gauges located in the Mid-Atlantic coast of the United States has been in continuous operation since June 1, 1986. Rain rate distributions and estimated slant path fade distributions at 20 GHz and 30 GHz covering the first five year period were derived from the gauge network measurements, and these results were described by Goldhirsh. In this effort, rain rate time duration statistics are presented. The rain duration statistics are of interest for better understanding the physical nature of precipitation and to present a data base which may be used by modelers to convert to slant path fade duration statistics. Such statistics are important for better assessing optimal coding procedures over defined bandwidths.
NASA Astrophysics Data System (ADS)
Reifarth, R.; Dababneh, S.; Fiebiger, S.; Glorius, J.; Göbel, K.; Heil, M.; Hillmann, P.; Heftrich, T.; Langer, C.; Meusel, O.; Plag, R.; Schmidt, S.; Slavkovská, Z.; Veltum, D.; Weigand, M.; Wiesner, C.; Wolf, C.; Zadeh, A.
2018-01-01
The neutron capture cross section of radioactive isotopes for neutron energies in the keV region will be measured by a time-of-flight (TOF) experiment. NAUTILUS will provide a unique facility realizing the TOF technique with an ultra-short flight path at the FRANZ setup at Goethe-University Frankfurt am Main, Germany. A highly optimized spherical photon calorimeter will be built and installed at an ultra-short flight path. This new method allows the measurement of neutron capture cross sections on extremely small sample as needed in the case of 85Kr, which will be produced as an isotopically pure radioactive sample. The successful measurement will provide insights into the dynamics of the late stages of stars, an important independent check of the evolution of the Universe and the proof of principle.
Optimizing a mobile robot control system using GPU acceleration
NASA Astrophysics Data System (ADS)
Tuck, Nat; McGuinness, Michael; Martin, Fred
2012-01-01
This paper describes our attempt to optimize a robot control program for the Intelligent Ground Vehicle Competition (IGVC) by running computationally intensive portions of the system on a commodity graphics processing unit (GPU). The IGVC Autonomous Challenge requires a control program that performs a number of different computationally intensive tasks ranging from computer vision to path planning. For the 2011 competition our Robot Operating System (ROS) based control system would not run comfortably on the multicore CPU on our custom robot platform. The process of profiling the ROS control program and selecting appropriate modules for porting to run on a GPU is described. A GPU-targeting compiler, Bacon, is used to speed up development and help optimize the ported modules. The impact of the ported modules on overall performance is discussed. We conclude that GPU optimization can free a significant amount of CPU resources with minimal effort for expensive user-written code, but that replacing heavily-optimized library functions is more difficult, and a much less efficient use of time.
NASA Astrophysics Data System (ADS)
Guex, Guillaume
2016-05-01
In recent articles about graphs, different models proposed a formalism to find a type of path between two nodes, the source and the target, at crossroads between the shortest-path and the random-walk path. These models include a freely adjustable parameter, allowing to tune the behavior of the path toward randomized movements or direct routes. This article presents a natural generalization of these models, namely a model with multiple sources and targets. In this context, source nodes can be viewed as locations with a supply of a certain good (e.g. people, money, information) and target nodes as locations with a demand of the same good. An algorithm is constructed to display the flow of goods in the network between sources and targets. With again a freely adjustable parameter, this flow can be tuned to follow routes of minimum cost, thus displaying the flow in the context of the optimal transportation problem or, by contrast, a random flow, known to be similar to the electrical current flow if the random-walk is reversible. Moreover, a source-targetcoupling can be retrieved from this flow, offering an optimal assignment to the transportation problem. This algorithm is described in the first part of this article and then illustrated with case studies.
Homography-based control scheme for mobile robots with nonholonomic and field-of-view constraints.
López-Nicolás, Gonzalo; Gans, Nicholas R; Bhattacharya, Sourabh; Sagüés, Carlos; Guerrero, Josechu J; Hutchinson, Seth
2010-08-01
In this paper, we present a visual servo controller that effects optimal paths for a nonholonomic differential drive robot with field-of-view constraints imposed by the vision system. The control scheme relies on the computation of homographies between current and goal images, but unlike previous homography-based methods, it does not use the homography to compute estimates of pose parameters. Instead, the control laws are directly expressed in terms of individual entries in the homography matrix. In particular, we develop individual control laws for the three path classes that define the language of optimal paths: rotations, straight-line segments, and logarithmic spirals. These control laws, as well as the switching conditions that define how to sequence path segments, are defined in terms of the entries of homography matrices. The selection of the corresponding control law requires the homography decomposition before starting the navigation. We provide a controllability and stability analysis for our system and give experimental results.
Effective use of congestion in complex networks
NASA Astrophysics Data System (ADS)
Echagüe, Juan; Cholvi, Vicent; Kowalski, Dariusz R.
2018-03-01
In this paper, we introduce a congestion-aware routing protocol that selects the paths according to the congestion of nodes in the network. The aim is twofold: on one hand, and in order to prevent the networks from collapsing, it provides a good tolerance to nodes' overloads; on the other hand, and in order to guarantee efficient communication, it also incentivize the routes to follow short paths. We analyze the performance of our proposed routing strategy by means of a series of experiments carried out by using simulations. We show that it provides a tolerance to collapse close to the optimal value. Furthermore, the average length of the paths behaves optimally up to the certain value of packet generation rate ρ and it grows in a linear fashion with the increase of ρ.
NASA Technical Reports Server (NTRS)
Sadovsky, A. V.; Davis, D.; Isaacson, D. R.
2012-01-01
We address the problem of navigating a set of moving agents, e.g. automated guided vehicles, through a transportation network so as to bring each agent to its destination at a specified time. Each pair of agents is required to be separated by a minimal distance, generally agent-dependent, at all times. The speed range, initial position, required destination, and required time of arrival at destination for each agent are assumed provided. The movement of each agent is governed by a controlled differential equation (state equation). The problem consists in choosing for each agent a path and a control strategy so as to meet the constraints and reach the destination at the required time. This problem arises in various fields of transportation, including Air Traffic Management and train coordination, and in robotics. The main contribution of the paper is a model that allows to recast this problem as a decoupled collection of problems in classical optimal control and is easily generalized to the case when inertia cannot be neglected. Some qualitative insight into solution behavior is obtained using the Pontryagin Maximum Principle. Sample numerical solutions are computed using a numerical optimal control solver.
Path-space variational inference for non-equilibrium coarse-grained systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmandaris, Vagelis, E-mail: harman@uoc.gr; Institute of Applied and Computational Mathematics; Kalligiannaki, Evangelia, E-mail: ekalligian@tem.uoc.gr
In this paper we discuss information-theoretic tools for obtaining optimized coarse-grained molecular models for both equilibrium and non-equilibrium molecular simulations. The latter are ubiquitous in physicochemical and biological applications, where they are typically associated with coupling mechanisms, multi-physics and/or boundary conditions. In general the non-equilibrium steady states are not known explicitly as they do not necessarily have a Gibbs structure. The presented approach can compare microscopic behavior of molecular systems to parametric and non-parametric coarse-grained models using the relative entropy between distributions on the path space and setting up a corresponding path-space variational inference problem. The methods can become entirelymore » data-driven when the microscopic dynamics are replaced with corresponding correlated data in the form of time series. Furthermore, we present connections and generalizations of force matching methods in coarse-graining with path-space information methods. We demonstrate the enhanced transferability of information-based parameterizations to different observables, at a specific thermodynamic point, due to information inequalities. We discuss methodological connections between information-based coarse-graining of molecular systems and variational inference methods primarily developed in the machine learning community. However, we note that the work presented here addresses variational inference for correlated time series due to the focus on dynamics. The applicability of the proposed methods is demonstrated on high-dimensional stochastic processes given by overdamped and driven Langevin dynamics of interacting particles.« less
Optimal output fast feedback in two-time scale control of flexible arms
NASA Technical Reports Server (NTRS)
Siciliano, B.; Calise, A. J.; Jonnalagadda, V. R. P.
1986-01-01
Control of lightweight flexible arms moving along predefined paths can be successfully synthesized on the basis of a two-time scale approach. A model following control can be designed for the reduced order slow subsystem. The fast subsystem is a linear system in which the slow variables act as parameters. The flexible fast variables which model the deflections of the arm along the trajectory can be sensed through strain gage measurements. For full state feedback design the derivatives of the deflections need to be estimated. The main contribution of this work is the design of an output feedback controller which includes a fixed order dynamic compensator, based on a recent convergent numerical algorithm for calculating LQ optimal gains. The design procedure is tested by means of simulation results for the one link flexible arm prototype in the laboratory.
An optimization model for metabolic pathways.
Planes, F J; Beasley, J E
2009-10-15
Different mathematical methods have emerged in the post-genomic era to determine metabolic pathways. These methods can be divided into stoichiometric methods and path finding methods. In this paper we detail a novel optimization model, based upon integer linear programming, to determine metabolic pathways. Our model links reaction stoichiometry with path finding in a single approach. We test the ability of our model to determine 40 annotated Escherichia coli metabolic pathways. We show that our model is able to determine 36 of these 40 pathways in a computationally effective manner.
Tool path strategy and cutting process monitoring in intelligent machining
NASA Astrophysics Data System (ADS)
Chen, Ming; Wang, Chengdong; An, Qinglong; Ming, Weiwei
2018-06-01
Intelligent machining is a current focus in advanced manufacturing technology, and is characterized by high accuracy and efficiency. A central technology of intelligent machining—the cutting process online monitoring and optimization—is urgently needed for mass production. In this research, the cutting process online monitoring and optimization in jet engine impeller machining, cranio-maxillofacial surgery, and hydraulic servo valve deburring are introduced as examples of intelligent machining. Results show that intelligent tool path optimization and cutting process online monitoring are efficient techniques for improving the efficiency, quality, and reliability of machining.
NASA Astrophysics Data System (ADS)
Grinyok, A.; Boychuk, I.; Perelygin, D.; Dantsevich, I.
2018-03-01
A complex method of the simulation and production design of open rotor propellers was studied. An end-to-end diagram was proposed for the evaluating, designing and experimental testing the optimal geometry of the propeller surface, for the machine control path generation as well as for simulating the cutting zone force condition and its relationship with the treatment accuracy which was defined by the propeller elastic deformation. The simulation data provided the realization of the combined automated path control of the cutting tool.
NASA Astrophysics Data System (ADS)
Zhou, Wei-Xing; Sornette, Didier
2007-07-01
We have recently introduced the “thermal optimal path” (TOP) method to investigate the real-time lead-lag structure between two time series. The TOP method consists in searching for a robust noise-averaged optimal path of the distance matrix along which the two time series have the greatest similarity. Here, we generalize the TOP method by introducing a more general definition of distance which takes into account possible regime shifts between positive and negative correlations. This generalization to track possible changes of correlation signs is able to identify possible transitions from one convention (or consensus) to another. Numerical simulations on synthetic time series verify that the new TOP method performs as expected even in the presence of substantial noise. We then apply it to investigate changes of convention in the dependence structure between the historical volatilities of the USA inflation rate and economic growth rate. Several measures show that the new TOP method significantly outperforms standard cross-correlation methods.
Path to Market for Compact Modular Fusion Power Cores
NASA Astrophysics Data System (ADS)
Woodruff, Simon; Baerny, Jennifer K.; Mattor, Nathan; Stoulil, Don; Miller, Ronald; Marston, Theodore
2012-08-01
The benefits of an energy source whose reactants are plentiful and whose products are benign is hard to measure, but at no time in history has this energy source been more needed. Nuclear fusion continues to promise to be this energy source. However, the path to market for fusion systems is still regularly a matter for long-term (20 + year) plans. This white paper is intended to stimulate discussion of faster commercialization paths, distilling guidance from investors, utilities, and the wider energy research community (including from ARPA-E). There is great interest in a small modular fusion system that can be developed quickly and inexpensively. A simple model shows how compact modular fusion can produce a low cost development path by optimizing traditional systems that burn deuterium and tritium, operating not only at high magnetic field strength, but also by omitting some components that allow for the core to become more compact and easier to maintain. The dominant hurdles to the development of low cost, practical fusion systems are discussed, primarily in terms of the constraints placed on the cost of development stages in the private sector. The main finding presented here is that the bridge from DOE Office of Science to the energy market can come at the Proof of Principle development stage, providing the concept is sufficiently compact and inexpensive that its development allows for a normal technology commercialization path.
NASA Astrophysics Data System (ADS)
Noble, Jack H.; Warren, Frank M.; Labadie, Robert F.; Dawant, Benoit; Fitzpatrick, J. Michael
2007-03-01
In cochlear implant surgery an electrode array is permanently implanted to stimulate the auditory nerve and allow deaf people to hear. Current surgical techniques require wide excavation of the mastoid region of the temporal bone and one to three hours time to avoid damage to vital structures. Recently a far less invasive approach has been proposed-percutaneous cochlear access, in which a single hole is drilled from skull surface to the cochlea. The drill path is determined by attaching a fiducial system to the patient's skull and then choosing, on a pre-operative CT, an entry point and a target point. The drill is advanced to the target, the electrodes placed through the hole, and a stimulator implanted at the surface of the skull. The major challenge is the determination of a safe and effective drill path, which with high probability avoids specific vital structures-the facial nerve, the ossicles, and the external ear canal-and arrives at the basal turn of the cochlea. These four features lie within a few millimeters of each other, the drill is one millimeter in diameter, and errors in the determination of the target position are on the order of 0.5mm root-mean square. Thus, path selection is both difficult and critical to the success of the surgery. This paper presents a method for finding optimally safe and effective paths while accounting for target positioning error.
NASA Astrophysics Data System (ADS)
Farano, Mirko; Cherubini, Stefania; Robinet, Jean-Christophe; De Palma, Pietro
2016-12-01
Subcritical transition in plane Poiseuille flow is investigated by means of a Lagrange-multiplier direct-adjoint optimization procedure with the aim of finding localized three-dimensional perturbations optimally growing in a given time interval (target time). Space localization of these optimal perturbations (OPs) is achieved by choosing as objective function either a p-norm (with p\\gg 1) of the perturbation energy density in a linear framework; or the classical (1-norm) perturbation energy, including nonlinear effects. This work aims at analyzing the structure of linear and nonlinear localized OPs for Poiseuille flow, and comparing their transition thresholds and scenarios. The nonlinear optimization approach provides three types of solutions: a weakly nonlinear, a hairpin-like and a highly nonlinear optimal perturbation, depending on the value of the initial energy and the target time. The former shows localization only in the wall-normal direction, whereas the latter appears much more localized and breaks the spanwise symmetry found at lower target times. Both solutions show spanwise inclined vortices and large values of the streamwise component of velocity already at the initial time. On the other hand, p-norm optimal perturbations, although being strongly localized in space, keep a shape similar to linear 1-norm optimal perturbations, showing streamwise-aligned vortices characterized by low values of the streamwise velocity component. When used for initializing direct numerical simulations, in most of the cases nonlinear OPs provide the most efficient route to transition in terms of time to transition and initial energy, even when they are less localized in space than the p-norm OP. The p-norm OP follows a transition path similar to the oblique transition scenario, with slightly oscillating streaks which saturate and eventually experience secondary instability. On the other hand, the nonlinear OP rapidly forms large-amplitude bent streaks and skips the phases of streak saturation, providing a contemporary growth of all of the velocity components due to strong nonlinear coupling.
ELASTIC NET FOR COX'S PROPORTIONAL HAZARDS MODEL WITH A SOLUTION PATH ALGORITHM.
Wu, Yichao
2012-01-01
For least squares regression, Efron et al. (2004) proposed an efficient solution path algorithm, the least angle regression (LAR). They showed that a slight modification of the LAR leads to the whole LASSO solution path. Both the LAR and LASSO solution paths are piecewise linear. Recently Wu (2011) extended the LAR to generalized linear models and the quasi-likelihood method. In this work we extend the LAR further to handle Cox's proportional hazards model. The goal is to develop a solution path algorithm for the elastic net penalty (Zou and Hastie (2005)) in Cox's proportional hazards model. This goal is achieved in two steps. First we extend the LAR to optimizing the log partial likelihood plus a fixed small ridge term. Then we define a path modification, which leads to the solution path of the elastic net regularized log partial likelihood. Our solution path is exact and piecewise determined by ordinary differential equation systems.
Mirrorless lasing from light emitters in percolating clusters
NASA Astrophysics Data System (ADS)
Burlak, Gennadiy; Rubo, Y. G.
2015-07-01
We describe the lasing effect in the three-dimensional percolation system, where the percolating cluster is filled by active media composed by light emitters excited noncoherently. We show that, due to the presence of a topologically nontrivial photonic structure, the stimulated emission is modified with respect to both conventional and random lasers. The time dynamics and spectra of the lasing output are studied numerically with finite-difference time-domain approach. The Fermat principle and Monte Carlo approach are applied to characterize the optimal optical path and interconnection between the radiating emitters. The spatial structure of the laser mode is found by a long-time FDTD simulation.
Hedged Monte-Carlo: low variance derivative pricing with objective probabilities
NASA Astrophysics Data System (ADS)
Potters, Marc; Bouchaud, Jean-Philippe; Sestovic, Dragan
2001-01-01
We propose a new ‘hedged’ Monte-Carlo ( HMC) method to price financial derivatives, which allows to determine simultaneously the optimal hedge. The inclusion of the optimal hedging strategy allows one to reduce the financial risk associated with option trading, and for the very same reason reduces considerably the variance of our HMC scheme as compared to previous methods. The explicit accounting of the hedging cost naturally converts the objective probability into the ‘risk-neutral’ one. This allows a consistent use of purely historical time series to price derivatives and obtain their residual risk. The method can be used to price a large class of exotic options, including those with path dependent and early exercise features.
NASA Astrophysics Data System (ADS)
Doerr, Timothy P.; Alves, Gelio; Yu, Yi-Kuo
2005-08-01
Typical combinatorial optimizations are NP-hard; however, for a particular class of cost functions the corresponding combinatorial optimizations can be solved in polynomial time using the transfer matrix technique or, equivalently, the dynamic programming approach. This suggests a way to efficiently find approximate solutions-find a transformation that makes the cost function as similar as possible to that of the solvable class. After keeping many high-ranking solutions using the approximate cost function, one may then re-assess these solutions with the full cost function to find the best approximate solution. Under this approach, it is important to be able to assess the quality of the solutions obtained, e.g., by finding the true ranking of the kth best approximate solution when all possible solutions are considered exhaustively. To tackle this statistical issue, we provide a systematic method starting with a scaling function generated from the finite number of high-ranking solutions followed by a convergent iterative mapping. This method, useful in a variant of the directed paths in random media problem proposed here, can also provide a statistical significance assessment for one of the most important proteomic tasks-peptide sequencing using tandem mass spectrometry data. For directed paths in random media, the scaling function depends on the particular realization of randomness; in the mass spectrometry case, the scaling function is spectrum-specific.
Integration of geospatial multi-mode transportation Systems in Kuala Lumpur
NASA Astrophysics Data System (ADS)
Ismail, M. A.; Said, M. N.
2014-06-01
Public transportation serves people with mobility and accessibility to workplaces, health facilities, community resources, and recreational areas across the country. Development in the application of Geographical Information Systems (GIS) to transportation problems represents one of the most important areas of GIS-technology today. To show the importance of GIS network analysis, this paper highlights the determination of the optimal path between two or more destinations based on multi-mode concepts. The abstract connector is introduced in this research as an approach to integrate urban public transportation in Kuala Lumpur, Malaysia including facilities such as Light Rapid Transit (LRT), Keretapi Tanah Melayu (KTM) Komuter, Express Rail Link (ERL), KL Monorail, road driving as well as pedestrian modes into a single intelligent data model. To assist such analysis, ArcGIS's Network Analyst functions are used whereby the final output includes the total distance, total travelled time, directional maps produced to find the quickest, shortest paths, and closest facilities based on either time or distance impedance for multi-mode route analysis.
Real-Time Flight Path Optimization for Tracking Stop-and-Go Targets with Micro Air Vehicles
2008-03-01
Guard with jealous attention the public liberty. Suspect everyone who approaches that jewel.” Patrick Henry “It is a universal...Kestrel autopilot. Given a known airspeed (from pitot -static data) and GPS ground speed, the wind speed and direction can be readily derived. Wind...automatically without any input from the user. Because the wind data is derived from GPS and pitot - static data, it is calculated onboard the autopilot and is
Development of a parameter optimization technique for the design of automatic control systems
NASA Technical Reports Server (NTRS)
Whitaker, P. H.
1977-01-01
Parameter optimization techniques for the design of linear automatic control systems that are applicable to both continuous and digital systems are described. The model performance index is used as the optimization criterion because of the physical insight that can be attached to it. The design emphasis is to start with the simplest system configuration that experience indicates would be practical. Design parameters are specified, and a digital computer program is used to select that set of parameter values which minimizes the performance index. The resulting design is examined, and complexity, through the use of more complex information processing or more feedback paths, is added only if performance fails to meet operational specifications. System performance specifications are assumed to be such that the desired step function time response of the system can be inferred.
Evolvable Neuronal Paths: A Novel Basis for Information and Search in the Brain
Fernando, Chrisantha; Vasas, Vera; Szathmáry, Eörs; Husbands, Phil
2011-01-01
We propose a previously unrecognized kind of informational entity in the brain that is capable of acting as the basis for unlimited hereditary variation in neuronal networks. This unit is a path of activity through a network of neurons, analogous to a path taken through a hidden Markov model. To prove in principle the capabilities of this new kind of informational substrate, we show how a population of paths can be used as the hereditary material for a neuronally implemented genetic algorithm, (the swiss-army knife of black-box optimization techniques) which we have proposed elsewhere could operate at somatic timescales in the brain. We compare this to the same genetic algorithm that uses a standard ‘genetic’ informational substrate, i.e. non-overlapping discrete genotypes, on a range of optimization problems. A path evolution algorithm (PEA) is defined as any algorithm that implements natural selection of paths in a network substrate. A PEA is a previously unrecognized type of natural selection that is well suited for implementation by biological neuronal networks with structural plasticity. The important similarities and differences between a standard genetic algorithm and a PEA are considered. Whilst most experiments are conducted on an abstract network model, at the conclusion of the paper a slightly more realistic neuronal implementation of a PEA is outlined based on Izhikevich spiking neurons. Finally, experimental predictions are made for the identification of such informational paths in the brain. PMID:21887266
Sensory feedback in a bump attractor model of path integration.
Poll, Daniel B; Nguyen, Khanh; Kilpatrick, Zachary P
2016-04-01
Mammalian spatial navigation systems utilize several different sensory information channels. This information is converted into a neural code that represents the animal's current position in space by engaging place cell, grid cell, and head direction cell networks. In particular, sensory landmark (allothetic) cues can be utilized in concert with an animal's knowledge of its own velocity (idiothetic) cues to generate a more accurate representation of position than path integration provides on its own (Battaglia et al. The Journal of Neuroscience 24(19):4541-4550 (2004)). We develop a computational model that merges path integration with feedback from external sensory cues that provide a reliable representation of spatial position along an annular track. Starting with a continuous bump attractor model, we explore the impact of synaptic spatial asymmetry and heterogeneity, which disrupt the position code of the path integration process. We use asymptotic analysis to reduce the bump attractor model to a single scalar equation whose potential represents the impact of asymmetry and heterogeneity. Such imperfections cause errors to build up when the network performs path integration, but these errors can be corrected by an external control signal representing the effects of sensory cues. We demonstrate that there is an optimal strength and decay rate of the control signal when cues appear either periodically or randomly. A similar analysis is performed when errors in path integration arise from dynamic noise fluctuations. Again, there is an optimal strength and decay of discrete control that minimizes the path integration error.
Wu, Shaobo; Chou, Wusheng; Niu, Jianwei; Guizani, Mohsen
2018-03-18
Wireless sensor networks (WSNs) involve more mobile elements with their widespread development in industries. Exploiting mobility present in WSNs for data collection can effectively improve the network performance. However, when the sink (i.e., data collector) path is fixed and the movement is uncontrollable, existing schemes fail to guarantee delay requirements while achieving high energy efficiency. This paper proposes a delay-aware energy-efficient routing algorithm for WSNs with a path-fixed mobile sink, named DERM, which can strike a desirable balance between the delivery latency and energy conservation. We characterize the object of DERM as realizing the energy-optimal anycast to time-varying destination regions, and introduce a location-based forwarding technique tailored for this problem. To reduce the control overhead, a lightweight sink location calibration method is devised, which cooperates with the rough estimation based on the mobility pattern to determine the sink location. We also design a fault-tolerant mechanism called track routing to tackle location errors for ensuring reliable and on-time data delivery. We comprehensively evaluate DERM by comparing it with two canonical routing schemes and a baseline solution presented in this work. Extensive evaluation results demonstrate that DERM can provide considerable energy savings while meeting the delay constraint and maintaining a high delivery ratio.
Wu, Shaobo; Chou, Wusheng; Niu, Jianwei; Guizani, Mohsen
2018-01-01
Wireless sensor networks (WSNs) involve more mobile elements with their widespread development in industries. Exploiting mobility present in WSNs for data collection can effectively improve the network performance. However, when the sink (i.e., data collector) path is fixed and the movement is uncontrollable, existing schemes fail to guarantee delay requirements while achieving high energy efficiency. This paper proposes a delay-aware energy-efficient routing algorithm for WSNs with a path-fixed mobile sink, named DERM, which can strike a desirable balance between the delivery latency and energy conservation. We characterize the object of DERM as realizing the energy-optimal anycast to time-varying destination regions, and introduce a location-based forwarding technique tailored for this problem. To reduce the control overhead, a lightweight sink location calibration method is devised, which cooperates with the rough estimation based on the mobility pattern to determine the sink location. We also design a fault-tolerant mechanism called track routing to tackle location errors for ensuring reliable and on-time data delivery. We comprehensively evaluate DERM by comparing it with two canonical routing schemes and a baseline solution presented in this work. Extensive evaluation results demonstrate that DERM can provide considerable energy savings while meeting the delay constraint and maintaining a high delivery ratio. PMID:29562628
Li, Tianlong; Chang, Xiaocong; Wu, Zhiguang; Li, Jinxing; Shao, Guangbin; Deng, Xinghong; Qiu, Jianbin; Guo, Bin; Zhang, Guangyu; He, Qiang; Li, Longqiu; Wang, Joseph
2017-09-26
Self-propelled micro- and nanoscale robots represent a rapidly emerging and fascinating robotics research area. However, designing autonomous and adaptive control systems for operating micro/nanorobotics in complex and dynamically changing environments, which is a highly demanding feature, is still an unmet challenge. Here we describe a smart microvehicle for precise autonomous navigation in complicated environments and traffic scenarios. The fully autonomous navigation system of the smart microvehicle is composed of a microscope-coupled CCD camera, an artificial intelligence planner, and a magnetic field generator. The microscope-coupled CCD camera provides real-time localization of the chemically powered Janus microsphere vehicle and environmental detection for path planning to generate optimal collision-free routes, while the moving direction of the microrobot toward a reference position is determined by the external electromagnetic torque. Real-time object detection offers adaptive path planning in response to dynamically changing environments. We demonstrate that the autonomous navigation system can guide the vehicle movement in complex patterns, in the presence of dynamically changing obstacles, and in complex biological environments. Such a navigation system for micro/nanoscale vehicles, relying on vision-based close-loop control and path planning, is highly promising for their autonomous operation in complex dynamic settings and unpredictable scenarios expected in a variety of realistic nanoscale scenarios.
Tao, Lei; Sun, Kang; Khan, M Amir; Miller, David J; Zondlo, Mark A
2012-12-17
A compact and portable open-path sensor for simultaneous detection of atmospheric N(2)O and CO has been developed with a 4.5 μm quantum cascade laser (QCL). An in-line acetylene (C(2)H(2)) gas reference cell allows for continuous monitoring of the sensor drift and calibration in rapidly changing field environments and thereby allows for open-path detection at high precision and stability. Wavelength modulation spectroscopy (WMS) is used to detect simultaneously both the second and fourth harmonic absorption spectra with an optimized dual modulation amplitude scheme. Multi-harmonic spectra containing atmospheric N(2)O, CO, and the reference C(2)H(2) signals are fit in real-time (10 Hz) by combining a software-based lock-in amplifier with a computationally fast numerical model for WMS. The sensor consumes ~50 W of power and has a mass of ~15 kg. Precision of 0.15 ppbv N(2)O and 0.36 ppbv CO at 10 Hz under laboratory conditions was demonstrated. The sensor has been deployed for extended periods in the field. Simultaneous N(2)O and CO measurements distinguished between natural and fossil fuel combustion sources of N(2)O, an important greenhouse gas with poorly quantified emissions in space and time.
Memory-efficient dynamic programming backtrace and pairwise local sequence alignment.
Newberg, Lee A
2008-08-15
A backtrace through a dynamic programming algorithm's intermediate results in search of an optimal path, or to sample paths according to an implied probability distribution, or as the second stage of a forward-backward algorithm, is a task of fundamental importance in computational biology. When there is insufficient space to store all intermediate results in high-speed memory (e.g. cache) existing approaches store selected stages of the computation, and recompute missing values from these checkpoints on an as-needed basis. Here we present an optimal checkpointing strategy, and demonstrate its utility with pairwise local sequence alignment of sequences of length 10,000. Sample C++-code for optimal backtrace is available in the Supplementary Materials. Supplementary data is available at Bioinformatics online.
Optimal transfers between libration-point orbits in the elliptic restricted three-body problem
NASA Astrophysics Data System (ADS)
Hiday, Lisa Ann
1992-09-01
A strategy is formulated to design optimal impulsive transfers between three-dimensional libration-point orbits in the vicinity of the interior L(1) libration point of the Sun-Earth/Moon barycenter system. Two methods of constructing nominal transfers, for which the fuel cost is to be minimized, are developed; both inferior and superior transfers between two halo orbits are considered. The necessary conditions for an optimal transfer trajectory are stated in terms of the primer vector. The adjoint equation relating reference and perturbed trajectories in this formulation of the elliptic restricted three-body problem is shown to be distinctly different from that obtained in the analysis of trajectories in the two-body problem. Criteria are established whereby the cost on a nominal transfer can be improved by the addition of an interior impulse or by the implementation of coastal arcs in the initial and final orbits. The necessary conditions for the local optimality of a time-fixed transfer trajectory possessing additional impulses are satisfied by requiring continuity of the Hamiltonian and the derivative of the primer vector at all interior impulses. The optimality of a time-free transfer containing coastal arcs is surmised by examination of the slopes at the endpoints of a plot of the magnitude of the primer vector over the duration of the transfer path. If the initial and final slopes of the primer magnitude are zero, the transfer trajectory is optimal; otherwise, the execution of coasts is warranted. The position and timing of each interior impulse applied to a time-fixed transfer as well as the direction and length of coastal periods implemented on a time-free transfer are specified by the unconstrained minimization of the appropriate variation in cost utilizing a multivariable search technique. Although optimal solutions in some instances are elusive, the time-fixed and time-free optimization algorithms prove to be very successful in diminishing costs on nominal transfer trajectories. The inclusion of coastal arcs on time-free superior and inferior transfers results in significant modification of the transfer time of flight caused by shifts in departure and arrival locations on the halo orbits.
Safe Maritime Autonomous Path Planning in a High Sea State
NASA Technical Reports Server (NTRS)
Ono, Masahiro; Quadrelli, Marco; Huntsberger, Terrance L.
2014-01-01
This paper presents a path planning method for sea surface vehicles that prevents capsizing and bow-diving in a high sea-state. A key idea is to use response amplitude operators (RAOs) or, in control terminology, the transfer functions from a sea state to a vessel's motion, in order to find a set of speeds and headings that results in excessive pitch and roll oscillations. This information is translated to arithmetic constraints on the ship's velocity, which are passed to a model predictive control (MPC)-based path planner to find a safe and optimal path that achieves specified goals. An obstacle avoidance capability is also added to the path planner. The proposed method is demonstrated by simulations.
Trajectory Generation and Path Planning for Autonomous Aerobots
NASA Technical Reports Server (NTRS)
Sharma, Shivanjli; Kulczycki, Eric A.; Elfes, Alberto
2007-01-01
This paper presents global path planning algorithms for the Titan aerobot based on user defined waypoints in 2D and 3D space. The algorithms were implemented using information obtained through a planner user interface. The trajectory planning algorithms were designed to accurately represent the aerobot's characteristics, such as minimum turning radius. Additionally, trajectory planning techniques were implemented to allow for surveying of a planar area based solely on camera fields of view, airship altitude, and the location of the planar area's perimeter. The developed paths allow for planar navigation and three-dimensional path planning. These calculated trajectories are optimized to produce the shortest possible path while still remaining within realistic bounds of airship dynamics.
Visual environment recognition for robot path planning using template matched filters
NASA Astrophysics Data System (ADS)
Orozco-Rosas, Ulises; Picos, Kenia; Díaz-Ramírez, Víctor H.; Montiel, Oscar; Sepúlveda, Roberto
2017-08-01
A visual approach in environment recognition for robot navigation is proposed. This work includes a template matching filtering technique to detect obstacles and feasible paths using a single camera to sense a cluttered environment. In this problem statement, a robot can move from the start to the goal by choosing a single path between multiple possible ways. In order to generate an efficient and safe path for mobile robot navigation, the proposal employs a pseudo-bacterial potential field algorithm to derive optimal potential field functions using evolutionary computation. Simulation results are evaluated in synthetic and real scenes in terms of accuracy of environment recognition and efficiency of path planning computation.
Multicutter machining of compound parametric surfaces
NASA Astrophysics Data System (ADS)
Hatna, Abdelmadjid; Grieve, R. J.; Broomhead, P.
2000-10-01
Parametric free forms are used in industries as disparate as footwear, toys, sporting goods, ceramics, digital content creation, and conceptual design. Optimizing tool path patterns and minimizing the total machining time is a primordial issue in numerically controlled (NC) machining of free form surfaces. We demonstrate in the present work that multi-cutter machining can achieve as much as 60% reduction in total machining time for compound sculptured surfaces. The given approach is based upon the pre-processing as opposed to the usual post-processing of surfaces for the detection and removal of interference followed by precise tracking of unmachined areas.
Path Planning for Robot based on Chaotic Artificial Potential Field Method
NASA Astrophysics Data System (ADS)
Zhang, Cheng
2018-03-01
Robot path planning in unknown environments is one of the hot research topics in the field of robot control. Aiming at the shortcomings of traditional artificial potential field methods, we propose a new path planning for Robot based on chaotic artificial potential field method. The path planning adopts the potential function as the objective function and introduces the robot direction of movement as the control variables, which combines the improved artificial potential field method with chaotic optimization algorithm. Simulations have been carried out and the results demonstrate that the superior practicality and high efficiency of the proposed method.
Li, Bai; Gong, Li-gang; Yang, Wen-lun
2014-01-01
Unmanned combat aerial vehicles (UCAVs) have been of great interest to military organizations throughout the world due to their outstanding capabilities to operate in dangerous or hazardous environments. UCAV path planning aims to obtain an optimal flight route with the threats and constraints in the combat field well considered. In this work, a novel artificial bee colony (ABC) algorithm improved by a balance-evolution strategy (BES) is applied in this optimization scheme. In this new algorithm, convergence information during the iteration is fully utilized to manipulate the exploration/exploitation accuracy and to pursue a balance between local exploitation and global exploration capabilities. Simulation results confirm that BE-ABC algorithm is more competent for the UCAV path planning scheme than the conventional ABC algorithm and two other state-of-the-art modified ABC algorithms.
Optimizing concentration of shifter additive for plastic scintillators of different size
NASA Astrophysics Data System (ADS)
Adadurov, A. F.; Zhmurin, P. N.; Lebedev, V. N.; Titskaya, V. D.
2009-02-01
This paper concerns the influence of wavelength shifting (secondary) luminescent additive (LA 2) on the light yield of polystyrene-based plastic scintillator (PS) taking self-absorption into account. Calculations of light yield dependence on concentration of 1.4-bis(2-(5-phenyloxazolyl)-benzene (POPOP) as LA 2 were made for various path lengths of photons in PS. It is shown that there is an optimal POPOP concentration ( Copt), which provides a maximum light yield for a given path length. This optimal concentration is determined by the competition of luminescence and self-reflection processes. Copt values were calculated for PS of different dimensions. For small PS, Copt≈0.02%, which agree with a common (standard) value of POPOP concentration. For higher PS dimensions, the optimal POPOP concentration is decreased (to Copt≈0.006% for 320×30×2 cm sample), reducing the light yield from PS by almost 35%.
AC signal characterization for optimization of a CMOS single-electron pump
NASA Astrophysics Data System (ADS)
Murray, Roy; Perron, Justin K.; Stewart, M. D., Jr.; Zimmerman, Neil M.
2018-02-01
Pumping single electrons at a set rate is being widely pursued as an electrical current standard. Semiconductor charge pumps have been pursued in a variety of modes, including single gate ratchet, a variety of 2-gate ratchet pumps, and 2-gate turnstiles. Whether pumping with one or two AC signals, lower error rates can result from better knowledge of the properties of the AC signal at the device. In this work, we operated a CMOS single-electron pump with a 2-gate ratchet style measurement and used the results to characterize and optimize our two AC signals. Fitting this data at various frequencies revealed both a difference in signal path length and attenuation between our two AC lines. Using this data, we corrected for the difference in signal path length and attenuation by applying an offset in both the phase and the amplitude at the signal generator. Operating the device as a turnstile while using the optimized parameters determined from the 2-gate ratchet measurement led to much flatter, more robust charge pumping plateaus. This method was useful in tuning our device up for optimal charge pumping, and may prove useful to the semiconductor quantum dot community to determine signal attenuation and path differences at the device.
NASA Astrophysics Data System (ADS)
Rowell, S.; Popov, A. A.; Meijaard, J. P.
2010-04-01
The response of a motorcycle is heavily dependent on the rider's control actions, and consequently a means of replicating the rider's behaviour provides an important extension to motorcycle dynamics. The primary objective here is to develop effective path-following simulations and to understand how riders control motorcycles. Optimal control theory is applied to the tracking of roadway by a motorcycle, using a non-linear motorcycle model operating in free control by steering torque input. A path-following controller with road preview is designed by minimising tracking errors and control effort. Tight controls with high weightings on performance and loose controls with high weightings on control power are defined. Special attention is paid to the modelling of multipoint preview in local and global coordinate systems. The controller model is simulated over a standard single lane-change manoeuvre. It is argued that the local coordinates point of view is more representative of the way that a human rider operates and interprets information. The simulations suggest that for accurate path following, using optimal control, the problem must be solved by the local coordinates approach in order to achieve accurate results with short preview horizons. Furthermore, some weaknesses of the optimal control approach are highlighted here.
Mission Adaptive Uas Capabilities for Earth Science and Resource Assessment
NASA Astrophysics Data System (ADS)
Dunagan, S.; Fladeland, M.; Ippolito, C.; Knudson, M.; Young, Z.
2015-04-01
Unmanned aircraft systems (UAS) are important assets for accessing high risk airspace and incorporate technologies for sensor coordination, onboard processing, tele-communication, unconventional flight control, and ground based monitoring and optimization. These capabilities permit adaptive mission management in the face of complex requirements and chaotic external influences. NASA Ames Research Center has led a number of Earth science remote sensing missions directed at the assessment of natural resources and here we describe two resource mapping problems having mission characteristics requiring a mission adaptive capability extensible to other resource assessment challenges. One example involves the requirement for careful control over solar angle geometry for passive reflectance measurements. This constraint exists when collecting imaging spectroscopy data over vegetation for time series analysis or for the coastal ocean where solar angle combines with sea state to produce surface glint that can obscure the signal. Furthermore, the primary flight control imperative to minimize tracking error should compromise with the requirement to minimize aircraft motion artifacts in the spatial measurement distribution. A second example involves mapping of natural resources in the Earth's crust using precision magnetometry. In this case the vehicle flight path must be oriented to optimize magnetic flux gradients over a spatial domain having continually emerging features, while optimizing the efficiency of the spatial mapping task. These requirements were highlighted in recent Earth Science missions including the OCEANIA mission directed at improving the capability for spectral and radiometric reflectance measurements in the coastal ocean, and the Surprise Valley Mission directed at mapping sub-surface mineral composition and faults, using high-sensitivity magnetometry. This paper reports the development of specific aircraft control approaches to incorporate the unusual and demanding requirements to manage solar angle, aircraft attitude and flight path orientation, and efficient (directly geo-rectified) surface and sub-surface mapping, including the near-time optimization of these sometimes competing requirements.
Optimizing surveillance for livestock disease spreading through animal movements
Bajardi, Paolo; Barrat, Alain; Savini, Lara; Colizza, Vittoria
2012-01-01
The spatial propagation of many livestock infectious diseases critically depends on the animal movements among premises; so the knowledge of movement data may help us to detect, manage and control an outbreak. The identification of robust spreading features of the system is however hampered by the temporal dimension characterizing population interactions through movements. Traditional centrality measures do not provide relevant information as results strongly fluctuate in time and outbreak properties heavily depend on geotemporal initial conditions. By focusing on the case study of cattle displacements in Italy, we aim at characterizing livestock epidemics in terms of robust features useful for planning and control, to deal with temporal fluctuations, sensitivity to initial conditions and missing information during an outbreak. Through spatial disease simulations, we detect spreading paths that are stable across different initial conditions, allowing the clustering of the seeds and reducing the epidemic variability. Paths also allow us to identify premises, called sentinels, having a large probability of being infected and providing critical information on the outbreak origin, as encoded in the clusters. This novel procedure provides a general framework that can be applied to specific diseases, for aiding risk assessment analysis and informing the design of optimal surveillance systems. PMID:22728387
NASA Astrophysics Data System (ADS)
Wibowo, Y. T.; Baskoro, S. Y.; Manurung, V. A. T.
2018-02-01
Plastic based products spread all over the world in many aspects of life. The ability to substitute other materials is getting stronger and wider. The use of plastic materials increases and become unavoidable. Plastic based mass production requires injection process as well Mold. The milling process of plastic mold steel material was done using HSS End Mill cutting tool that is widely used in a small and medium enterprise for the reason of its ability to be re sharpened and relatively inexpensive. Study on the effect of the geometry tool states that it has an important effect on the quality improvement. Cutting speed, feed rate, depth of cut and radii are input parameters beside to the tool path strategy. This paper aims to investigate input parameter and cutting tools behaviors within some different tool path strategy. For the reason of experiments efficiency Taguchi method and ANOVA were used. Response studied is surface roughness and cutting behaviors. By achieving the expected quality, no more additional process is required. Finally, the optimal combination of machining parameters will deliver the expected roughness and of course totally reduced cutting time. However actually, SMEs do not optimally use this data for cost reduction.
The Modeling of Advanced BWR Fuel Designs with the NRC Fuel Depletion Codes PARCS/PATHS
Ward, Andrew; Downar, Thomas J.; Xu, Y.; ...
2015-04-22
The PATHS (PARCS Advanced Thermal Hydraulic Solver) code was developed at the University of Michigan in support of U.S. Nuclear Regulatory Commission research to solve the steady-state, two-phase, thermal-hydraulic equations for a boiling water reactor (BWR) and to provide thermal-hydraulic feedback for BWR depletion calculations with the neutronics code PARCS (Purdue Advanced Reactor Core Simulator). The simplified solution methodology, including a three-equation drift flux formulation and an optimized iteration scheme, yields very fast run times in comparison to conventional thermal-hydraulic systems codes used in the industry, while still retaining sufficient accuracy for applications such as BWR depletion calculations. Lastly, themore » capability to model advanced BWR fuel designs with part-length fuel rods and heterogeneous axial channel flow geometry has been implemented in PATHS, and the code has been validated against previously benchmarked advanced core simulators as well as BWR plant and experimental data. We describe the modifications to the codes and the results of the validation in this paper.« less
Improving the resolution for Lamb wave testing via a smoothed Capon algorithm
NASA Astrophysics Data System (ADS)
Cao, Xuwei; Zeng, Liang; Lin, Jing; Hua, Jiadong
2018-04-01
Lamb wave testing is promising for damage detection and evaluation in large-area structures. The dispersion of Lamb waves is often unavoidable, restricting testing resolution and making the signal hard to interpret. A smoothed Capon algorithm is proposed in this paper to estimate the accurate path length of each wave packet. In the algorithm, frequency domain whitening is firstly used to obtain the transfer function in the bandwidth of the excitation pulse. Subsequently, wavenumber domain smoothing is employed to reduce the correlation between wave packets. Finally, the path lengths are determined by distance domain searching based on the Capon algorithm. Simulations are applied to optimize the number of smoothing times. Experiments are performed on an aluminum plate consisting of two simulated defects. The results demonstrate that spatial resolution is improved significantly by the proposed algorithm.
NASA Astrophysics Data System (ADS)
Dhurandhar, S. V.; Ni, W.-T.; Wang, G.
2013-01-01
In order to attain the requisite sensitivity for LISA, laser frequency noise must be suppressed below the secondary noises such as the optical path noise, acceleration noise etc. In a previous paper (Dhurandhar, S.V., Nayak, K.R., Vinet, J.-Y. Time delay interferometry for LISA with one arm dysfunctional. Class. Quantum Grav. 27, 135013, 2010), we have found a large family of second-generation analytic solutions of time delay interferometry with one arm dysfunctional, and we also estimated the laser noise due to residual time-delay semi-analytically from orbit perturbations due to Earth. Since other planets and solar-system bodies also perturb the orbits of LISA spacecraft and affect the time delay interferometry (TDI), we simulate the time delay numerically in this paper for all solutions with the generation number n ⩽ 3. We have worked out a set of 3-year optimized mission orbits of LISA spacecraft starting at January 1, 2021 using the CGC2.7 ephemeris framework. We then use this numerical solution to calculate the residual optical path differences in the second-generation solutions of our previous paper, and compare with the semi-analytic error estimate. The accuracy of this calculation is better than 1 cm (or 30 ps). The maximum path length difference, for all configuration calculated, is below 1 m (3 ns). This is well below the limit under which the laser frequency noise is required to be suppressed. The numerical simulation in this paper can be applied to other space-borne interferometers for gravitational wave detection with the simplification of having only one interferometer.
Thermodynamics fundamentals of energy conversion
NASA Astrophysics Data System (ADS)
Dan, Nicolae
The work reported in the chapters 1-5 focuses on the fundamentals of heat transfer, fluid dynamics, thermodynamics and electrical phenomena related to the conversion of one form of energy to another. Chapter 6 is a re-examination of the fundamental heat transfer problem of how to connect a finite-size heat generating volume to a concentrated sink. Chapter 1 extends to electrical machines the combined thermodynamics and heat transfer optimization approach that has been developed for heat engines. The conversion efficiency at maximum power is 1/2. When, as in specific applications, the operating temperature of windings must not exceed a specified level, the power output is lower and efficiency higher. Chapter 2 addresses the fundamental problem of determining the optimal history (regime of operation) of a battery so that the work output is maximum. Chapters 3 and 4 report the energy conversion aspects of an expanding mixture of hot particles, steam and liquid water. At the elemental level, steam annuli develop around the spherical drops as time increases. At the mixture level, the density decreases while the pressure and velocity increases. Chapter 4 describes numerically, based on the finite element method, the time evolution of the expanding mixture of hot spherical particles, steam and water. The fluid particles are moved in time in a Lagrangian manner to simulate the change of the domain configuration. Chapter 5 describes the process of thermal interaction between the molten material and water. In the second part of the chapter the model accounts for the irreversibility due to the flow of the mixture through the cracks of the mixing vessel. The approach presented in this chapter is based on exergy analysis and represents a departure from the line of inquiry that was followed in chapters 3-4. Chapter 6 shows that the geometry of the heat flow path between a volume and one point can be optimized in two fundamentally different ways. In the "growth" method the structure is optimized starting from the smallest volume element of fixed size. In "design" method the overall volume is fixed, and the designer works "inward" by increasing the internal complexity of the paths for heat flow.
Note: Ultrasonic gas flowmeter based on optimized time-of-flight algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, X. F.; Tang, Z. A.
2011-04-15
A new digital signal processor based single path ultrasonic gas flowmeter is designed, constructed, and experimentally tested. To achieve high accuracy measurements, an optimized ultrasound driven method of incorporation of the amplitude modulation and the phase modulation of the transmit-receive technique is used to stimulate the transmitter. Based on the regularities among the received envelope zero-crossings, different received signal's signal-to-noise ratio situations are discriminated and optional time-of-flight algorithms are applied to take flow rate calculations. Experimental results from the dry calibration indicate that the designed flowmeter prototype can meet the zero-flow verification test requirements of the American Gas Association Reportmore » No. 9. Furthermore, the results derived from the flow calibration prove that the proposed flowmeter prototype can measure flow rate accurately in the practical experiments, and the nominal accuracies after FWME adjustment are lower than 0.8% throughout the calibration range.« less
The United States Army Medical Department Journal. July - September 2011
2011-09-01
compliance. Figure 1. Functional schematic of the flow path and treatment stages of the water treatment plant. Basin 5 Basin 4 Basin 3 Basin 2...that hindered optimal performance of the WTP. They were the flocculation treatment process and flow distribution through the WTP. Flocculation...designed to simulate the WTP at a flow of 1.5 MGD (the flow through the WTP at the time of jar testing). Jar test samples were collected after
Echolocating bats use a nearly time-optimal strategy to intercept prey.
Ghose, Kaushik; Horiuchi, Timothy K; Krishnaprasad, P S; Moss, Cynthia F
2006-05-01
Acquisition of food in many animal species depends on the pursuit and capture of moving prey. Among modern humans, the pursuit and interception of moving targets plays a central role in a variety of sports, such as tennis, football, Frisbee, and baseball. Studies of target pursuit in animals, ranging from dragonflies to fish and dogs to humans, have suggested that they all use a constant bearing (CB) strategy to pursue prey or other moving targets. CB is best known as the interception strategy employed by baseball outfielders to catch ballistic fly balls. CB is a time-optimal solution to catch targets moving along a straight line, or in a predictable fashion--such as a ballistic baseball, or a piece of food sinking in water. Many animals, however, have to capture prey that may make evasive and unpredictable maneuvers. Is CB an optimum solution to pursuing erratically moving targets? Do animals faced with such erratic prey also use CB? In this paper, we address these questions by studying prey capture in an insectivorous echolocating bat. Echolocating bats rely on sonar to pursue and capture flying insects. The bat's prey may emerge from foliage for a brief time, fly in erratic three-dimensional paths before returning to cover. Bats typically take less than one second to detect, localize and capture such insects. We used high speed stereo infra-red videography to study the three dimensional flight paths of the big brown bat, Eptesicus fuscus, as it chased erratically moving insects in a dark laboratory flight room. We quantified the bat's complex pursuit trajectories using a simple delay differential equation. Our analysis of the pursuit trajectories suggests that bats use a constant absolute target direction strategy during pursuit. We show mathematically that, unlike CB, this approach minimizes the time it takes for a pursuer to intercept an unpredictably moving target. Interestingly, the bat's behavior is similar to the interception strategy implemented in some guided missiles. We suggest that the time-optimal strategy adopted by the bat is in response to the evolutionary pressures of having to capture erratic and fast moving insects.
An estimate of the shadow price of water in the southern Ogallala Aquifer
USDA-ARS?s Scientific Manuscript database
In this paper, we attempt to quantify the shadow price of an additional inch of groundwater resource left in situ for the Southern Ogallala Aquifer. Previous authors have shown the degree to which the optimal resource extraction path may diverge from the competitive extraction path based upon varyin...
Terrain Following Control Based on an Optimized Spline Model of Aircraft Motion
1975-11-01
constraints, a smooth path through the final data points may not satisfy the norma acceleration constraints between sample points. This latter assertion is...for the reference path in the table. Sae copromise betwen the two effects is required. The accelerations given in Table 7-2 are those measured at the
Computation of rare transitions in the barotropic quasi-geostrophic equations
NASA Astrophysics Data System (ADS)
Laurie, Jason; Bouchet, Freddy
2015-01-01
We investigate the theoretical and numerical computation of rare transitions in simple geophysical turbulent models. We consider the barotropic quasi-geostrophic and two-dimensional Navier-Stokes equations in regimes where bistability between two coexisting large-scale attractors exist. By means of large deviations and instanton theory with the use of an Onsager-Machlup path integral formalism for the transition probability, we show how one can directly compute the most probable transition path between two coexisting attractors analytically in an equilibrium (Langevin) framework and numerically otherwise. We adapt a class of numerical optimization algorithms known as minimum action methods to simple geophysical turbulent models. We show that by numerically minimizing an appropriate action functional in a large deviation limit, one can predict the most likely transition path for a rare transition between two states. By considering examples where theoretical predictions can be made, we show that the minimum action method successfully predicts the most likely transition path. Finally, we discuss the application and extension of such numerical optimization schemes to the computation of rare transitions observed in direct numerical simulations and experiments and to other, more complex, turbulent systems.
Unraveling the Processing Parameters in Friction Stir Welding
NASA Technical Reports Server (NTRS)
Schneider, Judy; Nunes, Arthur C., Jr.
2005-01-01
In friction stir welding (FSW), a rotating threaded pin tool is translated along a weld seam, literally stirring the edges of the seam together. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path or paths is required. In this study, various markers are used to trace the flow paths of the metal. X-ray radiographs record the segmentation and position of the wire. Several variations in the trajectories can be differentiated within the weld zone.
Cooperative 3D Path Optimization (C3PO) Simulation
2015-11-10
is the starting point for the path. As branches are added, they are checked to make sure they meet the requirements that the unmanned vehicle (UV...tune the maximum branch size for the tree to get longer branches. It makes sense that in open space this would lead to smaller (by number of nodes...starting with very high maximum branch size and gradually make it smaller as suitable paths can’t be found. The authors would also like to try this
Optimal path planning for video-guided smart munitions via multitarget tracking
NASA Astrophysics Data System (ADS)
Borkowski, Jeffrey M.; Vasquez, Juan R.
2006-05-01
An advent in the development of smart munitions entails autonomously modifying target selection during flight in order to maximize the value of the target being destroyed. A unique guidance law can be constructed that exploits both attribute and kinematic data obtained from an onboard video sensor. An optimal path planning algorithm has been developed with the goals of obstacle avoidance and maximizing the value of the target impacted by the munition. Target identification and classification provides a basis for target value which is used in conjunction with multi-target tracks to determine an optimal waypoint for the munition. A dynamically feasible trajectory is computed to provide constraints on the waypoint selection. Results demonstrate the ability of the autonomous system to avoid moving obstacles and revise target selection in flight.
ELASTIC NET FOR COX’S PROPORTIONAL HAZARDS MODEL WITH A SOLUTION PATH ALGORITHM
Wu, Yichao
2012-01-01
For least squares regression, Efron et al. (2004) proposed an efficient solution path algorithm, the least angle regression (LAR). They showed that a slight modification of the LAR leads to the whole LASSO solution path. Both the LAR and LASSO solution paths are piecewise linear. Recently Wu (2011) extended the LAR to generalized linear models and the quasi-likelihood method. In this work we extend the LAR further to handle Cox’s proportional hazards model. The goal is to develop a solution path algorithm for the elastic net penalty (Zou and Hastie (2005)) in Cox’s proportional hazards model. This goal is achieved in two steps. First we extend the LAR to optimizing the log partial likelihood plus a fixed small ridge term. Then we define a path modification, which leads to the solution path of the elastic net regularized log partial likelihood. Our solution path is exact and piecewise determined by ordinary differential equation systems. PMID:23226932
Exploring 3D optimal channel networks by multiple organizing principles
NASA Astrophysics Data System (ADS)
Mason, Emanuele; Bizzi, Simone; Cominola, Andrea; Castelletti, Andrea; Paik, Kyungrock
2017-04-01
Catchment topography and flow networks are shaped by the interactions of water and sediment across various spatial and temporal scales. The complexity of these processes hinders the development of models able to assess the validity of general principles governing such phenomena. The theory of Optimal Channel Networks (OCNs) proved that it is possible to generate drainage networks statistically comparable to those observed in nature by minimizing the energy spent by the water flowing through them. So far, the OCN theory has been developed for planar 2D domains, assuming equal energy expenditure per unit area of channel and, correspondingly, a constant slope-discharge relationship. In this work, we apply the OCN theory to 3D problems by introducing a multi-principle minimization starting from an artificial digital elevation model of pyramidal shape. The OCN theory assumption of constant slope-area relationship is relaxed and embedded into a second-order principle. The modelled 3D channel networks achieve lower total energy expenditure corresponding to 2D sub-optimal OCNs bound to specific slope-area relationships. This is the first time we are able to explore accessible 3D OCNs starting from a general DEM. By contrasting the modelled 3D OCNs and natural river networks, we found statistical similarities of two indexes, namely the area exponent index and the profile concavity index. Among the wide range of alternative and sub-optimal river networks, a minimum degree of 3D network organization is found to guarantee the indexes values within the natural range. These networks simultaneously possess topological and topographic properties of real river networks. We found a pivotal functional link between slope-area relationship and accessible sub-optimal 2D river network paths, which suggests that geological and climate conditions producing slope-area relationships in natural basins co-determine the degree of optimality of accessible network paths.
Optimal control of quantum rings by terahertz laser pulses.
Räsänen, E; Castro, A; Werschnik, J; Rubio, A; Gross, E K U
2007-04-13
Complete control of single-electron states in a two-dimensional semiconductor quantum-ring model is established, opening a path into coherent laser-driven single-gate qubits. The control scheme is developed in the framework of optimal-control theory for laser pulses of two-component polarization. In terms of pulse lengths and target-state occupations, the scheme is shown to be superior to conventional control methods that exploit Rabi oscillations generated by uniform circularly polarized pulses. Current-carrying states in a quantum ring can be used to manipulate a two-level subsystem at the ring center. Combining our results, we propose a realistic approach to construct a laser-driven single-gate qubit that has switching times in the terahertz regime.
Inverse optimal self-tuning PID control design for an autonomous underwater vehicle
NASA Astrophysics Data System (ADS)
Rout, Raja; Subudhi, Bidyadhar
2017-01-01
This paper presents a new approach to path following control design for an autonomous underwater vehicle (AUV). A NARMAX model of the AUV is derived first and then its parameters are adapted online using the recursive extended least square algorithm. An adaptive Propotional-Integral-Derivative (PID) controller is developed using the derived parameters to accomplish the path following task of an AUV. The gain parameters of the PID controller are tuned using an inverse optimal control technique, which alleviates the problem of solving Hamilton-Jacobian equation and also satisfies an error cost function. Simulation studies were pursued to verify the efficacy of the proposed control algorithm. From the obtained results, it is envisaged that the proposed NARMAX model-based self-tuning adaptive PID control provides good path following performance even in the presence of uncertainty arising due to ocean current or hydrodynamic parameter.
Feedback laws for fuel minimization for transport aircraft
NASA Technical Reports Server (NTRS)
Price, D. B.; Gracey, C.
1984-01-01
The Theoretical Mechanics Branch has as one of its long-range goals to work toward solving real-time trajectory optimization problems on board an aircraft. This is a generic problem that has application to all aspects of aviation from general aviation through commercial to military. Overall interest is in the generic problem, but specific problems to achieve concrete results are examined. The problem is to develop control laws that generate approximately optimal trajectories with respect to some criteria such as minimum time, minimum fuel, or some combination of the two. These laws must be simple enough to be implemented on a computer that is flown on board an aircraft, which implies a major simplification from the two point boundary value problem generated by a standard trajectory optimization problem. In addition, the control laws allow for changes in end conditions during the flight, and changes in weather along a planned flight path. Therefore, a feedback control law that generates commands based on the current state rather than a precomputed open-loop control law is desired. This requirement, along with the need for order reduction, argues for the application of singular perturbation techniques.
Real-time energy-saving metro train rescheduling with primary delay identification
Li, Keping; Schonfeld, Paul
2018-01-01
This paper aims to reschedule online metro trains in delay scenarios. A graph representation and a mixed integer programming model are proposed to formulate the optimization problem. The solution approach is a two-stage optimization method. In the first stage, based on a proposed train state graph and system analysis, the primary and flow-on delays are specifically analyzed and identified with a critical path algorithm. For the second stage a hybrid genetic algorithm is designed to optimize the schedule, with the delay identification results as input. Then, based on the infrastructure data of Beijing Subway Line 4 of China, case studies are presented to demonstrate the effectiveness and efficiency of the solution approach. The results show that the algorithm can quickly and accurately identify primary delays among different types of delays. The economic cost of energy consumption and total delay is considerably reduced (by more than 10% in each case). The computation time of the Hybrid-GA is low enough for rescheduling online. Sensitivity analyses further demonstrate that the proposed approach can be used as a decision-making support tool for operators. PMID:29474471
Local and global dynamics of Ramsey model: From continuous to discrete time.
Guzowska, Malgorzata; Michetti, Elisabetta
2018-05-01
The choice of time as a discrete or continuous variable may radically affect equilibrium stability in an endogenous growth model with durable consumption. In the continuous-time Ramsey model [F. P. Ramsey, Econ. J. 38(152), 543-559 (1928)], the steady state is locally saddle-path stable with monotonic convergence. However, in the discrete-time version, the steady state may be unstable or saddle-path stable with monotonic or oscillatory convergence or periodic solutions [see R.-A. Dana et al., Handbook on Optimal Growth 1 (Springer, 2006) and G. Sorger, Working Paper No. 1505 (2015)]. When this occurs, the discrete-time counterpart of the continuous-time model is not consistent with the initial framework. In order to obtain a discrete-time Ramsey model preserving the main properties of the continuous-time counterpart, we use a general backward and forward discretisation as initially proposed by Bosi and Ragot [Theor. Econ. Lett. 2(1), 10-15 (2012)]. The main result of the study here presented is that, with this hybrid discretisation method, fixed points and local dynamics do not change. For what it concerns global dynamics, i.e., long-run behavior for initial conditions taken on the state space, we mainly perform numerical analysis with the main scope of comparing both qualitative and quantitative evolution of the two systems, also varying some parameters of interest.
Local and global dynamics of Ramsey model: From continuous to discrete time
NASA Astrophysics Data System (ADS)
Guzowska, Malgorzata; Michetti, Elisabetta
2018-05-01
The choice of time as a discrete or continuous variable may radically affect equilibrium stability in an endogenous growth model with durable consumption. In the continuous-time Ramsey model [F. P. Ramsey, Econ. J. 38(152), 543-559 (1928)], the steady state is locally saddle-path stable with monotonic convergence. However, in the discrete-time version, the steady state may be unstable or saddle-path stable with monotonic or oscillatory convergence or periodic solutions [see R.-A. Dana et al., Handbook on Optimal Growth 1 (Springer, 2006) and G. Sorger, Working Paper No. 1505 (2015)]. When this occurs, the discrete-time counterpart of the continuous-time model is not consistent with the initial framework. In order to obtain a discrete-time Ramsey model preserving the main properties of the continuous-time counterpart, we use a general backward and forward discretisation as initially proposed by Bosi and Ragot [Theor. Econ. Lett. 2(1), 10-15 (2012)]. The main result of the study here presented is that, with this hybrid discretisation method, fixed points and local dynamics do not change. For what it concerns global dynamics, i.e., long-run behavior for initial conditions taken on the state space, we mainly perform numerical analysis with the main scope of comparing both qualitative and quantitative evolution of the two systems, also varying some parameters of interest.
Buschbaum, Jan; Fremd, Rainer; Pohlemann, Tim; Kristen, Alexander
2017-08-01
Reduction is a crucial step in the surgical treatment of bone fractures. Finding an optimal path for restoring anatomical alignment is considered technically demanding because collisions as well as high forces caused by surrounding soft tissues can avoid desired reduction movements. The repetition of reduction movements leads to a trial-and-error process which causes a prolonged duration of surgery. By planning an appropriate reduction path-an optimal sequence of target-directed movements-these problems should be overcome. For this purpose, a computer-based method has been developed. Using the example of simple femoral shaft fractures, 3D models are generated out of CT images. A reposition algorithm aligns both fragments by reconstructing their broken edges. According to the criteria of a deduced planning strategy, a modified A*-algorithm searches collision-free route of minimal force from the dislocated into the computed target position. Muscular forces are considered using a musculoskeletal reduction model (OpenSim model), and bone collisions are detected by an appropriate method. Five femoral SYNBONE models were broken into different fracture classification types and were automatically reduced from ten randomly selected displaced positions. Highest mean translational and rotational error for achieving target alignment is [Formula: see text] and [Formula: see text]. Mean value and standard deviation of occurring forces are [Formula: see text] for M. tensor fasciae latae and [Formula: see text] for M. semitendinosus over all trials. These pathways are precise, collision-free, required forces are minimized, and thus regarded as optimal paths. A novel method for planning reduction paths under consideration of collisions and muscular forces is introduced. The results deliver additional knowledge for an appropriate tactical reduction procedure and can provide a basis for further navigated or robotic-assisted developments.
Graph drawing using tabu search coupled with path relinking.
Dib, Fadi K; Rodgers, Peter
2018-01-01
Graph drawing, or the automatic layout of graphs, is a challenging problem. There are several search based methods for graph drawing which are based on optimizing an objective function which is formed from a weighted sum of multiple criteria. In this paper, we propose a new neighbourhood search method which uses a tabu search coupled with path relinking to optimize such objective functions for general graph layouts with undirected straight lines. To our knowledge, before our work, neither of these methods have been previously used in general multi-criteria graph drawing. Tabu search uses a memory list to speed up searching by avoiding previously tested solutions, while the path relinking method generates new solutions by exploring paths that connect high quality solutions. We use path relinking periodically within the tabu search procedure to speed up the identification of good solutions. We have evaluated our new method against the commonly used neighbourhood search optimization techniques: hill climbing and simulated annealing. Our evaluation examines the quality of the graph layout (objective function's value) and the speed of layout in terms of the number of evaluated solutions required to draw a graph. We also examine the relative scalability of each method. Our experimental results were applied to both random graphs and a real-world dataset. We show that our method outperforms both hill climbing and simulated annealing by producing a better layout in a lower number of evaluated solutions. In addition, we demonstrate that our method has greater scalability as it can layout larger graphs than the state-of-the-art neighbourhood search methods. Finally, we show that similar results can be produced in a real world setting by testing our method against a standard public graph dataset.
Graph drawing using tabu search coupled with path relinking
Rodgers, Peter
2018-01-01
Graph drawing, or the automatic layout of graphs, is a challenging problem. There are several search based methods for graph drawing which are based on optimizing an objective function which is formed from a weighted sum of multiple criteria. In this paper, we propose a new neighbourhood search method which uses a tabu search coupled with path relinking to optimize such objective functions for general graph layouts with undirected straight lines. To our knowledge, before our work, neither of these methods have been previously used in general multi-criteria graph drawing. Tabu search uses a memory list to speed up searching by avoiding previously tested solutions, while the path relinking method generates new solutions by exploring paths that connect high quality solutions. We use path relinking periodically within the tabu search procedure to speed up the identification of good solutions. We have evaluated our new method against the commonly used neighbourhood search optimization techniques: hill climbing and simulated annealing. Our evaluation examines the quality of the graph layout (objective function’s value) and the speed of layout in terms of the number of evaluated solutions required to draw a graph. We also examine the relative scalability of each method. Our experimental results were applied to both random graphs and a real-world dataset. We show that our method outperforms both hill climbing and simulated annealing by producing a better layout in a lower number of evaluated solutions. In addition, we demonstrate that our method has greater scalability as it can layout larger graphs than the state-of-the-art neighbourhood search methods. Finally, we show that similar results can be produced in a real world setting by testing our method against a standard public graph dataset. PMID:29746576
Use of combined radar and radiometer systems in space for precipitation measurement: Some ideas
NASA Technical Reports Server (NTRS)
Moore, R. K.
1981-01-01
A brief survey is given of some fundamental physical concepts of optimal polarization characteristics of a transmission path or scatter ensemble of hydrometers. It is argued that, based on this optimization concept, definite advances in remote atmospheric sensing are to be expected. Basic properties of Kennaugh's optimal polarization theory are identified.
Improved Modeling of Intelligent Tutoring Systems Using Ant Colony Optimization
ERIC Educational Resources Information Center
Rastegarmoghadam, Mahin; Ziarati, Koorush
2017-01-01
Swarm intelligence approaches, such as ant colony optimization (ACO), are used in adaptive e-learning systems and provide an effective method for finding optimal learning paths based on self-organization. The aim of this paper is to develop an improved modeling of adaptive tutoring systems using ACO. In this model, the learning object is…
ERIC Educational Resources Information Center
Tran, Huu-Khoa; Chiou, Juing -Shian; Peng, Shou-Tao
2016-01-01
In this paper, the feasibility of a Genetic Algorithm Optimization (GAO) education software based Fuzzy Logic Controller (GAO-FLC) for simulating the flight motion control of Unmanned Aerial Vehicles (UAVs) is designed. The generated flight trajectories integrate the optimized Scaling Factors (SF) fuzzy controller gains by using GAO algorithm. The…
Do Dogs Know Related Rates Rather than Optimization?
ERIC Educational Resources Information Center
Perruchet, Pierre; Gallego, Jorge
2006-01-01
Although dogs seemingly follow the optimal path where they get to a ball thrown into the water, they certainly do not know the minimization function proposed in the calculus books. Trading the optimization problem for a related rates problem leads to a mathematically identical solution, which, it is argued here, is a more plausible model for the…
NASA Technical Reports Server (NTRS)
1983-01-01
A profile of altitude, airspeed, and flight path angle as a function of range between a given set of origin and destination points for particular models of transport aircraft provided by NASA is generated. Inputs to the program include the vertical wind profile, the aircraft takeoff weight, the costs of time and fuel, certain constraint parameters and control flags. The profile can be near optimum in the sense of minimizing: (1) fuel, (2) time, or (3) a combination of fuel and time (direct operating cost (DOC)). The user can also, as an option, specify the length of time the flight is to span. The theory behind the technical details of this program is also presented.
NASA Astrophysics Data System (ADS)
Gagne, Jocelyn
Usually, flights optimization and planning will take place before flight, on ground. However, it is not always feasible to do such optimization, or sometime unpredictable events may force pilots to change the flight path. In those circumstances, the pilots can only rely on charts or their Flight Management System (FMS) in order to maintain an economic flight. However, those FMS often rely on those same charts, which will not take into consideration different parameters, such as the cost index, the length on the flight or the weather. Even if some FMS take into consideration the weather, they may only rely on manually entered or limited data that could be outdated, insufficient or incomplete. The alleviate these problems, the function program's that was developed is mainly to determine the optimum flight profile for an aircraft, or more precisely, at the lowest overall cost, considering a take-off weight and weather conditions. The total cost is based on the value of time as well as the cost of fuel, resulting in the use of a ratio called the cost index. This index allows both to prioritize either the time or fuel consumption according to the costs related to a specific flight and/or airline. Thus, from a weight, the weather (wind, temperature, pressure), and the cost index, the program will calculate from the "Performance DataBase" (PDB) of a specific airplane an optimal flight profile over a given distance. The algorithm is based on linear interpolations in the performances tables using the Lagrange method. Moreover, in order to fully optimize the flight, the current program can, according to departure date and coordinates, download the latest available forecast from environment Canada website and calculate the optimum flight accordingly. The forecast data use by the program take the form of a 0.6 × 0.6 degrees grid in which the effects of wind, pressure and temperature are interpolated according to the aircraft geographical position and time. Using these tables, performances and forecasts, the program is therefore able to calculate the optimum profile from ground, but also in flight, if any change would occur on the path. Because all data is tabulated and not calculated, the required calculation power remains low, resulting in a short calculation time. Keywords: optimization, algorithm, simulation, cost.
Separation-Compliant, Optimal Routing and Control of Scheduled Arrivals in a Terminal Airspace
NASA Technical Reports Server (NTRS)
Sadovsky, Alexander V.; Davis, Damek; Isaacson, Douglas R.
2013-01-01
We address the problem of navigating a set (fleet) of aircraft in an aerial route network so as to bring each aircraft to its destination at a specified time and with minimal distance separation assured between all aircraft at all times. The speed range, initial position, required destination, and required time of arrival at destination for each aircraft are assumed provided. Each aircraft's movement is governed by a controlled differential equation (state equation). The problem consists in choosing for each aircraft a path in the route network and a control strategy so as to meet the constraints and reach the destination at the required time. The main contribution of the paper is a model that allows to recast this problem as a decoupled collection of problems in classical optimal control and is easily generalized to the case when inertia cannot be neglected. Some qualitative insight into solution behavior is obtained using the Pontryagin Maximum Principle. Sample numerical solutions are computed using a numerical optimal control solver. The proposed model is first step toward increasing the fidelity of continuous time control models of air traffic in a terminal airspace. The Pontryagin Maximum Principle implies the polygonal shape of those portions of the state trajectories away from those states in which one or more aircraft pair are at minimal separation. The model also confirms the intuition that, the narrower the allowed speed ranges of the aircraft, the smaller the space of optimal solutions, and that an instance of the optimal control problem may not have a solution at all (i.e., no control strategy that meets the separation requirement and other constraints).
Partial Data Traces: Efficient Generation and Representation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, F; De Supinski, B R; McKee, S A
2001-08-20
Binary manipulation techniques are increasing in popularity. They support program transformations tailored toward certain program inputs, and these transformations have been shown to yield performance gains beyond the scope of static code optimizations without profile-directed feedback. They even deliver moderate gains in the presence of profile-guided optimizations. In addition, transformations can be performed on the entire executable, including library routines. This work focuses on program instrumentation, yet another application of binary manipulation. This paper reports preliminary results on generating partial data traces through dynamic binary rewriting. The contributions are threefold. First, a portable method for extracting precise data traces formore » partial executions of arbitrary applications is developed. Second, a set of hierarchical structures for compactly representing these accesses is developed. Third, an efficient online algorithm to detect regular accesses is introduced. The authors utilize dynamic binary rewriting to selectively collect partial address traces of regions within a program. This allows partial tracing of hot paths for only a short time during program execution in contrast to static rewriting techniques that lack hot path detection and also lack facilities to limit the duration of data collection. Preliminary results show reductions of three orders of a magnitude of inline instrumentation over a dual process approach involving context switching. They also report constant size representations for regular access patters in nested loops. These efforts are part of a larger project to counter the increasing gap between processor and main memory speeds by means of software optimization and hardware enhancements.« less
Reconstruction of phonon relaxation times from systems featuring interfaces with unknown properties
NASA Astrophysics Data System (ADS)
Forghani, Mojtaba; Hadjiconstantinou, Nicolas G.
2018-05-01
We present a method for reconstructing the phonon relaxation-time function τω=τ (ω ) (including polarization) and associated phonon free-path distribution from thermal spectroscopy data for systems featuring interfaces with unknown properties. Our method does not rely on the effective thermal-conductivity approximation or a particular physical model of the interface behavior. The reconstruction is formulated as an optimization problem in which the relaxation times are determined as functions of frequency by minimizing the discrepancy between the experimentally measured temperature profiles and solutions of the Boltzmann transport equation for the same system. Interface properties such as transmissivities are included as unknowns in the optimization; however, because for the thermal spectroscopy problems considered here the reconstruction is not very sensitive to the interface properties, the transmissivities are only approximately reconstructed and can be considered as byproducts of the calculation whose primary objective is the accurate determination of the relaxation times. The proposed method is validated using synthetic experimental data obtained from Monte Carlo solutions of the Boltzmann transport equation. The method is shown to remain robust in the presence of uncertainty (noise) in the measurement.
Comparison of primary optics in amonix CPV arrays
NASA Astrophysics Data System (ADS)
Nayak, Aditya; Kinsey, Geoffrey S.; Liu, Mingguo; Bagienski, William; Garboushian, Vahan
2012-10-01
The Amonix CPV system utilizes an acrylic Fresnel lens Primary Optical Element (POE) and a reflective Secondary Optical Element (SOE). Improvements in the optical design have contributed to more than 10% increase in rated power last year. In order to further optimize the optical power path, Amonix is looking at various trade-offs in optics, including, concentration, optical materials, reliability, and cost. A comparison of optical materials used for manufacturing the primary optical element and optical design trade off's used to maximize power output will be presented. Optimization of the power path has led to the demonstration of a module lens-area efficiency of 35% in outdoor testing at Amonix.
Algorithms for Heterogeneous, Multiple Depot, Multiple Unmanned Vehicle Path Planning Problems
Sundar, Kaarthik; Rathinam, Sivakumar
2016-12-26
Unmanned vehicles, both aerial and ground, are being used in several monitoring applications to collect data from a set of targets. This article addresses a problem where a group of heterogeneous aerial or ground vehicles with different motion constraints located at distinct depots visit a set of targets. The vehicles also may be equipped with different sensors, and therefore, a target may not be visited by any vehicle. The objective is to find an optimal path for each vehicle starting and ending at its respective depot such that each target is visited at least once by some vehicle, the vehicle–targetmore » constraints are satisfied, and the sum of the length of the paths for all the vehicles is minimized. Two variants of this problem are formulated (one for ground vehicles and another for aerial vehicles) as mixed-integer linear programs and a branchand- cut algorithm is developed to compute an optimal solution to each of the variants. Computational results show that optimal solutions for problems involving 100 targets and 5 vehicles can be obtained within 300 seconds on average, further corroborating the effectiveness of the proposed approach.« less
Xian, George Z.; Homer, Collin G.
2009-01-01
The U.S. Geological Survey (USGS) National Land Cover Database (NLCD) 2001 is widely used as a baseline for national land cover and impervious conditions. To ensure timely and relevant data, it is important to update this base to a more recent time period. A prototype method was developed to update the land cover and impervious surface by individual Landsat path and row. This method updates NLCD 2001 to a nominal date of 2006 by using both Landsat imagery and data from NLCD 2001 as the baseline. Pairs of Landsat scenes in the same season from both 2001 and 2006 were acquired according to satellite paths and rows and normalized to allow calculation of change vectors between the two dates. Conservative thresholds based on Anderson Level I land cover classes were used to segregate the change vectors and determine areas of change and no-change. Once change areas had been identified, impervious surface was estimated for areas of change by sampling from NLCD 2001 in unchanged areas. Methods were developed and tested across five Landsat path/row study sites that contain a variety of metropolitan areas. Results from the five study areas show that the vast majority of impervious surface changes associated with urban developments were accurately captured and updated. The approach optimizes mapping efficiency and can provide users a flexible method to generate updated impervious surface at national and regional scales.
Efficient shortest-path-tree computation in network routing based on pulse-coupled neural networks.
Qu, Hong; Yi, Zhang; Yang, Simon X
2013-06-01
Shortest path tree (SPT) computation is a critical issue for routers using link-state routing protocols, such as the most commonly used open shortest path first and intermediate system to intermediate system. Each router needs to recompute a new SPT rooted from itself whenever a change happens in the link state. Most commercial routers do this computation by deleting the current SPT and building a new one using static algorithms such as the Dijkstra algorithm at the beginning. Such recomputation of an entire SPT is inefficient, which may consume a considerable amount of CPU time and result in a time delay in the network. Some dynamic updating methods using the information in the updated SPT have been proposed in recent years. However, there are still many limitations in those dynamic algorithms. In this paper, a new modified model of pulse-coupled neural networks (M-PCNNs) is proposed for the SPT computation. It is rigorously proved that the proposed model is capable of solving some optimization problems, such as the SPT. A static algorithm is proposed based on the M-PCNNs to compute the SPT efficiently for large-scale problems. In addition, a dynamic algorithm that makes use of the structure of the previously computed SPT is proposed, which significantly improves the efficiency of the algorithm. Simulation results demonstrate the effective and efficient performance of the proposed approach.
Spector, June T; Krenz, Jennifer; Calkins, Miriam; Ryan, Dawn; Carmona, Jose; Pan, Mengjie; Zemke, Anna; Sampson, Paul D
2018-02-01
We sought to evaluate potential mediators of the relationship between heat exposure and traumatic injuries in outdoor agricultural workers. Linear mixed models were used to estimate associations between maximum work-shift Wet Bulb Globe Temperature (WBGT max ) and post-shift vigilance (reaction time) and postural sway (total path length) in a cross-sectional sample of 46 Washington State tree fruit harvesters in August-September 2015. The mean (SD) WBGT max was 27.4 (3.2)°C in August and 21.2 (2.0)°C in September. The mean pre-work-shift participant urine specific gravity indicated minimal dehydration. Twenty-four percent of participants exhibited possible excessive sleepiness. There was no association between WBGT max and post-shift reaction time or total path length. Heat exposure was not associated with impaired vigilance or balance in this study, in which the overall mean (SD) WBGT max was 25.9 (4.2)°C. However, the study identified opportunities to ensure adequate pre-work-shift hydration and to optimize sleep and work-shift timing in order to reduce occupational injury and heat-related illness risk. Copyright © 2017 Elsevier Ltd. All rights reserved.
A compact CCD-monitored atomic force microscope with optical vision and improved performances.
Mingyue, Liu; Haijun, Zhang; Dongxian, Zhang
2013-09-01
A novel CCD-monitored atomic force microscope (AFM) with optical vision and improved performances has been developed. Compact optical paths are specifically devised for both tip-sample microscopic monitoring and cantilever's deflection detecting with minimized volume and optimal light-amplifying ratio. The ingeniously designed AFM probe with such optical paths enables quick and safe tip-sample approaching, convenient and effective tip-sample positioning, and high quality image scanning. An image stitching method is also developed to build a wider-range AFM image under monitoring. Experiments show that this AFM system can offer real-time optical vision for tip-sample monitoring with wide visual field and/or high lateral optical resolution by simply switching the objective; meanwhile, it has the elegant performances of nanometer resolution, high stability, and high scan speed. Furthermore, it is capable of conducting wider-range image measurement while keeping nanometer resolution. Copyright © 2013 Wiley Periodicals, Inc.
The MATCHIT Automaton: Exploiting Compartmentalization for the Synthesis of Branched Polymers
Weyland, Mathias S.; Fellermann, Harold; Hadorn, Maik; Sorek, Daniel; Lancet, Doron; Rasmussen, Steen; Füchslin, Rudolf M.
2013-01-01
We propose an automaton, a theoretical framework that demonstrates how to improve the yield of the synthesis of branched chemical polymer reactions. This is achieved by separating substeps of the path of synthesis into compartments. We use chemical containers (chemtainers) to carry the substances through a sequence of fixed successive compartments. We describe the automaton in mathematical terms and show how it can be configured automatically in order to synthesize a given branched polymer target. The algorithm we present finds an optimal path of synthesis in linear time. We discuss how the automaton models compartmentalized structures found in cells, such as the endoplasmic reticulum and the Golgi apparatus, and we show how this compartmentalization can be exploited for the synthesis of branched polymers such as oligosaccharides. Lastly, we show examples of artificial branched polymers and discuss how the automaton can be configured to synthesize them with maximal yield. PMID:24489601
Method and tool for network vulnerability analysis
Swiler, Laura Painton [Albuquerque, NM; Phillips, Cynthia A [Albuquerque, NM
2006-03-14
A computer system analysis tool and method that will allow for qualitative and quantitative assessment of security attributes and vulnerabilities in systems including computer networks. The invention is based on generation of attack graphs wherein each node represents a possible attack state and each edge represents a change in state caused by a single action taken by an attacker or unwitting assistant. Edges are weighted using metrics such as attacker effort, likelihood of attack success, or time to succeed. Generation of an attack graph is accomplished by matching information about attack requirements (specified in "attack templates") to information about computer system configuration (contained in a configuration file that can be updated to reflect system changes occurring during the course of an attack) and assumed attacker capabilities (reflected in "attacker profiles"). High risk attack paths, which correspond to those considered suited to application of attack countermeasures given limited resources for applying countermeasures, are identified by finding "epsilon optimal paths."
A novel method for trajectory planning of cooperative mobile manipulators.
Bolandi, Hossein; Ehyaei, Amir Farhad
2011-01-01
We have designed a two-stage scheme to consider the trajectory planning problem of two mobile manipulators for cooperative transportation of a rigid body in the presence of static obstacles. In the first stage, with regard to the static obstacles, we develop a method that searches the workspace for the shortest possible path between the start and goal configurations, by constructing a graph on a portion of the configuration space that satisfies the collision and closure constraints. The final stage is to calculate a sequence of time-optimal trajectories to go between the consecutive points of the path, with regard to the nonholonomic constraints and the maximum allowed joint accelerations. This approach allows geometric constraints such as joint limits and closed-chain constraints, along with differential constraints such as nonholonomic velocity constraints and acceleration limits, to be incorporated into the planning scheme. The simulation results illustrate the effectiveness of the proposed method.
A Novel Method for Trajectory Planning of Cooperative Mobile Manipulators
Bolandi, Hossein; Ehyaei, Amir Farhad
2011-01-01
We have designed a two-stage scheme to consider the trajectory planning problem of two mobile manipulators for cooperative transportation of a rigid body in the presence of static obstacles. In the first stage, with regard to the static obstacles, we develop a method that searches the workspace for the shortest possible path between the start and goal configurations, by constructing a graph on a portion of the configuration space that satisfies the collision and closure constraints. The final stage is to calculate a sequence of time-optimal trajectories to go between the consecutive points of the path, with regard to the nonholonomic constraints and the maximum allowed joint accelerations. This approach allows geometric constraints such as joint limits and closed-chain constraints, along with differential constraints such as nonholonomic velocity constraints and acceleration limits, to be incorporated into the planning scheme. The simulation results illustrate the effectiveness of the proposed method. PMID:22606656
The navigation system of the JPL robot
NASA Technical Reports Server (NTRS)
Thompson, A. M.
1977-01-01
The control structure of the JPL research robot and the operations of the navigation subsystem are discussed. The robot functions as a network of interacting concurrent processes distributed among several computers and coordinated by a central executive. The results of scene analysis are used to create a segmented terrain model in which surface regions are classified by traversibility. The model is used by a path planning algorithm, PATH, which uses tree search methods to find the optimal path to a goal. In PATH, the search space is defined dynamically as a consequence of node testing. Maze-solving and the use of an associative data base for context dependent node generation are also discussed. Execution of a planned path is accomplished by a feedback guidance process with automatic error recovery.
Jiang, Ailian; Zheng, Lihong
2018-03-29
Low cost, high reliability and easy maintenance are key criteria in the design of routing protocols for wireless sensor networks (WSNs). This paper investigates the existing ant colony optimization (ACO)-based WSN routing algorithms and the minimum hop count WSN routing algorithms by reviewing their strengths and weaknesses. We also consider the critical factors of WSNs, such as energy constraint of sensor nodes, network load balancing and dynamic network topology. Then we propose a hybrid routing algorithm that integrates ACO and a minimum hop count scheme. The proposed algorithm is able to find the optimal routing path with minimal total energy consumption and balanced energy consumption on each node. The algorithm has unique superiority in terms of searching for the optimal path, balancing the network load and the network topology maintenance. The WSN model and the proposed algorithm have been implemented using C++. Extensive simulation experimental results have shown that our algorithm outperforms several other WSN routing algorithms on such aspects that include the rate of convergence, the success rate in searching for global optimal solution, and the network lifetime.
2018-01-01
Low cost, high reliability and easy maintenance are key criteria in the design of routing protocols for wireless sensor networks (WSNs). This paper investigates the existing ant colony optimization (ACO)-based WSN routing algorithms and the minimum hop count WSN routing algorithms by reviewing their strengths and weaknesses. We also consider the critical factors of WSNs, such as energy constraint of sensor nodes, network load balancing and dynamic network topology. Then we propose a hybrid routing algorithm that integrates ACO and a minimum hop count scheme. The proposed algorithm is able to find the optimal routing path with minimal total energy consumption and balanced energy consumption on each node. The algorithm has unique superiority in terms of searching for the optimal path, balancing the network load and the network topology maintenance. The WSN model and the proposed algorithm have been implemented using C++. Extensive simulation experimental results have shown that our algorithm outperforms several other WSN routing algorithms on such aspects that include the rate of convergence, the success rate in searching for global optimal solution, and the network lifetime. PMID:29596336
Transition path time distributions
NASA Astrophysics Data System (ADS)
Laleman, M.; Carlon, E.; Orland, H.
2017-12-01
Biomolecular folding, at least in simple systems, can be described as a two state transition in a free energy landscape with two deep wells separated by a high barrier. Transition paths are the short part of the trajectories that cross the barrier. Average transition path times and, recently, their full probability distribution have been measured for several biomolecular systems, e.g., in the folding of nucleic acids or proteins. Motivated by these experiments, we have calculated the full transition path time distribution for a single stochastic particle crossing a parabolic barrier, including inertial terms which were neglected in previous studies. These terms influence the short time scale dynamics of a stochastic system and can be of experimental relevance in view of the short duration of transition paths. We derive the full transition path time distribution as well as the average transition path times and discuss the similarities and differences with the high friction limit.
Planning Under Uncertainty: Methods and Applications
2010-06-09
begun research into fundamental algorithms for optimization and re?optimization of continuous optimization problems (such as linear and quadratic... algorithm yields a 14.3% improvement over the original design while saving 68.2 % of the simulation evaluations compared to standard sample-path...They provide tools for building and justifying computational algorithms for such problems. Year. 2010 Month: 03 Final Research under this grant
Dynamics of a Two-Link Vehicle in an L-Shaped Corridor Revisited
NASA Astrophysics Data System (ADS)
Antonyuk, E. Ya.; Zabuga, A. T.
2014-03-01
The kinematics of a two-link mobile robot with three steerable wheels moving in an L-shaped corridor is analyzed. A smooth (with continuous first derivative) path is designed maintaining the optimal maneuverability of the vehicle. The motion of the vehicle along this path is planned. Analytical expressions for the reactions at the contact of the wheels with the ground are given in the general case of motion. The radius of curvature of the programmed path is shown to have a strong influence on the reactions.
Yang, Jin; Liu, Fagui; Cao, Jianneng; Wang, Liangming
2016-07-14
Mobile sinks can achieve load-balancing and energy-consumption balancing across the wireless sensor networks (WSNs). However, the frequent change of the paths between source nodes and the sinks caused by sink mobility introduces significant overhead in terms of energy and packet delays. To enhance network performance of WSNs with mobile sinks (MWSNs), we present an efficient routing strategy, which is formulated as an optimization problem and employs the particle swarm optimization algorithm (PSO) to build the optimal routing paths. However, the conventional PSO is insufficient to solve discrete routing optimization problems. Therefore, a novel greedy discrete particle swarm optimization with memory (GMDPSO) is put forward to address this problem. In the GMDPSO, particle's position and velocity of traditional PSO are redefined under discrete MWSNs scenario. Particle updating rule is also reconsidered based on the subnetwork topology of MWSNs. Besides, by improving the greedy forwarding routing, a greedy search strategy is designed to drive particles to find a better position quickly. Furthermore, searching history is memorized to accelerate convergence. Simulation results demonstrate that our new protocol significantly improves the robustness and adapts to rapid topological changes with multiple mobile sinks, while efficiently reducing the communication overhead and the energy consumption.
Combined control-structure optimization
NASA Technical Reports Server (NTRS)
Salama, M.; Milman, M.; Bruno, R.; Scheid, R.; Gibson, S.
1989-01-01
An approach for combined control-structure optimization keyed to enhancing early design trade-offs is outlined and illustrated by numerical examples. The approach employs a homotopic strategy and appears to be effective for generating families of designs that can be used in these early trade studies. Analytical results were obtained for classes of structure/control objectives with linear quadratic Gaussian (LQG) and linear quadratic regulator (LQR) costs. For these, researchers demonstrated that global optima can be computed for small values of the homotopy parameter. Conditions for local optima along the homotopy path were also given. Details of two numerical examples employing the LQR control cost were given showing variations of the optimal design variables along the homotopy path. The results of the second example suggest that introducing a second homotopy parameter relating the two parts of the control index in the LQG/LQR formulation might serve to enlarge the family of Pareto optima, but its effect on modifying the optimal structural shapes may be analogous to the original parameter lambda.
Evaluation of off-road terrain with static stereo and monoscopic displays
NASA Technical Reports Server (NTRS)
Yorchak, John P.; Hartley, Craig S.
1990-01-01
The National Aeronautics and Space Administration is currently funding research into the design of a Mars rover vehicle. This unmanned rover will be used to explore a number of scientific and geologic sites on the Martian surface. Since the rover can not be driven from Earth in real-time, due to lengthy communication time delays, a locomotion strategy that optimizes vehicle range and minimizes potential risk must be developed. In order to assess the degree of on-board artificial intelligence (AI) required for a rover to carry out its' mission, researchers conducted an experiment to define a no AI baseline. In the experiment 24 subjects, divided into stereo and monoscopic groups, were shown video snapshots of four terrain scenes. The subjects' task was to choose a suitable path for the vehicle through each of the four scenes. Paths were scored based on distance travelled and hazard avoidance. Study results are presented with respect to: (1) risk versus range; (2) stereo versus monocular video; (3) vehicle camera height; and (4) camera field-of-view.
Path planning algorithms for assembly sequence planning. [in robot kinematics
NASA Technical Reports Server (NTRS)
Krishnan, S. S.; Sanderson, Arthur C.
1991-01-01
Planning for manipulation in complex environments often requires reasoning about the geometric and mechanical constraints which are posed by the task. In planning assembly operations, the automatic generation of operations sequences depends on the geometric feasibility of paths which permit parts to be joined into subassemblies. Feasible locations and collision-free paths must be present for part motions, robot and grasping motions, and fixtures. This paper describes an approach to reasoning about the feasibility of straight-line paths among three-dimensional polyhedral parts using an algebra of polyhedral cones. A second method recasts the feasibility conditions as constraints in a nonlinear optimization framework. Both algorithms have been implemented and results are presented.
FACTOR - FACTOR II. Departmental Program and Model Documentation 71-3.
ERIC Educational Resources Information Center
Wilson, Stanley; Billingsley, Ray
This computer program is designed to optimize a Cobb-Douglas type of production function. The user of this program may choose isoquants and/or the expansion path for a Cobb-Douglas type of production function with up to nine resources. An expansion path is the combination of quantities of each resource that minimizes the cost at each production…
The most likely voltage path and large deviations approximations for integrate-and-fire neurons.
Paninski, Liam
2006-08-01
We develop theory and numerical methods for computing the most likely subthreshold voltage path of a noisy integrate-and-fire (IF) neuron, given observations of the neuron's superthreshold spiking activity. This optimal voltage path satisfies a second-order ordinary differential (Euler-Lagrange) equation which may be solved analytically in a number of special cases, and which may be solved numerically in general via a simple "shooting" algorithm. Our results are applicable for both linear and nonlinear subthreshold dynamics, and in certain cases may be extended to correlated subthreshold noise sources. We also show how this optimal voltage may be used to obtain approximations to (1) the likelihood that an IF cell with a given set of parameters was responsible for the observed spike train; and (2) the instantaneous firing rate and interspike interval distribution of a given noisy IF cell. The latter probability approximations are based on the classical Freidlin-Wentzell theory of large deviations principles for stochastic differential equations. We close by comparing this most likely voltage path to the true observed subthreshold voltage trace in a case when intracellular voltage recordings are available in vitro.
Jiang, Yang; Xue, Ying; Zeng, Yi
2018-02-15
Using the microsolvated model that involves explicit water molecules and implicit solvent in the optimization, two proposed dissociative hydrolysis mechanisms of 2',3'-didehydro-2',3'-dideoxyguanosine (d4G) have been first investigated by means of M06-2X(CPCM, water)/6-31++G(d,p) method. The glycosidic bond dissociation for the generation of the oxacarbenium ion intermediate is the rate-determining step (RDS). The subsequent nucleophilic water attack from different side of the oxacarbenium ion intermediate gives either the α-product [(2S,5S)-5-(hydroxymethyl)-2,5-dihydrofuran-2-ol] or β-product [(2R,5S)-5-(hydroxymethyl)-2,5-dihydrofuran-2-ol] and is thus referred to as α-path (inversion) and β-path (retention). Two to five explicit water molecules (n = 2-5) are considered in the microsolvated model, and n = 3 or 4 is the smallest model capable of minimizing the activation energy for α-path and β-path, respectively. Our theoretical results suggest that α-path (n = 3) is more kinetically favorable with lower free energy barrier (RDS) of 27.7 kcal mol -1 , in contrast to that of 30.7 kcal mol -1 for the β-path (n = 4). The kinetic preference of the α-path is rationalized by NBO analysis. Whereas thte β-path is more thermodynamically favorable over the α-path, where the formation of β-product and α-product are exergonic and endergonic, respectively, providing theoretical support for the experimental observation that the β-cleavage product was the major one after sufficient reaction time. Comparisons of d4G with analogous cyclo-d4G and dG from kinetic free energy barriers and thermodynamic heterolytic dissociation energies were also carried out. Our kinetic and thermodynamic results manifest that the order of glycosidic bond stability should be d4G < cyclo-d4G < dG, which agrees well with the reported experimental stability order of d4G compounds and analogues and gives further understanding on the influence of 6-cyclopropylamino and unsaturated ribose to the glycosidic bond instability of d4G.
Sun, Tao; Liu, Hongbo; Yu, Hong; Chen, C L Philip
2016-06-28
The central time series crystallizes the common patterns of the set it represents. In this paper, we propose a global constrained degree-pruning dynamic programming (g(dp)²) approach to obtain the central time series through minimizing dynamic time warping (DTW) distance between two time series. The DTW matching path theory with global constraints is proved theoretically for our degree-pruning strategy, which is helpful to reduce the time complexity and computational cost. Our approach can achieve the optimal solution between two time series. An approximate method to the central time series of multiple time series [called as m_g(dp)²] is presented based on DTW barycenter averaging and our g(dp)² approach by considering hierarchically merging strategy. As illustrated by the experimental results, our approaches provide better within-group sum of squares and robustness than other relevant algorithms.
NASA Astrophysics Data System (ADS)
Yang, Hui; Zhang, Jie; Ji, Yuefeng; He, Yongqi; Lee, Young
2016-07-01
Cloud radio access network (C-RAN) becomes a promising scenario to accommodate high-performance services with ubiquitous user coverage and real-time cloud computing in 5G area. However, the radio network, optical network and processing unit cloud have been decoupled from each other, so that their resources are controlled independently. Traditional architecture cannot implement the resource optimization and scheduling for the high-level service guarantee due to the communication obstacle among them with the growing number of mobile internet users. In this paper, we report a study on multi-dimensional resources integration (MDRI) for service provisioning in cloud radio over fiber network (C-RoFN). A resources integrated provisioning (RIP) scheme using an auxiliary graph is introduced based on the proposed architecture. The MDRI can enhance the responsiveness to dynamic end-to-end user demands and globally optimize radio frequency, optical network and processing resources effectively to maximize radio coverage. The feasibility of the proposed architecture is experimentally verified on OpenFlow-based enhanced SDN testbed. The performance of RIP scheme under heavy traffic load scenario is also quantitatively evaluated to demonstrate the efficiency of the proposal based on MDRI architecture in terms of resource utilization, path blocking probability, network cost and path provisioning latency, compared with other provisioning schemes.
Yang, Hui; Zhang, Jie; Ji, Yuefeng; He, Yongqi; Lee, Young
2016-07-28
Cloud radio access network (C-RAN) becomes a promising scenario to accommodate high-performance services with ubiquitous user coverage and real-time cloud computing in 5G area. However, the radio network, optical network and processing unit cloud have been decoupled from each other, so that their resources are controlled independently. Traditional architecture cannot implement the resource optimization and scheduling for the high-level service guarantee due to the communication obstacle among them with the growing number of mobile internet users. In this paper, we report a study on multi-dimensional resources integration (MDRI) for service provisioning in cloud radio over fiber network (C-RoFN). A resources integrated provisioning (RIP) scheme using an auxiliary graph is introduced based on the proposed architecture. The MDRI can enhance the responsiveness to dynamic end-to-end user demands and globally optimize radio frequency, optical network and processing resources effectively to maximize radio coverage. The feasibility of the proposed architecture is experimentally verified on OpenFlow-based enhanced SDN testbed. The performance of RIP scheme under heavy traffic load scenario is also quantitatively evaluated to demonstrate the efficiency of the proposal based on MDRI architecture in terms of resource utilization, path blocking probability, network cost and path provisioning latency, compared with other provisioning schemes.
The lead-lag relationship between stock index and stock index futures: A thermal optimal path method
NASA Astrophysics Data System (ADS)
Gong, Chen-Chen; Ji, Shen-Dan; Su, Li-Ling; Li, Sai-Ping; Ren, Fei
2016-02-01
The study of lead-lag relationship between stock index and stock index futures is of great importance for its wide application in hedging and portfolio investments. Previous works mainly use conventional methods like Granger causality test, GARCH model and error correction model, and focus on the causality relation between the index and futures in a certain period. By using a non-parametric approach-thermal optimal path (TOP) method, we study the lead-lag relationship between China Securities Index 300 (CSI 300), Hang Seng Index (HSI), Standard and Poor 500 (S&P 500) Index and their associated futures to reveal the variance of their relationship over time. Our finding shows evidence of pronounced futures leadership for well established index futures, namely HSI and S&P 500 index futures, while index of developing market like CSI 300 has pronounced leadership. We offer an explanation based on the measure of an indicator which quantifies the differences between spot and futures prices for the surge of lead-lag function. Our results provide new perspectives for the understanding of the dynamical evolution of lead-lag relationship between stock index and stock index futures, which is valuable for the study of market efficiency and its applications.
Yang, Hui; Zhang, Jie; Ji, Yuefeng; He, Yongqi; Lee, Young
2016-01-01
Cloud radio access network (C-RAN) becomes a promising scenario to accommodate high-performance services with ubiquitous user coverage and real-time cloud computing in 5G area. However, the radio network, optical network and processing unit cloud have been decoupled from each other, so that their resources are controlled independently. Traditional architecture cannot implement the resource optimization and scheduling for the high-level service guarantee due to the communication obstacle among them with the growing number of mobile internet users. In this paper, we report a study on multi-dimensional resources integration (MDRI) for service provisioning in cloud radio over fiber network (C-RoFN). A resources integrated provisioning (RIP) scheme using an auxiliary graph is introduced based on the proposed architecture. The MDRI can enhance the responsiveness to dynamic end-to-end user demands and globally optimize radio frequency, optical network and processing resources effectively to maximize radio coverage. The feasibility of the proposed architecture is experimentally verified on OpenFlow-based enhanced SDN testbed. The performance of RIP scheme under heavy traffic load scenario is also quantitatively evaluated to demonstrate the efficiency of the proposal based on MDRI architecture in terms of resource utilization, path blocking probability, network cost and path provisioning latency, compared with other provisioning schemes. PMID:27465296
Chuan, He; Dishan, Qiu; Jin, Liu
2012-01-01
The cooperative scheduling problem on high-altitude airships for imaging observation tasks is discussed. A constraint programming model is established by analyzing the main constraints, which takes the maximum task benefit and the minimum cruising distance as two optimization objectives. The cooperative scheduling problem of high-altitude airships is converted into a main problem and a subproblem by adopting hierarchy architecture. The solution to the main problem can construct the preliminary matching between tasks and observation resource in order to reduce the search space of the original problem. Furthermore, the solution to the sub-problem can detect the key nodes that each airship needs to fly through in sequence, so as to get the cruising path. Firstly, the task set is divided by using k-core neighborhood growth cluster algorithm (K-NGCA). Then, a novel swarm intelligence algorithm named propagation algorithm (PA) is combined with the key node search algorithm (KNSA) to optimize the cruising path of each airship and determine the execution time interval of each task. Meanwhile, this paper also provides the realization approach of the above algorithm and especially makes a detailed introduction on the encoding rules, search models, and propagation mechanism of the PA. Finally, the application results and comparison analysis show the proposed models and algorithms are effective and feasible. PMID:23365522
LEAN SIX SIGMA TECHNIQUES TO IMPROVE OPHTHALMOLOGY CLINIC EFFICIENCY.
Ciulla, Thomas A; Tatikonda, Mohan V; ElMaraghi, Yehya A; Hussain, Rehan M; Hill, Amanda L; Clary, Julie M; Hattab, Eyas
2017-07-18
Ophthalmologists serve an increasing volume of a growing elderly population undergoing increasingly complex outpatient medical care, including extensive diagnostic testing and treatment. The resulting prolonged patient visit times ("patient flow times") limit quality, patient and employee satisfaction, and represent waste. Lean Six Sigma process improvement was used in a vitreoretinal practice to decrease patient flow time, demonstrating that this approach can yield significant improvement in health care. Process flow maps were created to determine the most common care pathways within clinic. Three months' visits from the electronic medical record system, which tracks patient task times at each process step in the office were collected. Care tasks and care pathways consuming the greatest time and variation were identified and modified. Follow-up analysis from 6 weeks' visits was conducted to assess improvement. Nearly all patients took one of five paths through the office. Patient flow was redesigned to reduce waiting room time by having staff members immediately start patients into one of those five paths; staffing was adjusted to address high demand tasks, and scheduling was optimized around derived predictors of patient flow times. Follow-up analysis revealed a statistically significant decline in mean patient flow time by 18% and inpatient flow time SD by 4.6%. Patient and employee satisfaction scores improved. Manufacturing industry techniques, such as Lean and Six Sigma, can be used to improve patient care, minimize waste, and enhance patient and staff satisfaction in outpatient clinics.
Muir-Hunter, S W; Montero-Odasso, M
2017-05-01
Ambulation with a mobility aid is a unique real-life situation of multi-tasking. These simultaneous motor tasks place increased demands on executive function in healthy young and older adults, but the demands have not been evaluated in people with Alzheimer's disease (AD). Mobility problems are common among adults with AD, leading to provision of a mobility aid to optimize independent activity. The study objectives were: (i) to determine the dual-task cost (DTC) associated with the use of a mobility aid in straight and complex path walking, and (ii) to evaluate the association between executive function and ambulation with a mobility aid in older adults with AD and age-sex matched cognitively normal controls. Fourteen people (mean age±SD, 72.6±9.9years) with a diagnosis of probable AD (MMSE range 12-25) and controls (mean age±SD, 72.9±9.5) walked at a self-selected pace and using a 4-wheeled walker in a 6m straight path and a Figure of 8 Test. Ambulation with the walker in a straight path produced a low DTC that was not different between the groups. Ambulation with the 4-wheeled walker in the complex path produced a significantly different DTC in the group with AD at -38.1±23.5% compared to -19.7±21.4% (p=0.041). Lower scores on executive function were associated with longer times across test conditions. Ambulation with a 4-wheeled walker, in particular maneuvering around obstacles, requires greater attentional costs in dementia. Future research should explore the timing for safely introducing mobility aids in AD and the role of improving executive function. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, X.; Yao, C.
A prototype dual-blade stripline kicker for the APS multi-bend achromat (MBA) upgrade has been designed and developed. It was optimized with 3D CST Microwave Studio. The high voltage (HV) feedthrough and air-side connector were designed and optimized. Electromagnetic fields along the beam path, the deflecting angle, the high electric fields and their locations were calculated with 15kV differential pulse voltage applied to the kicker blades through the feedthroughs. Beam impedance and the power dissipation on different parts of the kicker and external loads were studied for a 48-bunch fill pattern. Our results show that the prototype kicker with its HVmore » feedthroughs meets the specified requirements. The results of TDR (time-domain reflectometer) test, high voltage pulse test and beam test of the prototype kicker assembly agreed with the simulations.« less
Advanced obstacle avoidance for a laser based wheelchair using optimised Bayesian neural networks.
Trieu, Hoang T; Nguyen, Hung T; Willey, Keith
2008-01-01
In this paper we present an advanced method of obstacle avoidance for a laser based intelligent wheelchair using optimized Bayesian neural networks. Three neural networks are designed for three separate sub-tasks: passing through a door way, corridor and wall following and general obstacle avoidance. The accurate usable accessible space is determined by including the actual wheelchair dimensions in a real-time map used as inputs to each networks. Data acquisitions are performed separately to collect the patterns required for specified sub-tasks. Bayesian frame work is used to determine the optimal neural network structure in each case. Then these networks are trained under the supervision of Bayesian rule. Experiment results showed that compare to the VFH algorithm our neural networks navigated a smoother path following a near optimum trajectory.
Protein Folding Free Energy Landscape along the Committor - the Optimal Folding Coordinate.
Krivov, Sergei V
2018-06-06
Recent advances in simulation and experiment have led to dramatic increases in the quantity and complexity of produced data, which makes the development of automated analysis tools very important. A powerful approach to analyze dynamics contained in such data sets is to describe/approximate it by diffusion on a free energy landscape - free energy as a function of reaction coordinates (RC). For the description to be quantitatively accurate, RCs should be chosen in an optimal way. Recent theoretical results show that such an optimal RC exists; however, determining it for practical systems is a very difficult unsolved problem. Here we describe a solution to this problem. We describe an adaptive nonparametric approach to accurately determine the optimal RC (the committor) for an equilibrium trajectory of a realistic system. In contrast to alternative approaches, which require a functional form with many parameters to approximate an RC and thus extensive expertise with the system, the suggested approach is nonparametric and can approximate any RC with high accuracy without system specific information. To avoid overfitting for a realistically sampled system, the approach performs RC optimization in an adaptive manner by focusing optimization on less optimized spatiotemporal regions of the RC. The power of the approach is illustrated on a long equilibrium atomistic folding simulation of HP35 protein. We have determined the optimal folding RC - the committor, which was confirmed by passing a stringent committor validation test. It allowed us to determine a first quantitatively accurate protein folding free energy landscape. We have confirmed the recent theoretical results that diffusion on such a free energy profile can be used to compute exactly the equilibrium flux, the mean first passage times, and the mean transition path times between any two points on the profile. We have shown that the mean squared displacement along the optimal RC grows linear with time as for simple diffusion. The free energy profile allowed us to obtain a direct rigorous estimate of the pre-exponential factor for the folding dynamics.
NASA Astrophysics Data System (ADS)
Schmidt, Matthew; Roy, Pierre-Nicholas
2018-03-01
We extend the Langevin equation Path Integral Ground State (LePIGS), a ground state quantum molecular dynamics method, to simulate flexible molecular systems and calculate both energetic and structural properties. We test the approach with the H2O and D2O monomers and dimers. We systematically optimize all simulation parameters and use a unity trial wavefunction. We report ground state energies, dissociation energies, and structural properties using three different water models, two of which are empirically based, q-TIP4P/F and q-SPC/Fw, and one which is ab initio, MB-pol. We demonstrate that our energies calculated from LePIGS can be merged seamlessly with low temperature path integral molecular dynamics calculations and note the similarities between the two methods. We also benchmark our energies against previous diffusion Monte Carlo calculations using the same potentials and compare to experimental results. We further demonstrate that accurate vibrational energies of the H2O and D2O monomer can be calculated from imaginary time correlation functions generated from the LePIGS simulations using solely the unity trial wavefunction.
In-Body to On-Body Ultrawideband Propagation Model Derived From Measurements in Living Animals.
Floor, Pål Anders; Chávez-Santiago, Raúl; Brovoll, Sverre; Aardal, Øyvind; Bergsland, Jacob; Grymyr, Ole-Johannes H N; Halvorsen, Per Steinar; Palomar, Rafael; Plettemeier, Dirk; Hamran, Svein-Erik; Ramstad, Tor A; Balasingham, Ilangko
2015-05-01
Ultrawideband (UWB) radio technology for wireless implants has gained significant attention. UWB enables the fabrication of faster and smaller transceivers with ultralow power consumption, which may be integrated into more sophisticated implantable biomedical sensors and actuators. Nevertheless, the large path loss suffered by UWB signals propagating through inhomogeneous layers of biological tissues is a major hindering factor. For the optimal design of implantable transceivers, the accurate characterization of the UWB radio propagation in living biological tissues is indispensable. Channel measurements in phantoms and numerical simulations with digital anatomical models provide good initial insight into the expected path loss in complex propagation media like the human body, but they often fail to capture the effects of blood circulation, respiration, and temperature gradients of a living subject. Therefore, we performed UWB channel measurements within 1-6 GHz on two living porcine subjects because of the anatomical resemblance with an average human torso. We present for the first time, a path loss model derived from these in vivo measurements, which includes the frequency-dependent attenuation. The use of multiple on-body receiving antennas to combat the high propagation losses in implant radio channels was also investigated.
Planning nonlinear access paths for temporal bone surgery.
Fauser, Johannes; Sakas, Georgios; Mukhopadhyay, Anirban
2018-05-01
Interventions at the otobasis operate in the narrow region of the temporal bone where several highly sensitive organs define obstacles with minimal clearance for surgical instruments. Nonlinear trajectories for potential minimally invasive interventions can provide larger distances to risk structures and optimized orientations of surgical instruments, thus improving clinical outcomes when compared to existing linear approaches. In this paper, we present fast and accurate planning methods for such nonlinear access paths. We define a specific motion planning problem in [Formula: see text] with notable constraints in computation time and goal pose that reflect the requirements of temporal bone surgery. We then present [Formula: see text]-RRT-Connect: two suitable motion planners based on bidirectional Rapidly exploring Random Tree (RRT) to solve this problem efficiently. The benefits of [Formula: see text]-RRT-Connect are demonstrated on real CT data of patients. Their general performance is shown on a large set of realistic synthetic anatomies. We also show that these new algorithms outperform state-of-the-art methods based on circular arcs or Bézier-Splines when applied to this specific problem. With this work, we demonstrate that preoperative and intra-operative planning of nonlinear access paths is possible for minimally invasive surgeries at the otobasis.
Origin of the spike-timing-dependent plasticity rule
NASA Astrophysics Data System (ADS)
Cho, Myoung Won; Choi, M. Y.
2016-08-01
A biological synapse changes its efficacy depending on the difference between pre- and post-synaptic spike timings. Formulating spike-timing-dependent interactions in terms of the path integral, we establish a neural-network model, which makes it possible to predict relevant quantities rigorously by means of standard methods in statistical mechanics and field theory. In particular, the biological synaptic plasticity rule is shown to emerge as the optimal form for minimizing the free energy. It is further revealed that maximization of the entropy of neural activities gives rise to the competitive behavior of biological learning. This demonstrates that statistical mechanics helps to understand rigorously key characteristic behaviors of a neural network, thus providing the possibility of physics serving as a useful and relevant framework for probing life.
Deterministic methods for multi-control fuel loading optimization
NASA Astrophysics Data System (ADS)
Rahman, Fariz B. Abdul
We have developed a multi-control fuel loading optimization code for pressurized water reactors based on deterministic methods. The objective is to flatten the fuel burnup profile, which maximizes overall energy production. The optimal control problem is formulated using the method of Lagrange multipliers and the direct adjoining approach for treatment of the inequality power peaking constraint. The optimality conditions are derived for a multi-dimensional multi-group optimal control problem via calculus of variations. Due to the Hamiltonian having a linear control, our optimal control problem is solved using the gradient method to minimize the Hamiltonian and a Newton step formulation to obtain the optimal control. We are able to satisfy the power peaking constraint during depletion with the control at beginning of cycle (BOC) by building the proper burnup path forward in time and utilizing the adjoint burnup to propagate the information back to the BOC. Our test results show that we are able to achieve our objective and satisfy the power peaking constraint during depletion using either the fissile enrichment or burnable poison as the control. Our fuel loading designs show an increase of 7.8 equivalent full power days (EFPDs) in cycle length compared with 517.4 EFPDs for the AP600 first cycle.
Dual stage potential field method for robotic path planning
NASA Astrophysics Data System (ADS)
Singh, Pradyumna Kumar; Parida, Pramod Kumar
2018-04-01
Path planning for autonomous mobile robots are the root for all autonomous mobile systems. Various methods are used for optimization of path to be followed by the autonomous mobile robots. Artificial potential field based path planning method is one of the most used methods for the researchers. Various algorithms have been proposed using the potential field approach. But in most of the common problems are encounters while heading towards the goal or target. i.e. local minima problem, zero potential regions problem, complex shaped obstacles problem, target near obstacle problem. In this paper we provide a new algorithm in which two types of potential functions are used one after another. The former one is to use to get the probable points and later one for getting the optimum path. In this algorithm we consider only the static obstacle and goal.
Conjugate gradient optimization programs for shuttle reentry
NASA Technical Reports Server (NTRS)
Powers, W. F.; Jacobson, R. A.; Leonard, D. A.
1972-01-01
Two computer programs for shuttle reentry trajectory optimization are listed and described. Both programs use the conjugate gradient method as the optimization procedure. The Phase 1 Program is developed in cartesian coordinates for a rotating spherical earth, and crossrange, downrange, maximum deceleration, total heating, and terminal speed, altitude, and flight path angle are included in the performance index. The programs make extensive use of subroutines so that they may be easily adapted to other atmospheric trajectory optimization problems.
ILP-based co-optimization of cut mask layout, dummy fill, and timing for sub-14nm BEOL technology
NASA Astrophysics Data System (ADS)
Han, Kwangsoo; Kahng, Andrew B.; Lee, Hyein; Wang, Lutong
2015-10-01
Self-aligned multiple patterning (SAMP), due to its low overlay error, has emerged as the leading option for 1D gridded back-end-of-line (BEOL) in sub-14nm nodes. To form actual routing patterns from a uniform "sea of wires", a cut mask is needed for line-end cutting or realization of space between routing segments. Constraints on cut shapes and minimum cut spacing result in end-of-line (EOL) extensions and non-functional (i.e. dummy fill) patterns; the resulting capacitance and timing changes must be consistent with signoff performance analyses and their impacts should be minimized. In this work, we address the co-optimization of cut mask layout, dummy fill, and design timing for sub-14nm BEOL design. Our central contribution is an optimizer based on integer linear programming (ILP) to minimize the timing impact due to EOL extensions, considering (i) minimum cut spacing arising in sub-14nm nodes; (ii) cut assignment to different cut masks (color assignment); and (iii) the eligibility to merge two unit-size cuts into a bigger cut. We also propose a heuristic approach to remove dummy fills after the ILP-based optimization by extending the usage of cut masks. Our heuristic can improve critical path performance under minimum metal density and mask density constraints. In our experiments, we study the impact of number of cut masks, minimum cut spacing and metal density under various constraints. Our studies of optimized cut mask solutions in these varying contexts give new insight into the tradeoff of performance and cost that is afforded by cut mask patterning technology options.
NASA Astrophysics Data System (ADS)
Sutton, Virginia Kay
This paper examines statistical issues associated with estimating paths of juvenile salmon through the intakes of Kaplan turbines. Passive sensors, hydrophones, detecting signals from ultrasonic transmitters implanted in individual fish released into the preturbine region were used to obtain the information to estimate fish paths through the intake. Aim and location of the sensors affects the spatial region in which the transmitters can be detected, and formulas relating this region to sensor aiming directions are derived. Cramer-Rao lower bounds for the variance of estimators of fish location are used to optimize placement of each sensor. Finally, a statistical methodology is developed for analyzing angular data collected from optimally placed sensors.
Development of the PEBLebl Traveling Salesman Problem Computerized Testbed
ERIC Educational Resources Information Center
Mueller, Shane T.; Perelman, Brandon S.; Tan, Yin Yin; Thanasuan, Kejkaew
2015-01-01
The traveling salesman problem (TSP) is a combinatorial optimization problem that requires finding the shortest path through a set of points ("cities") that returns to the starting point. Because humans provide heuristic near-optimal solutions to Euclidean versions of the problem, it has sometimes been used to investigate human visual…
Hop Optimization and Relay Node Selection in Multi-hop Wireless Ad-Hoc Networks
NASA Astrophysics Data System (ADS)
Li, Xiaohua(Edward)
In this paper we propose an efficient approach to determine the optimal hops for multi-hop ad hoc wireless networks. Based on the assumption that nodes use successive interference cancellation (SIC) and maximal ratio combining (MRC) to deal with mutual interference and to utilize all the received signal energy, we show that the signal-to-interference-plus-noise ratio (SINR) of a node is determined only by the nodes before it, not the nodes after it, along a packet forwarding path. Based on this observation, we propose an iterative procedure to select the relay nodes and to calculate the path SINR as well as capacity of an arbitrary multi-hop packet forwarding path. The complexity of the algorithm is extremely low, and scaling well with network size. The algorithm is applicable in arbitrarily large networks. Its performance is demonstrated as desirable by simulations. The algorithm can be helpful in analyzing the performance of multi-hop wireless networks.
Optimizing Department of Defense Acquisition Development Test and Evaluation Scheduling
2015-06-01
CPM Critical Path Method DOD Department of Defense DT&E development test and evaluation EMD engineering and manufacturing development GAMS...these, including the Program Evaluation Review Technique (PERT), the Critical Path Method ( CPM ), and the resource- constrained project-scheduling...problem (RCPSP). These are of particular interest to this thesis as the current scheduling method uses elements of the PERT/ CPM , and the test
Spacecraft Attitude Maneuver Planning Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Kornfeld, Richard P.
2004-01-01
A key enabling technology that leads to greater spacecraft autonomy is the capability to autonomously and optimally slew the spacecraft from and to different attitudes while operating under a number of celestial and dynamic constraints. The task of finding an attitude trajectory that meets all the constraints is a formidable one, in particular for orbiting or fly-by spacecraft where the constraints and initial and final conditions are of time-varying nature. This approach for attitude path planning makes full use of a priori constraint knowledge and is computationally tractable enough to be executed onboard a spacecraft. The approach is based on incorporating the constraints into a cost function and using a Genetic Algorithm to iteratively search for and optimize the solution. This results in a directed random search that explores a large part of the solution space while maintaining the knowledge of good solutions from iteration to iteration. A solution obtained this way may be used as is or as an initial solution to initialize additional deterministic optimization algorithms. A number of representative case examples for time-fixed and time-varying conditions yielded search times that are typically on the order of minutes, thus demonstrating the viability of this method. This approach is applicable to all deep space and planet Earth missions requiring greater spacecraft autonomy, and greatly facilitates navigation and science observation planning.
A self-optimizing scheme for energy balanced routing in Wireless Sensor Networks using SensorAnt.
Shamsan Saleh, Ahmed M; Ali, Borhanuddin Mohd; Rasid, Mohd Fadlee A; Ismail, Alyani
2012-01-01
Planning of energy-efficient protocols is critical for Wireless Sensor Networks (WSNs) because of the constraints on the sensor nodes' energy. The routing protocol should be able to provide uniform power dissipation during transmission to the sink node. In this paper, we present a self-optimization scheme for WSNs which is able to utilize and optimize the sensor nodes' resources, especially the batteries, to achieve balanced energy consumption across all sensor nodes. This method is based on the Ant Colony Optimization (ACO) metaheuristic which is adopted to enhance the paths with the best quality function. The assessment of this function depends on multi-criteria metrics such as the minimum residual battery power, hop count and average energy of both route and network. This method also distributes the traffic load of sensor nodes throughout the WSN leading to reduced energy usage, extended network life time and reduced packet loss. Simulation results show that our scheme performs much better than the Energy Efficient Ant-Based Routing (EEABR) in terms of energy consumption, balancing and efficiency.
Seamline Determination Based on PKGC Segmentation for Remote Sensing Image Mosaicking
Dong, Qiang; Liu, Jinghong
2017-01-01
This paper presents a novel method of seamline determination for remote sensing image mosaicking. A two-level optimization strategy is applied to determine the seamline. Object-level optimization is executed firstly. Background regions (BRs) and obvious regions (ORs) are extracted based on the results of parametric kernel graph cuts (PKGC) segmentation. The global cost map which consists of color difference, a multi-scale morphological gradient (MSMG) constraint, and texture difference is weighted by BRs. Finally, the seamline is determined in the weighted cost from the start point to the end point. Dijkstra’s shortest path algorithm is adopted for pixel-level optimization to determine the positions of seamline. Meanwhile, a new seamline optimization strategy is proposed for image mosaicking with multi-image overlapping regions. The experimental results show the better performance than the conventional method based on mean-shift segmentation. Seamlines based on the proposed method bypass the obvious objects and take less time in execution. This new method is efficient and superior for seamline determination in remote sensing image mosaicking. PMID:28749446
Sriram, Vinay K; Montgomery, Doug
2017-07-01
The Internet is subject to attacks due to vulnerabilities in its routing protocols. One proposed approach to attain greater security is to cryptographically protect network reachability announcements exchanged between Border Gateway Protocol (BGP) routers. This study proposes and evaluates the performance and efficiency of various optimization algorithms for validation of digitally signed BGP updates. In particular, this investigation focuses on the BGPSEC (BGP with SECurity extensions) protocol, currently under consideration for standardization in the Internet Engineering Task Force. We analyze three basic BGPSEC update processing algorithms: Unoptimized, Cache Common Segments (CCS) optimization, and Best Path Only (BPO) optimization. We further propose and study cache management schemes to be used in conjunction with the CCS and BPO algorithms. The performance metrics used in the analyses are: (1) routing table convergence time after BGPSEC peering reset or router reboot events and (2) peak-second signature verification workload. Both analytical modeling and detailed trace-driven simulation were performed. Results show that the BPO algorithm is 330% to 628% faster than the unoptimized algorithm for routing table convergence in a typical Internet core-facing provider edge router.
Joint Chance-Constrained Dynamic Programming
NASA Technical Reports Server (NTRS)
Ono, Masahiro; Kuwata, Yoshiaki; Balaram, J. Bob
2012-01-01
This paper presents a novel dynamic programming algorithm with a joint chance constraint, which explicitly bounds the risk of failure in order to maintain the state within a specified feasible region. A joint chance constraint cannot be handled by existing constrained dynamic programming approaches since their application is limited to constraints in the same form as the cost function, that is, an expectation over a sum of one-stage costs. We overcome this challenge by reformulating the joint chance constraint into a constraint on an expectation over a sum of indicator functions, which can be incorporated into the cost function by dualizing the optimization problem. As a result, the primal variables can be optimized by a standard dynamic programming, while the dual variable is optimized by a root-finding algorithm that converges exponentially. Error bounds on the primal and dual objective values are rigorously derived. We demonstrate the algorithm on a path planning problem, as well as an optimal control problem for Mars entry, descent and landing. The simulations are conducted using a real terrain data of Mars, with four million discrete states at each time step.
A real-time approximate optimal guidance law for flight in a plane
NASA Technical Reports Server (NTRS)
Feeley, Timothy S.; Speyer, Jason L.
1990-01-01
A real-time guidance scheme is presented for the problem of maximizing the payload into orbit subject to the equations of motion of a rocket over a nonrotating spherical earth. The flight is constrained to a path in the equatorial plane while reaching an orbital altitude at orbital injection speeds. The dynamics of the problem can be separated into primary and perturbation effects by a small parameter, epsilon, which is the ratio of the atmospheric scale height to the radius of the earth. The Hamilton-Jacobi-Bellman or dynamic programming equation is expanded in an asymptotic series where the zeroth-order term (epsilon = 0) can be obtained in closed form. The neglected perturbation terms are included in the higher-order terms of the expansion, which are determined from the solution of first-order linear partial differential equations requiring only integrations which are quadratures. The quadratures can be performed rapidly with emerging computer capability, so that real-time approximate optimization can be used to construct the launch guidance law. The application of this technique to flight in three-dimensions is made apparent from the solution presented.
Optimal savings and the value of population.
Arrow, Kenneth J; Bensoussan, Alain; Feng, Qi; Sethi, Suresh P
2007-11-20
We study a model of economic growth in which an exogenously changing population enters in the objective function under total utilitarianism and into the state dynamics as the labor input to the production function. We consider an arbitrary population growth until it reaches a critical level (resp. saturation level) at which point it starts growing exponentially (resp. it stops growing altogether). This requires population as well as capital as state variables. By letting the population variable serve as the surrogate of time, we are still able to depict the optimal path and its convergence to the long-run equilibrium on a two-dimensional phase diagram. The phase diagram consists of a transient curve that reaches the classical curve associated with a positive exponential growth at the time the population reaches the critical level. In the case of an asymptotic population saturation, we expect the transient curve to approach the equilibrium as the population approaches its saturation level. Finally, we characterize the approaches to the classical curve and to the equilibrium.