Control strategies for wind farm power optimization: LES study
NASA Astrophysics Data System (ADS)
Ciri, Umberto; Rotea, Mario; Leonardi, Stefano
2017-11-01
Turbines in wind farms operate in off-design conditions as wake interactions occur for particular wind directions. Advanced wind farm control strategies aim at coordinating and adjusting turbine operations to mitigate power losses in such conditions. Coordination is achieved by controlling on upstream turbines either the wake intensity, through the blade pitch angle or the generator torque, or the wake direction, through yaw misalignment. Downstream turbines can be adapted to work in waked conditions and limit power losses, using the blade pitch angle or the generator torque. As wind conditions in wind farm operations may change significantly, it is difficult to determine and parameterize the variations of the coordinated optimal settings. An alternative is model-free control and optimization of wind farms, which does not require any parameterization and can track the optimal settings as conditions vary. In this work, we employ a model-free optimization algorithm, extremum-seeking control, to find the optimal set-points of generator torque, blade pitch and yaw angle for a three-turbine configuration. Large-Eddy Simulations are used to provide a virtual environment to evaluate the performance of the control strategies under realistic, unsteady incoming wind. This work was supported by the National Science Foundation, Grants No. 1243482 (the WINDINSPIRE project) and IIP 1362033 (I/UCRC WindSTAR). TACC is acknowledged for providing computational time.
[Hygienic optimization of the use of chemical protective means on railway transport].
Kaptsov, V A; Pankova, V B; Elizarov, B B; Mezentsev, A P; Komleva, E A
2004-01-01
The paper presents data characterizing the working conditions of railway workers. It shows that there is the greatest levels of noise and vibration, the burden and intensity of work. The worst working conditions are noted in energy supply, car, locomotive services and track facilities. The working conditions determine a significant industrial risk of railway workers since the prevention of health abnormalities by using chemical protective means is a topical problem. The priority lines of hygienic rationale for optimization the choice and use of chemical protective means for workers exposed to occupational hazards are determined.
Directional Convexity and Finite Optimality Conditions.
1984-03-01
system, Necessary Conditions for optimality. Work Unit Number 5 (Optimization and Large Scale Systems) *Istituto di Matematica Applicata, Universita...that R(T) is convex would then imply x(u,T) e int R(T). Cletituto di Matematica Applicata, Universita di Padova, 35100 ITALY. Sponsored by the United
Ding, Xu; Shi, Lei; Han, Jianghong; Lu, Jingting
2016-01-01
Wireless sensor networks deployed in coal mines could help companies provide workers working in coal mines with more qualified working conditions. With the underground information collected by sensor nodes at hand, the underground working conditions could be evaluated more precisely. However, sensor nodes may tend to malfunction due to their limited energy supply. In this paper, we study the cross-layer optimization problem for wireless rechargeable sensor networks implemented in coal mines, of which the energy could be replenished through the newly-brewed wireless energy transfer technique. The main results of this article are two-fold: firstly, we obtain the optimal relay nodes’ placement according to the minimum overall energy consumption criterion through the Lagrange dual problem and KKT conditions; secondly, the optimal strategies for recharging locomotives and wireless sensor networks are acquired by solving a cross-layer optimization problem. The cyclic nature of these strategies is also manifested through simulations in this paper. PMID:26828500
Ding, Xu; Shi, Lei; Han, Jianghong; Lu, Jingting
2016-01-28
Wireless sensor networks deployed in coal mines could help companies provide workers working in coal mines with more qualified working conditions. With the underground information collected by sensor nodes at hand, the underground working conditions could be evaluated more precisely. However, sensor nodes may tend to malfunction due to their limited energy supply. In this paper, we study the cross-layer optimization problem for wireless rechargeable sensor networks implemented in coal mines, of which the energy could be replenished through the newly-brewed wireless energy transfer technique. The main results of this article are two-fold: firstly, we obtain the optimal relay nodes' placement according to the minimum overall energy consumption criterion through the Lagrange dual problem and KKT conditions; secondly, the optimal strategies for recharging locomotives and wireless sensor networks are acquired by solving a cross-layer optimization problem. The cyclic nature of these strategies is also manifested through simulations in this paper.
Optimization Of PVDF-TrFE Processing Conditions For The Fabrication Of Organic MEMS Resonators
Ducrot, Pierre-Henri; Dufour, Isabelle; Ayela, Cédric
2016-01-01
This paper reports a systematic optimization of processing conditions of PVDF-TrFE piezoelectric thin films, used as integrated transducers in organic MEMS resonators. Indeed, despite data on electromechanical properties of PVDF found in the literature, optimized processing conditions that lead to these properties remain only partially described. In this work, a rigorous optimization of parameters enabling state-of-the-art piezoelectric properties of PVDF-TrFE thin films has been performed via the evaluation of the actuation performance of MEMS resonators. Conditions such as annealing duration, poling field and poling duration have been optimized and repeatability of the process has been demonstrated. PMID:26792224
Optimization Of PVDF-TrFE Processing Conditions For The Fabrication Of Organic MEMS Resonators.
Ducrot, Pierre-Henri; Dufour, Isabelle; Ayela, Cédric
2016-01-21
This paper reports a systematic optimization of processing conditions of PVDF-TrFE piezoelectric thin films, used as integrated transducers in organic MEMS resonators. Indeed, despite data on electromechanical properties of PVDF found in the literature, optimized processing conditions that lead to these properties remain only partially described. In this work, a rigorous optimization of parameters enabling state-of-the-art piezoelectric properties of PVDF-TrFE thin films has been performed via the evaluation of the actuation performance of MEMS resonators. Conditions such as annealing duration, poling field and poling duration have been optimized and repeatability of the process has been demonstrated.
Optimal tuning of a confined Brownian information engine.
Park, Jong-Min; Lee, Jae Sung; Noh, Jae Dong
2016-03-01
A Brownian information engine is a device extracting mechanical work from a single heat bath by exploiting the information on the state of a Brownian particle immersed in the bath. As for engines, it is important to find the optimal operating condition that yields the maximum extracted work or power. The optimal condition for a Brownian information engine with a finite cycle time τ has been rarely studied because of the difficulty in finding the nonequilibrium steady state. In this study, we introduce a model for the Brownian information engine and develop an analytic formalism for its steady-state distribution for any τ. We find that the extracted work per engine cycle is maximum when τ approaches infinity, while the power is maximum when τ approaches zero.
Method for Household Refrigerators Efficiency Increasing
NASA Astrophysics Data System (ADS)
Lebedev, V. V.; Sumzina, L. V.; Maksimov, A. V.
2017-11-01
The relevance of working processes parameters optimization in air conditioning systems is proved in the work. The research is performed with the use of the simulation modeling method. The parameters optimization criteria are considered, the analysis of target functions is given while the key factors of technical and economic optimization are considered in the article. The search for the optimal solution at multi-purpose optimization of the system is made by finding out the minimum of the dual-target vector created by the Pareto method of linear and weight compromises from target functions of the total capital costs and total operating costs. The tasks are solved in the MathCAD environment. The research results show that the values of technical and economic parameters of air conditioning systems in the areas relating to the optimum solutions’ areas manifest considerable deviations from the minimum values. At the same time, the tendencies for significant growth in deviations take place at removal of technical parameters from the optimal values of both the capital investments and operating costs. The production and operation of conditioners with the parameters which are considerably deviating from the optimal values will lead to the increase of material and power costs. The research allows one to establish the borders of the area of the optimal values for technical and economic parameters at air conditioning systems’ design.
Optimal management of non-Markovian biological populations
Williams, B.K.
2007-01-01
Wildlife populations typically are described by Markovian models, with population dynamics influenced at each point in time by current but not previous population levels. Considerable work has been done on identifying optimal management strategies under the Markovian assumption. In this paper we generalize this work to non-Markovian systems, for which population responses to management are influenced by lagged as well as current status and/or controls. We use the maximum principle of optimal control theory to derive conditions for the optimal management such a system, and illustrate the effects of lags on the structure of optimal habitat strategies for a predator-prey system.
Optimal policies of non-cross-resistant chemotherapy on Goldie and Coldman's cancer model.
Chen, Jeng-Huei; Kuo, Ya-Hui; Luh, Hsing Paul
2013-10-01
Mathematical models can be used to study the chemotherapy on tumor cells. Especially, in 1979, Goldie and Coldman proposed the first mathematical model to relate the drug sensitivity of tumors to their mutation rates. Many scientists have since referred to this pioneering work because of its simplicity and elegance. Its original idea has also been extended and further investigated in massive follow-up studies of cancer modeling and optimal treatment. Goldie and Coldman, together with Guaduskas, later used their model to explain why an alternating non-cross-resistant chemotherapy is optimal with a simulation approach. Subsequently in 1983, Goldie and Coldman proposed an extended stochastic based model and provided a rigorous mathematical proof to their earlier simulation work when the extended model is approximated by its quasi-approximation. However, Goldie and Coldman's analytic study of optimal treatments majorly focused on a process with symmetrical parameter settings, and presented few theoretical results for asymmetrical settings. In this paper, we recast and restate Goldie, Coldman, and Guaduskas' model as a multi-stage optimization problem. Under an asymmetrical assumption, the conditions under which a treatment policy can be optimal are derived. The proposed framework enables us to consider some optimal policies on the model analytically. In addition, Goldie, Coldman and Guaduskas' work with symmetrical settings can be treated as a special case of our framework. Based on the derived conditions, this study provides an alternative proof to Goldie and Coldman's work. In addition to the theoretical derivation, numerical results are included to justify the correctness of our work. Copyright © 2013 Elsevier Inc. All rights reserved.
Design of a compensation for an ARMA model of a discrete time system. M.S. Thesis
NASA Technical Reports Server (NTRS)
Mainemer, C. I.
1978-01-01
The design of an optimal dynamic compensator for a multivariable discrete time system is studied. Also the design of compensators to achieve minimum variance control strategies for single input single output systems is analyzed. In the first problem the initial conditions of the plant are random variables with known first and second order moments, and the cost is the expected value of the standard cost, quadratic in the states and controls. The compensator is based on the minimum order Luenberger observer and it is found optimally by minimizing a performance index. Necessary and sufficient conditions for optimality of the compensator are derived. The second problem is solved in three different ways; two of them working directly in the frequency domain and one working in the time domain. The first and second order moments of the initial conditions are irrelevant to the solution. Necessary and sufficient conditions are derived for the compensator to minimize the variance of the output.
Li, Zhongwei; Xin, Yuezhen; Wang, Xun; Sun, Beibei; Xia, Shengyu; Li, Hui
2016-01-01
Phellinus is a kind of fungus and is known as one of the elemental components in drugs to avoid cancers. With the purpose of finding optimized culture conditions for Phellinus production in the laboratory, plenty of experiments focusing on single factor were operated and large scale of experimental data were generated. In this work, we use the data collected from experiments for regression analysis, and then a mathematical model of predicting Phellinus production is achieved. Subsequently, a gene-set based genetic algorithm is developed to optimize the values of parameters involved in culture conditions, including inoculum size, PH value, initial liquid volume, temperature, seed age, fermentation time, and rotation speed. These optimized values of the parameters have accordance with biological experimental results, which indicate that our method has a good predictability for culture conditions optimization. PMID:27610365
Optimisation of strain selection in evolutionary continuous culture
NASA Astrophysics Data System (ADS)
Bayen, T.; Mairet, F.
2017-12-01
In this work, we study a minimal time control problem for a perfectly mixed continuous culture with n ≥ 2 species and one limiting resource. The model that we consider includes a mutation factor for the microorganisms. Our aim is to provide optimal feedback control laws to optimise the selection of the species of interest. Thanks to Pontryagin's Principle, we derive optimality conditions on optimal controls and introduce a sub-optimal control law based on a most rapid approach to a singular arc that depends on the initial condition. Using adaptive dynamics theory, we also study a simplified version of this model which allows to introduce a near optimal strategy.
A Review of Industrial Heat Exchange Optimization
NASA Astrophysics Data System (ADS)
Yao, Junjie
2018-01-01
Heat exchanger is an energy exchange equipment, it transfers the heat from a working medium to another working medium, which has been wildly used in petrochemical industry, HVAC refrigeration, aerospace and so many other fields. The optimal design and efficient operation of the heat exchanger and heat transfer network are of great significance to the process industry to realize energy conservation, production cost reduction and energy consumption reduction. In this paper, the optimization of heat exchanger, optimal algorithm and heat exchanger optimization with different objective functions are discussed. Then, optimization of the heat exchanger and the heat exchanger network considering different conditions are compared and analysed. Finally, all the problems discussed are summarized and foresights are proposed.
Matern, U; Koneczny, S
2006-10-01
For the evaluation of working place conditions in the operating room a survey was conducted among the surgeons working in German hospitals. Questions regarded the personal profile, the architectural situation, the devices and instruments as well as the working posture. The answers to the 60 questions display a high potential for improvement within all fields. Every single group working in the operating room, as well as their professional organizations are asked to work on the optimization of the working place conditions in the operating room in terms of improvement of quality and efficiency.
Construction schedules slack time minimizing
NASA Astrophysics Data System (ADS)
Krzemiński, Michał
2017-07-01
The article presents two copyright models for minimizing downtime working brigades. Models have been developed for construction schedules performed using the method of work uniform. Application of flow shop models is possible and useful for the implementation of large objects, which can be divided into plots. The article also presents a condition describing gives which model should be used, as well as a brief example of optimization schedule. The optimization results confirm the legitimacy of the work on the newly-developed models.
NASA Astrophysics Data System (ADS)
Zhang, S. F.; Yin, J.; Liu, Y.; Sha, Z. H.; Ma, F. J.
2016-11-01
There always exists severe non-uniform wear of brake pad in large-megawatt wind turbine brake during the braking process, which has the brake pad worn out in advance and even threats the safety production of wind turbine. The root cause of this phenomenon is the non-uniform deformation caused by thermal-structural coupling effect between brake pad and disc while braking under the conditions of both high speed and heavy load. For this problem, mathematical model of thermal-structural coupling analysis is built. Based on the topology optimization method of Solid Isotropic Microstructures with Penalization, SIMP, structure topology optimization of brake pad is developed considering the deformation caused by thermal-structural coupling effect. The objective function is the minimum flexibility, and the structure topology optimization model of brake pad is established after indirect thermal- structural coupling analysis. Compared with the optimization result considering non-thermal- structural coupling, the conspicuous influence of thermal effect on brake pad wear and deformation is proven as well as the rationality of taking thermal-structural coupling effect as optimization condition. Reconstructed model is built according to the result, meanwhile analysis for verification is carried out with the same working condition. This study provides theoretical foundation for the design of high-speed and heavy-load brake pad. The new structure may provide design reference for improving the stress condition between brake pad and disc, enhancing the use ratio of friction material and increasing the working performance of large-megawatt wind turbine brake.
Necessary optimality conditions for infinite dimensional state constrained control problems
NASA Astrophysics Data System (ADS)
Frankowska, H.; Marchini, E. M.; Mazzola, M.
2018-06-01
This paper is concerned with first order necessary optimality conditions for state constrained control problems in separable Banach spaces. Assuming inward pointing conditions on the constraint, we give a simple proof of Pontryagin maximum principle, relying on infinite dimensional neighboring feasible trajectories theorems proved in [20]. Further, we provide sufficient conditions guaranteeing normality of the maximum principle. We work in the abstract semigroup setting, but nevertheless we apply our results to several concrete models involving controlled PDEs. Pointwise state constraints (as positivity of the solutions) are allowed.
Long, Han; Cai, XingHua; Yang, Hui; He, JunBin; Wu, Jia; Lin, RiHui
2017-09-01
In order to improve the stability of oxalate decarboxylase (Oxdc), response surface methodology (RSM), based on a four-factor three-level Box-Behnken central composite design was used to optimize the reaction conditions of oxalate decarboxylase (Oxdc) modified with monomethoxy polyethyleneglycol (mPEG5000). Four independent variables such as the ratio of mPEG-aldehyde to Oxdc, reaction time, temperature, and reaction pH were investigated in this work. The structure of modified Oxdc was identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Fourier transform infrared (FTIR) spectroscopy, the stability of the modified Oxdc was also investigated. The optimal conditions were as follows: the mole ratio of mPEG-aldehyde to Oxdc of 1:47.6, time of 13.1 h, temperature at 29.9 °C, and the reaction pH of 5.3. Under optimal conditions, experimental modified rate (MR = 73.69%) and recovery rate (RR = 67.58%) were matched well with the predicted value (MR = 75.11%) and (RR = 69.17%). SDS-PAGE and FTIR analysis showed that mPEG was covalently bound to the Oxdc. Compared with native Oxdc, the modified Oxdc (mPEG-Oxdc) showed higher thermal stability and better tolerance to trypsin or different pH treatment. This work will provide a further theoretical reference for enzyme modification and conditional optimization.
Design and Optimization of an Austenitic TRIP Steel for Blast and Fragment Protection
NASA Astrophysics Data System (ADS)
Feinberg, Zechariah Daniel
In light of the pervasive nature of terrorist attacks, there is a pressing need for the design and optimization of next generation materials for blast and fragment protection applications. Sadhukhan used computational tools and a systems-based approach to design TRIP-120---a fully austenitic transformation-induced plasticity (TRIP) steel. Current work more completely evaluates the mechanical properties of the prototype, optimizes the processing for high performance in tension and shear, and builds models for more predictive power of the mechanical behavior and austenite stability. Under quasi-static and dynamic tension and shear, the design exhibits high strength and high uniform ductility as a result of a strain hardening effect that arises with martensitic transformation. Significantly more martensitic transformation occurred under quasi-static loading conditions (69% in tension and 52% in shear) compared to dynamic loading conditions (13% tension and 5% in shear). Nonetheless, significant transformation occurs at high-strain rates which increases strain hardening, delays the onset of necking instability, and increases total energy absorption under adiabatic conditions. Although TRIP-120 effectively utilizes a TRIP effect to delay necking instability, a common trend of abrupt failure with limited fracture ductility was observed in tension and shear at all strain rates. Further characterization of the structure of TRIP-120 showed that an undesired grain boundary cellular reaction (η phase formation) consumed the fine dispersion of the metastable gamma' phase and limited the fracture ductility. A warm working procedure was added to the processing of TRIP-120 in order to eliminate the grain boundary cellular reaction from the structure. By eliminating η formation at the grain boundaries, warm-worked TRIP-120 exhibits a drastic improvement in the mechanical properties in tension and shear. In quasi-static tension, the optimized warm-worked TRIP-120 with an Mssigma( u.t.) of -13°C has a yield strength of 180 ksi (1241 MPa), uniform ductility of 0.303, and fracture ductility of 0.95, which corresponds to a 48% increase in yield strength, a 43% increase in uniform ductility, and a 254% increase in fracture ductility relative to the designed processing of TRIP-120. The highest performing condition of warm-worked TRIP-120 in quasi-static shear with an Mssigma( sh) of 58°C exhibits a shear yield strength of 95.1 ksi (656 MPa), shear fracture strain of 144%, and energy dissipation density of 1099 MJ/m3, which corresponds to a shear yield strength increase of 61%, a shear fracture strain increase of 55%, and an energy dissipation density increase of 76%. A wide range of austenite stabilities can be achieved by altering the heat treatment times and temperatures, which significantly alters the mechanical properties. Although performance cannot be optimized for tension and shear simultaneously, different heat treatments can be applied to warm-worked TRIP-120 to achieve high performance in tension or shear. Parametric models calibrated with three-dimensional atom probe data played a crucial role in guiding the predictive process optimization of TRIP-120. Such models have been built to provide the predictive capability of inputting warm working and aging conditions and outputting the resulting structure, austenite stability, and mechanical properties. The predictive power of computational models has helped identify processing conditions that have improved the performance of TRIP-120 in tension and shear and can be applied to future designs that optimize for adiabatic conditions.
Empowering leaders optimize working conditions for engagement: a multilevel study.
Tuckey, Michelle R; Bakker, Arnold B; Dollard, Maureen F
2012-01-01
Using a multilevel framework, this study examined the role of empowering leadership at the group level by fire brigade captains in facilitating the individual level motivational processes that underpin work engagement in volunteer firefighters. Anonymous mail surveys were completed by 540 volunteer firefighters from 68 fire brigades and, separately, by 68 brigade captains. As predicted on the basis of the Job Demands-Resources model, increased levels of cognitive demands and cognitive resources partially mediated the relationship between empowering leadership and work engagement. In a three-way Leadership × Demands × Resources interaction, empowering leadership also had the effect of optimizing working conditions for engagement by strengthening the positive effect of a work context in which both cognitive demands and cognitive resources were high. Our findings shed light on a process through which leaders can empower workers and enhance well-being: via their influence on and interaction with the work environment. They also underscore the need to examine work engagement from a multilevel theoretical perspective.
Grodowska, Katarzyna; Parczewski, Andrzej
2013-01-01
The purpose of the present work was to find optimum conditions of headspace gas chromatography (HS-GC) determination of residual solvents which usually appear in pharmaceutical products. Two groups of solvents were taken into account in the present examination. Group I consisted of isopropanol, n-propanol, isobutanol, n-butanol and 1,4-dioxane and group II included cyclohexane, n-hexane and n-heptane. The members of the groups were selected in previous investigations in which experimental design and chemometric methods were applied. Four factors were taken into consideration in optimization which describe HS conditions: sample volume, equilibration time, equilibrium temperature and NaCl concentration in a sample. The relative GC peak area served as an optimization criterion which was considered separately for each analyte. Sequential variable size simplex optimization strategy was used and the progress of optimization was traced and visualized in various ways simultaneously. The optimum HS conditions appeared different for the groups of solvents tested, which proves that influence of experimental conditions (factors) depends on analyte properties. The optimization resulted in significant signal increase (from seven to fifteen times).
Optimization of Progressive Freeze Concentration on Apple Juice via Response Surface Methodology
NASA Astrophysics Data System (ADS)
Samsuri, S.; Amran, N. A.; Jusoh, M.
2018-05-01
In this work, a progressive freeze concentration (PFC) system was developed to concentrate apple juice and was optimized by response surface methodology (RSM). The effects of various operating conditions such as coolant temperature, circulation flowrate, circulation time and shaking speed to effective partition constant (K) were investigated. Five different level of central composite design (CCD) was employed to search for optimal concentration of concentrated apple juice. A full quadratic model for K was established by using method of least squares. A coefficient of determination (R2) of this model was found to be 0.7792. The optimum conditions were found to be coolant temperature = -10.59 °C, circulation flowrate = 3030.23 mL/min, circulation time = 67.35 minutes and shaking speed = 30.96 ohm. A validation experiment was performed to evaluate the accuracy of the optimization procedure and the best K value of 0.17 was achieved under the optimized conditions.
Economic Ergonomic Approach to Design an Optimal Manpower and Mechanization in Rice Production
NASA Astrophysics Data System (ADS)
Muanah; Syuaib, M. F.; Liyantono
2018-05-01
Productivity of manpower could be improved by considering the economic and ergonomic aspect. The ergonomic aspect (human factor) is required to design an optimal manpower, while in the economic aspect, the well being of manpower could be evaluated from the amount of received income based on their work capability. This research was conducted on February 2016 to January 2017 in Gapoktan Silih Asih rice field Cigombong, Bogor. This study aims to analyze the income of manpower based on current conditions, increasement of working hours and mechanization addition. The results showed that manpower income based on the current condition and ergonomic consideration was Rp 1,174,030/person.month, by increasing the working hours with ergonomic consideration the obtained income was Rp 1,766,204/person.month. the revenues were based on the existing work system even though the increasement of working hours have not provided optimal income due to low productivity. Therefore the results of analysis with the addition of selective mechanization, showed self-ownership machinery was more profitable the obtained income have more than the Bogor minimum wage standard of Rp 2,969,325/person.month.
Flight Test Validation of Optimal Input Design and Comparison to Conventional Inputs
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
1997-01-01
A technique for designing optimal inputs for aerodynamic parameter estimation was flight tested on the F-18 High Angle of Attack Research Vehicle (HARV). Model parameter accuracies calculated from flight test data were compared on an equal basis for optimal input designs and conventional inputs at the same flight condition. In spite of errors in the a priori input design models and distortions of the input form by the feedback control system, the optimal inputs increased estimated parameter accuracies compared to conventional 3-2-1-1 and doublet inputs. In addition, the tests using optimal input designs demonstrated enhanced design flexibility, allowing the optimal input design technique to use a larger input amplitude to achieve further increases in estimated parameter accuracy without departing from the desired flight test condition. This work validated the analysis used to develop the optimal input designs, and demonstrated the feasibility and practical utility of the optimal input design technique.
CAMS as a tool for human factors research in spaceflight
NASA Astrophysics Data System (ADS)
Sauer, Juergen
2004-01-01
The paper reviews a number of research studies that were carried out with a PC-based task environment called Cabin Air Management System (CAMS) simulating the operation of a spacecraft's life support system. As CAMS was a multiple task environment, it allowed the measurement of performance at different levels. Four task components of different priority were embedded in the task environment: diagnosis and repair of system faults, maintaining atmospheric parameters in a safe state, acknowledgement of system alarms (reaction time), and keeping a record of critical system resources (prospective memory). Furthermore, the task environment permitted the examination of different task management strategies and changes in crew member state (fatigue, anxiety, mental effort). A major goal of the research programme was to examine how crew members adapted to various forms of sub-optimal working conditions, such as isolation and confinement, sleep deprivation and noise. None of the studies provided evidence for decrements in primary task performance. However, the results showed a number of adaptive responses of crew members to adjust to the different sub-optimal working conditions. There was evidence for adjustments in information sampling strategies (usually reductions in sampling frequency) as a result of unfavourable working conditions. The results also showed selected decrements in secondary task performance. Prospective memory seemed to be somewhat more vulnerable to sub-optimal working conditions than performance on the reaction time task. Finally, suggestions are made for future research with the CAMS environment.
Li, Kaiyun; Fu, Qiufang; Sun, Xunwei; Zhou, Xiaoyan; Fu, Xiaolan
2016-01-01
It remains unclear whether probabilistic category learning in the feedback-based weather prediction task (FB-WPT) can be mediated by a non-declarative or procedural learning system. To address this issue, we compared the effects of training time and verbal working memory, which influence the declarative learning system but not the non-declarative learning system, in the FB and paired-associate (PA) WPTs, as the PA task recruits a declarative learning system. The results of Experiment 1 showed that the optimal accuracy in the PA condition was significantly decreased when the training time was reduced from 7 to 3 s, but this did not occur in the FB condition, although shortened training time impaired the acquisition of explicit knowledge in both conditions. The results of Experiment 2 showed that the concurrent working memory task impaired the optimal accuracy and the acquisition of explicit knowledge in the PA condition but did not influence the optimal accuracy or the acquisition of self-insight knowledge in the FB condition. The apparent dissociation results between the FB and PA conditions suggested that a non-declarative or procedural learning system is involved in the FB-WPT and provided new evidence for the multiple-systems theory of human category learning.
Li, Kaiyun; Fu, Qiufang; Sun, Xunwei; Zhou, Xiaoyan; Fu, Xiaolan
2016-01-01
It remains unclear whether probabilistic category learning in the feedback-based weather prediction task (FB-WPT) can be mediated by a non-declarative or procedural learning system. To address this issue, we compared the effects of training time and verbal working memory, which influence the declarative learning system but not the non-declarative learning system, in the FB and paired-associate (PA) WPTs, as the PA task recruits a declarative learning system. The results of Experiment 1 showed that the optimal accuracy in the PA condition was significantly decreased when the training time was reduced from 7 to 3 s, but this did not occur in the FB condition, although shortened training time impaired the acquisition of explicit knowledge in both conditions. The results of Experiment 2 showed that the concurrent working memory task impaired the optimal accuracy and the acquisition of explicit knowledge in the PA condition but did not influence the optimal accuracy or the acquisition of self-insight knowledge in the FB condition. The apparent dissociation results between the FB and PA conditions suggested that a non-declarative or procedural learning system is involved in the FB-WPT and provided new evidence for the multiple-systems theory of human category learning. PMID:27445958
Topology optimization under stochastic stiffness
NASA Astrophysics Data System (ADS)
Asadpoure, Alireza
Topology optimization is a systematic computational tool for optimizing the layout of materials within a domain for engineering design problems. It allows variation of structural boundaries and connectivities. This freedom in the design space often enables discovery of new, high performance designs. However, solutions obtained by performing the optimization in a deterministic setting may be impractical or suboptimal when considering real-world engineering conditions with inherent variabilities including (for example) variabilities in fabrication processes and operating conditions. The aim of this work is to provide a computational methodology for topology optimization in the presence of uncertainties associated with structural stiffness, such as uncertain material properties and/or structural geometry. Existing methods for topology optimization under deterministic conditions are first reviewed. Modifications are then proposed to improve the numerical performance of the so-called Heaviside Projection Method (HPM) in continuum domains. Next, two approaches, perturbation and Polynomial Chaos Expansion (PCE), are proposed to account for uncertainties in the optimization procedure. These approaches are intrusive, allowing tight and efficient coupling of the uncertainty quantification with the optimization sensitivity analysis. The work herein develops a robust topology optimization framework aimed at reducing the sensitivity of optimized solutions to uncertainties. The perturbation-based approach combines deterministic topology optimization with a perturbation method for the quantification of uncertainties. The use of perturbation transforms the problem of topology optimization under uncertainty to an augmented deterministic topology optimization problem. The PCE approach combines the spectral stochastic approach for the representation and propagation of uncertainties with an existing deterministic topology optimization technique. The resulting compact representations for the response quantities allow for efficient and accurate calculation of sensitivities of response statistics with respect to the design variables. The proposed methods are shown to be successful at generating robust optimal topologies. Examples from topology optimization in continuum and discrete domains (truss structures) under uncertainty are presented. It is also shown that proposed methods lead to significant computational savings when compared to Monte Carlo-based optimization which involve multiple formations and inversions of the global stiffness matrix and that results obtained from the proposed method are in excellent agreement with those obtained from a Monte Carlo-based optimization algorithm.
Mache, Stefanie; Vitzthum, Karin; Wanke, Eileen; Klapp, Burghard F; Danzer, Gerhard
2014-01-01
The German health care system has undergone radical changes in the last decades. These days health care professionals have to face economic demands, high performance pressure as well as high expectations from patients. To ensure high quality medicine and care, highly intrinsic motivated and work engaged health care professionals are strongly needed. The aim of this study was to examine relations between personal and organizational resources as essential predictors for work engagement of German health care professionals. This investigation has a cross-sectional questionnaire study design. Participants were a sample of hospital doctors. Personal strengths, working conditions and work engagement were measured by using the SWOPE-K9, COPE Brief Questionnaire, Perceived Stress Questionnaire, COPSOQ and Utrecht Work Engagement Scale. Significant relations between physicians' personal strengths (e.g. resilience, optimism) and work engagement were evaluated. Work related factors showed to have a significant influence on work engagement. Differences in work engagement were also found with regard to socio-demographic variables. Results demonstrated important relationships between personal and organizational resources and work engagement. Health care management needs to use this information to maintain or develop work engaging job conditions in hospitals as one key factor to ensure quality health care service.
USDA-ARS?s Scientific Manuscript database
With remarkable bioactivities and delightful taste, mushrooms have been a commercial nutraceutical around the world. Mushrooms are cultivated on solid materials. Here we report the successful cultivation of four Philippine edible mushrooms in liquid medium. This work highlights the optimal liquid cu...
Aparicio, Juan Daniel; Raimondo, Enzo Emanuel; Gil, Raúl Andrés; Benimeli, Claudia Susana; Polti, Marta Alejandra
2018-01-15
The objective of the present work was to establish optimal biological and physicochemical parameters in order to remove simultaneously lindane and Cr(VI) at high and/or low pollutants concentrations from the soil by an actinobacteria consortium formed by Streptomyces sp. M7, MC1, A5, and Amycolatopsis tucumanensis AB0. Also, the final aim was to treat real soils contaminated with Cr(VI) and/or lindane from the Northwest of Argentina employing the optimal biological and physicochemical conditions. In this sense, after determining the optimal inoculum concentration (2gkg -1 ), an experimental design model with four factors (temperature, moisture, initial concentration of Cr(VI) and lindane) was employed for predicting the system behavior during bioremediation process. According to response optimizer, the optimal moisture level was 30% for all bioremediation processes. However, the optimal temperature was different for each situation: for low initial concentrations of both pollutants, the optimal temperature was 25°C; for low initial concentrations of Cr(VI) and high initial concentrations of lindane, the optimal temperature was 30°C; and for high initial concentrations of Cr(VI), the optimal temperature was 35°C. In order to confirm the model adequacy and the validity of the optimization procedure, experiments were performed in six real contaminated soils samples. The defined actinobacteria consortium reduced the contaminants concentrations in five of the six samples, by working at laboratory scale and employing the optimal conditions obtained through the factorial design. Copyright © 2017 Elsevier B.V. All rights reserved.
Power performance of nonisentropic Brayton cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, C.; Kiang, R.L.
In this paper work and power optimization of a Brayton cycle are analyzed with a finite-time heat transfer analysis. This work extends the recent flurry of publications in heat engine efficiency under the maximum power condition by incorporating nonisentropic compression and expansion. As expected, these nonisentropic processes lower the power output as well as the cycle efficiency when compared with an endoreversible Brayton cycle under the same conditions.
Wu, Yanfang; Wang, Xinsheng; Xue, Jintao; Fan, Enguo
2017-11-01
Huaiju is one of the most famous and widely used Flos Chrysanthemi (FC) for medicinal purposes in China. Although various investigations aimed at phenolics extraction from other FC have been reported, a thorough optimization of the phenolics extraction conditions from Huaiju has not been achieved. This work applied the widely used response surface methodology (RSM) to investigate the effects of 3 independent variables including ethanol concentration (%), extraction time (min), and solvent-to-material ratio (mL/g) on the ultrasound-assisted extraction (UAE) of phenolics from FC. The data suggested the optimal UAE condition was an ethanol concentration of 75.3% and extraction time of 43.5 min, whereas the ratio of solvent to material has no significant effect. When the free radical scavenging ability was used as an indicator for a successful extraction, a similar optimal extraction was achieved with an ethanol concentration of 72.8%, extraction time of 44.3 min, and the ratio of solvent to material was 29.5 mL/g. Furthermore, a moderate correlation between the antioxidant activity of TP extract and the content of extracted phenolic compounds was observed. Moreover, a well consistent of the experimental values under optimal conditions with those predicted values suggests RSM successfully optimized the UAE conditions for phenolics extraction from FC. The work of the research investigated the plant phenolics in Flos Chrysanthemi and antioxidant capacities. These results of this study can support the development of antioxidant additive and relative food. © 2017 The Authors. Journal of Food Science published by Wiley Periodicals, Inc. on behalf of Institute of Food Technologists.
Optimizing chemical conditioning for odour removal of undigested sewage sludge in drying processes.
Vega, Esther; Monclús, Hèctor; Gonzalez-Olmos, Rafael; Martin, Maria J
2015-03-01
Emission of odours during the thermal drying in sludge handling processes is one of the main sources of odour problems in wastewater treatment plants. The objective of this work was to assess the use of the response surface methodology as a technique to optimize the chemical conditioning process of undigested sewage sludges, in order to improve the dewaterability, and to reduce the odour emissions during the thermal drying of the sludge. Synergistic effects between inorganic conditioners (iron chloride and calcium oxide) were observed in terms of sulphur emissions and odour reduction. The developed quadratic models indicated that optimizing the conditioners dosage is possible to increase a 70% the dewaterability, reducing a 50% and 54% the emission of odour and volatile sulphur compounds respectively. The optimization of the conditioning process was validated experimentally. Copyright © 2014 Elsevier Ltd. All rights reserved.
Maximum cycle work output optimization for generalized radiative law Otto cycle engines
NASA Astrophysics Data System (ADS)
Xia, Shaojun; Chen, Lingen; Sun, Fengrui
2016-11-01
An Otto cycle internal combustion engine which includes thermal and friction losses is investigated by finite-time thermodynamics, and the optimization objective is the maximum cycle work output. The thermal energy transfer from the working substance to the cylinder inner wall follows the generalized radiative law (q∝Δ (Tn)). Under the condition that all of the fuel consumption, the compression ratio and the cycle period are given, the optimal piston trajectories for both the examples with unlimited and limited accelerations on every stroke are determined, and the cycle-period distribution among all strokes is also optimized. Numerical calculation results for the case of radiative law are provided and compared with those obtained for the cases of Newtonian law and linear phenomenological law. The results indicate that the optimal piston trajectory on each stroke contains three sections, which consist of an original maximum-acceleration and a terminal maximum-deceleration parts; for the case of radiative law, optimizing the piston motion path can achieve an improvement of more than 20% in both the cycle-work output and the second-law efficiency of the Otto cycle compared with the conventional near-sinusoidal operation, and heat transfer mechanisms have both qualitative and quantitative influences on the optimal paths of piston movements.
Topology optimization of 3D shell structures with porous infill
NASA Astrophysics Data System (ADS)
Clausen, Anders; Andreassen, Erik; Sigmund, Ole
2017-08-01
This paper presents a 3D topology optimization approach for designing shell structures with a porous or void interior. It is shown that the resulting structures are significantly more robust towards load perturbations than completely solid structures optimized under the same conditions. The study indicates that the potential benefit of using porous structures is higher for lower total volume fractions. Compared to earlier work dealing with 2D topology optimization, we found several new effects in 3D problems. Most notably, the opportunity for designing closed shells significantly improves the performance of porous structures due to the sandwich effect. Furthermore, the paper introduces improved filter boundary conditions to ensure a completely uniform coating thickness at the design domain boundary.
Generalized massive optimal data compression
NASA Astrophysics Data System (ADS)
Alsing, Justin; Wandelt, Benjamin
2018-05-01
In this paper, we provide a general procedure for optimally compressing N data down to n summary statistics, where n is equal to the number of parameters of interest. We show that compression to the score function - the gradient of the log-likelihood with respect to the parameters - yields n compressed statistics that are optimal in the sense that they preserve the Fisher information content of the data. Our method generalizes earlier work on linear Karhunen-Loéve compression for Gaussian data whilst recovering both lossless linear compression and quadratic estimation as special cases when they are optimal. We give a unified treatment that also includes the general non-Gaussian case as long as mild regularity conditions are satisfied, producing optimal non-linear summary statistics when appropriate. As a worked example, we derive explicitly the n optimal compressed statistics for Gaussian data in the general case where both the mean and covariance depend on the parameters.
The effects of experimental pain and induced optimism on working memory task performance.
Boselie, Jantine J L M; Vancleef, Linda M G; Peters, Madelon L
2016-07-01
Pain can interrupt and deteriorate executive task performance. We have previously shown that experimentally induced optimism can diminish the deteriorating effect of cold pressor pain on a subsequent working memory task (i.e., operation span task). In two successive experiments we sought further evidence for the protective role of optimism on pain-induced working memory impairments. We used another working memory task (i.e., 2-back task) that was performed either after or during pain induction. Study 1 employed a 2 (optimism vs. no-optimism)×2 (pain vs. no-pain)×2 (pre-score vs. post-score) mixed factorial design. In half of the participants optimism was induced by the Best Possible Self (BPS) manipulation, which required them to write and visualize about a life in the future where everything turned out for the best. In the control condition, participants wrote and visualized a typical day in their life (TD). Next, participants completed either the cold pressor task (CPT) or a warm water control task (WWCT). Before (baseline) and after the CPT or WWCT participants working memory performance was measured with the 2-back task. The 2-back task measures the ability to monitor and update working memory representation by asking participants to indicate whether the current stimulus corresponds to the stimulus that was presented 2 stimuli ago. Study 2 had a 2 (optimism vs. no-optimism)×2 (pain vs. no-pain) mixed factorial design. After receiving the BPS or control manipulation, participants completed the 2-back task twice: once with painful heat stimulation, and once without any stimulation (counter-balanced order). Continuous heat stimulation was used with temperatures oscillating around 1°C above and 1°C below the individual pain threshold. In study 1, the results did not show an effect of cold pressor pain on subsequent 2-back task performance. Results of study 2 indicated that heat pain impaired concurrent 2-back task performance. However, no evidence was found that optimism protected against this pain-induced performance deterioration. Experimentally induced pain impairs concurrent but not subsequent working memory task performance. Manipulated optimism did not counteract pain-induced deterioration of 2-back performance. It is important to explore factors that may diminish the negative impact of pain on the ability to function in daily life, as pain itself often cannot be remediated. We are planning to conduct future studies that should shed further light on the conditions, contexts and executive operations for which optimism can act as a protective factor. Copyright © 2016 Scandinavian Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Di, Zhenhua; Duan, Qingyun; Wang, Chen; Ye, Aizhong; Miao, Chiyuan; Gong, Wei
2018-03-01
Forecasting skills of the complex weather and climate models have been improved by tuning the sensitive parameters that exert the greatest impact on simulated results based on more effective optimization methods. However, whether the optimal parameter values are still work when the model simulation conditions vary, which is a scientific problem deserving of study. In this study, a highly-effective optimization method, adaptive surrogate model-based optimization (ASMO), was firstly used to tune nine sensitive parameters from four physical parameterization schemes of the Weather Research and Forecasting (WRF) model to obtain better summer precipitation forecasting over the Greater Beijing Area in China. Then, to assess the applicability of the optimal parameter values, simulation results from the WRF model with default and optimal parameter values were compared across precipitation events, boundary conditions, spatial scales, and physical processes in the Greater Beijing Area. The summer precipitation events from 6 years were used to calibrate and evaluate the optimal parameter values of WRF model. Three boundary data and two spatial resolutions were adopted to evaluate the superiority of the calibrated optimal parameters to default parameters under the WRF simulations with different boundary conditions and spatial resolutions, respectively. Physical interpretations of the optimal parameters indicating how to improve precipitation simulation results were also examined. All the results showed that the optimal parameters obtained by ASMO are superior to the default parameters for WRF simulations for predicting summer precipitation in the Greater Beijing Area because the optimal parameters are not constrained by specific precipitation events, boundary conditions, and spatial resolutions. The optimal values of the nine parameters were determined from 127 parameter samples using the ASMO method, which showed that the ASMO method is very highly-efficient for optimizing WRF model parameters.
[Work and health status of workers of shoe manufacturing industries].
Mironov, A I; Kirillov, V F; Bul'bulian, M A; Golubeva, A P; Kraeva, G K; Kuznetsova, A I; Nikolaeva, G M
2001-01-01
According to work conditions, severity and intensity, the main shoe-making occupations are assigned to III class of I-II jeopardy grade. If new technology applied, the work is assigned to I-II jeopardy class, being optimal--allowable. Increased mortality with liver cancer and lympholeucosis was revealed among workers contacting chloroprene.
Karakashian, A N; Lepeshkina, T R; Ratushnaia, A N; Glushchenko, S S; Zakharenko, M I; Lastovchenko, V B; Diordichuk, T I
1993-01-01
Weight, tension and harmfulness of professional activity, peculiarities of labour conditions and characteristics of work, shift dynamics of operative personnel's working capacity were studied in the course of 8-hour working day currently accepted at hydroelectric power stations (HEPS) and experimental 12-hour schedule. Working conditions classified as "admissible", positive dynamics of operators' state, their social and material contentment were a basis for 12-hour two-shift schedule to be recommended as more appropriate. At the same time, problem of optimal shift schedules for operative personnel of HEPS remains unsolved and needs to be further explored.
Optimal Parameter Design of Coarse Alignment for Fiber Optic Gyro Inertial Navigation System.
Lu, Baofeng; Wang, Qiuying; Yu, Chunmei; Gao, Wei
2015-06-25
Two different coarse alignment algorithms for Fiber Optic Gyro (FOG) Inertial Navigation System (INS) based on inertial reference frame are discussed in this paper. Both of them are based on gravity vector integration, therefore, the performance of these algorithms is determined by integration time. In previous works, integration time is selected by experience. In order to give a criterion for the selection process, and make the selection of the integration time more accurate, optimal parameter design of these algorithms for FOG INS is performed in this paper. The design process is accomplished based on the analysis of the error characteristics of these two coarse alignment algorithms. Moreover, this analysis and optimal parameter design allow us to make an adequate selection of the most accurate algorithm for FOG INS according to the actual operational conditions. The analysis and simulation results show that the parameter provided by this work is the optimal value, and indicate that in different operational conditions, the coarse alignment algorithms adopted for FOG INS are different in order to achieve better performance. Lastly, the experiment results validate the effectiveness of the proposed algorithm.
Multicriteria ranking of workplaces regarding working conditions in a mining company.
Bogdanović, Dejan; Stanković, Vladimir; Urošević, Snežana; Stojanović, Miloš
2016-12-01
Ranking of workplaces with respect to working conditions is very significant for each company. It indicates the positions where employees are most exposed to adverse effects resulting from the working environment, which endangers their health. This article presents the results obtained for 12 different production workplaces in the copper mining and smelting complex RTB Bor - 'Veliki Krivelj' open pit, based on six parameters measured regularly which defined the following working environment conditions: air temperature, light, noise, dustiness, chemical hazards and vibrations. The ranking of workplaces has been performed by PROMETHEE/GAIA. Additional optimization of workplaces is done by PROMETHEE V with the given limits related to maximum permitted values for working environment parameters. The obtained results indicate that the most difficult workplace is on the excavation location (excavator operator). This method can be successfully used for solving similar kinds of problems, in order to improve working conditions.
Iáñez-Rodríguez, Irene; Martín-Lara, María Ángeles; Blázquez, Gabriel; Pérez, Antonio; Calero, Mónica
2017-11-01
This work investigated the possibility of using a greenhouse crop waste as a fuel, since it is an abundant residue in the Mediterranean area of Spain. The residue is mainly composed by biomass with a little quantity of plastic. The physical and chemical characteristics of the biomass were determined by elemental analysis, proximate analysis, FT-IR, FE-SEM and thermogravimetry. Additionally, a torrefaction process was carried out as a pre-treatment to improve the energy properties of the biomass material. The optimal conditions (time and temperature) of torrefaction were found to be 263°C and 15min using the gain and loss method. Further studies were carried out with the sample prepared with the nearest conditions to the optimal in order to determine the effect of the plastic fraction in the characteristics and torrefaction process of the waste studied. Copyright © 2017 Elsevier Ltd. All rights reserved.
Aircraft Flight Modeling During the Optimization of Gas Turbine Engine Working Process
NASA Astrophysics Data System (ADS)
Tkachenko, A. Yu; Kuz'michev, V. S.; Krupenich, I. N.
2018-01-01
The article describes a method for simulating the flight of the aircraft along a predetermined path, establishing a functional connection between the parameters of the working process of gas turbine engine and the efficiency criteria of the aircraft. This connection is necessary for solving the optimization tasks of the conceptual design stage of the engine according to the systems approach. Engine thrust level, in turn, influences the operation of aircraft, thus making accurate simulation of the aircraft behavior during flight necessary for obtaining the correct solution. The described mathematical model of aircraft flight provides the functional connection between the airframe characteristics, working process of gas turbine engines (propulsion system), ambient and flight conditions and flight profile features. This model provides accurate results of flight simulation and the resulting aircraft efficiency criteria, required for optimization of working process and control function of a gas turbine engine.
Improving the ideal and human observer consistency: a demonstration of principles
NASA Astrophysics Data System (ADS)
He, Xin
2017-03-01
In addition to being rigorous and realistic, the usefulness of the ideal observer computational tools may also depend on whether they serve the empirical purpose for which they are created, e.g. to identify desirable imaging systems to be used by human observers. In SPIE 10136-35, I have shown that the ideal and the human observers do not necessarily prefer the same system as the optimal or better one due to their different objectives in both hardware and software optimization. In this work, I attempt to identify a necessary but insufficient condition under which the human and the ideal observer may rank systems consistently. If corroborated, such a condition allows a numerical test on the ideal/human consistency without routine human observer studies. I reproduced data from Abbey et al. JOSA 2001 to verify the proposed condition (i.e., not a rigorous falsification study due to the lack of specificity in the proposed conjecture. A roadmap for more falsifiable conditions is proposed). Via this work, I would like to emphasize the reality of practical decision making in addition to the realism in mathematical modeling. (Disclaimer: the views expressed in this work do not necessarily represent those of the FDA.)
The Design of Large Geothermally Powered Air-Conditioning Systems Using an Optimal Control Approach
NASA Astrophysics Data System (ADS)
Horowitz, F. G.; O'Bryan, L.
2010-12-01
The direct use of geothermal energy from Hot Sedimentary Aquifer (HSA) systems for large scale air-conditioning projects involves many tradeoffs. Aspects contributing towards making design decisions for such systems include: the inadequately known permeability and thermal distributions underground; the combinatorial complexity of selecting pumping and chiller systems to match the underground conditions to the air-conditioning requirements; the future price variations of the electricity market; any uncertainties in future Carbon pricing; and the applicable discount rate for evaluating the financial worth of the project. Expanding upon the previous work of Horowitz and Hornby (2007), we take an optimal control approach to the design of such systems. By building a model of the HSA system, the drilling process, the pumping process, and the chilling operations, along with a specified objective function, we can write a Hamiltonian for the system. Using the standard techniques of optimal control, we use gradients of the Hamiltonian to find the optimal design for any given set of permeabilities, thermal distributions, and the other engineering and financial parameters. By using this approach, optimal system designs could potentially evolve in response to the actual conditions encountered during drilling. Because the granularity of some current models is so coarse, we will be able to compare our optimal control approach to an exhaustive search of parameter space. We will present examples from the conditions appropriate for the Perth Basin of Western Australia, where the WA Geothermal Centre of Excellence is involved with two large air-conditioning projects using geothermal water from deep aquifers at 75 to 95 degrees C.
Optimizing microwave photodetection: input-output theory
NASA Astrophysics Data System (ADS)
Schöndorf, M.; Govia, L. C. G.; Vavilov, M. G.; McDermott, R.; Wilhelm, F. K.
2018-04-01
High fidelity microwave photon counting is an important tool for various areas from background radiation analysis in astronomy to the implementation of circuit quantum electrodynamic architectures for the realization of a scalable quantum information processor. In this work we describe a microwave photon counter coupled to a semi-infinite transmission line. We employ input-output theory to examine a continuously driven transmission line as well as traveling photon wave packets. Using analytic and numerical methods, we calculate the conditions on the system parameters necessary to optimize measurement and achieve high detection efficiency. With this we can derive a general matching condition depending on the different system rates, under which the measurement process is optimal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilary Wheeler; Crystal Densmore
2007-07-31
The diamine reagent 1,2-bis(2-aminophenylthio)ethane is no longer commercially available but still required for the synthesis of the bismaleimide resin, APO-BMI, used in syntactic foams. In this work, we examined the hydrolysis of benzothiazole followed the by reaction with dichloroethane or dibromoethane. We also studied the deprotonation of 2-aminothiophenol followed by the reaction with dibromoethane. We optimized the latter for scale-up by scrutinizing all aspects of the reaction conditions, work-up and recrystallization. On bench-scale, our optimized procedure consistently produced a 75-80% overall yield of finely divided, high purity product (>95%).
NASA Astrophysics Data System (ADS)
Seweryn, Karol; Grassmann, Kamil; Ciesielska, Monika; Rybus, Tomasz; Turek, Michal
2013-09-01
One of the most critical element in the orbital manipulators are kinematic joints. Joints must be adapted to work in tough conditions of space environment and must ensure the greatest efficiency and work without backlash. At the Space Mechatronics and Robotics Laboratory (LMRS) of the Space Research Centre, PAS our team designed and built a lightweight kinematic pair based on a new concept. The new concept is based on the epicycloid two-stage gearbox with torque motor. In this paper we have focused on optimization of the joint design for space application. The optimization was focused on the minimization of the mass and backlash effects and on maximizing the joint efficiency.
On the optimization of endoreversible processes
NASA Astrophysics Data System (ADS)
Pescetti, D.
2014-03-01
This paper is intended for undergraduates and specialists in thermodynamics and related areas. We consider and discuss the optimization of endoreversible thermodynamic processes under the condition of maximum work production. Explicit thermodynamic analyses of the solutions are carried out for the Novikov and Agrawal processes. It is shown that the efficiencies at maximum work production and maximum power output are not necessarily equal. They are for the Novikov process but not for the Agrawal process. The role of the constraints is put into evidence. The physical aspects are enhanced by the simplicity of the involved mathematics.
Switching neuronal state: optimal stimuli revealed using a stochastically-seeded gradient algorithm.
Chang, Joshua; Paydarfar, David
2014-12-01
Inducing a switch in neuronal state using energy optimal stimuli is relevant to a variety of problems in neuroscience. Analytical techniques from optimal control theory can identify such stimuli; however, solutions to the optimization problem using indirect variational approaches can be elusive in models that describe neuronal behavior. Here we develop and apply a direct gradient-based optimization algorithm to find stimulus waveforms that elicit a change in neuronal state while minimizing energy usage. We analyze standard models of neuronal behavior, the Hodgkin-Huxley and FitzHugh-Nagumo models, to show that the gradient-based algorithm: (1) enables automated exploration of a wide solution space, using stochastically generated initial waveforms that converge to multiple locally optimal solutions; and (2) finds optimal stimulus waveforms that achieve a physiological outcome condition, without a priori knowledge of the optimal terminal condition of all state variables. Analysis of biological systems using stochastically-seeded gradient methods can reveal salient dynamical mechanisms underlying the optimal control of system behavior. The gradient algorithm may also have practical applications in future work, for example, finding energy optimal waveforms for therapeutic neural stimulation that minimizes power usage and diminishes off-target effects and damage to neighboring tissue.
Wang, Hongbin; Hu, Gaofei; Zhang, Yongqian; Yuan, Zheng; Zhao, Xuan; Zhu, Yong; Cai, De; Li, Yujuan; Xiao, Shengyuan; Deng, Yulin
2010-07-15
The post-digestion (18)O labeling method decouples protein digestion and peptide labeling. This method allows labeling conditions to be optimized separately and increases labeling efficiency. A common method for protein denaturation in proteomics is the use of urea. Though some previous studies have used urea-based protein denaturation before post-digestion (18)O labeling, the optimal (18)O labeling conditions in this case have not been yet reported. Present study investigated the effects of urea concentration and pH on the labeling efficiency and obtained an optimized protocol. It was demonstrated that urea inhibited (18)O incorporation depending on concentration. However, a urea concentration between 1 and 2M had minimal effects on labeling. It was also demonstrated that the use of FA to quench the digestion reaction severely affected the labeling efficiency. This study revealed the reason why previous studies gave different optimal pH for labeling. They neglect the effects of different digestion conditions on the labeling conditions. Excellent labeling quality was obtained at the optimized conditions using urea 1-2 M and pH 4.5, 98.4+/-1.9% for a standard protein mixture and 97.2+/-6.2% for a complex biological sample. For a 1:1 mixture analysis of the (16)O- and (18)O-labeled peptides from the same protein sample, the average abundance ratios reached 1.05+/-0.31, demonstrating a good quantitation quality at the optimized conditions. This work will benefit other researchers who pair urea-based protein denaturation with a post-digestion (18)O labeling method. 2010 Elsevier B.V. All rights reserved.
Research on Intelligent Control System of DC SQUID Magnetometer Parameters for Multi-channel System
NASA Astrophysics Data System (ADS)
Chen, Hua; Yang, Kang; Lu, Li; Kong, Xiangyan; Wang, Hai; Wu, Jun; Wang, Yongliang
2018-07-01
In a multi-channel SQUID measurement system, adjusting device parameters to optimal condition for all channels is time-consuming. In this paper, an intelligent control system is presented to determine the optimal working point of devices which is automatic and more efficient comparing to the manual one. An optimal working point searching algorithm is introduced as the core component of the control system. In this algorithm, the bias voltage V_bias is step scanned to obtain the maximal value of the peak-to-peak current value I_pp of the SQUID magnetometer modulation curve. We choose this point as the optimal one. Using the above control system, more than 30 weakly damped SQUID magnetometers with area of 5 × 5 mm^2 or 10 × 10 mm^2 are adjusted and a 36-channel magnetocardiography system perfectly worked in a magnetically shielded room. The average white flux noise is 15 {μ Φ }_0/Hz^{1/2}.
Research on Intelligent Control System of DC SQUID Magnetometer Parameters for Multi-channel System
NASA Astrophysics Data System (ADS)
Chen, Hua; Yang, Kang; Lu, Li; Kong, Xiangyan; Wang, Hai; Wu, Jun; Wang, Yongliang
2018-03-01
In a multi-channel SQUID measurement system, adjusting device parameters to optimal condition for all channels is time-consuming. In this paper, an intelligent control system is presented to determine the optimal working point of devices which is automatic and more efficient comparing to the manual one. An optimal working point searching algorithm is introduced as the core component of the control system. In this algorithm, the bias voltage V_bias is step scanned to obtain the maximal value of the peak-to-peak current value I_pp of the SQUID magnetometer modulation curve. We choose this point as the optimal one. Using the above control system, more than 30 weakly damped SQUID magnetometers with area of 5 × 5 mm^2 or 10 × 10 mm^2 are adjusted and a 36-channel magnetocardiography system perfectly worked in a magnetically shielded room. The average white flux noise is 15 μΦ_0/Hz^{1/2}.
Martorell, María M; Rosales Soro, María Del M; Pajot, Hipólito F; de Figueroa, Lucía I C
2017-09-16
Trichosporon akiyoshidainum HP2023 is a basidiomycetous yeast isolated from Las Yungas rainforest (Tucumán, Argentina) and selected based on its outstanding textile-dye-decolorizing ability. In this work, the decolorization process was optimized using Reactive Black 5 as dye model. Lactose and urea were chosen as carbon and nitrogen sources through a one-at-time approach. Afterwards, factorial designs were employed for medium optimization, leading to the formulation of a simpler optimized medium which contains in g L -1 : lactose 10, yeast extract 1, urea 0.5, KH 2 PO 4 1 and MgSO 4 1. Temperature and agitation conditions were also optimized. The optimized medium and incubation conditions for dye removal were extrapolated to other dyes individually and a mixture of them. Dye removal process happened through both biosorption and biodegradation mechanisms, depending primarily on the dye structure. A positive relation between initial inoculum and dye removal rate and a negative relation between initial dye concentration and final dye removal percentages were found. Under optimized conditions, T. akiyoshidainum HP2023 was able to completely remove a mixture of dyes up to a concentration of 300 mg L -1 , a concentration much higher than those expected in real effluents.
Wang, Xiao-Ling; Ding, Zhong-Yang; Zhao, Yan; Liu, Gao-Qiang; Zhou, Guo-Ying
2017-01-01
Triterpene acids are among the major bioactive constituents of lucidum. However, submerged fermentation techniques for isolating triterpene acids from G. lucidum have not been optimized for commercial use, and the antitumor activity of the mycelial triterpene acids needs to be further proven. The aim of this work was to optimize the conditions for G. lucidum culture with respect to triterpene acid production, scaling up the process, and examining the in vitro antitumor activity of mycelial triterpene acids. The key conditions (i.e., initial pH, fermentation temperature, and rotation speed) were optimized using response surface methodology, and the in vitro antitumor activity was evaluated using the MTT method. The optimum key fermentation conditions for triterpene acid production were pH 6.0; rotation speed, 161.9 rpm; and temperature, 30.1°C, resulting in a triterpene acid yield of 291.0 mg/L in the validation experiment in a 5-L stirred bioreactor; this yield represented a 70.8% increase in titer compared with the nonoptimized conditions. Furthermore, the optimized conditions were then successfully scaled up to a production scale of 200 L, and a triterpene productivity of 47.9 mg/L/day was achieved, which is, to our knowledge, the highest reported in the large-scale fermentation of G. lucidum. In addition, the mycelial triterpene acids were found to be cytotoxic to the SMMC-7721 and SW620 cell lines in vitro. Chemical analysis showed that the key active triterpene acid compounds, ganoderic acids T and Me, predominated in the extract, at 69.2 and 41.6 mg/g, respectively. Thus, this work develops a simple and feasible batch fermentation technique for the large-scale production of antitumor triterpene acids from G. lucidum.
Design and Optimization of Domperidone Fast Dissolving Tablet Using Central Composite Design.
Shailendra, Bhatt; Shailendra, Mandge; Manish, Jaimini; Singh, Tanwar Yuveraj; Priti, Trivedi
2015-01-01
The main aim present work was to optimize fast dissolving tablet (FDT) formulation using response surface approach. The variables studied were sodium bicarbonate (X1), citric acid (X2), and superdisintegrant, Ac-Di-Sol (X3). The main aspect of present work was to develop FDT of Domperidone which possesses fast disintegration and high mechanical strength. It was found that the response was affected by all the three factors studied. The statistical models were successfully used to prepare FDT of Domperidone with fast disintegration (31.08 seconds) and adequate hardness (4.1 kg/cm(2)). Pharmacokinetic studies in rats showed statistically insignificant difference (p>0.05) between Domperidone fast dissolving tablet (DFDT) and market product. This concluded that optimized FDT is bioequivalent with the marketed formulation. The values of Tmax were found to be 0.5 h and 0.75 h for DFDT and reference product, respectively. Conditioned place aversion study was performed on Swiss Albino mice and the study showed the better anti emetic potency of optimized FDT in nauseated condition over market product (p<0.05). Thus, the present investigation conclusively demonstrates the potential role in terms of rapid disintegration and high mechanical strength.
Wang, Y; Yang, Y; Ma, F; Xuan, L; Xu, Y; Huo, H; Zhou, D; Dong, S
2015-05-01
Microalgae are a sustainable bioresource, and the biofuel they produce is widely considered to be an alternative to limited natural fuel resources. However, microalgae harvesting is a bottleneck in the development of technology. Axenic Chlorella vulgaris microalgae exhibit poor harvesting, as expressed by a flocculation efficiency of 0·2%. This work optimized the co-culture conditions of C. vulgaris and bioflocculant-producing bacteria in synthetic wastewater using response surface methodology (RSM), thus aiming to enhance C. vulgaris harvesting and lipid content. Three significant process variables- inoculation ratio of bacteria and microalgae, initial glucose concentration, and co-culture time- were proposed in the RSM model. F-values (3·98/8·46) and R(2) values (0·7817/0·8711) both indicated a reasonable prediction by the RSM model. The results showed that C. vulgaris harvesting efficiency reached 45·0-50·0%, and the lipid content was over 21·0% when co-cultured with bioflocculant-producing bacteria under the optimized culture conditions of inoculation ratio of bacteria and microalgae of 0·20-0·25, initial glucose concentration of <1·5 kg m(-3) and co-culture time of 9-14 days. This work provided new insights into microalgae harvesting and cost-effective microalgal bioproducts, and confirmed the promising prospect of introducing bioflocculant-producing bacteria into microalgae bioenergy production. This work optimized the co-culture conditions of microalgae (C. vulgaris) and bioflocculant-producing bacteria (F2, Rhizobium radiobacter) in synthetic wastewater using response surface methodology, aiming to enhance C. vulgaris harvesting and lipid produced content. Bioflocculant-producing microbes are environmentally friendly functional materials. They avoid the negative effects of traditional chemical flocculants. This work provided new insights into microalgae harvesting and cost-effective production of microalgal bioproducts, and confirmed the promising prospect of introducing bioflocculant-producing bacteria into microalgae bioenergy production. © 2015 The Society for Applied Microbiology.
USDA-ARS?s Scientific Manuscript database
Improving understanding of subsurface conditions includes comparison and discrimination of concurrent models. Additional observations can be useful for that purpose. The objective of this work was to implement and test a novel method for optimization of selecting locations for additional observation...
Xie, Anping; Woods-Hill, Charlotte Z; King, Anne F; Enos-Graves, Heather; Ascenzi, Judy; Gurses, Ayse P; Klaus, Sybil A; Fackler, James C; Milstone, Aaron M
2017-11-20
Work system assessments can facilitate successful implementation of quality improvement programs. Using a human factors engineering approach, we conducted a work system assessment to facilitate the dissemination of a quality improvement program for optimizing blood culture use in pediatric intensive care units at 2 hospitals. Semistructured face-to-face interviews were conducted with clinicians from Johns Hopkins All Children's Hospital and University of Virginia Medical Center. Interview data were analyzed using qualitative content analysis. Blood culture-ordering practices are influenced by various work system factors, including people, tasks, tools and technologies, the physical environment, organizational conditions, and the external environment. A clinical decision-support tool could facilitate implementation by (1) standardizing blood culture-ordering practices, (2) ensuring that prescribing clinicians review the patient's condition before ordering a blood culture, (3) facilitating critical thinking, and (4) empowering nurses to communicate with physicians and advocate for adherence to blood culture-ordering guidelines. The success of interventions for optimizing blood culture use relies heavily on the local context. A work system analysis using a human factors engineering approach can identify key areas to be addressed for the successful dissemination of quality improvement interventions. © The Author 2017. Published by Oxford University Press on behalf of The Journal of the Pediatric Infectious Diseases Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Cost minimizing of cutting process for CNC thermal and water-jet machines
NASA Astrophysics Data System (ADS)
Tavaeva, Anastasia; Kurennov, Dmitry
2015-11-01
This paper deals with optimization problem of cutting process for CNC thermal and water-jet machines. The accuracy of objective function parameters calculation for optimization problem is investigated. This paper shows that working tool path speed is not constant value. One depends on some parameters that are described in this paper. The relations of working tool path speed depending on the numbers of NC programs frames, length of straight cut, configuration part are presented. Based on received results the correction coefficients for working tool speed are defined. Additionally the optimization problem may be solved by using mathematical model. Model takes into account the additional restrictions of thermal cutting (choice of piercing and output tool point, precedence condition, thermal deformations). At the second part of paper the non-standard cutting techniques are considered. Ones may lead to minimizing of cutting cost and time compared with standard cutting techniques. This paper considers the effectiveness of non-standard cutting techniques application. At the end of the paper the future research works are indicated.
Thermodynamic model effects on the design and optimization of natural gas plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, S.; Zabaloy, M.; Brignole, E.A.
1999-07-01
The design and optimization of natural gas plants is carried out on the basis of process simulators. The physical property package is generally based on cubic equations of state. By rigorous thermodynamics phase equilibrium conditions, thermodynamic functions, equilibrium phase separations, work and heat are computed. The aim of this work is to analyze the NGL turboexpansion process and identify possible process computations that are more sensitive to model predictions accuracy. Three equations of state, PR, SRK and Peneloux modification, are used to study the effect of property predictions on process calculations and plant optimization. It is shown that turboexpander plantsmore » have moderate sensitivity with respect to phase equilibrium computations, but higher accuracy is required for the prediction of enthalpy and turboexpansion work. The effect of modeling CO{sub 2} solubility is also critical in mixtures with high CO{sub 2} content in the feed.« less
NASA Astrophysics Data System (ADS)
1993-01-01
Under the MIMIC Program, Spire has pursued improvements in the manufacturing of low cost, high quality gallium arsenide MOCVD wafers for advanced MIMIC FET applications. As a demonstration of such improvements, Spire was tasked to supply MOCVD wafers for comparison to MBE wafers in the fabrication of millimeter and microwave integrated circuits. In this, the final technical report for Spire's two-year MIMIC contract, we report the results of our work. The main objectives of Spire's MIMIC Phase 3 Program, as outlined in the Statement of Work, were as follows: Optimize the MOCVD growth conditions for the best possible electrical and morphological gallium arsenide. Optimization should include substrate and source qualification as well as determination of the optimum reactor growth conditions; Perform all work on 75 millimeter diameter wafers, using a reactor capable of at least three wafers per run; and Evaluate epitaxial layers using electrical, optical, and morphological tests to obtain thickness, carrier concentration, and mobility data across wafers.
Malcolm, Philippe; Quesada, Roberto E; Caputo, Joshua M; Collins, Steven H
2015-02-22
Robotic ankle-foot prostheses that provide net positive push-off work can reduce the metabolic rate of walking for individuals with amputation, but benefits might be sensitive to push-off timing. Simple walking models suggest that preemptive push-off reduces center-of-mass work, possibly reducing metabolic rate. Studies with bilateral exoskeletons have found that push-off beginning before leading leg contact minimizes metabolic rate, but timing was not varied independently from push-off work, and the effects of push-off timing on biomechanics were not measured. Most lower-limb amputations are unilateral, which could also affect optimal timing. The goal of this study was to vary the timing of positive prosthesis push-off work in isolation and measure the effects on energetics, mechanics and muscle activity. We tested 10 able-bodied participants walking on a treadmill at 1.25 m · s(-1). Participants wore a tethered ankle-foot prosthesis emulator on one leg using a rigid boot adapter. We programmed the prosthesis to apply torque bursts that began between 46% and 56% of stride in different conditions. We iteratively adjusted torque magnitude to maintain constant net positive push-off work. When push-off began at or after leading leg contact, metabolic rate was about 10% lower than in a condition with Spring-like prosthesis behavior. When push-off began before leading leg contact, metabolic rate was not different from the Spring-like condition. Early push-off led to increased prosthesis-side vastus medialis and biceps femoris activity during push-off and increased variability in step length and prosthesis loading during push-off. Prosthesis push-off timing had no influence on intact-side leg center-of-mass collision work. Prosthesis push-off timing, isolated from push-off work, strongly affected metabolic rate, with optimal timing at or after intact-side heel contact. Increased thigh muscle activation and increased human variability appear to have caused the lack of reduction in metabolic rate when push-off was provided too early. Optimal timing with respect to opposite heel contact was not different from normal walking, but the trends in metabolic rate and center-of-mass mechanics were not consistent with simple model predictions. Optimal push-off timing should also be characterized for individuals with amputation, since meaningful benefits might be realized with improved timing.
The optimization problems of CP operation
NASA Astrophysics Data System (ADS)
Kler, A. M.; Stepanova, E. L.; Maximov, A. S.
2017-11-01
The problem of enhancing energy and economic efficiency of CP is urgent indeed. One of the main methods for solving it is optimization of CP operation. To solve the optimization problems of CP operation, Energy Systems Institute, SB of RAS, has developed a software. The software makes it possible to make optimization calculations of CP operation. The software is based on the techniques and software tools of mathematical modeling and optimization of heat and power installations. Detailed mathematical models of new equipment have been developed in the work. They describe sufficiently accurately the processes that occur in the installations. The developed models include steam turbine models (based on the checking calculation) which take account of all steam turbine compartments and regeneration system. They also enable one to make calculations with regenerative heaters disconnected. The software for mathematical modeling of equipment and optimization of CP operation has been developed. It is based on the technique for optimization of CP operating conditions in the form of software tools and integrates them in the common user interface. The optimization of CP operation often generates the need to determine the minimum and maximum possible total useful electricity capacity of the plant at set heat loads of consumers, i.e. it is necessary to determine the interval on which the CP capacity may vary. The software has been applied to optimize the operating conditions of the Novo-Irkutskaya CP of JSC “Irkutskenergo”. The efficiency of operating condition optimization and the possibility for determination of CP energy characteristics that are necessary for optimization of power system operation are shown.
Research on optimization of combustion efficiency of thermal power unit based on genetic algorithm
NASA Astrophysics Data System (ADS)
Zhou, Qiongyang
2018-04-01
In order to improve the economic performance and reduce pollutant emissions of thermal power units, the characteristics of neural network in establishing boiler combustion model are analyzed based on the analysis of the main factors affecting boiler efficiency by using orthogonal method. In addition, on the basis of this model, the genetic algorithm is used to find the best control amount of the furnace combustion in a certain working condition. Through the genetic algorithm based on real number encoding and roulette selection is concluded: the best control quantity at a condition of furnace combustion can be combined with the boiler combustion system model for neural network training. The precision of the neural network model is further improved, and the basic work is laid for the research of the whole boiler combustion optimization system.
Shen, Naikun; Qin, Yan; Wang, Qingyan; Xie, Nengzhong; Mi, Huizhi; Zhu, Qixia; Liao, Siming; Huang, Ribo
2013-10-01
Succinic acid is an important C4 platform chemical in the synthesis of many commodity and special chemicals. In the present work, different compounds were evaluated for succinic acid production by Actinobacillus succinogenes GXAS 137. Important parameters were screened by the single factor experiment and Plackeet-Burman design. Subsequently, the highest production of succinic acid was approached by the path of steepest ascent. Then, the optimum values of the parameters were obtained by Box-Behnken design. The results show that the important parameters were glucose, yeast extract and MgCO3 concentrations. The optimum condition was as follows (g/L): glucose 70.00, yeast extract 9.20 and MgCO3 58.10. Succinic acid yield reached 47.64 g/L at the optimal condition. Succinic acid increased by 29.14% than that before the optimization (36.89 g/L). Response surface methodology was proven to be a powerful tool to optimize succinic acid production.
Li, Wei; Zhao, Li-Chun; Sun, Yin-Shi; Lei, Feng-Jie; Wang, Zi; Gui, Xiong-Bin; Wang, Hui
2012-01-01
In this work, pressurized liquid extraction (PLE) of three acetophenones (4-hydroxyacetophenone, baishouwubenzophenone, and 2,4-dihydroxyacetophenone) from Cynanchum bungei (ACB) were investigated. The optimal conditions for extraction of ACB were obtained using a Box-Behnken design, consisting of 17 experimental points, as follows: Ethanol (100%) as the extraction solvent at a temperature of 120 °C and an extraction pressure of 1500 psi, using one extraction cycle with a static extraction time of 17 min. The extracted samples were analyzed by high-performance liquid chromatography using an UV detector. Under this optimal condition, the experimental values agreed with the predicted values by analysis of variance. The ACB extraction yield with optimal PLE was higher than that obtained by soxhlet extraction and heat-reflux extraction methods. The results suggest that the PLE method provides a good alternative for acetophenone extraction. PMID:23203079
Ezzinbi, Khalil; Ndambomve, Patrice
2016-01-01
In this work, we consider the control system governed by some partial functional integrodifferential equations with finite delay in Banach spaces. We assume that the undelayed part admits a resolvent operator in the sense of Grimmer. Firstly, some suitable conditions are established to guarantee the existence and uniqueness of mild solutions for a broad class of partial functional integrodifferential infinite dimensional control systems. Secondly, it is proved that, under generally mild conditions of cost functional, the associated Lagrange problem has an optimal solution, and that for each optimal solution there is a minimizing sequence of the problem that converges to the optimal solution with respect to the trajectory, the control, and the functional in appropriate topologies. Our results extend and complement many other important results in the literature. Finally, a concrete example of application is given to illustrate the effectiveness of our main results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raitsimring, A.; Astashkin, A. V.; Enemark, J. H.
2012-12-29
In this work, the experimental conditions and parameters necessary to optimize the long-distance (≥ 60 Å) Double Electron-Electron Resonance (DEER) measurements of biomacromolecules labeled with Gd(III) tags are analyzed. The specific parameters discussed are the temperature, microwave band, the separation between the pumping and observation frequencies, pulse train repetition rate, pulse durations and pulse positioning in the electron paramagnetic resonance spectrum. It was found that: (i) in optimized DEER measurements, the observation pulses have to be applied at the maximum of the EPR spectrum; (ii) the optimal temperature range for Ka-band measurements is 14-17 K, while in W-band the optimalmore » temperatures are between 6-9 K; (iii) W-band is preferable to Ka-band for DEER measurements. Recent achievements and the conditions necessary for short-distance measurements (<15 Å) are also briefly discussed.« less
The optimization of total laboratory automation by simulation of a pull-strategy.
Yang, Taho; Wang, Teng-Kuan; Li, Vincent C; Su, Chia-Lo
2015-01-01
Laboratory results are essential for physicians to diagnose medical conditions. Because of the critical role of medical laboratories, an increasing number of hospitals use total laboratory automation (TLA) to improve laboratory performance. Although the benefits of TLA are well documented, systems occasionally become congested, particularly when hospitals face peak demand. This study optimizes TLA operations. Firstly, value stream mapping (VSM) is used to identify the non-value-added time. Subsequently, batch processing control and parallel scheduling rules are devised and a pull mechanism that comprises a constant work-in-process (CONWIP) is proposed. Simulation optimization is then used to optimize the design parameters and to ensure a small inventory and a shorter average cycle time (CT). For empirical illustration, this approach is applied to a real case. The proposed methodology significantly improves the efficiency of laboratory work and leads to a reduction in patient waiting times and increased service level.
NASA Astrophysics Data System (ADS)
Sergeyev, Yaroslav D.; Kvasov, Dmitri E.; Mukhametzhanov, Marat S.
2018-06-01
The necessity to find the global optimum of multiextremal functions arises in many applied problems where finding local solutions is insufficient. One of the desirable properties of global optimization methods is strong homogeneity meaning that a method produces the same sequences of points where the objective function is evaluated independently both of multiplication of the function by a scaling constant and of adding a shifting constant. In this paper, several aspects of global optimization using strongly homogeneous methods are considered. First, it is shown that even if a method possesses this property theoretically, numerically very small and large scaling constants can lead to ill-conditioning of the scaled problem. Second, a new class of global optimization problems where the objective function can have not only finite but also infinite or infinitesimal Lipschitz constants is introduced. Third, the strong homogeneity of several Lipschitz global optimization algorithms is studied in the framework of the Infinity Computing paradigm allowing one to work numerically with a variety of infinities and infinitesimals. Fourth, it is proved that a class of efficient univariate methods enjoys this property for finite, infinite and infinitesimal scaling and shifting constants. Finally, it is shown that in certain cases the usage of numerical infinities and infinitesimals can avoid ill-conditioning produced by scaling. Numerical experiments illustrating theoretical results are described.
NASA Astrophysics Data System (ADS)
Ganesan, T.; Elamvazuthi, I.; Shaari, Ku Zilati Ku; Vasant, P.
2012-09-01
The global rise in energy demands brings major obstacles to many energy organizations in providing adequate energy supply. Hence, many techniques to generate cost effective, reliable and environmentally friendly alternative energy source are being explored. One such method is the integration of photovoltaic cells, wind turbine generators and fuel-based generators, included with storage batteries. This sort of power systems are known as distributed generation (DG) power system. However, the application of DG power systems raise certain issues such as cost effectiveness, environmental impact and reliability. The modelling as well as the optimization of this DG power system was successfully performed in the previous work using Particle Swarm Optimization (PSO). The central idea of that work was to minimize cost, minimize emissions and maximize reliability (multi-objective (MO) setting) with respect to the power balance and design requirements. In this work, we introduce a fuzzy model that takes into account the uncertain nature of certain variables in the DG system which are dependent on the weather conditions (such as; the insolation and wind speed profiles). The MO optimization in a fuzzy environment was performed by applying the Hopfield Recurrent Neural Network (HNN). Analysis on the optimized results was then carried out.
A strategy to optimize the thermoelectric performance in a spark plasma sintering process
Chiu, Wan-Ting; Chen, Cheng-Lung; Chen, Yang-Yuan
2016-01-01
Spark plasma sintering (SPS) is currently widely applied to existing alloys as a means of further enhancing the alloys’ figure of merit. However, the determination of the optimal sintering condition is challenging in the SPS process. This report demonstrates a systematic way to independently optimize the Seebeck coefficient S and the ratio of electrical to thermal conductivity (σ/κ) and thus achieve the maximum figure of merit zT = S2(σ/κ)T. Sb2−xInxTe3 (x = 0–0.2) were chosen as examples to validate the method. Although high sintering temperature and pressure are helpful in enhancing the compactness and electrical conductivity of pressed samples, the resultant deteriorated Seebeck coefficient and increasing thermal conductivity eventually offset the benefit. We found that the optimal sintering temperature coincides with temperatures at which the maximum Seebeck coefficient begins to degrade, whereas the optimal sintering pressure coincided with the pressure at which the σ/κ ratio reaches a maximum. Based on this principle, the optimized sintering conditions were determined, and the zT of Sb1.9In0.1Te3 is raised to 0.92 at 600 K, showing an approximately 84% enhancement. This work develops a facile strategy for selecting the optimal SPS sintering condition to further enhance the zT of bulk specimens. PMID:26975209
Optimization of uncatalyzed steam explosion pretreatment of rapeseed straw for biofuel production.
López-Linares, Juan C; Ballesteros, Ignacio; Tourán, Josefina; Cara, Cristóbal; Castro, Eulogio; Ballesteros, Mercedes; Romero, Inmaculada
2015-08-01
Rapeseed straw constitutes an agricultural residue with great potential as feedstock for ethanol production. In this work, uncatalyzed steam explosion was carried out as a pretreatment to increase the enzymatic digestibility of rapeseed straw. Experimental statistical design and response surface methodology were used to evaluate the influence of the temperature (185-215°C) and the process time (2.5-7.5min). According to the rotatable central composite design applied, 215°C and 7.5min were confirmed to be the optimal conditions, considering the maximization of enzymatic hydrolysis yield as optimization criterion. These conditions led to a maximum yield of 72.3%, equivalent to 81% of potential glucose in pretreated solid. Different configurations for bioethanol production from steam exploded rapeseed straw were investigated using the pretreated solid obtained under optimal conditions as a substrate. As a relevant result, concentrations of ethanol as high as 43.6g/L (5.5% by volume) were obtained as a consequence of using 20% (w/v) solid loading, equivalent to 12.4g ethanol/100g biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kato, Moritoshi; Zhou, Yicheng
This paper presents a novel method to analyze the optimal generation mix based on portfolio theory with considering the basic condition for power supply, which means that electricity generation corresponds with load curve. The optimization of portfolio is integrated with the calculation of a capacity factor of each generation in order to satisfy the basic condition for power supply. Besides, each generation is considered to be an asset, and risks of the generation asset both in its operation period and construction period are considered. Environmental measures are evaluated through restriction of CO2 emissions, which are indicated by CO2 price. Numerical examples show the optimal generation mix according to risks such as the deviation of capacity factor of nuclear power or restriction of CO2 emissions, the possibility of introduction of clean coal technology (IGCC, CCS) or renewable energy, and so on. The results of this work will be possibly applied as setting the target of the generation mix for the future according to prospects of risks of each generation and restrictions of CO2 emissions.
Optimization of Compressor Mounting Bracket of a Passenger Car
NASA Astrophysics Data System (ADS)
Kalsi, Sachin; Singh, Daljeet; Saini, J. S.
2018-05-01
In the present work, the CAE tools are used for the optimization of the compressor mounting bracket used in an automobile. Both static and dynamic analysis is done for the bracket. With the objective to minimize the mass and increase the stiffness of the bracket, the new design is optimized using shape and topology optimization techniques. The optimized design given by CAE tool is then validated experimentally. The new design results in lower level of vibrations, contribute to lower mass along with lesser cost which is effective in air conditioning system as well as the efficiency of a vehicle. The results given by CAE tool had a very good correlation with the experimental results.
Determination of the propellant combustion law under ballistic experiment conditions
NASA Astrophysics Data System (ADS)
Ishchenko, A. N.; Diachkovskii, A. S.; Zykova, A. I.; Kasimov, VZ; Samorokova, N. M.
2017-11-01
The main characteristics of ballistic experiment are the maximum pressure in the combustion chamber P max and the projectile velocity at the time of barrel leaving U M. During the work the burning law of the new high-energy fuel was determined in a ballistic experiment. This burning law was used for a parametric study of depending P max and U M from a powder charge mass and a traveling charge at initial temperature of + 20 °C was carried out. The optimal conditions for loading were obtained for improving the muzzle velocity by 14.9 %. Under optimal loading, there is defined the conditions, which is possible to get the greatest value muzzle velocity projectile at pressures up to 600 MPa.
Lactic acid production from submerged fermentation of broken rice using undefined mixed culture.
Nunes, Luiza Varela; de Barros Correa, Fabiane Fernanda; de Oliva Neto, Pedro; Mayer, Cassia Roberta Malacrida; Escaramboni, Bruna; Campioni, Tania Sila; de Barros, Natan Roberto; Herculano, Rondinelli Donizetti; Fernández Núñez, Eutimio Gustavo
2017-04-01
The present work aimed to characterize and optimize the submerged fermentation of broken rice for lactic acid (LA) production using undefined mixed culture from dewatered activated sludge. A microorganism with amylolytic activity, which also produces LA, Lactobacillus amylovorus, was used as a control to assess the extent of mixed culture on LA yield. Three level full factorial designs were performed to optimize and define the influence of fermentation temperature (20-50 °C), gelatinization time (30-60 min) and broken rice concentration in culture medium (40-80 g L -1 ) on LA production in pure and undefined mixed culture. LA production in mixed culture (9.76 g L -1 ) increased in sixfold respect to pure culture in optimal assessed experimental conditions. The optimal conditions for maximizing LA yield in mixed culture bioprocess were 31 °C temperature, 45 min gelatinization time and 79 g L -1 broken rice concentration in culture medium. This study demonstrated the positive effect of undefined mixed culture from dewatered activated sludge to produce LA from culture medium formulated with broken rice. In addition, this work establishes the basis for an efficient and low-cost bioprocess to manufacture LA from this booming agro-industrial by-product.
Schoubben, Aurélie; Blasi, Paolo; Giovagnoli, Stefano; Nocchetti, Morena; Ricci, Maurizio; Perioli, Luana; Rossi, Carlo
2006-03-01
The aim of the study is to optimize the intercalation conditions of ferulic acid (FERH), an antioxidant compound, into Mg-Al-hydrotalcite for a safe skin photoprotection. The intercalation products were prepared incubating hydrotalcite (HTlc) in aqueous solutions of FERH sodium salt at different temperatures over 4 and 8 days. Quantitative determination of intercalated FERH was performed by thermogravimetric analysis and morphology by scanning electron microscopy (SEM). FERH stability study was carried out at different pHs and temperatures. FERH was analyzed by reversed phase-high-performance liquid chromatography. Response surface methods (RSMs) were used to assess optimal intercalation conditions and FERH stability. In all intercalation products, FERH content was found to be about 48% w/w except when the intercalation process was carried out at 52 degrees C for 8 days and at 60 degrees C for both 4 and 8 days, which resulted to be 40.39, 39.99, and 34.99%, respectively. The RSM designs showed that intercalation improvement can be achieved by working at pH 6, at temperatures below 40 degrees C, and over 4 days of incubation. The optimal conditions for a proper FERH intercalation were assessed. The development of a new optimized protocol may improve HTlc-FER complex performances and safety by augmenting dosage and reducing the presence of harmful reactive species in the final formulation.
Reis, Cristiane Bianchi Loureiro Dos; Morandini, Liziane Maria Barassuol; Bevilacqua, Caroline Borges; Bublitz, Fabricio; Ugalde, Gustavo; Mazutti, Marcio Antonio; Jacques, Rodrigo Josemar Seminoti
2018-04-24
Biosurfactants have many advantages over synthetic surfactants but have higher production costs. Identifying microorganisms with high production capacities for these molecules and optimizing their growth conditions can reduce cost. The present work aimed to isolate and identify a fungus with high biosurfactant production capacity, optimize its growth conditions in a low cost culture medium, and characterize the chemical structure of the biosurfactant molecule. The fungal strain UFSM-BAS-01 was isolated from soil contaminated with hydrocarbons and identified as Fusarium fujikuroi. To optimize biosurfactant production, a Plackett-Burman design and a central composite rotational design were used. The variables evaluated were pH, incubation period, temperature, agitation and amount of inoculum in a liquid medium containing glucose. The partial structure of the biosurfactant molecule was identified by nuclear magnetic resonance spectrometry. F. fujikuroi reduced surface tension from 72 to 20mNm -1 under the optimized conditions of pH 5.0, 37°C and 7 days of incubation with 190rpm agitation. The partial identification of the structure of the biosurfactant demonstrated the presence of an α,β-trehalose. The present study is the first report of the biosynthesis of this compound by F. fujikuroi, suggesting that the biosurfactant produced belongs to the class of trehalolipids. Copyright © 2018 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
Productivity analysis to overcome the limited availability of production time in SME FBS
NASA Astrophysics Data System (ADS)
Nurhasanah, N.; Jingga; Aribowo, B.; Gayatri, AM; Mardhika, DA; Tanjung, WN; Suri, QA; Safitri, R.; Supriyanto, A.
2017-12-01
Good industrial development should pay attention to the human factor as the main driver. Condition of work procedures, work area, and environment can affect the production result because if not optimal, the production will run slowly. If the work system is less than optimal, the productivity will do so, the operator will work uncomfortably and be easy to undergo work fatigue, even it can cause work accidents. Thus, the optimal and ergonomic arrangement of the the overall work system mechanism and work environment design is required for workers to work well, regularly, safely and comfortably with the aim of improving work productivity. This research measures the performance in textile SME (Small and Medium Enterprise) located in Sukabumi which is SME FBS which produces children’s clothing. This performance measurement is aimed at improving the competitiveness of the textile IKM so that it has the equal competitiveness with other SMEs or with textile industries that already have their name in market. Based on the method of hour standard time and TOC calculation at 2 FBS CMT (Cut-Make-Trim) in Sukabumi, which are the CMT Margaluyu Village and CMT Purabaya Village, the result is that the standard time of shirt work on CMT Margaluyu Village is less than that of CMT Desa Purabaya. It can be seen that more effective in SME FBS production is by process method.
Continuous-variable quantum probes for structured environments
NASA Astrophysics Data System (ADS)
Bina, Matteo; Grasselli, Federico; Paris, Matteo G. A.
2018-01-01
We address parameter estimation for structured environments and suggest an effective estimation scheme based on continuous-variables quantum probes. In particular, we investigate the use of a single bosonic mode as a probe for Ohmic reservoirs, and obtain the ultimate quantum limits to the precise estimation of their cutoff frequency. We assume the probe prepared in a Gaussian state and determine the optimal working regime, i.e., the conditions for the maximization of the quantum Fisher information in terms of the initial preparation, the reservoir temperature, and the interaction time. Upon investigating the Fisher information of feasible measurements, we arrive at a remarkable simple result: homodyne detection of canonical variables allows one to achieve the ultimate quantum limit to precision under suitable, mild, conditions. Finally, upon exploiting a perturbative approach, we find the invariant sweet spots of the (tunable) characteristic frequency of the probe, able to drive the probe towards the optimal working regime.
Gallardo, A; Mougabure Cueto, G; Picollo, M I
2009-07-01
Human pediculosis is produced by Pediculus humanus humanus (Linnaeus 1758) and Pediculus humanus capitis (De Geer 1767). Laboratory-reared body lice, susceptible to insecticides, were used as reference in toxicological studies on head lice. In this work, we evaluated the survival of both subspecies at different temperatures and relative humidities and we propose the optimal conditions for comparative bioassays. Moreover, we used these conditions to test the activity of three monoterpenoids against both lice. The results showed differential response to changes in temperature and humidity between both organisms. The survival of body lice ranged between 83% and 100% and was not affected for the tested conditions. The survival of head lice depended on temperature, humidity, and exposure time. The optimal conditions for head lice were 18 masculineC and 97% relative humidity at 18 h of exposition. The insecticidal activity of three monoterpenoids (pulegone, linalool, and 1,8-cineole), evaluated according the selected conditions by topical application, showed no significant differences between males of body and head lice. To conclude, as head lice required more special laboratory conditions than body lice, the optimal head lice conditions should be used in both organisms in comparative bioassays. Body louse is an appropriate organism for testing products against of head louse.
Optimality and stability of symmetric evolutionary games with applications in genetic selection.
Huang, Yuanyuan; Hao, Yiping; Wang, Min; Zhou, Wen; Wu, Zhijun
2015-06-01
Symmetric evolutionary games, i.e., evolutionary games with symmetric fitness matrices, have important applications in population genetics, where they can be used to model for example the selection and evolution of the genotypes of a given population. In this paper, we review the theory for obtaining optimal and stable strategies for symmetric evolutionary games, and provide some new proofs and computational methods. In particular, we review the relationship between the symmetric evolutionary game and the generalized knapsack problem, and discuss the first and second order necessary and sufficient conditions that can be derived from this relationship for testing the optimality and stability of the strategies. Some of the conditions are given in different forms from those in previous work and can be verified more efficiently. We also derive more efficient computational methods for the evaluation of the conditions than conventional approaches. We demonstrate how these conditions can be applied to justifying the strategies and their stabilities for a special class of genetic selection games including some in the study of genetic disorders.
NASA Astrophysics Data System (ADS)
Brown, G. J.; Haugan, H. J.; Mahalingam, K.; Grazulis, L.; Elhamri, S.
2015-01-01
The objective of this work is to establish molecular beam epitaxy (MBE) growth processes that can produce high quality InAs/GaInSb superlattice (SL) materials specifically tailored for very long wavelength infrared (VLWIR) detection. To accomplish this goal, several series of MBE growth optimization studies, using a SL structure of 47.0 Å InAs/21.5 Å Ga0.75In0.25Sb, were performed to refine the MBE growth process and optimize growth parameters. Experimental results demonstrated that our "slow" MBE growth process can consistently produce an energy gap near 50 meV. This is an important factor in narrow band gap SLs. However, there are other growth factors that also impact the electrical and optical properties of the SL materials. The SL layers are particularly sensitive to the anion incorporation condition formed during the surface reconstruction process. Since antisite defects are potentially responsible for the inherent residual carrier concentrations and short carrier lifetimes, the optimization of anion incorporation conditions, by manipulating anion fluxes, anion species, and deposition temperature, was systematically studied. Optimization results are reported in the context of comparative studies on the influence of the growth temperature on the crystal structural quality and surface roughness performed under a designed set of deposition conditions. The optimized SL samples produced an overall strong photoresponse signal with a relatively sharp band edge that is essential for developing VLWIR detectors. A quantitative analysis of the lattice strain, performed at the atomic scale by aberration corrected transmission electron microscopy, provided valuable information about the strain distribution at the GaInSb-on-InAs interface and in the InAs layers, which was important for optimizing the anion conditions.
A case study on implementing lean ergonomic manufacturing systems (LEMS) in an automobile industry
NASA Astrophysics Data System (ADS)
Srinivasa Rao, P.; Niraj, Malay
2016-09-01
Lean manufacturing is a business strategy developed in Japan. In the present scenario, the global market is developing new techniques for getting more and more production rate with a good quality under low cost. In this context, human factors have to be given importance to their working conditions. The study demonstrates the adoption of ergonomic conditions in lean manufacturing for the improvement of organizational performance of the industry. The aim of ergonomics is to adapt the new techniques to their work in efficient and safe ways in order to optimize the human health conditions and increasing the production rate. By conducting survey on various disciplines and showed how the production rate and human ergonomic conditions is affected.
Liu, Cong; Ngo, Huu Hao; Guo, Wenshan; Tung, Kuo-Lun
2012-09-01
In this study, three agro-waste materials were used as biosorbents for removal of copper (Cu) from water. This work aims to optimise conditions for preparation of these materials to obtain maximum Cu adsorption capacity. The optimal conditions were determined in terms of Cu removal efficiency and/or energy consumption. The results indicate that banana peels dried at 120°C for 2h and ground into powder form led to a better performance in terms of both copper removal efficiency and energy consumption. For sugarcane bagasse and watermelon rind, 120°C was the suitable drying temperature. However, the best drying time was 1h for sugarcane bagasse and 3h for watermelon rind. The powder form with size of <150 μm was optimal for all biosorbents in terms of removal efficiency and equilibration time. The findings are beneficial to the application of these agro-waste materials for Cu removal from water and wastewater treatment. Copyright © 2012. Published by Elsevier Ltd.
Vincent, Julie; Forquet, Nicolas; Molle, Pascal; Wisniewski, Christelle
2012-07-01
This work was designed to study the hydraulic properties of sludge deposit, focusing on the impact of operating conditions (i.e. loads and feeding frequencies) on air entrance (aerobic mineralization optimization) into the sludge deposit. The studied sludge deposits came from six 2m(2) pilot-scale SDRBs that had been in operation for 50 months with three different loads of 30, 50, and 70 kg of SSm(-2) y(-1). Two influents were assessed (i.e. activated sludge and septage) presenting different characteristics (i.e. pollutant contents, physical properties...). Two experimental approaches were employed based on establishing the water retention curve (capillary pressure versus volumetric water content) and the hydrotextural diagram to determine the hydraulic properties of sludge deposit. The study obtained valuable information for optimizing operating conditions, specifically for efficient management of loading frequency to optimize aerobic conditions within the sludge deposit. Copyright © 2012 Elsevier Ltd. All rights reserved.
A new approach to synthesis of benzyl cinnamate: Optimization by response surface methodology.
Zhang, Dong-Hao; Zhang, Jiang-Yan; Che, Wen-Cai; Wang, Yun
2016-09-01
In this work, the new approach to synthesis of benzyl cinnamate by enzymatic esterification of cinnamic acid with benzyl alcohol is optimized by response surface methodology. The effects of various reaction conditions, including temperature, enzyme loading, substrate molar ratio of benzyl alcohol to cinnamic acid, and reaction time, are investigated. A 5-level-4-factor central composite design is employed to search for the optimal yield of benzyl cinnamate. A quadratic polynomial regression model is used to analyze the experimental data at a 95% confidence level (P<0.05). The coefficient of determination of this model is found to be 0.9851. Three sets of optimum reaction conditions are established, and the verified experimental trials are performed for validating the optimum points. Under the optimum conditions (40°C, 31mg/mL enzyme loading, 2.6:1 molar ratio, 27h), the yield reaches 97.7%, which provides an efficient processes for industrial production of benzyl cinnamate. Copyright © 2016 Elsevier Ltd. All rights reserved.
Time-optical spinup maneuvers of flexible spacecraft
NASA Technical Reports Server (NTRS)
Singh, G.; Kabamba, P. T.; Mcclamroch, N. H.
1990-01-01
Attitude controllers for spacecraft have been based on the assumption that the bodies being controlled are rigid. Future spacecraft, however, may be quite flexible. Many applications require spinning up/down these vehicles. In this work the minimum time control of these maneuvers is considered. The time-optimal control is shown to possess an important symmetry property. Taking advantage of this property, the necessary and sufficient conditions for optimality are transformed into a system of nonlinear algebraic equations in the control switching times during one half of the maneuver, the maneuver time, and the costates at the mid-maneuver time. These equations can be solved using a homotopy approach. Control spillover measures are introduced and upper bounds on these measures are obtained. For a special case these upper bounds can be expressed in closed form for an infinite dimensional evaluation model. Rotational stiffening effects are ignored in the optimal control analysis. Based on a heuristic argument a simple condition is given which justifies the omission of these nonlinear effects. This condition is validated by numerical simulation.
Popovich, Cecilia A; Damiani, Cecilia; Constenla, Diana; Martínez, Ana María; Freije, Hugo; Giovanardi, Martina; Pancaldi, Simonetta; Leonardi, Patricia I
2012-06-01
The freshwater microalga Neochloris oleoabundans was used to study algal lipid production in enriched natural seawater, in order to assess its suitability as biodiesel feedstock. Optimal and nitrogen-stress (N-stress) conditions were analyzed. Under optimal conditions, the strain's growth rate was 0.73 div day(-1) and the biomass concentration was 1.5 g L(-1), while it had a maximum lipid yield under N-stress conditions (lipid content: 26% of dry weigh and lipid productivity: 56 mg L(-1) day(-1)). Lipid accumulation was mainly due to a significant increase of triacylglycerol content. Neutral lipids were characterized by a dominance of monounsaturated fatty acids and displayed a fatty acid profile that is suitable for biodiesel. This work offers an interesting alternative for sustainable microalgal oil synthesis for biodiesel production without using freshwater resources. However, further studies are necessary in order to optimize the lipid productivities required for commercial biodiesel production. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ahmad, Ajaz; Alkharfy, Khalid M; Wani, Tanveer A; Raish, Mohammad
2015-01-01
The objective of the present work was to study the ultrasonic assisted extraction and optimization of polysaccharides from Paeonia emodi and evaluation of its anti-inflammatory response. Specifically, the optimization of polysaccharides was carried out using Box-Behnken statistical experimental design. Response surface methodology (RSM) of three factors (extraction temperature, extraction time and liquid solid ratio) was employed to optimize the percentage yield of the polysaccharides. The experimental data were fitted to quadratic response surface models using multiple regression analysis with high coefficient of determination value (R) of 0.9906. The highest polysaccharide yield (8.69%) as per the Derringer's desirability prediction tool was obtained under the optimal extraction condition (extraction temperature 47.03 °C, extraction time 15.68 min, and liquid solid ratio 1.29 ml/g) with a desirability value of 0.98. These optimized values of tested parameters were validated under similar conditions (n = 6), an average of 8.13 ± 2.08% of polysaccharide yield was obtained in an optimized extraction conditions with 93.55% validity. The anti-inflammatory effect of polysaccharides of P. emodi were studied on carrageenan induced paw edema. In vivo results showed that the P. emodi 200mg/kg of polysaccharide extract exhibited strong potential against inflammatory response induced by 1% suspension of carrageenean in normal saline. Copyright © 2014 Elsevier B.V. All rights reserved.
Trajectory optimization for the National Aerospace Plane
NASA Technical Reports Server (NTRS)
Lu, Ping
1992-01-01
The primary objective of this research is to develop an efficient and robust trajectory optimization tool for the optimal ascent problem of the National Aerospace Plane (NASP). This report is organized in the following order to summarize the complete work: Section two states the formulation and models of the trajectory optimization problem. An inverse dynamics approach to the problem is introduced in Section three. Optimal trajectories corresponding to various conditions and performance parameters are presented in Section four. A midcourse nonlinear feedback controller is developed in Section five. Section six demonstrates the performance of the inverse dynamics approach and midcourse controller during disturbances. Section seven discusses rocket assisted ascent which may be beneficial when orbital altitude is high. Finally, Section eight recommends areas of future research.
An effective model for ergonomic optimization applied to a new automotive assembly line
NASA Astrophysics Data System (ADS)
Duraccio, Vincenzo; Elia, Valerio; Forcina, Antonio
2016-06-01
An efficient ergonomic optimization can lead to a significant improvement in production performance and a considerable reduction of costs. In the present paper new model for ergonomic optimization is proposed. The new approach is based on the criteria defined by National Institute of Occupational Safety and Health and, adapted to Italian legislation. The proposed model provides an ergonomic optimization, by analyzing ergonomic relations between manual work in correct conditions. The model includes a schematic and systematic analysis method of the operations, and identifies all possible ergonomic aspects to be evaluated. The proposed approach has been applied to an automotive assembly line, where the operation repeatability makes the optimization fundamental. The proposed application clearly demonstrates the effectiveness of the new approach.
Schieferstein, Jeremy M.; Pawate, Ashtamurthy S.; Wan, Frank; Sheraden, Paige N.; Broecker, Jana; Ernst, Oliver P.; Gennis, Robert B.
2017-01-01
Elucidating and clarifying the function of membrane proteins ultimately requires atomic resolution structures as determined most commonly by X-ray crystallography. Many high impact membrane protein structures have resulted from advanced techniques such as in meso crystallization that present technical difficulties for the set-up and scale-out of high-throughput crystallization experiments. In prior work, we designed a novel, low-throughput X-ray transparent microfluidic device that automated the mixing of protein and lipid by diffusion for in meso crystallization trials. Here, we report X-ray transparent microfluidic devices for high-throughput crystallization screening and optimization that overcome the limitations of scale and demonstrate their application to the crystallization of several membrane proteins. Two complementary chips are presented: (1) a high-throughput screening chip to test 192 crystallization conditions in parallel using as little as 8 nl of membrane protein per well and (2) a crystallization optimization chip to rapidly optimize preliminary crystallization hits through fine-gradient re-screening. We screened three membrane proteins for new in meso crystallization conditions, identifying several preliminary hits that we tested for X-ray diffraction quality. Further, we identified and optimized the crystallization condition for a photosynthetic reaction center mutant and solved its structure to a resolution of 3.5 Å. PMID:28469762
[The formation of social professional skills of students with limited possibilities].
Bubnova, E V; Guseva, N K
2011-01-01
The education of children and adolescents with limited possibilities is a system of economic, public, legal and individual personal measures supporting the optimal conditions to overcome this defect up to a degree of participation in public life on par with other citizen. In the Nijny Novgorod academic boarding school for the disabled the organization of activities forming the social professional skills are differentiated on terms and targets of education. The students of first course need the optimization of communication, enhancement of self-consciousness, formation of educational information perception, reasoning, involuntary memory voluntary logical memory attention, will, educational general intellectual expertise. The students of second course need more attention to making and optimization of various types of activity, activation of labor activity, forming of labor attitudes, communicative skills and enhancement of emotional and motivational sphere. The students of third course need to develop the skills of self-reliant work, motoric activity, dexterity labor skills, working discipline skills, rational attitude to group work, professional knowledge.
Optimal Appearance Model for Visual Tracking
Wang, Yuru; Jiang, Longkui; Liu, Qiaoyuan; Yin, Minghao
2016-01-01
Many studies argue that integrating multiple cues in an adaptive way increases tracking performance. However, what is the definition of adaptiveness and how to realize it remains an open issue. On the premise that the model with optimal discriminative ability is also optimal for tracking the target, this work realizes adaptiveness and robustness through the optimization of multi-cue integration models. Specifically, based on prior knowledge and current observation, a set of discrete samples are generated to approximate the foreground and background distribution. With the goal of optimizing the classification margin, an objective function is defined, and the appearance model is optimized by introducing optimization algorithms. The proposed optimized appearance model framework is embedded into a particle filter for a field test, and it is demonstrated to be robust against various kinds of complex tracking conditions. This model is general and can be easily extended to other parameterized multi-cue models. PMID:26789639
NASA Technical Reports Server (NTRS)
Engberg, Robert; Ooi, Teng K.
2004-01-01
New methods for structural health monitoring are being assessed, especially in high-performance, extreme environment, safety-critical applications. One such application is for composite cryogenic fuel tanks. The work presented here attempts to characterize and investigate the feasibility of using imbedded piezoelectric sensors to detect cracks and delaminations under cryogenic and ambient conditions. A variety of damage detection methods and different Sensors are employed in the different composite plate samples to aid in determining an optimal algorithm, sensor placement strategy, and type of imbedded sensor to use. Variations of frequency, impedance measurements, and pulse echoing techniques of the sensors are employed and compared. Statistical and analytic techniques are then used to determine which method is most desirable for a specific type of damage. These results are furthermore compared with previous work using externally mounted sensors. Results and optimized methods from this work can then be incorporated into a larger composite structure to validate and assess its structural health. This could prove to be important in the development and qualification of any 2" generation reusable launch vehicle using composites as a structural element.
Gradient stationary phase optimized selectivity liquid chromatography with conventional columns.
Chen, Kai; Lynen, Frédéric; Szucs, Roman; Hanna-Brown, Melissa; Sandra, Pat
2013-05-21
Stationary phase optimized selectivity liquid chromatography (SOSLC) is a promising technique to optimize the selectivity of a given separation. By combination of different stationary phases, SOSLC offers excellent possibilities for method development under both isocratic and gradient conditions. The so far available commercial SOSLC protocol utilizes dedicated column cartridges and corresponding cartridge holders to build up the combined column of different stationary phases. The present work is aimed at developing and extending the gradient SOSLC approach towards coupling conventional columns. Generic tubing was used to connect short commercially available LC columns. Fast and base-line separation of a mixture of 12 compounds containing phenones, benzoic acids and hydroxybenzoates under both isocratic and linear gradient conditions was selected to demonstrate the potential of SOSLC. The influence of the connecting tubing on the deviation of predictions is also discussed.
Optimal fractal tree-like microchannel networks with slip for laminar-flow-modified Murray's law.
Jing, Dalei; Song, Shiyu; Pan, Yunlu; Wang, Xiaoming
2018-01-01
The fractal tree-like branched network is an effective channel design structure to reduce the hydraulic resistance as compared with the conventional parallel channel network. In order for a laminar flow to achieve minimum hydraulic resistance, it is believed that the optimal fractal tree-like channel network obeys the well-accepted Murray's law of β m = N -1/3 (β m is the optimal diameter ratio between the daughter channel and the parent channel and N is the branching number at every level), which is obtained under the assumption of no-slip conditions at the channel wall-liquid interface. However, at the microscale, the no-slip condition is not always reasonable; the slip condition should indeed be considered at some solid-liquid interfaces for the optimal design of the fractal tree-like channel network. The present work reinvestigates Murray's law for laminar flow in a fractal tree-like microchannel network considering slip condition. It is found that the slip increases the complexity of the optimal design of the fractal tree-like microchannel network to achieve the minimum hydraulic resistance. The optimal diameter ratio to achieve minimum hydraulic resistance is not only dependent on the branching number, as stated by Murray's law, but also dependent on the slip length, the level number, the length ratio between the daughter channel and the parent channel, and the diameter of the channel. The optimal diameter ratio decreases with the increasing slip length, the increasing level number and the increasing length ratio between the daughter channel and the parent channel, and decreases with decreasing channel diameter. These complicated relations were found to become relaxed and simplified to Murray's law when the ratio between the slip length and the diameter of the channel is small enough.
Scardigno, Domenico; Fanelli, Emanuele; Viggiano, Annarita; Braccio, Giacobbe; Magi, Vinicio
2016-06-01
This article provides the dataset of operating conditions of a hybrid organic Rankine plant generated by the optimization procedure employed in the research article "A genetic optimization of a hybrid organic Rankine plant for solar and low-grade energy sources" (Scardigno et al., 2015) [1]. The methodology used to obtain the data is described. The operating conditions are subdivided into two separate groups: feasible and unfeasible solutions. In both groups, the values of the design variables are given. Besides, the subset of feasible solutions is described in details, by providing the thermodynamic and economic performances, the temperatures at some characteristic sections of the thermodynamic cycle, the net power, the absorbed powers and the area of the heat exchange surfaces.
A Cost-Effective Approach to Optimizing Microstructure and Magnetic Properties in Ce17Fe78B₆ Alloys.
Tan, Xiaohua; Li, Heyun; Xu, Hui; Han, Ke; Li, Weidan; Zhang, Fang
2017-07-28
Optimizing fabrication parameters for rapid solidification of Re-Fe-B (Re = Rare earth) alloys can lead to nanocrystalline products with hard magnetic properties without any heat-treatment. In this work, we enhanced the magnetic properties of Ce 17 Fe 78 B₆ ribbons by engineering both the microstructure and volume fraction of the Ce₂Fe 14 B phase through optimization of the chamber pressure and the wheel speed necessary for quenching the liquid. We explored the relationship between these two parameters (chamber pressure and wheel speed), and proposed an approach to identifying the experimental conditions most likely to yield homogenous microstructure and reproducible magnetic properties. Optimized experimental conditions resulted in a microstructure with homogeneously dispersed Ce₂Fe 14 B and CeFe₂ nanocrystals. The best magnetic properties were obtained at a chamber pressure of 0.05 MPa and a wheel speed of 15 m·s -1 . Without the conventional heat-treatment that is usually required, key magnetic properties were maximized by optimization processing parameters in rapid solidification of magnetic materials in a cost-effective manner.
Environmental quality of the operating theaters in Campania Region: long lasting monitoring results.
Triassi, M; Novi, C; Nardone, A; Russo, I; Montuori, P
2015-01-01
The health risk level in the operating theaters is directly correlated to the safety level offered by the healthcare facilities. This is the reason why the national Authorities released several regulations in order to monitor better environmental conditions of the operating theaters, to prevent occupational injuries and disease and to optimize working conditions. For the monitoring of environmental quality of the operating theaters following parameters are considered: quantity of supplied gases, anesthetics concentration, operating theatres volume measurement, air change rate, air conditioning system and air filtration. The objective is to minimize the risks in the operating theaters and to provide the optimal environmental working conditions. This paper reports the environmental conditions of operating rooms performed for several years in the public hospitals of the Campania Region. Investigation of environmental conditions of 162 operating theaters in Campania Region from January 2012 till July 2014 was conducted. Monitoring and analysis of physical and chemical parameters was done. The analysis of the results has been made considering specific standards suggested by national and international regulations. The study showed that 75% of the operating theaters presented normal values for microclimatic monitoring, while the 25% of the operating theaters had at least one parameter outside the limits. The monitoring of the anesthetics gases showed that in 9% of measurements of nitrous oxides and 4% of measurements of halogenated was not within the normal values.
NASA Technical Reports Server (NTRS)
Smith, J. M.; Nichols, L. D.
1977-01-01
The value of percent seed, oxygen to fuel ratio, combustion pressure, Mach number, and magnetic field strength which maximize either the electrical conductivity or power density at the entrance of an MHD power generator was obtained. The working fluid is the combustion product of H2 and O2 seeded with CsOH. The ideal theoretical segmented Faraday generator along with an empirical form found from correlating the data of many experimenters working with generators of different sizes, electrode configurations, and working fluids, are investigated. The conductivity and power densities optimize at a seed fraction of 3.5 mole percent and an oxygen to hydrogen weight ratio of 7.5. The optimum values of combustion pressure and Mach number depend on the operating magnetic field strength.
Ideal heat transfer conditions for tubular solar receivers with different design constraints
NASA Astrophysics Data System (ADS)
Kim, Jin-Soo; Potter, Daniel; Gardner, Wilson; Too, Yen Chean Soo; Padilla, Ricardo Vasquez
2017-06-01
The optimum heat transfer condition for a tubular type solar receiver was investigated for various receiver pipe size, heat transfer fluid, and design requirement and constraint(s). Heat transfer of a single plain receiver pipe exposed to concentrated solar energy was modelled along the flow path of the heat transfer fluid. Three different working fluids, molten salt, sodium, and supercritical carbon dioxide (sCO2) were considered in the case studies with different design conditions. The optimized ideal heat transfer condition was identified through fast iterative heat transfer calculations solving for all relevant radiation, conduction and convection heat transfers throughout the entire discretized tubular receiver. The ideal condition giving the best performance was obtained by finding the highest acceptable solar energy flux optimally distributed to meet different constraint(s), such as maximum allowable material temperature of receiver, maximum allowable film temperature of heat transfer fluid, and maximum allowable stress of receiver pipe material. The level of fluid side turbulence (represented by pressure drop in this study) was also optimized to give the highest net power production. As the outcome of the study gives information on the most ideal heat transfer condition, it can be used as a useful guideline for optimal design of a real receiver and solar field in a combined manner. The ideal heat transfer condition is especially important for high temperature tubular receivers (e.g. for supplying heat to high efficiency Brayton cycle turbines) where the system design and performance is tightly constrained by the receiver pipe material strength.
Okut, Dilara; Devseren, Esra; Koç, Mehmet; Ocak, Özgül Özdestan; Karataş, Haluk; Kaymak-Ertekin, Figen
2018-01-01
Purpose of this study was to develop prototype cooking equipment that can work at reduced pressure and to evaluate its performance for production of strawberry jam. The effect of vacuum cooking conditions on color soluble solid content, reducing sugars total sugars HMF and sensory properties were investigated. Also, the optimum vacuum cooking conditions for strawberry jam were optimized for Composite Rotatable Design. The optimum cooking temperature and time were determined targeting maximum soluble solid content and sensory attributes (consistency) and minimum Hue value and HMF content. The optimum vacuum cooking conditions determined were 74.4 °C temperature and 19.8 time. The soluble solid content strawberry jam made by vacuum process were similar to those prepared by traditional method. HMF contents of jams produced with vacuum cooking method were well within limit of standards.
Liu, Cai-qin; Chen, Qi-he; Cheng, Qian-jun; Wang, Jin-ling; He, Guo-qing
2007-05-01
The work is intended to achieve optimum culture conditions of alpha-galactosidase production by a mutant strain Aspergillus foetidus ZU-G1 in solid-state fermentation (SSF). Certain fermentation parameters involving moisture content, incubation temperature, cultivation period of seed, inoculum volume, initial pH value, layers of pledget, load size of medium and period of cultivation were investigated separately. The optimal cultivating conditions of alpha-galactosidase production in SSF were 60% initial moisture of medium, 28 degrees C incubation temperature, 18 h cultivation period of seed, 10% inoculum volume, 5.0 approximately 6.0 initial pH of medium, 6 layers of pledget and 10 g dry matter loadage. Under the optimized cultivation conditions, the maximum alpha-galactosidase production was 2 037.51 U/g dry matter near the 144th hour of fermentation.
Liu, Cai-qin; Chen, Qi-he; Cheng, Qian-jun; Wang, Jin-ling; He, Guo-qing
2007-01-01
The work is intended to achieve optimum culture conditions of α-galactosidase production by a mutant strain Aspergillus foetidus ZU-G1 in solid-state fermentation (SSF). Certain fermentation parameters involving moisture content, incubation temperature, cultivation period of seed, inoculum volume, initial pH value, layers of pledget, load size of medium and period of cultivation were investigated separately. The optimal cultivating conditions of α-galactosidase production in SSF were 60% initial moisture of medium, 28 °C incubation temperature, 18 h cultivation period of seed, 10% inoculum volume, 5.0~6.0 initial pH of medium, 6 layers of pledget and 10 g dry matter loadage. Under the optimized cultivation conditions, the maximum α-galactosidase production was 2 037.51 U/g dry matter near the 144th hour of fermentation. PMID:17542067
Saridakis, Emmanuel; Chayen, Naomi E.
2003-01-01
A systematic approach for improving protein crystals by growing them in the metastable zone using the vapor diffusion technique is described. This is a simple technique for optimization of crystallization conditions. Screening around known conditions is performed to establish a working phase diagram for the crystallization of the protein. Dilutions of the crystallization drops across the supersolubility curve into the metastable zone are then carried out as follows: the coverslips holding the hanging drops are transferred, after being incubated for some time at conditions normally giving many small crystals, over reservoirs at concentrations which normally yield clear drops. Fewer, much larger crystals are obtained when the incubation times are optimized, compared with conventional crystallization at similar conditions. This systematic approach has led to the structure determination of the light-harvesting protein C-phycocyanin to the highest-ever resolution of 1.45 Å. PMID:12547801
The impact of the condenser on cytogenetic image quality in digital microscope system.
Ren, Liqiang; Li, Zheng; Li, Yuhua; Zheng, Bin; Li, Shibo; Chen, Xiaodong; Liu, Hong
2013-01-01
Optimizing operational parameters of the digital microscope system is an important technique to acquire high quality cytogenetic images and facilitate the process of karyotyping so that the efficiency and accuracy of diagnosis can be improved. This study investigated the impact of the condenser on cytogenetic image quality and system working performance using a prototype digital microscope image scanning system. Both theoretical analysis and experimental validations through objectively evaluating a resolution test chart and subjectively observing large numbers of specimen were conducted. The results show that the optimal image quality and large depth of field (DOF) are simultaneously obtained when the numerical aperture of condenser is set as 60%-70% of the corresponding objective. Under this condition, more analyzable chromosomes and diagnostic information are obtained. As a result, the system shows higher working stability and less restriction for the implementation of algorithms such as autofocusing especially when the system is designed to achieve high throughput continuous image scanning. Although the above quantitative results were obtained using a specific prototype system under the experimental conditions reported in this paper, the presented evaluation methodologies can provide valuable guidelines for optimizing operational parameters in cytogenetic imaging using the high throughput continuous scanning microscopes in clinical practice.
Data Mining and Optimization Tools for Developing Engine Parameters Tools
NASA Technical Reports Server (NTRS)
Dhawan, Atam P.
1998-01-01
This project was awarded for understanding the problem and developing a plan for Data Mining tools for use in designing and implementing an Engine Condition Monitoring System. Tricia Erhardt and I studied the problem domain for developing an Engine Condition Monitoring system using the sparse and non-standardized datasets to be available through a consortium at NASA Lewis Research Center. We visited NASA three times to discuss additional issues related to dataset which was not made available to us. We discussed and developed a general framework of data mining and optimization tools to extract useful information from sparse and non-standard datasets. These discussions lead to the training of Tricia Erhardt to develop Genetic Algorithm based search programs which were written in C++ and used to demonstrate the capability of GA algorithm in searching an optimal solution in noisy, datasets. From the study and discussion with NASA LeRC personnel, we then prepared a proposal, which is being submitted to NASA for future work for the development of data mining algorithms for engine conditional monitoring. The proposed set of algorithm uses wavelet processing for creating multi-resolution pyramid of tile data for GA based multi-resolution optimal search.
Optimal control of LQR for discrete time-varying systems with input delays
NASA Astrophysics Data System (ADS)
Yin, Yue-Zhu; Yang, Zhong-Lian; Yin, Zhi-Xiang; Xu, Feng
2018-04-01
In this work, we consider the optimal control problem of linear quadratic regulation for discrete time-variant systems with single input and multiple input delays. An innovative and simple method to derive the optimal controller is given. The studied problem is first equivalently converted into a problem subject to a constraint condition. Last, with the established duality, the problem is transformed into a static mathematical optimisation problem without input delays. The optimal control input solution to minimise performance index function is derived by solving this optimisation problem with two methods. A numerical simulation example is carried out and its results show that our two approaches are both feasible and very effective.
Optimization of the production process using virtual model of a workspace
NASA Astrophysics Data System (ADS)
Monica, Z.
2015-11-01
Optimization of the production process is an element of the design cycle consisting of: problem definition, modelling, simulation, optimization and implementation. Without the use of simulation techniques, the only thing which could be achieved is larger or smaller improvement of the process, not the optimization (i.e., the best result it is possible to get for the conditions under which the process works). Optimization is generally management actions that are ultimately bring savings in time, resources, and raw materials and improve the performance of a specific process. It does not matter whether it is a service or manufacturing process. Optimizing the savings generated by improving and increasing the efficiency of the processes. Optimization consists primarily of organizational activities that require very little investment, or rely solely on the changing organization of work. Modern companies operating in a market economy shows a significant increase in interest in modern methods of production management and services. This trend is due to the high competitiveness among companies that want to achieve success are forced to continually modify the ways to manage and flexible response to changing demand. Modern methods of production management, not only imply a stable position of the company in the sector, but also influence the improvement of health and safety within the company and contribute to the implementation of more efficient rules for standardization work in the company. This is why in the paper is presented the application of such developed environment like Siemens NX to create the virtual model of a production system and to simulate as well as optimize its work. The analyzed system is the robotized workcell consisting of: machine tools, industrial robots, conveyors, auxiliary equipment and buffers. In the program could be defined the control program realizing the main task in the virtual workcell. It is possible, using this tool, to optimize both the object trajectory and the cooperation process.
An exercise in nostalgia: Nostalgia promotes health optimism and physical activity.
Kersten, Mike; Cox, Cathy R; Van Enkevort, Erin A
2016-10-01
Previous research has shown that nostalgia, a sentimental longing for the past, leads to greater feelings of optimism, with other work demonstrating that optimistic thinking (general & health-orientated) is associated with better physical and psychological health. Integrating these two lines of research, the current studies examined whether nostalgia-induced health optimism promotes attitudes and behaviours associated with better physical well-being. Participants, in three experiments, were randomly assigned to write about either a nostalgic or ordinary event. Following this, everyone completed a measure of health optimism (Studies 1-3), measures of health attitudes (Study 2) and had their physical activity monitored over the course of 2 weeks (Study 3). The results revealed that, in comparison to control conditions, nostalgic reverie led to greater health optimism (Studies 1-3). Further, heightened health optimism following nostalgic reflection led to more positive health attitudes (Study 2), and increased physical activity over a two-week period (i.e. Fitbit activity trackers; Study 3). These findings highlight the importance of nostalgia on health attitudes and behaviours. Specifically, this work suggests that nostalgia can be used as a mechanism to increase the importance, perceived efficacy and behaviour associated with better physical health.
Sengsayadeth, Salyka; Savani, Bipin N.; Blaise, Didier; Malard, Florent; Nagler, Arnon; Mohty, Mohamad
2015-01-01
Acute myeloid leukemia is the most common indication for an allogeneic hematopoietic cell transplant. The introduction of reduced intensity conditioning has expanded the recipient pool for transplantation, which has importantly made transplant an option for the more commonly affected older age groups. Reduced intensity conditioning allogeneic transplantation is currently the standard of care for patients with intermediate or high-risk acute myeloid leukemia and is now most often employed in older patients and those with medical comorbidities. Despite being curative for a significant proportion of patients, post-transplant relapse remains a challenge in the reduced intensity conditioning setting. Herein we discuss the studies that demonstrate the feasibility of reduced intensity conditioning allogeneic transplants, compare the outcomes of reduced intensity conditioning versus chemotherapy and conventional myeloablative conditioning regimens, describe the optimal donor and stem cell source, and consider the impact of post-remission consolidation, comorbidities, center experience, and more intensive (reduced toxicity conditioning) regimens on outcomes. Additionally, we discuss the need for further prospective studies to optimize transplant outcomes. PMID:26130513
Sankaran, Sethuraman; Humphrey, Jay D.; Marsden, Alison L.
2013-01-01
Computational models for vascular growth and remodeling (G&R) are used to predict the long-term response of vessels to changes in pressure, flow, and other mechanical loading conditions. Accurate predictions of these responses are essential for understanding numerous disease processes. Such models require reliable inputs of numerous parameters, including material properties and growth rates, which are often experimentally derived, and inherently uncertain. While earlier methods have used a brute force approach, systematic uncertainty quantification in G&R models promises to provide much better information. In this work, we introduce an efficient framework for uncertainty quantification and optimal parameter selection, and illustrate it via several examples. First, an adaptive sparse grid stochastic collocation scheme is implemented in an established G&R solver to quantify parameter sensitivities, and near-linear scaling with the number of parameters is demonstrated. This non-intrusive and parallelizable algorithm is compared with standard sampling algorithms such as Monte-Carlo. Second, we determine optimal arterial wall material properties by applying robust optimization. We couple the G&R simulator with an adaptive sparse grid collocation approach and a derivative-free optimization algorithm. We show that an artery can achieve optimal homeostatic conditions over a range of alterations in pressure and flow; robustness of the solution is enforced by including uncertainty in loading conditions in the objective function. We then show that homeostatic intramural and wall shear stress is maintained for a wide range of material properties, though the time it takes to achieve this state varies. We also show that the intramural stress is robust and lies within 5% of its mean value for realistic variability of the material parameters. We observe that prestretch of elastin and collagen are most critical to maintaining homeostasis, while values of the material properties are most critical in determining response time. Finally, we outline several challenges to the G&R community for future work. We suggest that these tools provide the first systematic and efficient framework to quantify uncertainties and optimally identify G&R model parameters. PMID:23626380
An effective model for ergonomic optimization applied to a new automotive assembly line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duraccio, Vincenzo; Elia, Valerio; Forcina, Antonio
2016-06-08
An efficient ergonomic optimization can lead to a significant improvement in production performance and a considerable reduction of costs. In the present paper new model for ergonomic optimization is proposed. The new approach is based on the criteria defined by National Institute of Occupational Safety and Health and, adapted to Italian legislation. The proposed model provides an ergonomic optimization, by analyzing ergonomic relations between manual work in correct conditions. The model includes a schematic and systematic analysis method of the operations, and identifies all possible ergonomic aspects to be evaluated. The proposed approach has been applied to an automotive assemblymore » line, where the operation repeatability makes the optimization fundamental. The proposed application clearly demonstrates the effectiveness of the new approach.« less
Richard, Gontran; Touhami, Seddik; Zeghloul, Thami; Dascalescu, Lucien
2017-02-01
Plate-type electrostatic separators are commonly employed for the selective sorting of conductive and non-conductive granular materials. The aim of this work is to identify the optimal operating conditions of such equipment, when employed for separating copper and plastics from either flexible or rigid electric wire wastes. The experiments are performed according to the response surface methodology, on samples composed of either "calibrated" particles, obtained by manually cutting of electric wires at a predefined length (4mm), or actual machine-grinded scraps, characterized by a relatively-wide size distribution (1-4mm). The results point out the effect of particle size and shape on the effectiveness of the electrostatic separation. Different optimal operating conditions are found for flexible and rigid wires. A separate processing of the two classes of wire wastes is recommended. Copyright © 2016 Elsevier Ltd. All rights reserved.
Teng, Chaoyi; Demers, Hendrix; Brodusch, Nicolas; Waters, Kristian; Gauvin, Raynald
2018-06-04
A number of techniques for the characterization of rare earth minerals (REM) have been developed and are widely applied in the mining industry. However, most of them are limited to a global analysis due to their low spatial resolution. In this work, phase map analyses were performed on REM with an annular silicon drift detector (aSDD) attached to a field emission scanning electron microscope. The optimal conditions for the aSDD were explored, and the high-resolution phase maps generated at a low accelerating voltage identify phases at the micron scale. In comparisons between an annular and a conventional SDD, the aSDD performed at optimized conditions, making the phase map a practical solution for choosing an appropriate grinding size, judging the efficiency of different separation processes, and optimizing a REM beneficiation flowsheet.
Martínez-Gomez, Juan; Peña-Lamas, Javier; Martín, Mariano; Ponce-Ortega, José María
2017-12-01
The selection of the working fluid for Organic Rankine Cycles has traditionally been addressed from systematic heuristic methods, which perform a characterization and prior selection considering mainly one objective, thus avoiding a selection considering simultaneously the objectives related to sustainability and safety. The objective of this work is to propose a methodology for the optimal selection of the working fluid for Organic Rankine Cycles. The model is presented as a multi-objective approach, which simultaneously considers the economic, environmental and safety aspects. The economic objective function considers the profit obtained by selling the energy produced. Safety was evaluated in terms of individual risk for each of the components of the Organic Rankine Cycles and it was formulated as a function of the operating conditions and hazardous properties of each working fluid. The environmental function is based on carbon dioxide emissions, considering carbon dioxide mitigation, emission due to the use of cooling water as well emissions due material release. The methodology was applied to the case of geothermal facilities to select the optimal working fluid although it can be extended to waste heat recovery. The results show that the hydrocarbons represent better solutions, thus among a list of 24 working fluids, toluene is selected as the best fluid. Copyright © 2017 Elsevier Ltd. All rights reserved.
LiMn2O4–yBryNanoparticles Synthesized by a Room Temperature Solid-State Coordination Method
2009-01-01
LiMn2O4–yBrynanoparticles were synthesized successfully for the first time by a room temperature solid-state coordination method. X-ray diffractometry patterns indicated that the LiMn2O4–yBrypowders were well-crystallized pure spinel phase. Transmission electron microscopy images showed that the LiMn2O4–yBrypowders consisted of small and uniform nanosized particles. Synthesis conditions such as the calcination temperature and the content of Br−were investigated to optimize the ideal condition for preparing LiMn2O4–yBrywith the best electrochemical performances. The optimized synthesis condition was found in this work; the calcination temperature is 800 °C and the content of Br−is 0.05. The initial discharge capacity of LiMn2O3.95Br0.05obtained from the optimized synthesis condition was 134 mAh/g, which is far higher than that of pure LiMn2O4, indicating introduction of Br−in LiMn2O4is quite effective in improving the initial discharge capacity. PMID:20628635
Manganese ore tailing: optimization of acid leaching conditions and recovery of soluble manganese.
Santos, Olívia de Souza Heleno; Carvalho, Cornélio de Freitas; Silva, Gilmare Antônia da; Santos, Cláudio Gouvêa Dos
2015-01-01
Manganese recovery from industrial ore processing waste by means of leaching with sulfuric acid was the objective of this study. Experimental conditions were optimized by multivariate experimental design approaches. In order to study the factors affecting leaching, a screening step was used involving a full factorial design with central point for three variables in two levels (2(3)). The three variables studied were leaching time, concentration of sulfuric acid and sample amount. The three factors screened were shown to be relevant and therefore a Doehlert design was applied to determine the best working conditions for leaching and to build the response surface. By applying the best leaching conditions, the concentrations of 12.80 and 13.64 %w/w of manganese for the global sample and for the fraction -44 + 37 μm, respectively, were found. Microbeads of chitosan were tested for removal of leachate acidity and recovering of soluble manganese. Manganese recovery from the leachate was 95.4%. Upon drying the leachate, a solid containing mostly manganese sulfate was obtained, showing that the proposed optimized method is efficient for manganese recovery from ore tailings. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rodríguez de Olmos, A; Bru, E; Garro, M S
2015-03-02
The use of solid fermentation substrate (SSF) has been appreciated by the demand for natural and healthy products. Lactic acid bacteria and bifidobacteria play a leading role in the production of novel functional foods and their behavior is practically unknown in these systems. Soy is an excellent substrate for the production of functional foods for their low cost and nutritional value. The aim of this work was to optimize different parameters involved in solid state fermentation (SSF) using selected lactic cultures to improve soybean substrate as a possible strategy for the elaboration of new soy food with enhanced functional and nutritional properties. Soy flour and selected lactic cultures were used under different conditions to optimize the soy SSF. The measured responses were bacterial growth, free amino acids and β-glucosidase activity, which were analyzed by applying response surface methodology. Based on the proposed statistical model, different fermentation conditions were raised by varying the moisture content (50-80%) of the soy substrate and temperature of incubation (31-43°C). The effect of inoculum amount was also investigated. These studies demonstrated the ability of selected strains (Lactobacillus paracasei subsp. paracasei and Bifidobacterium longum) to grow with strain-dependent behavior on the SSF system. β-Glucosidase activity was evident in both strains and L. paracasei subsp. paracasei was able to increase the free amino acids at the end of fermentation under assayed conditions. The used statistical model has allowed the optimization of fermentation parameters on soy SSF by selected lactic strains. Besides, the possibility to work with lower initial bacterial amounts to obtain results with significant technological impact was demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.
Gerjets, Peter; Walter, Carina; Rosenstiel, Wolfgang; Bogdan, Martin; Zander, Thorsten O.
2014-01-01
According to Cognitive Load Theory (CLT), one of the crucial factors for successful learning is the type and amount of working-memory load (WML) learners experience while studying instructional materials. Optimal learning conditions are characterized by providing challenges for learners without inducing cognitive over- or underload. Thus, presenting instruction in a way that WML is constantly held within an optimal range with regard to learners' working-memory capacity might be a good method to provide these optimal conditions. The current paper elaborates how digital learning environments, which achieve this goal can be developed by combining approaches from Cognitive Psychology, Neuroscience, and Computer Science. One of the biggest obstacles that needs to be overcome is the lack of an unobtrusive method of continuously assessing learners' WML in real-time. We propose to solve this problem by applying passive Brain-Computer Interface (BCI) approaches to realistic learning scenarios in digital environments. In this paper we discuss the methodological and theoretical prospects and pitfalls of this approach based on results from the literature and from our own research. We present a strategy on how several inherent challenges of applying BCIs to WML and learning can be met by refining the psychological constructs behind WML, by exploring their neural signatures, by using these insights for sophisticated task designs, and by optimizing algorithms for analyzing electroencephalography (EEG) data. Based on this strategy we applied machine-learning algorithms for cross-task classifications of different levels of WML to tasks that involve studying realistic instructional materials. We obtained very promising results that yield several recommendations for future work. PMID:25538544
1991-01-01
failure occurs. This stresses the importance of developing means for qualifying coolers for space application, and for running acceptance tests on each...laboratory compressors to significantly greater stress conditions than expected for flight compressors. 133 1000 I 藼 -120 6 23 62089 I .P 250 900 i...optimization variables) and make surel the stress does not exceed the allowable limit. The optimization driver does the work. and wc just watch. Pressure
Optimization Models for Scheduling of Jobs
Indika, S. H. Sathish; Shier, Douglas R.
2006-01-01
This work is motivated by a particular scheduling problem that is faced by logistics centers that perform aircraft maintenance and modification. Here we concentrate on a single facility (hangar) which is equipped with several work stations (bays). Specifically, a number of jobs have already been scheduled for processing at the facility; the starting times, durations, and work station assignments for these jobs are assumed to be known. We are interested in how best to schedule a number of new jobs that the facility will be processing in the near future. We first develop a mixed integer quadratic programming model (MIQP) for this problem. Since the exact solution of this MIQP formulation is time consuming, we develop a heuristic procedure, based on existing bin packing techniques. This heuristic is further enhanced by application of certain local optimality conditions. PMID:27274921
Tool Steel Heat Treatment Optimization Using Neural Network Modeling
NASA Astrophysics Data System (ADS)
Podgornik, Bojan; Belič, Igor; Leskovšek, Vojteh; Godec, Matjaz
2016-11-01
Optimization of tool steel properties and corresponding heat treatment is mainly based on trial and error approach, which requires tremendous experimental work and resources. Therefore, there is a huge need for tools allowing prediction of mechanical properties of tool steels as a function of composition and heat treatment process variables. The aim of the present work was to explore the potential and possibilities of artificial neural network-based modeling to select and optimize vacuum heat treatment conditions depending on the hot work tool steel composition and required properties. In the current case training of the feedforward neural network with error backpropagation training scheme and four layers of neurons (8-20-20-2) scheme was based on the experimentally obtained tempering diagrams for ten different hot work tool steel compositions and at least two austenitizing temperatures. Results show that this type of modeling can be successfully used for detailed and multifunctional analysis of different influential parameters as well as to optimize heat treatment process of hot work tool steels depending on the composition. In terms of composition, V was found as the most beneficial alloying element increasing hardness and fracture toughness of hot work tool steel; Si, Mn, and Cr increase hardness but lead to reduced fracture toughness, while Mo has the opposite effect. Optimum concentration providing high KIc/HRC ratios would include 0.75 pct Si, 0.4 pct Mn, 5.1 pct Cr, 1.5 pct Mo, and 0.5 pct V, with the optimum heat treatment performed at lower austenitizing and intermediate tempering temperatures.
Joint optimization of source, mask, and pupil in optical lithography
NASA Astrophysics Data System (ADS)
Li, Jia; Lam, Edmund Y.
2014-03-01
Mask topography effects need to be taken into consideration for more advanced resolution enhancement techniques in optical lithography. However, rigorous 3D mask model achieves high accuracy at a large computational cost. This work develops a combined source, mask and pupil optimization (SMPO) approach by taking advantage of the fact that pupil phase manipulation is capable of partially compensating for mask topography effects. We first design the pupil wavefront function by incorporating primary and secondary spherical aberration through the coefficients of the Zernike polynomials, and achieve optimal source-mask pair under the condition of aberrated pupil. Evaluations against conventional source mask optimization (SMO) without incorporating pupil aberrations show that SMPO provides improved performance in terms of pattern fidelity and process window sizes.
Control centers design for ergonomics and safety.
Quintana, Leonardo; Lizarazo, Cesar; Bernal, Oscar; Cordoba, Jorge; Arias, Claudia; Monroy, Magda; Cotrino, Carlos; Montoya, Olga
2012-01-01
This paper shows the general design conditions about ergonomics and safety for control centers in the petrochemical process industry. Some of the topics include guidelines for the optimized workstation design, control room layout, building layout, and lighting, acoustical and environmental design. Also takes into account the safety parameters in the control rooms and centers design. The conditions and parameters shown in this paper come from the standards and global advances on this topic on the most recent publications. And also the work was supplemented by field visits of our team to the control center operations in a petrochemical company, and technical literature search efforts. This guideline will be useful to increase the productivity and improve the working conditions at the control rooms.
Fuzzy efficiency optimization of AC induction motors
NASA Technical Reports Server (NTRS)
Jani, Yashvant; Sousa, Gilberto; Turner, Wayne; Spiegel, Ron; Chappell, Jeff
1993-01-01
This paper describes the early states of work to implement a fuzzy logic controller to optimize the efficiency of AC induction motor/adjustable speed drive (ASD) systems running at less than optimal speed and torque conditions. In this paper, the process by which the membership functions of the controller were tuned is discussed and a controller which operates on frequency as well as voltage is proposed. The membership functions for this dual-variable controller are sketched. Additional topics include an approach for fuzzy logic to motor current control which can be used with vector-controlled drives. Incorporation of a fuzzy controller as an application-specific integrated circuit (ASIC) microchip is planned.
NASA Astrophysics Data System (ADS)
Cuetos, M. J.; Gómez, X.; Escapa, A.; Morán, A.
Various mixtures incorporating a simulated organic fraction of municipal solid wastes and blood from a poultry slaughterhouse were used as substrate in a dark fermentation process for the production of hydrogen. The individual and interactive effects of hydraulic retention time (HRT), solid content in the feed (%TS) and proportion of residues (%Blood) on bio-hydrogen production were studied in this work. A central composite design and response surface methodology were employed to determine the optimum conditions for the hydrogen production process. Experimental results were approximated to a second-order model with the principal effects of the three factors considered being statistically significant (P < 0.05). The production of hydrogen obtained from the experimental point at conditions close to best operability was 0.97 L Lr -1 day -1. Moreover, a desirability function was employed in order to optimize the process when a second, methanogenic, phase is coupled with it. In this last case, the optimum conditions lead to a reduction in the production of hydrogen when the optimization process involves the maximization of intermediary products.
Bioleaching of nickel from spent petroleum catalyst using Acidithiobacillus thiooxidans DSM- 11478.
Sharma, Mohita; Bisht, Varsha; Singh, Bina; Jain, Pratiksha; Mandal, Ajoy K; Lal, Banwari; Sarma, Priyangshu M
2015-06-01
The present work deals with optimization of culture conditions and process parameters for bioleaching of spent petroleum catalyst collected from a petroleum refinery. The efficacy of Ni bioleaching from spent petroleum catalyst was determined using pure culture of Acidithiobacillus thiooxidans DSM- 11478. The culture conditions of pH, temperature and headspace volume to media volume ratio were optimized. EDX analysis was done to confirm the presence of Ni in the spent catalyst after roasting it to decoke its surface. The optimum temperature for A. thiooxidans DSM-11478 growth was found to be 32 degrees C. The enhanced recovery of nickel at very low pH was attributed to the higher acidic strength of sulfuric acid produced in the culture medium by the bacterium. During the bioleaching process, 89% of the Ni present in the catalyst waste could be successfully recovered in optimized conditions. This environment friendly bioleaching process proved efficient than the chemical method. Taking leads from the lab scale results, bioleaching in larger volumes (1, 5 and 10 L) was also performed to provide guidelines for taking up this technology for in situ industrial waste management.
Exergetic analysis of a thermo-generator for automotive application: A dynamic numerical approach
NASA Astrophysics Data System (ADS)
Glavatskaya, O.; Goupil, C.; Bakkali, A. El; Shonda, O.
2012-06-01
It is well known that, when using a passenger car with an ICE (Internal Combustion Engine), only a fraction of the burnt fuel energy actually contributes to drive the vehicle. Typical passenger vehicle engines run about 25% efficiency while a great part of the remaining energy (about 40%), is lost through the exhaust gases. This latter has a significant energy conversion potential since the temperature (more than 300°C) and the mass flow rate are high enough. Thus, direct conversion of heat into electricity is a credible option if the overall system is optimized. This point is crucial since the heat conversion into work process is very sensible to any mismatching of the different parts of the system, and very sensible significant to the possible varying working conditions. All these effects constitute irreversibility sources that degrade the overall efficiency. The exergetic analysis is known to be an efficient tool for finding the root causes of theses irreversible processes. In order to investigate the performance of our automotive thermo-generator we propose an analysis of the exergy flow through the system under dynamic conditions. Taking into account the different irreversible sources such as thermal conduction and Joule effect, we are able to localize and quantify the exergy losses. Then, in order to optimize the thermoelectric converter for a given vehicle, correct actions in term of design and working conditions can be proposed.
Plessow, Philipp N
2018-02-13
This work explores how constrained linear combinations of bond lengths can be used to optimize transition states in periodic structures. Scanning of constrained coordinates is a standard approach for molecular codes with localized basis functions, where a full set of internal coordinates is used for optimization. Common plane wave-codes for periodic boundary conditions almost exlusively rely on Cartesian coordinates. An implementation of constrained linear combinations of bond lengths with Cartesian coordinates is described. Along with an optimization of the value of the constrained coordinate toward the transition states, this allows transition optimization within a single calculation. The approach is suitable for transition states that can be well described in terms of broken and formed bonds. In particular, the implementation is shown to be effective and efficient in the optimization of transition states in zeolite-catalyzed reactions, which have high relevance in industrial processes.
NASA Astrophysics Data System (ADS)
Vikram, K. Arun; Ratnam, Ch; Lakshmi, VVK; Kumar, A. Sunny; Ramakanth, RT
2018-02-01
Meta-heuristic multi-response optimization methods are widely in use to solve multi-objective problems to obtain Pareto optimal solutions during optimization. This work focuses on optimal multi-response evaluation of process parameters in generating responses like surface roughness (Ra), surface hardness (H) and tool vibration displacement amplitude (Vib) while performing operations like tangential and orthogonal turn-mill processes on A-axis Computer Numerical Control vertical milling center. Process parameters like tool speed, feed rate and depth of cut are considered as process parameters machined over brass material under dry condition with high speed steel end milling cutters using Taguchi design of experiments (DOE). Meta-heuristic like Dragonfly algorithm is used to optimize the multi-objectives like ‘Ra’, ‘H’ and ‘Vib’ to identify the optimal multi-response process parameters combination. Later, the results thus obtained from multi-objective dragonfly algorithm (MODA) are compared with another multi-response optimization technique Viz. Grey relational analysis (GRA).
NASA Astrophysics Data System (ADS)
Vitório, Paulo Cezar; Leonel, Edson Denner
2017-12-01
The structural design must ensure suitable working conditions by attending for safe and economic criteria. However, the optimal solution is not easily available, because these conditions depend on the bodies' dimensions, materials strength and structural system configuration. In this regard, topology optimization aims for achieving the optimal structural geometry, i.e. the shape that leads to the minimum requirement of material, respecting constraints related to the stress state at each material point. The present study applies an evolutionary approach for determining the optimal geometry of 2D structures using the coupling of the boundary element method (BEM) and the level set method (LSM). The proposed algorithm consists of mechanical modelling, topology optimization approach and structural reconstruction. The mechanical model is composed of singular and hyper-singular BEM algebraic equations. The topology optimization is performed through the LSM. Internal and external geometries are evolved by the LS function evaluated at its zero level. The reconstruction process concerns the remeshing. Because the structural boundary moves at each iteration, the body's geometry change and, consequently, a new mesh has to be defined. The proposed algorithm, which is based on the direct coupling of such approaches, introduces internal cavities automatically during the optimization process, according to the intensity of Von Mises stress. The developed optimization model was applied in two benchmarks available in the literature. Good agreement was observed among the results, which demonstrates its efficiency and accuracy.
Biomechanical evaluation of an innovative spring-loaded axillary crutch design.
Zhang, Yanxin; Liu, Guangyu; Xie, Shengquan; Liger, Aurélien
2011-01-01
We evaluated an innovative spring-loaded crutch design by comparing its performance with standard crutches through a biomechanical approach. Gait analysis was conducted for 7 male subjects under two conditions: walking with standard crutches and with spring-loaded crutches. Three-dimensional kinematic data and ground reaction force were recorded. Spatiotemporal variables, external mechanical work, and elastic energy (for spring crutches) were calculated based on recorded data. The trajectories of vertical ground reaction forces with standard crutches had two main peaks before and after mid-stance, and those with optimized spring-loaded crutches had only one main peak. The magnitude of external mechanical work was significantly higher with spring-loaded crutches than with standard crutches for all subjects, and the transferred elastic energy made an important contribution to the total external work for spring-loaded crutches. No significant differences in the spatiotemporal parameters were observed. Optimized spring-loaded crutches can efficiently propel crutch walkers and could reduce the total energy expenditure in crutch walking. Further research using optimized spring-loaded crutches with respect to energy efficiency is recommended.
[Working with hearing impairment: an integrated approach].
van Til, Marten J; Kramer, Sophia E; Anema, Johannes R; Goverts, S T Theo
2016-01-01
Patients with hearing impairment are more likely to encounter health problems and difficulties at work than their colleagues with normal hearing. This is often not realised by either patients or professionals. In this article we describe three cases that illustrate how working conditions can influence the health of workers with hearing loss. We have implemented a vocational enablement protocol that follows a multidisciplinary approach in order to meet these patients' needs. Due to a mismatch between the demands of a job and an individual's auditory capacities, even a mild hearing impairment can cause serious problems if a patient works in adverse conditions. In addition, in many workplaces the ability to hear well is a safety issue. Professionals have to be aware of both possibilities. Specialized centres offer good facilities and ensure the optimal transfer of insight into the working environment by involving an occupational physician in their team.
Multiobjective optimization of urban water resources: Moving toward more practical solutions
NASA Astrophysics Data System (ADS)
Mortazavi, Mohammad; Kuczera, George; Cui, Lijie
2012-03-01
The issue of drought security is of paramount importance for cities located in regions subject to severe prolonged droughts. The prospect of "running out of water" for an extended period would threaten the very existence of the city. Managing drought security for an urban water supply is a complex task involving trade-offs between conflicting objectives. In this paper a multiobjective optimization approach for urban water resource planning and operation is developed to overcome practically significant shortcomings identified in previous work. A case study based on the headworks system for Sydney (Australia) demonstrates the approach and highlights the potentially serious shortcomings of Pareto optimal solutions conditioned on short climate records, incomplete decision spaces, and constraints to which system response is sensitive. Where high levels of drought security are required, optimal solutions conditioned on short climate records are flawed. Our approach addresses drought security explicitly by identifying approximate optimal solutions in which the system does not "run dry" in severe droughts with expected return periods up to a nominated (typically large) value. In addition, it is shown that failure to optimize the full mix of interacting operational and infrastructure decisions and to explore the trade-offs associated with sensitive constraints can lead to significantly more costly solutions.
Design of Quiet Rotorcraft Approach Trajectories: Verification Phase
NASA Technical Reports Server (NTRS)
Padula, Sharon L.
2010-01-01
Flight testing that is planned for October 2010 will provide an opportunity to evaluate rotorcraft trajectory optimization techniques. The flight test will involve a fully instrumented MD-902 helicopter, which will be flown over an array of microphones. In this work, the helicopter approach trajectory is optimized via a multiobjective genetic algorithm to improve community noise, passenger comfort, and pilot acceptance. Previously developed optimization strategies are modified to accommodate new helicopter data and to increase pilot acceptance. This paper describes the MD-902 trajectory optimization plus general optimization strategies and modifications that are needed to reduce the uncertainty in noise predictions. The constraints that are imposed by the flight test conditions and characteristics of the MD-902 helicopter limit the testing possibilities. However, the insights that will be gained through this research will prove highly valuable.
Chauhan, Mamta; Chauhan, Rajinder Singh; Garlapati, Vijay Kumar
2013-01-01
Microbial enzymes from extremophilic regions such as hot spring serve as an important source of various stable and valuable industrial enzymes. The present paper encompasses the modeling and optimization approach for production of halophilic, solvent, tolerant, and alkaline lipase from Staphylococcus arlettae through response surface methodology integrated nature inspired genetic algorithm. Response surface model based on central composite design has been developed by considering the individual and interaction effects of fermentation conditions on lipase production through submerged fermentation. The validated input space of response surface model (with R 2 value of 96.6%) has been utilized for optimization through genetic algorithm. An optimum lipase yield of 6.5 U/mL has been obtained using binary coded genetic algorithm predicted conditions of 9.39% inoculum with the oil concentration of 10.285% in 2.99 hrs using pH of 7.32 at 38.8°C. This outcome could contribute to introducing this extremophilic lipase (halophilic, solvent, and tolerant) to industrial biotechnology sector and will be a probable choice for different food, detergent, chemical, and pharmaceutical industries. The present work also demonstrated the feasibility of statistical design tools integration with computational tools for optimization of fermentation conditions for maximum lipase production. PMID:24455210
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benaouadj, M.; Aboubou, A.; Bahri, M.
2016-07-25
In this work, an optimal control (under constraints) based on the Pontryagin’s maximum principle is used to optimally manage energy flows in a basic PEM (Proton Exchange Membrane) fuel cells system associated to lithium-ion batteries and supercapacitors through a common DC bus having a voltage to stabilize using the differential flatness approach. The adaptation of voltage levels between different sources and load is ensured by use of three DC-DC converters, one boost connected to the PEM fuel cells, while the two others are buck/boost and connected to the lithiumion batteries and supercapacitors. The aim of this paper is to developmore » an energy management strategy that is able to satisfy the following objectives: Impose the power requested by a habitat (representing the load) according to a proposed daily consumption profile, Keep fuel cells working at optimal power delivery conditions, Maintain constant voltage across the common DC bus, Stabilize the batteries voltage and stored quantity of charge at desired values given by the optimal control. Results obtained under MATLAB/Simulink environment prove that the cited objectives are satisfied, validating then, effectiveness and complementarity between the optimal and flatness concepts proposed for energy management. Note that this study is currently in experimentally validation within MSE Laboratory.« less
Adaptive smart simulator for characterization and MPPT construction of PV array
NASA Astrophysics Data System (ADS)
Ouada, Mehdi; Meridjet, Mohamed Salah; Dib, Djalel
2016-07-01
Partial shading conditions are among the most important problems in large photovoltaic array. Many works of literature are interested in modeling, control and optimization of photovoltaic conversion of solar energy under partial shading conditions, The aim of this study is to build a software simulator similar to hard simulator and to produce a shading pattern of the proposed photovoltaic array in order to use the delivered information to obtain an optimal configuration of the PV array and construct MPPT algorithm. Graphical user interfaces (Matlab GUI) are built using a developed script, this tool is easy to use, simple, and has a rapid of responsiveness, the simulator supports large array simulations that can be interfaced with MPPT and power electronic converters.
The Impact of the Condenser on Cytogenetic Image Quality in Digital Microscope System
Ren, Liqiang; Li, Zheng; Li, Yuhua; Zheng, Bin; Li, Shibo; Chen, Xiaodong; Liu, Hong
2013-01-01
Background: Optimizing operational parameters of the digital microscope system is an important technique to acquire high quality cytogenetic images and facilitate the process of karyotyping so that the efficiency and accuracy of diagnosis can be improved. OBJECTIVE: This study investigated the impact of the condenser on cytogenetic image quality and system working performance using a prototype digital microscope image scanning system. Methods: Both theoretical analysis and experimental validations through objectively evaluating a resolution test chart and subjectively observing large numbers of specimen were conducted. Results: The results show that the optimal image quality and large depth of field (DOF) are simultaneously obtained when the numerical aperture of condenser is set as 60%–70% of the corresponding objective. Under this condition, more analyzable chromosomes and diagnostic information are obtained. As a result, the system shows higher working stability and less restriction for the implementation of algorithms such as autofocusing especially when the system is designed to achieve high throughput continuous image scanning. Conclusions: Although the above quantitative results were obtained using a specific prototype system under the experimental conditions reported in this paper, the presented evaluation methodologies can provide valuable guidelines for optimizing operational parameters in cytogenetic imaging using the high throughput continuous scanning microscopes in clinical practice. PMID:23676284
NASA Astrophysics Data System (ADS)
Kusumaningrum, I.; Pranoto, Y.; Hadiwiyoto, S.
2018-04-01
This work was to optimized gelatin extraction from dry skin of Spanish mackerel (Scomberromorus commersoni) using Response Surface Methodology (RSM). The aim of this study was to determine the optimal condition of temperature and time for extraction process and properties of the gelatin extracted from dry mackerel skin. The optimal condition for extraction was 59.71°C for 4.25 hours. Results showed that predicted yield by RSM was 13.69% and predicted gel strength was 291.93 Bloom, whereas the actual experiment for yield and gel strength were 13.03% and 291.33 Bloom, respectively. The gelatin extracted from dried skin were analyzed for their proximate composition, yield, gel strength, viscosity, color, and amino acid composition. The results of dried skin gelatin properties compared to the commercial gelatin. Gelatin extracted from the dried skin gave content lower moisture, ash and protein content but higher fat compared to commercial gelatin. This study also shows that the gelatin extracted from the dried skin gave higher gel strength and pH but the lower amino acid composition compared to commercial gelatin.
Tripathi, Swati; Das, Aparajita; Chandra, Anil; Varma, Ajit
2015-02-01
Endophytic fungi are plant beneficial rhizospheric microorganisms often applied as bioinoculants for enhanced and disease-free crop production. The objectives of the present work were to develop a carrier-based formulation of root endophyte Piriformospora indica as a bioinoculant. Powder formulation of four different carrier materials viz., talcum powder, clay, sawdust and bioboost (organic supplement) were evaluated and a talc-based formulation was optimized for a longer shelf life with respect to microbial concentration, storage temperature and biological activity. Finally the effect of optimized talc formulation on plant productivity was determined. The application dosages were optimized by studies on plant growth parameters of Phaseolus vulgaris L. plants under green house conditions. Five percent formulation (w/w) of talcum powder was observed to be the most stable at 30 °C with 10(8) CFU g(-1) and effective for a storage period of 6 months. The application of this optimized formulation resulted in increase of growth parameters of P. vulgaris L. and better adaptation of plants under green house conditions.
Modeling of organic solar cell using response surface methodology
NASA Astrophysics Data System (ADS)
Suliman, Rajab; Mitul, Abu Farzan; Mohammad, Lal; Djira, Gemechis; Pan, Yunpeng; Qiao, Qiquan
Polymer solar cells have drawn much attention during the past few decades due to their low manufacturing cost and incompatibility for flexible substrates. In solution-processed organic solar cells, the optimal thickness, annealing temperature, and morphology are key components to achieving high efficiency. In this work, response surface methodology (RSM) is used to find optimal fabrication conditions for polymer solar cells. In order to optimize cell efficiency, the central composite design (CCD) with three independent variables polymer concentration, polymer-fullerene ratio, and active layer spinning speed was used. Optimal device performance was achieved using 10.25 mg/ml polymer concentration, 0.42 polymer-fullerene ratio, and 1624 rpm of active layer spinning speed. The predicted response (the efficiency) at the optimum stationary point was found to be 5.23% for the Poly(diketopyrrolopyrrole-terthiophene) (PDPP3T)/PC60BM solar cells. Moreover, 97% of the variation in the device performance was explained by the best model. Finally, the experimental results are consistent with the CCD prediction, which proves that this is a promising and appropriate model for optimum device performance and fabrication conditions.
NASA Astrophysics Data System (ADS)
Qyyum, Muhammad Abdul; Wei, Feng; Hussain, Arif; Ali, Wahid; Sehee, Oh; Lee, Moonyong
2017-11-01
This research work unfolds a simple, safe, and environment-friendly energy efficient novel vortex tube-based natural gas liquefaction process (LNG). A vortex tube was introduced to the popular N2-expander liquefaction process to enhance the liquefaction efficiency. The process structure and condition were modified and optimized to take a potential advantage of the vortex tube on the natural gas liquefaction cycle. Two commercial simulators ANSYS® and Aspen HYSYS® were used to investigate the application of vortex tube in the refrigeration cycle of LNG process. The Computational fluid dynamics (CFD) model was used to simulate the vortex tube with nitrogen (N2) as a working fluid. Subsequently, the results of the CFD model were embedded in the Aspen HYSYS® to validate the proposed LNG liquefaction process. The proposed natural gas liquefaction process was optimized using the knowledge-based optimization (KBO) approach. The overall energy consumption was chosen as an objective function for optimization. The performance of the proposed liquefaction process was compared with the conventional N2-expander liquefaction process. The vortex tube-based LNG process showed a significant improvement of energy efficiency by 20% in comparison with the conventional N2-expander liquefaction process. This high energy efficiency was mainly due to the isentropic expansion of the vortex tube. It turned out that the high energy efficiency of vortex tube-based process is totally dependent on the refrigerant cold fraction, operating conditions as well as refrigerant cycle configurations.
Unsteady Adjoint Approach for Design Optimization of Flapping Airfoils
NASA Technical Reports Server (NTRS)
Lee, Byung Joon; Liou, Meng-Sing
2012-01-01
This paper describes the work for optimizing the propulsive efficiency of flapping airfoils, i.e., improving the thrust under constraining aerodynamic work during the flapping flights by changing their shape and trajectory of motion with the unsteady discrete adjoint approach. For unsteady problems, it is essential to properly resolving time scales of motion under consideration and it must be compatible with the objective sought after. We include both the instantaneous and time-averaged (periodic) formulations in this study. For the design optimization with shape parameters or motion parameters, the time-averaged objective function is found to be more useful, while the instantaneous one is more suitable for flow control. The instantaneous objective function is operationally straightforward. On the other hand, the time-averaged objective function requires additional steps in the adjoint approach; the unsteady discrete adjoint equations for a periodic flow must be reformulated and the corresponding system of equations solved iteratively. We compare the design results from shape and trajectory optimizations and investigate the physical relevance of design variables to the flapping motion at on- and off-design conditions.
Middle School Science: Working in a Confused Context.
ERIC Educational Resources Information Center
Berns, Barbara Brauner; Swanson, Judy
This paper presents the stories of two urban middle school science teachers, both identified as leaders in their districts. Both bring substantial expertise to science education, though neither has experienced optimal conditions for flourishing as teacher leaders. One teacher has strong content knowledge and a deep understanding of standards. The…
USDA-ARS?s Scientific Manuscript database
Polyepoxide cardanol glycidyl ether (PECGE), a novel cardanol derivative, was synthesized and used as reactive diluent for petroleum-based epoxy resin in this work. The synthetic condition was first optimized, and the resultant PECGE diluent was characterized using Fourier transform infrared spectro...
Operating wind turbines in strong wind conditions by using feedforward-feedback control
NASA Astrophysics Data System (ADS)
Feng, Ju; Sheng, Wen Zhong
2014-12-01
Due to the increasing penetration of wind energy into power systems, it becomes critical to reduce the impact of wind energy on the stability and reliability of the overall power system. In precedent works, Shen and his co-workers developed a re-designed operation schema to run wind turbines in strong wind conditions based on optimization method and standard PI feedback control, which can prevent the typical shutdowns of wind turbines when reaching the cut-out wind speed. In this paper, a new control strategy combing the standard PI feedback control with feedforward controls using the optimization results is investigated for the operation of variable-speed pitch-regulated wind turbines in strong wind conditions. It is shown that the developed control strategy is capable of smoothening the power output of wind turbine and avoiding its sudden showdown at high wind speeds without worsening the loads on rotor and blades.
Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk
NASA Astrophysics Data System (ADS)
Long, C. C.; Marsden, A. L.; Bazilevs, Y.
2014-10-01
In this paper we perform shape optimization of a pediatric pulsatile ventricular assist device (PVAD). The device simulation is carried out using fluid-structure interaction (FSI) modeling techniques within a computational framework that combines FEM for fluid mechanics and isogeometric analysis for structural mechanics modeling. The PVAD FSI simulations are performed under realistic conditions (i.e., flow speeds, pressure levels, boundary conditions, etc.), and account for the interaction of air, blood, and a thin structural membrane separating the two fluid subdomains. The shape optimization study is designed to reduce thrombotic risk, a major clinical problem in PVADs. Thrombotic risk is quantified in terms of particle residence time in the device blood chamber. Methods to compute particle residence time in the context of moving spatial domains are presented in a companion paper published in the same issue (Comput Mech, doi: 10.1007/s00466-013-0931-y, 2013). The surrogate management framework, a derivative-free pattern search optimization method that relies on surrogates for increased efficiency, is employed in this work. For the optimization study shown here, particle residence time is used to define a suitable cost or objective function, while four adjustable design optimization parameters are used to define the device geometry. The FSI-based optimization framework is implemented in a parallel computing environment, and deployed with minimal user intervention. Using five SEARCH/ POLL steps the optimization scheme identifies a PVAD design with significantly better throughput efficiency than the original device.
Return-to-Work Strategies for Employees With Mental Health Conditions.
Pomaki, Georgia
2017-01-01
There's no question that employers can no longer ignore mental health issues. Compassion and support for employees aside, it is simply good business to protect the mental health and productivity of employees. This article describes existing challenges surrounding employees with mental disorders: the link between mental disorders, disability and an employee's ability to return to work; best practices for employers, employees and health care providers; and the role of the insurance company. Together, using proven strategies, everyone contributes to the optimal solution of helping employees with mental disorders return to work.
Bertocci, Francesco; Fort, Ada; Vignoli, Valerio; Mugnaini, Marco; Berni, Rossella
2017-06-10
Eight different types of nanostructured perovskites based on YCoO 3 with different chemical compositions are prepared as gas sensor materials, and they are studied with two target gases NO 2 and CO. Moreover, a statistical approach is adopted to optimize their performance. The innovative contribution is carried out through a split-plot design planning and modeling, also involving random effects, for studying Metal Oxide Semiconductors (MOX) sensors in a robust design context. The statistical results prove the validity of the proposed approach; in fact, for each material type, the variation of the electrical resistance achieves a satisfactory optimized value conditional to the working temperature and by controlling for the gas concentration variability. Just to mention some results, the sensing material YCo 0 . 9 Pd 0 . 1 O 3 (Mt1) achieved excellent solutions during the optimization procedure. In particular, Mt1 resulted in being useful and feasible for the detection of both gases, with optimal response equal to +10.23% and working temperature at 312 ∘ C for CO (284 ppm, from design) and response equal to -14.17% at 185 ∘ C for NO 2 (16 ppm, from design). Analogously, for NO 2 (16 ppm, from design), the material type YCo 0 . 9 O 2 . 85 + 1 % Pd (Mt8) allows for optimizing the response value at - 15 . 39 % with a working temperature at 181 . 0 ∘ C, whereas for YCo 0 . 95 Pd 0 . 05 O 3 (Mt3), the best response value is achieved at - 15 . 40 % with the temperature equal to 204 ∘ C.
Bertocci, Francesco; Fort, Ada; Vignoli, Valerio; Mugnaini, Marco; Berni, Rossella
2017-01-01
Eight different types of nanostructured perovskites based on YCoO3 with different chemical compositions are prepared as gas sensor materials, and they are studied with two target gases NO2 and CO. Moreover, a statistical approach is adopted to optimize their performance. The innovative contribution is carried out through a split-plot design planning and modeling, also involving random effects, for studying Metal Oxide Semiconductors (MOX) sensors in a robust design context. The statistical results prove the validity of the proposed approach; in fact, for each material type, the variation of the electrical resistance achieves a satisfactory optimized value conditional to the working temperature and by controlling for the gas concentration variability. Just to mention some results, the sensing material YCo0.9Pd0.1O3 (Mt1) achieved excellent solutions during the optimization procedure. In particular, Mt1 resulted in being useful and feasible for the detection of both gases, with optimal response equal to +10.23% and working temperature at 312∘C for CO (284 ppm, from design) and response equal to −14.17% at 185∘C for NO2 (16 ppm, from design). Analogously, for NO2 (16 ppm, from design), the material type YCo0.9O2.85+1%Pd (Mt8) allows for optimizing the response value at −15.39% with a working temperature at 181.0∘C, whereas for YCo0.95Pd0.05O3 (Mt3), the best response value is achieved at −15.40% with the temperature equal to 204∘C. PMID:28604587
Automated geometric optimization for robotic HIFU treatment of liver tumors.
Williamson, Tom; Everitt, Scott; Chauhan, Sunita
2018-05-01
High intensity focused ultrasound (HIFU) represents a non-invasive method for the destruction of cancerous tissue within the body. Heating of targeted tissue by focused ultrasound transducers results in the creation of ellipsoidal lesions at the target site, the locations of which can have a significant impact on treatment outcomes. Towards this end, this work describes a method for the optimization of lesion positions within arbitrary tumors, with specific anatomical constraints. A force-based optimization framework was extended to the case of arbitrary tumor position and constrained orientation. Analysis of the approximate reachable treatment volume for the specific case of treatment of liver tumors was performed based on four transducer configurations and constraint conditions derived. Evaluation was completed utilizing simplified spherical and ellipsoidal tumor models and randomly generated tumor volumes. The total volume treated, lesion overlap and healthy tissue ablated was evaluated. Two evaluation scenarios were defined and optimized treatment plans assessed. The optimization framework resulted in improvements of up to 10% in tumor volume treated, and reductions of up to 20% in healthy tissue ablated as compared to the standard lesion rastering approach. Generation of optimized plans proved feasible for both sub- and intercostally located tumors. This work describes an optimized method for the planning of lesion positions during HIFU treatment of liver tumors. The approach allows the determination of optimal lesion locations and orientations, and can be applied to arbitrary tumor shapes and sizes. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zamotaev, Iu N; Enikeev, A Kh
2009-01-01
The aim of this work was to study psychophysiological functions in HD subjects during strenuous conveyor-belt work. It involved 225 participants of whom 195 presented with different stages of HD. Group 1 (n = 65) included patients with prehypertension, group 2 (n = 69) with stage 1 HD, group 3 (n = 61) with stage II HD. Control group comprised 30 healthy subjects. The groups were matched for clinical and demographic characteristics. It was shown that performance efficiency of the conveyor-belt workers decreased with increasing HD severity. Mental functioning was the first to be affected suggesting impairment of sensorimotor coordination and attention. Moreover, the performance correlated with the patients" age and length of work. The worst results of simple and complex visual-motor reaction time tests were obtained in patients above 40 years with more than 10 years" conveyor-work experience. Close relation of performance efficiency to psychosomatic condition reflects interplay of regulatory mechanisms responsible for optimal adaptation of the organism to strenuous work.
Lau, Esther T L; Johnson, Stuart K; Williams, Barbara A; Mikkelsen, Deirdre; McCourt, Elizabeth; Stanley, Roger A; Mereddy, Ram; Halley, Peter J; Steadman, Kathryn J
2017-05-19
Kafirin microparticles have potential as colon-targeted delivery systems because of their ability to protect encapsulated material from digestive processes of the upper gastrointestinal tract (GIT). The aim was to optimize prednisolone loading into kafirin microparticles, and investigate their potential as an oral delivery system. Response surface methodology (RSM) was used to predict the optimal formulation of prednisolone loaded microparticles. Prednisolone release from the microparticles was measured in simulated conditions of the GIT. The RSM models were inadequate for predicting the relationship between starting quantities of kafirin and prednisolone, and prednisolone loading into microparticles. Compared to prednisolone released in the simulated gastric and small intestinal conditions, no additional drug release was observed in simulated colonic conditions. Hence, more insight into factors affecting drug loading into kafirin microparticles is required to improve the robustness of the RSM model. This present method of formulating prednisolone-loaded kafirin microparticles is unlikely to offer clinical benefits over commercially available dosage forms. Nevertheless, the overall amount of prednisolone released from the kafirin microparticles in conditions simulating the human GIT demonstrates their ability to prevent the release of entrapped core material. Further work developing the formulation methods may result in a delivery system that targets the lower GIT.
Higginson, Andrew D; Fawcett, Tim W; Trimmer, Pete C; McNamara, John M; Houston, Alasdair I
2012-11-01
Animals live in complex environments in which predation risk and food availability change over time. To deal with this variability and maximize their survival, animals should take into account how long current conditions may persist and the possible future conditions they may encounter. This should affect their foraging activity, and with it their vulnerability to predation across periods of good and bad conditions. Here we develop a comprehensive theory of optimal risk allocation that allows for environmental persistence and for fluctuations in food availability as well as predation risk. We show that it is the duration of good and bad periods, independent of each other, rather than the overall proportion of time exposed to each that is the most important factor affecting behavior. Risk allocation is most pronounced when conditions change frequently, and optimal foraging activity can either increase or decrease with increasing exposure to bad conditions. When food availability fluctuates rapidly, animals should forage more when food is abundant, whereas when food availability fluctuates slowly, they should forage more when food is scarce. We also show that survival can increase as variability in predation risk increases. Our work reveals that environmental persistence should profoundly influence behavior. Empirical studies of risk allocation should therefore carefully control the duration of both good and bad periods and consider manipulating food availability as well as predation risk.
Optimization of Milling Parameters Employing Desirability Functions
NASA Astrophysics Data System (ADS)
Ribeiro, J. L. S.; Rubio, J. C. Campos; Abrão, A. M.
2011-01-01
The principal aim of this paper is to investigate the influence of tool material (one cermet and two coated carbide grades), cutting speed and feed rate on the machinability of hardened AISI H13 hot work steel, in order to identify the cutting conditions which lead to optimal performance. A multiple response optimization procedure based on tool life, surface roughness, milling forces and the machining time (required to produce a sample cavity) was employed. The results indicated that the TiCN-TiN coated carbide and cermet presented similar results concerning the global optimum values for cutting speed and feed rate per tooth, outperforming the TiN-TiCN-Al2O3 coated carbide tool.
A Smoothed Eclipse Model for Solar Electric Propulsion Trajectory Optimization
NASA Technical Reports Server (NTRS)
Aziz, Jonathan D.; Scheeres, Daniel J.; Parker, Jeffrey S.; Englander, Jacob A.
2017-01-01
Solar electric propulsion (SEP) is the dominant design option for employing low-thrust propulsion on a space mission. Spacecraft solar arrays power the SEP system but are subject to blackout periods during solar eclipse conditions. Discontinuity in power available to the spacecraft must be accounted for in trajectory optimization, but gradient-based methods require a differentiable power model. This work presents a power model that smooths the eclipse transition from total eclipse to total sunlight with a logistic function. Example trajectories are computed with differential dynamic programming, a second-order gradient-based method.
Computational methods for aerodynamic design using numerical optimization
NASA Technical Reports Server (NTRS)
Peeters, M. F.
1983-01-01
Five methods to increase the computational efficiency of aerodynamic design using numerical optimization, by reducing the computer time required to perform gradient calculations, are examined. The most promising method consists of drastically reducing the size of the computational domain on which aerodynamic calculations are made during gradient calculations. Since a gradient calculation requires the solution of the flow about an airfoil whose geometry was slightly perturbed from a base airfoil, the flow about the base airfoil is used to determine boundary conditions on the reduced computational domain. This method worked well in subcritical flow.
NASA Astrophysics Data System (ADS)
Bonne, F.; Bonnay, P.; Girard, A.; Hoa, C.; Lacroix, B.; Le Coz, Q.; Nicollet, S.; Poncet, J.-M.; Zani, L.
2017-12-01
Supercritical helium loops at 4.2 K are the baseline cooling strategy of tokamaks superconducting magnets (JT-60SA, ITER, DEMO, etc.). This loops work with cryogenic circulators that force a supercritical helium flow through the superconducting magnets in order that the temperature stay below the working range all along their length. This paper shows that a supercritical helium loop associated with a saturated liquid helium bath can satisfy temperature constraints in different ways (playing on bath temperature and on the supercritical flow), but that only one is optimal from an energy point of view (every Watt consumed at 4.2 K consumes at least 220 W of electrical power). To find the optimal operational conditions, an algorithm capable of minimizing an objective function (energy consumption at 5 bar, 5 K) subject to constraints has been written. This algorithm works with a supercritical loop model realized with the Simcryogenics [2] library. This article describes the model used and the results of constrained optimization. It will be possible to see that the changes in operating point on the temperature of the magnet (e.g. in case of a change in the plasma configuration) involves large changes on the cryodistribution optimal operating point. Recommendations will be made to ensure that the energetic consumption is kept as low as possible despite the changing operating point. This work is partially supported by EUROfusion Consortium through the Euratom Research and Training Program 20142018 under Grant 633053.
Analysis of noise emitted from diesel engines
NASA Astrophysics Data System (ADS)
Narayan, S.
2015-12-01
In this work combustion noise produced in diesel engines has been investigated. In order to reduce the exhaust emissions various injection parameters need to be studied and optimized. The noise has been investigated by mean of data obtained from cylinder pressure measurements using piezo electric transducers and microphones on a dual cylinder diesel engine test rig. The engine was run under various operating conditions varying various injection parameters to investigate the effects of noise emissions under various testing conditions.
Wing Shaping and Gust Load Controls of Flexible Aircraft: An LPV Approach
NASA Technical Reports Server (NTRS)
Hammerton, Jared R.; Su, Weihua; Zhu, Guoming; Swei, Sean Shan-Min
2018-01-01
In the proposed paper, the optimum wing shape of a highly flexible aircraft under varying flight conditions will be controlled by a linear parameter-varying approach. The optimum shape determined under multiple objectives, including flight performance, ride quality, and control effort, will be determined as well. This work is an extension of work done previously by the authors, and updates the existing optimization and utilizes the results to generate a robust flight controller.
The dentist's operating posture - ergonomic aspects.
Pîrvu, C; Pătraşcu, I; Pîrvu, D; Ionescu, C
2014-06-15
The practice of dentistry involves laborious high finesse dental preparations, precision and control in executions that require a particular attention, concentration and patience of the dentist and finally the dentist's physical and mental resistance. The optimal therapeutic approach and the success of practice involve special working conditions for the dentist and his team in an ergonomic environment. The meaning of the posture in ergonomics is the manner in which different parts of the body are located and thus the reports are established between them in order to allow a special task execution. This article discusses the posture adopted by dentists when they work, beginning with the balanced posture and going to different variants of posture. The ideal posture of a dentist gives him, on the one hand the optimal working conditions (access, visibility and control in the mouth) and on the other hand, physical and psychological comfort throughout the execution of the clinical acts. Although the theme of dentist posture is treated with great care and often presented in the undergraduate courses and the continuing education courses on ergonomics in dentistry, many dentists do not know the subject well enough nor the theoretical issues and therefore nor the practical applicability. The risk and perspective of the musculoskeletal disorders related to unbalanced postures should determine the dentists take postural corrective actions and compensation measures in order to limit the negative effects of working in a bad posture.
Optimization under uncertainty of parallel nonlinear energy sinks
NASA Astrophysics Data System (ADS)
Boroson, Ethan; Missoum, Samy; Mattei, Pierre-Olivier; Vergez, Christophe
2017-04-01
Nonlinear Energy Sinks (NESs) are a promising technique for passively reducing the amplitude of vibrations. Through nonlinear stiffness properties, a NES is able to passively and irreversibly absorb energy. Unlike the traditional Tuned Mass Damper (TMD), NESs do not require a specific tuning and absorb energy over a wider range of frequencies. Nevertheless, they are still only efficient over a limited range of excitations. In order to mitigate this limitation and maximize the efficiency range, this work investigates the optimization of multiple NESs configured in parallel. It is well known that the efficiency of a NES is extremely sensitive to small perturbations in loading conditions or design parameters. In fact, the efficiency of a NES has been shown to be nearly discontinuous in the neighborhood of its activation threshold. For this reason, uncertainties must be taken into account in the design optimization of NESs. In addition, the discontinuities require a specific treatment during the optimization process. In this work, the objective of the optimization is to maximize the expected value of the efficiency of NESs in parallel. The optimization algorithm is able to tackle design variables with uncertainty (e.g., nonlinear stiffness coefficients) as well as aleatory variables such as the initial velocity of the main system. The optimal design of several parallel NES configurations for maximum mean efficiency is investigated. Specifically, NES nonlinear stiffness properties, considered random design variables, are optimized for cases with 1, 2, 3, 4, 5, and 10 NESs in parallel. The distributions of efficiency for the optimal parallel configurations are compared to distributions of efficiencies of non-optimized NESs. It is observed that the optimization enables a sharp increase in the mean value of efficiency while reducing the corresponding variance, thus leading to more robust NES designs.
NASA Technical Reports Server (NTRS)
Rodionova, Olga; Sridhar, Banavar; Ng, Hok K.
2016-01-01
Air traffic in the North Atlantic oceanic airspace (NAT) experiences very strong winds caused by jet streams. Flying wind-optimal trajectories increases individual flight efficiency, which is advantageous when operating in the NAT. However, as the NAT is highly congested during peak hours, a large number of potential conflicts between flights are detected for the sets of wind-optimal trajectories. Conflict resolution performed at the strategic level of flight planning can significantly reduce the airspace congestion. However, being completed far in advance, strategic planning can only use predicted environmental conditions that may significantly differ from the real conditions experienced further by aircraft. The forecast uncertainties result in uncertainties in conflict prediction, and thus, conflict resolution becomes less efficient. This work considers wind uncertainties in order to improve the robustness of conflict resolution in the NAT. First, the influence of wind uncertainties on conflict prediction is investigated. Then, conflict resolution methods accounting for wind uncertainties are proposed.
Nonconvex Sparse Logistic Regression With Weakly Convex Regularization
NASA Astrophysics Data System (ADS)
Shen, Xinyue; Gu, Yuantao
2018-06-01
In this work we propose to fit a sparse logistic regression model by a weakly convex regularized nonconvex optimization problem. The idea is based on the finding that a weakly convex function as an approximation of the $\\ell_0$ pseudo norm is able to better induce sparsity than the commonly used $\\ell_1$ norm. For a class of weakly convex sparsity inducing functions, we prove the nonconvexity of the corresponding sparse logistic regression problem, and study its local optimality conditions and the choice of the regularization parameter to exclude trivial solutions. Despite the nonconvexity, a method based on proximal gradient descent is used to solve the general weakly convex sparse logistic regression, and its convergence behavior is studied theoretically. Then the general framework is applied to a specific weakly convex function, and a necessary and sufficient local optimality condition is provided. The solution method is instantiated in this case as an iterative firm-shrinkage algorithm, and its effectiveness is demonstrated in numerical experiments by both randomly generated and real datasets.
Generalised additive modelling approach to the fermentation process of glutamate.
Liu, Chun-Bo; Li, Yun; Pan, Feng; Shi, Zhong-Ping
2011-03-01
In this work, generalised additive models (GAMs) were used for the first time to model the fermentation of glutamate (Glu). It was found that three fermentation parameters fermentation time (T), dissolved oxygen (DO) and oxygen uptake rate (OUR) could capture 97% variance of the production of Glu during the fermentation process through a GAM model calibrated using online data from 15 fermentation experiments. This model was applied to investigate the individual and combined effects of T, DO and OUR on the production of Glu. The conditions to optimize the fermentation process were proposed based on the simulation study from this model. Results suggested that the production of Glu can reach a high level by controlling concentration levels of DO and OUR to the proposed optimization conditions during the fermentation process. The GAM approach therefore provides an alternative way to model and optimize the fermentation process of Glu. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.
Adaptive smart simulator for characterization and MPPT construction of PV array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouada, Mehdi, E-mail: mehdi.ouada@univ-annaba.org; Meridjet, Mohamed Salah; Dib, Djalel
2016-07-25
Partial shading conditions are among the most important problems in large photovoltaic array. Many works of literature are interested in modeling, control and optimization of photovoltaic conversion of solar energy under partial shading conditions, The aim of this study is to build a software simulator similar to hard simulator and to produce a shading pattern of the proposed photovoltaic array in order to use the delivered information to obtain an optimal configuration of the PV array and construct MPPT algorithm. Graphical user interfaces (Matlab GUI) are built using a developed script, this tool is easy to use, simple, and hasmore » a rapid of responsiveness, the simulator supports large array simulations that can be interfaced with MPPT and power electronic converters.« less
Modeling and Optimization for Management of Intermittent Water Supply
NASA Astrophysics Data System (ADS)
Lieb, A. M.; Wilkening, J.; Rycroft, C.
2014-12-01
In many urban areas, piped water is supplied only intermittently, as valves direct water to different parts of the water distribution system at different times. The flow is transient, and may transition between free-surface and pressurized, resulting in complex dynamical features with important consequences for water suppliers and users. These consequences include degradation of distribution system components, compromised water quality, and inequitable water availability. The goal of this work is to model the important dynamics and identify operating conditions that mitigate certain negative effects of intermittent water supply. Specifically, we will look at controlling valve parameters occurring as boundary conditions in a network model of transient, transition flow through closed pipes. Gradient-based optimization will be used to find boundary values to minimize pressure gradients and ensure equitable water availability at system endpoints.
Optimal Dynamics of Intermittent Water Supply
NASA Astrophysics Data System (ADS)
Lieb, Anna; Wilkening, Jon; Rycroft, Chris
2014-11-01
In many urban areas of the developing world, piped water is supplied only intermittently, as valves direct water to different parts of the water distribution system at different times. The flow is transient, and may transition between free-surface and pressurized, resulting in complex dynamical features with important consequences for water suppliers and users. These consequences include degradation of distribution system components, compromised water quality, and inequitable water availability. The goal of this work is to model the important dynamics and identify operating conditions that mitigate certain negative effects of intermittent water supply. Specifically, we will look at valve parameters occurring as boundary conditions in a network model of transient, transition flow through closed pipes. Optimization will be used to find boundary values to minimize pressure gradients and ensure equitable water availability.
NASA Astrophysics Data System (ADS)
Bianco, Vincenzo; Nardini, Sergio; Manca, Oronzio
2011-12-01
In this article, developing turbulent forced convection flow of a water-Al2O3 nanofluid in a square tube, subjected to constant and uniform wall heat flux, is numerically investigated. The mixture model is employed to simulate the nanofluid flow and the investigation is accomplished for particles size equal to 38 nm. An entropy generation analysis is also proposed in order to find the optimal working condition for the given geometry under given boundary conditions. A simple analytical procedure is proposed to evaluate the entropy generation and its results are compared with the numerical calculations, showing a very good agreement. A comparison of the resulting Nusselt numbers with experimental correlations available in literature is accomplished. To minimize entropy generation, the optimal Reynolds number is determined.
Conditional optimal spacing in exponential distribution.
Park, Sangun
2006-12-01
In this paper, we propose the conditional optimal spacing defined as the optimal spacing after specifying a predetermined order statistic. If we specify a censoring time, then the optimal inspection times for grouped inspection can be determined from this conditional optimal spacing. We take an example of exponential distribution, and provide a simple method of finding the conditional optimal spacing.
Light-Duty Vehicle Thermal Management | Transportation Research | NREL
Light-Duty Vehicle Thermal Management Light-Duty Vehicle Thermal Management Image of a semi transportation options, the lab is working to optimize the thermal management of both electric-drive and fuel per year just to air-condition these LDVs. NREL evaluates the effectiveness of thermal management
What We Know about Second Language Acquisition: A Synthesis from Four Perspectives
ERIC Educational Resources Information Center
Dixon, L. Quentin; Zhao, Jing; Shin, Jee-Young; Wu, Shuang; Su, Jung-Hsuan; Burgess-Brigham, Renata; Gezer, Melike Unal; Snow, Catherine
2012-01-01
Educational policies that impact second language (L2) learners--a rapidly-growing group--are often enacted without consulting relevant research. This review synthesized research regarding optimal conditions for L2 acquisition, facilitative L2 learner and teacher characteristics, and speed of L2 acquisition, from four bodies of work--foreign…
Sun, Yonghui; Liu, Pengtao; Liu, Zhong
2016-05-20
The principal goal of this work was to reuse the carbohydrates and recycle sulfuric acid in the waste liquid of acid hydrolysis nanocrystalline cellulose (NCC). Therefore, in this work, the optimizations of further hydrolysis of waste liquid of acid hydrolysis NCC and catalytic conversion of L4 to 5-hydroxymethylfurfural (5-HMF) were studied. Sulfuric acid was separated by spiral wound diffusion dialysis (SWDD). The results revealed that cellulose can be hydrolyze to glucose absolutely under the condition of temperature 35 °C, 3 h, and sulfuric acid's concentration 62 wt%. And 78.3% sulfuric acid was recovered by SWDD. The yield of 5-HMF was highest in aqueous solution under the optimal condition was as follows, temperature 160 °C, 3 h, and sulfuric acid's concentration 12 wt%. Then the effect of biphasic solvent systems catalytic conversion and inorganic salt as additives were still examined. The results showed that both of them contributed to prepare 5-HMF. The yield and selectivity of 5-HMF was up to 21.0% and 31.4%, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Beyhaghi, Pooriya
2016-11-01
This work considers the problem of the efficient minimization of the infinite time average of a stationary ergodic process in the space of a handful of independent parameters which affect it. Problems of this class, derived from physical or numerical experiments which are sometimes expensive to perform, are ubiquitous in turbulence research. In such problems, any given function evaluation, determined with finite sampling, is associated with a quantifiable amount of uncertainty, which may be reduced via additional sampling. This work proposes the first algorithm of this type. Our algorithm remarkably reduces the overall cost of the optimization process for problems of this class. Further, under certain well-defined conditions, rigorous proof of convergence is established to the global minimum of the problem considered.
Advanced Models of Accretion Disk Atmospheres and Spectra for Close Binary Stars
NASA Technical Reports Server (NTRS)
Wade, Richard A.
1997-01-01
This work led to the development of code for fitting models to data, and to an understanding of the nature of the models which enabled a more rapid search of 'parameter space' for optimal fits to spectral data sets. The code was used to find optimal fits to IUE spectra of quiescent dwarf novae that have been reported to show evidence for the white dwarf. The models consisted of a white dwarf component and an accretion disk with boundary conditions appropriate for the choice of the white dwarf. The preliminary work has strengthened the initial impression that accretion disk spectra can mimic the appearance of white dwarf spectra in the short-wavelength ultraviolet, so that additional constraints (such as distance) are needed to distinguish to two cases.
Galerkin v. discrete-optimal projection in nonlinear model reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlberg, Kevin Thomas; Barone, Matthew Franklin; Antil, Harbir
Discrete-optimal model-reduction techniques such as the Gauss{Newton with Approximated Tensors (GNAT) method have shown promise, as they have generated stable, accurate solutions for large-scale turbulent, compressible ow problems where standard Galerkin techniques have failed. However, there has been limited comparative analysis of the two approaches. This is due in part to difficulties arising from the fact that Galerkin techniques perform projection at the time-continuous level, while discrete-optimal techniques do so at the time-discrete level. This work provides a detailed theoretical and experimental comparison of the two techniques for two common classes of time integrators: linear multistep schemes and Runge{Kutta schemes.more » We present a number of new ndings, including conditions under which the discrete-optimal ROM has a time-continuous representation, conditions under which the two techniques are equivalent, and time-discrete error bounds for the two approaches. Perhaps most surprisingly, we demonstrate both theoretically and experimentally that decreasing the time step does not necessarily decrease the error for the discrete-optimal ROM; instead, the time step should be `matched' to the spectral content of the reduced basis. In numerical experiments carried out on a turbulent compressible- ow problem with over one million unknowns, we show that increasing the time step to an intermediate value decreases both the error and the simulation time of the discrete-optimal reduced-order model by an order of magnitude.« less
Yari, Abdollah; Rashnoo, Saba
2017-11-01
Here, we are reporting a sensitive, simple and rapid method for the analysis of cyanidin chloride and pelargonidin chloride anthocyanins in cherry, sour cherry, pomegranate and barberry produced in Iran. The analytes were extracted with acetonitrile-hydrochloric acid (1% v/v) mixture under optimized pretreatment conditions. Clean-up of the extract from fruits was conducted by magnetic solid phase extraction using salicylic acid functionalized silica-coated magnetite nanoparticles (SCMNPs) as the adsorbent. The optimized conditions searched with central composite design. Working under optimum conditions specified as: SCMNPs modified with salicylic acid, sorbent contact time and sample 10min, mechanical stirring time 57.3min. HPLC with UV-detection was used for determination of the analytes. The limit of detection, LOD, obtained for the two anthocyanins were 0.02 and 0.03μgg -1 , respectively. The ranges of the spiked recoveries were 80.0-97.6 and 72.9-97.2%, with the relative standard deviations (RSD) of 2.1 and 2.5%, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.
Xue, Juan Qin; Liu, Ni Na; Li, Guo Ping; Dang, Long Tao
To solve the disposal problem of cyanide wastewater, removal of cyanide from wastewater using a water-in-oil emulsion type of emulsion liquid membrane (ELM) was studied in this work. Specifically, the effects of surfactant Span-80, carrier trioctylamine (TOA), stripping agent NaOH solution and the emulsion-to-external-phase-volume ratio on removal of cyanide were investigated. Removal of total cyanide was determined using the silver nitrate titration method. Regression analysis and optimization of the conditions were conducted using the Design-Expert software and response surface methodology (RSM). The actual cyanide removals and the removals predicted using RSM analysis were in close agreement, and the optimal conditions were determined to be as follows: the volume fraction of Span-80, 4% (v/v); the volume fraction of TOA, 4% (v/v); the concentration of NaOH, 1% (w/v); and the emulsion-to-external-phase volume ratio, 1:7. Under the optimum conditions, the removal of total cyanide was 95.07%, and the RSM predicted removal was 94.90%, with a small exception. The treatment of cyanide wastewater using an ELM is an effective technique for application in industry.
Automatic genetic optimization approach to two-dimensional blade profile design for steam turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trigg, M.A.; Tubby, G.R.; Sheard, A.G.
1999-01-01
In this paper a systematic approach to the optimization of two-dimensional blade profiles is presented. A genetic optimizer has been developed that modifies the blade profile and calculates its profile loss. This process is automatic, producing profile designs significantly faster and with significantly lower loss than has previously been possible. The optimizer developed uses a genetic algorithm to optimize a two-dimensional profile, defined using 17 parameters, for minimum loss with a given flow condition. The optimizer works with a population of two-dimensional profiles with varied parameters. A CFD mesh is generated for each profile, and the result is analyzed usingmore » a two-dimensional blade-to-blade solver, written for steady viscous compressible flow, to determine profile loss. The loss is used as the measure of a profile`s fitness. The optimizer uses this information to select the members of the next population, applying crossovers, mutations, and elitism in the process. Using this method, the optimizer tends toward the best values for the parameters defining the profile with minimum loss.« less
Investigation of optimization-based reconstruction with an image-total-variation constraint in PET
NASA Astrophysics Data System (ADS)
Zhang, Zheng; Ye, Jinghan; Chen, Buxin; Perkins, Amy E.; Rose, Sean; Sidky, Emil Y.; Kao, Chien-Min; Xia, Dan; Tung, Chi-Hua; Pan, Xiaochuan
2016-08-01
Interest remains in reconstruction-algorithm research and development for possible improvement of image quality in current PET imaging and for enabling innovative PET systems to enhance existing, and facilitate new, preclinical and clinical applications. Optimization-based image reconstruction has been demonstrated in recent years of potential utility for CT imaging applications. In this work, we investigate tailoring the optimization-based techniques to image reconstruction for PET systems with standard and non-standard scan configurations. Specifically, given an image-total-variation (TV) constraint, we investigated how the selection of different data divergences and associated parameters impacts the optimization-based reconstruction of PET images. The reconstruction robustness was explored also with respect to different data conditions and activity up-takes of practical relevance. A study was conducted particularly for image reconstruction from data collected by use of a PET configuration with sparsely populated detectors. Overall, the study demonstrates the robustness of the TV-constrained, optimization-based reconstruction for considerably different data conditions in PET imaging, as well as its potential to enable PET configurations with reduced numbers of detectors. Insights gained in the study may be exploited for developing algorithms for PET-image reconstruction and for enabling PET-configuration design of practical usefulness in preclinical and clinical applications.
Optimal control solutions to sodic soil reclamation
NASA Astrophysics Data System (ADS)
Mau, Yair; Porporato, Amilcare
2016-05-01
We study the reclamation process of a sodic soil by irrigation with water amended with calcium cations. In order to explore the entire range of time-dependent strategies, this task is framed as an optimal control problem, where the amendment rate is the control and the total rehabilitation time is the quantity to be minimized. We use a minimalist model of vertically averaged soil salinity and sodicity, in which the main feedback controlling the dynamics is the nonlinear coupling of soil water and exchange complex, given by the Gapon equation. We show that the optimal solution is a bang-bang control strategy, where the amendment rate is discontinuously switched along the process from a maximum value to zero. The solution enables a reduction in remediation time of about 50%, compared with the continuous use of good-quality irrigation water. Because of its general structure, the bang-bang solution is also shown to work for the reclamation of other soil conditions, such as saline-sodic soils. The novelty in our modeling approach is the capability of searching the entire "strategy space" for optimal time-dependent protocols. The optimal solutions found for the minimalist model can be then fine-tuned by experiments and numerical simulations, applicable to realistic conditions that include spatial variability and heterogeneities.
NASA Astrophysics Data System (ADS)
Habibi Davijani, M.; Banihabib, M. E.; Nadjafzadeh Anvar, A.; Hashemi, S. R.
2016-02-01
In many discussions, work force is mentioned as the most important factor of production. Principally, work force is a factor which can compensate for the physical and material limitations and shortcomings of other factors to a large extent which can help increase the production level. On the other hand, employment is considered as an effective factor in social issues. The goal of the present research is the allocation of water resources so as to maximize the number of jobs created in the industry and agriculture sectors. An objective that has attracted the attention of policy makers involved in water supply and distribution is the maximization of the interests of beneficiaries and consumers in case of certain policies adopted. The present model applies the particle swarm optimization (PSO) algorithm in order to determine the optimum amount of water allocated to each water-demanding sector, area under cultivation, agricultural production, employment in the agriculture sector, industrial production and employment in the industry sector. Based on the results obtained from this research, by optimally allocating water resources in the central desert region of Iran, 1096 jobs can be created in the industry and agriculture sectors, which constitutes an improvement of about 13% relative to the previous situation (non-optimal water utilization). It is also worth mentioning that by optimizing the employment factor as a social parameter, the other areas such as the economic sector are influenced as well. For example, in this investigation, the resulting economic benefits (incomes) have improved from 73 billion Rials at baseline employment figures to 112 billion Rials in the case of optimized employment condition. Therefore, it is necessary to change the inter-sector and intra-sector water allocation models in this region, because this change not only leads to more jobs in this area, but also causes an improvement in the region's economic conditions.
Guvenc, Senem Yazici; Okut, Yusuf; Ozak, Mert; Haktanir, Birsu; Bilgili, Mehmet Sinan
2017-02-01
In this study, process parameters in chemical oxygen demand (COD) and turbidity removal from metal working industry (MWI) wastewater were optimized by electrocoagulation (EC) using aluminum, iron and steel electrodes. The effects of process variables on COD and turbidity were investigated by developing a mathematical model using central composite design method, which is one of the response surface methodologies. Variance analysis was conducted to identify the interaction between process variables and model responses and the optimum conditions for the COD and turbidity removal. Second-order regression models were developed via the Statgraphics Centurion XVI.I software program to predict COD and turbidity removal efficiencies. Under the optimum conditions, removal efficiencies obtained from aluminum electrodes were found to be 76.72% for COD and 99.97% for turbidity, while the removal efficiencies obtained from iron electrodes were found to be 76.55% for COD and 99.9% for turbidity and the removal efficiencies obtained from steel electrodes were found to be 65.75% for COD and 99.25% for turbidity. Operational costs at optimum conditions were found to be 4.83, 1.91 and 2.91 €/m 3 for aluminum, iron and steel electrodes, respectively. Iron electrode was found to be more suitable for MWI wastewater treatment in terms of operational cost and treatment efficiency.
Optimal Maintenance Works for the Aborshada Road in the Western Region of Libya
NASA Astrophysics Data System (ADS)
Youssef, Medhat Abdelrahman; Elbasher, Abdelbary Altayb
2014-09-01
In this research, the condition of a road pavement was investigated for the Aborshada Road in the Gharian region of Libya to determine the optimal maintenance works. Previously, a simple engineering judgment was the only procedure followed by the Gharian municipal engineers for evaluating pavements and prioritizing maintenance. The surface condition of the Aborshada Road pavement was investigated using "the Pavement Condition Index (PCI)" visual technique. The pavement was inspected to survey the different distresses in each sample unit. Ninteen pavement distresses were classified according to the PCI standards (PCI for roads and parking lots became an ASTM standard in 2007 (D6433-07)). It was necessary to know the most common distresses of the Aborshada Road to provide assistance for the decision maker in his evaluation of the pavement and the optimum repair method to be selected. This study reveals the actual performance of the pavements and suggests the research required for dealing with the pavement maintenance problem in Libya, especially in the western region. The best maintenance alternative for Aborshada Road was Case No. 3 (Potholes, Long. & Trans. Cracking and Alligator Crack Maintenance). Also, the most common pavement distresses on the Aborshada Road were Distress Nos. 1, 3, 6, 7, 10 and 13 according to the ASTM - D6433-07 classification
Topology optimization in acoustics and elasto-acoustics via a level-set method
NASA Astrophysics Data System (ADS)
Desai, J.; Faure, A.; Michailidis, G.; Parry, G.; Estevez, R.
2018-04-01
Optimizing the shape and topology (S&T) of structures to improve their acoustic performance is quite challenging. The exact position of the structural boundary is usually of critical importance, which dictates the use of geometric methods for topology optimization instead of standard density approaches. The goal of the present work is to investigate different possibilities for handling topology optimization problems in acoustics and elasto-acoustics via a level-set method. From a theoretical point of view, we detail two equivalent ways to perform the derivation of surface-dependent terms and propose a smoothing technique for treating problems of boundary conditions optimization. In the numerical part, we examine the importance of the surface-dependent term in the shape derivative, neglected in previous studies found in the literature, on the optimal designs. Moreover, we test different mesh adaptation choices, as well as technical details related to the implicit surface definition in the level-set approach. We present results in two and three-space dimensions.
Pozzobon, Victor; Perre, Patrick
2018-01-21
This work provides a model and the associated set of parameters allowing for microalgae population growth computation under intermittent lightning. Han's model is coupled with a simple microalgae growth model to yield a relationship between illumination and population growth. The model parameters were obtained by fitting a dataset available in literature using Particle Swarm Optimization method. In their work, authors grew microalgae in excess of nutrients under flashing conditions. Light/dark cycles used for these experimentations are quite close to those found in photobioreactor, i.e. ranging from several seconds to one minute. In this work, in addition to producing the set of parameters, Particle Swarm Optimization robustness was assessed. To do so, two different swarm initialization techniques were used, i.e. uniform and random distribution throughout the search-space. Both yielded the same results. In addition, swarm distribution analysis reveals that the swarm converges to a unique minimum. Thus, the produced set of parameters can be trustfully used to link light intensity to population growth rate. Furthermore, the set is capable to describe photodamages effects on population growth. Hence, accounting for light overexposure effect on algal growth. Copyright © 2017 Elsevier Ltd. All rights reserved.
Caffeine dosing strategies to optimize alertness during sleep loss.
Vital-Lopez, Francisco G; Ramakrishnan, Sridhar; Doty, Tracy J; Balkin, Thomas J; Reifman, Jaques
2018-05-28
Sleep loss, which affects about one-third of the US population, can severely impair physical and neurobehavioural performance. Although caffeine, the most widely used stimulant in the world, can mitigate these effects, currently there are no tools to guide the timing and amount of caffeine consumption to optimize its benefits. In this work, we provide an optimization algorithm, suited for mobile computing platforms, to determine when and how much caffeine to consume, so as to safely maximize neurobehavioural performance at the desired time of the day, under any sleep-loss condition. The algorithm is based on our previously validated Unified Model of Performance, which predicts the effect of caffeine consumption on a psychomotor vigilance task. We assessed the algorithm by comparing the caffeine-dosing strategies (timing and amount) it identified with the dosing strategies used in four experimental studies, involving total and partial sleep loss. Through computer simulations, we showed that the algorithm yielded caffeine-dosing strategies that enhanced performance of the predicted psychomotor vigilance task by up to 64% while using the same total amount of caffeine as in the original studies. In addition, the algorithm identified strategies that resulted in equivalent performance to that in the experimental studies while reducing caffeine consumption by up to 65%. Our work provides the first quantitative caffeine optimization tool for designing effective strategies to maximize neurobehavioural performance and to avoid excessive caffeine consumption during any arbitrary sleep-loss condition. © 2018 The Authors. Journal of Sleep Research published by John Wiley & Sons Ltd on behalf of European Sleep Research Society.
The Effects of Age, Priming, and Working Memory on Decision-Making.
Wood, Meagan; Black, Sheila; Gilpin, Ansley
2016-01-11
In the current study, we examined the effects of priming and personality on risky decision-making while playing the Game of Dice Task (GDT). In the GDT, participants decide how risky they wish to be on each trial. In this particular study prior to playing the GDT, participants were randomly assigned to one of three priming conditions: Risk-Aversive, Risk-Seeking, or Control. In the Risk-Seeking condition, a fictional character benefitted from risky behavior while in the Risk-Aversive condition, a fictional character benefitted from exercising caution. Although not explicitly stated in the instructions, participants need to make "safe" rather than risky choices to optimize performance on the GDT. Participants were also given Daneman and Carpenter's assessment of working memory task. Interestingly, although older adults self-reported being more cautious than younger adults on the Domain Specific Risk Attitude scale (DOSPERT), older adults made riskier decisions than younger adults on the GDT. However, after controlling for working memory, the age differences on the GDT became insignificant, indicating that working memory mediated the relation between age and risky decisions on the GDT.
The Effects of Age, Priming, and Working Memory on Decision-Making
Wood, Meagan; Black, Sheila; Gilpin, Ansley
2016-01-01
In the current study, we examined the effects of priming and personality on risky decision-making while playing the Game of Dice Task (GDT). In the GDT, participants decide how risky they wish to be on each trial. In this particular study prior to playing the GDT, participants were randomly assigned to one of three priming conditions: Risk-Aversive, Risk-Seeking, or Control. In the Risk-Seeking condition, a fictional character benefitted from risky behavior while in the Risk-Aversive condition, a fictional character benefitted from exercising caution. Although not explicitly stated in the instructions, participants need to make “safe” rather than risky choices to optimize performance on the GDT. Participants were also given Daneman and Carpenter’s assessment of working memory task. Interestingly, although older adults self-reported being more cautious than younger adults on the Domain Specific Risk Attitude scale (DOSPERT), older adults made riskier decisions than younger adults on the GDT. However, after controlling for working memory, the age differences on the GDT became insignificant, indicating that working memory mediated the relation between age and risky decisions on the GDT. PMID:26761023
Performance analysis of quantum Diesel heat engines with a two-level atom as working substance
NASA Astrophysics Data System (ADS)
Huang, X. L.; Shang, Y. F.; Guo, D. Y.; Yu, Qian; Sun, Qi
2017-07-01
A quantum Diesel cycle, which consists of one quantum isobaric process, one quantum isochoric process and two quantum adiabatic processes, is established with a two-level atom as working substance. The parameter R in this model is defined as the ratio of the time in quantum isochoric process to the timescale for the potential width movement. The positive work condition, power output and efficiency are obtained, and the optimal performance is analyzed with different R. The effects of dissipation, the mixed state in the cycle and the results of other working substances are also discussed at the end of this analysis.
Rashid, Abdul Ahid; Huma, Nuzhat; Zahoor, Tahir; Asgher, Muhammad
2017-02-01
The recovery of milk constituents from cheese whey is affected by various processing conditions followed during production of Ricotta cheese. The objective of the present investigation was to optimize the temperature (60-90 °C), pH (3-7) and CaCl2 concentration (2·0-6·0 mm) for maximum yield/recovery of milk constituents. The research work was carried out in two phases. In 1st phase, the influence of these processing conditions was evaluated through 20 experiments formulated by central composite design (CCD) keeping the yield as response factor. The results obtained from these experiments were used to optimize processing conditions for maximum yield using response surface methodology (RSM). The three best combinations of processing conditions (90 °C, pH 7, CaCl2 6 mm), (100 °C, pH 5, CaCl2 4 mm) and (75 °C, pH 8·4, CaCl2 4 mm) were exploited in the next phase for Ricotta cheese production from a mixture of Buffalo cheese whey and skim milk (9 : 1) to determine the influence of optimized conditions on the cheese composition. Ricotta cheeses were analyzed for various physicochemical (moisture, fat, protein, lactose, total solids, pH and acidity indicated) parameters during storage of 60 d at 4 ± 2 °C after every 15 d interval. Ricotta cheese prepared at 90 °C, pH 7 and CaCl2 6 mm exhibited the highest cheese yield, proteins and total solids, while high fat content was recorded for cheese processed at 100 °C, pH 5 and 4 mm CaCl2 concentration. A significant storage-related increase in acidity and NPN was recorded for all cheese samples.
Bifacial PV cell with reflector for stand-alone mast for sensor powering purposes
NASA Astrophysics Data System (ADS)
Jakobsen, Michael L.; Thorsteinsson, Sune; Poulsen, Peter B.; Riedel, N.; Rødder, Peter M.; Rødder, Kristin
2017-09-01
Reflectors to bifacial PV-cells are simulated and prototyped in this work. The aim is to optimize the reflector to specific latitudes, and particularly northern latitudes. Specifically, by using minimum semiconductor area the reflector must be able to deliver the electrical power required at the condition of minimum solar travel above the horizon, worst weather condition etc. We will test a bifacial PV-module with a retroreflector, and compare the output with simulations combined with local solar data.
Optimization of sintering conditions for cerium-doped yttrium aluminum garnet
NASA Astrophysics Data System (ADS)
Cranston, Robert Wesley McEachern
YAG:Ce phosphors have become widely used as blue/yellow light converters in camera projectors, white light emitting diodes (WLEDs) and general lighting applications. Many studies have been published on the production, characterization, and analysis of this optical ceramic but few have been done on determining optimal synthesis conditions. In this work, YAG:Ce phosphors were synthesized through solid state mixing and sintering. The synthesized powders and the highest quality commercially available powders were pressed and sintered to high densities and their photoluminescence (PL) intensity measured. The optimization process involved the sintering temperature, sintering time, annealing temperature and the level of Ce concentration. In addition to the PL intensity, samples were also characterized using particle size analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The PL data was compared with data produced from a YAG:Ce phosphor sample provided by Christie Digital. The peak intensities of the samples were converted to a relative percentage of this industry product. The highest value for the intensity of the commercial powder was measured for a Ce concentration of 0.3 mole% with a sintering temperature of 1540°C and a sintering dwell time of 7 hours. The optimal processing parameters for the in-house synthesized powder were slightly different from those of commercial powders. The optimal Ce concentration was 0.4 mole% Ce, sintering temperature was 1560°C and sintering dwell time was 10 hours. These optimal conditions produced a relative intensity of 94.20% and 95.28% for the in-house and commercial powders respectively. Polishing of these samples resulted in an increase of 5% in the PL intensity.
Hot Deformation Behavior of Hot-Extruded AA7175 Through Hot Torsion Tests.
Lee, Se-Yeon; Jung, Taek-Kyun; Son, Hyeon-Woo; Kim, Sang-Wook; Son, Kwang-Tae; Choi, Ho-Joon; Oh, Sang-Ho; Lee, Ji-Woon; Hyun, Soong-Keun
2018-03-01
The hot deformation behavior of hot-extruded AA7175 was investigated with flow curves and processing maps through hot torsion tests. The flow curves and the deformed microstructures revealed that dynamic recrystallization (DRX) occurred in the hot-extruded AA7175 during hot working. The failure strain was highest at medium temperature. This was mainly influenced by the dynamic precipitation of fine rod-shaped MgZn2. The processing map determined the optimal deformation condition for the alloy during hot working.
Radiometers Optimize Local Weather Prediction
NASA Technical Reports Server (NTRS)
2010-01-01
Radiometrics Corporation, headquartered in Boulder, Colorado, engaged in Small Business Innovation Research (SBIR) agreements with Glenn Research Center that resulted in a pencil-beam radiometer designed to detect supercooled liquid along flight paths -- a prime indicator of dangerous icing conditions. The company has brought to market a modular radiometer that resulted from the SBIR work. Radiometrics' radiometers are used around the world as key tools for detecting icing conditions near airports and for the prediction of weather conditions like fog and convective storms, which are known to produce hail, strong winds, flash floods, and tornadoes. They are also employed for oceanographic research and soil moisture studies.
NASA Astrophysics Data System (ADS)
Zhang, Jing; Wang, Yagang; Zega, Valentina; Su, Yan; Corigliano, Alberto
2018-07-01
In this work the nonlinear dynamic behaviour under varying temperature conditions of the resonating beams of a differential resonant accelerometer is studied from the theoretical, numerical and experimental points of view. A complete analytical model based on the Hamilton’s principle is proposed to describe the nonlinear behaviour of the resonators under varying temperature conditions and numerical solutions are presented in comparison with experimental data. This provides a novel perspective to examine the relationship between temperature and nonlinearity, which helps predicting the dynamic behaviour of resonant devices and can guide their optimal design.
Nature and causes of the immediate extinction deficit: a brief review.
Maren, Stephen
2014-09-01
Recent data in both rodents and humans suggests that the timing of extinction trials after conditioning influences the magnitude and duration of extinction. For example, administering extinction trials soon after Pavlovian fear conditioning in rats, mice, and humans results in minimal fear suppression - the so-called immediate extinction deficit. Here I review recent work examining the behavioral and neural substrates of the immediate extinction deficit. I suggest that extinction is most effective at some delay after conditioning, because brain systems involved in encoding and retrieving extinction memories function sub-optimally under stress. Copyright © 2013 Elsevier Inc. All rights reserved.
Nature and Causes of the Immediate Extinction Deficit: A Brief Review
Maren, Stephen
2013-01-01
Recent data in both rodents and humans suggests that the timing of extinction trials after conditioning influences the magnitude and duration of extinction. For example, administering extinction trials soon after Pavlovian fear conditioning in rats, mice, and humans results in minimal fear suppression--the so-called immediate extinction deficit. Here I review recent work examining the behavioral and neural substrates of the immediate extinction deficit. I suggest that extinction is most effective at some delay after conditioning, because brain systems involved in encoding and retrieving extinction memories function sub-optimally under stress. PMID:24176924
Berret, Bastien; Darlot, Christian; Jean, Frédéric; Pozzo, Thierry; Papaxanthis, Charalambos; Gauthier, Jean Paul
2008-01-01
An important question in the literature focusing on motor control is to determine which laws drive biological limb movements. This question has prompted numerous investigations analyzing arm movements in both humans and monkeys. Many theories assume that among all possible movements the one actually performed satisfies an optimality criterion. In the framework of optimal control theory, a first approach is to choose a cost function and test whether the proposed model fits with experimental data. A second approach (generally considered as the more difficult) is to infer the cost function from behavioral data. The cost proposed here includes a term called the absolute work of forces, reflecting the mechanical energy expenditure. Contrary to most investigations studying optimality principles of arm movements, this model has the particularity of using a cost function that is not smooth. First, a mathematical theory related to both direct and inverse optimal control approaches is presented. The first theoretical result is the Inactivation Principle, according to which minimizing a term similar to the absolute work implies simultaneous inactivation of agonistic and antagonistic muscles acting on a single joint, near the time of peak velocity. The second theoretical result is that, conversely, the presence of non-smoothness in the cost function is a necessary condition for the existence of such inactivation. Second, during an experimental study, participants were asked to perform fast vertical arm movements with one, two, and three degrees of freedom. Observed trajectories, velocity profiles, and final postures were accurately simulated by the model. In accordance, electromyographic signals showed brief simultaneous inactivation of opposing muscles during movements. Thus, assuming that human movements are optimal with respect to a certain integral cost, the minimization of an absolute-work-like cost is supported by experimental observations. Such types of optimality criteria may be applied to a large range of biological movements. PMID:18949023
Zamora, R M Ramirez; Ayala, F Espesel; Garcia, L Chavez; Moreno, A Duran; Schouwenaars, R
2008-11-01
The aim of this work is to optimize, via Response Surface Methodology, the values of the main process parameters for the production of ceramic products using sludges obtained from drinking water treatment in order to valorise them. In the first experimental stage, sludges were collected from a drinking water treatment plant for characterization. In the second stage, trials were carried out to elaborate thin cross-section specimens and fired bricks following an orthogonal central composite design of experiments with three factors (sludge composition, grain size and firing temperature) and five levels. The optimization parameters (Y(1)=shrinking by firing (%), Y(2)=water absorption (%), Y(3)=density (g/cm(3)) and Y(4)=compressive strength (kg/cm(2))) were determined according to standardized analytical methods. Two distinct physicochemical processes were active during firing at different conditions in the experimental design, preventing the determination of a full response surface, which would allow direct optimization of production parameters. Nevertheless, the temperature range for the production of classical red brick was closely delimitated by the results; above this temperature, a lightweight ceramic with surprisingly high strength was produced, opening possibilities for the valorisation of a product with considerably higher added value than what was originally envisioned.
Optimization of the R-SQUID noise thermometer
NASA Astrophysics Data System (ADS)
Seppä, Heikki
1986-02-01
The Josephson junction can be used to convert voltage into frequency and thus it can be used to convert voltage fluctuations generated by Johnson noise in a resistor into frequency fluctuations. As a consequence, the temperature of the resistor can be defined by measuring the variance of the frequency fluctuations. Unfortunately, the absolute determination of temperature by this approach is disturbed by several undesirable effects: a rolloff introduced by the bandwidth of the postdetection filter, additional noise caused by rf amplifiers, and a mixed noise effect caused by the nonlinearity of the Josephson junction together with rf noise in the tank circuit. Furthermore, the variance is a statistical quantity and therefore the limited number of frequency counts produces inaccuracy in a temperature measurement. In this work the total inaccuracy of the noise thermometer is analyzed and the optimal choice of the parameters is derived. A practical way to find the optimal conditions for the Josephson junction noise thermometer is discussed. The inspection shows that under the optimal conditions the total error is dependent only on the temperature under determination, the equivalent noise temperature of the preamplifier, the bias frequency of the SQUID, and the total time used for the measurement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall'Anese, Emiliano
Past works that focused on addressing power-quality and reliability concerns related to renewable energy resources (RESs) operating with business-as-usual practices have looked at the design of Volt/VAr and Volt/Watt strategies to regulate real or reactive powers based on local voltage measurements, so that terminal voltages are within acceptable levels. These control strategies have the potential of operating at the same time scale of distribution-system dynamics, and can therefore mitigate disturbances precipitated fast time-varying loads and ambient conditions; however, they do not necessarily guarantee system-level optimality, and stability claims are mainly based on empirical evidences. On a different time scale, centralizedmore » and distributed optimal power flow (OPF) algorithms have been proposed to compute optimal steady-state inverter setpoints, so that power losses and voltage deviations are minimized and economic benefits to end-users providing ancillary services are maximized. However, traditional OPF schemes may offer decision making capabilities that do not match the dynamics of distribution systems. Particularly, during the time required to collect data from all the nodes of the network (e.g., loads), solve the OPF, and subsequently dispatch setpoints, the underlying load, ambient, and network conditions may have already changed; in this case, the DER output powers would be consistently regulated around outdated setpoints, leading to suboptimal system operation and violation of relevant electrical limits. The present work focuses on the synthesis of distributed RES-inverter controllers that leverage the opportunities for fast feedback offered by power-electronics interfaced RESs. The overarching objective is to bridge the temporal gap between long-term system optimization and real-time control, to enable seamless RES integration in large scale with stability and efficiency guarantees, while congruently pursuing system-level optimization objectives. The design of the control framework is based on suitable linear approximations of the AC power-flow equations as well as Lagrangian regularization methods. The proposed controllers enable an update of the power outputs at a time scale that is compatible with the underlying dynamics of loads and ambient conditions, and continuously drive the system operation towards OPF-based solutions.« less
Modeling and optimization of a hybrid solar combined cycle (HYCS)
NASA Astrophysics Data System (ADS)
Eter, Ahmad Adel
2011-12-01
The main objective of this thesis is to investigate the feasibility of integrating concentrated solar power (CSP) technology with the conventional combined cycle technology for electric generation in Saudi Arabia. The generated electricity can be used locally to meet the annual increasing demand. Specifically, it can be utilized to meet the demand during the hours 10 am-3 pm and prevent blackout hours, of some industrial sectors. The proposed CSP design gives flexibility in the operation system. Since, it works as a conventional combined cycle during night time and it switches to work as a hybrid solar combined cycle during day time. The first objective of the thesis is to develop a thermo-economical mathematical model that can simulate the performance of a hybrid solar-fossil fuel combined cycle. The second objective is to develop a computer simulation code that can solve the thermo-economical mathematical model using available software such as E.E.S. The developed simulation code is used to analyze the thermo-economic performance of different configurations of integrating the CSP with the conventional fossil fuel combined cycle to achieve the optimal integration configuration. This optimal integration configuration has been investigated further to achieve the optimal design of the solar field that gives the optimal solar share. Thermo-economical performance metrics which are available in the literature have been used in the present work to assess the thermo-economic performance of the investigated configurations. The economical and environmental impact of integration CSP with the conventional fossil fuel combined cycle are estimated and discussed. Finally, the optimal integration configuration is found to be solarization steam side in conventional combined cycle with solar multiple 0.38 which needs 29 hectare and LEC of HYCS is 63.17 $/MWh under Dhahran weather conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Grace; Brown, Judith Alice; Bishop, Joseph E.
The texture of a polycrystalline material refers to the preferred orientation of the grains within the material. In metallic materials, texture can significantly affect the mechanical properties such as elastic moduli, yield stress, strain hardening, and fracture toughness. Recent advances in additive manufacturing of metallic materials offer the possibility in the not too distant future of controlling the spatial variation of texture. In this work, we investigate the advantages, in terms of mechanical performance, of allowing the texture to vary spatially. We use an adjoint-based gradient optimization algorithm within a finite element solver (COMSOL) to optimize several engineering quantities ofmore » interest in a simple structure (hole in a plate) and loading (uniaxial tension) condition. As a first step to general texture optimization, we consider the idealized case of a pure fiber texture in which the homogenized properties are transversely isotropic. In this special case, the only spatially varying design variables are the three Euler angles that prescribe the orientation of the homogenized material at each point within the structure. This work paves a new way to design metallic materials for tunable mechanical properties at the microstructure level.« less
CFD-Based Design Optimization Tool Developed for Subsonic Inlet
NASA Technical Reports Server (NTRS)
1995-01-01
The traditional approach to the design of engine inlets for commercial transport aircraft is a tedious process that ends with a less-than-optimum design. With the advent of high-speed computers and the availability of more accurate and reliable computational fluid dynamics (CFD) solvers, numerical optimization processes can effectively be used to design an aerodynamic inlet lip that enhances engine performance. The designers' experience at Boeing Corporation showed that for a peak Mach number on the inlet surface beyond some upper limit, the performance of the engine degrades excessively. Thus, our objective was to optimize efficiency (minimize the peak Mach number) at maximum cruise without compromising performance at other operating conditions. Using a CFD code NPARC, the NASA Lewis Research Center, in collaboration with Boeing, developed an integrated procedure at Lewis to find the optimum shape of a subsonic inlet lip and a numerical optimization code, ADS. We used a GRAPE-based three-dimensional grid generator to help automate the optimization procedure. The inlet lip shape at the crown and the keel was described as a superellipse, and the superellipse exponents and radii ratios were considered as design variables. Three operating conditions: cruise, takeoff, and rolling takeoff, were considered in this study. Three-dimensional Euler computations were carried out to obtain the flow field. At the initial design, the peak Mach numbers for maximum cruise, takeoff, and rolling takeoff conditions were 0.88, 1.772, and 1.61, respectively. The acceptable upper limits on the takeoff and rolling takeoff Mach numbers were 1.55 and 1.45. Since the initial design provided by Boeing was found to be optimum with respect to the maximum cruise condition, the sum of the peak Mach numbers at takeoff and rolling takeoff were minimized in the current study while the maximum cruise Mach number was constrained to be close to that at the existing design. With this objective, the optimum design satisfied the upper limits at takeoff and rolling takeoff while retaining the desirable cruise performance. Further studies are being conducted to include static and cross-wind operating conditions in the design optimization procedure. This work was carried out in collaboration with Dr. E.S. Reddy of NYMA, Inc.
Impulsive Control for Continuous-Time Markov Decision Processes: A Linear Programming Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dufour, F., E-mail: dufour@math.u-bordeaux1.fr; Piunovskiy, A. B., E-mail: piunov@liv.ac.uk
2016-08-15
In this paper, we investigate an optimization problem for continuous-time Markov decision processes with both impulsive and continuous controls. We consider the so-called constrained problem where the objective of the controller is to minimize a total expected discounted optimality criterion associated with a cost rate function while keeping other performance criteria of the same form, but associated with different cost rate functions, below some given bounds. Our model allows multiple impulses at the same time moment. The main objective of this work is to study the associated linear program defined on a space of measures including the occupation measures ofmore » the controlled process and to provide sufficient conditions to ensure the existence of an optimal control.« less
Optimal Experiment Design for Thermal Characterization of Functionally Graded Materials
NASA Technical Reports Server (NTRS)
Cole, Kevin D.
2003-01-01
The purpose of the project was to investigate methods to accurately verify that designed , materials meet thermal specifications. The project involved heat transfer calculations and optimization studies, and no laboratory experiments were performed. One part of the research involved study of materials in which conduction heat transfer predominates. Results include techniques to choose among several experimental designs, and protocols for determining the optimum experimental conditions for determination of thermal properties. Metal foam materials were also studied in which both conduction and radiation heat transfer are present. Results of this work include procedures to optimize the design of experiments to accurately measure both conductive and radiative thermal properties. Detailed results in the form of three journal papers have been appended to this report.
NASA Astrophysics Data System (ADS)
Rudrapati, R.; Sahoo, P.; Bandyopadhyay, A.
2016-09-01
The main aim of the present work is to analyse the significance of turning parameters on surface roughness in computer numerically controlled (CNC) turning operation while machining of aluminium alloy material. Spindle speed, feed rate and depth of cut have been considered as machining parameters. Experimental runs have been conducted as per Box-Behnken design method. After experimentation, surface roughness is measured by using stylus profile meter. Factor effects have been studied through analysis of variance. Mathematical modelling has been done by response surface methodology, to made relationships between the input parameters and output response. Finally, process optimization has been made by teaching learning based optimization (TLBO) algorithm. Predicted turning condition has been validated through confirmatory experiment.
Islam, R S; Tisi, D; Levy, M S; Lye, G J
2007-01-01
A major bottleneck in drug discovery is the production of soluble human recombinant protein in sufficient quantities for analysis. This problem is compounded by the complex relationship between protein yield and the large number of variables which affect it. Here, we describe a generic framework for the rapid identification and optimization of factors affecting soluble protein yield in microwell plate fermentations as a prelude to the predictive and reliable scaleup of optimized culture conditions. Recombinant expression of firefly luciferase in Escherichia coli was used as a model system. Two rounds of statistical design of experiments (DoE) were employed to first screen (D-optimal design) and then optimize (central composite face design) the yield of soluble protein. Biological variables from the initial screening experiments included medium type and growth and induction conditions. To provide insight into the impact of the engineering environment on cell growth and expression, plate geometry, shaking speed, and liquid fill volume were included as factors since these strongly influence oxygen transfer into the wells. Compared to standard reference conditions, both the screening and optimization designs gave up to 3-fold increases in the soluble protein yield, i.e., a 9-fold increase overall. In general the highest protein yields were obtained when cells were induced at a relatively low biomass concentration and then allowed to grow slowly up to a high final biomass concentration, >8 g.L-1. Consideration and analysis of the model results showed 6 of the original 10 variables to be important at the screening stage and 3 after optimization. The latter included the microwell plate shaking speeds pre- and postinduction, indicating the importance of oxygen transfer into the microwells and identifying this as a critical parameter for subsequent scale translation studies. The optimization process, also known as response surface methodology (RSM), predicted there to be a distinct optimum set of conditions for protein expression which could be verified experimentally. This work provides a generic approach to protein expression optimization in which both biological and engineering variables are investigated from the initial screening stage. The application of DoE reduces the total number of experiments needed to be performed, while experimentation at the microwell scale increases experimental throughput and reduces cost.
Ashengroph, Morahem; Nahvi, Iraj; Amini, Jahanshir
2013-01-01
For all industrial processes, modelling, optimisation and control are the keys to enhance productivity and ensure product quality. In the current study, the optimization of process parameters for improving the conversion of isoeugenol to vanillin by Psychrobacter sp. CSW4 was investigated by means of Taguchi approach and Box-Behnken statistical design under resting cell conditions. Taguchi design was employed for screening the significant variables in the bioconversion medium. Sequentially, Box-Behnken design experiments under Response Surface Methodology (RSM) was used for further optimization. Four factors (isoeugenol, NaCl, biomass and tween 80 initial concentrations), which have significant effects on vanillin yield, were selected from ten variables by Taguchi experimental design. With the regression coefficient analysis in the Box-Behnken design, a relationship between vanillin production and four significant variables was obtained, and the optimum levels of the four variables were as follows: initial isoeugenol concentration 6.5 g/L, initial tween 80 concentration 0.89 g/L, initial NaCl concentration 113.2 g/L and initial biomass concentration 6.27 g/L. Under these optimized conditions, the maximum predicted concentration of vanillin was 2.25 g/L. These optimized values of the factors were validated in a triplicate shaking flask study and an average of 2.19 g/L for vanillin, which corresponded to a molar yield 36.3%, after a 24 h bioconversion was obtained. The present work is the first one reporting the application of Taguchi design and Response surface methodology for optimizing bioconversion of isoeugenol into vanillin under resting cell conditions.
Poster — Thur Eve — 61: A new framework for MPERT plan optimization using MC-DAO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, M; Lloyd, S AM; Townson, R
2014-08-15
This work combines the inverse planning technique known as Direct Aperture Optimization (DAO) with Intensity Modulated Radiation Therapy (IMRT) and combined electron and photon therapy plans. In particular, determining conditions under which Modulated Photon/Electron Radiation Therapy (MPERT) produces better dose conformality and sparing of organs at risk than traditional IMRT plans is central to the project. Presented here are the materials and methods used to generate and manipulate the DAO procedure. Included is the introduction of a powerful Java-based toolkit, the Aperture-based Monte Carlo (MC) MPERT Optimizer (AMMO), that serves as a framework for optimization and provides streamlined access tomore » underlying particle transport packages. Comparison of the toolkit's dose calculations to those produced by the Eclipse TPS and the demonstration of a preliminary optimization are presented as first benchmarks. Excellent agreement is illustrated between the Eclipse TPS and AMMO for a 6MV photon field. The results of a simple optimization shows the functioning of the optimization framework, while significant research remains to characterize appropriate constraints.« less
NASA Astrophysics Data System (ADS)
Mozumder, Chandan K.
The objective in crashworthiness design is to generate plastically deformable energy absorbing structures which can satisfy the prescribed force-displacement (FD) response. The FD behavior determines the reaction force, displacement and the internal energy that the structure should withstand. However, attempts to include this requirement in structural optimization problems remain scarce. The existing commercial optimization tools utilize models under static loading conditions because of the complexities associated with dynamic/impact loading. Due to the complexity of a crash event and the consequent time required to numerically analyze the dynamic response of the structure, classical methods (i.e., gradient-based and direct) are not well developed to solve this undertaking. This work presents an approach under the framework of the hybrid cellular automaton (HCA) method to solve the above challenge. The HCA method has been successfully applied to nonlinear transient topology optimization for crashworthiness design. In this work, the HCA algorithm has been utilized to develop an efficient methodology for synthesizing shell-based sheet metal structures with optimal material thickness distribution under a dynamic loading event using topometry optimization. This method utilizes the cellular automata (CA) computing paradigm and nonlinear transient finite element analysis (FEA) via ls-dyna. In this method, a set field variables is driven to their target states by changing a convenient set of design variables (e.g., thickness). These rules operate locally in cells within a lattice that only know local conditions. The field variables associated with the cells are driven to a setpoint to obtain the desired structure. This methodology is used to design for structures with controlled energy absorption with specified buckling zones. The peak reaction force and the maximum displacement are also constrained to meet the desired safety level according to passenger safety regulations. Design for prescribed FD response by minimizing the error between the actual response and desired FD curve is implemented. With the use of HCA rules, manufacturability constraints (e.g., rolling) and structures which can be manufactured by special techniques, such as, tailor-welded blanks (TWB), have also been implemented. This methodology is applied to shock-absorbing structural components for passengers in a crashing vehicle. These results are compared to previous designs showing the benefits of the method introduced in this work.
ERIC Educational Resources Information Center
Froese-Germain, Bernie; McGahey, Bob
2012-01-01
Across the country, teachers are working to provide individualized instruction to the students in their classes. Teachers use their professional judgement to modify teaching to suit the learning needs of students. Occasionally, this modification is required as a result of students being formally identified as having a learning exceptionality. As…
Design Concepts for Optimum Energy Use in HVAC Systems.
ERIC Educational Resources Information Center
Electric Energy Association, New York, NY.
Much of the innovative work in the design and application of heating, ventilating, and air conditioning (HVAC) systems is concentrated on improving the cost effectiveness of such systems through optimizing energy use. One approach to the problem is to reduce a building's HVAC energy demands by designing it for lower heat gains and losses in the…
Retrofitting Air Conditioning and Duct Systems in Hot, Dry Climates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shapiro, C.; Aldrich, R.; Arena, L.
2012-07-01
This technical report describes CARB's work with Clark County Community Resources Division in Las Vegas, Nevada, to optimize procedures for upgrading cooling systems on existing homes in the area to implement health, safety, and energy improvements. Detailed monitoring of five AC systems showed that three of the five systems met or exceeded air flow rate goals.
ERIC Educational Resources Information Center
Allan, Walter C.; Erickson, Jeryl L.; Brookhouse, Phil; Johnson, Judith L.
2010-01-01
Maine's one-to-one laptop program provides an ideal opportunity to explore conditions that optimize teacher integration of technology-focused curriculum into the classroom. EcoScienceWorks (ESW) is an ecology curriculum that includes targeted simulations and a code block programming challenge developed through an NSF-ITEST grant. The project was…
Chan, Chung-Hung; See, Tiam-You; Yusoff, Rozita; Ngoh, Gek-Cheng; Kow, Kien-Woh
2017-04-15
This work demonstrated the optimization and scale up of microwave-assisted extraction (MAE) and ultrasonic-assisted extraction (UAE) of bioactive compounds from Orthosiphon stamineus using energy-based parameters such as absorbed power density and absorbed energy density (APD-AED) and response surface methodology (RSM). The intensive optimum conditions of MAE obtained at 80% EtOH, 50mL/g, APD of 0.35W/mL, AED of 250J/mL can be used to determine the optimum conditions of the scale-dependent parameters i.e. microwave power and treatment time at various extraction scales (100-300mL solvent loading). The yields of the up scaled conditions were consistent with less than 8% discrepancy and they were about 91-98% of the Soxhlet extraction yield. By adapting APD-AED method in the case of UAE, the intensive optimum conditions of the extraction, i.e. 70% EtOH, 30mL/g, APD of 0.22W/mL, AED of 450J/mL are able to achieve similar scale up results. Copyright © 2016 Elsevier Ltd. All rights reserved.
Novel plasma source for safe beryllium spectral line studies in the presence of beryllium dust
NASA Astrophysics Data System (ADS)
Stankov, B. D.; Vinić, M.; Gavrilović Božović, M. R.; Ivković, M.
2018-05-01
Plasma source for beryllium spectral line studies in the presence of beryllium dust particles was realised. The guideline during construction was to prevent exposure to formed dust, considering the toxicity of beryllium. Plasma source characterization through determination of optimal working conditions is described. The necessary conditions for Be spectral line appearance and optimal conditions for line shape measurements are found. It is proven experimentally that under these conditions dust appears coincidently with the second current maximum. The electron density measured after discharge current maximum is determined from the peak separation of the hydrogen Balmer beta spectral line, and the electron temperature is determined from the ratios of the relative intensities of Be spectral lines emitted from successive ionized stages of atoms. Maximum values of electron density and temperature are measured to be 9.3 × 1022 m-3 and 16 800 K, respectively. Construction details and testing of the BeO discharge tube in comparison with SiO2 and Al2O3 discharge tubes are also presented in this paper.
Su, Lin-Hui; Zhao, Shuai; Jiang, Sui-Xin; Liao, Xu-Zhong; Duan, Cheng-Jie; Feng, Jia-Xun
2017-02-01
In this study, we investigated cellulase production by Penicillium oxalicum EU2106 under solid-state fermentation (SSF) and its hydrolysis efficiency toward NaOH-H 2 O 2 -pretreated cassava residue (NHCR) produced after bioethanol fermentation. Optimization of SSF cultivation conditions for P. oxalicum EU2106 using a Box-behnken design-based response-surface methodology resulted in maximal cellulase activity of 34.0 ± 2.8 filter-paper units/g dry substrate, exhibiting a ~ twofold increase relative to activities obtained under non-optimized conditions. Furthermore, SSF-derived cellulase converted 94.3 ± 1.5% of NHCR cellulose into glucose within 96 h. Interestingly, P. oxalicum EU2106 produced higher β-glucosidase activity under SSF conditions than that under submerged-state fermentation conditions, resulting in the elimination of cellobiose inhibition during the early stages of NHCR cellulose hydrolysis. Overall, this work provided an alternative for a potential cellulase source and a preferred option for cassava residue biotechnological application.
Trajectory optimization and guidance law development for national aerospace plane applications
NASA Technical Reports Server (NTRS)
Calise, A. J.; Flandro, G. A.; Corban, J. E.
1988-01-01
The work completed to date is comprised of the following: a simple vehicle model representative of the aerospace plane concept in the hypersonic flight regime, fuel-optimal climb profiles for the unconstrained and dynamic pressure constrained cases generated using a reduced order dynamic model, an analytic switching condition for transition to rocket powered flight as orbital velocity is approached, simple feedback guidance laws for both the unconstrained and dynamic pressure constrained cases derived via singular perturbation theory and a nonlinear transformation technique, and numerical simulation results for ascent to orbit in the dynamic pressure constrained case.
Sensor-Based Optimized Control of the Full Load Instability in Large Hydraulic Turbines
Presas, Alexandre; Valero, Carme; Egusquiza, Eduard
2018-01-01
Hydropower plants are of paramount importance for the integration of intermittent renewable energy sources in the power grid. In order to match the energy generated and consumed, Large hydraulic turbines have to work under off-design conditions, which may lead to dangerous unstable operating points involving the hydraulic, mechanical and electrical system. Under these conditions, the stability of the grid and the safety of the power plant itself can be compromised. For many Francis Turbines one of these critical points, that usually limits the maximum output power, is the full load instability. Therefore, these machines usually work far away from this unstable point, reducing the effective operating range of the unit. In order to extend the operating range of the machine, working closer to this point with a reasonable safety margin, it is of paramount importance to monitor and to control relevant parameters of the unit, which have to be obtained with an accurate sensor acquisition strategy. Within the framework of a large EU project, field tests in a large Francis Turbine located in Canada (rated power of 444 MW) have been performed. Many different sensors were used to monitor several working parameters of the unit for all its operating range. Particularly for these tests, more than 80 signals, including ten type of different sensors and several operating signals that define the operating point of the unit, were simultaneously acquired. The present study, focuses on the optimization of the acquisition strategy, which includes type, number, location, acquisition frequency of the sensors and corresponding signal analysis to detect the full load instability and to prevent the unit from reaching this point. A systematic approach to determine this strategy has been followed. It has been found that some indicators obtained with different types of sensors are linearly correlated with the oscillating power. The optimized strategy has been determined based on the correlation characteristics (linearity, sensitivity and reactivity), the simplicity of the installation and the acquisition frequency necessary. Finally, an economic and easy implementable protection system based on the resulting optimized acquisition strategy is proposed. This system, which can be used in a generic Francis turbine with a similar full load instability, permits one to extend the operating range of the unit by working close to the instability with a reasonable safety margin. PMID:29601512
Sensor-Based Optimized Control of the Full Load Instability in Large Hydraulic Turbines.
Presas, Alexandre; Valentin, David; Egusquiza, Mònica; Valero, Carme; Egusquiza, Eduard
2018-03-30
Hydropower plants are of paramount importance for the integration of intermittent renewable energy sources in the power grid. In order to match the energy generated and consumed, Large hydraulic turbines have to work under off-design conditions, which may lead to dangerous unstable operating points involving the hydraulic, mechanical and electrical system. Under these conditions, the stability of the grid and the safety of the power plant itself can be compromised. For many Francis Turbines one of these critical points, that usually limits the maximum output power, is the full load instability. Therefore, these machines usually work far away from this unstable point, reducing the effective operating range of the unit. In order to extend the operating range of the machine, working closer to this point with a reasonable safety margin, it is of paramount importance to monitor and to control relevant parameters of the unit, which have to be obtained with an accurate sensor acquisition strategy. Within the framework of a large EU project, field tests in a large Francis Turbine located in Canada (rated power of 444 MW) have been performed. Many different sensors were used to monitor several working parameters of the unit for all its operating range. Particularly for these tests, more than 80 signals, including ten type of different sensors and several operating signals that define the operating point of the unit, were simultaneously acquired. The present study, focuses on the optimization of the acquisition strategy, which includes type, number, location, acquisition frequency of the sensors and corresponding signal analysis to detect the full load instability and to prevent the unit from reaching this point. A systematic approach to determine this strategy has been followed. It has been found that some indicators obtained with different types of sensors are linearly correlated with the oscillating power. The optimized strategy has been determined based on the correlation characteristics (linearity, sensitivity and reactivity), the simplicity of the installation and the acquisition frequency necessary. Finally, an economic and easy implementable protection system based on the resulting optimized acquisition strategy is proposed. This system, which can be used in a generic Francis turbine with a similar full load instability, permits one to extend the operating range of the unit by working close to the instability with a reasonable safety margin.
Chiesa, S; Gnansounou, E
2014-05-01
In the present work, two pretreatment techniques using either dilute acid (H2SO4) or dilute alkali (NaOH) have been compared for producing bioethanol from Empty Fruit Bunches (EFBs) from oil palm tree, a relevant feedstock for tropical countries. Treatments' performances under different conditions have been assessed and statistically optimized with respect to the response upon standardized enzymatic saccharification. The dilute acid treatment performed at optimal conditions (161.5°C, 9.44 min and 1.51% acid loading) gave 85.5% glucose yield, comparable to those of other commonly investigated feedstocks. Besides, the possibility of using fibers instead of finely ground biomass may be of economic interest. Oppositely, treatment with dilute alkali has shown lower performances under the conditions explored, most likely given the relatively significant lignin content, suggesting that the use of stronger alkali regime (with the associated drawbacks) is unavoidable to improve the performance of this treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Modeling of acetate-type fermentation of sugar-containing wastewater under acidic pH conditions.
Huang, Liang; Pan, Xin-Rong; Wang, Ya-Zhou; Li, Chen-Xuan; Chen, Chang-Bin; Zhao, Quan-Bao; Mu, Yang; Yu, Han-Qing; Li, Wen-Wei
2018-01-01
In this study, a kinetic model was developed based on Anaerobic Digestion Model No. 1 to provide insights into the directed production of acetate and methane from sugar-containing wastewater under low pH conditions. The model sufficiently described the dynamics of liquid-phase and gaseous products in an anaerobic membrane bioreactor by comprehensively considering the syntrophic bioconversion steps of sucrose hydrolysis, acidogenesis, acetogenesis and methanogenesis under acidic pH conditions. The modeling results revealed a significant pH-dependency of hydrogenotrophic methanogenesis and ethanol-producing processes that govern the sucrose fermentative pathway through changing the hydrogen yield. The reaction thermodynamics of such acetate-type fermentation were evaluated, and the implications for process optimization by adjusting the hydraulic retention time were discussed. This work sheds light on the acid-stimulated acetate-type fermentation process and may lay a foundation for optimization of resource-oriented processes for treatment of food wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hassan, Syed Shamsul; Shah, Sayed Asmat Ali; Pan, Chengqian; Fu, Leilei; Cao, Xun; Shi, Yutong; Wu, Xiaodan; Wang, Kuiwu; Wu, Bin
2017-01-01
Elicitation by chemical means including heavy metals is one of a new technique for drug discoveries. In this research, the effect of heavy metals on marine actinobacteria Streptomyces sp. H-1003 for the production of enterocin, with a strong broad spectrum activity, along optimized fermented medium was firstly investigated. The optimum metal stress conditions consisted of culturing marine actinobacteria strain H-1003 with addition of cobalt ions at 2mM in optimized Gause's medium having starch at 20mg/L for 10 days at 180 revolution/min. Under these conditions, enterocin production was enhanced with a value of 5.33mg/L, which was totally absent at the normal culture of strain H-1003 and much higher than other tested metal-stress conditions. This work triumphantly announced a prodigious effect of heavy metals on marine actinobacteria with fringe benefits as a key tool of enterocin production.
The initial-value problem for viscous channel flows
NASA Technical Reports Server (NTRS)
Criminale, W. O.; Jackson, T. L.; Lasseigne, D. G.
1995-01-01
Plane viscous channel flows are perturbed and the ensuing initial-value problems are investigated in detail. Unlike traditional methods where traveling wave normal modes are assumed for solution, this works offers a means whereby completely arbitrary initial input can be specified without having to resort to eigenfunction expansions. The full temporal behavior, including both early time transients and the long time asymptotics, can be determined for any initial disturbance. Effects of three-dimensionality can be assessed. The bases for the analysis are: (a) linearization of the governing equations; (b) Fourier decomposition in the spanwise and streamwise directions of the flow; and (c) direct numerical integration of the resulting partial differential equations. All of the stability data that are known for such flows can be reproduced. Also, the optimal initial condition can be determined in a straight forward manner and such optimal conditions clearly reflect transient growth data that is easily determined by a rational choice of a basis for the initial conditions. Although there can be significant transient growth for subcritical values of the Reynolds number using this approach it does not appear possible that arbitrary initial conditions will lead to the exceptionally large transient amplitudes that have been determined by optimization of normal modes. The approach is general and can be applied to other classes of problems where only a finite discrete spectrum exists, such as the boundary layer for example.
Cascella, Raffaella; Stocchi, Laura; Strafella, Claudia; Mezzaroma, Ivano; Mannazzu, Marco; Vullo, Vincenzo; Montella, Francesco; Parruti, Giustino; Borgiani, Paola; Sangiuolo, Federica; Novelli, Giuseppe; Pirazzoli, Antonella; Zampatti, Stefania; Giardina, Emiliano
2015-01-01
Our work aimed to designate the optimal DNA source for pharmacogenetic assays, such as the screening for HLA-B*57:01 allele. A saliva and four buccal swab samples were taken from 104 patients. All the samples were stored at different time and temperature conditions and then genotyped for the HLA-B*57:01 allele by SSP-PCR and classical/capillary electrophoresis. The genotyping analysis reported different performance rates depending on the storage conditions of the samples. Given our results, the buccal swab demonstrated to be more resistant and stable in time with respect to the saliva. Our investigation designates the buccal swab as the optimal DNA source for pharmacogenetic assays in terms of resistance, low infectivity, low-invasiveness and easy sampling, and safe transport in centralized medical centers providing specialized pharmacogenetic tests.
Al-Dhabi, Naif Abdullah; Ponmurugan, Karuppiah; Maran Jeganathan, Prakash
2017-01-01
In this current work, Box-Behnken statistical experimental design (BBD) was adopted to evaluate and optimize USLE (ultrasound-assisted solid-liquid extraction) of phytochemicals from spent coffee grounds. Factors employed in this study are ultrasonic power, temperature, time and solid-liquid (SL) ratio. Individual and interactive effect of independent variables over the extraction yield was depicted through mathematical models, which are generated from the experimental data. Determined optimum process conditions are 244W of ultrasonic power, 40°C of temperature, 34min of time and 1:17g/ml of SL ratio. The predicted values were in correlation with experimental values with 95% confidence level, under the determined optimal conditions. This indicates the significance of selected method for USLE of phytochemicals from SCG. Copyright © 2016 Elsevier B.V. All rights reserved.
Optimization of Bread Enriched with Garcinia mangostana Pericarp Powder
NASA Astrophysics Data System (ADS)
Ibrahim, U. K.; Salleh, R. Mohd; Maqsood-ul-Hague, S. N. S.; Hashib, S. Abd; Karim, S. F. Abd
2018-05-01
The aim of present work is to optimize the formulation of bread enhanced with Garcinia mangostana pericarp powder with the combination of baking process conditions. The independent variables used were baking time (15 - 30 minutes), baking temperature (180 - 220°C) and pericarp powder concentration (0.5 - 2.0%). The physical and chemical properties of bread sample such as antioxidant activity, phenolic content, moisture analysis and colour parameters were studied. Bread dough without fortification of pericarp powder was used as control. Data obtained were analyzed by multiple regressions and the significant model such as linear and quadratic with variables interactions were used. As a conclusion, the optimum baking conditions were found at 213°C baking temperature with 23 minutes baking time and addition of 0.87% for Garcinia mangostana pericarp powder to the bread formulation.
Optimized Production of Xylitol from Xylose Using a Hyper-Acidophilic Candida tropicalis.
Tamburini, Elena; Costa, Stefania; Marchetti, Maria Gabriella; Pedrini, Paola
2015-08-19
The yeast Candida tropicalis DSM 7524 produces xylitol, a natural, low-calorie sweetener, by fermentation of xylose. In order to increase xylitol production rate during the submerged fermentation process, some parameters-substrate (xylose) concentration, pH, aeration rate, temperature and fermentation strategy-have been optimized. The maximum xylitol yield reached at 60-80 g/L initial xylose concentration, pH 5.5 at 37 °C was 83.66% (w/w) on consumed xylose in microaerophilic conditions (kLa = 2·h(-1)). Scaling up on 3 L fermenter, with a fed-batch strategy, the best xylitol yield was 86.84% (w/w), against a 90% of theoretical yield. The hyper-acidophilic behaviour of C. tropicalis makes this strain particularly promising for industrial application, due to the possibility to work in non-sterile conditions.
Optimized Production of Xylitol from Xylose Using a Hyper-Acidophilic Candida tropicalis
Tamburini, Elena; Costa, Stefania; Marchetti, Maria Gabriella; Pedrini, Paola
2015-01-01
The yeast Candida tropicalis DSM 7524 produces xylitol, a natural, low-calorie sweetener, by fermentation of xylose. In order to increase xylitol production rate during the submerged fermentation process, some parameters-substrate (xylose) concentration, pH, aeration rate, temperature and fermentation strategy-have been optimized. The maximum xylitol yield reached at 60–80 g/L initial xylose concentration, pH 5.5 at 37 °C was 83.66% (w/w) on consumed xylose in microaerophilic conditions (kLa = 2·h−1). Scaling up on 3 L fermenter, with a fed-batch strategy, the best xylitol yield was 86.84% (w/w), against a 90% of theoretical yield. The hyper-acidophilic behaviour of C. tropicalis makes this strain particularly promising for industrial application, due to the possibility to work in non-sterile conditions. PMID:26295411
A sigmoidal model for biosorption of heavy metal cations from aqueous media.
Özen, Rümeysa; Sayar, Nihat Alpagu; Durmaz-Sam, Selcen; Sayar, Ahmet Alp
2015-07-01
A novel multi-input single output (MISO) black-box sigmoid model is developed to simulate the biosorption of heavy metal cations by the fission yeast from aqueous medium. Validation and verification of the model is done through statistical chi-squared hypothesis tests and the model is evaluated by uncertainty and sensitivity analyses. The simulated results are in agreement with the data of the studied system in which Schizosaccharomyces pombe biosorbs Ni(II) cations at various process conditions. Experimental data is obtained originally for this work using dead cells of an adapted variant of S. Pombe and represented by Freundlich isotherms. A process optimization scheme is proposed using the present model to build a novel application of a cost-merit objective function which would be useful to predict optimal operation conditions. Copyright © 2015. Published by Elsevier Inc.
Barriers to return to work after burn injuries.
Esselman, Peter C; Askay, Shelley Wiechman; Carrougher, Gretchen J; Lezotte, Dennis C; Holavanahalli, Radha K; Magyar-Russell, Gina; Fauerbach, James A; Engrav, Loren H
2007-12-01
To identify barriers to return to work after burn injury as identified by the patient. A cohort study with telephone interview up to 1 year. Hospital-based burn centers at 3 national sites. Hospitalized patients (N=154) meeting the American Burn Association criteria for major burn injury, employed at least 20 hours a week at the time of injury, and with access to a telephone after discharge. Patients were contacted via telephone every 2 weeks up to 4 months, then monthly up to 1 year after discharge. A return to work survey was used to identify barriers that prevented patients from returning to work. A graphic rating scale determined the impact of each barrier. By 1 year, 79.7% of patients returned to work. Physical and wound issues were barriers early after discharge. Although physical abilities continued to be a significant barrier up to 1 year, working conditions (temperature, humidity, safety) and psychosocial factors (nightmares, flashbacks, appearance concerns) became important issues in those with long-term disability. The majority of patients return to work after a burn injury. Although physical and work conditions are important barriers, psychosocial issues need to be evaluated and treated to optimize return to work.
NASA Astrophysics Data System (ADS)
Rodríguez, A.; Astrain, D.; Martínez, A.; Aranguren, P.
2014-06-01
In the work discussed in this paper a thermoelectric generator was developed to harness waste heat from the exhaust gas of a boiler in a biomass power plant and thus generate electric power to operate a flowmeter installed in the chimney, to make it autonomous. The main objective was to conduct an experimental study to optimize a previous design obtained after computational work based on a simulation model for thermoelectric generators. First, several places inside and outside the chimney were considered as sites for the thermoelectricity-driven autonomous sensor. Second, the thermoelectric generator was built and tested to assess the effect of the cold-side heat exchanger on the electric power, power consumption by the flowmeter, and transmission frequency. These tests provided the best configuration for the heat exchanger, which met the transmission requirements for different working conditions. The final design is able to transmit every second and requires neither batteries nor electric wires. It is a promising application in the field of thermoelectric generation.
The dentist’s operating posture – ergonomic aspects
Pîrvu, C; Pătraşcu, I; Pîrvu, D; Ionescu, C
2014-01-01
Abstract The practice of dentistry involves laborious high finesse dental preparations, precision and control in executions that require a particular attention, concentration and patience of the dentist and finally the dentist’s physical and mental resistance. The optimal therapeutic approach and the success of practice involve special working conditions for the dentist and his team in an ergonomic environment. The meaning of the posture in ergonomics is the manner in which different parts of the body are located and thus the reports are established between them in order to allow a special task execution. This article discusses the posture adopted by dentists when they work, beginning with the balanced posture and going to different variants of posture. The ideal posture of a dentist gives him, on the one hand the optimal working conditions (access, visibility and control in the mouth) and on the other hand, physical and psychological comfort throughout the execution of the clinical acts. Although the theme of dentist posture is treated with great care and often presented in the undergraduate courses and the continuing education courses on ergonomics in dentistry, many dentists do not know the subject well enough nor the theoretical issues and therefore nor the practical applicability. The risk and perspective of the musculoskeletal disorders related to unbalanced postures should determine the dentists take postural corrective actions and compensation measures in order to limit the negative effects of working in a bad posture. PMID:25184007
Danylov, Iu V; Motkov, K V; Shevchenko, T I
2014-01-01
The morphometric estimation of parenchyma and stroma condition included the determination of 25 parameters in a prostate gland at 27 persons. The mathematical model of morphogenesis of prostate gland was created by Bayes' method. The method of differential diagnosis of a prostate gland tissues' changes conditioned by the influence of the Chernobyl factor and/or unfavorable terms of the work in underground coal mines have been worked out. Its practical use provides exactness and reliability of the diagnosis (not less than 95%), independence from the level of the qualification and personal experience of the doctor, allows us to unify, optimize and individualize the diagnostic algorithms, answer the requirements of evidential medicine.
Danylov, Iu V; Motkov, K V; Shevchenko, T I
2014-01-01
The morphometric estimation of parenchyma and stroma condition included the determination of 29 parameters in testicles at 27 persons. The mathematical model of morphogenesis of testicles was created by Bayes' method. The method of differential diagnosis of testicles tissues' changes conditioned by the influence of the Chernobyl factor and/or unfavorable terms of the work in underground coal mines have been worked out. Its practical use provides exactness and reliability of the diagnosis (not less than 95%), independence from the level of the qualification and personal experience of the doctor, allows us to unify, optimize and individualize the diagnostic algorithms, answer the requirements of evidential medicine.
Data collection system for a wide range of gas-discharge proportional neutron counters
NASA Astrophysics Data System (ADS)
Oskomov, V.; Sedov, A.; Saduyev, N.; Kalikulov, O.; Kenzhina, I.; Tautaev, E.; Mukhamejanov, Y.; Dyachkov, V.; Utey, Sh
2017-12-01
This article describes the development and creation of a universal system of data collection to measure the intensity of pulsed signals. As a result of careful analysis of time conditions and operating conditions of software and hardware complex circuit solutions were selected that meet the required specifications: frequency response is optimized in order to obtain the maximum ratio signal/noise; methods and modes of operation of the microcontroller were worked out to implement the objectives of continuous measurement of signal amplitude at the output of amplifier and send the data to a computer; function of control of high voltage source was implemented. The preliminary program has been developed for microcontroller in its simplest form, which works on a particular algorithm.
Golubović, Jelena; Protić, Ana; Otašević, Biljana; Zečević, Mira
2016-04-01
QSRR are mathematically derived relationships between the chromatographic parameters determined for a representative series of analytes in given separation systems and the molecular descriptors accounting for the structural differences among the investigated analytes. Artificial neural network is a technique of data analysis, which sets out to emulate the human brain's way of working. The aim of the present work was to optimize separation of six angiotensin receptor antagonists, so-called sartans: losartan, valsartan, irbesartan, telmisartan, candesartan cilexetil and eprosartan in a gradient-elution HPLC method. For this purpose, ANN as a mathematical tool was used for establishing a QSRR model based on molecular descriptors of sartans and varied instrumental conditions. The optimized model can be further used for prediction of an external congener of sartans and analysis of the influence of the analyte structure, represented through molecular descriptors, on retention behaviour. Molecular descriptors included in modelling were electrostatic, geometrical and quantum-chemical descriptors: connolly solvent excluded volume non-1,4 van der Waals energy, octanol/water distribution coefficient, polarizability, number of proton-donor sites and number of proton-acceptor sites. Varied instrumental conditions were gradient time, buffer pH and buffer molarity. High prediction ability of the optimized network enabled complete separation of the analytes within the run time of 15.5 min under following conditions: gradient time of 12.5 min, buffer pH of 3.95 and buffer molarity of 25 mM. Applied methodology showed the potential to predict retention behaviour of an external analyte with the properties within the training space. Connolly solvent excluded volume, polarizability and number of proton-acceptor sites appeared to be most influential paramateres on retention behaviour of the sartans. Copyright © 2015 Elsevier B.V. All rights reserved.
Working-memory load and temporal myopia in dynamic decision making.
Worthy, Darrell A; Otto, A Ross; Maddox, W Todd
2012-11-01
We examined the role of working memory (WM) in dynamic decision making by having participants perform decision-making tasks under single-task or dual-task conditions. In 2 experiments participants performed dynamic decision-making tasks in which they chose 1 of 2 options on each trial. The decreasing option always gave a larger immediate reward but caused future rewards for both options to decrease. The increasing option always gave a smaller immediate reward but caused future rewards for both options to increase. In each experiment we manipulated the reward structure such that the decreasing option was the optimal choice in 1 condition and the increasing option was the optimal choice in the other condition. Behavioral results indicated that dual-task participants selected the immediately rewarding decreasing option more often, and single-task participants selected the increasing option more often, regardless of which option was optimal. Thus, dual-task participants performed worse on 1 type of task but better on the other type. Modeling results showed that single-task participants' data were most often best fit by a win-stay, lose-shift (WSLS) rule-based model that tracked differences across trials, and dual-task participants' data were most often best fit by a Softmax reinforcement learning model that tracked recency-weighted average rewards for each option. This suggests that manipulating WM load affects the degree to which participants focus on the immediate versus delayed consequences of their actions and whether they employ a rule-based WSLS strategy, but it does not necessarily affect how well people weigh the immediate versus delayed benefits when determining the long-term utility of each option.
Model Based Optimal Sensor Network Design for Condition Monitoring in an IGCC Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rajeeva; Kumar, Aditya; Dai, Dan
2012-12-31
This report summarizes the achievements and final results of this program. The objective of this program is to develop a general model-based sensor network design methodology and tools to address key issues in the design of an optimal sensor network configuration: the type, location and number of sensors used in a network, for online condition monitoring. In particular, the focus in this work is to develop software tools for optimal sensor placement (OSP) and use these tools to design optimal sensor network configuration for online condition monitoring of gasifier refractory wear and radiant syngas cooler (RSC) fouling. The methodology developedmore » will be applicable to sensing system design for online condition monitoring for broad range of applications. The overall approach consists of (i) defining condition monitoring requirement in terms of OSP and mapping these requirements in mathematical terms for OSP algorithm, (ii) analyzing trade-off of alternate OSP algorithms, down selecting the most relevant ones and developing them for IGCC applications (iii) enhancing the gasifier and RSC models as required by OSP algorithms, (iv) applying the developed OSP algorithm to design the optimal sensor network required for the condition monitoring of an IGCC gasifier refractory and RSC fouling. Two key requirements for OSP for condition monitoring are desired precision for the monitoring variables (e.g. refractory wear) and reliability of the proposed sensor network in the presence of expected sensor failures. The OSP problem is naturally posed within a Kalman filtering approach as an integer programming problem where the key requirements of precision and reliability are imposed as constraints. The optimization is performed over the overall network cost. Based on extensive literature survey two formulations were identified as being relevant to OSP for condition monitoring; one based on LMI formulation and the other being standard INLP formulation. Various algorithms to solve these two formulations were developed and validated. For a given OSP problem the computation efficiency largely depends on the “size” of the problem. Initially a simplified 1-D gasifier model assuming axial and azimuthal symmetry was used to test out various OSP algorithms. Finally these algorithms were used to design the optimal sensor network for condition monitoring of IGCC gasifier refractory wear and RSC fouling. The sensors type and locations obtained as solution to the OSP problem were validated using model based sensing approach. The OSP algorithm has been developed in a modular form and has been packaged as a software tool for OSP design where a designer can explore various OSP design algorithm is a user friendly way. The OSP software tool is implemented in Matlab/Simulink© in-house. The tool also uses few optimization routines that are freely available on World Wide Web. In addition a modular Extended Kalman Filter (EKF) block has also been developed in Matlab/Simulink© which can be utilized for model based sensing of important process variables that are not directly measured through combining the online sensors with model based estimation once the hardware sensor and their locations has been finalized. The OSP algorithm details and the results of applying these algorithms to obtain optimal sensor location for condition monitoring of gasifier refractory wear and RSC fouling profile are summarized in this final report.« less
Assessment of peak power and short-term work capacity.
MacIntosh, Brian R; Rishaug, Peter; Svedahl, Krista
2003-02-01
The purpose of this study was to evaluate conditions for conducting a 30 s Wingate test such as load selection, and the method of starting the test (stationary or flying start). Nine male and four female athletes volunteered to be tested on four laboratory visits. Tests were performed on a modified Monark cycle ergometer (Varberg, Sweden) equipped with force transducers on the friction belt and an optical encoder for velocity measurement. Power was calculated with the moment of inertia (I) of the flywheel taken into consideration. One laboratory visit was used to determine individualized optimal resistance conditions. The other three visits were for performance of one of three Wingate tests: a flying start with 0.834 N x kg(-1) [85 g x kg(-1) body weight (BW)] resistance (FLY-0.8); a stationary start with 0.834 N x kg(-1) BW resistance (ST-0.8), or a stationary start with optimal resistance (ST-OPT). FLY-0.8 gave a lower (P<0.05) value for short-term work capacity [19,986 (827) J] than either ST-OPT [23,014 (1,167) J] or ST-0.8 [22,321 (1075) J]. Peak power output per pedal revolution was lower ( P<0.005) for FLY-0.8 [833 (40) W] than for either ST-0.8 [974 (57) W] or ST-OPT [989 (61) W]. The results of this study demonstrate that higher values for peak power and short-term work capacity are obtained with a test from a stationary start. It is apparently not necessary to use an individualized optimal resistance when I is considered in a Wingate test initiated from a standstill.
$L^1$ penalization of volumetric dose objectives in optimal control of PDEs
Barnard, Richard C.; Clason, Christian
2017-02-11
This work is concerned with a class of PDE-constrained optimization problems that are motivated by an application in radiotherapy treatment planning. Here the primary design objective is to minimize the volume where a functional of the state violates a prescribed level, but prescribing these levels in the form of pointwise state constraints leads to infeasible problems. We therefore propose an alternative approach based on L 1 penalization of the violation that is also applicable when state constraints are infeasible. We establish well-posedness of the corresponding optimal control problem, derive first-order optimality conditions, discuss convergence of minimizers as the penalty parametermore » tends to infinity, and present a semismooth Newton method for their efficient numerical solution. Finally, the performance of this method for a model problem is illustrated and contrasted with an alternative approach based on (regularized) state constraints.« less
LEDs on the threshold for use in projection systems: challenges, limitations and applications
NASA Astrophysics Data System (ADS)
Moffat, Bryce Anton
2006-02-01
The use of coloured LEDs as light sources in digital projectors depends on an optimal combination of optical, electrical and thermal parameters to meet the performance and cost targets needed to enable these products to compete in the marketplace. This paper describes the system design methodology for a digital micromirror display (DMD) based optical engine using LEDs as the light source, starting at the basic physical and geometrical parameters of the DMD and other optical elements through characterization of the LEDs to optimizing the system performance by determining optimal driving conditions. The main challenge in using LEDs is the luminous flux density, which is just at the threshold of acceptance in projection systems and thus only a fully optimized optical system with a uniformly bright set of LEDs can be used. As a result of this work we have developed two applications: a compact pocket projector and a rear projection television.
An optimal control method for fluid structure interaction systems via adjoint boundary pressure
NASA Astrophysics Data System (ADS)
Chirco, L.; Da Vià, R.; Manservisi, S.
2017-11-01
In recent year, in spite of the computational complexity, Fluid-structure interaction (FSI) problems have been widely studied due to their applicability in science and engineering. Fluid-structure interaction systems consist of one or more solid structures that deform by interacting with a surrounding fluid flow. FSI simulations evaluate the tensional state of the mechanical component and take into account the effects of the solid deformations on the motion of the interior fluids. The inverse FSI problem can be described as the achievement of a certain objective by changing some design parameters such as forces, boundary conditions and geometrical domain shapes. In this paper we would like to study the inverse FSI problem by using an optimal control approach. In particular we propose a pressure boundary optimal control method based on Lagrangian multipliers and adjoint variables. The objective is the minimization of a solid domain displacement matching functional obtained by finding the optimal pressure on the inlet boundary. The optimality system is derived from the first order necessary conditions by taking the Fréchet derivatives of the Lagrangian with respect to all the variables involved. The optimal solution is then obtained through a standard steepest descent algorithm applied to the optimality system. The approach presented in this work is general and could be used to assess other objective functionals and controls. In order to support the proposed approach we perform a few numerical tests where the fluid pressure on the domain inlet controls the displacement that occurs in a well defined region of the solid domain.
NASA Astrophysics Data System (ADS)
Norlina, M. S.; Diyana, M. S. Nor; Mazidah, P.; Rusop, M.
2016-07-01
In the RF magnetron sputtering process, the desirable layer properties are largely influenced by the process parameters and conditions. If the quality of the thin film has not reached up to its intended level, the experiments have to be repeated until the desirable quality has been met. This research is proposing Gravitational Search Algorithm (GSA) as the optimization model to reduce the time and cost to be spent in the thin film fabrication. The optimization model's engine has been developed using Java. The model is developed based on GSA concept, which is inspired by the Newtonian laws of gravity and motion. In this research, the model is expected to optimize four deposition parameters which are RF power, deposition time, oxygen flow rate and substrate temperature. The results have turned out to be promising and it could be concluded that the performance of the model is satisfying in this parameter optimization problem. Future work could compare GSA with other nature based algorithms and test them with various set of data.
Kumar, Manish; Gupta, Asmita; Thakur, Indu Shekhar
2016-08-01
The present work involved screening of a previously reported carbon concentrating oleaginous bacterial strain Serratia sp. ISTD04 for production of PHA and optimization of process parameters for enhanced PHA and biomass generation. The selected bacterial strain was screened for PHA production based on Nile red staining followed by visualization under fluorescence microscope. Spectrofluorometric measurement of Nile red fluorescence of the bacterial culture was also done. Confirmatory analysis of PHA accumulation by GC-MS revealed the presence of 3-hydroxyvalerate. Detection of characteristic peaks in the FT-IR spectrum further confirmed the production of PHA by the bacterium. Response Surface Methodology was used for optimization of pH and carbon sources' concentrations for higher PHA production. There was almost a 2 fold increase in the production of PHA following optimization as compared to un-optimized condition. The study thus establishes the production of PHA by Serratia sp. ISTD04. Copyright © 2016 Elsevier Ltd. All rights reserved.
Optimal design and uncertainty quantification in blood flow simulations for congenital heart disease
NASA Astrophysics Data System (ADS)
Marsden, Alison
2009-11-01
Recent work has demonstrated substantial progress in capabilities for patient-specific cardiovascular flow simulations. Recent advances include increasingly complex geometries, physiological flow conditions, and fluid structure interaction. However inputs to these simulations, including medical image data, catheter-derived pressures and material properties, can have significant uncertainties associated with them. For simulations to predict clinically useful and reliable output information, it is necessary to quantify the effects of input uncertainties on outputs of interest. In addition, blood flow simulation tools can now be efficiently coupled to shape optimization algorithms for surgery design applications, and these tools should incorporate uncertainty information. We present a unified framework to systematically and efficient account for uncertainties in simulations using adaptive stochastic collocation. In addition, we present a framework for derivative-free optimization of cardiovascular geometries, and layer these tools to perform optimization under uncertainty. These methods are demonstrated using simulations and surgery optimization to improve hemodynamics in pediatric cardiology applications.
Aerostructural Level Set Topology Optimization for a Common Research Model Wing
NASA Technical Reports Server (NTRS)
Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia
2014-01-01
The purpose of this work is to use level set topology optimization to improve the design of a representative wing box structure for the NASA common research model. The objective is to minimize the total compliance of the structure under aerodynamic and body force loading, where the aerodynamic loading is coupled to the structural deformation. A taxi bump case was also considered, where only body force loads were applied. The trim condition that aerodynamic lift must balance the total weight of the aircraft is enforced by allowing the root angle of attack to change. The level set optimization method is implemented on an unstructured three-dimensional grid, so that the method can optimize a wing box with arbitrary geometry. Fast matching and upwind schemes are developed for an unstructured grid, which make the level set method robust and efficient. The adjoint method is used to obtain the coupled shape sensitivities required to perform aerostructural optimization of the wing box structure.
NASA Technical Reports Server (NTRS)
Chuang, C.-H.; Goodson, Troy D.; Ledsinger, Laura A.
1995-01-01
This report describes current work in the numerical computation of multiple burn, fuel-optimal orbit transfers and presents an analysis of the second variation for extremal multiple burn orbital transfers as well as a discussion of a guidance scheme which may be implemented for such transfers. The discussion of numerical computation focuses on the use of multivariate interpolation to aid the computation in the numerical optimization. The second variation analysis includes the development of the conditions for the examination of both fixed and free final time transfers. Evaluations for fixed final time are presented for extremal one, two, and three burn solutions of the first variation. The free final time problem is considered for an extremal two burn solution. In addition, corresponding changes of the second variation formulation over thrust arcs and coast arcs are included. The guidance scheme discussed is an implicit scheme which implements a neighboring optimal feedback guidance strategy to calculate both thrust direction and thrust on-off times.
Optimal solution and optimality condition of the Hunter-Saxton equation
NASA Astrophysics Data System (ADS)
Shen, Chunyu
2018-02-01
This paper is devoted to the optimal distributed control problem governed by the Hunter-Saxton equation with constraints on the control. We first investigate the existence and uniqueness of weak solution for the controlled system with appropriate initial value and boundary conditions. In contrast with our previous research, the proof of solution mapping is local Lipschitz continuous, which is one big improvement. Second, based on the well-posedness result, we find a unique optimal control and optimal solution for the controlled system with the quadratic cost functional. Moreover, we establish the sufficient and necessary optimality condition of an optimal control by means of the optimal control theory, not limited to the necessary condition, which is another major novelty of this paper. We also discuss the optimality conditions corresponding to two physical meaningful distributed observation cases.
Analysis-Driven Design Optimization of a SMA-Based Slat-Cove Filler for Aeroacoustic Noise Reduction
NASA Technical Reports Server (NTRS)
Scholten, William; Hartl, Darren; Turner, Travis
2013-01-01
Airframe noise is a significant component of environmental noise in the vicinity of airports. The noise associated with the leading-edge slat of typical transport aircraft is a prominent source of airframe noise. Previous work suggests that a slat-cove filler (SCF) may be an effective noise treatment. Hence, development and optimization of a practical slat-cove-filler structure is a priority. The objectives of this work are to optimize the design of a functioning SCF which incorporates superelastic shape memory alloy (SMA) materials as flexures that permit the deformations involved in the configuration change. The goal of the optimization is to minimize the actuation force needed to retract the slat-SCF assembly while satisfying constraints on the maximum SMA stress and on the SCF deflection under static aerodynamic pressure loads, while also satisfying the condition that the SCF self-deploy during slat extension. A finite element analysis model based on a physical bench-top model is created in Abaqus such that automated iterative analysis of the design could be performed. In order to achieve an optimized design, several design variables associated with the current SCF configuration are considered, such as the thicknesses of SMA flexures and the dimensions of various components, SMA and conventional. Designs of experiment (DOE) are performed to investigate structural response to an aerodynamic pressure load and to slat retraction and deployment. DOE results are then used to inform the optimization process, which determines a design minimizing actuator forces while satisfying the required constraints.
Evaluation of an ontological resource for pharmacovigilance.
Jaulent, Marie-Christine; Alecu, Iulian
2009-01-01
In this work, we present a methodology for evaluating an ontology designed in a previous study to describe adverse drug reactions. We evaluate it in term of its fitness for grouping cases in pharmacovigilance. We define as gold standard the Standardized MedDRA Queries (SMQs) developed manually to group terms representing similar medical conditions. We perform an automatic search in the ontology in order to retrieve concepts related to the medical conditions. An optimal query is built for each medical condition. The evaluation relies on the comparison between the terms in the SMQ and the terms subsumed by the query. The result is quantified by sensitivity and specificity. We applied this methodology for 24 SMQs and we obtain a mean sensitivity of 0.82. This work allows validating the semantic resource and provides, in perspective, tools to maintain the ontology while the knowledge is evolving.
Alventosa-deLara, E; Barredo-Damas, S; Alcaina-Miranda, M I; Iborra-Clar, M I
2014-05-01
Membrane fouling is one of the main drawbacks of ultrafiltration technology during the treatment of dye-containing effluents. Therefore, the optimization of the membrane cleaning procedure is essential to improve the overall efficiency. In this work, a study of the factors affecting the ultrasound-assisted cleaning of an ultrafiltration ceramic membrane fouled by dye particles was carried out. The effect of transmembrane pressure (0.5, 1.5, 2.5 bar), cross-flow velocity (1, 2, 3 ms(-1)), ultrasound power level (40%, 70%, 100%) and ultrasound frequency mode (37, 80 kHz and mixed wave) on the cleaning efficiency was evaluated. The lowest frequency showed better results, although the best cleaning performance was obtained using the mixed wave mode. A Box-Behnken Design was used to find the optimal conditions for the cleaning procedure through a response surface study. The optimal operating conditions leading to the maximum cleaning efficiency predicted (32.19%) were found to be 1.1 bar, 3 ms(-1) and 100% of power level. Finally, the optimized response was compared to the efficiency of a chemical cleaning with NaOH solution, with and without the use of ultrasound. By using NaOH, cleaning efficiency nearly triples, and it improves up to 25% by adding ultrasound. Copyright © 2013 Elsevier B.V. All rights reserved.
Human Aspects and Habitat Studies from EuroGeoMars Campaign
NASA Astrophysics Data System (ADS)
Boche-Sauvan, L.; Pletser, V.; Foing, B. H.; Eurogeomars Team
2009-04-01
Introduction: In a human space mission, the human factor is one of the dominant aspects, which may strongly influence work results and efficiency. To quantify such a difficult and uncontrollable aspect of space missions, it is necessary to reproduce as exactly as possible the environmental and technical conditions in which astronauts may be confronted: limited re-sources, social interactions in an isolated and cramped area… We will take the benefit of the EuroGeoMars campaign in the Mars Desert Research Station (MDRS, Mars Society) in Utah to observe and measure these characteristics. EuroGeoMars campaign: The EuroGeoMars team aims at assessing the development of scientific protocols and techniques in geology and biology research in planetary conditions. In this framework, MRDS simulation constitutes its main achievement. The scientific investigations conducted in MRDS are expected to provide valuable results, beyond the simple reflection on how managing planetary specific conditions. Nevertheless, the different scientific protocols, even tailored for extreme environmental conditions, require an exhaustive analysis to evaluate how the results and their timing may possibly be affected. MDRS: The MDRS habitat will demand the crew members to work in a cramped environment, surrounded by dust and very limited manpower. Moreover, energy power and communication bandwidth will be limited to the crew members. Human aspects and habitat studies: The crewmember will work in an uncomfortable environment in the habitat: dust, cramping and crowd. Moreover, the sustainibility of the mission will relie on an optimal energy and ressources sharing. This will impose a planification of the different investigating activities. The study of the human aspects and habitat will be performed in terms of impact on scientific and technical tasks rather than in terms of crew's comfort. As any astronaut will previously be aware of the daily condition, we want to improve the working conditions in the aim of optimizing the obtaining of scientific results. A mission off the land will be worth only with a real scientific gain. Moreover, as the schedule is focused on the work time, better working conditions will provide better general living resentment. Following this approach, observations and interviews of the crewmembers in the simulation will be done. That will cover several sides: layout, equipment, area, and mostly man-machine interface. This last side will be the most studied in different situation: during daily life, in the laboratory, in the workshop and during the EVA. Indeed, the specifications for such an interface will be different according to the use: easy use in EVA, but with a good layout in the habitat. Acknowledgements: We thank the EuroGeo-Mars teams for their support in this study, and Mars Society for the opportunity of such a campaign.
Bouguecha, Salah T; Boubakri, Ali; Aly, Samir E; Al-Beirutty, Mohammad H; Hamdi, Mohamed M
2016-01-01
Membrane distillation (MD) is considered as a relatively high-energy requirement. To overcome this drawback, it is recommended to couple the MD process with solar energy as the renewable energy source in order to provide heat energy required to optimize its performance to produce permeate flux. In the present work, an original solar energy driven direct contact membrane distillation (DCMD) pilot plant was built and tested under actual weather conditions at Jeddah, KSA, in order to model and optimize permeate flux. The dependency of permeate flux on various operating parameters such as feed temperature (46.6-63.4°C), permeate temperature (6.6-23.4°C), feed flow rate (199-451L/h) and permeate flow rate (199-451L/h) was studied by response surface methodology based on central composite design approach. The analysis of variance (ANOVA) confirmed that all independent variables had significant influence on the model (where P-value <0.05). The high coefficient of determination (R(2) = 0.9644 and R(adj)(2) = 0.9261) obtained by ANOVA demonstrated good correlation between experimental and predicted values of the response. The optimized conditions, determined using desirability function, were T(f) = 63.4°C, Tp = 6.6°C, Q(f) = 451L/h and Q(p) = 451L/h. Under these conditions, the maximum permeate flux of 6.122 kg/m(2).h was achieved, which was close to the predicted value of 6.398 kg/m(2).h.
Policosanol fabrication from insect wax and optimization by response surface methodology.
Ma, Jinju; Ma, Liyi; Zhang, Hong; Zhang, Zhongquan; Wang, Youqiong; Li, Kai; Chen, Xiaoming
2018-01-01
Insect wax is a famous biological resource for the role in economic production in China. Insect wax is a good source of policosanol, which may is a candidate supplement in foodstuff and pharmaceuticals that has important physiological activities. Therefore, this work aims to investigate a high-yield and rapid method for policosanol fabrication from insect wax. The conditions for policosanol fabrication were optimized as follows: an oil bath temperature of 112.7°C and reductant dosage of 0.97 g (used for the reduction of 10.00 g of insect wax). The yield of policosanol reached 83.20%, which was 4 times greater than that of existing methods, such as saponification. The total content of policosanol obtained under the optimal conditions reached 87%. In other words, a high yield of policosanol was obtained from insect wax (723.84 mg/g), that was 55 times higher than that generated from beeswax-brown via saponification. The concentrations of metal residues in policosanol were within the limits of the European Union regulations and EFSA stipulation. The LD50 values for oral doses of insect wax and policosanol were both > 5 g/kg. Policosanol was fabricated via solvent-free reduction from insect wax using LiAlH4 at a high yield. The fabrication conditions were optimized. Policosanol and insect wax showed high security, which made them potential candidates as supplements in foods, pharmaceuticals and cosmetics. The rapid and high-yield method has great potential for commercial manufacturing of policosanol.
Guaraldi, Federica; Parasiliti-Caprino, Mirko; Goggi, Riccardo; Beccuti, Guglielmo; Grottoli, Silvia; Arvat, Emanuela; Ghizzoni, Lucia; Ghigo, Ezio; Giordano, Roberta; Gori, Davide
2014-12-01
The exponential growth of scientific literature available through electronic databases (namely PubMed) has increased the chance of finding interesting articles. At the same time, search has become more complicated, time consuming, and at risk of missing important information. Therefore, optimized strategies have to be adopted to maximize searching impact. The aim of this study was to formulate efficient strings to search PubMed for etiologic associations between adrenal disorders (ADs) and other conditions. A comprehensive list of terms identifying endogenous conditions primarily affecting adrenals was compiled. An ad hoc analysis was performed to find the best way to express each term in order to find the highest number of potentially pertinent articles in PubMed. A predefined number of retrieved abstracts were read to assess their association with ADs' etiology. A more sensitive (providing the largest literature coverage) and a more specific (including only those terms retrieving >40 % of potentially pertinent articles) string were formulated. Various researches were performed to assess strings' ability to identify articles of interest in comparison with non-optimized literature searches. We formulated optimized, ready applicable tools for the identification of the literature assessing etiologic associations in the field of ADs using PubMed, and demonstrated the advantages deriving from their application. Detailed description of the methodological process is also provided, so that this work can easily be translated to other fields of practice.
Wang, Zimeng; Meenach, Samantha A
2017-12-01
Nanocomposite microparticle (nCmP) systems exhibit promising potential in the application of therapeutics for pulmonary drug delivery. This work aimed at identifying the optimal spray-drying condition(s) to prepare nCmP with specific drug delivery properties including small aerodynamic diameter, effective nanoparticle (NP) redispersion upon nCmP exposure to an aqueous solution, high drug loading, and low water content. Acetalated dextran (Ac-Dex) was used to form NPs, curcumin was used as a model drug, and mannitol was the excipient in the nCmP formulation. Box-Behnken design was applied using Design-Expert software for nCmP parameter optimization. NP ratio (NP%) and feed concentration (Fc) are significant parameters that affect the aerodynamic diameters of nCmP systems. NP% is also a significant parameter that affects the drug loading. Fc is the only parameter that influenced the water content of the particles significantly. All nCmP systems could be completely redispersed into the parent NPs, indicating that none of the factors have an influence on this property within the design range. The optimal spray-drying condition to prepare nCmP with a small aerodynamic diameter, redispersion of the NPs, low water content, and high drug loading is 80% NP%, 0.5% Fc, and an inlet temperature lower than 130°C. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Soares, Aline Rodrigues; Nascentes, Clésia Cristina
2013-02-15
A simple method was developed for determining the total lead content in lipstick samples by graphite furnace atomic absorption spectrometry (GFAAS) after treatment with tetramethylammonium hydroxide (TMAH). Multivariate optimization was used to establish the optimal conditions of sample preparation. The graphite furnace heating program was optimized through pyrolysis and atomization curves. An aliquot containing approximately 50mg of the sample was mixed with TMAH and heated in a water bath at 60°C for 60 min. Using Nb as the permanent modifier and Pd as the chemical modifier, the optimal temperatures were 900°C and 1800°C for pyrolysis and atomization, respectively. Under optimum conditions, the working range was from 1.73 to 50.0 μg L(-1), with detection and quantification limits of 0.20 and 0.34 μg g(-1), respectively. The precision was evaluated under conditions of repeatability and intermediate precision and showed standard deviations of 2.37%-4.61% and 4.93%-9.75%, respectively. The % recovery ranged from 96.2% to 109%, and no significant differences were found between the results obtained using the proposed method and the microwave decomposition method for real samples. Lead was detected in 21 tested lipstick samples; the lead content in these samples ranged from 0.27 to 4.54 μg g(-1). Copyright © 2012 Elsevier B.V. All rights reserved.
Policosanol fabrication from insect wax and optimization by response surface methodology
Ma, Jinju; Zhang, Hong
2018-01-01
Background Insect wax is a famous biological resource for the role in economic production in China. Insect wax is a good source of policosanol, which may is a candidate supplement in foodstuff and pharmaceuticals that has important physiological activities. Therefore, this work aims to investigate a high-yield and rapid method for policosanol fabrication from insect wax. Results The conditions for policosanol fabrication were optimized as follows: an oil bath temperature of 112.7°C and reductant dosage of 0.97 g (used for the reduction of 10.00 g of insect wax). The yield of policosanol reached 83.20%, which was 4 times greater than that of existing methods, such as saponification. The total content of policosanol obtained under the optimal conditions reached 87%. In other words, a high yield of policosanol was obtained from insect wax (723.84 mg/g), that was 55 times higher than that generated from beeswax-brown via saponification. The concentrations of metal residues in policosanol were within the limits of the European Union regulations and EFSA stipulation. The LD50 values for oral doses of insect wax and policosanol were both > 5 g/kg. Conclusion Policosanol was fabricated via solvent-free reduction from insect wax using LiAlH4 at a high yield. The fabrication conditions were optimized. Policosanol and insect wax showed high security, which made them potential candidates as supplements in foods, pharmaceuticals and cosmetics. The rapid and high-yield method has great potential for commercial manufacturing of policosanol. PMID:29763430
Study on the stability and reliability of Clinotron at Y-band
NASA Astrophysics Data System (ADS)
Li, Shuang; Wang, Jianguo; Chen, Zaigao; Wang, Guangqiang; Wang, Dongyang; Teng, Yan
2017-11-01
To improve the stability and reliability of Clinotron at the Y-band, some key issues are researched, such as the synchronous operating mode, the heat accumulation on the slow-wave structure, and the errors in micro-fabrication. By analyzing the dispersion relationship, the working mode is determined as the TM10 mode. The problem of heat dissipation on a comb is researched to make a trade-off on the choice of suitable working conditions, making sure that the safety and efficiency of the device are guaranteed simultaneously. The study on the effect of tolerance on device's performance is also conducted to determine the acceptable error during micro-fabrication. The validity of the device and the cost for fabrication are both taken into consideration. At last, the performance of Clinotron under the optimized conditions demonstrates that it can work steadily at 315.89 GHz and the output power is about 12 W, showing advanced stability and reliability.
Patil, Ajit A; Sachin, Bhusari S; Wakte, Pravin S; Shinde, Devanand B
2014-11-01
The purpose of this work is to provide a complete study of the influence of operational parameters of the supercritical carbon dioxide assisted extraction (SC CO2E) on yield of wedelolactone from Wedelia calendulacea Less., and to find an optimal combination of factors that maximize the wedelolactone yield. In order to determine the optimal combination of the four factors viz. operating pressure, temperature, modifier concentration and extraction time, a Taguchi experimental design approach was used: four variables (three levels) in L9 orthogonal array. Wedelolactone content was determined using validated HPLC methodology. Optimum extraction conditions were found to be as follows: extraction pressure, 25 MPa; temperature, 40 °C; modifier concentration, 10% and extraction time, 90 min. Optimum extraction conditions demonstrated wedelolactone yield of 8.01 ± 0.34 mg/100 g W. calendulacea Less. Pressure, temperature and time showed significant (p < 0.05) effect on the wedelolactone yield. The supercritical carbon dioxide extraction showed higher selectivity than the conventional Soxhlet assisted extraction method.
Patil, Ajit A.; Sachin, Bhusari S.; Wakte, Pravin S.; Shinde, Devanand B.
2013-01-01
The purpose of this work is to provide a complete study of the influence of operational parameters of the supercritical carbon dioxide assisted extraction (SC CO2E) on yield of wedelolactone from Wedelia calendulacea Less., and to find an optimal combination of factors that maximize the wedelolactone yield. In order to determine the optimal combination of the four factors viz. operating pressure, temperature, modifier concentration and extraction time, a Taguchi experimental design approach was used: four variables (three levels) in L9 orthogonal array. Wedelolactone content was determined using validated HPLC methodology. Optimum extraction conditions were found to be as follows: extraction pressure, 25 MPa; temperature, 40 °C; modifier concentration, 10% and extraction time, 90 min. Optimum extraction conditions demonstrated wedelolactone yield of 8.01 ± 0.34 mg/100 g W. calendulacea Less. Pressure, temperature and time showed significant (p < 0.05) effect on the wedelolactone yield. The supercritical carbon dioxide extraction showed higher selectivity than the conventional Soxhlet assisted extraction method. PMID:25687584
Optimization of data retrieval process for spectroscopic CO2 isotopologue ratio measurements
NASA Astrophysics Data System (ADS)
Hovorka, J.; Čermák, P.; Veis, P.
2017-05-01
In this work, a numerical model was developed for critical evaluation of the 13CO2/12CO2 ratio retrievals ( Δ δ value) from laser absorption spectra. The goal of the analysis was to determine the dependency of the absolute error of δ on different experimental parameters, in order to find the optimal conditions for isotopic ratio retrievals without using calibrated reference samples. In our study, the target precision for Δ δ was set at a level of ≤slant 1 %. The analysis was performed in the spectral range of the {ν1}+{ν3} CO2 band at 1.6 μm, with the theoretical data originating from the HITRAN database. The proposed fitting algorithm allowed efficient compensation of the interference from weak transitions which are not well recognizable in a single spectrum. This effect was found to make a dominant contribution to the Δ δ value. Next, the optimal conditions for such an experiment regarding the pressure, spectral range and spectrum noise were found and discussed from the perspective of widely tunable laser applications.
Ladner, Yoann; Mas, Silvia; Coussot, Gaelle; Bartley, Killian; Montels, Jérôme; Morel, Jacques; Perrin, Catherine
2017-12-15
The main purpose of the present work is to provide a fully integrated miniaturized electrophoretic methodology in order to facilitate the quality control of monoclonal antibodies (mAbs). This methodology called D-PES, which stands for Diffusion-mediated Proteolysis combined with an Electrophoretic Separation, permits to perform subsequently mAb tryptic digestion and electrophoresis separation of proteolysis products in an automated manner. Tryptic digestion conditions were optimized regarding the influence of enzyme concentration and incubation time in order to achieve similar enzymatic digestion efficiency to that obtained with the classical methodology (off-line). Then, the optimization of electrophoretic separation conditions concerning the nature of background electrolyte (BGE), ionic strength and pH was realized. Successful and repeatable electrophoretic profiles of three mAbs digests (Trastuzumab, Infliximab and Tocilizumab), comparable to the off-line digestion profiles, were obtained demonstrating the feasibility and robustness of the proposed methodology. In summary, the use of the proposed and optimized in-line approach opens a new, fast and easy way for the quality control of mAbs. Copyright © 2017 Elsevier B.V. All rights reserved.
Taamalli, Amani; Arráez-Román, David; Ibañez, Elena; Zarrouk, Mokhtar; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto
2012-01-25
In the present work, a simple and rapid method for the extraction of phenolic compounds from olive leaves, using microwave-assisted extraction (MAE) technique, has been developed. The experimental variables that affect the MAE process, such as the solvent type and composition, microwave temperature, and extraction time, were optimized using a univariate method. The obtained extracts were analyzed by using high-performance liquid chromatography (HPLC) coupled to electrospray time-of-flight mass spectrometry (ESI-TOF-MS) and electrospray ion trap tandem mass spectrometry (ESI-IT-MS(2)) to prove the MAE extraction efficiency. The optimal MAE conditions were methanol:water (80:20, v/v) as extracting solvent, at a temperature equal to 80 °C for 6 min. Under these conditions, several phenolic compounds could be characterized by HPLC-ESI-MS/MS(2). As compared to the conventional method, MAE can be used as an alternative extraction method for the characterization of phenolic compounds from olive leaves due to its efficiency and speed.
Optimization of extraction of high purity all-trans-lycopene from tomato pulp waste.
Poojary, Mahesha M; Passamonti, Paolo
2015-12-01
The aim of this work was to optimize the extraction of pure all-trans-lycopene from the pulp fractions of tomato processing waste. A full factorial design (FFD) consisting of four independent variables including extraction temperature (30-50 °C), time (1-60 min), percentage of acetone in n-hexane (25-75%, v/v) and solvent volume (10-30 ml) was used to investigate the effects of process variables on the extraction. The absolute amount of lycopene present in the pulp waste was found to be 0.038 mg/g. The optimal conditions for extraction were as follows: extraction temperature 20 °C, time 40 min, a solvent composition of 25% acetone in n-hexane (v/v) and solvent volume 40 ml. Under these conditions, the maximal recovery of lycopene was 94.7%. The HPLC-DAD analysis demonstrated that, lycopene was obtained in the all-trans-configuration at a very high purity grade of 98.3% while the amount of cis-isomers and other carotenoids were limited. Copyright © 2015 Elsevier Ltd. All rights reserved.
Signal Analysis of Helicopter Blade-Vortex-Interaction Acoustic Noise Data
NASA Technical Reports Server (NTRS)
Rogers, James C.; Dai, Renshou
1998-01-01
Blade-Vortex-Interaction (BVI) produces annoying high-intensity impulsive noise. NASA Ames collected several sets of BVI noise data during in-flight and wind tunnel tests. The goal of this work is to extract the essential features of the BVI signals from the in-flight data and examine the feasibility of extracting those features from BVI noise recorded inside a large wind tunnel. BVI noise generating mechanisms and BVI radiation patterns an are considered and a simple mathematical-physical model is presented. It allows the construction of simple synthetic BVI events that are comparable to free flight data. The boundary effects of the wind tunnel floor and ceiling are identified and more complex synthetic BVI events are constructed to account for features observed in the wind tunnel data. It is demonstrated that improved recording of BVI events can be attained by changing the geometry of the rotor hub, floor, ceiling and microphone. The Euclidean distance measure is used to align BVI events from each blade and improved BVI signals are obtained by time-domain averaging the aligned data. The differences between BVI events for individual blades are then apparent. Removal of wind tunnel background noise by optimal Wiener-filtering is shown to be effective provided representative noise-only data have been recorded. Elimination of wind tunnel reflections by cepstral and optimal filtering deconvolution is examined. It is seen that the cepstral method is not applicable but that a pragmatic optimal filtering approach gives encouraging results. Recommendations for further work include: altering measurement geometry, real-time data observation and evaluation, examining reflection signals (particularly those from the ceiling) and performing further analysis of expected BVI signals for flight conditions of interest so that microphone placement can be optimized for each condition.
NASA Astrophysics Data System (ADS)
Xu, Jun; Papanikolaou, Nikos; Shi, Chengyu; Jiang, Steve B.
2009-08-01
Synchronized moving aperture radiation therapy (SMART) has been proposed to account for tumor motions during radiotherapy in prior work. The basic idea of SMART is to synchronize the moving radiation beam aperture formed by a dynamic multileaf collimator (DMLC) with the tumor motion induced by respiration. In this paper, a two-dimensional (2D) superimposing leaf sequencing method is presented for SMART. A leaf sequence optimization strategy was generated to assure the SMART delivery under realistic delivery conditions. The study of delivery performance using the Varian LINAC and the Millennium DMLC showed that clinical factors such as collimator angle, dose rate, initial phase and machine tolerance affect the delivery accuracy and efficiency. An in-house leaf sequencing software was developed to implement the 2D superimposing leaf sequencing method and optimize the motion-corrected leaf sequence under realistic clinical conditions. The analysis of dynamic log (Dynalog) files showed that optimization of the leaf sequence for various clinical factors can avoid beam hold-offs which break the synchronization of SMART and fail the SMART dose delivery. Through comparison between the simulated delivered fluence map and the planed fluence map, it was shown that the motion-corrected leaf sequence can greatly reduce the dose error.
Xu, Jun; Papanikolaou, Nikos; Shi, Chengyu; Jiang, Steve B
2009-08-21
Synchronized moving aperture radiation therapy (SMART) has been proposed to account for tumor motions during radiotherapy in prior work. The basic idea of SMART is to synchronize the moving radiation beam aperture formed by a dynamic multileaf collimator (DMLC) with the tumor motion induced by respiration. In this paper, a two-dimensional (2D) superimposing leaf sequencing method is presented for SMART. A leaf sequence optimization strategy was generated to assure the SMART delivery under realistic delivery conditions. The study of delivery performance using the Varian LINAC and the Millennium DMLC showed that clinical factors such as collimator angle, dose rate, initial phase and machine tolerance affect the delivery accuracy and efficiency. An in-house leaf sequencing software was developed to implement the 2D superimposing leaf sequencing method and optimize the motion-corrected leaf sequence under realistic clinical conditions. The analysis of dynamic log (Dynalog) files showed that optimization of the leaf sequence for various clinical factors can avoid beam hold-offs which break the synchronization of SMART and fail the SMART dose delivery. Through comparison between the simulated delivered fluence map and the planed fluence map, it was shown that the motion-corrected leaf sequence can greatly reduce the dose error.
Crush Can Behaviour as an Energy Absorber in a Frontal Impact
NASA Astrophysics Data System (ADS)
Bhuyan, Atanu; Ganilova, Olga
2012-08-01
The work presented is devoted to the investigation of a state-of-the-art technological solution for the design of a crush-can characterized by optimal energy absorbing properties. The work is focused on the theoretical background of the square tubes, circular tubes and inverbucktube performance under impact with the purpose of design of a novel optimized structure. The main system under consideration is based on the patent US 2008/0185851 A1 and includes a base flange with elongated crush boxes and back straps for stabilization of the crush boxes with the purpose of improvement of the energy-absorbing functionality. The modelling of this system is carried out applying both a theoretical approach and finite element analysis concentrating on the energy absorbing abilities of the crumple zones. The optimization process is validated under dynamic and quasi-static loading conditions whilst considering various modes of deformation and stress distribution along the tubular components. Energy absorbing behaviour of the crush-cans is studied concentrating on their geometrical properties and their diamond or concertina modes of deformation. Moreover, structures made of different materials, steel, aluminium and polymer composites are considered for the material effect analysis and optimization through their combination. Optimization of the crush-can behaviour is done within the limits of the frontal impact scenario with the purpose of improvement of the structural performance in the Euro NCAP tests.
[The Morbidity of Students Conditioned by Diet Character in Modern Condition of Education].
Novokhatskaya, E A; Yakovleva, T P; Kalitina, M A
2017-09-01
The article considers characteristics of nervous psychic adaptation, morbidity and character of diet of students of the Russian state social university. The main incentives of combination of university studies and work are analyzed. The impact of combining of studies and work, regimen and diet quality on health are investigated. The psychological studies were implemented using computerized techniques of psychological testing and data collection with blank technique. The morbidity of students was discovered using questionnaire. It is established that students combining studies and work, have optimal indices of nervous psychic adaptation. however, level of their morbidity is twice higher than morbidity of students not combining studies and work. The analysis of regimen and diet character of students established deviations in regimen and structure of diet. The ration of proteins, fats and carbohydrates in day ration of students was imbalanced (1.0:1.4:6.1) at the expense of surplus of content of fat and especially carbohydrates that afterwards can results in development of diseases related to irregular diet.
Cryogenics maintenance strategy
NASA Astrophysics Data System (ADS)
Cruzat, Fabiola
2012-09-01
ALMA is an interferometer composed of 66 independent systems, with specific maintenance requirements for each subsystem. To optimize the observation time and reduce downtime maintenance, requirements are very demanding. One subsystem with high maintenance efforts is cryogenics and vacuum. To organize the maintenance, the Cryogenic and Vacuum department is using and implementing different tools. These are monitoring and problem reporting systems and CMMS. This leads to different maintenance approaches: Preventive Maintenance, Corrective Maintenance and Condition Based Maintenance. In order to coordinate activities with other departments the preventive maintenance schedule is kept as flexible as systems allow. To cope with unavoidable failures, the team has to be prepared to work under any condition with the spares on time. Computerized maintenance management system (CMMS) will help to manage inventory control for reliable spare part handling, the correct record of work orders and traceability of maintenance activities. For an optimized approach the department is currently evaluating where preventive or condition based maintenance applies to comply with the individual system demand. Considering the change from maintenance contracts to in-house maintenance will help to minimize costs and increase availability of parts. Due to increased number of system and tasks the cryo team needs to grow. Training of all staff members is mandatory, in depth knowledge must be built up by doing complex maintenance activities in the Cryo group, use of advanced computerized metrology systems.
Single cell isolation process with laser induced forward transfer.
Deng, Yu; Renaud, Philippe; Guo, Zhongning; Huang, Zhigang; Chen, Ying
2017-01-01
A viable single cell is crucial for studies of single cell biology. In this paper, laser-induced forward transfer (LIFT) was used to isolate individual cell with a closed chamber designed to avoid contamination and maintain humidity. Hela cells were used to study the impact of laser pulse energy, laser spot size, sacrificed layer thickness and working distance. The size distribution, number and proliferation ratio of separated cells were statistically evaluated. Glycerol was used to increase the viscosity of the medium and alginate were introduced to soften the landing process. The role of laser pulse energy, the spot size and the thickness of titanium in energy absorption in LIFT process was theoretically analyzed with Lambert-Beer and a thermal conductive model. After comprehensive analysis, mechanical damage was found to be the dominant factor affecting the size and proliferation ratio of the isolated cells. An orthogonal experiment was conducted, and the optimal conditions were determined as: laser pulse energy, 9 μJ; spot size, 60 μm; thickness of titanium, 12 nm; working distance, 700 μm;, glycerol, 2% and alginate depth, greater than 1 μm. With these conditions, along with continuous incubation, a single cell could be transferred by the LIFT with one shot, with limited effect on cell size and viability. LIFT conducted in a closed chamber under optimized condition is a promising method for reliably isolating single cells.
Ecosystem processes at the watershed scale: extending optimality theory from plot to catchment
Taehee Hwang; Lawrence Band; T.C. Hale
2009-01-01
The adjustment of local vegetation conditions to limiting soil water by either maximizing productivity or minimizing water stress has been an area of central interest in ecohydrology since Eaglesonâs classic study. This work has typically been limited to consider one-dimensional exchange and cycling within patches and has not incorporated the effects of lateral...
Polarization effects in recoil-induced resonances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lazebnyi, D. B., E-mail: becks.ddf@gmail.com; Brazhnikov, D. V.; Taichenachev, A. V.
2017-01-15
The effect of the field polarization on the amplitude of recoil-induced resonances (RIRs) is considered for laser-cooled free atoms and for atoms in a working magneto-optical trap (MOT). For all closed dipole transitions, explicit analytical expressions are obtained for the polarization dependence of the resonance amplitudes within a perturbation theory. Optimal polarization conditions are found for the observation of resonances.
Qualitative thermal characterization and cooling of lithium batteries for electric vehicles
NASA Astrophysics Data System (ADS)
Mariani, A.; D'Annibale, F.; Boccardi, G.; Celata, G. P.; Menale, C.; Bubbico, R.; Vellucci, F.
2014-04-01
The paper deals with the cooling of batteries. The first step was the thermal characterization of a single cell of the module, which consists in the detection of the thermal field by means of thermographic tests during electric charging and discharging. The purpose was to identify possible critical hot points and to evaluate the cooling demand during the normal operation of an electric car. After that, a study on the optimal configuration to obtain the flattening of the temperature profile and to avoid hot points was executed. An experimental plant for cooling capacity evaluation of the batteries, using air as cooling fluid, was realized in our laboratory in ENEA Casaccia. The plant is designed to allow testing at different flow rate and temperatures of the cooling air, useful for the assessment of operative thermal limits in different working conditions. Another experimental facility was built to evaluate the thermal behaviour changes with water as cooling fluid. Experimental tests were carried out on the LiFePO4 batteries, under different electric working conditions using the two loops. In the future, different type of batteries will be tested and the influence of various parameters on the heat transfer will be assessed for possible optimal operative solutions.
1988-08-19
take place over the period of several days. Decisions regarding MOPP level or resource allocation made on day I may have no immediate impact, but a...present -- conditions, and manage a resource library to assist the DCA in making decisions under conditions of uncertainty. Several areas of utilization are...students work through a scenario, the device couid then display the consequences of those decisions or provide optimal decision recommendations
Design considerations for a Mars solar energy system
NASA Technical Reports Server (NTRS)
Atkinson, David H.; Gwynne, Owen
1992-01-01
The supply, collection and demand for solar power needed for a ten person base on Mars are examined. A detailed discussion is presented for the estimation of the amount of usable solar energy than can reach the surface of Mars. The irradiance is determined for high, middle and low latitudes. In general it was found that the variation of dust in the Martian atmosphere affected the optimal choice for solar power collection mechanisms. Sun tracking systems worked best under clearer conditions and basic horizontal collectors performed best under cloud/hazy conditions.
Inoue, Junji; Kaneta, Takashi; Imasaka, Totaro
2012-09-01
Here, we report the detection of native amino acids using a sheath-flow electrochemical detector with a working electrode made of copper wire. A separation capillary that was inserted into a platinum tube in the detector acted as a grounded electrode for electrophoresis and as a flow channel for sheath liquid. Sheath liquid flowed outside the capillary to support the transport of the separated analytes to the working electrode for electrochemical detection. The copper wire electrode was aligned at the outlet of the capillary in a wall-jet configuration. Amino acids injected into the capillary were separated following elution from the end of the capillary and detection by the copper electrode. Three kinds of copper electrodes with different diameters-50, 125, and 300 μm-were examined to investigate the effect of the electrode diameter on sensitivity. The peak widths of the analytes were independent of the diameter of the working electrode, while the 300-μm electrode led to a decrease in the signal-to-noise ratio compared with the 50- and 125-μm electrodes, which showed no significant difference. The flow rate of the sheath liquid was also varied to optimize the detection conditions. The limits of detection for amino acids ranged from 4.4 to 27 μM under optimal conditions. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermoelectric properties of an interacting quantum dot based heat engine
NASA Astrophysics Data System (ADS)
Erdman, Paolo Andrea; Mazza, Francesco; Bosisio, Riccardo; Benenti, Giuliano; Fazio, Rosario; Taddei, Fabio
2017-06-01
We study the thermoelectric properties and heat-to-work conversion performance of an interacting, multilevel quantum dot (QD) weakly coupled to electronic reservoirs. We focus on the sequential tunneling regime. The dynamics of the charge in the QD is studied by means of master equations for the probabilities of occupation. From here we compute the charge and heat currents in the linear response regime. Assuming a generic multiterminal setup, and for low temperatures (quantum limit), we obtain analytical expressions for the transport coefficients which account for the interplay between interactions (charging energy) and level quantization. In the case of systems with two and three terminals we derive formulas for the power factor Q and the figure of merit Z T for a QD-based heat engine, identifying optimal working conditions which maximize output power and efficiency of heat-to-work conversion. Beyond the linear response we concentrate on the two-terminal setup. We first study the thermoelectric nonlinear coefficients assessing the consequences of large temperature and voltage biases, focusing on the breakdown of the Onsager reciprocal relation between thermopower and Peltier coefficient. We then investigate the conditions which optimize the performance of a heat engine, finding that in the quantum limit output power and efficiency at maximum power can almost be simultaneously maximized by choosing appropriate values of electrochemical potential and bias voltage. At last we study how energy level degeneracy can increase the output power.
Flow optimization study of a batch microfluidics PET tracer synthesizing device
Elizarov, Arkadij M.; Meinhart, Carl; van Dam, R. Michael; Huang, Jiang; Daridon, Antoine; Heath, James R.; Kolb, Hartmuth C.
2010-01-01
We present numerical modeling and experimental studies of flow optimization inside a batch microfluidic micro-reactor used for synthesis of human-scale doses of Positron Emission Tomography (PET) tracers. Novel techniques are used for mixing within, and eluting liquid out of, the coin-shaped reaction chamber. Numerical solutions of the general incompressible Navier Stokes equations along with time-dependent elution scalar field equation for the three dimensional coin-shaped geometry were obtained and validated using fluorescence imaging analysis techniques. Utilizing the approach presented in this work, we were able to identify optimized geometrical and operational conditions for the micro-reactor in the absence of radioactive material commonly used in PET related tracer production platforms as well as evaluate the designed and fabricated micro-reactor using numerical and experimental validations. PMID:21072595
Bagul, Mayuri B; Sonawane, Sachin K; Arya, Shalini S
2018-04-01
Tamarind seed has been a source of valuable nutrients such as protein (contains high amount of many essential amino acids), essential fatty acids, and minerals which are recognized as additive to develop perfect balanced functional foods. The objective of present work was to optimize the process parameters for extraction and hydrolysis of protein from tamarind seeds. Papain-derived hydrolysates showed a maximum degree of hydrolysis (39.49%) and radical scavenging activity (42.92 ± 2.83%) at optimized conditions such as enzyme-to-substrate ratio (1:5), hydrolysis time (3 h), hydrolysis temperature (65 °C), and pH 6. From this study, papain hydrolysate can be considered as good source of natural antioxidants in developing food formulations.
NASA Astrophysics Data System (ADS)
Muttalib, M. Firdaus A.; Chen, Ruiqi Y.; Pearce, S. J.; Charlton, Martin D. B.
2017-11-01
In this paper, we demonstrate the optimization of reactive-ion etching (RIE) parameters for the fabrication of tantalum pentoxide (Ta2O5) waveguide with chromium (Cr) hard mask in a commercial OIPT Plasmalab 80 RIE etcher. A design of experiment (DOE) using Taguchi method was implemented to find optimum RF power, mixture of CHF3 and Ar gas ratio, and chamber pressure for a high etch rate, good selectivity, and smooth waveguide sidewall. It was found that the optimized etch condition obtained in this work were RF power = 200 W, gas ratio = 80 %, and chamber pressure = 30 mTorr with an etch rate of 21.6 nm/min, Ta2O5/Cr selectivity ratio of 28, and smooth waveguide sidewall.
Application of Layered Perforation Profile Control Technique to Low Permeable Reservoir
NASA Astrophysics Data System (ADS)
Wei, Sun
2018-01-01
it is difficult to satisfy the demand of profile control of complex well section and multi-layer reservoir by adopting the conventional profile control technology, therefore, a research is conducted on adjusting the injection production profile with layered perforating parameters optimization. i.e. in the case of coproduction for multi-layer, water absorption of each layer is adjusted by adjusting the perforating parameters, thus to balance the injection production profile of the whole well section, and ultimately enhance the oil displacement efficiency of water flooding. By applying the relationship between oil-water phase percolation theory/perforating damage and capacity, a mathematic model of adjusting the injection production profile with layered perforating parameters optimization, besides, perforating parameters optimization software is programmed. Different types of optimization design work are carried out according to different geological conditions and construction purposes by using the perforating optimization design software; furthermore, an application test is done for low permeable reservoir, and the water injection profile tends to be balanced significantly after perforation with optimized parameters, thereby getting a good application effect on site.
Optimization and surgical design for applications in pediatric cardiology
NASA Astrophysics Data System (ADS)
Marsden, Alison; Bernstein, Adam; Taylor, Charles; Feinstein, Jeffrey
2007-11-01
The coupling of shape optimization to cardiovascular blood flow simulations has potential to improve the design of current surgeries and to eventually allow for optimization of surgical designs for individual patients. This is particularly true in pediatric cardiology, where geometries vary dramatically between patients, and unusual geometries can lead to unfavorable hemodynamic conditions. Interfacing shape optimization to three-dimensional, time-dependent fluid mechanics problems is particularly challenging because of the large computational cost and the difficulty in computing objective function gradients. In this work a derivative-free optimization algorithm is coupled to a three-dimensional Navier-Stokes solver that has been tailored for cardiovascular applications. The optimization code employs mesh adaptive direct search in conjunction with a Kriging surrogate. This framework is successfully demonstrated on several geometries representative of cardiovascular surgical applications. We will discuss issues of cost function choice for surgical applications, including energy loss and wall shear stress distribution. In particular, we will discuss the creation of new designs for the Fontan procedure, a surgery done in pediatric cardiology to treat single ventricle heart defects.
Optimal Management of Water, Nutrient and Carbon Cycles of Green Urban Spaces
NASA Astrophysics Data System (ADS)
Revelli, R.; Pelak, N. F., III; Porporato, A. M.
2016-12-01
The urban ecosystem is a complex, metastable system with highly coupled flows of mass, energy, people and capital. Their sustainability is in part linked to the existence of green spaces which provide important ecosystem services, whose sustainable management requires quantification of their benefits in terms of impacts on water, carbon and energy fluxes. An exploration of problems of optimal management of such green urban spaces and the related biogeochemical fluxes is presented, extending probabilistic ecohydrological models of the soil-plant system to the urban context, where biophysical and ecological conditions tend to be radically different from the surrounding rural and natural environment (e.g. heat islands, air and water pollution, low quality soils, etc…). The coupled soil moisture, nutrient and plant dynamics are modeled to compute water requirements, carbon footprint, nutrient demand and losses, and related fluxes under different design, management and climate scenarios. The goal is to provide operative rules for a sustainable water use through focused irrigation and fertilization strategies, optimal choice of plants, soil and cultivation conditions, accounting for the typical hydroclimatic variability that occur in the urban environment. This work is part of a project that has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 701914. The work is also cofounded by USDA Agricultural Research Service cooperative agreement 58-6408-3-027; National Science Foundation (NSF) grants: EAR-1331846, EAR-1316258, and the DGE-1068871 and FESD EAR-1338694.
Lu, Haifeng; Dong, Shan; Zhang, Guangming; Han, Ting; Zhang, Yuanhui; Li, Baoming
2018-02-15
Photosynthetic bacteria (PSB) wastewater treatment technology can simultaneously realize wastewater purification and biomass production. The produced biomass contains high value-added products, which can be used in medical and agricultural industry. However, because of the small size and high electronegativity, PSB are hard to be collected from wastewater, which hampers the commercialization of PSB-based industrial processes. Auto-flocculation is a low cost, energy saving, non-toxic biomass collection method for microbiology. In this work, the influence factors with their optimal levels and mechanism for enhancing the auto-flocculation of PSB were investigated in pure cultivation medium. Then PSB auto-flocculation performance in real brewery wastewater was probed. Results showed that Na + concentration, pH and light intensity were three crucial factors except the initial inoculum sizes and temperature. In the pure medium cultivation system, the optimal condition for PSB auto-flocculation was as follows: pH was 9.5, inoculum size was 420 mg l -1 , Na + concentration was 0.067 mol l -1 , light intensity was 5000 lux, temperature was 30°C. Under the optimal condition, the auto-flocculation ratio and biomass recovery reached 85.0% and 1488 mg l -1 , which improved by 1.67-fold and 2.14-fold compared with the PSB enrichment cultivation conditions, respectively. Mechanism analysis showed that the protein/polysaccharides ratio and absolute Zeta potential value had a liner relationship. For the brewery wastewater treatment, under the above optimal condition, the chemical oxygen demand removal reached 94.3% with the auto-flocculation ratio and biomass recovery of 89.6% and 1510 mg l -1 , which increased 2.75-fold and 2.77-fold, respectively.
Taraji, Maryam; Haddad, Paul R; Amos, Ruth I J; Talebi, Mohammad; Szucs, Roman; Dolan, John W; Pohl, Chris A
2017-02-07
A design-of-experiment (DoE) model was developed, able to describe the retention times of a mixture of pharmaceutical compounds in hydrophilic interaction liquid chromatography (HILIC) under all possible combinations of acetonitrile content, salt concentration, and mobile-phase pH with R 2 > 0.95. Further, a quantitative structure-retention relationship (QSRR) model was developed to predict retention times for new analytes, based only on their chemical structures, with a root-mean-square error of prediction (RMSEP) as low as 0.81%. A compound classification based on the concept of similarity was applied prior to QSRR modeling. Finally, we utilized a combined QSRR-DoE approach to propose an optimal design space in a quality-by-design (QbD) workflow to facilitate the HILIC method development. The mathematical QSRR-DoE model was shown to be highly predictive when applied to an independent test set of unseen compounds in unseen conditions with a RMSEP value of 5.83%. The QSRR-DoE computed retention time of pharmaceutical test analytes and subsequently calculated separation selectivity was used to optimize the chromatographic conditions for efficient separation of targets. A Monte Carlo simulation was performed to evaluate the risk of uncertainty in the model's prediction, and to define the design space where the desired quality criterion was met. Experimental realization of peak selectivity between targets under the selected optimal working conditions confirmed the theoretical predictions. These results demonstrate how discovery of optimal conditions for the separation of new analytes can be accelerated by the use of appropriate theoretical tools.
NASA Astrophysics Data System (ADS)
Zainal Ariffin, S.; Razlan, A.; Ali, M. Mohd; Efendee, A. M.; Rahman, M. M.
2018-03-01
Background/Objectives: The paper discusses about the optimum cutting parameters with coolant techniques condition (1.0 mm nozzle orifice, wet and dry) to optimize surface roughness, temperature and tool wear in the machining process based on the selected setting parameters. The selected cutting parameters for this study were the cutting speed, feed rate, depth of cut and coolant techniques condition. Methods/Statistical Analysis Experiments were conducted and investigated based on Design of Experiment (DOE) with Response Surface Method. The research of the aggressive machining process on aluminum alloy (A319) for automotive applications is an effort to understand the machining concept, which widely used in a variety of manufacturing industries especially in the automotive industry. Findings: The results show that the dominant failure mode is the surface roughness, temperature and tool wear when using 1.0 mm nozzle orifice, increases during machining and also can be alternative minimize built up edge of the A319. The exploration for surface roughness, productivity and the optimization of cutting speed in the technical and commercial aspects of the manufacturing processes of A319 are discussed in automotive components industries for further work Applications/Improvements: The research result also beneficial in minimizing the costs incurred and improving productivity of manufacturing firms. According to the mathematical model and equations, generated by CCD based RSM, experiments were performed and cutting coolant condition technique using size nozzle can reduces tool wear, surface roughness and temperature was obtained. Results have been analyzed and optimization has been carried out for selecting cutting parameters, shows that the effectiveness and efficiency of the system can be identified and helps to solve potential problems.
FDTD simulation of EM wave propagation in 3-D media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, T.; Tripp, A.C.
1996-01-01
A finite-difference, time-domain solution to Maxwell`s equations has been developed for simulating electromagnetic wave propagation in 3-D media. The algorithm allows arbitrary electrical conductivity and permittivity variations within a model. The staggered grid technique of Yee is used to sample the fields. A new optimized second-order difference scheme is designed to approximate the spatial derivatives. Like the conventional fourth-order difference scheme, the optimized second-order scheme needs four discrete values to calculate a single derivative. However, the optimized scheme is accurate over a wider wavenumber range. Compared to the fourth-order scheme, the optimized scheme imposes stricter limitations on the time stepmore » sizes but allows coarser grids. The net effect is that the optimized scheme is more efficient in terms of computation time and memory requirement than the fourth-order scheme. The temporal derivatives are approximated by second-order central differences throughout. The Liao transmitting boundary conditions are used to truncate an open problem. A reflection coefficient analysis shows that this transmitting boundary condition works very well. However, it is subject to instability. A method that can be easily implemented is proposed to stabilize the boundary condition. The finite-difference solution is compared to closed-form solutions for conducting and nonconducting whole spaces and to an integral-equation solution for a 3-D body in a homogeneous half-space. In all cases, the finite-difference solutions are in good agreement with the other solutions. Finally, the use of the algorithm is demonstrated with a 3-D model. Numerical results show that both the magnetic field response and electric field response can be useful for shallow-depth and small-scale investigations.« less
Zhang, Zhicai; Xia, Lili; Wang, Feng; Lv, Peng; Zhu, Maxiaoqi; Li, Jinhua; Chen, Keping
2015-01-01
Lignin peroxidase (LiP) is the primary enzyme responsible for lignin degradation. In our previous work, in order to shorten the pretreatment time and increase the lignin degradation, we have pretreated the corn stalk (CS) using a combination of Aspergillus oryzae CGMCC 5992 solid-state fermentation and H2O2 treatment. In the present study, one-factor-at-a-time design and response surface design were applied to optimize the nutritional constituents for LiP production in liquid-state fermentation by A. oryzae CGMCC 5992 and the conditions for CS degradation by A. oryzae CGMCC 5992. The optimal medium included CS of 30 g/L, glucose of 4.6 g/L, sodium nitrate of 1.2 g/L, corn steep liquor of 1 g/L, yeast extract of 1.2 g/L, and vitamin B1 of 0.15 g/L. Under these optimal conditions, the LiP production reached its maximum of 652.34 U/L. The optimal condition for CS degradation included CS of 20 g, A. oryzae CGMCC 5992 broth of 50 mL, 1.5 % H2O2 solution of 80 mL, H2O2 flow rate of 0.4 mL/min, water volume of 240 mL (water/material ratio of 12:1), hydrolysis temperature of 39 °C, and hydrolysis time of 8 h. Before hydrolysis, CS and water were pretreated at 113 °C for 11 min. Under these optimal conditions, the sugar yield reached its maximum of 46.28 %. Our newly developed method had great advantages in pretreatment of CS due to its quickness, convenience, safety, no special equipment and high sugar yield.Graphical abstractThe schematic diagram of corn straw hydrolysis.
Bosch Ojeda, Catalina; Sánchez Rojas, Fuensanta; Cano Pavón, José Manuel
2007-09-01
Ceramic and glass are some of the more recent engineering materials and those that are most resistant to environmental conditions. They belong to advanced materials in that they are being developed for the aerospace and electronics industries. In the last decade, a new class of ceramic materials has been the focus of particular attention. The materials were produced with natural, renewable resources (wood or wood-based products). In this work, we have synthesised a new biomorphic ceramic material from oak wood and Si infiltration. After the material characterization, we have optimized the dissolution of the sample by acid attack in an oven under microwave irradiation. Experimental designs were used as a multivariate strategy for the evaluation of the effects of varying several variables at the same time. The optimization was performed in two steps using factorial design for preliminary evaluation and a Draper-Lin design for determination of the critical experimental conditions. Five variables (time, power, volume of HNO3, volume H2SO4 and volume of HF) were considered as factors and as a response the concentration of different metal ions in the optimization process. Interactions between analytical factors and their optimal levels were investigated using a Draper-Lin design.
Chen, Kai; Ni, Minjie; Wang, Jun; Huang, Dongren; Chen, Huorong; Wang, Xiao; Liu, Mengyang
2016-01-01
Environmental monitoring is fundamental in assessing environmental quality and to fulfill protection and management measures with permit conditions. However, coastal environmental monitoring work faces many problems and challenges, including the fact that monitoring information cannot be linked up with evaluation, monitoring data cannot well reflect the current coastal environmental condition, and monitoring activities are limited by cost constraints. For these reasons, protection and management measures cannot be developed and implemented well by policy makers who intend to solve this issue. In this paper, Quanzhou Bay in southeastern China was selected as a case study; and the Kriging method and a geographic information system were employed to evaluate and optimize the existing monitoring network in a semienclosed bay. This study used coastal environmental monitoring data from 15 sites (including COD, DIN, and PO4-P) to adequately analyze the water quality from 2009 to 2012 by applying the Trophic State Index. The monitoring network in Quanzhou Bay was evaluated and optimized, with the number of sites increased from 15 to 24, and the monitoring precision improved by 32.9%. The results demonstrated that the proposed advanced monitoring network optimization was appropriate for environmental monitoring in Quanzhou Bay. It might provide technical support for coastal management and pollutant reduction in similar areas. PMID:27777951
Chen, Kai; Ni, Minjie; Cai, Minggang; Wang, Jun; Huang, Dongren; Chen, Huorong; Wang, Xiao; Liu, Mengyang
2016-01-01
Environmental monitoring is fundamental in assessing environmental quality and to fulfill protection and management measures with permit conditions. However, coastal environmental monitoring work faces many problems and challenges, including the fact that monitoring information cannot be linked up with evaluation, monitoring data cannot well reflect the current coastal environmental condition, and monitoring activities are limited by cost constraints. For these reasons, protection and management measures cannot be developed and implemented well by policy makers who intend to solve this issue. In this paper, Quanzhou Bay in southeastern China was selected as a case study; and the Kriging method and a geographic information system were employed to evaluate and optimize the existing monitoring network in a semienclosed bay. This study used coastal environmental monitoring data from 15 sites (including COD, DIN, and PO 4 -P) to adequately analyze the water quality from 2009 to 2012 by applying the Trophic State Index. The monitoring network in Quanzhou Bay was evaluated and optimized, with the number of sites increased from 15 to 24, and the monitoring precision improved by 32.9%. The results demonstrated that the proposed advanced monitoring network optimization was appropriate for environmental monitoring in Quanzhou Bay. It might provide technical support for coastal management and pollutant reduction in similar areas.
Determination of Ignitable Liquids in Fire Debris: Direct Analysis by Electronic Nose
Ferreiro-González, Marta; Barbero, Gerardo F.; Palma, Miguel; Ayuso, Jesús; Álvarez, José A.; Barroso, Carmelo G.
2016-01-01
Arsonists usually use an accelerant in order to start or accelerate a fire. The most widely used analytical method to determine the presence of such accelerants consists of a pre-concentration step of the ignitable liquid residues followed by chromatographic analysis. A rapid analytical method based on headspace-mass spectrometry electronic nose (E-Nose) has been developed for the analysis of Ignitable Liquid Residues (ILRs). The working conditions for the E-Nose analytical procedure were optimized by studying different fire debris samples. The optimized experimental variables were related to headspace generation, specifically, incubation temperature and incubation time. The optimal conditions were 115 °C and 10 min for these two parameters. Chemometric tools such as hierarchical cluster analysis (HCA) and linear discriminant analysis (LDA) were applied to the MS data (45–200 m/z) to establish the most suitable spectroscopic signals for the discrimination of several ignitable liquids. The optimized method was applied to a set of fire debris samples. In order to simulate post-burn samples several ignitable liquids (gasoline, diesel, citronella, kerosene, paraffin) were used to ignite different substrates (wood, cotton, cork, paper and paperboard). A full discrimination was obtained on using discriminant analysis. This method reported here can be considered as a green technique for fire debris analyses. PMID:27187407
Antibody labeling with Remazol Brilliant Violet 5R, a vinylsulphonic reactive dye.
Ferrari, Alejandro; Friedrich, Adrián; Weill, Federico; Wolman, Federico; Leoni, Juliana
2013-01-01
Colloidal gold is the first choice for labeling antibodies to be used in Point Of Care Testing. However, there are some recent reports on a family of textile dyes-named "reactive dyes"-being suitable for protein labeling. In the present article, protein labeling conditions were optimized for Remazol Brilliant Violet 5R, and the sensitivity of the labeled antibodies was assessed and compared with that of colloidal-gold labeled antibodies. Also, the accelerated stability was explored. Optimal conditions were pH 10.95, dye:Ab molar ratio of 264 and an incubation time of 132 min. Labeled antibodies were stable, and could be successfully used in a slot blot assay, detecting as low as 400 ng/mL. Therefore, the present work demonstrates that vinylsulphonic reactive dyes can be successfully used to label antibodies, and are excellent candidates for the construction of a new generation of Point of Care Testing kits.
Han, Yafeng; Shen, Bo; Hu, Huajin; ...
2015-01-12
Ice-storage air-conditioning is a technique that uses ice for thermal energy storage. Replacing existing air conditioning systems with ice storage has the advantage of shifting the load from on-peak times to off-peak times that often have excess generation. However, increasing the use of ice-storage faces significant challenges in China. One major barrier is the inefficiency in the current electricity tariff structure. There is a lack of effective incentive mechanism that induces ice-storage systems from achieving optimal load-shifting results. This study presents an analysis that compares the potential impacts of ice-storage systems on load-shifting under a new credit-based incentive scheme andmore » the existing incentive arrangement in Jiangsu, China. The study indicates that by changing how ice-storage systems are incentivized in Jiangsu, load-shifting results can be improved.« less
Pretreatment of corn straw using the alkaline solution of ionic liquids.
Liu, Zhen; Li, Longfei; Liu, Cheng; Xu, Airong
2018-07-01
In the present work, the pretreatment of corn stalk with the solution of 1-ethyl-3-methylimidazolium acetate ([Emim]Ac) ionic liquid containing NaOH was explored for its lignin removal. The effects of reaction temperature, reaction time, and solid-liquid ratio on the lignin removal efficiency were determined by the response surface methodology (RSM). The pretreatment conditions were optimized by the Box-Behnken design and the comparative study of the composition and structure of corn straw before and after the pretreatment to be: reaction temperature 98.5 °C, reaction time 1.31 h, and solid-liquid ratio 1:8.7. Under the optimized conditions, the cellulose and hemicellulose contents of the corn straw were increased to 85.69% and 9.1%, respectively, and the lignin content was reduced to 2.27% with the lignin removal efficiency up to 87.4%. Copyright © 2018 Elsevier Ltd. All rights reserved.
Nozzle Numerical Analysis Of The Scimitar Engine
NASA Astrophysics Data System (ADS)
Battista, F.; Marini, M.; Cutrone, L.
2011-05-01
This work describes part of the activities on the LAPCAT-II A2 vehicle, in which starting from the available conceptual vehicle design and the related pre- cooled turbo-ramjet engine called SCIMITAR, well- thought assumptions made for performance figures of different components during the iteration process within LAPCAT-I will be assessed in more detail. In this paper it is presented a numerical analysis aimed at the design optimization of the nozzle contour of the LAPCAT A2 SCIMITAR engine designed by Reaction Engines Ltd. (REL) (see Figure 1). In particular, nozzle shape optimization process is presented for cruise conditions. All the computations have been carried out by using the CIRA C3NS code in non equilibrium conditions. The effect of considering detailed or reduced chemical kinetic schemes has been analyzed with a particular focus on the production of pollutants. An analysis of engine performance parameters, such as thrust and combustion efficiency has been carried out.
NASA Astrophysics Data System (ADS)
Mikhalchenko, V. V.; Rubanik, Yu T.
2016-10-01
The work is devoted to the problem of cost-effective adaptation of coal mines to the volatile and uncertain market conditions. Conceptually it can be achieved through alignment of the dynamic characteristics of the coal mining system and power spectrum of market demand for coal product. In practical terms, this ensures the viability and competitiveness of coal mines. Transformation of dynamic characteristics is to be done by changing the structure of production system as well as corporate, logistics and management processes. The proposed methods and algorithms of control are aimed at the development of the theoretical foundations of adaptive optimization as basic methodology for coal mine enterprise management in conditions of high variability and uncertainty of economic and natural environment. Implementation of the proposed methodology requires a revision of the basic principles of open coal mining enterprises design.
Çiftçi, Tülin Deniz; Henden, Emur
2016-08-01
Arsenic in drinking water is a serious problem for human health. Since the toxicity of arsenic species As(III) and As(V) is different, it is important to determine the concentrations separately. Therefore, it is necessary to develop an accurate and sensitive method for the speciation of arsenic. It was intended with this work to determine the concentrations of arsenic species in water samples collected from Izmir, Manisa and nearby areas. A batch type hydride generation atomic absorption spectrometer was used. As(V) gave no signal under the optimal measurement conditions of As(III). A certified reference drinking water was analyzed by the method and the results showed excellent agreement with the reported values. The procedure was applied to 34 water samples. Eleven tap water, two spring water, 19 artesian well water and two thermal water samples were analyzed under the optimal conditions.
A Catalyst-Free Amination of Functional Organolithium Reagents by Flow Chemistry.
Kim, Heejin; Yonekura, Yuya; Yoshida, Jun-Ichi
2018-04-03
Reported is the electrophilic amination of functional organolithium intermediates with well-designed aminating reagents under mild reaction conditions using flow microreactors. The aminating reagents were optimized to achieve efficient C-N bond formation without using any catalyst. The electrophilic amination reactions of functionalized aryllithiums were successfully conducted under mild reaction conditions, within 1 minute, by using flow microreactors. The aminating reagent was also prepared by the flow method. Based on stopped-flow NMR analysis, the reaction time for the preparation of the aminating reagent was quickly optimized without the necessity of work-up. Integrated one-flow synthesis consisting of the generation of an aryllithium, the preparation of an aminating reagent, and their combined reaction was successfully achieved to give the desired amine within 5 minutes of total reaction time. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Xing, Shaoxu; Anakok, Isil; Zuo, Lei
2017-04-01
Accidents like Fukushima Disasters push people to improve the monitoring systems for the nuclear power plants. Thus, various types of energy harvesters are designed to power these systems and the Thermoelectric Generator (TEG) energy harvester is one of them. In order to enhance the amount of harvested power and the system efficiency, the power management stage needs to be carefully designed. In this paper, a power converter with optimized Maximum Power Point Tracking (MPPT) is proposed for the TEG Energy Harvester to power the wireless sensor network in nuclear power plant. The TEG Energy Harvester is installed on the coolant pipe of the nuclear plant and harvests energy from its heat energy while the power converter with optimized MPPT can make the TEG Energy Harvester output the maximum power, quickly response to the voltage change and provide sufficient energy for wireless sensor system to monitor the operation of the nuclear power plant. Due to the special characteristics of the Single-Ended Primary Inductor Converter (SEPIC) when it is working in the Discontinuous Inductor Current Mode (DICM) and Continuous Conduction Mode (CCM), the MPPT method presented in this paper would be able to control the converter to achieve the maximum output power in any working conditions of the TEG system with a simple circuit. The optimized MPPT algorithm will significantly reduce the cost and simplify the system as well as achieve a good performance. Experiment test results have shown that, comparing to a fixed- duty-cycle SEPIC which is specifically designed for the working on the secondary coolant loop in nuclear power plant, the optimized MPPT algorithm increased the output power by 55%.
Sutradhar, Alok; Park, Jaejong; Carrau, Diana; Nguyen, Tam H; Miller, Michael J; Paulino, Glaucio H
2016-07-01
Large craniofacial defects require efficient bone replacements which should not only provide good aesthetics but also possess stable structural function. The proposed work uses a novel multiresolution topology optimization method to achieve the task. Using a compliance minimization objective, patient-specific bone replacement shapes can be designed for different clinical cases that ensure revival of efficient load transfer mechanisms in the mid-face. In this work, four clinical cases are introduced and their respective patient-specific designs are obtained using the proposed method. The optimized designs are then virtually inserted into the defect to visually inspect the viability of the design . Further, once the design is verified by the reconstructive surgeon, prototypes are fabricated using a 3D printer for validation. The robustness of the designs are mechanically tested by subjecting them to a physiological loading condition which mimics the masticatory activity. The full-field strain result through 3D image correlation and the finite element analysis implies that the solution can survive the maximum mastication of 120 lb. Also, the designs have the potential to restore the buttress system and provide the structural integrity. Using the topology optimization framework in designing the bone replacement shapes would deliver surgeons new alternatives for rather complicated mid-face reconstruction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayers, Katherine; Capuano, Christopher; Atanassov, Plamen
The quantitative goal of this project was to produce a high-performance anion exchange membrane water electrolyzer (AEM-WE) completely free of platinum group metals (PGMs), which could operate for at least 500 hours with less than 50 microV/hour degradation, at 500 mA/cm 2. To achieve this goal, work focused on the optimization of electrocatalyst conductivity, with dispersion and utilization in the membrane electrode assembly (MEA) improved through refinement of deposition techniques. Critical factors were also explored with significant work undertaken by Northeastern University to further understand catalyst-membrane-ionomer interfaces and how they differ from liquid electrolyte. Water management and optimal cell operationalmore » parameters were established through the design, fabrication, and test of a new test station at Proton specific for AEM evaluation. Additionally, AEM material stability and robustness at high potentials and gas evolution conditions were advanced at Penn State.« less
Deshmukh, Ketkee; Amin, Purnima
2013-07-01
In the current research work an attempt was made to develop "Melt in mouth pellets" (Meltlets(®)) containing 40% herbal extract of soy isoflavones that served to provide antioxidants activity in menopausal women. The process of extrusion-spheronization was optimized for extruder speed, extruder screen size, spheronization speed, and time. While doing so the herbal extract incorporated in the pellet matrix was subjected to various processing conditions such as the effect of the presence of other excipients, mixing or kneading to prepare wet mass, heat generated during the process of extrusion, spheronization, and drying. Thus, the work further investigates the effect of these processing parameters on the antioxidant activity of the soy isoflavone herbal extract incorporated in the formula. Thereby, the antioxidant activity of the soya bean herbal extract, Meltlets(®) and of the placebo pellets was evaluated using DPPH free radical scavenging assay and total reduction capacity.
NASA Technical Reports Server (NTRS)
Chen, B. M.; Saber, A.
1993-01-01
A simple and noniterative procedure for the computation of the exact value of the infimum in the singular H(infinity)-optimization problem is presented, as a continuation of our earlier work. Our problem formulation is general and we do not place any restrictions in the finite and infinite zero structures of the system, and the direct feedthrough terms between the control input and the controlled output variables and between the disturbance input and the measurement output variables. Our method is applicable to a class of singular H(infinity)-optimization problems for which the transfer functions from the control input to the controlled output and from the disturbance input to the measurement output satisfy certain geometric conditions. In particular, the paper extends the result of earlier work by allowing these two transfer functions to have invariant zeros on the j(omega) axis.
NASA Technical Reports Server (NTRS)
Jenkins, R. M.
1983-01-01
The present effort represents an extension of previous work wherein a calculation model for performing rapid pitchline optimization of axial gas turbine geometry, including blade profiles, is developed. The model requires no specification of geometric constraints. Output includes aerodynamic performance (adiabatic efficiency), hub-tip flow-path geometry, blade chords, and estimates of blade shape. Presented herein is a verification of the aerodynamic performance portion of the model, whereby detailed turbine test-rig data, including rig geometry, is input to the model to determine whether tested performance can be predicted. An array of seven (7) NASA single-stage axial gas turbine configurations is investigated, ranging in size from 0.6 kg/s to 63.8 kg/s mass flow and in specific work output from 153 J/g to 558 J/g at design (hot) conditions; stage loading factor ranges from 1.15 to 4.66.
NASA Astrophysics Data System (ADS)
Sedukhin, V. V.; Anikeev, A. N.; Chumanov, I. V.
2017-11-01
Method optimizes hardening working layer parts’, working in high-abrasive conditions looks in this work: bland refractory particles WC and TiC in respect of 70/30 wt. % prepared by beforehand is applied on polystyrene model in casting’ mould. After metal poured in mould, withstand for crystallization, and then a study is carried out. Study macro- and microstructure received samples allows to say that thickness and structure received hardened layer depends on duration interactions blend harder carbides and liquid metal. Different character interactions various dispersed particles and matrix metal observed under the same conditions. Tests abrasive wear resistance received materials of method calculating residual masses was conducted in laboratory’ conditions. Results research wear resistance showed about that method obtaining harder coating of blend carbide tungsten and carbide titanium by means of drawing on surface foam polystyrene model before moulding, allows receive details with surface has wear resistance in 2.5 times higher, than details of analogy steel uncoated. Wherein energy costs necessary for transformation units mass’ substances in powder at obtained harder layer in 2.06 times higher, than materials uncoated.
Toward a systematic design theory for silicon solar cells using optimization techniques
NASA Technical Reports Server (NTRS)
Misiakos, K.; Lindholm, F. A.
1986-01-01
This work is a first detailed attempt to systematize the design of silicon solar cells. Design principles follow from three theorems. Although the results hold only under low injection conditions in base and emitter regions, they hold for arbitrary doping profiles and include the effects of drift fields, high/low junctions and heavy doping concentrations of donor or acceptor atoms. Several optimal designs are derived from the theorems, one of which involves a three-dimensional morphology in the emitter region. The theorems are derived from a nonlinear differential equation of the Riccati form, the dependent variable of which is a normalized recombination particle current.
Modification Propagation in Complex Networks
NASA Astrophysics Data System (ADS)
Mouronte, Mary Luz; Vargas, María Luisa; Moyano, Luis Gregorio; Algarra, Francisco Javier García; Del Pozo, Luis Salvador
To keep up with rapidly changing conditions, business systems and their associated networks are growing increasingly intricate as never before. By doing this, network management and operation costs not only rise, but are difficult even to measure. This fact must be regarded as a major constraint to system optimization initiatives, as well as a setback to derived economic benefits. In this work we introduce a simple model in order to estimate the relative cost associated to modification propagation in complex architectures. Our model can be used to anticipate costs caused by network evolution, as well as for planning and evaluating future architecture development while providing benefit optimization.
NASA Astrophysics Data System (ADS)
Senkerik, Roman; Zelinka, Ivan; Davendra, Donald; Oplatkova, Zuzana
2010-06-01
This research deals with the optimization of the control of chaos by means of evolutionary algorithms. This work is aimed on an explanation of how to use evolutionary algorithms (EAs) and how to properly define the advanced targeting cost function (CF) securing very fast and precise stabilization of desired state for any initial conditions. As a model of deterministic chaotic system, the one dimensional Logistic equation was used. The evolutionary algorithm Self-Organizing Migrating Algorithm (SOMA) was used in four versions. For each version, repeated simulations were conducted to outline the effectiveness and robustness of used method and targeting CF.
Allam, Mai A; Saker, Mahmoud M
2017-01-01
The overall objective of this work is to optimize the transformation system for date palm as a first step toward production of date palm clones resistant to noxious pests. A construct harboring the cholesterol oxidase (ChoA) gene, which renders plant resistance against insect attack, is introduced into embryogenic date palm callus using the PDS-1000/He particle bombardment system. The process involves the establishment of embryogenic callus cultures as well as immature embryo-derived microcalli that are used as target tissues for shooting and optimization of transformation conditions. This chapter in addition explains molecular and histochemical assays conducted to confirm gene integration and expression.
Herlík, J; Kos, S
1991-01-01
Describing the structure of a chest clinic in a large city requirements for a high level on the field of medical assessing in patients with non-specific lung diseases are formulated. 1. It must be sure, that all patients suffering from lung diseases are referred to a pneumologist. 2. Opportunities for optimal diagnosis must be given (knowledge and experiences of physicians and nurses; medical equipments of a high technical standard). 3. A scientific-based treatment must be guaranteed. Under optimal conditions it is possible to shorten the duration of disablement and to avoid the hospitalization in some cases.
NASA Astrophysics Data System (ADS)
Whitehead, James Joshua
The analysis documented herein provides an integrated approach for the conduct of optimization under uncertainty (OUU) using Monte Carlo Simulation (MCS) techniques coupled with response surface-based methods for characterization of mixture-dependent variables. This novel methodology provides an innovative means of conducting optimization studies under uncertainty in propulsion system design. Analytic inputs are based upon empirical regression rate information obtained from design of experiments (DOE) mixture studies utilizing a mixed oxidizer hybrid rocket concept. Hybrid fuel regression rate was selected as the target response variable for optimization under uncertainty, with maximization of regression rate chosen as the driving objective. Characteristic operational conditions and propellant mixture compositions from experimental efforts conducted during previous foundational work were combined with elemental uncertainty estimates as input variables. Response surfaces for mixture-dependent variables and their associated uncertainty levels were developed using quadratic response equations incorporating single and two-factor interactions. These analysis inputs, response surface equations and associated uncertainty contributions were applied to a probabilistic MCS to develop dispersed regression rates as a function of operational and mixture input conditions within design space. Illustrative case scenarios were developed and assessed using this analytic approach including fully and partially constrained operational condition sets over all of design mixture space. In addition, optimization sets were performed across an operationally representative region in operational space and across all investigated mixture combinations. These scenarios were selected as representative examples relevant to propulsion system optimization, particularly for hybrid and solid rocket platforms. Ternary diagrams, including contour and surface plots, were developed and utilized to aid in visualization. The concept of Expanded-Durov diagrams was also adopted and adapted to this study to aid in visualization of uncertainty bounds. Regions of maximum regression rate and associated uncertainties were determined for each set of case scenarios. Application of response surface methodology coupled with probabilistic-based MCS allowed for flexible and comprehensive interrogation of mixture and operating design space during optimization cases. Analyses were also conducted to assess sensitivity of uncertainty to variations in key elemental uncertainty estimates. The methodology developed during this research provides an innovative optimization tool for future propulsion design efforts.
NASA Technical Reports Server (NTRS)
Huyse, Luc; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
Free-form shape optimization of airfoils poses unexpected difficulties. Practical experience has indicated that a deterministic optimization for discrete operating conditions can result in dramatically inferior performance when the actual operating conditions are different from the - somewhat arbitrary - design values used for the optimization. Extensions to multi-point optimization have proven unable to adequately remedy this problem of "localized optimization" near the sampled operating conditions. This paper presents an intrinsically statistical approach and demonstrates how the shortcomings of multi-point optimization with respect to "localized optimization" can be overcome. The practical examples also reveal how the relative likelihood of each of the operating conditions is automatically taken into consideration during the optimization process. This is a key advantage over the use of multipoint methods.
Hayashibe, Mitsuhiro; Shimoda, Shingo
2014-01-01
A human motor system can improve its behavior toward optimal movement. The skeletal system has more degrees of freedom than the task dimensions, which incurs an ill-posed problem. The multijoint system involves complex interaction torques between joints. To produce optimal motion in terms of energy consumption, the so-called cost function based optimization has been commonly used in previous works.Even if it is a fact that an optimal motor pattern is employed phenomenologically, there is no evidence that shows the existence of a physiological process that is similar to such a mathematical optimization in our central nervous system.In this study, we aim to find a more primitive computational mechanism with a modular configuration to realize adaptability and optimality without prior knowledge of system dynamics.We propose a novel motor control paradigm based on tacit learning with task space feedback. The motor command accumulation during repetitive environmental interactions, play a major role in the learning process. It is applied to a vertical cyclic reaching which involves complex interaction torques.We evaluated whether the proposed paradigm can learn how to optimize solutions with a 3-joint, planar biomechanical model. The results demonstrate that the proposed method was valid for acquiring motor synergy and resulted in energy efficient solutions for different load conditions. The case in feedback control is largely affected by the interaction torques. In contrast, the trajectory is corrected over time with tacit learning toward optimal solutions.Energy efficient solutions were obtained by the emergence of motor synergy. During learning, the contribution from feedforward controller is augmented and the one from the feedback controller is significantly minimized down to 12% for no load at hand, 16% for a 0.5 kg load condition.The proposed paradigm could provide an optimization process in redundant system with dynamic-model-free and cost-function-free approach. PMID:24616695
Hayashibe, Mitsuhiro; Shimoda, Shingo
2014-01-01
A human motor system can improve its behavior toward optimal movement. The skeletal system has more degrees of freedom than the task dimensions, which incurs an ill-posed problem. The multijoint system involves complex interaction torques between joints. To produce optimal motion in terms of energy consumption, the so-called cost function based optimization has been commonly used in previous works.Even if it is a fact that an optimal motor pattern is employed phenomenologically, there is no evidence that shows the existence of a physiological process that is similar to such a mathematical optimization in our central nervous system.In this study, we aim to find a more primitive computational mechanism with a modular configuration to realize adaptability and optimality without prior knowledge of system dynamics.We propose a novel motor control paradigm based on tacit learning with task space feedback. The motor command accumulation during repetitive environmental interactions, play a major role in the learning process. It is applied to a vertical cyclic reaching which involves complex interaction torques.We evaluated whether the proposed paradigm can learn how to optimize solutions with a 3-joint, planar biomechanical model. The results demonstrate that the proposed method was valid for acquiring motor synergy and resulted in energy efficient solutions for different load conditions. The case in feedback control is largely affected by the interaction torques. In contrast, the trajectory is corrected over time with tacit learning toward optimal solutions.Energy efficient solutions were obtained by the emergence of motor synergy. During learning, the contribution from feedforward controller is augmented and the one from the feedback controller is significantly minimized down to 12% for no load at hand, 16% for a 0.5 kg load condition.The proposed paradigm could provide an optimization process in redundant system with dynamic-model-free and cost-function-free approach.
A one dimensional moving bed biofilm reactor model for nitrification of municipal wastewaters.
Barry, Ugo; Choubert, Jean-Marc; Canler, Jean-Pierre; Pétrimaux, Olivier; Héduit, Alain; Lessard, Paul
2017-08-01
This work presents a one-dimensional model of a moving bed bioreactor (MBBR) process designed for the removal of nitrogen from raw wastewaters. A comprehensive experimental strategy was deployed at a semi-industrial pilot-scale plant fed with a municipal wastewater operated at 10-12 °C, and surface loading rates of 1-2 g filtered COD/m 2 d and 0.4-0.55 g NH 4 -N/m 2 d. Data were collected on influent/effluent composition, and on measurement of key variables or parameters (biofilm mass and maximal thickness, thickness of the limit liquid layer, maximal nitrification rate, oxygen mass transfer coefficient). Based on time-course variations in these variables, the MBBR model was calibrated at two time-scales and magnitudes of dynamic conditions, i.e., short-term (4 days) calibration under dynamic conditions and long-term (33 days) calibration, and for three types of carriers. A set of parameters suitable for the conditions was proposed, and the calibrated parameter set is able to simulate the time-course change of nitrogen forms in the effluent of the MBBR tanks, under the tested operated conditions. Parameters linked to diffusion had a strong influence on how robustly the model is able to accurately reproduce time-course changes in effluent quality. Then the model was used to optimize the operations of MBBR layout. It was shown that the main optimization track consists of the limitation of the aeration supply without changing the overall performance of the process. Further work would investigate the influence of the hydrodynamic conditions onto the thickness of the limit liquid layer and the "apparent" diffusion coefficient in the biofilm parameters.
Accurate position estimation methods based on electrical impedance tomography measurements
NASA Astrophysics Data System (ADS)
Vergara, Samuel; Sbarbaro, Daniel; Johansen, T. A.
2017-08-01
Electrical impedance tomography (EIT) is a technology that estimates the electrical properties of a body or a cross section. Its main advantages are its non-invasiveness, low cost and operation free of radiation. The estimation of the conductivity field leads to low resolution images compared with other technologies, and high computational cost. However, in many applications the target information lies in a low intrinsic dimensionality of the conductivity field. The estimation of this low-dimensional information is addressed in this work. It proposes optimization-based and data-driven approaches for estimating this low-dimensional information. The accuracy of the results obtained with these approaches depends on modelling and experimental conditions. Optimization approaches are sensitive to model discretization, type of cost function and searching algorithms. Data-driven methods are sensitive to the assumed model structure and the data set used for parameter estimation. The system configuration and experimental conditions, such as number of electrodes and signal-to-noise ratio (SNR), also have an impact on the results. In order to illustrate the effects of all these factors, the position estimation of a circular anomaly is addressed. Optimization methods based on weighted error cost functions and derivate-free optimization algorithms provided the best results. Data-driven approaches based on linear models provided, in this case, good estimates, but the use of nonlinear models enhanced the estimation accuracy. The results obtained by optimization-based algorithms were less sensitive to experimental conditions, such as number of electrodes and SNR, than data-driven approaches. Position estimation mean squared errors for simulation and experimental conditions were more than twice for the optimization-based approaches compared with the data-driven ones. The experimental position estimation mean squared error of the data-driven models using a 16-electrode setup was less than 0.05% of the tomograph radius value. These results demonstrate that the proposed approaches can estimate an object’s position accurately based on EIT measurements if enough process information is available for training or modelling. Since they do not require complex calculations it is possible to use them in real-time applications without requiring high-performance computers.
Optimization Control of the Color-Coating Production Process for Model Uncertainty
He, Dakuo; Wang, Zhengsong; Yang, Le; Mao, Zhizhong
2016-01-01
Optimized control of the color-coating production process (CCPP) aims at reducing production costs and improving economic efficiency while meeting quality requirements. However, because optimization control of the CCPP is hampered by model uncertainty, a strategy that considers model uncertainty is proposed. Previous work has introduced a mechanistic model of CCPP based on process analysis to simulate the actual production process and generate process data. The partial least squares method is then applied to develop predictive models of film thickness and economic efficiency. To manage the model uncertainty, the robust optimization approach is introduced to improve the feasibility of the optimized solution. Iterative learning control is then utilized to further refine the model uncertainty. The constrained film thickness is transformed into one of the tracked targets to overcome the drawback that traditional iterative learning control cannot address constraints. The goal setting of economic efficiency is updated continuously according to the film thickness setting until this reaches its desired value. Finally, fuzzy parameter adjustment is adopted to ensure that the economic efficiency and film thickness converge rapidly to their optimized values under the constraint conditions. The effectiveness of the proposed optimization control strategy is validated by simulation results. PMID:27247563
Optimization Control of the Color-Coating Production Process for Model Uncertainty.
He, Dakuo; Wang, Zhengsong; Yang, Le; Mao, Zhizhong
2016-01-01
Optimized control of the color-coating production process (CCPP) aims at reducing production costs and improving economic efficiency while meeting quality requirements. However, because optimization control of the CCPP is hampered by model uncertainty, a strategy that considers model uncertainty is proposed. Previous work has introduced a mechanistic model of CCPP based on process analysis to simulate the actual production process and generate process data. The partial least squares method is then applied to develop predictive models of film thickness and economic efficiency. To manage the model uncertainty, the robust optimization approach is introduced to improve the feasibility of the optimized solution. Iterative learning control is then utilized to further refine the model uncertainty. The constrained film thickness is transformed into one of the tracked targets to overcome the drawback that traditional iterative learning control cannot address constraints. The goal setting of economic efficiency is updated continuously according to the film thickness setting until this reaches its desired value. Finally, fuzzy parameter adjustment is adopted to ensure that the economic efficiency and film thickness converge rapidly to their optimized values under the constraint conditions. The effectiveness of the proposed optimization control strategy is validated by simulation results.
NASA Astrophysics Data System (ADS)
Chen, Buxin; Zhang, Zheng; Sidky, Emil Y.; Xia, Dan; Pan, Xiaochuan
2017-11-01
Optimization-based algorithms for image reconstruction in multispectral (or photon-counting) computed tomography (MCT) remains a topic of active research. The challenge of optimization-based image reconstruction in MCT stems from the inherently non-linear data model that can lead to a non-convex optimization program for which no mathematically exact solver seems to exist for achieving globally optimal solutions. In this work, based upon a non-linear data model, we design a non-convex optimization program, derive its first-order-optimality conditions, and propose an algorithm to solve the program for image reconstruction in MCT. In addition to consideration of image reconstruction for the standard scan configuration, the emphasis is on investigating the algorithm’s potential for enabling non-standard scan configurations with no or minimum hardware modification to existing CT systems, which has potential practical implications for lowered hardware cost, enhanced scanning flexibility, and reduced imaging dose/time in MCT. Numerical studies are carried out for verification of the algorithm and its implementation, and for a preliminary demonstration and characterization of the algorithm in reconstructing images and in enabling non-standard configurations with varying scanning angular range and/or x-ray illumination coverage in MCT.
Nutritional requirements in malnutrition and diabetes mellitus.
Donnelly, Alethea
2018-06-06
Working in partnership with patients to achieve optimal nutritional status, regardless of their underlying condition, is an important aspect of nursing care. This article examines malnutrition and diabetes mellitus, which are two common conditions that can have significant implications for patients' health and diet. It emphasises that, when managing patients with malnutrition or diabetes, nurses should undertake careful assessment of their nutritional requirements, tailoring interventions to the individual and involving family and carers where appropriate. It is also important for nurses to work with other members of the multidisciplinary team, notably dietitians, who can provide specialist dietary advice and support. © 2018 RCN Publishing Company Ltd. All rights reserved. Not to be copied, transmitted or recorded in any way, in whole or part, without prior permission of the publishers.
Empirical Likelihood in Nonignorable Covariate-Missing Data Problems.
Xie, Yanmei; Zhang, Biao
2017-04-20
Missing covariate data occurs often in regression analysis, which frequently arises in the health and social sciences as well as in survey sampling. We study methods for the analysis of a nonignorable covariate-missing data problem in an assumed conditional mean function when some covariates are completely observed but other covariates are missing for some subjects. We adopt the semiparametric perspective of Bartlett et al. (Improving upon the efficiency of complete case analysis when covariates are MNAR. Biostatistics 2014;15:719-30) on regression analyses with nonignorable missing covariates, in which they have introduced the use of two working models, the working probability model of missingness and the working conditional score model. In this paper, we study an empirical likelihood approach to nonignorable covariate-missing data problems with the objective of effectively utilizing the two working models in the analysis of covariate-missing data. We propose a unified approach to constructing a system of unbiased estimating equations, where there are more equations than unknown parameters of interest. One useful feature of these unbiased estimating equations is that they naturally incorporate the incomplete data into the data analysis, making it possible to seek efficient estimation of the parameter of interest even when the working regression function is not specified to be the optimal regression function. We apply the general methodology of empirical likelihood to optimally combine these unbiased estimating equations. We propose three maximum empirical likelihood estimators of the underlying regression parameters and compare their efficiencies with other existing competitors. We present a simulation study to compare the finite-sample performance of various methods with respect to bias, efficiency, and robustness to model misspecification. The proposed empirical likelihood method is also illustrated by an analysis of a data set from the US National Health and Nutrition Examination Survey (NHANES).
Analysis of oil consumption in cylinder of diesel engine for optimization of piston rings
NASA Astrophysics Data System (ADS)
Zhang, Junhong; Zhang, Guichang; He, Zhenpeng; Lin, Jiewei; Liu, Hai
2013-01-01
The performance and particulate emission of a diesel engine are affected by the consumption of lubricating oil. Most studies on oil consumption mechanism of the cylinder have been done by using the experimental method, however they are very costly. Therefore, it is very necessary to study oil consumption mechanism of the cylinder and obtain the accurate results by the calculation method. Firstly, four main modes of lubricating oil consumption in cylinder are analyzed and then the oil consumption rate under common working conditions are calculated for the four modes based on an engine. Then, the factors that affect the lubricating oil consumption such as working conditions, the second ring closed gap, the elastic force of the piston rings are also investigated for the four modes. The calculation results show that most of the lubricating oil is consumed by evaporation on the liner surface. Besides, there are three other findings: (1) The oil evaporation from the liner is determined by the working condition of an engine; (2) The increase of the ring closed gap reduces the oil blow through the top ring end gap but increases blow-by; (3) With the increase of the elastic force of the ring, both the left oil film thickness and the oil throw-off at the top ring decrease. The oil scraping of the piston top edge is consequently reduced while the friction loss between the rings and the liner increases. A neural network prediction model of the lubricating oil consumption in cylinder is established based on the BP neural network theory, and then the model is trained and validated. The main piston rings parameters which affect the oil consumption are optimized by using the BP neural network prediction model and the prediction accuracy of this BP neural network is within 8%, which is acceptable for normal engineering applications. The oil consumption is also measured experimentally. The relative errors of the calculated and experimental values are less than 10%, verifying the validity of the simulation results. Applying the established simulation model and the validated BP network model is able to generate numerical results with sufficient accuracy, which significantly reduces experimental work and provides guidance for the optimal design of the piston rings diesel engines.
Effective removal of hydrogen sulfide using 4A molecular sieve zeolite synthesized from attapulgite.
Liu, Xinpeng; Wang, Rui
2017-03-15
In this work, 4A molecular sieve zeolite was synthesized from attapulgite (ATP) in different conditions and was applied initially for H 2 S removal. The sorbent was characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectra and N 2 adsorption/desorption. The effects of the synthesis condition and adsorption temperature were studied by dynamic adsorption experiment. The optimal adsorption temperature is 50°C. The H 2 S adsorption results have showed that the optimal synthesis conditions are as follows: the ratio of silicon to aluminum and ratio of sodium to silicon are both 1.5, the ratio of water to sodium is 30, crystallization temperature and crystallization time is 90°C, 4h, respectively. The breakthrough and saturation sulfur sorption capacities of zeolite synthesized under optimum conditions are up to nearly 10 and 15mg/g-sorbent, respectively, and the H 2 S removal rate is nearly 100%. The adsorption kinetics nonlinear fitting results show that the adsorption system follows Bingham model. These results indicate that 4A molecular sieve zeolite synthesized from attapulgite can be used for H 2 S removal promisingly. Copyright © 2016 Elsevier B.V. All rights reserved.
Cognitive Fatigue Facilitates Procedural Sequence Learning.
Borragán, Guillermo; Slama, Hichem; Destrebecqz, Arnaud; Peigneux, Philippe
2016-01-01
Enhanced procedural learning has been evidenced in conditions where cognitive control is diminished, including hypnosis, disruption of prefrontal activity and non-optimal time of the day. Another condition depleting the availability of controlled resources is cognitive fatigue (CF). We tested the hypothesis that CF, eventually leading to diminished cognitive control, facilitates procedural sequence learning. In a two-day experiment, 23 young healthy adults were administered a serial reaction time task (SRTT) following the induction of high or low levels of CF, in a counterbalanced order. CF was induced using the Time load Dual-back (TloadDback) paradigm, a dual working memory task that allows tailoring cognitive load levels to the individual's optimal performance capacity. In line with our hypothesis, reaction times (RT) in the SRTT were faster in the high- than in the low-level fatigue condition, and performance improvement was higher for the sequential than the motor components. Altogether, our results suggest a paradoxical, facilitating impact of CF on procedural motor sequence learning. We propose that facilitated learning in the high-level fatigue condition stems from a reduction in the cognitive resources devoted to cognitive control processes that normally oppose automatic procedural acquisition mechanisms.
Value centric approaches to the design, operations and maintenance of wind turbines
NASA Astrophysics Data System (ADS)
Khadabadi, Madhur Aravind
Wind turbine maintenance is emerging as an unexpectedly high component of turbine operating cost, and there is an increasing interest in managing this cost. This thesis presents an alternative view of maintenance as a value-driver, and develops an optimization algorithm to evaluate the value delivered by different maintenance techniques. I view maintenance as an operation that moves the turbine to an improved state in which it can generate more power and, thus, earn more revenue. To implement this approach, I model the stochastic deterioration of the turbine in two dimensions: the deterioration rate, and the extent of deterioration, and then use maintenance to improve the state of the turbine. The value of the turbine is the difference between the revenue from to the power generation and the costs incurred in operation and maintenance. With a focus on blade deterioration, I evaluate the value delivered by implementing two different maintenance schemes, predictive maintenance and scheduled maintenance. An example of predictive maintenance technique is the use of Condition Monitoring Systems to precisely detect deterioration. I model Condition Monitoring System (CMS) of different degrees of fidelity, where a higher fidelity CMS would allow the blade state to be determined with a higher precision. The same model is then applied for the scheduled maintenance technique. The improved state information obtained from these techniques is then used to derive an optimal maintenance strategy. The difference between the value of the turbine with and without the inspection type can be interpreted as the value of the inspection. The results indicate that a higher fidelity (and more expensive) inspection method does not necessarily yield the highest value, and, that there is an optimal level of fidelity that results in maximum value. The results also aim to inform the operator of the impact of regional parameters such as wind speed, variance and maintenance costs to the optimal maintenance strategy. The contributions of this work are twofold. First, I present a practical approach to wind turbine valuation that takes operating and market conditions into account. This work should therefore be useful to wind farm operators, investors and decision makers. Second, I show how the value of a maintenance scheme can be explicitly assessed for different conditions.
ERIC Educational Resources Information Center
Taipa, M. A^ngela; Azevedo, Ana M.; Grilo, Anto´nio L.; Couto, Pedro T.; Ferreira, Filipe A. G.; Fortuna, Ana R. M.; Pinto, Ine^s F.; Santos, Rafael M.; Santos, Susana B.
2015-01-01
An integrative laboratory study addressing fundamentals of enzyme catalysis and their application to reactors operation and modeling is presented. Invertase, a ß-fructofuranosidase that catalyses the hydrolysis of sucrose, is used as the model enzyme at optimal conditions (pH 4.5 and 45 °C). The experimental work involves 3 h of laboratory time…
NASA Astrophysics Data System (ADS)
Piccininni, A.; Palumbo, G.; Franco, A. Lo; Sorgente, D.; Tricarico, L.; Russello, G.
2018-05-01
The continuous research for lightweight components for transport applications to reduce the harmful emissions drives the attention to the light alloys as in the case of Aluminium (Al) alloys, capable to combine low density with high values of the strength-to-weight ratio. Such advantages are partially counterbalanced by the poor formability at room temperature. A viable solution is to adopt a localized heat treatment by laser of the blank before the forming process to obtain a tailored distribution of material properties so that the blank can be formed at room temperature by means of conventional press machines. Such an approach has been extensively investigated for age hardenable alloys, but in the present work the attention is focused on the 5000 series; in particular, the optimization of the deep drawing process of the alloy AA5754 H32 is proposed through a numerical/experimental approach. A preliminary investigation was necessary to correctly tune the laser parameters (focus length, spot dimension) to effectively obtain the annealed state. Optimal process parameters were then obtained coupling a 2D FE model with an optimization platform managed by a multi-objective genetic algorithm. The optimal solution (i.e. able to maximize the LDR) in terms of blankholder force and extent of the annealed region was thus evaluated and validated through experimental trials. A good matching between experimental and numerical results was found. The optimal solution allowed to obtain an LDR of the locally heat treated blank larger than the one of the material either in the wrought condition (H32) either in the annealed condition (H111).
Genetic algorithm optimization of a film cooling array on a modern turbine inlet vane
NASA Astrophysics Data System (ADS)
Johnson, Jamie J.
In response to the need for more advanced gas turbine cooling design methods that factor in the 3-D flowfield and heat transfer characteristics, this study involves the computational optimization of a pressure side film cooling array on a modern turbine inlet vane. Latin hypersquare sampling, genetic algorithm reproduction, and Reynolds-Averaged Navier Stokes (RANS) computational fluid dynamics (CFD) as an evaluation step are used to assess a total of 1,800 film cooling designs over 13 generations. The process was efficient due to the Leo CFD code's ability to estimate cooling mass flux at surface grid cells using a transpiration boundary condition, eliminating the need for remeshing between designs. The optimization resulted in a unique cooling design relative to the baseline with new injection angles, compound angles, cooling row patterns, hole sizes, a redistribution of cooling holes away from the over-cooled midspan to hot areas near the shroud, and a lower maximum surface temperature. To experimentally confirm relative design trends between the optimized and baseline designs, flat plate infrared thermography assessments were carried out at design flow conditions. Use of flat plate experiments to model vane pressure side cooling was justified through a conjugate heat transfer CFD comparison of the 3-D vane and flat plate which showed similar cooling performance trends at multiple span locations. The optimized flat plate model exhibited lower minimum surface temperatures at multiple span locations compared to the baseline. Overall, this work shows promise of optimizing film cooling to reduce design cycle time and save cooling mass flow in a gas turbine.
Glennan Microsystems Initiative
NASA Technical Reports Server (NTRS)
Brillson, Leonard J.
2002-01-01
During the 2001-2002 award period, we performed research on Pt/Ti/bare 6H-SiC and bare 4H-SiC interfaces in order to identify their electronic properties as a function of surface preparation. The overall aim of this work is to optimize the electronic properties of metal contacts to SiC as well as the active SiC material itself as a function of surface preparation and subsequent processing. Initially, this work has involved identifying bare surface, subsurface, and metal induced gap states at the metal-SiC contact and correlating energies and densities of deep levels with Schottky barrier heights. We used low energy electron-excited nanoluminescence (LEEN) spectroscopy, X-ray photoemission spectroscopy (XPS), and Secondary Ion Mass Spectrometry (SIMS) in order to correlate electronic states and energy bands with chemical composition, bonding, and crystal structure. A major development has been the discovery of polytype transformations that occur in 4H-SiC under standard microelectronic process conditions used to fabricate SiC devices. Our results are consistent with the stacking fault generation, defect formation, and consequent degradation of SiC recently reported for state-of-the-art ABB commercial diodes under localized electrical stress. Our results highlight the importance of -optimizing process conditions and material properties - anneal times, temperatures and doping to control such structural changes within epitaxial SiC layers. Thus far, we have established threshold times and temperatures beyond which 4H-SiC exhibits 3C-SiC transformation bands for a subset of dopant concentrations and process conditions. On the basis of this temperature time behavior, we have been able to establish an activation energy of approximately 2.5 eV for polytype transformation and dislocation motion. Work continues to establish the fundamental mechanisms underlying the polytype changes and its dependence on material parameters.
NASA Astrophysics Data System (ADS)
Hartl, D. J.; Frank, G. J.; Malak, R. J.; Baur, J. W.
2017-02-01
Research on the structurally embedded vascular antenna concept leverages past efforts on liquid metal (LM) reconfigurable electronics, microvascular composites, and structurally integrated and reconfigurable antennas. Such a concept has potential for reducing system weight or volume while simultaneously allowing in situ adjustment of resonant frequencies and/or changes in antenna directivity. This work considers a microvascular pattern embedded in a laminated composite and filled with LM. The conductive liquid provides radio frequency (RF) functionality while also allowing self-cooling. Models describing RF propagation and heat transfer, in addition to the structural effects of both the inclusion of channels and changes in temperature, were described in part 1 of this two-part work. In this part 2, the engineering models developed and demonstrated in part 1 toward the initial exploration of design trends are implemented into multiple optimization frameworks for more detailed design studies, one of which being novel and particularly applicable to this class of problem. The computational expense associated with the coupled multiphysical analysis of the structurally embedded LM transmitting antenna motivates the consideration of surrogate-based optimization methods. Both static and adaptive approaches are explored; it is shown that iteratively correcting the surrogate leads to more accurate optimized design predictions. The expected strong dependence of antenna performance on thermal environment motivates the consideration of a novel ‘parameterized’ optimization approach that simultaneously calculates whole families of optimal designs based on changes in design or operational variables generally beyond the control of the designer. The change in Pareto-optimal response with evolution in operating conditions is clearly demonstrated.
NASA Astrophysics Data System (ADS)
Jena, D. P.; Panigrahi, S. N.
2016-03-01
Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.
Qian, Lichuan; Krause, Diane S.; Saltzman, W. Mark
2012-01-01
Fetal liver epithelial cells (FLEC) are valuable for liver cell therapy and tissue engineering, but methods for culture and characterization of these cells are not well developed. This work explores the influence of multiple soluble factors on FLEC, with the long-term goal of developing an optimal culture system to generate functional liver tissue. Our comparative analysis suggests hepatocyte growth factor (HGF) is required throughout the culture period. In the presence of HGF, addition of oncostatin M (OSM) at culture initiation results in concurrent growth and maturation, while constant presence of protective agents like ascorbic acid enhances cell survival. Study observations led to the development of a culture medium that provided optimal growth and hepatic differentiation conditions. FLEC expansion was observed to be ~2 fold of that under standard conditions, albumin secretion rate was 2 – 3 times greater than maximal values obtained with other media, and the highest level of glycogen accumulation among all conditions was observed with the developed medium. Our findings serve to advance culture methods for liver progenitors in cell therapy and tissue engineering applications. PMID:21922669
Nicolasora, Niko; Downham, Rory; Dyer, Rachel-May; Hussey, Laura; Luscombe, Aoife; Sears, Vaughn
2018-05-02
This paper contains details of work carried out to identify the most effective processing conditions for the optimized 1,2-indandione/zn formulation developed for use under UK conditions. Using direct measurements of fluorescence taken from test spots of amino acids and eccrine sweat during oven processing, complemented with experiments on real fingermarks, it was established that processing temperatures above 120°C in the oven were detrimental to the fluorescence of the developed mark. Alternative methods of development to oven processing were found to be effective, but less controllable. High levels of humidification were also found to be detrimental to the fluorescence of 1,2-indandione developed marks, and oven processing at 100°C and 0% relative humidity is therefore recommended for further studies. It has also been shown that 1,2-indandione can develop fingermarks at temperatures as low as 20°C, making it a candidate for use at crime scenes. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Aiyoshi, Eitaro; Masuda, Kazuaki
On the basis of market fundamentalism, new types of social systems with the market mechanism such as electricity trading markets and carbon dioxide (CO2) emission trading markets have been developed. However, there are few textbooks in science and technology which present the explanation that Lagrange multipliers can be interpreted as market prices. This tutorial paper explains that (1) the steepest descent method for dual problems in optimization, and (2) Gauss-Seidel method for solving the stationary conditions of Lagrange problems with market principles, can formulate the mechanism of market pricing, which works even in the information-oriented modern society. The authors expect readers to acquire basic knowledge on optimization theory and algorithms related to economics and to utilize them for designing the mechanism of more complicated markets.
NASA Astrophysics Data System (ADS)
Faitar, C.; Novac, I.
2017-08-01
Today, the concept of energy efficiency or energy optimization in ships has become one of the main problems of engineers in the whole world. To increase the fiability of a crude oil super tanker ship it means, among other things, to improve the energy performance and optimize the fuel consumption of ship through the development of engines and propulsion system or using alternative energies. Also, the importance of having an effective and reliable Power Management System (PMS) in a vessel operating system means to reduce operational costs and maintain power system of machine parts working in minimum stress in all operating conditions. Studying the Energy Efficiency Design Index and Energy Efficiency Operational Indicator for a crude oil super tanker ship, it allows us to study the reconfiguration of ship power system introducing new generation systems.
Mechanical Properties Optimization of Poly-Ether-Ether-Ketone via Fused Deposition Modeling.
Deng, Xiaohu; Zeng, Zhi; Peng, Bei; Yan, Shuo; Ke, Wenchao
2018-01-30
Compared to the common selective laser sintering (SLS) manufacturing method, fused deposition modeling (FDM) seems to be an economical and efficient three-dimensional (3D) printing method for high temperature polymer materials in medical applications. In this work, a customized FDM system was developed for polyether-ether-ketone (PEEK) materials printing. The effects of printing speed, layer thickness, printing temperature and filling ratio on tensile properties were analyzed by the orthogonal test of four factors and three levels. Optimal tensile properties of the PEEK specimens were observed at a printing speed of 60 mm/s, layer thickness of 0.2 mm, temperature of 370 °C and filling ratio of 40%. Furthermore, the impact and bending tests were conducted under optimized conditions and the results demonstrated that the printed PEEK specimens have appropriate mechanical properties.
NASA Astrophysics Data System (ADS)
Li, Leyuan; Liu, lh64. Hong
2012-07-01
It has been confirmed in our previous work that in bioregenerative life support systems, feeding yellow mealworms (Tenebrio molitor L.) using fermented straw has the potential to provide good animal protein for astronauts, meanwhile treating with plant wastes. However, since the nitrogen content in straw is very low, T. molitor larvae can not obtain sufficient nitrogen, which results in a relatively low growth efficiency. In this study, wheat straw powder was mixed with simulated human urine before fermentation. Condition parameters, e.g. urine:straw ratio, moisture content, inoculation dose, fermentation time, fermentation temperature and pH were optimized using Taguchi method. Larval growth rate and average individual mass of mature larva increased significantly in the group of T. molitor larvae fed with feedstuff prepared with the optimized process.
Data Mining and Optimization Tools for Developing Engine Parameters Tools
NASA Technical Reports Server (NTRS)
Dhawan, Atam P.
1998-01-01
This project was awarded for understanding the problem and developing a plan for Data Mining tools for use in designing and implementing an Engine Condition Monitoring System. From the total budget of $5,000, Tricia and I studied the problem domain for developing ail Engine Condition Monitoring system using the sparse and non-standardized datasets to be available through a consortium at NASA Lewis Research Center. We visited NASA three times to discuss additional issues related to dataset which was not made available to us. We discussed and developed a general framework of data mining and optimization tools to extract useful information from sparse and non-standard datasets. These discussions lead to the training of Tricia Erhardt to develop Genetic Algorithm based search programs which were written in C++ and used to demonstrate the capability of GA algorithm in searching an optimal solution in noisy datasets. From the study and discussion with NASA LERC personnel, we then prepared a proposal, which is being submitted to NASA for future work for the development of data mining algorithms for engine conditional monitoring. The proposed set of algorithm uses wavelet processing for creating multi-resolution pyramid of the data for GA based multi-resolution optimal search. Wavelet processing is proposed to create a coarse resolution representation of data providing two advantages in GA based search: 1. We will have less data to begin with to make search sub-spaces. 2. It will have robustness against the noise because at every level of wavelet based decomposition, we will be decomposing the signal into low pass and high pass filters.
An adaptive spoiler to control the transonic shock
NASA Astrophysics Data System (ADS)
Bein, Th; Hanselka, H.; Breitbach, E.
2000-04-01
Market research predicts, for the aircraft industry, a large growth in the number of passengers as well as the airfreight rate with the result of this leading to increased competition for the European aircraft industry, the efficiency of new aircraft has to be improved drastically. One approach, among others, is the aerodynamic optimization of the wing. The fixed wing is designed optimally only for one flight condition. This flight condition is described by the parameters altitude, mach number and aircraft weight, all of which permanently vary during the mission of the aircraft. Therefore, the aircraft is just periodically near to the chosen design point. To compensate for this major disadvantage, an `adaptive wing' for optimal adaptation and variation of the profile geometry to the actual flight conditions will be developed. Daimler-Benz Aerospace Airbus, Daimler-Benz Research and the German Aerospace Center (DLR) are working as project partners on concepts for a variable camber and a local spoiler bump. In this paper a structural concept developed by the DLR for the adaptive spoiler will be presented. The concept is designed under the aspect of adaptive structural systems and requires a high integration of actuators, sensor and controllers in the structure. Special aspects of the design will be discussed and the first results, analytical, numerical as well as experimental, will be presented. Part of the concept design is also the development of new actuators optimized for the specific problem. A new actuator concept for the adaptive spoiler based on a cylindrical tube and activated either by pressure or multifunctional materials (e.g. shape memory alloys) will additionally be shown.
NASA Astrophysics Data System (ADS)
Espitia, Paula Judith Perez; Soares, Nilda de Fátima Ferreira; Teófilo, Reinaldo F.; Vitor, Débora M.; Coimbra, Jane Sélia dos Reis; de Andrade, Nélio José; de Sousa, Frederico B.; Sinisterra, Rubén D.; Medeiros, Eber Antonio Alves
2013-01-01
Single primary nanoparticles of zinc oxide (nanoZnO) tend to form particle collectives, resulting in loss of antimicrobial activity. This work studied the effects of probe sonication conditions: power, time, and the presence of a dispersing agent (Na4P2O7), on the size of nanoZnO particles. NanoZnO dispersion was optimized by response surface methodology (RSM) and characterized by the zeta potential (ZP) technique. NanoZnO antimicrobial activity was investigated at different concentrations (1, 5, and 10 % w/w) against four foodborne pathogens and four spoilage microorganisms. The presence of the dispersing agent had a significant effect on the size of dispersed nanoZnO. Minimum size after sonication was 238 nm. An optimal dispersion condition was achieved at 200 W for 45 min of sonication in the presence of the dispersing agent. ZP analysis indicated that the ZnO nanoparticle surface charge was altered by the addition of the dispersing agent and changes in pH. At tested concentrations and optimal dispersion, nanoZnO had no antimicrobial activity against Pseudomonas aeruginosa, Lactobacillus plantarum, and Listeria monocytogenes. However, it did have antimicrobial activity against Escherichia coli, Salmonella choleraesuis, Staphylococcus aureus, Saccharomyces cerevisiae, and Aspergillus niger. Based on the exhibited antimicrobial activity of optimized nanoZnO against some foodborne pathogens and spoilage microorganisms, nanoZnO is a promising antimicrobial for food preservation with potential application for incorporation in polymers intended as food-contact surfaces.
Defining a region of optimization based on engine usage data
Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna
2015-08-04
Methods and systems for engine control optimization are provided. One or more operating conditions of a vehicle engine are detected. A value for each of a plurality of engine control parameters is determined based on the detected one or more operating conditions of the vehicle engine. A range of the most commonly detected operating conditions of the vehicle engine is identified and a region of optimization is defined based on the range of the most commonly detected operating conditions of the vehicle engine. The engine control optimization routine is initiated when the one or more operating conditions of the vehicle engine are within the defined region of optimization.
Generalized Pauli constraints in reduced density matrix functional theory.
Theophilou, Iris; Lathiotakis, Nektarios N; Marques, Miguel A L; Helbig, Nicole
2015-04-21
Functionals of the one-body reduced density matrix (1-RDM) are routinely minimized under Coleman's ensemble N-representability conditions. Recently, the topic of pure-state N-representability conditions, also known as generalized Pauli constraints, received increased attention following the discovery of a systematic way to derive them for any number of electrons and any finite dimensionality of the Hilbert space. The target of this work is to assess the potential impact of the enforcement of the pure-state conditions on the results of reduced density-matrix functional theory calculations. In particular, we examine whether the standard minimization of typical 1-RDM functionals under the ensemble N-representability conditions violates the pure-state conditions for prototype 3-electron systems. We also enforce the pure-state conditions, in addition to the ensemble ones, for the same systems and functionals and compare the correlation energies and optimal occupation numbers with those obtained by the enforcement of the ensemble conditions alone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Theophilou, Iris; Helbig, Nicole; Lathiotakis, Nektarios N.
Functionals of the one-body reduced density matrix (1-RDM) are routinely minimized under Coleman’s ensemble N-representability conditions. Recently, the topic of pure-state N-representability conditions, also known as generalized Pauli constraints, received increased attention following the discovery of a systematic way to derive them for any number of electrons and any finite dimensionality of the Hilbert space. The target of this work is to assess the potential impact of the enforcement of the pure-state conditions on the results of reduced density-matrix functional theory calculations. In particular, we examine whether the standard minimization of typical 1-RDM functionals under the ensemble N-representability conditions violatesmore » the pure-state conditions for prototype 3-electron systems. We also enforce the pure-state conditions, in addition to the ensemble ones, for the same systems and functionals and compare the correlation energies and optimal occupation numbers with those obtained by the enforcement of the ensemble conditions alone.« less
Advances for the Topographic Characterisation of SMC Materials
Calvimontes, Alfredo; Grundke, Karina; Müller, Anett; Stamm, Manfred
2009-01-01
For a comprehensive study of Sheet Moulding Compound (SMC) surfaces, topographical data obtained by a contact-free optical method (chromatic aberration confocal imaging) were systematically acquired to characterise these surfaces with regard to their statistical, functional and volumetrical properties. Optimal sampling conditions (cut-off length and resolution) were obtained by a topographical-statistical procedure proposed in the present work. By using different length scales specific morphologies due to the influence of moulding conditions, metallic mould topography, glass fibre content and glass fibre orientation can be characterized. The aim of this study is to suggest a systematic topographical characterization procedure for composite materials in order to study and recognize the influence of production conditions on their surface quality.
Segers, Elien; Beckers, Tom; Geurts, Hilde; Claes, Laurence; Danckaerts, Marina; van der Oord, Saskia
2018-01-01
Introduction: Behavioral Parent Training (BPT) is often provided for childhood psychiatric disorders. These disorders have been shown to be associated with working memory impairments. BPT is based on operant learning principles, yet how operant principles shape behavior (through the partial reinforcement (PRF) extinction effect, i.e., greater resistance to extinction that is created when behavior is reinforced partially rather than continuously) and the potential role of working memory therein is scarcely studied in children. This study explored the PRF extinction effect and the role of working memory therein using experimental tasks in typically developing children. Methods: Ninety-seven children (age 6–10) completed a working memory task and an operant learning task, in which children acquired a response-sequence rule under either continuous or PRF (120 trials), followed by an extinction phase (80 trials). Data of 88 children were used for analysis. Results: The PRF extinction effect was confirmed: We observed slower acquisition and extinction in the PRF condition as compared to the continuous reinforcement (CRF) condition. Working memory was negatively related to acquisition but not extinction performance. Conclusion: Both reinforcement contingencies and working memory relate to acquisition performance. Potential implications for BPT are that decreasing working memory load may enhance the chance of optimally learning through reinforcement. PMID:29643822
Evaluation of job satisfaction and working atmosphere of dental nurses in Germany.
Goetz, Katja; Hasse, Philipp; Campbell, Stephen M; Berger, Sarah; Dörfer, Christof E; Hahn, Karolin; Szecsenyi, Joachim
2016-02-01
The purpose of the study was to assess the level of job satisfaction of dental nurses in ambulatory care and to explore the impact of aspects of working atmosphere on and their association with job satisfaction. This cross-sectional study was based on a job satisfaction survey. Data were collected from 612 dental nurses working in 106 dental care practices. Job satisfaction was measured with the 10-item Warr-Cook-Wall job satisfaction scale. Working atmosphere was measured with five items. Linear regression analyses were performed in which each item of the job satisfaction scale was handled as dependent variables. A stepwise linear regression analysis was performed with overall job satisfaction and the five items of working atmosphere, job satisfaction, and individual characteristics. The response rate was 88.3%. Dental nurses were satisfied with 'colleagues' and least satisfied with 'income.' Different aspects of job satisfaction were mostly associated with the following working atmosphere issues: 'responsibilities within the practice team are clear,' 'suggestions for improvement are taken seriously,' 'working atmosphere in the practice team is good,' and 'made easier to admit own mistakes.' Within the stepwise linear regression analysis, the aspect 'physical working condition' (β = 0.304) showed the highest association with overall job satisfaction. The total explained variance of the 14 associated variables was 0.722 with overall job satisfaction. Working atmosphere within this discrete sample of dental care practice seemed to be an important influence on reported working condition and job satisfaction for dental nurses. Because of the high association of job satisfaction with physical working condition, the importance of paying more attention to an ergonomic working position for dental nurses to ensure optimal quality of care is highlighted. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Role of quantum correlations in light-matter quantum heat engines
NASA Astrophysics Data System (ADS)
Barrios, G. Alvarado; Albarrán-Arriagada, F.; Cárdenas-López, F. A.; Romero, G.; Retamal, J. C.
2017-11-01
We study a quantum Otto engine embedding a working substance composed of a two-level system interacting with a harmonic mode. The physical properties of the substance are described by a generalized quantum Rabi model arising in superconducting circuit realizations. We show that light-matter quantum correlation reduction during the hot bath stage and adiabatic stages act as an indicator for enhanced work extraction and efficiency, respectively. Also, we demonstrate that the anharmonic spectrum of the working substance has a direct impact on the transition from heat engine into refrigerator as the light-matter coupling is increased. These results shed light on the search for optimal conditions in the performance of quantum heat engines.
The Different Facets of Work Stress: A Latent Profile Analysis of Nurses' Work Demands.
Jenull, Brigitte B; Wiedermann, Wolfgang
2015-10-01
Work-related stress has been identified as a relevant problem leading to negative effects on health and quality of life. Using data from 844 nurses, latent profile analyses (LPA) were applied to identify distinct patterns of work stress. Several sociodemographic variables, including nurses' working and living conditions, as well as nurses' reactions to workload, were considered to predict respondents' profile membership. LPA revealed three distinct profiles that can be distinguished by a low, moderate, and higher stress level. Being financially secure is positively related to the low stress profile, whereas working in an urban area and having low job satisfaction increases the chance of belonging to the higher stress profile. Our results can be used as a basis to develop interventions to create a healthy nursing home environment by supporting the balance between family and work, providing access to job resources and optimizing recovery opportunities. © The Author(s) 2013.
Yazdi, Ashkan K; Smyth, Hugh D C
2017-03-01
To optimize air-jet milling conditions of ibuprofen (IBU) using design of experiment (DoE) method, and to test the generalizability of the optimized conditions for the processing of another non-steroidal anti-inflammatory drug (NSAID). Bulk IBU was micronized using an Aljet mill according to a circumscribed central composite (CCC) design with grinding and pushing nozzle pressures (GrindP, PushP) varying from 20 to 110 psi. Output variables included yield and particle diameters at the 50th and 90th percentile (D 50 , D 90 ). Following data analysis, the optimized conditions were identified and tested to produce IBU particles with a minimum size and an acceptable yield. Finally, indomethacin (IND) was milled using the optimized conditions as well as the control. CCC design included eight successful runs for milling IBU from the ten total runs due to powder "blowback" from the feed hopper. DoE analysis allowed the optimization of the GrindP and PushP at 75 and 65 psi. In subsequent validation experiments using the optimized conditions, the experimental D 50 and D 90 values (1.9 and 3.6 μm) corresponded closely with the DoE modeling predicted values. Additionally, the optimized conditions were superior over the control conditions for the micronization of IND where smaller D 50 and D 90 values (1.2 and 2.7 μm vs. 1.8 and 4.4 μm) were produced. The optimization of a single-step air-jet milling of IBU using the DoE approach elucidated the optimal milling conditions, which were used to micronize IND using the optimized milling conditions.
Planform, aero-structural, and flight control optimization for tailless morphing aircraft
NASA Astrophysics Data System (ADS)
Molinari, Giulio; Arrieta, Andres F.; Ermanni, Paolo
2015-04-01
Tailless airplanes with swept wings rely on variations of the spanwise lift distribution to provide controllability in roll, pitch and yaw. Conventionally, this is achieved utilizing multiple control surfaces, such as elevons, on the wing trailing edge. As every flight condition requires different control moments (e.g. to provide pitching moment equilibrium), these surfaces are practically permanently displaced. Due to their nature, causing discontinuities, corners and gaps, they bear aerodynamic penalties, mostly in terms of shape drag. Shape adaptation, by means of chordwise morphing, has the potential of varying the lift of a wing section by deforming its profile in a way that minimizes the resulting drag. Furthermore, as the shape can be varied differently along the wingspan, the lift distribution can be tailored to each specific flight condition. For this reason, tailless aircraft appear as a prime choice to apply morphing techniques, as the attainable benefits are potentially significant. In this work, we present a methodology to determine the optimal planform, profile shape, and morphing structure for a tailless aircraft. The employed morphing concept is based on a distributed compliance structure, actuated by Macro Fiber Composite (MFC) piezoelectric elements. The multidisciplinary optimization is performed considering the static and dynamic aeroelastic behavior of the resulting structure. The goal is the maximization of the aerodynamic efficiency while guaranteeing the controllability of the plane, by means of morphing, in a set of flight conditions.
Baruah, Rwivoo; Deka, Barsha; Kashyap, Niharika; Goyal, Arun
2018-01-01
Weissella cibaria RBA12 produced a maximum of 9 mg/ml dextran (with 90% efficiency) using shake flask culture under the optimized concentration of medium components viz. 2% (w/v) of each sucrose, yeast extract, and K 2 HPO 4 after incubation at optimized conditions of 20 °C and 180 rpm for 24 h. The optimized medium and conditions were used for scale-up of dextran production from Weissella cibaria RBA12 in 2.5-l working volume under batch fermentation in a bioreactor that yielded a maximum of 9.3 mg/ml dextran (with 93% efficiency) at 14 h. After 14 h, dextran produced was utilized by the bacterium till 18 h in its stationary phase under sucrose depleted conditions. Dextran utilization was further studied by fed-batch fermentation using sucrose feed. Dextran on production under fed-batch fermentation in bioreactor gave 35.8 mg/ml after 32 h. In fed-batch mode, there was no decrease in dextran concentration as observed in the batch mode. This showed that the utilization of dextran by Weissella cibaria RBA12 is initiated when there is sucrose depletion and therefore the presence of sucrose can possibly overcome the dextran hydrolysis. This is the first report of utilization of dextran, post-sucrose depletion by Weissella sp. studied in bioreactor.
Comparison of optimization algorithms for the slow shot phase in HPDC
NASA Astrophysics Data System (ADS)
Frings, Markus; Berkels, Benjamin; Behr, Marek; Elgeti, Stefanie
2018-05-01
High-pressure die casting (HPDC) is a popular manufacturing process for aluminum processing. The slow shot phase in HPDC is the first phase of this process. During this phase, the molten metal is pushed towards the cavity under moderate plunger movement. The so-called shot curve describes this plunger movement. A good design of the shot curve is important to produce high-quality cast parts. Three partially competing process goals characterize the slow shot phase: (1) reducing air entrapment, (2) avoiding temperature loss, and (3) minimizing oxide caused by the air-aluminum contact. Due to the rough process conditions with high pressure and temperature, it is hard to design the shot curve experimentally. There exist a few design rules that are based on theoretical considerations. Nevertheless, the quality of the shot curve design still depends on the experience of the machine operator. To improve the shot curve it seems to be natural to use numerical optimization. This work compares different optimization strategies for the slow shot phase optimization. The aim is to find the best optimization approach on a simple test problem.
NASA Astrophysics Data System (ADS)
Papagiannis, P.; Azariadis, P.; Papanikos, P.
2017-10-01
Footwear is subject to bending and torsion deformations that affect comfort perception. Following review of Finite Element Analysis studies of sole rigidity and comfort, a three-dimensional, linear multi-material finite element sole model for quasi-static bending and torsion simulation, overcoming boundary and optimisation limitations, is described. Common footwear materials properties and boundary conditions from gait biomechanics are used. The use of normalised strain energy for product benchmarking is demonstrated along with comfort level determination through strain energy density stratification. Sensitivity of strain energy against material thickness is greater for bending than for torsion, with results of both deformations showing positive correlation. Optimization for a targeted performance level and given layer thickness is demonstrated with bending simulations sufficing for overall comfort assessment. An algorithm for comfort optimization w.r.t. bending is presented, based on a discrete approach with thickness values set in line with practical manufacturing accuracy. This work illustrates the potential of the developed finite element analysis applications to offer viable and proven aids to modern footwear sole design assessment and optimization.
NASA Astrophysics Data System (ADS)
He, Fei; Liu, Yuanning; Zhu, Xiaodong; Huang, Chun; Han, Ye; Dong, Hongxing
2014-12-01
Gabor descriptors have been widely used in iris texture representations. However, fixed basic Gabor functions cannot match the changing nature of diverse iris datasets. Furthermore, a single form of iris feature cannot overcome difficulties in iris recognition, such as illumination variations, environmental conditions, and device variations. This paper provides multiple local feature representations and their fusion scheme based on a support vector regression (SVR) model for iris recognition using optimized Gabor filters. In our iris system, a particle swarm optimization (PSO)- and a Boolean particle swarm optimization (BPSO)-based algorithm is proposed to provide suitable Gabor filters for each involved test dataset without predefinition or manual modulation. Several comparative experiments on JLUBR-IRIS, CASIA-I, and CASIA-V4-Interval iris datasets are conducted, and the results show that our work can generate improved local Gabor features by using optimized Gabor filters for each dataset. In addition, our SVR fusion strategy may make full use of their discriminative ability to improve accuracy and reliability. Other comparative experiments show that our approach may outperform other popular iris systems.
Optimization of lattice surgery is NP-hard
NASA Astrophysics Data System (ADS)
Herr, Daniel; Nori, Franco; Devitt, Simon J.
2017-09-01
The traditional method for computation in either the surface code or in the Raussendorf model is the creation of holes or "defects" within the encoded lattice of qubits that are manipulated via topological braiding to enact logic gates. However, this is not the only way to achieve universal, fault-tolerant computation. In this work, we focus on the lattice surgery representation, which realizes transversal logic operations without destroying the intrinsic 2D nearest-neighbor properties of the braid-based surface code and achieves universality without defects and braid-based logic. For both techniques there are open questions regarding the compilation and resource optimization of quantum circuits. Optimization in braid-based logic is proving to be difficult and the classical complexity associated with this problem has yet to be determined. In the context of lattice-surgery-based logic, we can introduce an optimality condition, which corresponds to a circuit with the lowest resource requirements in terms of physical qubits and computational time, and prove that the complexity of optimizing a quantum circuit in the lattice surgery model is NP-hard.
Optimization of topological quantum algorithms using Lattice Surgery is hard
NASA Astrophysics Data System (ADS)
Herr, Daniel; Nori, Franco; Devitt, Simon
The traditional method for computation in the surface code or the Raussendorf model is the creation of holes or ''defects'' within the encoded lattice of qubits which are manipulated via topological braiding to enact logic gates. However, this is not the only way to achieve universal, fault-tolerant computation. In this work we turn attention to the Lattice Surgery representation, which realizes encoded logic operations without destroying the intrinsic 2D nearest-neighbor interactions sufficient for braided based logic and achieves universality without using defects for encoding information. In both braided and lattice surgery logic there are open questions regarding the compilation and resource optimization of quantum circuits. Optimization in braid-based logic is proving to be difficult to define and the classical complexity associated with this problem has yet to be determined. In the context of lattice surgery based logic, we can introduce an optimality condition, which corresponds to a circuit with lowest amount of physical qubit requirements, and prove that the complexity of optimizing the geometric (lattice surgery) representation of a quantum circuit is NP-hard.
NASA Astrophysics Data System (ADS)
Wu, Xiaolin; Rong, Yue
2015-12-01
The quality-of-service (QoS) criteria (measured in terms of the minimum capacity requirement in this paper) are very important to practical indoor power line communication (PLC) applications as they greatly affect the user experience. With a two-way multicarrier relay configuration, in this paper we investigate the joint terminals and relay power optimization for the indoor broadband PLC environment, where the relay node works in the amplify-and-forward (AF) mode. As the QoS-constrained power allocation problem is highly non-convex, the globally optimal solution is computationally intractable to obtain. To overcome this challenge, we propose an alternating optimization (AO) method to decompose this problem into three convex/quasi-convex sub-problems. Simulation results demonstrate the fast convergence of the proposed algorithm under practical PLC channel conditions. Compared with the conventional bidirectional direct transmission (BDT) system, the relay-assisted two-way information exchange (R2WX) scheme can meet the same QoS requirement with less total power consumption.
NASA Astrophysics Data System (ADS)
Alaboina, Pankaj K.; Cho, Jong-Soo; Cho, Sung-Jin
2017-10-01
The electrochemical performance of a battery is considered to be primarily dependent on the electrode material. However, engineering and optimization of electrodes also play a crucial role, and the same electrode material can be designed to offer significantly improved batteries. In this work, Si-Fe-Mn nanomaterial alloy (Si/alloy) and graphite composite electrodes were densified at different calendering conditions of 3, 5, and 8 tons, and its influence on electrode porosity, electrolyte wettability, and long-term cycling was investigated. The active material loading was maintained very high ( 2 mg cm-2) to implement electrode engineering close to commercial loading scales. The densification was optimized to balance between the electrode thickness and wettability to enable the best electrochemical properties of the Si/alloy anodes. In this case, engineering and optimizing the Si/alloy composite electrodes to 3 ton calendering (electrode densification from 0.39 to 0.48 g cm-3) showed enhanced cycling stability with a high capacity retention of 100% over 100 cycles. [Figure not available: see fulltext.
Nanoscale Fe/Ag particles activated persulfate: optimization using response surface methodology.
Silveira, Jefferson E; Barreto-Rodrigues, Marcio; Cardoso, Tais O; Pliego, Gema; Munoz, Macarena; Zazo, Juan A; Casas, José A
2017-05-01
This work studied the bimetallic nanoparticles Fe-Ag (nZVI-Ag) activated persulfate (PS) in aqueous solution using response surface methodology. The Box-Behnken design (BBD) was employed to optimize three parameters (nZVI-Ag dose, reaction temperature, and PS concentration) using 4-chlorophenol (4-CP) as the target pollutant. The synthesis of nZVI-Ag particles was carried out through a reduction of FeCl 2 with NaBH 4 followed by reductive deposition of Ag. The catalyst was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) surface area. The BBD was considered a satisfactory model to optimize the process. Confirmatory tests were carried out using predicted and experimental values under the optimal conditions (50 mg L -1 nZVI-Ag, 21 mM PS at 57 °C) and the complete removal of 4-CP achieved experimentally was successfully predicted by the model, whereas the mineralization degree predicted (90%) was slightly overestimated against the measured data (83%).
Optimization of Shea (Vitellaria paradoxa) butter quality using screw expeller extraction.
Gezahegn, Yonas A; Emire, Shimelis A; Asfaw, Sisay F
2016-11-01
The quality of Shea butter is highly affected by processing factors. Hence, the aim of this work was to evaluate the effects of conditioning duration (CD), moisture content (MC), and die temperature (DT) of screw expeller on Shea butter quality. A combination of 3 3 full factorial design and response surface methodology was used for this investigation. Response variables were refractive index, acid value, and peroxide value. The model enabled to identify the optimum operating settings (CD = 28-30 min, MC = 3-5 g/100 g, and DT = 65-70°C) for maximize refractive index and minimum acid value. For minimum peroxide value 0 min CD, 10 g/100 g MC, and 30°C were discovered. In all-over optimization, optimal values of 30 min CD, 9.7 g/100 g MC, and 70°C DT were found. Hence, the processing factors must be at their optimal values to achieve high butter quality and consistence.
Testing and Optimizing a Stove-Powered Thermoelectric Generator with Fan Cooling.
Zheng, Youqu; Hu, Jiangen; Li, Guoneng; Zhu, Lingyun; Guo, Wenwen
2018-06-07
In order to provide heat and electricity under emergency conditions in off-grid areas, a stove-powered thermoelectric generator (STEG) was designed and optimized. No battery was incorporated, ensuring it would work anytime, anywhere, as long as combustible materials were provided. The startup performance, power load feature and thermoelectric (TE) efficiency were investigated in detail. Furthermore, the heat-conducting plate thickness, cooling fan selection, heat sink dimension and TE module configuration were optimized. The heat flow method was employed to determine the TE efficiency, which was compared to the predicted data. Results showed that the STEG can supply clean-and-warm air (625 W) and electricity (8.25 W at 5 V) continuously at a temperature difference of 148 °C, and the corresponding TE efficiency was measured to be 2.31%. Optimization showed that the choice of heat-conducting plate thickness, heat sink dimensions and cooling fan were inter-dependent, and the TE module configuration affected both the startup process and the power output.
Li, Jia; Lam, Edmund Y
2014-04-21
Mask topography effects need to be taken into consideration for a more accurate solution of source mask optimization (SMO) in advanced optical lithography. However, rigorous 3D mask models generally involve intensive computation and conventional SMO fails to manipulate the mask-induced undesired phase errors that degrade the usable depth of focus (uDOF) and process yield. In this work, an optimization approach incorporating pupil wavefront aberrations into SMO procedure is developed as an alternative to maximize the uDOF. We first design the pupil wavefront function by adding primary and secondary spherical aberrations through the coefficients of the Zernike polynomials, and then apply the conjugate gradient method to achieve an optimal source-mask pair under the condition of aberrated pupil. We also use a statistical model to determine the Zernike coefficients for the phase control and adjustment. Rigorous simulations of thick masks show that this approach provides compensation for mask topography effects by improving the pattern fidelity and increasing uDOF.
Optimization of hydrolysis conditions for bovine plasma protein using response surface methodology.
Seo, Hyun-Woo; Jung, Eun-Young; Go, Gwang-Woong; Kim, Gap-Don; Joo, Seon-Tea; Yang, Han-Sul
2015-10-15
The purpose of this study was to establish optimal conditions for the hydrolysis of bovine plasma protein. Response surface methodology was used to model and optimize responses [degree of hydrolysis (DH), 2,2-diphenyl-1-picrydrazyl (DPPH) radical-scavenging activity and Fe(2+)-chelating activity]. Hydrolysis conditions, such as hydrolysis temperature (46.6-63.4 °C), hydrolysis time (98-502 min), and hydrolysis pH (6.32-9.68) were selected as the main processing conditions in the hydrolysis of bovine plasma protein. Optimal conditions for maximum DH (%), DPPH radical-scavenging activity (%) and Fe(2+)-chelating activity (%) of the hydrolyzed bovine plasma protein, were respectively established. We discovered the following three conditions for optimal hydrolysis of bovine plasma: pH of 7.82-8.32, temperature of 54.1 °C, and time of 338.4-398.4 min. We consequently succeeded in hydrolyzing bovine plasma protein under these conditions and confirmed the various desirable properties of optimal hydrolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Motivation-Cognition Interface in Learning and Decision-Making.
Maddox, W Todd; Markman, Arthur B
2010-04-01
In this article we discuss how incentive motivations and task demands affect performance. We present a three-factor framework that suggests that performance is determined from the interaction of global incentives, local incentives, and the psychological processes needed to achieve optimal task performance. We review work that examines the implications of the motivation-cognition interface in classification, choice and on phenomena such as stereotype threat and performance pressure. We show that under some conditions stereotype threat and pressure accentuate performance. We discuss the implications of this work for neuropsychological assessment, and outline a number of challenges for future research.
2018-01-01
Starch is increasingly used as a functional group in many industrial applications and foods due to its ability to work as a thickener. The experimental values of extracting starch from yellow skin potato indicate the processing conditions at 3000 rpm and 15 min as optimum for the highest yield of extracted starch. The effect of adding different concentrations of extracted starch under the optimized conditions was studied to determine the acidity, pH, syneresis, microbial counts, and sensory evaluation in stored yogurt manufactured at 5 °C for 15 days. The results showed that adding sufficient concentrations of starch (0.75%, 1%) could provide better results in terms of the minimum change in the total acidity, decrease in pH, reduction in syneresis, and preferable results for all sensory parameters. The results revealed that the total bacteria count of all yogurt samples increased throughout the storage time. However, adding different concentrations of optimized extracted starch had a significant effect, decreasing the microbial content compared with the control sample (YC). In addition, the results indicated that coliform bacteria were not found during the storage time. PMID:29382115
Li, Ying; Fabiano-Tixier, Anne Sylvie; Tomao, Valérie; Cravotto, Giancarlo; Chemat, Farid
2013-01-01
A green, inexpensive and easy-to-use method for carotenoids extraction from fresh carrots assisted by ultrasound was designed in this work. Sunflower oil was applied as a substitute to organic solvents in this green ultrasound-assisted extraction (UAE): a process which is in line with green extraction and bio-refinery concepts. The processing procedure of this original UAE was first compared with conventional solvent extraction (CSE) using hexane as solvent. Moreover, the UAE optimal conditions for the subsequent comparison were optimized using response surface methodology (RSM) and ultra performance liquid chromatography--diode array detector--mass spectroscopy (UPLC-DAD-MS). The results showed that the UAE using sunflower as solvent has obtained its highest β-carotene yield (334.75 mg/l) in 20 min only, while CSE using hexane as solvent obtained a similar yield (321.35 mg/l) in 60 min. The green UAE performed under optimal extraction conditions (carrot to oil ratio of 2:10, ultrasonic intensity of 22.5 W cm(-2), temperature of 40 °C and sonication time of 20 min) gave the best yield of β-carotene. Copyright © 2012 Elsevier B.V. All rights reserved.
Muthukkumaran, A; Aravamudan, K
2017-12-15
Adsorption, a popular technique for removing azo dyes from aqueous streams, is influenced by several factors such as pH, initial dye concentration, temperature and adsorbent dosage. Any strategy that seeks to identify optimal conditions involving these factors, should take into account both kinetic and equilibrium aspects since they influence rate and extent of removal by adsorption. Hence rigorous kinetics and accurate equilibrium models are required. In this work, the experimental investigations pertaining to adsorption of acid orange 10 dye (AO10) on activated carbon were carried out using Central Composite Design (CCD) strategy. The significant factors that affected adsorption were identified to be solution temperature, solution pH, adsorbent dosage and initial solution concentration. Thermodynamic analysis showed the endothermic nature of the dye adsorption process. The kinetics of adsorption has been rigorously modeled using the Homogeneous Surface Diffusion Model (HSDM) after incorporating the non-linear Freundlich adsorption isotherm. Optimization was performed for kinetic parameters (color removal time and surface diffusion coefficient) as well as the equilibrium affected response viz. percentage removal. Finally, the optimum conditions predicted were experimentally validated. Copyright © 2017 Elsevier Ltd. All rights reserved.
Farmer, George D; Janssen, Christian P; Nguyen, Anh T; Brumby, Duncan P
2018-04-01
We test people's ability to optimize performance across two concurrent tasks. Participants performed a number entry task while controlling a randomly moving cursor with a joystick. Participants received explicit feedback on their performance on these tasks in the form of a single combined score. This payoff function was varied between conditions to change the value of one task relative to the other. We found that participants adapted their strategy for interleaving the two tasks, by varying how long they spent on one task before switching to the other, in order to achieve the near maximum payoff available in each condition. In a second experiment, we show that this behavior is learned quickly (within 2-3 min over several discrete trials) and remained stable for as long as the payoff function did not change. The results of this work show that people are adaptive and flexible in how they prioritize and allocate attention in a dual-task setting. However, it also demonstrates some of the limits regarding people's ability to optimize payoff functions. Copyright © 2017 The Authors. Cognitive Science published by Wiley Periodicals, Inc. on behalf of Cognitive Science Society.
High precision measurement of silicon in naphthas by ICP-OES using isooctane as diluent.
Gazulla, M F; Rodrigo, M; Orduña, M; Ventura, M J; Andreu, C
2017-03-01
An analytical protocol for the accurate and precise determination of Si in naphthas is presented by using ICP-OES, optimizing from the sample preparation to the measurement conditions, in order to be able to analyze for the first time silicon contents below 100µgkg -1 in a relatively short time thus being used as a control method. In the petrochemical industry, silicon can be present as a contaminant in different petroleum products such as gasoline, ethanol, or naphthas, forming different silicon compounds during the treatment of these products that are irreversibly adsorbed onto catalyst surfaces decreasing its time life. The complex nature of the organic naphtha sample together with the low detection limits needed make the analysis of silicon quite difficult. The aim of this work is to optimize the measurement of silicon in naphthas by ICP-OES introducing as an improvement the use of isooctane as diluent. The set up was carried out by optimizing the measurement conditions (power, nebulizer flow, pump rate, read time, and viewing mode) and the sample preparation (type of diluent, cleaning process, blanks, and studying various dilution ratios depending on the sample characteristics). Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Langan, John
1996-10-01
The predominance of multi-level metalization schemes in advanced integrated circuit manufacturing has greatly increased the importance of plasma enhanced chemical vapor deposition (PECVD) and in turn in-situ plasma chamber cleaning. In order to maintain the highest throughput for these processes the clean step must be as short as possible. In addition, there is an increasing desire to minimize the fluorinated gas usage during the clean, while maximizing its efficiency, not only to achieve lower costs, but also because many of the gases used in this process are global warming compounds. We have studied the fundamental properties of discharges of NF_3, CF_4, and C_2F6 under conditions relevant to chamber cleaning in the GEC rf reference cell. Using electrical impedance analysis and optical emission spectroscopy we have determined that the electronegative nature of these discharges defines the optimal processing conditions by controlling the power coupling efficiency and mechanisms of power dissipation in the discharge. Examples will be presented where strategies identified by these studies have been used to optimize actual manufacturing chamber clean processes. (This work was performed in collaboration with Mark Sobolewski, National Institute of Standards and Technology, and Brian Felker, Air Products and Chemicals, Inc.)
Laib, Imen; Barkat, Malika
2018-01-01
In this work we optimized the cooking and extraction conditions for obtaining high yields of total polyphenols from potato and studied the effect of three domestic methods of cooking on total phenols, antioxidant activity, and anticholinesterase activities. The optimization of the experiment was carried out by the experimental designs. The extraction of the polyphenols was carried out by maceration and ultrasonication. Determination of the polyphenols was performed by using the Folin-Ciocalteau reagent method. The antioxidant activity was evaluated by three methods: 1,1-diphenyl-2-picryl-hydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), and CUPRAC(Cupric reducing antioxidant capacity), the anticholinesterase activity was evaluated by the method of Elmann. The optimum of total phenolic obtained was: 4.668 × 104, 1.406 × 104, 3357.009, 16,208.99 µg Gallic Acid Equivalent (GAE)/g of dry extract for crude potato, steamed potatoes, in boiling water, and by microwave, respectively. The three modes of cooking cause a decrease in the total polyphenol contents, antioxidant and anticholinesterase activities. PMID:29522482
NASA Astrophysics Data System (ADS)
Zheng, Erhu; Huang, Yi; Zhang, Haiyang
2017-03-01
As CMOS technology reaches 14nm node and beyond, one of the key challenges of the extension of 193nm immersion lithography is how to control the line edge and width roughness (LER/LWR). For Self-aligned Multiple Patterning (SaMP), LER becomes larger while LWR becomes smaller as the process proceeds[1]. It means plasma etch process becomes more and more dominant for LER reduction. In this work, we mainly focus on the core etch solution including an extra plasma coating process introduced before the bottom anti reflective coating (BARC) open step, and an extra plasma cure process applied right after BARC-open step. Firstly, we leveraged the optimal design experiment (ODE) to investigate the impact of plasma coating step on LER and identified the optimal condition. ODE is an appropriate method for the screening experiments of non-linear parameters in dynamic process models, especially for high-cost-intensive industry [2]. Finally, we obtained the proper plasma coating treatment condition that has been proven to achieve 32% LER improvement compared with standard process. Furthermore, the plasma cure scheme has been also optimized with ODE method to cover the LWR degradation induced by plasma coating treatment.
Unbiased multi-fidelity estimate of failure probability of a free plane jet
NASA Astrophysics Data System (ADS)
Marques, Alexandre; Kramer, Boris; Willcox, Karen; Peherstorfer, Benjamin
2017-11-01
Estimating failure probability related to fluid flows is a challenge because it requires a large number of evaluations of expensive models. We address this challenge by leveraging multiple low fidelity models of the flow dynamics to create an optimal unbiased estimator. In particular, we investigate the effects of uncertain inlet conditions in the width of a free plane jet. We classify a condition as failure when the corresponding jet width is below a small threshold, such that failure is a rare event (failure probability is smaller than 0.001). We estimate failure probability by combining the frameworks of multi-fidelity importance sampling and optimal fusion of estimators. Multi-fidelity importance sampling uses a low fidelity model to explore the parameter space and create a biasing distribution. An unbiased estimate is then computed with a relatively small number of evaluations of the high fidelity model. In the presence of multiple low fidelity models, this framework offers multiple competing estimators. Optimal fusion combines all competing estimators into a single estimator with minimal variance. We show that this combined framework can significantly reduce the cost of estimating failure probabilities, and thus can have a large impact in fluid flow applications. This work was funded by DARPA.
de Faria, Janaína T; Rocha, Pollyana F; Converti, Attilio; Passos, Flávia M L; Minim, Luis A; Sampaio, Fábio C
2013-12-01
The aim of our study was to select the optimal operating conditions to permeabilize Kluyveromyces lactis cells using ethanol as a solvent as an alternative to cell disruption and extraction. Cell permeabilization was carried out by a non-mechanical method consisting of chemical treatment with ethanol, and the results were expressed as β-galactosidase activity. Experiments were conducted under different conditions of ethanol concentration, treatment time and temperature according to a central composite rotatable design (CCRD), and the collected results were then worked out by response surface methodology (RSM). Cell permeabilization was improved by an increase in ethanol concentration and simultaneous decreases in the incubation temperature and treatment time. Such an approach allowed us to identify an optimal range of the independent variables within which the β-galactosidase activity was optimized. A maximum permeabilization of 2,816 mmol L(-1) oNP min(-1) g(-1) was obtained by treating cells with 75.0% v/v of ethanol at 20.0 °C for 15.0 min. The proposed methodology resulted to be effective and suited for K. lactis cells permeabilization at a lab-scale and promises to be of possible interest for future applications mainly in the food industry.
Adjoint Techniques for Topology Optimization of Structures Under Damage Conditions
NASA Technical Reports Server (NTRS)
Akgun, Mehmet A.; Haftka, Raphael T.
2000-01-01
The objective of this cooperative agreement was to seek computationally efficient ways to optimize aerospace structures subject to damage tolerance criteria. Optimization was to involve sizing as well as topology optimization. The work was done in collaboration with Steve Scotti, Chauncey Wu and Joanne Walsh at the NASA Langley Research Center. Computation of constraint sensitivity is normally the most time-consuming step of an optimization procedure. The cooperative work first focused on this issue and implemented the adjoint method of sensitivity computation (Haftka and Gurdal, 1992) in an optimization code (runstream) written in Engineering Analysis Language (EAL). The method was implemented both for bar and plate elements including buckling sensitivity for the latter. Lumping of constraints was investigated as a means to reduce the computational cost. Adjoint sensitivity computation was developed and implemented for lumped stress and buckling constraints. Cost of the direct method and the adjoint method was compared for various structures with and without lumping. The results were reported in two papers (Akgun et al., 1998a and 1999). It is desirable to optimize topology of an aerospace structure subject to a large number of damage scenarios so that a damage tolerant structure is obtained. Including damage scenarios in the design procedure is critical in order to avoid large mass penalties at later stages (Haftka et al., 1983). A common method for topology optimization is that of compliance minimization (Bendsoe, 1995) which has not been used for damage tolerant design. In the present work, topology optimization is treated as a conventional problem aiming to minimize the weight subject to stress constraints. Multiple damage configurations (scenarios) are considered. Each configuration has its own structural stiffness matrix and, normally, requires factoring of the matrix and solution of the system of equations. Damage that is expected to be tolerated is local and represents a small change in the stiffness matrix compared to the baseline (undamaged) structure. The exact solution to a slightly modified set of equations can be obtained from the baseline solution economically without actually solving the modified system.. Shennan-Morrison-Woodbury (SMW) formulas are matrix update formulas that allow this (Akgun et al., 1998b). SMW formulas were therefore used here to compute adjoint displacements for sensitivity computation and structural displacements in damaged configurations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chao Yang; Luo, Gang; Jiang, Fangming
2010-05-01
Current computational models for proton exchange membrane fuel cells (PEMFCs) include a large number of parameters such as boundary conditions, material properties, and numerous parameters used in sub-models for membrane transport, two-phase flow and electrochemistry. In order to successfully use a computational PEMFC model in design and optimization, it is important to identify critical parameters under a wide variety of operating conditions, such as relative humidity, current load, temperature, etc. Moreover, when experimental data is available in the form of polarization curves or local distribution of current and reactant/product species (e.g., O2, H2O concentrations), critical parameters can be estimated inmore » order to enable the model to better fit the data. Sensitivity analysis and parameter estimation are typically performed using manual adjustment of parameters, which is also common in parameter studies. We present work to demonstrate a systematic approach based on using a widely available toolkit developed at Sandia called DAKOTA that supports many kinds of design studies, such as sensitivity analysis as well as optimization and uncertainty quantification. In the present work, we couple a multidimensional PEMFC model (which is being developed, tested and later validated in a joint effort by a team from Penn State Univ. and Sandia National Laboratories) with DAKOTA through the mapping of model parameters to system responses. Using this interface, we demonstrate the efficiency of performing simple parameter studies as well as identifying critical parameters using sensitivity analysis. Finally, we show examples of optimization and parameter estimation using the automated capability in DAKOTA.« less
Estimating the relative utility of screening mammography.
Abbey, Craig K; Eckstein, Miguel P; Boone, John M
2013-05-01
The concept of diagnostic utility is a fundamental component of signal detection theory, going back to some of its earliest works. Attaching utility values to the various possible outcomes of a diagnostic test should, in principle, lead to meaningful approaches to evaluating and comparing such systems. However, in many areas of medical imaging, utility is not used because it is presumed to be unknown. In this work, we estimate relative utility (the utility benefit of a detection relative to that of a correct rejection) for screening mammography using its known relation to the slope of a receiver operating characteristic (ROC) curve at the optimal operating point. The approach assumes that the clinical operating point is optimal for the goal of maximizing expected utility and therefore the slope at this point implies a value of relative utility for the diagnostic task, for known disease prevalence. We examine utility estimation in the context of screening mammography using the Digital Mammographic Imaging Screening Trials (DMIST) data. We show how various conditions can influence the estimated relative utility, including characteristics of the rating scale, verification time, probability model, and scope of the ROC curve fit. Relative utility estimates range from 66 to 227. We argue for one particular set of conditions that results in a relative utility estimate of 162 (±14%). This is broadly consistent with values in screening mammography determined previously by other means. At the disease prevalence found in the DMIST study (0.59% at 365-day verification), optimal ROC slopes are near unity, suggesting that utility-based assessments of screening mammography will be similar to those found using Youden's index.
A Fast Proceduere for Optimizing Thermal Protection Systems of Re-Entry Vehicles
NASA Astrophysics Data System (ADS)
Ferraiuolo, M.; Riccio, A.; Tescione, D.; Gigliotti, M.
The aim of the present work is to introduce a fast procedure to optimize thermal protection systems for re-entry vehicles subjected to high thermal loads. A simplified one-dimensional optimization process, performed in order to find the optimum design variables (lengths, sections etc.), is the first step of the proposed design procedure. Simultaneously, the most suitable materials able to sustain high temperatures and meeting the weight requirements are selected and positioned within the design layout. In this stage of the design procedure, simplified (generalized plane strain) FEM models are used when boundary and geometrical conditions allow the reduction of the degrees of freedom. Those simplified local FEM models can be useful because they are time-saving and very simple to build; they are essentially one dimensional and can be used for optimization processes in order to determine the optimum configuration with regard to weight, temperature and stresses. A triple-layer and a double-layer body, subjected to the same aero-thermal loads, have been optimized to minimize the overall weight. Full two and three-dimensional analyses are performed in order to validate those simplified models. Thermal-structural analyses and optimizations are executed by adopting the Ansys FEM code.
Optimization of Error-Bounded Lossy Compression for Hard-to-Compress HPC Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di, Sheng; Cappello, Franck
Since today’s scientific applications are producing vast amounts of data, compressing them before storage/transmission is critical. Results of existing compressors show two types of HPC data sets: highly compressible and hard to compress. In this work, we carefully design and optimize the error-bounded lossy compression for hard-tocompress scientific data. We propose an optimized algorithm that can adaptively partition the HPC data into best-fit consecutive segments each having mutually close data values, such that the compression condition can be optimized. Another significant contribution is the optimization of shifting offset such that the XOR-leading-zero length between two consecutive unpredictable data points canmore » be maximized. We finally devise an adaptive method to select the best-fit compressor at runtime for maximizing the compression factor. We evaluate our solution using 13 benchmarks based on real-world scientific problems, and we compare it with 9 other state-of-the-art compressors. Experiments show that our compressor can always guarantee the compression errors within the user-specified error bounds. Most importantly, our optimization can improve the compression factor effectively, by up to 49% for hard-tocompress data sets with similar compression/decompression time cost.« less
Theoretically Founded Optimization of Auctioneer's Revenues in Expanding Auctions
NASA Astrophysics Data System (ADS)
Rabin, Jonathan; Shehory, Onn
The expanding auction is a multi-unit auction which provides the auctioneer with control over the outcome of the auction by means of dynamically adding items for sale. Previous research on the expanding auction has provided a numeric method to calculate a strategy that optimizes the auctioneer's revenue. In this paper, we analyze various theoretical properties of the expanding auction, and compare it to VCG, a multi-unit auction protocol known in the art. We examine the effects of errors in the auctioneer's estimation of the buyers' maximal bidding values and prove a theoretical bound on the ratio between the revenue yielded by the Informed Decision Strategy (IDS) and the post-optimal strategy. We also analyze the relationship between the auction step and the optimal revenue and introduce a method of computing this optimizing step. We further compare the revenues yielded by the use of IDS with an expanding auction to those of the VCG mechanism and determine the conditions under which the former outperforms the latter. Our work provides new insight into the properties of the expanding auction. It further provides theoretically founded means for optimizing the revenue of auctioneer.
NASA Astrophysics Data System (ADS)
Mohamad, B.; Leroux, C.; Reimbold, G.; Ghibaudo, G.
2018-01-01
For advanced gate stacks, effective work function (WFeff) and equivalent oxide thickness (EOT) are fundamental parameters for technology optimization. On FDSOI transistors, and contrary to the bulk technologies, while EOT can still be extracted at strong inversion from the typical gate-to-channel capacitance (Cgc), it is no longer the case for WFeff due to the disappearance of an observable flat band condition on capacitance characteristics. In this work, a new experimental method, the Cbg(VBG) characteristic, is proposed in order to extract the well flat band condition (VFB, W). This characteristic enables an accurate and direct evaluation of WFeff. Moreover, using the previous extraction of the gate oxide (tfox), and buried oxide (tbox) from typical capacitance characteristics (Cgc and Cbc), it allows the extraction of the channel thickness (tch). Furthermore, the measurement of the well flat band condition on Cbg(VBG) characteristics for two different Si and SiGe channel also proves the existence of a dipole at the SiGe/SiO2 interface.
A novel dismantling process of waste printed circuit boards using water-soluble ionic liquid.
Zeng, Xianlai; Li, Jinhui; Xie, Henghua; Liu, Lili
2013-10-01
Recycling processes for waste printed circuit boards (WPCBs) have been well established in terms of scientific research and field pilots. However, current dismantling procedures for WPCBs have restricted the recycling process, due to their low efficiency and negative impacts on environmental and human health. This work aimed to seek an environmental-friendly dismantling process through heating with water-soluble ionic liquid to separate electronic components and tin solder from two main types of WPCBs-cathode ray tubes and computer mainframes. The work systematically investigates the influence factors, heating mechanism, and optimal parameters for opening solder connections on WPCBs during the dismantling process, and addresses its environmental performance and economic assessment. The results obtained demonstrate that the optimal temperature, retention time, and turbulence resulting from impeller rotation during the dismantling process, were 250 °C, 12 min, and 45 rpm, respectively. Nearly 90% of the electronic components were separated from the WPCBs under the optimal experimental conditions. This novel process offers the possibility of large industrial-scale operations for separating electronic components and recovering tin solder, and for a more efficient and environmentally sound process for WPCBs recycling. Copyright © 2013 Elsevier Ltd. All rights reserved.
Laser engines operating by resonance absorption.
Garbuny, M; Pechersky, M J
1976-05-01
The coherence properties and power levels of lasers available at present lend themselves to the remote operation of mechanical engines by resonance absorption in a working gas. Laser radiation is capable of producing extremely high temperatures in a gas. Limits to the achievable temperatures in the working gas of an engine are imposed by the solid walls and by loss of resonance absorption due to thermal saturation, bleaching, and dissociation. However, it is shown that by proper control of the laser beam in space, time, and frequency, as well as by choice of the absorbing gas, these limits are to a great extent removed so that very high temperatures are indeed attainable. The working gas is largely monatomic, preferably helium with the addition of a few volume percent of an absorber. Such a gas mixture, internally heated, permits an optimization of the expansion ratio, with resulting thermal efficiencies and work ratios, not achievable in conventional engines. A relationship between thermal efficiency and work ratio is derived that is quite general for the optimization condition. The performance of laser piston engines, turbines, and the Stirling cycle based on these principles is discussed and compared with conventional engine operation. Finally, a brief discussion is devoted to the possibility and concepts for the direct conversion of selective vibrational or electronic excitation into mechanical work, bypassing the translational degrees of freedom.
JPRS Report Science & Technology, Europe
1991-10-31
the solar system, the earth, and the conditions for life on earth, • To contribute to the solution of environmental prob- lems through satellite...requiring considerable additional R&D is to be stepped up. • Wind plants require about 10 years’ more R&D work. • Photovoltaics (PV) and solar ...Funding for active and passive solar energy exploita- tion. 5. Transport Sector • Optimizing means of transport (in manufacture and operation
NASA Astrophysics Data System (ADS)
Nyrkov, A. P.; Sokolov, S. S.; Chernyi, S. G.; Shnurenko, A. A.; Pavlova, L. A.
2016-08-01
In the work the queueing system of the disconnected multi-channel type to which irregular, uniform or not uniform flows of requests with a unlimited latency period arrive is considered. The system is considered on an example of the container terminal having conditional-functional sections with a definite mark-to-space ratio on which the irregular inhomogeneous traffic flow with resultant intensity acts.
Numerical Solutions for a Cylindrical Laser Diffuser Flowfield
1990-06-01
exhaust conditions with minimum losses to optimize performance of the system. Thus, the handling of the system of shock waves to decelerate the flow...requirement for exhaustive experimental work will result in significant savings of both time and resources. As more advanced computers are developed, the...Mach number (ɚ.5) flows. Recent interest in hypersonic engine inlet performance has resulted in an extension of the methodology to high Mach number
Generation of low-temperature air plasma for food processing
NASA Astrophysics Data System (ADS)
Stepanova, Olga; Demidova, Maria; Astafiev, Alexander; Pinchuk, Mikhail; Balkir, Pinar; Turantas, Fulya
2015-11-01
The project is aimed at developing a physical and technical foundation of generating plasma with low gas temperature at atmospheric pressure for food industry needs. As known, plasma has an antimicrobial effect on the numerous types of microorganisms, including those that cause food spoilage. In this work an original experimental setup has been developed for the treatment of different foods. It is based on initiating corona or dielectric-barrier discharge in a chamber filled with ambient air in combination with a certain helium admixture. The experimental setup provides various conditions of discharge generation (including discharge gap geometry, supply voltage, velocity of gas flow, content of helium admixture in air and working pressure) and allows for the measurement of the electrical discharge parameters. Some recommendations on choosing optimal conditions of discharge generation for experiments on plasma food processing are developed.
Vinhal, Jonas O; Lima, Claudio F; Cassella, Ricardo J
2016-09-01
The cationic herbicides paraquat, diquat and difenzoquat are largely used in different cultures worldwide. With this, there is an intrinsic risk of environmental contamination when these herbicides achieve natural waters. The goal of this work was to propose a novel and low-cost sorbent for the removal of the cited herbicides from aqueous medium. The proposed sorbent was prepared by loading polyurethane foam with sodium dodecylsulfate. The influence of several parameters (SDS concentration, HCl concentration and shaking time) on the loading process was investigated. The results obtained in this work demonstrated that all studied variables influenced the loading process, having significant effect on the extraction efficiency of the resulted PUF-SDS. At optimized conditions, the PUF was loaded by shaking 200mg of crushed foam with 200mL of a solution containing 5.0×10(-3)molL(-1) SDS and 0.25molL(-1) HCl, for 30min. The obtained PUF-SDS was efficient for removing the three herbicides from aqueous medium, achieving extraction percentages higher than 90%. The sorption process followed a pseudo second-order kinetics, which presented excellent predictive capacity of the amount of herbicide retained with time. Copyright © 2016 Elsevier Inc. All rights reserved.
The aggregated unfitted finite element method for elliptic problems
NASA Astrophysics Data System (ADS)
Badia, Santiago; Verdugo, Francesc; Martín, Alberto F.
2018-07-01
Unfitted finite element techniques are valuable tools in different applications where the generation of body-fitted meshes is difficult. However, these techniques are prone to severe ill conditioning problems that obstruct the efficient use of iterative Krylov methods and, in consequence, hinders the practical usage of unfitted methods for realistic large scale applications. In this work, we present a technique that addresses such conditioning problems by constructing enhanced finite element spaces based on a cell aggregation technique. The presented method, called aggregated unfitted finite element method, is easy to implement, and can be used, in contrast to previous works, in Galerkin approximations of coercive problems with conforming Lagrangian finite element spaces. The mathematical analysis of the new method states that the condition number of the resulting linear system matrix scales as in standard finite elements for body-fitted meshes, without being affected by small cut cells, and that the method leads to the optimal finite element convergence order. These theoretical results are confirmed with 2D and 3D numerical experiments.
Validation of a High-Order Prefactored Compact Scheme on Nonlinear Flows with Complex Geometries
NASA Technical Reports Server (NTRS)
Hixon, Ray; Mankbadi, Reda R.; Povinelli, L. A. (Technical Monitor)
2000-01-01
Three benchmark problems are solved using a sixth-order prefactored compact scheme employing an explicit 10th-order filter with optimized fourth-order Runge-Kutta time stepping. The problems solved are the following: (1) propagation of sound waves through a transonic nozzle; (2) shock-sound interaction; and (3) single airfoil gust response. In the first two problems, the spatial accuracy of the scheme is tested on a stretched grid, and the effectiveness of boundary conditions is shown. The solution stability and accuracy near a shock discontinuity is shown as well. Also, 1-D nonlinear characteristic boundary conditions will be evaluated. In the third problem, a nonlinear Euler solver will be used that solves the equations in generalized curvilinear coordinates using the chain rule transformation. This work, continuing earlier work on flat-plate cascades and Joukowski airfoils, will focus mainly on the effect of the grid and boundary conditions on the accuracy of the solution. The grids were generated using a commercially available grid generator, GridPro/az3000.
Strength analysis and lightweight research of a fertilizing and soil covering vehicle
NASA Astrophysics Data System (ADS)
Sun, Heng-Hui; Zhang, Zheng-Yong; Liu, Yang; Xu, Hai-Ming; Chen, En-Wei
2018-03-01
In this paper, parametric modeling is carried out for the frame part of a kind of fertilizing and soil covering vehicle to define boundary conditions such as load, constraint, etc. when the frame is under the working condition of normal full load. ANSYS software is used to produce finite element model of frame, and to analyze and solve the model, so as to obtain stress and stain variation diagram of each part of frame under working condition of normal full load. The calculation result shows that: the structure of frame is able to meet the strength requirement, and the maximum value of stress is located at joint between frame and external hinge, which should be appropriately improved in thickening way. According to the result of finite element, the scheme with size optimization is employed to design the frame in lightweight way. The research result of this paper provides the theoretical basis for the design of frame of fertilizing and soil covering vehicle, which has deep theoretical significance and application value.
Forming of complex-shaped composite tubes using optimized bladder-assisted resin transfer molding
NASA Astrophysics Data System (ADS)
Schillfahrt, Christian; Fauster, Ewald; Schledjewski, Ralf
2018-05-01
This work addresses the manufacturing of tubular composite structures by means of bladder-assisted resin transfer molding using elastomeric bladders. In order to achieve successful processing of such parts, knowledge of the compaction and impregnation behavior of the textile preform is vital. Hence, efficient analytical models that describe the influencing parameters of the preform compaction and filling stage were developed and verified through practical experiments. A process window describing optimal and critical operating conditions during the injection stage was created by evaluating the impact of the relevant process pressures on filling time. Finally, a cascaded injection procedure was investigated that particularly facilitates the manufacturing of long composite tubes.
Resiliently evolving supply-demand networks
NASA Astrophysics Data System (ADS)
Rubido, Nicolás; Grebogi, Celso; Baptista, Murilo S.
2014-01-01
The ability to design a transport network such that commodities are brought from suppliers to consumers in a steady, optimal, and stable way is of great importance for distribution systems nowadays. In this work, by using the circuit laws of Kirchhoff and Ohm, we provide the exact capacities of the edges that an optimal supply-demand network should have to operate stably under perturbations, i.e., without overloading. The perturbations we consider are the evolution of the connecting topology, the decentralization of hub sources or sinks, and the intermittence of supplier and consumer characteristics. We analyze these conditions and the impact of our results, both on the current United Kingdom power-grid structure and on numerically generated evolving archetypal network topologies.
Design options for improving protective gloves for industrial assembly work.
Dianat, Iman; Haslegrave, Christine M; Stedmon, Alex W
2014-07-01
The study investigated the effects of wearing two new designs of cotton glove on several hand performance capabilities and compared them against the effects of barehanded, single-layered and double cotton glove conditions when working with hand tools (screwdriver and pliers). The new glove designs were based on the findings of subjective hand discomfort assessments for this type of work and aimed to match the glove thickness to the localised pressure and sensitivity in different areas of the hand as well as to provide adequate dexterity for fine manipulative tasks. The results showed that the first prototype glove and the barehanded condition were comparable and provided better dexterity and higher handgrip strength than double thickness gloves. The results support the hypothesis that selective thickness in different areas of the hand could be applied by glove manufacturers to improve the glove design, so that it can protect the hands from the environment and at the same time allow optimal hand performance capabilities. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Marhofer, Peter; Fritsch, Gerhard
2015-01-01
Ultrasound is currently an important tool for diagnostic and interventional procedures. Ultrasound imaging provides significant advantages as compared to other imaging methods. The widespread use of ultrasound also carries the risk of drawbacks such as cross-infections. A large body of literature reports this possibly life-threatening side effect and specific patient populations are particularly at risk (e.g., neonates). Various methods of ultrasound probe disinfection are described; however, none of the mechanical or chemical probe disinfection procedures is optimal and, in particular, disinfection with high concentration of alcohol might be associated with ultrasound probe damage. The preparation of ultrasound probes with dedicated probe covers is a useful alternative for sterile working conditions. One ultrasound probe cover discussed in this paper is directly glued on to the ultrasound probe without the use of ultrasound coupling gel. By the use of sterile ultrasound coupling gel at the outer surface, additional effects on aseptic working conditions can be obtained.
NASA Astrophysics Data System (ADS)
Kannan, C.; Ramanujam, R.
2018-05-01
The aim of this research work is to evaluate the mechanical and tribological behaviour of Al 7075 based self-lubricated hybrid nanocomposite under different treated conditions viz. as-cast, T6 and deep cryo treated. In order to overcome the drawbacks associated with conventional stir casting, a combinational approach that consists of molten salt processing, ultrasonic assistance and optimized mechanical stirring is adopted in this study to fabricate the nanocomposite. The mechanical characterisation tests carried out on this nanocomposite reveals an improvement of about 39% in hardness and 22% in ultimate tensile strength possible under T6 condition. Under specific conditions, the wear rate can be reduced to the extent of about 63% through the usage of self-lubricated hybrid nanocomposite under T6 condition.
Ben Taher, Imen; Fickers, Patrick; Chniti, Sofien; Hassouna, Mnasser
2017-03-01
The aim of this work was the optimization of the enzyme hydrolysis of potato peel residues (PPR) for bioethanol production. The process included a pretreatment step followed by an enzyme hydrolysis using crude enzyme system composed of cellulase, amylase and hemicellulase, produced by a mixed culture of Aspergillus niger and Trichoderma reesei. Hydrothermal, alkali and acid pretreatments were considered with regards to the enhancement of enzyme hydrolysis of potato peel residues. The obtained results showed that hydrothermal pretreatment lead to a higher enzyme hydrolysis yield compared to both acid and alkali pretreatments. Enzyme hydrolysis was also optimized for parameters such as temperature, pH, substrate loading and surfactant loading using a response surface methodology. Under optimized conditions, 77 g L -1 of reducing sugars were obtained. Yeast fermentation of the released reducing sugars led to an ethanol titer of 30 g L -1 after supplementation of the culture medium with ammonium sulfate. Moreover, a comparative study between acid and enzyme hydrolysis of potato peel residues was investigated. Results showed that enzyme hydrolysis offers higher yield of bioethanol production than acid hydrolysis. These results highlight the potential of second generation bioethanol production from potato peel residues treated with onsite produced hydrolytic enzymes. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:397-406, 2017. © 2017 American Institute of Chemical Engineers.
Design-Optimization and Material Selection for a Proximal Radius Fracture-Fixation Implant
NASA Astrophysics Data System (ADS)
Grujicic, M.; Xie, X.; Arakere, G.; Grujicic, A.; Wagner, D. W.; Vallejo, A.
2010-11-01
The problem of optimal size, shape, and placement of a proximal radius-fracture fixation-plate is addressed computationally using a combined finite-element/design-optimization procedure. To expand the set of physiological loading conditions experienced by the implant during normal everyday activities of the patient, beyond those typically covered by the pre-clinical implant-evaluation testing procedures, the case of a wheel-chair push exertion is considered. Toward that end, a musculoskeletal multi-body inverse-dynamics analysis is carried out of a human propelling a wheelchair. The results obtained are used as input to a finite-element structural analysis for evaluation of the maximum stress and fatigue life of the parametrically defined implant design. While optimizing the design of the radius-fracture fixation-plate, realistic functional requirements pertaining to the attainment of the required level of the devise safety factor and longevity/lifecycle were considered. It is argued that the type of analyses employed in the present work should be: (a) used to complement the standard experimental pre-clinical implant-evaluation tests (the tests which normally include a limited number of daily-living physiological loading conditions and which rely on single pass/fail outcomes/decisions with respect to a set of lower-bound implant-performance criteria) and (b) integrated early in the implant design and material/manufacturing-route selection process.
Toxicity assessment of tannery effluent treated by an optimized photo-Fenton process.
Borba, Fernando Henrique; Módenes, Aparecido Nivaldo; Espinoza-Quiñones, Fernando Rodolfo; Manenti, Diego Ricieri; Bergamasco, Rosangela; Mora, Nora Diaz
2013-01-01
In this work, an optimized photo-Fenton process was applied to remove pollutants from tannery industrial effluent (TIE) with its final toxicity level being assessed by a lettuce-seed-based bioassay test. A full 33 factorial design was applied for the optimization of long-term photo-Fenton experiments. The oPtimum conditions of the photo-Fenton process were attained at concentration values of 0.3 g Fe(2+) L(-1) and 20 g H2O2 L(-1) and pH3, for 120 min UV irradiation time. Reactor operating parameter (ROP) effects on the removal of chemical oxygen demand, colour, turbidity, total suspended solids and total volatile solids were evaluated, suggesting that a broad range of ROP values are also suitable to give results very near to those of the photo-Fenton experiments under optimal conditions. Based on the low calculated median lethal dose (LD50) values from a lettuce-seed-based bioassay test, we suggest that recalcitrant substances are present in treated TIE samples. A possible cause of the high toxicity level could partly be attributed to the nitrate concentration, which was not completely abated by the photo-Fenton process. Apart from this, the photo-Fenton process can be used as a part of an industrial effluent treatment system in order to abate high organic pollutant loads.
Optimal redesign study of the harm wing
NASA Technical Reports Server (NTRS)
Mcintosh, S. C., Jr.; Weynand, M. E.
1984-01-01
The purpose of this project was to investigate the use of optimization techniques to improve the flutter margins of the HARM AGM-88A wing. The missile has four cruciform wings, located near mid-fuselage, that are actuated in pairs symmetrically and antisymmetrically to provide pitch, yaw, and roll control. The wings have a solid stainless steel forward section and a stainless steel crushed-honeycomb aft section. The wing restraint stiffness is dependent upon wing pitch amplitude and varies from a low value near neutral pitch attitude to a much higher value at off-neutral pitch attitudes, where aerodynamic loads lock out any free play in the control system. The most critical condition for flutter is the low-stiffness condition in which the wings are moved symmetrically. Although a tendency toward limit-cycle flutter is controlled in the current design by controller logic, wing redesign to improve this situation is attractive because it can be accomplished as a retrofit. In view of the exploratory nature of the study, it was decided to apply the optimization to a wing-only model, validated by comparison with results obtained by Texas Instruments (TI). Any wing designs that looked promising were to be evaluated at TI with more complicated models, including body modes. The optimization work was performed by McIntosh Structural Dynamics, Inc. (MSD) under a contract from TI.
He, Jun; Shamsi, Shahab A.
2012-01-01
In the present work we report, for the first time, the successful on-line coupling of chiral micellar electrokinetic chromatography (CMEKC) to atmospheric pressure photo-ionization mass spectrometry (APPI-MS). Four structurally similar neutral test solutes (e.g., benzoin derivatives) were successfully ionized by APPI-MS. The mass spectra in the positive ion mode showed that the protonated molecular ions of benzoins are not the most abundant fragment ions. Simultaneous enantioseparation by CMEKC and on-line APPI-MS detection of four photoinitiators: hydrobenzoin (HBNZ), benzoin (BNZ), benzoin methyl ether (BME), benzoin ethyl ether (BEE), were achieved using an optimized molar ratio of mixed molecular micelle of two polymeric chiral surfactants (polysodium N-undecenoxy carbonyl-L-leucinate and polysodium N-undecenoyl-L,L-leucylvalinate). The CMEKC conditions, such as voltage, chiral polymeric surfactant concentration, buffer pH, and BGE concentration, were optimized using a multivariate central composite design (CCD). The sheath liquid composition (involving % v/v methanol, dopant concentration, electrolyte additive concentration, and flow rate) and spray chamber parameters (drying gas flow rate, drying gas temperature, and vaporizer temperature) were also optimized with CCD. Models built based on the CCD results and response surface method was used to analyze the interactions between factors and their effects on the responses. The final overall optimum conditions for CMEKC-APPI-MS were also predicted and found in agreement with the experimentally optimized parameters. PMID:21500208
NASA Astrophysics Data System (ADS)
Zhu, Na
This thesis presents an overview of the previous research work on dynamic characteristics and energy performance of buildings due to the integration of PCMs. The research work on dynamic characteristics and energy performance of buildings using PCMs both with and without air-conditioning is reviewed. Since the particular interest in using PCMs for free cooling and peak load shifting, specific research efforts on both subjects are reviewed separately. A simplified physical dynamic model of building structures integrated with SSPCM (shaped-stabilized phase change material) is developed and validated in this study. The simplified physical model represents the wall by 3 resistances and 2 capacitances and the PCM layer by 4 resistances and 2 capacitances respectively while the key issue is the parameter identification of the model. This thesis also presents the studies on the thermodynamic characteristics of buildings enhanced by PCM and on the investigation of the impacts of PCM on the building cooling load and peak cooling demand at different climates and seasons as well as the optimal operation and control strategies to reduce the energy consumption and energy cost by reducing the air-conditioning energy consumption and peak load. An office building floor with typical variable air volume (VAV) air-conditioning system is used and simulated as the reference building in the comparison study. The envelopes of the studied building are further enhanced by integrating the PCM layers. The building system is tested in two selected cities of typical climates in China including Hong Kong and Beijing. The cold charge and discharge processes, the operation and control strategies of night ventilation and the air temperature set-point reset strategy for minimizing the energy consumption and electricity cost are studied. This thesis presents the simulation test platform, the test results on the cold storage and discharge processes, the air-conditioning energy consumption and demand reduction potentials in typical air-conditioning seasons in typical China cites as well as the impacts of operation and control strategies.
Finite-size effect on optimal efficiency of heat engines.
Tajima, Hiroyasu; Hayashi, Masahito
2017-07-01
The optimal efficiency of quantum (or classical) heat engines whose heat baths are n-particle systems is given by the strong large deviation. We give the optimal work extraction process as a concrete energy-preserving unitary time evolution among the heat baths and the work storage. We show that our optimal work extraction turns the disordered energy of the heat baths to the ordered energy of the work storage, by evaluating the ratio of the entropy difference to the energy difference in the heat baths and the work storage, respectively. By comparing the statistical mechanical optimal efficiency with the macroscopic thermodynamic bound, we evaluate the accuracy of the macroscopic thermodynamics with finite-size heat baths from the statistical mechanical viewpoint. We also evaluate the quantum coherence effect on the optimal efficiency of the cycle processes without restricting their cycle time by comparing the classical and quantum optimal efficiencies.
Kim, J J; Nam, Y K; Bang, I C; Gong, S P
BACKGROUND: Miho spine loach (Cobitis choii) is an endangered Korean endemic fish. Whole testis cryopreservation is a good way for species preservation, but needs to the sacrifice of a large number of fish to optimize the freezing condition. Considering this limitation, a surrogate fish species was used for the protocol development. This study was to establish the effective condition for Miho spine loach whole testis cryopreservation by optimizing the conditions for whole testis cryopreservation in an allied species, mud loach (Misgurnus mizolepis). The condition for whole testis cryopreservation was optimized in mud loach first, and then the optimal condition was applied to Miho spine loach testes. The optimal condition for mud loach testis cryopreservation consists of the freezing medium containing 1.3 M dimethyl sulfoxide, 6% fetal bovine serum and 0.3 M trehalose, -1 C/min cooling rate and 26 degree C thawing temperature, which also permits effective cryopreservation of Miho spine loach testes. An effective cryopreservation condition for whole testis of the endangered Miho spine loach has been established by using mud loach as a surrogate fish.
van Rooyen, Jason M; Hakimi, Mohamed-Ali; Belrhali, Hassan
2015-06-01
Aminoacyl tRNA synthetases play a critical role in protein synthesis by providing precursor transfer-RNA molecules correctly charged with their cognate amino-acids. The essential nature of these enzymes make them attractive targets for designing new drugs against important pathogenic protozoans like Toxoplasma. Because no structural data currently exists for a protozoan glutaminyl-tRNA synthetase (QRS), an understanding of its potential as a drug target and its function in the assembly of the Toxoplasma multi-aminoacyl tRNA (MARS) complex is therefore lacking. Here we describe the optimization of expression and purification conditions that permitted the recovery and crystallization of both domains of the Toxoplasma QRS enzyme from a heterologous Escherichia coli expression system. Expression of full-length QRS was only achieved after the addition of an N-terminal histidine affinity tag and the isolated protein was active on both cellular and in vitro produced Toxoplasma tRNA. Taking advantage of the proteolytic susceptibility of QRS to cleavage into component domains, N-terminal glutathione S-transferase (GST) motif-containing domain fragments were isolated and crystallization conditions discovered. Isolation of the C-terminal catalytic domain was accomplished after subcloning the domain and optimizing expression conditions. Purified catalytic domain survived cryogenic storage and yielded large diffraction-quality crystals over-night after optimization of screening conditions. This work will form the basis of future structural studies into structural-functional relationships of both domains including potential targeted drug-design studies and investigations into the assembly of the Toxoplasma MARS complex. Copyright © 2015 Elsevier Inc. All rights reserved.
Boudreau, Mathieu; Pike, G Bruce
2018-05-07
To develop and validate a regularization approach of optimizing B 1 insensitivity of the quantitative magnetization transfer (qMT) pool-size ratio (F). An expression describing the impact of B 1 inaccuracies on qMT fitting parameters was derived using a sensitivity analysis. To simultaneously optimize for robustness against noise and B 1 inaccuracies, the optimization condition was defined as the Cramér-Rao lower bound (CRLB) regularized by the B 1 -sensitivity expression for the parameter of interest (F). The qMT protocols were iteratively optimized from an initial search space, with and without B 1 regularization. Three 10-point qMT protocols (Uniform, CRLB, CRLB+B 1 regularization) were compared using Monte Carlo simulations for a wide range of conditions (e.g., SNR, B 1 inaccuracies, tissues). The B 1 -regularized CRLB optimization protocol resulted in the best robustness of F against B 1 errors, for a wide range of SNR and for both white matter and gray matter tissues. For SNR = 100, this protocol resulted in errors of less than 1% in mean F values for B 1 errors ranging between -10 and 20%, the range of B 1 values typically observed in vivo in the human head at field strengths of 3 T and less. Both CRLB-optimized protocols resulted in the lowest σ F values for all SNRs and did not increase in the presence of B 1 inaccuracies. This work demonstrates a regularized optimization approach for improving the robustness of auxiliary measurements (e.g., B 1 ) sensitivity of qMT parameters, particularly the pool-size ratio (F). Predicting substantially less B 1 sensitivity using protocols optimized with this method, B 1 mapping could even be omitted for qMT studies primarily interested in F. © 2018 International Society for Magnetic Resonance in Medicine.
Sensing the facet orientation in silver nano-plates using scanning Kelvin probe microscopy in air
NASA Astrophysics Data System (ADS)
Abdellatif, M. H.; Salerno, M.; Polovitsyn, Anatolii; Marras, Sergio; De Angelis, Francesco
2017-05-01
The work function of nano-materials is important for a full characterization of their electronic properties. Because the band alignment, band bending and electronic noise are very sensitive to work function fluctuations, the dependence of the work function of nano-scale crystals on facet orientation can be a critical issue in optimizing optoelectronic devices based on these materials. We used scanning Kelvin probe microscopy to assess the local work function on samples of silver nano-plates at sub-micrometric spatial resolution. With the appropriate choice of the substrate and based on statistical analysis, it was possible to distinguish the surface potential of the different facets of silver nano-plates even if the measurements were done in ambient conditions without the use of vacuum. A phenomenological model was used to calculate the differences of facet work function of the silver nano-plates and the corresponding shift in Fermi level. This theoretical prediction and the experimentally observed difference in surface potential on the silver nano-plates were in good agreement. Our results show the possibility to sense the nano-crystal facets by appropriate choice of the substrate in ambient conditions.
Exploring the complexity of quantum control optimization trajectories.
Nanduri, Arun; Shir, Ofer M; Donovan, Ashley; Ho, Tak-San; Rabitz, Herschel
2015-01-07
The control of quantum system dynamics is generally performed by seeking a suitable applied field. The physical objective as a functional of the field forms the quantum control landscape, whose topology, under certain conditions, has been shown to contain no critical point suboptimal traps, thereby enabling effective searches for fields that give the global maximum of the objective. This paper addresses the structure of the landscape as a complement to topological critical point features. Recent work showed that landscape structure is highly favorable for optimization of state-to-state transition probabilities, in that gradient-based control trajectories to the global maximum value are nearly straight paths. The landscape structure is codified in the metric R ≥ 1.0, defined as the ratio of the length of the control trajectory to the Euclidean distance between the initial and optimal controls. A value of R = 1 would indicate an exactly straight trajectory to the optimal observable value. This paper extends the state-to-state transition probability results to the quantum ensemble and unitary transformation control landscapes. Again, nearly straight trajectories predominate, and we demonstrate that R can take values approaching 1.0 with high precision. However, the interplay of optimization trajectories with critical saddle submanifolds is found to influence landscape structure. A fundamental relationship necessary for perfectly straight gradient-based control trajectories is derived, wherein the gradient on the quantum control landscape must be an eigenfunction of the Hessian. This relation is an indicator of landscape structure and may provide a means to identify physical conditions when control trajectories can achieve perfect linearity. The collective favorable landscape topology and structure provide a foundation to understand why optimal quantum control can be readily achieved.
Mendes, Gilberto de Oliveira; da Silva, Nina Morena Rêgo Muniz; Anastácio, Thalita Cardoso; Vassilev, Nikolay Bojkov; Ribeiro, José Ivo; da Silva, Ivo Ribeiro; Costa, Maurício Dutra
2015-01-01
A biotechnological strategy for the production of an alternative P fertilizer is described in this work. The fertilizer was produced through rock phosphate (RP) solubilization by Aspergillus niger in a solid-state fermentation (SSF) with sugarcane bagasse as substrate. SSF conditions were optimized by the surface response methodology after an initial screening of factors with significant effect on RP solubilization. The optimized levels of the factors were 865 mg of biochar, 250 mg of RP, 270 mg of sucrose and 6.2 ml of water per gram of bagasse. At this optimal setting, 8.6 mg of water-soluble P per gram of bagasse was achieved, representing an increase of 2.4 times over the non-optimized condition. The optimized SSF product was partially incinerated at 350°C (SB-350) and 500°C (SB-500) to reduce its volume and, consequently, increase P concentration. The post-processed formulations of the SSF product were evaluated in a soil–plant experiment. The formulations SB-350 and SB-500 increased the growth and P uptake of common bean plants (Phaseolus vulgaris L.) when compared with the non-treated RP. Furthermore, these two formulations had a yield relative to triple superphosphate of 60% (on a dry mass basis). Besides increasing P concentration, incineration improved the SSF product performance probably by decreasing microbial immobilization of nutrients during the decomposition of the remaining SSF substrate. The process proposed is a promising alternative for the management of P fertilization since it enables the utilization of low-solubility RPs and relies on the use of inexpensive materials. PMID:26112323
Mendes, Gilberto de Oliveira; da Silva, Nina Morena Rêgo Muniz; Anastácio, Thalita Cardoso; Vassilev, Nikolay Bojkov; Ribeiro, José Ivo; da Silva, Ivo Ribeiro; Costa, Maurício Dutra
2015-11-01
A biotechnological strategy for the production of an alternative P fertilizer is described in this work. The fertilizer was produced through rock phosphate (RP) solubilization by Aspergillus niger in a solid-state fermentation (SSF) with sugarcane bagasse as substrate. SSF conditions were optimized by the surface response methodology after an initial screening of factors with significant effect on RP solubilization. The optimized levels of the factors were 865 mg of biochar, 250 mg of RP, 270 mg of sucrose and 6.2 ml of water per gram of bagasse. At this optimal setting, 8.6 mg of water-soluble P per gram of bagasse was achieved, representing an increase of 2.4 times over the non-optimized condition. The optimized SSF product was partially incinerated at 350°C (SB-350) and 500°C (SB-500) to reduce its volume and, consequently, increase P concentration. The post-processed formulations of the SSF product were evaluated in a soil-plant experiment. The formulations SB-350 and SB-500 increased the growth and P uptake of common bean plants (Phaseolus vulgaris L.) when compared with the non-treated RP. Furthermore, these two formulations had a yield relative to triple superphosphate of 60% (on a dry mass basis). Besides increasing P concentration, incineration improved the SSF product performance probably by decreasing microbial immobilization of nutrients during the decomposition of the remaining SSF substrate. The process proposed is a promising alternative for the management of P fertilization since it enables the utilization of low-solubility RPs and relies on the use of inexpensive materials. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Computer modeling and design of diagnostic workstations and radiology reading rooms
NASA Astrophysics Data System (ADS)
Ratib, Osman M.; Amato, Carlos L.; Balbona, Joseph A.; Boots, Kevin; Valentino, Daniel J.
2000-05-01
We used 3D modeling techniques to design and evaluate the ergonomics of diagnostic workstation and radiology reading room in the planning phase of building a new hospital at UCLA. Given serious space limitations, the challenge was to provide more optimal working environment for radiologists in a crowded and busy environment. A particular attention was given to flexibility, lighting condition and noise reduction in rooms shared by multiple users performing diagnostic tasks as well as regular clinical conferences. Re-engineering workspace ergonomics rely on the integration of new technologies, custom designed cabinets, indirect lighting, sound-absorbent partitioning and geometric arrangement of workstations to allow better privacy while optimizing space occupation. Innovations included adjustable flat monitors, integration of videoconferencing and voice recognition, control monitor and retractable keyboard for optimal space utilization. An overhead compartment protecting the monitors from ambient light is also used as accessory lightbox and rear-view projection screen for conferences.
Meeting the challenges of developing LED-based projection displays
NASA Astrophysics Data System (ADS)
Geißler, Enrico
2006-04-01
The main challenge in developing a LED-based projection system is to meet the brightness requirements of the market. Therefore a balanced combination of optical, electrical and thermal parameters must be reached to achieve these performance and cost targets. This paper describes the system design methodology for a digital micromirror display (DMD) based optical engine using LEDs as the light source, starting at the basic physical and geometrical parameters of the DMD and other optical elements through characterization of the LEDs to optimizing the system performance by determining optimal driving conditions. LEDs have a luminous flux density which is just at the threshold of acceptance in projection systems and thus only a fully optimized optical system with a matched set of LEDs can be used. This work resulted in two projection engines, one for a compact pocket projector and the other for a rear projection television, both of which are currently in commercialization.
A GPU-accelerated and Monte Carlo-based intensity modulated proton therapy optimization system.
Ma, Jiasen; Beltran, Chris; Seum Wan Chan Tseung, Hok; Herman, Michael G
2014-12-01
Conventional spot scanning intensity modulated proton therapy (IMPT) treatment planning systems (TPSs) optimize proton spot weights based on analytical dose calculations. These analytical dose calculations have been shown to have severe limitations in heterogeneous materials. Monte Carlo (MC) methods do not have these limitations; however, MC-based systems have been of limited clinical use due to the large number of beam spots in IMPT and the extremely long calculation time of traditional MC techniques. In this work, the authors present a clinically applicable IMPT TPS that utilizes a very fast MC calculation. An in-house graphics processing unit (GPU)-based MC dose calculation engine was employed to generate the dose influence map for each proton spot. With the MC generated influence map, a modified least-squares optimization method was used to achieve the desired dose volume histograms (DVHs). The intrinsic CT image resolution was adopted for voxelization in simulation and optimization to preserve spatial resolution. The optimizations were computed on a multi-GPU framework to mitigate the memory limitation issues for the large dose influence maps that resulted from maintaining the intrinsic CT resolution. The effects of tail cutoff and starting condition were studied and minimized in this work. For relatively large and complex three-field head and neck cases, i.e., >100,000 spots with a target volume of ∼ 1000 cm(3) and multiple surrounding critical structures, the optimization together with the initial MC dose influence map calculation was done in a clinically viable time frame (less than 30 min) on a GPU cluster consisting of 24 Nvidia GeForce GTX Titan cards. The in-house MC TPS plans were comparable to a commercial TPS plans based on DVH comparisons. A MC-based treatment planning system was developed. The treatment planning can be performed in a clinically viable time frame on a hardware system costing around 45,000 dollars. The fast calculation and optimization make the system easily expandable to robust and multicriteria optimization.
L^1 -optimality conditions for the circular restricted three-body problem
NASA Astrophysics Data System (ADS)
Chen, Zheng
2016-11-01
In this paper, the L^1 -minimization for the translational motion of a spacecraft in the circular restricted three-body problem (CRTBP) is considered. Necessary conditions are derived by using the Pontryagin Maximum Principle (PMP), revealing the existence of bang-bang and singular controls. Singular extremals are analyzed, recalling the existence of the Fuller phenomenon according to the theories developed in (Marchal in J Optim Theory Appl 11(5):441-486, 1973; Zelikin and Borisov in Theory of Chattering Control with Applications to Astronautics, Robotics, Economics, and Engineering. Birkhäuser, Basal 1994; in J Math Sci 114(3):1227-1344, 2003). The sufficient optimality conditions for the L^1 -minimization problem with fixed endpoints have been developed in (Chen et al. in SIAM J Control Optim 54(3):1245-1265, 2016). In the current paper, we establish second-order conditions for optimal control problems with more general final conditions defined by a smooth submanifold target. In addition, the numerical implementation to check these optimality conditions is given. Finally, approximating the Earth-Moon-Spacecraft system by the CRTBP, an L^1 -minimization trajectory for the translational motion of a spacecraft is computed by combining a shooting method with a continuation method in (Caillau et al. in Celest Mech Dyn Astron 114:137-150, 2012; Caillau and Daoud in SIAM J Control Optim 50(6):3178-3202, 2012). The local optimality of the computed trajectory is asserted thanks to the second-order optimality conditions developed.
New Tween-80 microbiological assay of serum folate levels in humans and animals.
Zhou, Zhenghua; Yang, Yuan; Li, Ming; Kou, Chong; Xiao, Ping; Jiang, Yan; Hong, Junrong; Huang, Chengyu
2012-01-01
The objective of this study was to develop a new Tween-80 microbiological assay (Tween-80 MBA) to determine human or animal serum folate levels and to verify its reliability. The effects of the Lactobacillius casei subspecies rhamnosus (L. casei, ATCC No. 7469) inoculum concentration, incubation time, and Tween-80 on L. casei growth were studied, and the serum folate levels were investigated. Serum samples were collected from patients with esophageal cancer (EC) and healthy control subjects in Yanting, healthy adult subjects in Chengdu, Sichuan, and in male Sprague-Dawley rats. Optimal conditions for the new MBA were as follows: 1.28 x 10(7) CFU/mL working inoculum, vitamin folic acid assay broth with 0.24% (w/w) Tween-80, and anaerobic incubation with L. casei at 37 degrees C for 22 h. Under the optimal conditions, the working curve was in simple linear rather than logarithmic equation; the linear working curve of the folic acid standard working solution concentration versus the turbidity (adsorption value) of medium with L. casei ranged from 0.05 to 1.00 microg/L; the linear correlation coefficient was 0.9989 (SD 0.0007); the recovery rate of folate was 105.4-112.7%; and the minimum concentration for detecting folate was 0.03 microg/L. The RSD within-day and between-day precisions were 5.6 and 3.3%, respectively. The serum folate level of 100 EC patients was 6.4 (SEM 0.4) microg/L which was significantly lower than that of healthy control subjects [8.0 (SEM 0.6) microg/L, n = 100, P=0.020]. The new Tween-80 MBA is considered to be a reliable method for measuring serum folate level.
Introduction to the special section: sustainability of work with chronic health conditions.
Shaw, William S; Tveito, Torill H; Boot, Cécile R L
2013-06-01
The increasing prevalence of older workers and chronic health conditions represents a growing occupational health concern. More research is needed to understand risk factors, apply and adapt theories, and test workplace-focused interventions that might prevent work disability and disengagement among chronically ill workers. A 2-h roundtable symposium involving 28 participants was held at an international conference (Second Scientific Conference on Work Disability Prevention & Integration, Groningen, The Netherlands) in October 2012. In that symposium, small groups of participants were invited to discuss theoretical, methodological, and implementation considerations for studying workplace function and well-being among workers with chronic health conditions. As a follow-up to the symposium, the organizers invited authors to submit original articles to a Special Section of the Journal of Occupational Rehabilitation for peer review and publication. Results of the symposium reflected the need to address social, not just physical, aspects of the workplace, to include both individual-level and organizational interventions, and to integrate employer perspectives and operational models. Contributions to the Special Issue focus on outcome measurement, symptom self-management at work, job accommodations, prognostic factors for disability escalation, and the perceived needs of affected workers. The content of the Special Section reflects an evolving body of research that continues to grapple with basic issues around choice of outcome measures, level of intervention, and the optimal ways to meet the needs of workers with chronic health conditions, including supporting efforts to manage symptoms and function at work. Future research should focus on integrating organizational and individual-level interventions.
Differential working memory correlates for implicit sequence performance in young and older adults.
Bo, Jin; Jennett, S; Seidler, R D
2012-09-01
Our recent work has revealed that visuospatial working memory (VSWM) relates to the rate of explicit motor sequence learning (Bo and Seidler in J Neurophysiol 101:3116-3125, 2009) and implicit sequence performance (Bo et al. in Exp Brain Res 214:73-81, 2011a) in young adults (YA). Although aging has a detrimental impact on many cognitive functions, including working memory, older adults (OA) still rely on their declining working memory resources in an effort to optimize explicit motor sequence learning. Here, we evaluated whether age-related differences in VSWM and/or verbal working memory (VWM) performance relates to implicit performance change in the serial reaction time (SRT) sequence task in OA. Participants performed two computerized working memory tasks adapted from change detection working memory assessments (Luck and Vogel in Nature 390:279-281, 1997), an implicit SRT task and several neuropsychological tests. We found that, although OA exhibited an overall reduction in both VSWM and VWM, both OA and YA showed similar performance in the implicit SRT task. Interestingly, while VSWM and VWM were significantly correlated with each other in YA, there was no correlation between these two working memory scores in OA. In YA, the rate of SRT performance change (exponential fit to the performance curve) was significantly correlated with both VSWM and VWM, while in contrast, OA's performance was only correlated with VWM, and not VSWM. These results demonstrate differential reliance on VSWM and VWM for SRT performance between YA and OA. OA may utilize VWM to maintain optimized performance of second-order conditional sequences.
Veronesi, Francesca; Maglio, Melania; Sartori, Maria; Fini, Milena
2015-01-01
Despite its pervasive use, the clinical efficacy of platelet-rich plasma (PRP) therapy and the different mechanisms of action have yet to be established. This overview of the literature is focused on the role of PRP in bone, tendon, cartilage, and ligament tissue regeneration considering basic science literature deriving from in vitro and in vivo studies. Although this work provides evidence that numerous preclinical studies published within the last 10 years showed promising results concerning the application of PRP, many key questions remain unanswered and controversial results have arisen. Additional preclinical studies are needed to define the dosing, timing, and frequency of PRP injections, different techniques for delivery and location of delivery, optimal physiologic conditions for injections, and the concomitant use of recombinant proteins, cytokines, additional growth factors, biological scaffolds, and stems cells to develop optimal treatment protocols that can effectively treat various musculoskeletal conditions. PMID:26075269
Towards Carbon-Neutral CO2 Conversion to Hydrocarbons.
Mattia, Davide; Jones, Matthew D; O'Byrne, Justin P; Griffiths, Owen G; Owen, Rhodri E; Sackville, Emma; McManus, Marcelle; Plucinski, Pawel
2015-12-07
With fossil fuels still predicted to contribute close to 80 % of the primary energy consumption by 2040, methods to limit further CO2 emissions in the atmosphere are urgently needed to avoid the catastrophic scenarios associated with global warming. In parallel with improvements in energy efficiency and CO2 storage, the conversion of CO2 has emerged as a complementary route with significant potential. In this work we present the direct thermo-catalytic conversion of CO2 to hydrocarbons using a novel iron nanoparticle-carbon nanotube (Fe@CNT) catalyst. We adopted a holistic and systematic approach to CO2 conversion by integrating process optimization-identifying reaction conditions to maximize conversion and selectivity towards long chain hydrocarbons and/or short olefins-with catalyst optimization through the addition of promoters. The result is the production of valuable hydrocarbons in a manner that can approach carbon neutrality under realistic industrial process conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Extreme ultraviolet patterning of tin-oxo cages
NASA Astrophysics Data System (ADS)
Haitjema, Jarich; Zhang, Yu; Vockenhuber, Michaela; Kazazis, Dimitrios; Ekinci, Yasin; Brouwer, Albert M.
2017-07-01
We report on the extreme ultraviolet (EUV) patterning performance of tin-oxo cages. These cage molecules were already known to function as a negative tone photoresist for EUV radiation, but in this work, we significantly optimized their performance. Our results show that sensitivity and resolution are only meaningful photoresist parameters if the process conditions are optimized. We focus on contrast curves of the materials using large area EUV exposures and patterning of the cages using EUV interference lithography. It is shown that baking steps, such as postexposure baking, can significantly affect both the sensitivity and contrast in the open-frame experiments as well as the patterning experiments. A layer thickness increase reduced the necessary dose to induce a solubility change but decreased the patterning quality. The patterning experiments were affected by minor changes in processing conditions such as an increased rinsing time. In addition, we show that the anions of the cage can influence the sensitivity and quality of the patterning, probably through their effect on physical properties of the materials.
An integrated database with system optimization and design features
NASA Technical Reports Server (NTRS)
Arabyan, A.; Nikravesh, P. E.; Vincent, T. L.
1992-01-01
A customized, mission-specific relational database package was developed to allow researchers working on the Mars oxygen manufacturing plant to enter physical description, engineering, and connectivity data through a uniform, graphical interface and to store the data in formats compatible with other software also developed as part of the project. These latter components include an optimization program to maximize or minimize various criteria as the system evolves into its final design; programs to simulate the behavior of various parts of the plant in Martian conditions; an animation program which, in different modes, provides visual feedback to designers and researchers about the location of and temperature distribution among components as well as heat, mass, and data flow through the plant as it operates in different scenarios; and a control program to investigate the stability and response of the system under different disturbance conditions. All components of the system are interconnected so that changes entered through one component are reflected in the others.
Decentralized DC Microgrid Monitoring and Optimization via Primary Control Perturbations
NASA Astrophysics Data System (ADS)
Angjelichinoski, Marko; Scaglione, Anna; Popovski, Petar; Stefanovic, Cedomir
2018-06-01
We treat the emerging power systems with direct current (DC) MicroGrids, characterized with high penetration of power electronic converters. We rely on the power electronics to propose a decentralized solution for autonomous learning of and adaptation to the operating conditions of the DC Mirogrids; the goal is to eliminate the need to rely on an external communication system for such purpose. The solution works within the primary droop control loops and uses only local bus voltage measurements. Each controller is able to estimate (i) the generation capacities of power sources, (ii) the load demands, and (iii) the conductances of the distribution lines. To define a well-conditioned estimation problem, we employ decentralized strategy where the primary droop controllers temporarily switch between operating points in a coordinated manner, following amplitude-modulated training sequences. We study the use of the estimator in a decentralized solution of the Optimal Economic Dispatch problem. The evaluations confirm the usefulness of the proposed solution for autonomous MicroGrid operation.
Improving industrial full-scale production of baker's yeast by optimizing aeration control.
Blanco, Carlos A; Rayo, Julia; Giralda, José M
2008-01-01
This work analyzes the control of optimum dissolved oxygen of an industrial fed-batch procedure in which baker's yeast (Saccharomyces cerevisiae) is grown under aerobic conditions. Sugar oxidative metabolism was controlled by monitoring aeration, molasses flows, and yeast concentration in the propagator along the later stage of the propagation, and keeping pH and temperature under controlled conditions. A large number of fed-batch growth experiments were performed in the tank for a period of 16 h, for each of the 3 manufactured commercial products. For optimization and control of cultivations, the growth and metabolite formation were quantified through measurement of specific growth and ethanol concentration. Data were adjusted to a model of multiple lineal regression, and correlations representing dissolved oxygen as a function of aeration, molasses, yeast concentration in the broth, temperature, and pH were obtained. The actual influence of each variable was consistent with the mathematical model, further justified by significant levels of each variable, and optimum aeration profile during the yeast propagation.
Attached cultivation for improving the biomass productivity of Spirulina platensis.
Zhang, Lanlan; Chen, Lin; Wang, Junfeng; Chen, Yu; Gao, Xin; Zhang, Zhaohui; Liu, Tianzhong
2015-04-01
To improve cultivation efficiency for microalgae Spirulina platensis is related to increase its potential use as food source and as an effective alternative for CO2 fixation. The present work attempted to establish a technique, namely attached cultivation, for S. platensis. Laboratory experiments were made firstly to investigate optimal conditions on attached cultivation. The optimal conditions were found: 25 g m(-2) for initial inoculum density using electrostatic flocking cloth as substrata, light intensity lower than 200 μmol m(-2) s(-1), CO2 enriched air flow (0.5%) at a superficial aeration rate of 0.0056 m s(-1) in a NaHCO3-free Zarrouk medium. An outdoor attached cultivation bench-scale bioreactor was built and a 10d culture of S. platensis was carried out with daily harvesting. A high footprint areal biomass productivity of 60 g m(-2) d(-1) was obtained. The nutrition of S. platensis with attached cultivation is identical to that with conventional liquid cultivation. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Stoykova, Elena V.; Roeva, Tatiana
2003-09-01
The work presents the results of the low-level laser therapy (LLLT) of two groups of volunteers with a variety of conditions performed with a GaAs-system. The volunteers were randomly selected among the patients who were usually treated by conventional therapy that included massage and acupuncture needles. The LLLT was proposed to the first group as extension of conventional treatment. The second group underwent only the LLLT. The effectiveness of the therapy was graded under four categories. Short-term and long-term side effects as well as conditions responding only to LLLT were recorded. The successful treatments were up to 70% for both groups, which coincided with the result of the control group treated by the conventional therapy. For optimization of the light delivery, the spatial maps of the absorbed dose in a homogeneous medium, both in the proximity of the light source and at a distance from it, were compared for collimated and divergent light beams using a reduced variance Monte-Carlo code.
Monte Blanco, S F M; Santos, J S; Feltes, M M C; Dors, G; Licodiedoff, S; Lerin, L A; de Oliveira, D; Ninow, J L; Furigo, A
2015-12-01
The diacylglycerols (DAG) are emulsifiers with high added value used as functional additives in food, medicine, and cosmetic industries. In glycerolysis of oils for the production of DAG, the immiscibility between the substrates (glycerol and oil phases) has to be overcome, for example, by the addition of a food grade surfactant like Tween 65. The main objective of this work was to optimize the process conditions for obtaining diacylglycerols rich in the omega-3 eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, through the enzymatic glycerolysis of fish oil, in systems with Tween 65 and without this surfactant, using Lipozyme TL(®) IM as biocatalyst. The experiments were performed according to predetermined conditions varying the temperature, enzyme load, the oil to glycerol molar ratio and, when added, the surfactant load. After 6 h of reaction, it was possible to produce up to 20.76 and 13.76% of diacylglycerols from fish oil in the reactions with and without Tween 65, respectively.
Andrade, Thalles A; Errico, Massimiliano; Christensen, Knud V
2017-11-01
The identification of the influence of the reaction parameters is of paramount importance when defining a process design. In this work, non-edible castor oil was reacted with methanol to produce a possible component for biodiesel blends, using liquid enzymes as the catalyst. Temperature, alcohol-to-oil molar ratio, enzyme and added water contents were the reaction parameters evaluated in the transesterification reactions. The optimal conditions, giving the optimal final FAME yield and FFA content in the methyl ester-phase was identified. At 35°C, 6.0 methanol-to-oil molar ratio, 5wt% of enzyme and 5wt% of water contents, 94% of FAME yield and 6.1% of FFA in the final composition were obtained. The investigation was completed with the analysis of the component profiles, showing that at least 8h are necessary to reach a satisfactory FAME yield together with a minor FFA content. Copyright © 2017 Elsevier Ltd. All rights reserved.
Optimisation of low temperature extraction of banana juice using commercial pectinase.
Sagu, Sorel Tchewonpi; Nso, Emmanuel Jong; Karmakar, Sankha; De, Sirshendu
2014-05-15
The objective of this work was to develop a process with optimum conditions for banana juice. The procedure involves hydrolyzing the banana pulp by commercial pectinase followed by cloth filtration. Response surface methodology with Doehlert design was utilised to optimize the process parameters. The temperature of incubation (30-60 °C), time of reaction (20-120 min) and concentration of pectinase (0.01-0.05% v/w) were the independent variables and viscosity, clarity, alcohol insoluble solids (AIS), total polyphenol and protein concentration were the responses. Total soluble sugar, pH, conductivity, calcium, sodium and potassium concentration in the juice were also evaluated. The results showed reduction of AIS and viscosity with reaction time and pectinase concentration and reduction of polyphenol and protein concentration with temperature. Using numerical optimization, the optimum conditions for the enzymatic extraction of banana juice were estimated. Depectinization kinetics was also studied at optimum temperature and variation of kinetic constants with enzyme dose was evaluated. Copyright © 2013 Elsevier Ltd. All rights reserved.
Uncertainty Quantification and Statistical Convergence Guidelines for PIV Data
NASA Astrophysics Data System (ADS)
Stegmeir, Matthew; Kassen, Dan
2016-11-01
As Particle Image Velocimetry has continued to mature, it has developed into a robust and flexible technique for velocimetry used by expert and non-expert users. While historical estimates of PIV accuracy have typically relied heavily on "rules of thumb" and analysis of idealized synthetic images, recently increased emphasis has been placed on better quantifying real-world PIV measurement uncertainty. Multiple techniques have been developed to provide per-vector instantaneous uncertainty estimates for PIV measurements. Often real-world experimental conditions introduce complications in collecting "optimal" data, and the effect of these conditions is important to consider when planning an experimental campaign. The current work utilizes the results of PIV Uncertainty Quantification techniques to develop a framework for PIV users to utilize estimated PIV confidence intervals to compute reliable data convergence criteria for optimal sampling of flow statistics. Results are compared using experimental and synthetic data, and recommended guidelines and procedures leveraging estimated PIV confidence intervals for efficient sampling for converged statistics are provided.
Microfluidic Separation of Ethylene and Ethane Using Frustrated Lewis Pairs.
Voicu, Dan; Stephan, Douglas W; Kumacheva, Eugenia
2015-12-21
Separation of gaseous olefins and paraffins is one of the most important separation processes in the industry. Development of new cost-effective technologies aims at reducing the high energy consumption during the separation process. Here, we took advantage of the reaction of frustrated Lewis pairs (FLPs) with ethylene to achieve reactive extraction of ethylene from ethylene-ethane mixtures. The extraction was studied using a microfluidic platform, which enabled a rapid, high-throughput assessment of reaction conditions to optimize gas separation efficiency. A separation factor of 7.3 was achieved for ethylene from a 1:1 volume ratio mixture of ethylene and ethane, which corresponded to an extracted ethylene purity of 88 %. The results obtained in the microfluidic studies were validated using infrared spectroscopy. This work paves the way for further development of the FLPs and optimization of reaction conditions, thereby maximizing the separation efficiency of olefins from their mixtures with paraffins. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Samavati, Vahid; Adeli, Mostafa
2014-01-30
The present work is focused on the optimization of hydrophobic compounds extraction process from the carbohydrate matrix of Iranian Pistacia atlantica seed at laboratory level using ultrasonic-assisted extraction. Response surface methodology (RSM) was used to optimize oil seed extraction yield. Independent variables were extraction temperature (30, 45, 60, 75 and 90°C), extraction time (10, 15, 20, 25, 30 and 35 min) and power of ultrasonic (20, 40, 60, 80 and 100 W). A second order polynomial equation was used to express the oil extraction yield as a function of independent variables. The responses and variables were fitted well to each other by multiple regressions. The optimum extraction conditions were as follows: extraction temperature of 75°C, extraction time of 25 min, and power of ultrasonic of 80 W. A comparison between seed oil composition extracted by ultrasonic waves under the optimum operating conditions determined by RSM for oil yield and by organic solvent was reported. Copyright © 2013 Elsevier Ltd. All rights reserved.
Production of fatty acid butyl esters using the low cost naturally immobilized Carica papaya lipase.
Su, Erzheng; Wei, Dongzhi
2014-07-09
In this work, the low cost naturally immobilized Carica papaya lipase (CPL) was investigated for production of fatty acid butyl esters (FABE) to fulfill the aim of reducing the lipase cost in the enzymatic butyl-biodiesel process. The CPL showed specificities to different alcohol acyl acceptors. Alcohols with more than three carbon atoms did not have negative effects on the CPL activity. The CPL catalyzed butanolysis for FABE production was systematically investigated. The reaction solvent, alcohol/oil molar ratio, enzyme amount, reaction temperature, and water activity all affected the butanolysis process. Under the optimized conditions, the highest conversion of 96% could be attained in 24 h. These optimal conditions were further applied to CPL catalyzed butanolysis of other vegetable oils. All of them showed very high conversion. The CPL packed-bed reactor was further developed, and could be operated continuously for more than 150 h. All of these results showed that the low cost Carica papaya lipase can be used as a promising lipase for biodiesel production.
Particle swarm optimization of ascent trajectories of multistage launch vehicles
NASA Astrophysics Data System (ADS)
Pontani, Mauro
2014-02-01
Multistage launch vehicles are commonly employed to place spacecraft and satellites in their operational orbits. If the rocket characteristics are specified, the optimization of its ascending trajectory consists of determining the optimal control law that leads to maximizing the final mass at orbit injection. The numerical solution of a similar problem is not trivial and has been pursued with different methods, for decades. This paper is concerned with an original approach based on the joint use of swarming theory and the necessary conditions for optimality. The particle swarm optimization technique represents a heuristic population-based optimization method inspired by the natural motion of bird flocks. Each individual (or particle) that composes the swarm corresponds to a solution of the problem and is associated with a position and a velocity vector. The formula for velocity updating is the core of the method and is composed of three terms with stochastic weights. As a result, the population migrates toward different regions of the search space taking advantage of the mechanism of information sharing that affects the overall swarm dynamics. At the end of the process the best particle is selected and corresponds to the optimal solution to the problem of interest. In this work the three-dimensional trajectory of the multistage rocket is assumed to be composed of four arcs: (i) first stage propulsion, (ii) second stage propulsion, (iii) coast arc (after release of the second stage), and (iv) third stage propulsion. The Euler-Lagrange equations and the Pontryagin minimum principle, in conjunction with the Weierstrass-Erdmann corner conditions, are employed to express the thrust angles as functions of the adjoint variables conjugate to the dynamics equations. The use of these analytical conditions coming from the calculus of variations leads to obtaining the overall rocket dynamics as a function of seven parameters only, namely the unknown values of the initial state and costate components, the coast duration, and the upper stage thrust duration. In addition, a simple approach is introduced and successfully applied with the purpose of satisfying exactly the path constraint related to the maximum dynamical pressure in the atmospheric phase. The basic version of the swarming technique, which is used in this research, is extremely simple and easy to program. Nevertheless, the algorithm proves to be capable of yielding the optimal rocket trajectory with a very satisfactory numerical accuracy.
Optimizing acoustical conditions for speech intelligibility in classrooms
NASA Astrophysics Data System (ADS)
Yang, Wonyoung
High speech intelligibility is imperative in classrooms where verbal communication is critical. However, the optimal acoustical conditions to achieve a high degree of speech intelligibility have previously been investigated with inconsistent results, and practical room-acoustical solutions to optimize the acoustical conditions for speech intelligibility have not been developed. This experimental study validated auralization for speech-intelligibility testing, investigated the optimal reverberation for speech intelligibility for both normal and hearing-impaired listeners using more realistic room-acoustical models, and proposed an optimal sound-control design for speech intelligibility based on the findings. The auralization technique was used to perform subjective speech-intelligibility tests. The validation study, comparing auralization results with those of real classroom speech-intelligibility tests, found that if the room to be auralized is not very absorptive or noisy, speech-intelligibility tests using auralization are valid. The speech-intelligibility tests were done in two different auralized sound fields---approximately diffuse and non-diffuse---using the Modified Rhyme Test and both normal and hearing-impaired listeners. A hybrid room-acoustical prediction program was used throughout the work, and it and a 1/8 scale-model classroom were used to evaluate the effects of ceiling barriers and reflectors. For both subject groups, in approximately diffuse sound fields, when the speech source was closer to the listener than the noise source, the optimal reverberation time was zero. When the noise source was closer to the listener than the speech source, the optimal reverberation time was 0.4 s (with another peak at 0.0 s) with relative output power levels of the speech and noise sources SNS = 5 dB, and 0.8 s with SNS = 0 dB. In non-diffuse sound fields, when the noise source was between the speaker and the listener, the optimal reverberation time was 0.6 s with SNS = 4 dB and increased to 0.8 and 1.2 s with decreased SNS = 0 dB, for both normal and hearing-impaired listeners. Hearing-impaired listeners required more early energy than normal-hearing listeners. Reflective ceiling barriers and ceiling reflectors---in particular, parallel front-back rows of semi-circular reflectors---achieved the goal of decreasing reverberation with the least speech-level reduction.
Effect of default menus on food selection and consumption in a college dining hall simulation study.
Radnitz, Cynthia; Loeb, Katharine L; Keller, Kathleen L; Boutelle, Kerri; Schwartz, Marlene B; Todd, Lauren; Marcus, Sue
2018-05-01
To test an obesity prevention strategy derived from behavioural economics (optimal defaults plus delay), focused on changing the college dining hall service method. After a uniform pre-load, participants attended an experimental lunch in groups randomized to one of three conditions: a nutrient-dense, lower-fat/energy lunch as an optimal default (OD); a less-nutrient-dense, higher-fat/energy lunch as a suboptimal default (SD); or a free array (FA) lunch. In the OD condition, students were presented a menu depicting healthier vegetarian and omnivore foods as default, with opt-out alternatives (SD menu) available on request with a 15 min wait. In the SD condition, the same menu format was used with the positioning of food items switched. In the FA condition, all choices were presented in uniform fonts and were available immediately. Private rooms designed to provide a small version of a college dining hall, on two campuses of a Northeastern US university. First-year college students (n 129). There was a significant main effect for condition on percentage of optimal choices selected, with 94 % of food choices in the OD condition optimal, 47 % in the FA condition optimal and none in the SD condition optimal. Similarly, energy intake for those in the SD condition significantly exceeded that in the FA condition, which exceeded that in the OD condition. Presenting menu items as optimal defaults with a delay had a significant impact on choice and consumption, suggesting that further research into its long-term applicability is warranted.
Xi, Jun; Xue, Yujing; Xu, Yinxiang; Shen, Yuhong
2013-11-01
In this study, the ultrahigh pressure extraction of green tea polyphenols was modeled and optimized by a three-layer artificial neural network. A feed-forward neural network trained with an error back-propagation algorithm was used to evaluate the effects of pressure, liquid/solid ratio and ethanol concentration on the total phenolic content of green tea extracts. The neural network coupled with genetic algorithms was also used to optimize the conditions needed to obtain the highest yield of tea polyphenols. The obtained optimal architecture of artificial neural network model involved a feed-forward neural network with three input neurons, one hidden layer with eight neurons and one output layer including single neuron. The trained network gave the minimum value in the MSE of 0.03 and the maximum value in the R(2) of 0.9571, which implied a good agreement between the predicted value and the actual value, and confirmed a good generalization of the network. Based on the combination of neural network and genetic algorithms, the optimum extraction conditions for the highest yield of green tea polyphenols were determined as follows: 498.8 MPa for pressure, 20.8 mL/g for liquid/solid ratio and 53.6% for ethanol concentration. The total phenolic content of the actual measurement under the optimum predicated extraction conditions was 582.4 ± 0.63 mg/g DW, which was well matched with the predicted value (597.2mg/g DW). This suggests that the artificial neural network model described in this work is an efficient quantitative tool to predict the extraction efficiency of green tea polyphenols. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
BIOLEACH: Coupled modeling of leachate and biogas production on solid waste landfills
NASA Astrophysics Data System (ADS)
Rodrigo-Clavero, Maria-Elena; Rodrigo-Ilarri, Javier
2015-04-01
One of the most important factors to address when performing the environmental impact assessment of urban solid waste landfills is to evaluate the leachate production. Leachate management (collection and treatment) is also one of the most relevant economical aspects to take into account during the landfill life. Leachate is formed as a solution of biological and chemical components during operational and post-operational phases on urban solid waste landfills as a combination of different processes that involve water gains and looses inside the solid waste mass. Infiltration of external water coming from precipitation is the most important component on this water balance. However, anaerobic waste decomposition and biogas formation processes play also a role on the balance as water-consuming processes. The production of leachate one biogas is therefore a coupled process. Biogas production models usually consider optimal conditions of water content on the solid waste mass. However, real conditions during the operational phase of the landfill may greatly differ from these optimal conditions. In this work, the first results obtained to predict both the leachate and the biogas production as a single coupled phenomenon on real solid waste landfills are shown. The model is applied on a synthetic case considering typical climatological conditions of Mediterranean catchments.
NASA Astrophysics Data System (ADS)
Wendel, Christopher H.; Kazempoor, Pejman; Braun, Robert J.
2016-01-01
Reversible solid oxide cell (ReSOC) systems are being increasingly considered for electrical energy storage, although much work remains before they can be realized, including cell materials development and system design optimization. These systems store electricity by generating a synthetic fuel in electrolysis mode and subsequently recover electricity by electrochemically oxidizing the stored fuel in fuel cell mode. System thermal management is improved by promoting methane synthesis internal to the ReSOC stack. Within this strategy, the cell-stack operating conditions are highly impactful on system performance and optimizing these parameters to suit both operating modes is critical to achieving high roundtrip efficiency. Preliminary analysis shows the thermoneutral voltage to be a useful parameter for analyzing ReSOC systems and the focus of this study is to quantitatively examine how it is affected by ReSOC operating conditions. The results reveal that the thermoneutral voltage is generally reduced by increased pressure, and reductions in temperature, fuel utilization, and hydrogen-to-carbon ratio. Based on the thermodynamic analysis, many different combinations of these operating conditions are expected to promote efficient energy storage. Pressurized systems can achieve high efficiency at higher temperature and fuel utilization, while non-pressurized systems may require lower stack temperature and suffer from reduced energy density.
Actively controlled shaft seals for aerospace applications
NASA Astrophysics Data System (ADS)
Salant, Richard F.
The objective of years 4 and 5 of this project (1992 and 1993) is to determine experimentally the behavior and operating characteristics of a controllable mechanical seal, and to identify potential problem areas. A controllable mechanical seal is one in which the thickness of the lubricating film separating the sealing surfaces is adjustable, and can be controlled by an electronic control system, based on information supplied by sensors that monitor the condition of the film. This work builds upon work done during years 1-3, in which a controllable mechanical seal was designed, analyzed, and fabricated. At the beginning of year 4, the mechanical seal and test rig was assembled, and preliminary testing begun. The five major tasks of years 4 and 5 encompass instrumentation, configuration changes of the mechanical seal to optimize its performance, systematic steady state tests, systematic transient tests, and a final report. During this reporting period, significant progress was made on instrumenting the test rig and modifying the design to optimize the seal's performance. Initial steady state tests were also performed.
Turkett, Jeremy A; Bicker, Kevin L
2017-04-10
Growing prevalence of antibiotic resistant bacterial infections necessitates novel antimicrobials, which could be rapidly identified from combinatorial libraries. We report the use of the peptoid library agar diffusion (PLAD) assay to screen peptoid libraries against the ESKAPE pathogens, including the optimization of assay conditions for each pathogen. Work presented here focuses on the tailoring of combinatorial peptoid library design through a detailed study of how peptoid lipophilicity relates to antibacterial potency and mammalian cell toxicity. The information gleaned from this optimization was then applied using the aforementioned screening method to examine the relative potency of peptoid libraries against Staphylococcus aureus, Acinetobacter baumannii, and Enterococcus faecalis prior to and following functionalization with long alkyl tails. The data indicate that overall peptoid hydrophobicity and not simply alkyl tail length is strongly correlated with mammalian cell toxicity. Furthermore, this work demonstrates the utility of the PLAD assay in rapidly evaluating the effect of molecular property changes in similar libraries.
NASA Astrophysics Data System (ADS)
Izrael'yants, K. R.; Orlov, A. P.; Ormont, A. B.; Chirkova, E. G.
2017-04-01
The effect of cesium and potassium atoms deposited onto multiwalled carbon nanotubes grown in an electrical arc on their emission characteristics was studied. The current-voltage characteristics of the field electron emission of specimens with cesium or potassium doped multiwalled carbon nanotubes of this type were revealed to retain their linear character in the Fowler-Nordheim coordinates within several orders of magnitude of change in the emission current. The deposition of cesium and potassium atoms was shown to lead to a considerable increase in the emission current and a decrease in the work function φ of studied emitters with multiwalled nanotubes. The work function was established to decrease to φ 3.1 eV at an optimal thickness of coating with cesium atoms and to φ 2.9 eV in the case of doping with potassium atoms. Cesium and potassium deposition conditions optimal for the attainment of a maximum emission current were found.
Evaluation of experimental parameters for growth of homogeneous solid solutions
NASA Astrophysics Data System (ADS)
Scheel, Hans J.; Swendsen, Robert H.
2001-12-01
In this paper, we discuss the experimental conditions required to grow large two-component crystals from homogeneous solid solutions. Building on the work of Burton, Prim, and Slichter and that of Van Erk, we are able to establish that the concentration fluctuations for diffusion-limited growth are rather insensitive to hydrodynamic fluctuations. This enables a crystal grower to take advantage of forced convection to optimize growth rates without aggravating the striation problem.
Optimization of the double dosimetry algorithm for interventional cardiologists
NASA Astrophysics Data System (ADS)
Chumak, Vadim; Morgun, Artem; Bakhanova, Elena; Voloskiy, Vitalii; Borodynchik, Elena
2014-11-01
A double dosimetry method is recommended in interventional cardiology (IC) to assess occupational exposure; yet currently there is no common and universal algorithm for effective dose estimation. In this work, flexible and adaptive algorithm building methodology was developed and some specific algorithm applicable for typical irradiation conditions of IC procedures was obtained. It was shown that the obtained algorithm agrees well with experimental measurements and is less conservative compared to other known algorithms.
Optimized Read/Write Conditions of PHB Memory,
PHB memory has been a good candidate for a future ultra-high density memory for these ten years. This PHB memory is considered to realize the...diameter recording spot. But not so many researchers are working on PHB memory compared to the number of researchers wrestling with realization of higher...possible in such a high density recording in 1 -microns diameter spot. Therefore one of the most important research on PHB memory is the estimation of
Optimization design and performance analysis of a miniature stirling engine
NASA Astrophysics Data System (ADS)
You, Zhanping; Yang, Bo; Pan, Lisheng; Hao, Changsheng
2017-10-01
Under given operation conditions, a stirling engine of 2 kW is designed which takes hydrogen as working medium. Through establishment of adiabatic model, the ways are achieved about performance improving. The ways are raising the temperature of hot terminal, lowering the temperature of cold end, increasing the average cycle pressure, speeding up the speed, phase angle being 90°, stroke volume ratio approximating to 1 and increasing the performance of regenerator.
Strategies for rational utilization of bituminous coal deposits in the German Federal Republic
NASA Astrophysics Data System (ADS)
Erasmus, F. C.; Lenhartz, R.
1980-09-01
The status and economic conditions for coal mining in the GFR are examined, and the production of the individual coal regions is reviewed. Exploratory work, conducted in the light of inevitable production increases in the future, is noted. Some changes in the present coal production and utilization strategies which may be needed to meet future requirements and at the same time optimize the mining procedures are discussed.
Zhang, Wenyan; Zeng, Jing
2017-01-01
An existence result for the solution set of a system of simultaneous generalized vector quasi-equilibrium problems (for short, (SSGVQEP)) is obtained, which improves Theorem 3.1 of the work of Ansari et al. (J. Optim. Theory Appl. 127:27-44, 2005). Moreover, a definition of Hadamard-type well-posedness for (SSGVQEP) is introduced and sufficient conditions for Hadamard well-posedness of (SSGVQEP) are established.
Crutchik, Dafne; Frison, Nicola; Eusebi, Anna Laura; Fatone, Francesco
2018-06-01
Cellulose from used toilet paper is a major untapped resource embedded in municipal wastewater which recovery and valorization to valuable products can be optimized. Cellulosic primary sludge (CPS) can be separated by upstream dynamic sieving and anaerobically digested to recover methane as much as 4.02 m 3 /capita·year. On the other hand, optimal acidogenic fermenting conditions of CPS allows the production of targeted short-chain fatty acids (SCFAs) as much as 2.92 kg COD/capita·year. Here propionate content can be more than 30% and can optimize the enhanced biological phosphorus removal (EBPR) processes or the higher valuable co-polymer of polyhydroxyalkanoates (PHAs). In this work, first a full set of batch assays were used at three different temperatures (37, 55 and 70 °C) and three different initial pH (8, 9 and 10) to identify the best conditions for optimizing both the total SCFAs and propionate content from CPS fermentation. Then, the optimal conditions were applied in long term to a Sequencing Batch Fermentation Reactor where the highest propionate production (100-120 mg COD/g TVS fed ·d) was obtained at 37 °C and adjusting the feeding pH at 8. This was attributed to the higher hydrolysis efficiency of the cellulosic materials (up to 44%), which increased the selective growth of Propionibacterium acidopropionici in the fermentation broth up to 34%. At the same time, around 88% of the phosphorus released during the acidogenic fermentation was recovered as much as 0.15 kg of struvite per capita·year. Finally, the potential market value was preliminary estimated for the recovered materials that can triple over the conventional scenario of biogas recovery in existing municipal wastewater treatment plants. Copyright © 2018 Elsevier Ltd. All rights reserved.
Back, Alexandre; Rossignol, Tristan; Krier, François; Nicaud, Jean-Marc; Dhulster, Pascal
2016-08-23
Because the model yeast Yarrowia lipolytica can synthesize and store lipids in quantities up to 20 % of its dry weight, it is a promising microorganism for oil production at an industrial scale. Typically, optimization of the lipid production process is performed in the laboratory and later scaled up for industrial production. However, the scale-up process can be complicated by genetic modifications that are optimized for one set of growing conditions can confer a less-than-optimal phenotype in a different environment. To address this issue, small cultivation systems have been developed that mimic the conditions in benchtop bioreactors. In this work, we used one such microbioreactor system, the BioLector, to develop high-throughput fermentation procedures that optimize growth and lipid accumulation in Y. lipolytica. Using this system, we were able to monitor lipid and biomass production in real time throughout the culture duration. The BioLector can monitor the growth of Y. lipolytica in real time by evaluating scattered light; this produced accurate measurements until cultures reached an equivalent of OD600nm = 115 and a cell dry weight of 100 g L(-1). In addition, a lipid-specific fluorescent probe was applied which reliably monitored lipid production up to a concentration of 12 g L(-1). Through screening various growing conditions, we determined that a carbon/nitrogen ratio of 35 was the most efficient for lipid production. Further screening showed that ammonium chloride and glycerol were the most valuable nitrogen and carbon sources, respectively, for growth and lipid production. Moreover, a carbon concentration above 1 M appeared to impair growth and lipid accumulation. Finally, we used these optimized conditions to screen engineered strains of Y. lipolytica with high lipid-accumulation capability. The growth and lipid content of the strains cultivated in the BioLector were compared to those grown in benchtop bioreactors. To our knowledge, this is the first time that the BioLector has been used to track lipid production in real time and to monitor the growth of Y. lipolytica. The present study also showed the efficacy of the BioLector in screening growing conditions and engineered strains prior to scale-up. The method described here could be applied to other oleaginous microorganisms.
On optimization of energy harvesting from base-excited vibration
NASA Astrophysics Data System (ADS)
Tai, Wei-Che; Zuo, Lei
2017-12-01
This paper re-examines and clarifies the long-believed optimization conditions of electromagnetic and piezoelectric energy harvesting from base-excited vibration. In terms of electromagnetic energy harvesting, it is typically believed that the maximum power is achieved when the excitation frequency and electrical damping equal the natural frequency and mechanical damping of the mechanical system respectively. We will show that this optimization condition is only valid when the acceleration amplitude of base excitation is constant and an approximation for small mechanical damping when the excitation displacement amplitude is constant. To this end, a two-variable optimization analysis, involving the normalized excitation frequency and electrical damping ratio, is performed to derive the exact optimization condition of each case. When the excitation displacement amplitude is constant, we analytically show that, in contrast to the long-believed optimization condition, the optimal excitation frequency and electrical damping are always larger than the natural frequency and mechanical damping ratio respectively. In particular, when the mechanical damping ratio exceeds a critical value, the optimization condition is no longer valid. Instead, the average power generally increases as the excitation frequency and electrical damping ratio increase. Furthermore, the optimization analysis is extended to consider parasitic electrical losses, which also shows different results when compared with existing literature. When the excitation acceleration amplitude is constant, on the other hand, the exact optimization condition is identical to the long-believed one. In terms of piezoelectric energy harvesting, it is commonly believed that the optimal power efficiency is achieved when the excitation and the short or open circuit frequency of the harvester are equal. Via a similar two-variable optimization analysis, we analytically show that the optimal excitation frequency depends on the mechanical damping ratio and does not equal the short or open circuit frequency. Finally, the optimal excitation frequencies and resistive loads are derived in closed-form.
Design of a new concentrated photovoltaic system under UAE conditions
NASA Astrophysics Data System (ADS)
Hachicha, Ahmed Amine; Tawalbeh, Muahammad
2017-06-01
Concentrated Photovoltaic Systems (CPVs) are considered one of the innovative designs for concentrated solar power applications. By concentrating the incident radiation, the solar cells will be able to produce much more electricity compared to conventional PV systems. However, the temperature of the solar cells increases significantly with concentration. Therefore, cooling of the solar cells will be needed to maintain high conversion efficiency. In this work, a novel design of CPV system is proposed and implemented under UAE conditions for electricity generation and hot water production. The proposed design integrates a water cooling system and PV system to optimize both the electrical and thermal performances of the CPV system.
Analytical approach to cross-layer protocol optimization in wireless sensor networks
NASA Astrophysics Data System (ADS)
Hortos, William S.
2008-04-01
In the distributed operations of route discovery and maintenance, strong interaction occurs across mobile ad hoc network (MANET) protocol layers. Quality of service (QoS) requirements of multimedia service classes must be satisfied by the cross-layer protocol, along with minimization of the distributed power consumption at nodes and along routes to battery-limited energy constraints. In previous work by the author, cross-layer interactions in the MANET protocol are modeled in terms of a set of concatenated design parameters and associated resource levels by multivariate point processes (MVPPs). Determination of the "best" cross-layer design is carried out using the optimal control of martingale representations of the MVPPs. In contrast to the competitive interaction among nodes in a MANET for multimedia services using limited resources, the interaction among the nodes of a wireless sensor network (WSN) is distributed and collaborative, based on the processing of data from a variety of sensors at nodes to satisfy common mission objectives. Sensor data originates at the nodes at the periphery of the WSN, is successively transported to other nodes for aggregation based on information-theoretic measures of correlation and ultimately sent as information to one or more destination (decision) nodes. The "multimedia services" in the MANET model are replaced by multiple types of sensors, e.g., audio, seismic, imaging, thermal, etc., at the nodes; the QoS metrics associated with MANETs become those associated with the quality of fused information flow, i.e., throughput, delay, packet error rate, data correlation, etc. Significantly, the essential analytical approach to MANET cross-layer optimization, now based on the MVPPs for discrete random events occurring in the WSN, can be applied to develop the stochastic characteristics and optimality conditions for cross-layer designs of sensor network protocols. Functional dependencies of WSN performance metrics are described in terms of the concatenated protocol parameters. New source-to-destination routes are sought that optimize cross-layer interdependencies to achieve the "best available" performance in the WSN. The protocol design, modified from a known reactive protocol, adapts the achievable performance to the transient network conditions and resource levels. Control of network behavior is realized through the conditional rates of the MVPPs. Optimal cross-layer protocol parameters are determined by stochastic dynamic programming conditions derived from models of transient packetized sensor data flows. Moreover, the defining conditions for WSN configurations, grouping sensor nodes into clusters and establishing data aggregation at processing nodes within those clusters, lead to computationally tractable solutions to the stochastic differential equations that describe network dynamics. Closed-form solution characteristics provide an alternative to the "directed diffusion" methods for resource-efficient WSN protocols published previously by other researchers. Performance verification of the resulting cross-layer designs is found by embedding the optimality conditions for the protocols in actual WSN scenarios replicated in a wireless network simulation environment. Performance tradeoffs among protocol parameters remain for a sequel to the paper.
An asymmetric resonant coupling wireless power transmission link for Micro-Ball Endoscopy.
Sun, Tianjia; Xie, Xiang; Li, Guolin; Gu, Yingke; Deng, Yangdong; Wang, Ziqiang; Wang, Zhihua
2010-01-01
This paper investigates the design and optimization of a wireless power transmission link targeting Micro-Ball Endoscopy applications. A novel asymmetric resonant coupling structure is proposed to deliver power to an endoscopic Micro-Ball system for image read-out after it is excreted. Such a technology enables many key medical applications with stringent requirements for small system volume and high power delivery efficiency. A prototyping power transmission sub-system of the Micro-Ball system was implemented. It consists of primary coil, middle resonant coil, and cube-like full-direction secondary receiving coils. Our experimental results proved that 200mW of power can be successfully delivered. Such a wireless power transmission capability could satisfy the requirements of the Micro-Ball based endoscopy application. The transmission efficiency is in the range of 41% (worst working condition) to 53% (best working condition). Comparing to conventional structures, Asymmetric Resonant Coupling Structure improves power efficiency by 13%.
Robles-Rodríguez, Carlos E; Muñoz-Tamayo, Rafael; Bideaux, Carine; Gorret, Nathalie; Guillouet, Stéphane E; Molina-Jouve, Carole; Roux, Gilles; Aceves-Lara, César A
2018-05-01
Oleaginous yeasts have been seen as a feasible alternative to produce the precursors of biodiesel due to their capacity to accumulate lipids as triacylglycerol having profiles with high content of unsaturated fatty acids. The yeast Yarrowia lipolytica is a promising microorganism that can produce lipids under nitrogen depletion conditions and excess of the carbon source. However, under these conditions, this yeast also produces citric acid (overflow metabolism) decreasing lipid productivity. This work presents two mathematical models for lipid production by Y. lipolytica from glucose. The first model is based on Monod and inhibition kinetics, and the second one is based on the Droop quota model approach, which is extended to yeast. The two models showed good agreements with the experimental data used for calibration and validation. The quota based model presented a better description of the dynamics of nitrogen and glucose dynamics leading to a good management of N/C ratio which makes this model interesting for control purposes. Then, quota model was used to evaluate, by means of simulation, a scenario for optimizing lipid productivity and lipid content. For that, a control strategy was designed by approximating the flow rates of glucose and nitrogen with piecewise linear functions. Simulation results achieved productivity of 0.95 g L -1 hr -1 and lipid content fraction of 0.23 g g -1 , which indicates that this strategy is a promising alternative for the optimization of lipid production. © 2017 Wiley Periodicals, Inc.
Pandey, Preeti; Cabot, Peter J; Wallwork, Benjamin; Panizza, Benedict J; Parekh, Harendra S
2017-01-01
Mucoadhesive in situ gelling systems (soluble gels) have received considerable attention recently as effective stimuli-transforming vectors for a range of drug delivery applications. Considering this fact, the present work involves systematic formulation development, optimization, functional evaluation and ex vivo performance of thermosensitive soluble gels containing dexamethasone 21-phosphate disodium salt (DXN) as the model therapeutic. A series of in situ gel-forming systems comprising the thermoreversible polymer poloxamer-407 (P407), along with hydroxypropyl methyl cellulose (HPMC) and chitosan were first formulated. The optimized soluble gels were evaluated for their potential to promote greater retention at the mucosal surface, for improved therapeutic efficacy, compared to existing solution/suspension-based steroid formulations used clinically. Optimized soluble gels demonstrated a desirable gelation temperature with Newtonian fluid behaviour observed under storage conditions (4-8°C), and pseudoplastic fluid behaviour recorded at nasal cavity/sinus temperature (≈34°C). The in vitro characterization of formulations including rheological evaluation, textural analysis and mucoadhesion studies of the gel form were investigated. Considerable improvement in mechanical properties and mucoadhesion was observed with incorporation of HPMC and chitosan into the gelling systems. The lead poloxamer-based soluble gels, PGHC4 and PGHC7, which were carried through to ex vivo permeation studies displayed extended drug release profiles in conditions mimicking the human nasal cavity, which indicates their suitability for treating a range of conditions affecting the nasal cavity/sinuses. Copyright © 2016 Elsevier B.V. All rights reserved.
Varvil-Weld, Lindsey; Scaglione, Nichole; Cleveland, Michael J; Mallett, Kimberly A; Turrisi, Rob; Abar, Caitlin C
2014-02-01
Research on parent-based interventions (PBIs) to reduce college student drinking has explored the optimal timing of delivery and dosage. The present study extended this work by examining the effectiveness of three different PBI conditions on student drinking outcomes as a function of parenting types and students' pre-college drinking patterns. Four hypotheses were evaluated (early intervention, increased dosage, invariant, and treatment matching risk). A random sample of 1,900 college students and their parents was randomized to four conditions: (1) pre-college matriculation, (2) pre-college matriculation plus booster, (3) post-college matriculation, or (4) control, and was assessed at baseline (summer prior to college) and 5-month follow-up. Baseline parent type was assessed using latent profile analysis (positive, pro-alcohol, positive, anti-alcohol, negative mother, and negative father). Student drinking patterns were classified at baseline and follow-up and included: non-drinker, weekend light drinker, weekend heavy episodic drinker, and heavy drinker. Consistent with the treatment matching risk hypothesis, results indicated parent type moderated the effects of intervention condition such that receiving the intervention prior to college was associated with lower likelihood of being in a higher-risk drinking pattern at follow-up for students with positive, anti-alcohol, or negative father parent types. The findings are discussed with respect to optimal delivery and dosage of parent-based interventions for college student drinking.
Varvil-Weld, Lindsey; Scaglione, Nichole; Cleveland, Michael J.; Mallett, Kimberly A.; Turrisi, Rob; Abar, Caitlin C.
2013-01-01
Research on parent-based interventions (PBIs) to reduce college student drinking has explored the optimal timing of delivery and dosage. The present study extended this work by examining the effectiveness of three different PBI conditions on student drinking outcomes as a function of parenting types and students' pre-college drinking patterns. Four hypotheses were evaluated (early intervention, increased dosage, invariant, and treatment matching risk). A random sample of 1900 college students and their parents was randomized to four conditions: 1) pre-college matriculation, 2) pre-college matriculation plus booster, 3) post-college matriculation, or 4) control, and was assessed at baseline (summer prior to college) and 5-month follow-up. Baseline parent type was assessed using latent profile analysis (positive, pro-alcohol, positive, anti-alcohol, negative mother and negative father). Student drinking patterns were classified at baseline and follow up and included: non-drinker, weekend light drinker, weekend heavy episodic drinker, and heavy drinker. Consistent with the treatment matching risk hypothesis, results indicated parent type moderated the effects of intervention condition such that receiving the intervention prior to college was associated with lower likelihood of being in a higher-risk drinking pattern at follow up for students with positive, anti-alcohol or negative father parent types. The findings are discussed with respect to optimal delivery and dosage of parent-based interventions for college student drinking. PMID:23404668
NASA Astrophysics Data System (ADS)
Guía-Tello, J. C.; Pech-Canul, M. A.; Trujillo-Vázquez, E.; Pech-Canul, M. I.
2017-08-01
Controlled atmosphere brazing has a widespread industrial use in the production of aluminum automotive heat exchangers. Good-quality joints between the components depend on the initial condition of materials as well as on the brazing process parameters. In this work, the Taguchi method was used to optimize the brazing parameters with respect to corrosion performance for tube-fin mini-assemblies of an automotive condenser. The experimental design consisted of five factors (micro-channel tube type, flux type, peak temperature, heating rate and dwell time), with two levels each. The corrosion behavior in acidified seawater solution pH 2.8 was evaluated through potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements. Scanning electron microscope (SEM) and energy-dispersive x-ray spectroscopy (EDS) were used to analyze the microstructural features in the joint zone. The results showed that the parameters that most significantly affect the corrosion rate are the type of flux and the peak temperature. The optimal conditions were: micro-channel tube with 4.2 g/m2 of zinc coating, standard flux, 610 °C peak temperature, 5 °C/min heating rate and 4 min dwell time. The corrosion current density value of the confirmation experiment is in excellent agreement with the predicted value. The electrochemical characterization for selected samples gave indication that the brazing conditions had a more significant effect on the kinetics of the hydrogen evolution reaction than on the kinetics of the metal dissolution reaction.
Calcium impacts carbon and nitrogen balance in the filamentous cyanobacterium Anabaena sp. PCC 7120
Walter, Julia; Lynch, Fiona; Battchikova, Natalia; Aro, Eva-Mari
2016-01-01
Calcium is integral to the perception, communication and adjustment of cellular responses to environmental changes. However, the role of Ca2+ in fine-tuning cellular responses of wild-type cyanobacteria under favourable growth conditions has not been examined. In this study, extracellular Ca2+ has been altered, and changes in the whole transcriptome of Anabaena sp. PCC 7120 have been evaluated under conditions replete of carbon and combined nitrogen. Ca2+ induced differential expression of many genes driving primary cellular metabolism, with transcriptional regulation of carbon- and nitrogen-related processes responding with opposing trends. However, physiological effects of these transcriptional responses on biomass accumulation, biomass composition, and photosynthetic activity over the 24h period following Ca2+ adjustment were found to be minor. It is well known that intracellular carbon:nitrogen balance is integral to optimal cell growth and that Ca2+ plays an important role in the response of heterocystous cyanobacteria to combined-nitrogen deprivation. This work adds to the current knowledge by demonstrating a signalling role of Ca2+ for making sensitive transcriptional adjustments required for optimal growth under non-limiting conditions. PMID:27012282
Calcium impacts carbon and nitrogen balance in the filamentous cyanobacterium Anabaena sp. PCC 7120.
Walter, Julia; Lynch, Fiona; Battchikova, Natalia; Aro, Eva-Mari; Gollan, Peter J
2016-06-01
Calcium is integral to the perception, communication and adjustment of cellular responses to environmental changes. However, the role of Ca(2+) in fine-tuning cellular responses of wild-type cyanobacteria under favourable growth conditions has not been examined. In this study, extracellular Ca(2+) has been altered, and changes in the whole transcriptome of Anabaena sp. PCC 7120 have been evaluated under conditions replete of carbon and combined nitrogen. Ca(2+) induced differential expression of many genes driving primary cellular metabolism, with transcriptional regulation of carbon- and nitrogen-related processes responding with opposing trends. However, physiological effects of these transcriptional responses on biomass accumulation, biomass composition, and photosynthetic activity over the 24h period following Ca(2+) adjustment were found to be minor. It is well known that intracellular carbon:nitrogen balance is integral to optimal cell growth and that Ca(2+) plays an important role in the response of heterocystous cyanobacteria to combined-nitrogen deprivation. This work adds to the current knowledge by demonstrating a signalling role of Ca(2+) for making sensitive transcriptional adjustments required for optimal growth under non-limiting conditions. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Yang, Haifeng; Zhang, Jincheng; Zhang, Chunfu; Chang, Jingjing; Lin, Zhenhua; Chen, Dazheng; Xi, He; Hao, Yue
2017-07-21
In this work, efficient mixed organic cation and mixed halide (MA 0.7 FA 0.3 Pb(I 0.9 Br 0.1 )₃) perovskite solar cells are demonstrated by optimizing annealing conditions. AFM, XRD and PL measurements show that there is a better perovskite film quality for the annealing condition at 100 °C for 30 min. The corresponding device exhibits an optimized PCE of 16.76% with V OC of 1.02 V, J SC of 21.55 mA/cm² and FF of 76.27%. More importantly, the mixed lead halide perovskite MA 0.7 FA 0.3 Pb(I 0.9 Br 0.1 )₃ can significantly increase the thermal stability of perovskite film. After being heated at 80 °C for 24 h, the PCE of the MA 0.7 FA 0.3 Pb(I 0.9 Br 0.1 )₃ device still remains at 70.00% of its initial value, which is much better than the control MAPbI₃ device, where only 46.50% of its initial value could be preserved. We also successfully fabricated high-performance flexible mixed lead halide perovskite solar cells based on PEN substrates.
NASA Astrophysics Data System (ADS)
Sládková, Lucia; Prochazka, David; Pořízka, Pavel; Škarková, Pavlína; Remešová, Michaela; Hrdlička, Aleš; Novotný, Karel; Čelko, Ladislav; Kaiser, Jozef
2017-01-01
In this work we studied the effect of vacuum (low pressure) conditions on the behavior of laser-induced plasma (LIP) created on a sample surface covered with silver nanoparticles (Ag-NPs), i.e. Nanoparticles-Enhanced Laser-Induced Breakdown Spectroscopy (NELIBS) experiment in a vacuum. The focus was put on the step by step optimization of the measurement parameters, such as energy of the laser pulse, temporally resolved detection, ambient pressure, and different content of Ag-NPs applied on the sample surface. The measurement parameters were optimized in order to achieve the greatest enhancement represented as the signal-to-noise ratio (SNR) of NELIBS signal to the SNR of LIBS signal. The presence of NPs involved in the ablation process enhances LIP intensity; hence the improvement in the analytical sensitivity was yielded. A leaded brass standard was analyzed with the emphasis on the signal enhancement of Pb traces. We gained enhancement by a factor of four. Although the low pressure had no significant influence on the LIP signal enhancement compared to that under ambient conditions, the SNR values were noticeably improved with the implementation of the NPs.
NASA Astrophysics Data System (ADS)
Arefin, Md Shamsul; Porter, Timothy L.
2012-03-01
This work reports on the behavior of piezoresistive microcantilever sensors under optimizing conditions of ac electroosmotic enhancement. Piezoresistive microcantilevers are used as sensor elements for detection of concentrated bio-particles. Without preconcentrating the samples, using ac electroosmosis, these bio-particles have been manipulated onto the piezoresistive microcantilever. A piezoresistive microcantilever senses the dimensional changes upon particle exposure as a resistance change. This paper represents the integration of ac electroosmosis with a piezoresistive micro-cantilever sensor for the detection of bio-particles. A working prototype is presented here, and the experiments are conducted on Herpes Simplex type-1 virus (HSV-1) and Escherichia Coli (E. coli) bacteria.
Yang, Mu; Wang, Ganggang
2016-09-15
The DnaB helicase from Bacillus stearothermophilus (DnaBBst) was a model protein for studying the bacterial DNA replication. In this work, a non-radioactive method for measuring ATPase activity of DnaBBst helicase was described. The working parameters and conditions were optimized. Furthermore, this method was applied to investigate effects of DnaG primase, ssDNA and helicase loader protein (DnaI) on ATPase activity of DnaBBst. Our results showed this method was sensitive and efficient. Moreover, it is suitable for the investigation of functional interaction between DnaB and related factors. Copyright © 2016 Elsevier Inc. All rights reserved.
Cheng, Qiaoling; Bai, Xiaojia; Wang, Yanping
2008-06-01
Glutinous rice wine is a traditional food in south of China and it can coagulate milk. It has been proved that its function of coagulating milk is because of the presence of milk-clotting enzyme produced by microorganisms in glutinous rice wine. The aim of this work is to isolate milk-clotting enzyme producing strain from glutinous rice wine and study the fermentation condition. We screened out four bacteria and fungus by gradient dilution. It was proved that mold played the most important role in the production of milk-clotting enzyme. This is further confirmed by casein plate method. The optimization of fermentation conditions revealed that two times concentrated potato medium supplemented with 5% glucose without additional nitrogen was better for production of the enzyme. The enzyme activity was increased 144% under the conditions established.
Structural acoustic control of plates with variable boundary conditions: design methodology.
Sprofera, Joseph D; Cabell, Randolph H; Gibbs, Gary P; Clark, Robert L
2007-07-01
A method for optimizing a structural acoustic control system subject to variations in plate boundary conditions is provided. The assumed modes method is used to build a plate model with varying levels of rotational boundary stiffness to simulate the dynamics of a plate with uncertain edge conditions. A transducer placement scoring process, involving Hankel singular values, is combined with a genetic optimization routine to find spatial locations robust to boundary condition variation. Predicted frequency response characteristics are examined, and theoretically optimized results are discussed in relation to the range of boundary conditions investigated. Modeled results indicate that it is possible to minimize the impact of uncertain boundary conditions in active structural acoustic control by optimizing the placement of transducers with respect to those uncertainties.
Optimal experience among teachers: new insights into the work paradox.
Bassi, Marta; Delle Fave, Antonella
2012-01-01
Several studies highlighted that individuals perceive work as an opportunity for flow or optimal experience, but not as desirable and pleasant. This finding was defined as the work paradox. The present study addressed this issue among teachers from the perspective of self-determination theory, investigating work-related intrinsic and extrinsic motivation, as well as autonomous and controlled behavior regulation. In Study 1, 14 teachers were longitudinally monitored with Experience Sampling Method for one work week. In Study 2, 184 teachers were administered Flow Questionnaire and Work Preference Inventory, respectively investigating opportunities for optimal experience, and motivational orientations at work. Results showed that work-related optimal experiences were associated with both autonomous regulation and with controlled regulation. Moreover, teachers reported both intrinsic and extrinsic motivation at work, with a prevailing intrinsic orientation. Findings provide novel insights on the work paradox, and suggestions for teachers' well-being promotion.
Development of a Nonequilibrium Radiative Heating Prediction Method for Coupled Flowfield Solutions
NASA Technical Reports Server (NTRS)
Hartung, Lin C.
1991-01-01
A method for predicting radiative heating and coupling effects in nonequilibrium flow-fields has been developed. The method resolves atomic lines with a minimum number of spectral points, and treats molecular radiation using the smeared band approximation. To further minimize computational time, the calculation is performed on an optimized spectrum, which is computed for each flow condition to enhance spectral resolution. Additional time savings are obtained by performing the radiation calculation on a subgrid optimally selected for accuracy. Representative results from the new method are compared to previous work to demonstrate that the speedup does not cause a loss of accuracy and is sufficient to make coupled solutions practical. The method is found to be a useful tool for studies of nonequilibrium flows.
Numerical Modeling and Optimization of Warm-water Heat Sinks
NASA Astrophysics Data System (ADS)
Hadad, Yaser; Chiarot, Paul
2015-11-01
For cooling in large data-centers and supercomputers, water is increasingly replacing air as the working fluid in heat sinks. Utilizing water provides unique capabilities; for example: higher heat capacity, Prandtl number, and convection heat transfer coefficient. The use of warm, rather than chilled, water has the potential to provide increased energy efficiency. The geometric and operating parameters of the heat sink govern its performance. Numerical modeling is used to examine the influence of geometry and operating conditions on key metrics such as thermal and flow resistance. This model also facilitates studies on cooling of electronic chip hot spots and failure scenarios. We report on the optimal parameters for a warm-water heat sink to achieve maximum cooling performance.
Laser ablation of iron-rich black films from exposed granite surfaces
NASA Astrophysics Data System (ADS)
Delgado Rodrigues, J.; Costa, D.; Mascalchi, M.; Osticioli, I.; Siano, S.
2014-10-01
Here, we investigated the potential of laser removal of iron-rich dark films from weathered granite substrates, which represents a very difficult conservation problem because of the polymineralic nature of the stone and of its complex deterioration mechanisms. As often occurs, biotite was the most critical component because of its high optical absorption, low melting temperature, and pronounced cleavage, which required a careful control of the photothermal and photomechanical effects to optimize the selective ablation of the mentioned unwanted dark film. Different pulse durations and wavelengths Nd:YAG lasers were tested and optimal irradiation conditions were determined through thorough analytical characterisations. Besides addressing a specific conservation problem, the present work provides information of general valence in laser uncovering of encrusted granite.
Optimal solutions for the evolution of a social obesity epidemic model
NASA Astrophysics Data System (ADS)
Sikander, Waseem; Khan, Umar; Mohyud-Din, Syed Tauseef
2017-06-01
In this work, a novel modification in the traditional homotopy perturbation method (HPM) is proposed by embedding an auxiliary parameter in the boundary condition. The scheme is used to carry out a mathematical evaluation of the social obesity epidemic model. The incidence of excess weight and obesity in adulthood population and prediction of its behavior in the coming years is analyzed by using a modified algorithm. The proposed method increases the convergence of the approximate analytical solution over the domain of the problem. Furthermore, a convenient way is considered for choosing an optimal value of auxiliary parameters via minimizing the total residual error. The graphical comparison of the obtained results with the standard HPM explicitly reveals the accuracy and efficiency of the developed scheme.
Sensing a heart infarction marker with surface plasmon resonance spectroscopy
NASA Astrophysics Data System (ADS)
Kunz, Ulrich; Katerkamp, Andreas; Renneberg, Reinhard; Spener, Friedrich; Cammann, Karl
1995-02-01
In this study a direct immunosensor for heart-type fatty acid binding protein (FABP) based on surface plasmon resonance spectroscopy (SPRS) is presented. FABP can be used as a heart infarction marker in clinical diagnostics. The development of a simple and cheap direct optical sensor device is reported in this paper as well as immobilization procedures and optimization of the measuring conditions. The correct working of the SPRS device is controlled by comparing the signals with theoretical calculated values. Two different immunoassay techniques were optimized for a sensitive FABP-analysis. The competitive immunoassay was superior to the sandwich configuration as it had a lower detection limit (100 ng/ml), needed less antibodies and could be carried out in one step.
Kelkar, Mandar A; Gogate, Parag R; Pandit, Aniruddha B
2008-03-01
Cavitation results in conditions of turbulence and liquid circulation in the reactor which can aid in eliminating mass transfer resistances. The present work illustrates the use of cavitation for intensification of biodiesel synthesis (esterification) reaction, which is mass transfer limited reaction considering the immiscible nature of the reactants, i.e., fatty acids and alcohol. Esterification of fatty acid (FA) odour cut (C(8)-C(10)) with methanol in the presence of concentrated H(2)SO(4) as a catalyst has been studied in hydrodynamic cavitation reactor as well as in the sonochemical reactor. The different reaction operating parameters such as molar ratio of acid to alcohol, catalyst quantity have been optimized under acoustic as well as hydrodynamic cavitating conditions in addition to the optimization of the geometry of the orifice plate in the case of hydrodynamic cavitation reactors. Few experiments have also been carried out with other acid (lower and higher)/methanol combination viz. caprylic acid and capric acids with methanol with an aim of investigating the efficacy of cavitation for giving the desired yields and also to quantify the degree of process intensification that can be achieved using the same. It has been observed that ambient operating conditions of temperature and pressure and reaction times of <3h, for all the different combinations of acid (lower and higher)/methanol studied in the present work, was sufficient for giving >90% conversion (mol%). This clearly establishes the efficacy of cavitation as an excellent way to achieve process intensification of the biodiesel synthesis process.
Development and numerical analysis of low specific speed mixed-flow pump
NASA Astrophysics Data System (ADS)
Li, H. F.; Huo, Y. W.; Pan, Z. B.; Zhou, W. C.; He, M. H.
2012-11-01
With the development of the city, the market of the mixed flow pump with large flux and high head is prospect. The KSB Shanghai Pump Co., LTD decided to develop low speed specific speed mixed flow pump to meet the market requirements. Based on the centrifugal pump and axial flow pump model, aiming at the characteristics of large flux and high head, a new type of guide vane mixed flow pump was designed. The computational fluid dynamics method was adopted to analyze the internal flow of the new type model and predict its performances. The time-averaged Navier-Stokes equations were closed by SST k-ω turbulent model to adapt internal flow of guide vane with larger curvatures. The multi-reference frame(MRF) method was used to deal with the coupling of rotating impeller and static guide vane, and the SIMPLEC method was adopted to achieve the coupling solution of velocity and pressure. The computational results shows that there is great flow impact on the head of vanes at different working conditions, and there is great flow separation at the tailing of the guide vanes at different working conditions, and all will affect the performance of pump. Based on the computational results, optimizations were carried out to decrease the impact on the head of vanes and flow separation at the tailing of the guide vanes. The optimized model was simulated and its performance was predicted. The computational results show that the impact on the head of vanes and the separation at the tailing of the guide vanes disappeared. The high efficiency of the optimized pump is wide, and it fit the original design destination. The newly designed mixed flow pump is now in modeling and its experimental performance will be getting soon.
Fabrication and characterization of shape memory polymers at small-scales
NASA Astrophysics Data System (ADS)
Wornyo, Edem
The objective of this research is to thoroughly investigate the shape memory effect in polymers, characterize, and optimize these polymers for applications in information storage systems. Previous research effort in this field concentrated on shape memory metals for biomedical applications such as stents. Minimal work has been done on shape memory polymers; and the available work on shape memory polymers has not characterized the behaviors of this category of polymers fully. Copolymer shape memory materials based on diethylene glycol dimethacrylate (DEGDMA) crosslinker, and tert butyl acrylate (tBA) monomer are designed. The design encompasses a careful control of the backbone chemistry of the materials. Characterization methods such as dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC); and novel nanoscale techniques such as atomic force microscopy (AFM), and nanoindentation are applied to this system of materials. Designed experiments are conducted on the materials to optimize spin coating conditions for thin films. Furthermore, the recovery, a key for the use of these polymeric materials for information storage, is examined in detail with respect to temperature. In sum, the overarching objectives of the proposed research are to: (i) Design shape memory polymers based on polyethylene glycol dimethacrylate (PEGDMA) and diethylene glycol dimethacrylate (DEGDMA) crosslinkers, 2-hydroxyethyl methacrylate (HEMA) and tert-butyl acrylate monomer (tBA). (ii) Utilize dynamic mechanical analysis (DMA) to comprehend the thermomechanical properties of shape memory polymers based on DEGDMA and tBA. (iii) Utilize nanoindentation and atomic force microscopy (AFM) to understand the nanoscale behavior of these SMPs, and explore the strain storage and recovery of the polymers from a deformed state. (iv) Study spin coating conditions on thin film quality with designed experiments. (iv) Apply neural networks and genetic algorithms to optimize these systems.
Freissinet, C; Buch, A; Sternberg, R; Szopa, C; Geffroy-Rodier, C; Jelinek, C; Stambouli, M
2010-01-29
Within the context of the future space missions to Mars (MSL 2011 and Exomars 2016), which aim at searching for traces of life at the surface, the detection and quantitation of enantiomeric organic molecules is of major importance. In this work, we have developed and optimized a method to derivatize and analyze chiral organic molecules suitable for space experiments, using N,N-dimethylformamide dimethylacetal (DMF-DMA) as the derivatization agent. The temperature, duration of the derivatization reaction, and chromatographic separation parameters have been optimized to meet instrument design constraints imposed upon space experiment devices. This work demonstrates that, in addition to its intrinsic qualities, such as production of light-weight derivatives and a great resistance to drastic operating conditions, DMF-DMA facilitates simple and fast derivatization of organic compounds (three minutes at 140 degrees C in a single-step) that is suitable for an in situ analysis in space. By using DMF-DMA as the derivatization agent, we have successfully identified 19 of the 20 proteinic amino acids and been able to enantiomerically separate ten of the potential 19 (glycine being non-chiral). Additionally, we have minimized the percentage of racemized amino acid compounds produced by optimizing the conditions of the derivatization reaction itself. Quantitative linearity studies and the determination of the limit of detection show that the proposed method is also suitable for the quantitative determination of both enantiomeric forms of most of the tested amino acids, as limits of detection obtained are lower than the ppb level of organic molecules already detected in Martian meteorites. Copyright (c) 2009 Elsevier B.V. All rights reserved.
Hitting the Optimal Vaccination Percentage and the Risks of Error: Why to Miss Right.
Harvey, Michael J; Prosser, Lisa A; Messonnier, Mark L; Hutton, David W
2016-01-01
To determine the optimal level of vaccination coverage defined as the level that minimizes total costs and explore how economic results change with marginal changes to this level of coverage. A susceptible-infected-recovered-vaccinated model designed to represent theoretical infectious diseases was created to simulate disease spread. Parameter inputs were defined to include ranges that could represent a variety of possible vaccine-preventable conditions. Costs included vaccine costs and disease costs. Health benefits were quantified as monetized quality adjusted life years lost from disease. Primary outcomes were the number of infected people and the total costs of vaccination. Optimization methods were used to determine population vaccination coverage that achieved a minimum cost given disease and vaccine characteristics. Sensitivity analyses explored the effects of changes in reproductive rates, costs and vaccine efficacies on primary outcomes. Further analysis examined the additional cost incurred if the optimal coverage levels were not achieved. Results indicate that the relationship between vaccine and disease cost is the main driver of the optimal vaccination level. Under a wide range of assumptions, vaccination beyond the optimal level is less expensive compared to vaccination below the optimal level. This observation did not hold when the cost of the vaccine cost becomes approximately equal to the cost of disease. These results suggest that vaccination below the optimal level of coverage is more costly than vaccinating beyond the optimal level. This work helps provide information for assessing the impact of changes in vaccination coverage at a societal level.
Thermodynamic Analysis of TEG-TEC Device Including Influence of Thomson Effect
NASA Astrophysics Data System (ADS)
Feng, Yuanli; Chen, Lingen; Meng, Fankai; Sun, Fengrui
2018-01-01
A thermodynamic model of a thermoelectric cooler driven by thermoelectric generator (TEG-TEC) device is established considering Thomson effect. The performance is analyzed and optimized using numerical calculation based on non-equilibrium thermodynamic theory. The influence characteristics of Thomson effect on the optimal performance and variable selection are investigated by comparing the condition with and without Thomson effect. The results show that Thomson effect degrades the performance of TEG-TEC device, it decreases the cooling capacity by 27 %, decreases the coefficient of performance (COP) by 19 %, decreases the maximum cooling temperature difference by 11 % when the ratio of thermoelectric elements number is 0.6, the cold junction temperature of thermoelectric cooler (TEC) is 285 K and the hot junction temperature of thermoelectric generator (TEG) is 450 K. Thomson effect degrades the optimal performance of TEG-TEC device, it decreases the maximum cooling capacity by 28 % and decreases the maximum COP by 28 % under the same junction temperatures. Thomson effect narrows the optimal variable range and optimal working range. In the design of the devices, limited-number thermoelectric elements should be more allocated appropriately to TEG when consider Thomson effect. The results may provide some guidelines for the design of TEG-TEC devices.
Chaimovich, Aviel; Shell, M Scott
2009-03-28
Recent efforts have attempted to understand many of liquid water's anomalous properties in terms of effective spherically-symmetric pairwise molecular interactions entailing two characteristic length scales (so-called "core-softened" potentials). In this work, we examine the extent to which such simple descriptions of water are representative of the true underlying interactions by extracting coarse-grained potential functions that are optimized to reproduce the behavior of an all-atom model. To perform this optimization, we use a novel procedure based upon minimizing the relative entropy, a quantity that measures the extent to which a coarse-grained configurational ensemble overlaps with a reference all-atom one. We show that the optimized spherically-symmetric water models exhibit notable variations with the state conditions at which they were optimized, reflecting in particular the shifting accessibility of networked hydrogen bonding interactions. Moreover, we find that water's density and diffusivity anomalies are only reproduced when the effective coarse-grained potentials are allowed to vary with state. Our results therefore suggest that no state-independent spherically-symmetric potential can fully capture the interactions responsible for water's unique behavior; rather, the particular way in which the effective interactions vary with temperature and density contributes significantly to anomalous properties.
Mallek-Fakhfakh, Hanen; Fakhfakh, Jawhar; Walha, Kamel; Hassairi, Hajer; Gargouri, Ali; Belghith, Hafedh
2017-10-01
This work aims at realizing an optimal hydrolysis of pretreated Alfa fibers (Stipa tenacissima) through the use of enzymes produced from Talaromyces thermophilus AX4, namely β-d-glucosidase and xylanase, by a solid state fermentation process of an agro-industrial waste (wheat bran supplemented with lactose). The carbon source was firstly selected and the optimal values of three other parameters were determined: substrate loading (10g), moisture content (85%) and production time (10days); which led to an optimized enzymatic juice. The outcome was then supplemented with cellulases of T. reesei and used to optimize the enzymatic saccharification of alkali-pretreated Alfa fibers (PAF). The maximum saccharification yield of 83.23% was achieved under optimized conditions (substrate concentration 3.7% (w/v), time 144h and enzyme loading of 0.8 FPU, 15U CMCase, 60U β-d-glucosidase and 125U xylanase).The structural modification of PAF due to enzymatic saccharification was supported by the changes of morphologic and chemical composition observed through macroscopic representation, FTIR and X-Ray analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
On Maximizing the Lifetime of Wireless Sensor Networks by Optimally Assigning Energy Supplies
Asorey-Cacheda, Rafael; García-Sánchez, Antonio Javier; García-Sánchez, Felipe; García-Haro, Joan; Gonzalez-Castaño, Francisco Javier
2013-01-01
The extension of the network lifetime of Wireless Sensor Networks (WSN) is an important issue that has not been appropriately solved yet. This paper addresses this concern and proposes some techniques to plan an arbitrary WSN. To this end, we suggest a hierarchical network architecture, similar to realistic scenarios, where nodes with renewable energy sources (denoted as primary nodes) carry out most message delivery tasks, and nodes equipped with conventional chemical batteries (denoted as secondary nodes) are those with less communication demands. The key design issue of this network architecture is the development of a new optimization framework to calculate the optimal assignment of renewable energy supplies (primary node assignment) to maximize network lifetime, obtaining the minimum number of energy supplies and their node assignment. We also conduct a second optimization step to additionally minimize the number of packet hops between the source and the sink. In this work, we present an algorithm that approaches the results of the optimization framework, but with much faster execution speed, which is a good alternative for large-scale WSN networks. Finally, the network model, the optimization process and the designed algorithm are further evaluated and validated by means of computer simulation under realistic conditions. The results obtained are discussed comparatively. PMID:23939582
Hameda, A Ben; Elosta, S; Havel, J
2005-08-19
Huperzine A, natural product from Huperzia serrata, is quite an important compound used to treat the Alzheimer's disease as a food supplement and also proposed as a prospective and prophylactic antidote against organophosphate poisoning. In this work, simple and fast capillary electrophoresis (CE) procedure with UV detection (at 230 nm) for determination of Huperzine A was developed and optimized. Capillary electrophoresis determination of Huperzine A was optimized using a combination of the experimental design (ED) and the artificial neural networks (ANN). In the first stage of optimization, the experiments were done according to the appropriate ED. Data evaluated by ANN allowed finding the optimal values of several analytical parameters (peak area, peak height, and analysis time). Optimal conditions found were 50 mM acetate buffer, pH 4.6, separation voltage 10 kV, hydrodynamic injection time 10 s and temperature 25 degrees C. The developed method shows good repeatability as relative standard division (R.S.D. = 0.9%) and it has been applied for determination of Huperzine A in various pharmaceutical products and in biological liquids. The limit of detection (LOD) in aqueous media was 0.226 ng/ml and 0.233 ng/ml for determination in the serum.
On maximizing the lifetime of Wireless Sensor Networks by optimally assigning energy supplies.
Asorey-Cacheda, Rafael; García-Sánchez, Antonio Javier; García-Sánchez, Felipe; García-Haro, Joan; González-Castano, Francisco Javier
2013-08-09
The extension of the network lifetime of Wireless Sensor Networks (WSN) is an important issue that has not been appropriately solved yet. This paper addresses this concern and proposes some techniques to plan an arbitrary WSN. To this end, we suggest a hierarchical network architecture, similar to realistic scenarios, where nodes with renewable energy sources (denoted as primary nodes) carry out most message delivery tasks, and nodes equipped with conventional chemical batteries (denoted as secondary nodes) are those with less communication demands. The key design issue of this network architecture is the development of a new optimization framework to calculate the optimal assignment of renewable energy supplies (primary node assignment) to maximize network lifetime, obtaining the minimum number of energy supplies and their node assignment. We also conduct a second optimization step to additionally minimize the number of packet hops between the source and the sink. In this work, we present an algorithm that approaches the results of the optimization framework, but with much faster execution speed, which is a good alternative for large-scale WSN networks. Finally, the network model, the optimization process and the designed algorithm are further evaluated and validated by means of computer simulation under realistic conditions. The results obtained are discussed comparatively.
Forecasting of dissolved oxygen in the Guanting reservoir using an optimized NGBM (1,1) model.
An, Yan; Zou, Zhihong; Zhao, Yanfei
2015-03-01
An optimized nonlinear grey Bernoulli model was proposed by using a particle swarm optimization algorithm to solve the parameter optimization problem. In addition, each item in the first-order accumulated generating sequence was set in turn as an initial condition to determine which alternative would yield the highest forecasting accuracy. To test the forecasting performance, the optimized models with different initial conditions were then used to simulate dissolved oxygen concentrations in the Guanting reservoir inlet and outlet (China). The empirical results show that the optimized model can remarkably improve forecasting accuracy, and the particle swarm optimization technique is a good tool to solve parameter optimization problems. What's more, the optimized model with an initial condition that performs well in in-sample simulation may not do as well as in out-of-sample forecasting. Copyright © 2015. Published by Elsevier B.V.