An FPGA Noise Resistant Digital Temperature Sensor with Auto Calibration
2012-03-01
temperature sensor [6] . . . . . . . . . . . . . . 14 9 Two different digital temperature sensor placement algorithms: (a) Grid placement (b) Optimal...create a grid over the FPGA. While this method works reasonably well, it requires many sensors, some of which are unnecessary. The optimal placement, on...temperature sensor placement algorithms: (a) Grid placement (b) Optimal Placement [7] 16 2.4 Summary Integrated circuits’ sensitivity to temperatures has
Aparicio, Juan Daniel; Raimondo, Enzo Emanuel; Gil, Raúl Andrés; Benimeli, Claudia Susana; Polti, Marta Alejandra
2018-01-15
The objective of the present work was to establish optimal biological and physicochemical parameters in order to remove simultaneously lindane and Cr(VI) at high and/or low pollutants concentrations from the soil by an actinobacteria consortium formed by Streptomyces sp. M7, MC1, A5, and Amycolatopsis tucumanensis AB0. Also, the final aim was to treat real soils contaminated with Cr(VI) and/or lindane from the Northwest of Argentina employing the optimal biological and physicochemical conditions. In this sense, after determining the optimal inoculum concentration (2gkg -1 ), an experimental design model with four factors (temperature, moisture, initial concentration of Cr(VI) and lindane) was employed for predicting the system behavior during bioremediation process. According to response optimizer, the optimal moisture level was 30% for all bioremediation processes. However, the optimal temperature was different for each situation: for low initial concentrations of both pollutants, the optimal temperature was 25°C; for low initial concentrations of Cr(VI) and high initial concentrations of lindane, the optimal temperature was 30°C; and for high initial concentrations of Cr(VI), the optimal temperature was 35°C. In order to confirm the model adequacy and the validity of the optimization procedure, experiments were performed in six real contaminated soils samples. The defined actinobacteria consortium reduced the contaminants concentrations in five of the six samples, by working at laboratory scale and employing the optimal conditions obtained through the factorial design. Copyright © 2017 Elsevier B.V. All rights reserved.
Research on Heat Dissipation of Electric Vehicle Based on Safety Architecture Optimization
NASA Astrophysics Data System (ADS)
Zhou, Chao; Guo, Yajuan; Huang, Wei; Jiang, Haitao; Wu, Liwei
2017-10-01
In order to solve the problem of excessive temperature in the discharge process of lithium-ion battery and the temperature difference between batteries, a heat dissipation of electric vehicle based on safety architecture optimization is designed. The simulation is used to optimize the temperature field of the heat dissipation of the battery. A reasonable heat dissipation control scheme is formulated to achieve heat dissipation requirements. The results show that the ideal working temperature range of the lithium ion battery is 20?∼45?, and the temperature difference between the batteries should be controlled within 5?. A cooling fan is arranged at the original air outlet of the battery model, and the two cooling fans work in turn to realize the reciprocating flow. The temperature difference is controlled within 5? to ensure the good temperature uniformity between the batteries of the electric vehicle. Based on the above finding, it is concluded that the heat dissipation design for electric vehicle batteries is safe and effective, which is the most effective methods to ensure battery life and vehicle safety.
Bertocci, Francesco; Fort, Ada; Vignoli, Valerio; Mugnaini, Marco; Berni, Rossella
2017-06-10
Eight different types of nanostructured perovskites based on YCoO 3 with different chemical compositions are prepared as gas sensor materials, and they are studied with two target gases NO 2 and CO. Moreover, a statistical approach is adopted to optimize their performance. The innovative contribution is carried out through a split-plot design planning and modeling, also involving random effects, for studying Metal Oxide Semiconductors (MOX) sensors in a robust design context. The statistical results prove the validity of the proposed approach; in fact, for each material type, the variation of the electrical resistance achieves a satisfactory optimized value conditional to the working temperature and by controlling for the gas concentration variability. Just to mention some results, the sensing material YCo 0 . 9 Pd 0 . 1 O 3 (Mt1) achieved excellent solutions during the optimization procedure. In particular, Mt1 resulted in being useful and feasible for the detection of both gases, with optimal response equal to +10.23% and working temperature at 312 ∘ C for CO (284 ppm, from design) and response equal to -14.17% at 185 ∘ C for NO 2 (16 ppm, from design). Analogously, for NO 2 (16 ppm, from design), the material type YCo 0 . 9 O 2 . 85 + 1 % Pd (Mt8) allows for optimizing the response value at - 15 . 39 % with a working temperature at 181 . 0 ∘ C, whereas for YCo 0 . 95 Pd 0 . 05 O 3 (Mt3), the best response value is achieved at - 15 . 40 % with the temperature equal to 204 ∘ C.
Bertocci, Francesco; Fort, Ada; Vignoli, Valerio; Mugnaini, Marco; Berni, Rossella
2017-01-01
Eight different types of nanostructured perovskites based on YCoO3 with different chemical compositions are prepared as gas sensor materials, and they are studied with two target gases NO2 and CO. Moreover, a statistical approach is adopted to optimize their performance. The innovative contribution is carried out through a split-plot design planning and modeling, also involving random effects, for studying Metal Oxide Semiconductors (MOX) sensors in a robust design context. The statistical results prove the validity of the proposed approach; in fact, for each material type, the variation of the electrical resistance achieves a satisfactory optimized value conditional to the working temperature and by controlling for the gas concentration variability. Just to mention some results, the sensing material YCo0.9Pd0.1O3 (Mt1) achieved excellent solutions during the optimization procedure. In particular, Mt1 resulted in being useful and feasible for the detection of both gases, with optimal response equal to +10.23% and working temperature at 312∘C for CO (284 ppm, from design) and response equal to −14.17% at 185∘C for NO2 (16 ppm, from design). Analogously, for NO2 (16 ppm, from design), the material type YCo0.9O2.85+1%Pd (Mt8) allows for optimizing the response value at −15.39% with a working temperature at 181.0∘C, whereas for YCo0.95Pd0.05O3 (Mt3), the best response value is achieved at −15.40% with the temperature equal to 204∘C. PMID:28604587
NASA Astrophysics Data System (ADS)
Bonne, F.; Bonnay, P.; Girard, A.; Hoa, C.; Lacroix, B.; Le Coz, Q.; Nicollet, S.; Poncet, J.-M.; Zani, L.
2017-12-01
Supercritical helium loops at 4.2 K are the baseline cooling strategy of tokamaks superconducting magnets (JT-60SA, ITER, DEMO, etc.). This loops work with cryogenic circulators that force a supercritical helium flow through the superconducting magnets in order that the temperature stay below the working range all along their length. This paper shows that a supercritical helium loop associated with a saturated liquid helium bath can satisfy temperature constraints in different ways (playing on bath temperature and on the supercritical flow), but that only one is optimal from an energy point of view (every Watt consumed at 4.2 K consumes at least 220 W of electrical power). To find the optimal operational conditions, an algorithm capable of minimizing an objective function (energy consumption at 5 bar, 5 K) subject to constraints has been written. This algorithm works with a supercritical loop model realized with the Simcryogenics [2] library. This article describes the model used and the results of constrained optimization. It will be possible to see that the changes in operating point on the temperature of the magnet (e.g. in case of a change in the plasma configuration) involves large changes on the cryodistribution optimal operating point. Recommendations will be made to ensure that the energetic consumption is kept as low as possible despite the changing operating point. This work is partially supported by EUROfusion Consortium through the Euratom Research and Training Program 20142018 under Grant 633053.
NASA Astrophysics Data System (ADS)
Cao, Q.; Qiu, L. M.; Zhi, X. Q.; Han, L.; Gan, Z. H.; Zhang, X. B.; Zhang, X. J.; Sun, D. M.
2013-12-01
The impedance magnitude is important for the design and operation of a Stirling pulse tube cryocooler (SPTC). However, the influence of the impedance magnitude on the SPTC working at liquid-helium temperatures is still not clear due to the complexity of refrigeration mechanism at this temperature range. In this study, the influence of the impedance magnitude on the viscous and thermal losses has been investigated, which contributes to the overall refrigeration efficiency. Different from the previous study at liquid nitrogen temperatures, it has been found and verified experimentally that a higher impedance magnitude may result in a larger mass flow rate accompanied with larger losses in the warmer region, hence the refrigeration efficiency is lowered. Numerical simulation is carried out in SPTCs of different geometry dimensions and working parameters, and the experimental study is carried out in a three-stage SPTC. A minimum no-load refrigeration temperature is achieved with an appropriate impedance magnitude that is determined by the combination of frequency and precooling temperature. A lowest temperature of 4.76 K is achieved at 28 Hz and a precooling temperature of 22.6 K, which is the lowest temperature ever achieved with He-4 for SPTCs. Impedance magnitude optimization is clearly an important consideration for the design of a 4 K SPTC.
NASA Astrophysics Data System (ADS)
Miller, V. M.; Semiatin, S. L.; Szczepanski, C.; Pilchak, A. L.
2018-06-01
The ability to predict the evolution of crystallographic texture during hot work of titanium alloys in the α + β temperature regime is greatly significant to numerous engineering disciplines; however, research efforts are complicated by the rapid changes in phase volume fractions and flow stresses with temperature in addition to topological considerations. The viscoplastic self-consistent (VPSC) polycrystal plasticity model is employed to simulate deformation in the two phase field. Newly developed parameter selection schemes utilizing automated optimization based on two different error metrics are considered. In the first optimization scheme, which is commonly used in the literature, the VPSC parameters are selected based on the quality of fit between experiment and simulated flow curves at six hot-working temperatures. Under the second newly developed scheme, parameters are selected to minimize the difference between the simulated and experimentally measured α textures after accounting for the β → α transformation upon cooling. It is demonstrated that both methods result in good qualitative matches for the experimental α phase texture, but texture-based optimization results in a substantially better quantitative orientation distribution function match.
PSO-based PID Speed Control of Traveling Wave Ultrasonic Motor under Temperature Disturbance
NASA Astrophysics Data System (ADS)
Arifin Mat Piah, Kamal; Yusoff, Wan Azhar Wan; Azmi, Nur Iffah Mohamed; Romlay, Fadhlur Rahman Mohd
2018-03-01
Traveling wave ultrasonic motors (TWUSMs) have a time varying dynamics characteristics. Temperature rise in TWUSMs remains a problem particularly in sustaining optimum speed performance. In this study, a PID controller is used to control the speed of TWUSM under temperature disturbance. Prior to developing the controller, a linear approximation model which relates the speed to the temperature is developed based on the experimental data. Two tuning methods are used to determine PID parameters: conventional Ziegler-Nichols(ZN) and particle swarm optimization (PSO). The comparison of speed control performance between PSO-PID and ZN-PID is presented. Modelling, simulation and experimental work is carried out utilizing Fukoku-Shinsei USR60 as the chosen TWUSM. The results of the analyses and experimental work reveal that PID tuning using PSO-based optimization has the advantage over the conventional Ziegler-Nichols method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raitsimring, A.; Astashkin, A. V.; Enemark, J. H.
2012-12-29
In this work, the experimental conditions and parameters necessary to optimize the long-distance (≥ 60 Å) Double Electron-Electron Resonance (DEER) measurements of biomacromolecules labeled with Gd(III) tags are analyzed. The specific parameters discussed are the temperature, microwave band, the separation between the pumping and observation frequencies, pulse train repetition rate, pulse durations and pulse positioning in the electron paramagnetic resonance spectrum. It was found that: (i) in optimized DEER measurements, the observation pulses have to be applied at the maximum of the EPR spectrum; (ii) the optimal temperature range for Ka-band measurements is 14-17 K, while in W-band the optimalmore » temperatures are between 6-9 K; (iii) W-band is preferable to Ka-band for DEER measurements. Recent achievements and the conditions necessary for short-distance measurements (<15 Å) are also briefly discussed.« less
Solving traveling salesman problems with DNA molecules encoding numerical values.
Lee, Ji Youn; Shin, Soo-Yong; Park, Tai Hyun; Zhang, Byoung-Tak
2004-12-01
We introduce a DNA encoding method to represent numerical values and a biased molecular algorithm based on the thermodynamic properties of DNA. DNA strands are designed to encode real values by variation of their melting temperatures. The thermodynamic properties of DNA are used for effective local search of optimal solutions using biochemical techniques, such as denaturation temperature gradient polymerase chain reaction and temperature gradient gel electrophoresis. The proposed method was successfully applied to the traveling salesman problem, an instance of optimization problems on weighted graphs. This work extends the capability of DNA computing to solving numerical optimization problems, which is contrasted with other DNA computing methods focusing on logical problem solving.
Thermodynamic Analysis and Optimization of a High Temperature Triple Absorption Heat Transformer
Khamooshi, Mehrdad; Yari, Mortaza; Egelioglu, Fuat; Salati, Hana
2014-01-01
First law of thermodynamics has been used to analyze and optimize inclusively the performance of a triple absorption heat transformer operating with LiBr/H2O as the working pair. A thermodynamic model was developed in EES (engineering equation solver) to estimate the performance of the system in terms of the most essential parameters. The assumed parameters are the temperature of the main components, weak and strong solutions, economizers' efficiencies, and bypass ratios. The whole cycle is optimized by EES software from the viewpoint of maximizing the COP via applying the direct search method. The optimization results showed that the COP of 0.2491 is reachable by the proposed cycle. PMID:25136702
Mechanism of bandwidth improvement in passively cooled SMA position actuators
NASA Astrophysics Data System (ADS)
Gorbet, R. B.; Morris, K. A.; Chau, R. C. C.
2009-09-01
The heating of shape memory alloy (SMA) materials leads to a thermally driven phase change which can be used to do work. An SMA wire can be thermally cycled by controlling electric current through the wire, creating an electro-mechanical actuator. Such actuators are typically heated electrically and cooled through convection. The thermal time constants and lack of active cooling limit the operating frequencies. In this work, the bandwidth of a still-air-cooled SMA wire controlled with a PID controller is improved through optimization of the controller gains. Results confirm that optimization can improve the ability of the actuator to operate at a given frequency. Overshoot is observed in the optimal controllers at low frequencies. This is a result of hysteresis in the wire's contraction-temperature characteristic, since different input temperatures can achieve the same output value. The optimal controllers generate overshoot during heating, in order to cause the system to operate at a point on the hysteresis curve where faster cooling can be achieved. The optimization results in a controller which effectively takes advantage of the multi-valued nature of the hysteresis to improve performance.
NASA Astrophysics Data System (ADS)
Sow, C. K.; Fathullah, M.; Nasir, S. M.; Shayfull, Z.; Shazzuan, S.
2017-09-01
This paper discusses on an analysis run via injection moulding process in determination of the optimum processing parameters used for manufacturing side arms of catheters in minimizing the warpage issues. The optimization method used was RSM. Moreover, in this research tries to find the most significant factor affecting the warpage. From the previous literature review,4 most significant parameters on warpage defect was selected. Those parameters were melt temperature, packing time, packing pressure, mould temperature and cooling time. At the beginning, side arm was drawn using software of CATIA V5. Then, software Mouldflow and Design Expert were employed to analyses on the popular warpage issues. After that, GSO artificial intelligence was apply using the mathematical model from Design Expert for more optimization on RSM result. Recommended parameter settings from the simulation work were then compared with the optimization work of RSM and GSO. The result show that the warpage on the side arm was improved by 3.27 %
Temperature-dependent and optimized thermal emission by spheres
NASA Astrophysics Data System (ADS)
Nguyen, K. L.; Merchiers, O.; Chapuis, P.-O.
2018-03-01
We investigate the temperature and size dependencies of thermal emission by homogeneous spheres as a function of their dielectric properties. Different power laws obtained in this work show that the emitted power can depart strongly from the usual fourth power of temperature given by Planck's law and from the square or the cube of the radius. We also show how to optimize the thermal emission by selecting permittivities leading to resonances, which allow for the so-called super-Planckian regime. These results will be useful as spheres, i.e. the simplest finite objects, are often considered as building blocks of more complex objects.
Rhimi, Moez; Aghajari, Nushin; Juy, Michel; Chouayekh, Hichem; Maguin, Emmanuelle; Haser, Richard; Bejar, Samir
2009-05-01
L-arabinose isomerases catalyze the bioconversion of D-galactose into D-tagatose. With the aim of producing an enzyme optimized for D-tagatose production, three Bacillus stearothermophilus US100 L-arabinose isomerase mutants were constructed, purified and characterized. Our results indicate that mutant Q268K was significantly more acidotolerant and more stable at acidic pH than the wild-type enzyme. The N175H mutant has a broad optimal temperature range from 50 to 65 degrees C. With the aim of constructing an acidotolerant mutant working at relatively low temperatures we generated the Q268K/N175H construct. This double mutant displays an optimal pH in the range 6.0-7.0 and an optimal activity around 50-65 degrees C, temperatures at which the enzyme was stable without addition of metal ions.
A quartz-based micro catalytic methane sensor by high resolution screen printing
NASA Astrophysics Data System (ADS)
Lu, Wenshuai; Jing, Gaoshan; Bian, Xiaomeng; Yu, Hongyan; Cui, Tianhong
2016-02-01
A micro catalytic methane sensor was proposed and fabricated on a bulk fused quartz substrate using a high resolution screen printing technique for the first time, with reduced power consumption and optimized sensitivity. The sensor was designed by the finite element method and quartz was chosen as the substrate material and alumina support with optimized dimensions. Fabrication of the sensor consisted of two MEMS processes, lift-off and high resolution screen printing, with the advantages of high yield and uniformity. When the sensor’s regional working temperature changes from 250 °C to 470 °C, its sensitivity increases, as well as the power consumption. The highest sensitivity can reach 1.52 mV/% CH4. A temperature of 300 °C was chosen as the optimized working temperature, and the sensor’s sensitivity, power consumption, nonlinearity and response time are 0.77 mV/% CH4, 415 mW, 2.6%, and 35 s, respectively. This simple, but highly uniform fabrication process and the reliable performance of this sensor may lead to wide applications for methane detection.
Optimal performance of heat engines with a finite source or sink and inequalities between means.
Johal, Ramandeep S
2016-07-01
Given a system with a finite heat capacity and a heat reservoir, and two values of initial temperatures, T_{+} and T_{-}(
NASA Astrophysics Data System (ADS)
Ma, Zheshu; Wu, Jieer
2011-08-01
Indirectly or externally fired gas turbines (IFGT or EFGT) are interesting technologies under development for small and medium scale combined heat and power (CHP) supplies in combination with micro gas turbine technologies. The emphasis is primarily on the utilization of the waste heat from the turbine in a recuperative process and the possibility of burning biomass even "dirty" fuel by employing a high temperature heat exchanger (HTHE) to avoid the combustion gases passing through the turbine. In this paper, finite time thermodynamics is employed in the performance analysis of a class of irreversible closed IFGT cycles coupled to variable temperature heat reservoirs. Based on the derived analytical formulae for the dimensionless power output and efficiency, the efficiency optimization is performed in two aspects. The first is to search the optimum heat conductance distribution corresponding to the efficiency optimization among the hot- and cold-side of the heat reservoirs and the high temperature heat exchangers for a fixed total heat exchanger inventory. The second is to search the optimum thermal capacitance rate matching corresponding to the maximum efficiency between the working fluid and the high-temperature heat reservoir for a fixed ratio of the thermal capacitance rates of the two heat reservoirs. The influences of some design parameters on the optimum heat conductance distribution, the optimum thermal capacitance rate matching and the maximum power output, which include the inlet temperature ratio of the two heat reservoirs, the efficiencies of the compressor and the gas turbine, and the total pressure recovery coefficient, are provided by numerical examples. The power plant configuration under optimized operation condition leads to a smaller size, including the compressor, turbine, two heat reservoirs and the HTHE.
Genetic Algorithm (GA)-Based Inclinometer Layout Optimization.
Liang, Weijie; Zhang, Ping; Chen, Xianping; Cai, Miao; Yang, Daoguo
2015-04-17
This paper presents numerical simulation results of an airflow inclinometer with sensitivity studies and thermal optimization of the printed circuit board (PCB) layout for an airflow inclinometer based on a genetic algorithm (GA). Due to the working principle of the gas sensor, the changes of the ambient temperature may cause dramatic voltage drifts of sensors. Therefore, eliminating the influence of the external environment for the airflow is essential for the performance and reliability of an airflow inclinometer. In this paper, the mechanism of an airflow inclinometer and the influence of different ambient temperatures on the sensitivity of the inclinometer will be examined by the ANSYS-FLOTRAN CFD program. The results show that with changes of the ambient temperature on the sensing element, the sensitivity of the airflow inclinometer is inversely proportional to the ambient temperature and decreases when the ambient temperature increases. GA is used to optimize the PCB thermal layout of the inclinometer. The finite-element simulation method (ANSYS) is introduced to simulate and verify the results of our optimal thermal layout, and the results indicate that the optimal PCB layout greatly improves (by more than 50%) the sensitivity of the inclinometer. The study may be useful in the design of PCB layouts that are related to sensitivity improvement of gas sensors.
Genetic Algorithm (GA)-Based Inclinometer Layout Optimization
Liang, Weijie; Zhang, Ping; Chen, Xianping; Cai, Miao; Yang, Daoguo
2015-01-01
This paper presents numerical simulation results of an airflow inclinometer with sensitivity studies and thermal optimization of the printed circuit board (PCB) layout for an airflow inclinometer based on a genetic algorithm (GA). Due to the working principle of the gas sensor, the changes of the ambient temperature may cause dramatic voltage drifts of sensors. Therefore, eliminating the influence of the external environment for the airflow is essential for the performance and reliability of an airflow inclinometer. In this paper, the mechanism of an airflow inclinometer and the influence of different ambient temperatures on the sensitivity of the inclinometer will be examined by the ANSYS-FLOTRAN CFD program. The results show that with changes of the ambient temperature on the sensing element, the sensitivity of the airflow inclinometer is inversely proportional to the ambient temperature and decreases when the ambient temperature increases. GA is used to optimize the PCB thermal layout of the inclinometer. The finite-element simulation method (ANSYS) is introduced to simulate and verify the results of our optimal thermal layout, and the results indicate that the optimal PCB layout greatly improves (by more than 50%) the sensitivity of the inclinometer. The study may be useful in the design of PCB layouts that are related to sensitivity improvement of gas sensors. PMID:25897500
NASA Astrophysics Data System (ADS)
Paloma, Cynthia S.
The plasma electron temperature (Te) plays a critical role in a tokamak nu- clear fusion reactor since temperatures on the order of 108K are required to achieve fusion conditions. Many plasma properties in a tokamak nuclear fusion reactor are modeled by partial differential equations (PDE's) because they depend not only on time but also on space. In particular, the dynamics of the electron temperature is governed by a PDE referred to as the Electron Heat Transport Equation (EHTE). In this work, a numerical method is developed to solve the EHTE based on a custom finite-difference technique. The solution of the EHTE is compared to temperature profiles obtained by using TRANSP, a sophisticated plasma transport code, for specific discharges from the DIII-D tokamak, located at the DIII-D National Fusion Facility in San Diego, CA. The thermal conductivity (also called thermal diffusivity) of the electrons (Xe) is a plasma parameter that plays a critical role in the EHTE since it indicates how the electron temperature diffusion varies across the minor effective radius of the tokamak. TRANSP approximates Xe through a curve-fitting technique to match experimentally measured electron temperature profiles. While complex physics-based model have been proposed for Xe, there is a lack of a simple mathematical model for the thermal diffusivity that could be used for control design. In this work, a model for Xe is proposed based on a scaling law involving key plasma variables such as the electron temperature (Te), the electron density (ne), and the safety factor (q). An optimization algorithm is developed based on the Sequential Quadratic Programming (SQP) technique to optimize the scaling factors appearing in the proposed model so that the predicted electron temperature and magnetic flux profiles match predefined target profiles in the best possible way. A simulation study summarizing the outcomes of the optimization procedure is presented to illustrate the potential of the proposed modeling method.
Thermodynamic Analysis of TEG-TEC Device Including Influence of Thomson Effect
NASA Astrophysics Data System (ADS)
Feng, Yuanli; Chen, Lingen; Meng, Fankai; Sun, Fengrui
2018-01-01
A thermodynamic model of a thermoelectric cooler driven by thermoelectric generator (TEG-TEC) device is established considering Thomson effect. The performance is analyzed and optimized using numerical calculation based on non-equilibrium thermodynamic theory. The influence characteristics of Thomson effect on the optimal performance and variable selection are investigated by comparing the condition with and without Thomson effect. The results show that Thomson effect degrades the performance of TEG-TEC device, it decreases the cooling capacity by 27 %, decreases the coefficient of performance (COP) by 19 %, decreases the maximum cooling temperature difference by 11 % when the ratio of thermoelectric elements number is 0.6, the cold junction temperature of thermoelectric cooler (TEC) is 285 K and the hot junction temperature of thermoelectric generator (TEG) is 450 K. Thomson effect degrades the optimal performance of TEG-TEC device, it decreases the maximum cooling capacity by 28 % and decreases the maximum COP by 28 % under the same junction temperatures. Thomson effect narrows the optimal variable range and optimal working range. In the design of the devices, limited-number thermoelectric elements should be more allocated appropriately to TEG when consider Thomson effect. The results may provide some guidelines for the design of TEG-TEC devices.
Optimization of the R-SQUID noise thermometer
NASA Astrophysics Data System (ADS)
Seppä, Heikki
1986-02-01
The Josephson junction can be used to convert voltage into frequency and thus it can be used to convert voltage fluctuations generated by Johnson noise in a resistor into frequency fluctuations. As a consequence, the temperature of the resistor can be defined by measuring the variance of the frequency fluctuations. Unfortunately, the absolute determination of temperature by this approach is disturbed by several undesirable effects: a rolloff introduced by the bandwidth of the postdetection filter, additional noise caused by rf amplifiers, and a mixed noise effect caused by the nonlinearity of the Josephson junction together with rf noise in the tank circuit. Furthermore, the variance is a statistical quantity and therefore the limited number of frequency counts produces inaccuracy in a temperature measurement. In this work the total inaccuracy of the noise thermometer is analyzed and the optimal choice of the parameters is derived. A practical way to find the optimal conditions for the Josephson junction noise thermometer is discussed. The inspection shows that under the optimal conditions the total error is dependent only on the temperature under determination, the equivalent noise temperature of the preamplifier, the bias frequency of the SQUID, and the total time used for the measurement.
Tool Steel Heat Treatment Optimization Using Neural Network Modeling
NASA Astrophysics Data System (ADS)
Podgornik, Bojan; Belič, Igor; Leskovšek, Vojteh; Godec, Matjaz
2016-11-01
Optimization of tool steel properties and corresponding heat treatment is mainly based on trial and error approach, which requires tremendous experimental work and resources. Therefore, there is a huge need for tools allowing prediction of mechanical properties of tool steels as a function of composition and heat treatment process variables. The aim of the present work was to explore the potential and possibilities of artificial neural network-based modeling to select and optimize vacuum heat treatment conditions depending on the hot work tool steel composition and required properties. In the current case training of the feedforward neural network with error backpropagation training scheme and four layers of neurons (8-20-20-2) scheme was based on the experimentally obtained tempering diagrams for ten different hot work tool steel compositions and at least two austenitizing temperatures. Results show that this type of modeling can be successfully used for detailed and multifunctional analysis of different influential parameters as well as to optimize heat treatment process of hot work tool steels depending on the composition. In terms of composition, V was found as the most beneficial alloying element increasing hardness and fracture toughness of hot work tool steel; Si, Mn, and Cr increase hardness but lead to reduced fracture toughness, while Mo has the opposite effect. Optimum concentration providing high KIc/HRC ratios would include 0.75 pct Si, 0.4 pct Mn, 5.1 pct Cr, 1.5 pct Mo, and 0.5 pct V, with the optimum heat treatment performed at lower austenitizing and intermediate tempering temperatures.
NASA Astrophysics Data System (ADS)
Hartwig, Jason; Raju, Mandhapati; Sung, Chih-Jen
2017-07-01
This is the second in a series of two papers that presents an updated fluorescence model and compares with the new experimental data reported in the first paper, as well as the available literature data, to extend the range of acetone photophysics to elevated pressure and temperature conditions. This work elucidates the complete acetone photophysical model in terms of each and every competing radiative and non-radiative rate. The acetone fluorescence model is then thoroughly examined and optimized based on disparity with recently conducted elevated pressure and temperature photophysical calibration experiments. The current work offers insight into the competition between non-radiative and vibrational energy decay rates at elevated temperature and pressure and proposes a global optimization of model parameters from the photophysical model developed by Thurber (Acetone Laser-Induced Fluorescence for Temperature and Multiparameter Imaging in Gaseous Flows. PhD thesis, Stanford University Mechanical Engineering Department, 1999). The collisional constants of proportionality, which govern vibrational relaxation, are shown to be temperature dependent at elevated pressures. A new oxygen quenching rate is proposed which takes into account collisions with oxygen as well as the oxygen-assisted intersystem crossing component. Additionally, global trends in ketone photophysics are presented and discussed.
Mechanical Properties Optimization of Poly-Ether-Ether-Ketone via Fused Deposition Modeling.
Deng, Xiaohu; Zeng, Zhi; Peng, Bei; Yan, Shuo; Ke, Wenchao
2018-01-30
Compared to the common selective laser sintering (SLS) manufacturing method, fused deposition modeling (FDM) seems to be an economical and efficient three-dimensional (3D) printing method for high temperature polymer materials in medical applications. In this work, a customized FDM system was developed for polyether-ether-ketone (PEEK) materials printing. The effects of printing speed, layer thickness, printing temperature and filling ratio on tensile properties were analyzed by the orthogonal test of four factors and three levels. Optimal tensile properties of the PEEK specimens were observed at a printing speed of 60 mm/s, layer thickness of 0.2 mm, temperature of 370 °C and filling ratio of 40%. Furthermore, the impact and bending tests were conducted under optimized conditions and the results demonstrated that the printed PEEK specimens have appropriate mechanical properties.
NASA Astrophysics Data System (ADS)
Desai, A. B.; Desai, K. P.; Naik, H. B.; Atrey, M. D.
2017-02-01
Thermoacoustic engines (TAEs) are devices which convert heat energy into useful acoustic work whereas thermoacoustic refrigerators (TARs) convert acoustic work into temperature gradient. These devices work without any moving component. Study presented here comprises of a combination system i.e. thermoacoustic engine driven thermoacoustic refrigerator (TADTAR). This system has no moving component and hence it is easy to fabricate but at the same time it is very challenging to design and construct optimized system with comparable performance. The work presented here aims to apply optimization technique to TADTAR in the form of response surface methodology (RSM). Significance of stack position and stack length for engine stack, stack position and stack length for refrigerator stack are investigated in current work. Results from RSM are compared with results from simulations using Design Environment for Low-amplitude Thermoacoustic Energy conversion (DeltaEC) for compliance.
NASA Astrophysics Data System (ADS)
Sica, R. J.; Haefele, A.; Jalali, A.; Gamage, S.; Farhani, G.
2018-04-01
The optimal estimation method (OEM) has a long history of use in passive remote sensing, but has only recently been applied to active instruments like lidar. The OEM's advantage over traditional techniques includes obtaining a full systematic and random uncertainty budget plus the ability to work with the raw measurements without first applying instrument corrections. In our meeting presentation we will show you how to use the OEM for temperature and composition retrievals for Rayleigh-scatter, Ramanscatter and DIAL lidars.
Microscopic heat engine and control of work fluctuations
NASA Astrophysics Data System (ADS)
Xiao, Gaoyang
In this thesis, we study novel behaviors of microscopic work and heat in systems involving few degrees of freedom. We firstly report that a quantum Carnot cycle should consist of two isothermal processes and two mechanical adiabatic processes if we want to maximize its heat-to-work conversion efficiency. We then find that the efficiency can be further optimized, and it is generally system specific, lower than the Carnot efficiency, and dependent upon both temperatures of the cold and hot reservoirs. We then move on to the studies the fluctuations of microscopic work. We find a principle of minimal work fluctuations related to the Jarzynski equality. In brief, an adiabatic process without energy level crossing yields the minimal fluctuations in exponential work, given a thermally isolated system initially prepared at thermal equilibrium. Finally, we investigate an optimal control approach to suppress the work fluctuations and accelerate the adiabatic processes. This optimal control approach can apply to wide variety of systems even when we do not have full knowledge of the systems.
Multi-physics optimization of three-dimensional microvascular polymeric components
NASA Astrophysics Data System (ADS)
Aragón, Alejandro M.; Saksena, Rajat; Kozola, Brian D.; Geubelle, Philippe H.; Christensen, Kenneth T.; White, Scott R.
2013-01-01
This work discusses the computational design of microvascular polymeric materials, which aim at mimicking the behavior found in some living organisms that contain a vascular system. The optimization of the topology of the embedded three-dimensional microvascular network is carried out by coupling a multi-objective constrained genetic algorithm with a finite-element based physics solver, the latter validated through experiments. The optimization is carried out on multiple conflicting objective functions, namely the void volume fraction left by the network, the energy required to drive the fluid through the network and the maximum temperature when the material is subjected to thermal loads. The methodology presented in this work results in a viable alternative for the multi-physics optimization of these materials for active-cooling applications.
Optimization of Progressive Freeze Concentration on Apple Juice via Response Surface Methodology
NASA Astrophysics Data System (ADS)
Samsuri, S.; Amran, N. A.; Jusoh, M.
2018-05-01
In this work, a progressive freeze concentration (PFC) system was developed to concentrate apple juice and was optimized by response surface methodology (RSM). The effects of various operating conditions such as coolant temperature, circulation flowrate, circulation time and shaking speed to effective partition constant (K) were investigated. Five different level of central composite design (CCD) was employed to search for optimal concentration of concentrated apple juice. A full quadratic model for K was established by using method of least squares. A coefficient of determination (R2) of this model was found to be 0.7792. The optimum conditions were found to be coolant temperature = -10.59 °C, circulation flowrate = 3030.23 mL/min, circulation time = 67.35 minutes and shaking speed = 30.96 ohm. A validation experiment was performed to evaluate the accuracy of the optimization procedure and the best K value of 0.17 was achieved under the optimized conditions.
Laser engines operating by resonance absorption.
Garbuny, M; Pechersky, M J
1976-05-01
The coherence properties and power levels of lasers available at present lend themselves to the remote operation of mechanical engines by resonance absorption in a working gas. Laser radiation is capable of producing extremely high temperatures in a gas. Limits to the achievable temperatures in the working gas of an engine are imposed by the solid walls and by loss of resonance absorption due to thermal saturation, bleaching, and dissociation. However, it is shown that by proper control of the laser beam in space, time, and frequency, as well as by choice of the absorbing gas, these limits are to a great extent removed so that very high temperatures are indeed attainable. The working gas is largely monatomic, preferably helium with the addition of a few volume percent of an absorber. Such a gas mixture, internally heated, permits an optimization of the expansion ratio, with resulting thermal efficiencies and work ratios, not achievable in conventional engines. A relationship between thermal efficiency and work ratio is derived that is quite general for the optimization condition. The performance of laser piston engines, turbines, and the Stirling cycle based on these principles is discussed and compared with conventional engine operation. Finally, a brief discussion is devoted to the possibility and concepts for the direct conversion of selective vibrational or electronic excitation into mechanical work, bypassing the translational degrees of freedom.
NASA Astrophysics Data System (ADS)
Kuz`michev, V. S.; Filinov, E. P.; Ostapyuk, Ya A.
2018-01-01
This article describes how the thrust level influences the turbojet architecture (types of turbomachines that provide the maximum efficiency) and its working process parameters (turbine inlet temperature (TIT) and overall pressure ratio (OPR)). Functional gasdynamic and strength constraints were included, total mass of fuel and the engine required for mission and the specific fuel consumption (SFC) were considered optimization criteria. Radial and axial turbines and compressors were considered. The results show that as the engine thrust decreases, optimal values of working process parameters decrease too, and the regions of compromise shrink. Optimal engine architecture and values of working process parameters are suggested for turbojets with thrust varying from 100N to 100kN. The results show that for the thrust below 25kN the engine scale factor should be taken into the account, as the low flow rates begin to influence the efficiency of engine elements substantially.
A MEMS-based Benzene Gas Sensor with a Self-heating WO3 Sensing Layer
Ke, Ming-Tsun; Lee, Mu-Tsun; Lee, Chia-Yen; Fu, Lung-Ming
2009-01-01
In the study, a MEMS-based benzene gas sensor is presented, consisting of a quartz substrate, a thin-film WO3 sensing layer, an integrated Pt micro-heater, and Pt interdigitated electrodes (IDEs). When benzene is present in the atmosphere, oxidation occurs on the heated WO3 sensing layer. This causes a change in the electrical conductivity of the WO3 film, and hence changes the resistance between the IDEs. The benzene concentration is then computed from the change in the measured resistance. A specific orientation of the WO3 layer is obtained by optimizing the sputtering process parameters. It is found that the sensitivity of the gas sensor is optimized at a working temperature of 300 °C. At the optimal working temperature, the experimental results show that the sensor has a high degree of sensitivity (1.0 KΩ ppm−1), a low detection limit (0.2 ppm) and a rapid response time (35 s). PMID:22574052
Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam SM, Jahangir
2017-01-01
As a high performance-cost ratio solution for differential pressure measurement, piezo-resistive differential pressure sensors are widely used in engineering processes. However, their performance is severely affected by the environmental temperature and the static pressure applied to them. In order to modify the non-linear measuring characteristics of the piezo-resistive differential pressure sensor, compensation actions should synthetically consider these two aspects. Advantages such as nonlinear approximation capability, highly desirable generalization ability and computational efficiency make the kernel extreme learning machine (KELM) a practical approach for this critical task. Since the KELM model is intrinsically sensitive to the regularization parameter and the kernel parameter, a searching scheme combining the coupled simulated annealing (CSA) algorithm and the Nelder-Mead simplex algorithm is adopted to find an optimal KLEM parameter set. A calibration experiment at different working pressure levels was conducted within the temperature range to assess the proposed method. In comparison with other compensation models such as the back-propagation neural network (BP), radius basis neural network (RBF), particle swarm optimization optimized support vector machine (PSO-SVM), particle swarm optimization optimized least squares support vector machine (PSO-LSSVM) and extreme learning machine (ELM), the compensation results show that the presented compensation algorithm exhibits a more satisfactory performance with respect to temperature compensation and synthetic compensation problems. PMID:28422080
Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam Sm, Jahangir
2017-04-19
As a high performance-cost ratio solution for differential pressure measurement, piezo-resistive differential pressure sensors are widely used in engineering processes. However, their performance is severely affected by the environmental temperature and the static pressure applied to them. In order to modify the non-linear measuring characteristics of the piezo-resistive differential pressure sensor, compensation actions should synthetically consider these two aspects. Advantages such as nonlinear approximation capability, highly desirable generalization ability and computational efficiency make the kernel extreme learning machine (KELM) a practical approach for this critical task. Since the KELM model is intrinsically sensitive to the regularization parameter and the kernel parameter, a searching scheme combining the coupled simulated annealing (CSA) algorithm and the Nelder-Mead simplex algorithm is adopted to find an optimal KLEM parameter set. A calibration experiment at different working pressure levels was conducted within the temperature range to assess the proposed method. In comparison with other compensation models such as the back-propagation neural network (BP), radius basis neural network (RBF), particle swarm optimization optimized support vector machine (PSO-SVM), particle swarm optimization optimized least squares support vector machine (PSO-LSSVM) and extreme learning machine (ELM), the compensation results show that the presented compensation algorithm exhibits a more satisfactory performance with respect to temperature compensation and synthetic compensation problems.
Effect of Upper-Cycle Temperature on the Load-Biased, Strain-Temperature Response of NiTi
NASA Technical Reports Server (NTRS)
Padula, Santo, II; Noebe, Ronald; Bigelow, Glen; Qiu, Shipeng; Vaidyanathan, Raj; Gaydosh, Darrell; Garg, Anita
2011-01-01
Over the past decade, interest in shape memory alloy based actuators has increased as the primary benefits of these solid-state devices have become more apparent. However, much is still unknown about the characteristic behavior of these materials when used in actuator applications. Recently we have shown that the maximum temperature reached during thermal cycling under isobaric conditions could significantly affect the observed mechanical response of NiTi (55 wt% Ni), especially the amount of transformation strain available for actuation and thus work output. The investigation we report here extends that original work to ascertain whether further increases in the upper-cycle temperature would produce additional changes in the work output of the material, which has a stress-free austenite finish temperature of 113 C, and to determine the optimum cyclic conditions. Thus, isobaric, thermal-cycle experiments were conducted on the aforementioned alloy at various stresses from 50-300 MPa using upper-cycle temperatures of 165, 200, 230, 260, 290, 320 and 350 C. The data indicated that the amount of applied stress influenced the transformation strain, as would be expected. However, the maximum temperature reached during the thermal excursion also plays an equally significant role in determining the transformation strain, with the maximum transformation strain observed during thermal cycling to 290 C. In situ neutron diffraction at stress and temperature showed that the differences in transformation strain were mostly related to changes in martensite texture when cycling to different upper-cycle temperatures. Hence, understanding this effect is important to optimizing the operation of SMA-based actuators and could lead to new methods for processing and training shape memory alloys for optimal performance.
Thermodynamic Analysis of a Rankine Cycle Powered Vapor Compression Ice Maker Using Solar Energy
Hu, Bing; Bu, Xianbiao; Ma, Weibin
2014-01-01
To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working fluid types on the system performance were analyzed. The results show that the cooling power per square meter collector and ice production per square meter collector per day depend largely on generation temperature and condensation temperature and they increase firstly and then decrease with increasing generation temperature. For every working fluid there is an optimal generation temperature at which organic Rankine efficiency achieves the maximum value. The cooling power per square meter collector and ice production per square meter collector per day are, respectively, 126.44 W m−2 and 7.61 kg m−2 day−1 at the generation temperature of 140°C for working fluid of R245fa, which demonstrates the feasibility of organic Rankine cycle powered vapor compression ice maker. PMID:25202735
Thermal control systems for low-temperature heat rejection on a lunar base
NASA Technical Reports Server (NTRS)
Sridhar, K. R.; Gottmann, Matthias
1992-01-01
One of the important issues in the lunar base architecture is the design of a Thermal Control System (TCS) to reject the low temperature heat from the base. The TCS ensures that the base and all components inside are maintained within the operating temperature range. A significant portion of the total mass of the TCS is due to the radiator. Shading the radiation from the sun and the hot lunar soil could decrease the radiator operating temperature significantly. Heat pumps have been in use for terrestrial applications. To optimize the mass of the heat pump augmented TCS, all promising options have to be evaluated and compared. Careful attention is given to optimizing system operating parameters, working fluids, and component masses. The systems are modeled for full load operation.
NASA Technical Reports Server (NTRS)
Morris, J. F.
1980-01-01
Applied research-and-technology (ART) work reveals that optimal thermionic energy conversion (TEC) with approximately 1000 K to approximately 1100 K collectors is possible using well established tungsten electrodes. Such TEC with 1800 K emitters could approach 26.6% efficiency at 27.4 W/sq cm with approximately 1000 K collectors and 21.7% at 22.6 W/sq cm with approximately 1100 K collectors. These performances require 1.5 and 1.7 eV collector work functions (not the 1 eV ultimate) with nearly negligible interelectrode losses. Such collectors correspond to tungsten electrode systems in approximately 0.9 to approximately 6 torr cesium pressures with 1600 K to 1900 K emitters. Because higher heat-rejection temperatures for TEC allow greater collector work functions, interelectrode loss reduction becomes an increasingly important target for applications aimed at elevated temperatures. Studies of intragap modifications and new electrodes that will allow better electron emission and collection with lower cesium pressures are among the TEC-ART approaches to reduced interelectrode losses. These solutions will provide very effective TEC to serve directly in coal-combustion products for high-temperature topping and process heating. In turn this will help to use coal and to use it well.
NASA Astrophysics Data System (ADS)
Hewes, Alaïs; Mydlarski, Laurent
2015-11-01
The present work focuses on the design and optimization of a probe used to simultaneously measure the velocity, concentration and temperature fields in a turbulent jet. The underlying principles of this sensor are based in thermal-anemometry techniques, and the design of this 3-wire probe builds off the previous work of Sirivat and Warhaft, J. Fluid Mech., 1982. In the first part of this study, the effect of different overheat ratios in the first two wires (called the ``interference'' or ``Way-Libby'' probe - used to infer velocity and concentration) are investigated. Of particular interest is their effect on the quality of the resulting calibration, as well as the measured velocity and concentration data. Four different overheat ratio pairs for the two wires comprising the interference probe are studied. In the second part of this work, a third wire, capable of detecting temperature fluctuations, is added to the 3-wire probe. The optimal configuration of this probe, including wire type and overheat ratio for the third wire, is studied and the simultaneously-measured velocity, concentration, and temperature data (e.g. spectra, PDFs) for different probe configurations are presented. Supported by the Natural Sciences and Engineering Research Council of Canada (Grant 217184).
DOE Office of Scientific and Technical Information (OSTI.GOV)
H.E. Mynick, N. Pomphrey and P. Xanthopoulos
Recent progress in reducing turbulent transport in stellarators and tokamaks by 3D shaping using a stellarator optimization code in conjunction with a gyrokinetic code is presented. The original applications of the method focussed on ion temperature gradient transport in a quasi-axisymmetric stellarator design. Here, an examination of both other turbulence channels and other starting configurations is initiated. It is found that the designs evolved for transport from ion temperature gradient turbulence also display reduced transport from other transport channels whose modes are also stabilized by improved curvature, such as electron temperature gradient and ballooning modes. The optimizer is also appliedmore » to evolving from a tokamak, finding appreciable turbulence reduction for these devices as well. From these studies, improved understanding is obtained of why the deformations found by the optimizer are beneficial, and these deformations are related to earlier theoretical work in both stellarators and tokamaks.« less
Optimization of Thick, Large Area YBCO Film Growth Through Response Surface Methods
NASA Astrophysics Data System (ADS)
Porzio, J.; Mahoney, C. H.; Sullivan, M. C.
2014-03-01
We present our work on the optimization of thick, large area YB2C3O7-δ (YBCO) film growth through response surface methods. Thick, large area films have commercial uses and have recently been used in dramatic demonstrations of levitation and suspension. Our films are grown via pulsed laser deposition and we have optimized growth parameters via response surface methods. Response surface methods is a statistical tool to optimize selected quantities with respect to a set of variables. We optimized our YBCO films' critical temperatures, thicknesses, and structures with respect to three PLD growth parameters: deposition temperature, laser energy, and deposition pressure. We will present an overview of YBCO growth via pulsed laser deposition, the statistical theory behind response surface methods, and the application of response surface methods to pulsed laser deposition growth of YBCO. Results from the experiment will be presented in a discussion of the optimized film quality. Supported by NFS grant DMR-1305637
NASA Astrophysics Data System (ADS)
Nath, Nayani Kishore
2017-08-01
The throat back up liners is used to protect the nozzle structural members from the severe thermal environment in solid rocket nozzles. The throat back up liners is made with E-glass phenolic prepregs by tape winding process. The objective of this work is to demonstrate the optimization of process parameters of tape winding process to achieve better insulative resistance using Taguchi's robust design methodology. In this method four control factors machine speed, roller pressure, tape tension, tape temperature that were investigated for the tape winding process. The presented work was to study the cogency and acceptability of Taguchi's methodology in manufacturing of throat back up liners. The quality characteristic identified was Back wall temperature. Experiments carried out using L 9 ' (34) orthogonal array with three levels of four different control factors. The test results were analyzed using smaller the better criteria for Signal to Noise ratio in order to optimize the process. The experimental results were analyzed conformed and successfully used to achieve the minimum back wall temperature of the throat back up liners. The enhancement in performance of the throat back up liners was observed by carrying out the oxy-acetylene tests. The influence of back wall temperature on the performance of throat back up liners was verified by ground firing test.
NASA Astrophysics Data System (ADS)
Zhang, Yin; Wei, Zhiyuan; Zhang, Yinping; Wang, Xin
2017-12-01
Urban heating in northern China accounts for 40% of total building energy usage. In central heating systems, heat is often transferred from heat source to users by the heat network where several heat exchangers are installed at heat source, substations and terminals respectively. For given overall heating capacity and heat source temperature, increasing the terminal fluid temperature is an effective way to improve the thermal performance of such cascade heat exchange network for energy saving. In this paper, the mathematical optimization model of the cascade heat exchange network with three-stage heat exchangers in series is established. Aim at maximizing the cold fluid temperature for given hot fluid temperature and overall heating capacity, the optimal heat exchange area distribution and the medium fluids' flow rates are determined through inverse problem and variation method. The preliminary results show that the heat exchange areas should be distributed equally for each heat exchanger. It also indicates that in order to improve the thermal performance of the whole system, more heat exchange areas should be allocated to the heat exchanger where flow rate difference between two fluids is relatively small. This work is important for guiding the optimization design of practical cascade heating systems.
Study on Pyroelectric Harvesters with Various Geometry
Siao, An-Shen; Chao, Ching-Kong; Hsiao, Chun-Ching
2015-01-01
Pyroelectric harvesters convert time-dependent temperature variations into electric current. The appropriate geometry of the pyroelectric cells, coupled with the optimal period of temperature fluctuations, is key to driving the optimal load resistance, which enhances the performance of pyroelectric harvesters. The induced charge increases when the thickness of the pyroelectric cells decreases. Moreover, the induced charge is extremely reduced for the thinner pyroelectric cell when not used for the optimal period. The maximum harvested power is achieved when a 100 μm-thick PZT (Lead zirconate titanate) cell is used to drive the optimal load resistance of about 40 MΩ. Moreover, the harvested power is greatly reduced when the working resistance diverges even slightly from the optimal load resistance. The stored voltage generated from the 75 μm-thick PZT cell is less than that from the 400 μm-thick PZT cell for a period longer than 64 s. Although the thinner PZT cell is advantageous in that it enhances the efficiency of the pyroelectric harvester, the much thinner 75 μm-thick PZT cell and the divergence from the optimal period further diminish the performance of the pyroelectric cell. Therefore, the designers of pyroelectric harvesters need to consider the coupling effect between the geometry of the pyroelectric cells and the optimal period of temperature fluctuations to drive the optimal load resistance. PMID:26270666
Hasegawa, M
2011-03-01
The aim of the present study is to elucidate how simulated annealing (SA) works in its finite-time implementation by starting from the verification of its conventional optimization scenario based on equilibrium statistical mechanics. Two and one supplementary experiments, the design of which is inspired by concepts and methods developed for studies on liquid and glass, are performed on two types of random traveling salesman problems. In the first experiment, a newly parameterized temperature schedule is introduced to simulate a quasistatic process along the scenario and a parametric study is conducted to investigate the optimization characteristics of this adaptive cooling. In the second experiment, the search trajectory of the Metropolis algorithm (constant-temperature SA) is analyzed in the landscape paradigm in the hope of drawing a precise physical analogy by comparison with the corresponding dynamics of glass-forming molecular systems. These two experiments indicate that the effectiveness of finite-time SA comes not from equilibrium sampling at low temperature but from downward interbasin dynamics occurring before equilibrium. These dynamics work most effectively at an intermediate temperature varying with the total search time and thus this effective temperature is identified using the Deborah number. To test directly the role of these relaxation dynamics in the process of cooling, a supplementary experiment is performed using another parameterized temperature schedule with a piecewise variable cooling rate and the effect of this biased cooling is examined systematically. The results show that the optimization performance is not only dependent on but also sensitive to cooling in the vicinity of the above effec-tive temperature and that this feature is interpreted as a consequence of the presence or absence of the workable interbasin dynamics. It is confirmed for the present instances that the effectiveness of finite-time SA derives from the glassy relaxation dynamics occurring in the "landscape-influenced" temperature regime and that its naive optimization scenario should be rectified by considering the analogy with vitrification phenomena. A comprehensive guideline for the design of finite-time SA and SA-related algorithms is discussed on the basis of this rectified analogy.
NASA Astrophysics Data System (ADS)
Ogren, Ryan M.
For this work, Hybrid PSO-GA and Artificial Bee Colony Optimization (ABC) algorithms are applied to the optimization of experimental diesel engine performance, to meet Environmental Protection Agency, off-road, diesel engine standards. This work is the first to apply ABC optimization to experimental engine testing. All trials were conducted at partial load on a four-cylinder, turbocharged, John Deere engine using neat-Biodiesel for PSO-GA and regular pump diesel for ABC. Key variables were altered throughout the experiments, including, fuel pressure, intake gas temperature, exhaust gas recirculation flow, fuel injection quantity for two injections, pilot injection timing and main injection timing. Both forms of optimization proved effective for optimizing engine operation. The PSO-GA hybrid was able to find a superior solution to that of ABC within fewer engine runs. Both solutions call for high exhaust gas recirculation to reduce oxide of nitrogen (NOx) emissions while also moving pilot and main fuel injections to near top dead center for improved tradeoffs between NOx and particulate matter.
Ruys, Andrew J.
2018-01-01
Electrospun fibres have gained broad interest in biomedical applications, including tissue engineering scaffolds, due to their potential in mimicking extracellular matrix and producing structures favourable for cell and tissue growth. The development of scaffolds often involves multivariate production parameters and multiple output characteristics to define product quality. In this study on electrospinning of polycaprolactone (PCL), response surface methodology (RSM) was applied to investigate the determining parameters and find optimal settings to achieve the desired properties of fibrous scaffold for acetabular labrum implant. The results showed that solution concentration influenced fibre diameter, while elastic modulus was determined by solution concentration, flow rate, temperature, collector rotation speed, and interaction between concentration and temperature. Relationships between these variables and outputs were modelled, followed by an optimization procedure. Using the optimized setting (solution concentration of 10% w/v, flow rate of 4.5 mL/h, temperature of 45 °C, and collector rotation speed of 1500 RPM), a target elastic modulus of 25 MPa could be achieved at a minimum possible fibre diameter (1.39 ± 0.20 µm). This work demonstrated that multivariate factors of production parameters and multiple responses can be investigated, modelled, and optimized using RSM. PMID:29562614
NASA Astrophysics Data System (ADS)
Vasil'ev, E. N.
2017-09-01
A mathematical model has been proposed for analyzing and optimizing thermoelectric cooling regimes for heat-loaded elements of engineering and electronic devices. The model based on analytic relations employs the working characteristics of thermoelectric modules as the initial data and makes it possible to determine the temperature regime and the optimal values of the feed current for the modules taking into account the thermal resistance of the heat-spreading system.
Li, Chunyan; Wu, Pei-Ming; Wu, Zhizhen; Ahn, Chong H; LeDoux, David; Shutter, Lori A; Hartings, Jed A; Narayan, Raj K
2012-02-01
The injured brain is vulnerable to increases in temperature after severe head injury. Therefore, accurate and reliable measurement of brain temperature is important to optimize patient outcome. In this work, we have fabricated, optimized and characterized temperature sensors for use with a micromachined smart catheter for multimodal intracranial monitoring. Developed temperature sensors have resistance of 100.79 ± 1.19Ω and sensitivity of 67.95 mV/°C in the operating range from15-50°C, and time constant of 180 ms. Under the optimized excitation current of 500 μA, adequate signal-to-noise ratio was achieved without causing self-heating, and changes in immersion depth did not introduce clinically significant errors of measurements (<0.01°C). We evaluated the accuracy and long-term drift (5 days) of twenty temperature sensors in comparison to two types of commercial temperature probes (USB Reference Thermometer, NIST-traceable bulk probe with 0.05°C accuracy; and IT-21, type T type clinical microprobe with guaranteed 0.1°C accuracy) under controlled laboratory conditions. These in vitro experimental data showed that the temperature measurement performance of our sensors was accurate and reliable over the course of 5 days. The smart catheter temperature sensors provided accuracy and long-term stability comparable to those of commercial tissue-implantable microprobes, and therefore provide a means for temperature measurement in a microfabricated, multimodal cerebral monitoring device.
NASA Astrophysics Data System (ADS)
Mou, Jian; Hong, Guotong
2017-02-01
In this paper, the dimensionless power is used to optimize the free piston Stirling engines (FPSE). The dimensionless power is defined as a ratio of the heat power loss and the output work. The heat power losses include the losses of expansion space, heater, regenerator, cooler and the compression space and every kind of the heat loss calculated by empirical formula. The output work is calculated by the adiabatic model. The results show that 82.66% of the losses come from the expansion space and 54.59% heat losses of expansion space come from the shuttle loss. At different pressure the optimum bore-stroke ratio, heat source temperature, phase angle and the frequency have different values, the optimum phase angles increase with the increase of pressure, but optimum frequencies drop with the increase of pressure. However, no matter what the heat source temperature, initial pressure and frequency are, the optimum ratios of piston stroke and displacer stroke all about 0.8. The three-dimensional diagram is used to analyse Stirling engine. From the three-dimensional diagram the optimum phase angle, frequency and heat source temperature can be acquired at the same time. This study offers some guides for the design and optimization of FPSEs.
Dynamic optimization and adaptive controller design
NASA Astrophysics Data System (ADS)
Inamdar, S. R.
2010-10-01
In this work I present a new type of controller which is an adaptive tracking controller which employs dynamic optimization for optimizing current value of controller action for the temperature control of nonisothermal continuously stirred tank reactor (CSTR). We begin with a two-state model of nonisothermal CSTR which are mass and heat balance equations and then add cooling system dynamics to eliminate input multiplicity. The initial design value is obtained using local stability of steady states where approach temperature for cooling action is specified as a steady state and a design specification. Later we make a correction in the dynamics where material balance is manipulated to use feed concentration as a system parameter as an adaptive control measure in order to avoid actuator saturation for the main control loop. The analysis leading to design of dynamic optimization based parameter adaptive controller is presented. The important component of this mathematical framework is reference trajectory generation to form an adaptive control measure.
Lee, Chi-Yuan; Lee, Shuo-Jen; Shen, Chia-Chieh; Yeh, Chuin-Tih; Chang, Chi-Chung; Lo, Yi-Man
2011-01-01
Advances in fuel cell applications reflect the ability of reformers to produce hydrogen. This work presents a flexible micro temperature sensor that is fabricated based on micro-electro-mechanical systems (MEMS) technology and integrated into a flat micro methanol reformer to observe the conditions inside that reformer. The micro temperature sensor has higher accuracy and sensitivity than a conventionally adopted thermocouple. Despite various micro temperature sensor applications, integrated micro reformers are still relatively new. This work proposes a novel method for integrating micro methanol reformers and micro temperature sensors, subsequently increasing the methanol conversion rate and the hydrogen production rate by varying the fuel supply rate and the water/methanol ratio. Importantly, the proposed micro temperature sensor adequately controls the interior temperature during oxidative steam reforming of methanol (OSRM), with the relevant parameters optimized as well. PMID:22319407
A strategy to optimize the thermoelectric performance in a spark plasma sintering process
Chiu, Wan-Ting; Chen, Cheng-Lung; Chen, Yang-Yuan
2016-01-01
Spark plasma sintering (SPS) is currently widely applied to existing alloys as a means of further enhancing the alloys’ figure of merit. However, the determination of the optimal sintering condition is challenging in the SPS process. This report demonstrates a systematic way to independently optimize the Seebeck coefficient S and the ratio of electrical to thermal conductivity (σ/κ) and thus achieve the maximum figure of merit zT = S2(σ/κ)T. Sb2−xInxTe3 (x = 0–0.2) were chosen as examples to validate the method. Although high sintering temperature and pressure are helpful in enhancing the compactness and electrical conductivity of pressed samples, the resultant deteriorated Seebeck coefficient and increasing thermal conductivity eventually offset the benefit. We found that the optimal sintering temperature coincides with temperatures at which the maximum Seebeck coefficient begins to degrade, whereas the optimal sintering pressure coincided with the pressure at which the σ/κ ratio reaches a maximum. Based on this principle, the optimized sintering conditions were determined, and the zT of Sb1.9In0.1Te3 is raised to 0.92 at 600 K, showing an approximately 84% enhancement. This work develops a facile strategy for selecting the optimal SPS sintering condition to further enhance the zT of bulk specimens. PMID:26975209
NASA Astrophysics Data System (ADS)
Teplukhina, A. A.; Sauter, O.; Felici, F.; Merle, A.; Kim, D.; the TCV Team; the ASDEX Upgrade Team; the EUROfusion MST1 Team
2017-12-01
The present work demonstrates the capabilities of the transport code RAPTOR as a fast and reliable simulator of plasma profiles for the entire plasma discharge, i.e. from ramp-up to ramp-down. This code focuses, at this stage, on the simulation of electron temperature and poloidal flux profiles using prescribed equilibrium and some kinetic profiles. In this work we extend the RAPTOR transport model to include a time-varying plasma equilibrium geometry and verify the changes via comparison with ATSRA code simulations. In addition a new ad hoc transport model based on constant gradients and suitable for simulations of L-H and H-L mode transitions has been incorporated into the RAPTOR code and validated with rapid simulations of the time evolution of the safety factor and the electron temperature over the entire AUG and TCV discharges. An optimization procedure for the plasma termination phase has also been developed during this work. We define the goal of the optimization as ramping down the plasma current as fast as possible while avoiding any disruptions caused by reaching physical or technical limits. Our numerical study of this problem shows that a fast decrease of plasma elongation during current ramp-down can help in reducing plasma internal inductance. An early transition from H- to L-mode allows us to reduce the drop in poloidal beta, which is also important for plasma MHD stability and control. This work shows how these complex nonlinear interactions can be optimized automatically using relevant cost functions and constraints. Preliminary experimental results for TCV are demonstrated.
Optimization study on the magnetic field of superconducting Halbach Array magnet
NASA Astrophysics Data System (ADS)
Shen, Boyang; Geng, Jianzhao; Li, Chao; Zhang, Xiuchang; Fu, Lin; Zhang, Heng; Ma, Jun; Coombs, T. A.
2017-07-01
This paper presents the optimization on the strength and homogeneity of magnetic field from superconducting Halbach Array magnet. Conventional Halbach Array uses a special arrangement of permanent magnets which can generate homogeneous magnetic field. Superconducting Halbach Array utilizes High Temperature Superconductor (HTS) to construct an electromagnet to work below its critical temperature, which performs equivalently to the permanent magnet based Halbach Array. The simulations of superconducting Halbach Array were carried out using H-formulation based on B-dependent critical current density and bulk approximation, with the FEM platform COMSOL Multiphysics. The optimization focused on the coils' location, as well as the geometry and numbers of coils on the premise of maintaining the total amount of superconductor. Results show Halbach Array configuration based superconducting magnet is able to generate the magnetic field with intensity over 1 Tesla and improved homogeneity using proper optimization methods. Mathematical relation of these optimization parameters with the intensity and homogeneity of magnetic field was developed.
NASA Astrophysics Data System (ADS)
Hasegawa, Manabu; Hiramatsu, Kotaro
2013-10-01
The effectiveness of the Metropolis algorithm (MA) (constant-temperature simulated annealing) in optimization by the method of search-space smoothing (SSS) (potential smoothing) is studied on two types of random traveling salesman problems. The optimization mechanism of this hybrid approach (MASSS) is investigated by analyzing the exploration dynamics observed in the rugged landscape of the cost function (energy surface). The results show that the MA can be successfully utilized as a local search algorithm in the SSS approach. It is also clarified that the optimization characteristics of these two constituent methods are improved in a mutually beneficial manner in the MASSS run. Specifically, the relaxation dynamics generated by employing the MA work effectively even in a smoothed landscape and more advantage is taken of the guiding function proposed in the idea of SSS; this mechanism operates in an adaptive manner in the de-smoothing process and therefore the MASSS method maintains its optimization function over a wider temperature range than the MA.
Effect of Upper-Cycle Temperature on the Load-Biased, Strain-Temperature Response of NiTi
NASA Technical Reports Server (NTRS)
Padula, Santo, II; Vaidyanathan, Raj; Gaydosh, Darrell; Noebe, Ronald; Bigelow, Glen; Garg, Anita
2008-01-01
Over the past decade, interest in shape memory alloy based actuators has increased as the primary benefits of these solid-state devices have become more apparent. However, much is still unknown about the characteristic behavior of these materials when used in actuator applications. Recently we have shown that the maximum temperature reached during thermal cycling under isobaric conditions could significantly affect the observed mechanical response of NiTi (55 wt% Ni), especially the amount of transformation strain available for actuation and thus work output. This investigation extends that original work to ascertain whether further increases in the upper-cycle temperature would produce additional improvement in the work output of the material, which has a stress-free Af of 113 oC, and to determine the optimum cyclic conditions. Thus, isobaric, thermal-cycle experiments were conducted in the aforementioned alloy at various stress levels from 50-300 MPa using upper-cycle temperatures of 165, 200, 230, 260, 290, 320 and 350 oC. The data indicated that the amount of applied stress influenced the transformation strain available in the system, as would be expected. However, the maximum temperature reached during the thermal excursion also plays a role in determining the transformation strain, with the maximum transformation strain being developed by thermal cycling to 290 oC. In situ, neutron diffraction showed that the differences in transformation strain were related to differences in martensite texture within the microstructure when cycling to different upper-cycle temperatures. Hence, understanding this effect is important to optimizing the operation of SMA-based actuators and could lead to new methods for processing and training shape memory alloys for optimal performance.
Zheng, Xin; Yan, Xiaoqin; Sun, Yihui; Yu, Yinsheng; Zhang, Guangjie; Shen, Yanwei; Liang, Qijie; Liao, Qingliang; Zhang, Yue
2016-03-15
The design and optimization of supercapacitors electrodes nanostructures are critically important since the properties of supercapacitors can be dramatically enhanced by tunable ion transport channels. Herein, we demonstrate high-performance supercapacitor electrodes materials based on α-Fe2O3 by rationally designing the electrode microstructure. The large solid-liquid reaction interfaces induced by hollow nanoshuttle-like structures not only provide more active sites for faradic reactions but also facilitate the diffusion of the electrolyte into electrodes. These result in the optimized electrodes with high capacitance of 249 F g(-1) at a discharging current density of 0.5 A g(-1) as well as good cycle stability. In addition, the relationship between charge storage and the operating temperature has been researched. The specific capacitance has no significant change when the working temperature increased from 20 °C to 60 °C (e.g. 203 F g(-1) and 234 F g(-1) at 20 °C and 60 °C, respectively), manifesting the electrodes can work stably in a wide temperature range. These findings here elucidate the α-Fe2O3 hollow nanoshuttles can be applied as a promising supercapacitor electrode material for the efficient energy storage at various potential temperatures. Copyright © 2015 Elsevier Inc. All rights reserved.
2012-05-29
Hunter College has completed work on baseline measurements of relaxation times for pentacene at various temperatures in order to determine optimal...temperatures for measuring relaxation rate as a function of doping. We have also repeated these measurements on pentacene samples at 2 different...P3HT using a time-lag method. 2 Technical Accomplishments This Period Relaxation Measurements on Pentacene . As described initially in the 1Q
New generation photoelectric converter structure optimization using nano-structured materials
NASA Astrophysics Data System (ADS)
Dronov, A.; Gavrilin, I.; Zheleznyakova, A.
2014-12-01
In present work the influence of anodizing process parameters on PAOT geometric parameters for optimizing and increasing ETA-cell efficiency was studied. During the calculations optimal geometrical parameters were obtained. Parameters such as anodizing current density, electrolyte composition and temperature, as well as the anodic oxidation process time were selected for this investigation. Using the optimized TiO2 photoelectrode layer with 3,6 μm porous layer thickness and pore diameter more than 80 nm the ETA-cell efficiency has been increased by 3 times comparing to not nanostructured TiO2 photoelectrode.
Long, Han; Cai, XingHua; Yang, Hui; He, JunBin; Wu, Jia; Lin, RiHui
2017-09-01
In order to improve the stability of oxalate decarboxylase (Oxdc), response surface methodology (RSM), based on a four-factor three-level Box-Behnken central composite design was used to optimize the reaction conditions of oxalate decarboxylase (Oxdc) modified with monomethoxy polyethyleneglycol (mPEG5000). Four independent variables such as the ratio of mPEG-aldehyde to Oxdc, reaction time, temperature, and reaction pH were investigated in this work. The structure of modified Oxdc was identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Fourier transform infrared (FTIR) spectroscopy, the stability of the modified Oxdc was also investigated. The optimal conditions were as follows: the mole ratio of mPEG-aldehyde to Oxdc of 1:47.6, time of 13.1 h, temperature at 29.9 °C, and the reaction pH of 5.3. Under optimal conditions, experimental modified rate (MR = 73.69%) and recovery rate (RR = 67.58%) were matched well with the predicted value (MR = 75.11%) and (RR = 69.17%). SDS-PAGE and FTIR analysis showed that mPEG was covalently bound to the Oxdc. Compared with native Oxdc, the modified Oxdc (mPEG-Oxdc) showed higher thermal stability and better tolerance to trypsin or different pH treatment. This work will provide a further theoretical reference for enzyme modification and conditional optimization.
Optimal Design of Functionally Graded Metallic Foam Insulations
NASA Technical Reports Server (NTRS)
Haftka, Raphael T.; Sankar, Bhavani; Venkataraman, Satchi; Zhu, Huadong
2002-01-01
The focus of our work has been on developing an insight into the physics that govern the optimum design of thermal insulation for use in thermal protection systems of launch vehicle. Of particular interest was to obtain optimality criteria for designing foam insulations that have density (or porosity) distributions through the thickness for optimum thermal performance. We investigate the optimum design of functionally graded thermal insulation for steady state heat transfer through the foam. We showed that the heat transfer in the foam has competing modes, of radiation and conduction. The problem assumed a fixed inside temperature of 400 K and varied the aerodynamic surface heating on the outside surface from 0.2 to 1.0 MW/sq m. The thermal insulation develops a high temperature gradient through the thickness. Investigation of the model developed for heat conduction in foams showed that at high temperatures (as on outside wall) intracellular radiation dominates the heat transfer in the foam. Minimizing radiation requires reducing the pore size, which increases the density of the foam. At low temperatures (as on the inside wall), intracellular conduction (of the metal and air) dominates the heat transfer. Minimizing conduction requires increasing the pore size. This indicated that for every temperature there was an optimum value of density that minimized the heat transfer coefficient. Two optimization studies were performed. One was to minimize the heat transmitted though a fixed thickness insulation by varying density profiles. The second was to obtain the minimum mass insulation for specified thickness. Analytical optimality criteria were derived for the cases considered. The optimality condition for minimum heat transfer required that at each temperature we find the density that minimizes the heat transfer coefficient. Once a relationship between the optimum heat transfer coefficient and the temperature was found, the design problem reduced to the solution of a simple nonlinear differential equation. Preliminary results of this work were presented at the American Society of Composites meeting, and the final version was submitted for publication in the AIAA Journal. In addition to minimizing the transmitted heat, we investigated the optimum design for minimum weight given an acceptable level of heat transmission through the insulation. The optimality criterion developed was different from that obtained for minimizing beat transfer coefficient. For minimum mass design, we had to find for a given temperature the optimum density, which minimized the logarithmic derivative of the insulation thermal conductivity with respect to its density. The logarithmic derivative is defined as the ratio of relative change in the dependent response (thermal conductivity) to the relative change in the independent variable (density). The results have been documented as a conference paper that will be presented at the upcoming AIAA.
Optimal Power and Efficiency of Quantum Thermoacoustic Micro-cycle Working in 1D Harmonic Trap
NASA Astrophysics Data System (ADS)
E, Qing; Wu, Feng; Yin, Yong; Liu, XiaoWei
2017-10-01
Thermoacoustic engines (including heat engines and refrigerators) are energy conversion devices without moving part. They have great potential in aviation, new energy utilization, power technology, refrigerating and cryogenics. The thermoacoustic parcels, which compose the working fluid of a thermoacoustic engine, oscillate within the sound channel with a temperature gradient. The thermodynamic foundation of a thermoacoustic engine is the thermoacoustic micro-cycle (TAMC). In this paper, the theory of quantum mechanics is applied to the study of the actual thermoacoustic micro-cycle for the first time. A quantum mechanics model of the TAMC working in a 1D harmonic trap, which is named as a quantum thermoacoustic micro-cycle (QTAMC), is established. The QTAMC is composed of two constant force processes connected by two straight line processes. Analytic expressions of the power output and the efficiency for QTAMC have been derived. The effects of the trap width and the temperature amplitude on the power output and the thermal efficiency have been discussed. Some optimal characteristic curves of power output versus efficiency are plotted, and then the optimization region of QTAMC is given in this paper. The results obtained here not only enrich the thermoacoustic theory but also expand the application of quantum thermodynamics.
NASA Astrophysics Data System (ADS)
Davis, A. D.; Huan, X.; Heimbach, P.; Marzouk, Y.
2017-12-01
Borehole data are essential for calibrating ice sheet models. However, field expeditions for acquiring borehole data are often time-consuming, expensive, and dangerous. It is thus essential to plan the best sampling locations that maximize the value of data while minimizing costs and risks. We present an uncertainty quantification (UQ) workflow based on rigorous probability framework to achieve these objectives. First, we employ an optimal experimental design (OED) procedure to compute borehole locations that yield the highest expected information gain. We take into account practical considerations of location accessibility (e.g., proximity to research sites, terrain, and ice velocity may affect feasibility of drilling) and robustness (e.g., real-time constraints such as weather may force researchers to drill at sub-optimal locations near those originally planned), by incorporating a penalty reflecting accessibility as well as sensitivity to deviations from the optimal locations. Next, we extract vertical temperature profiles from these boreholes and formulate a Bayesian inverse problem to reconstruct past surface temperatures. Using a model of temperature advection/diffusion, the top boundary condition (corresponding to surface temperatures) is calibrated via efficient Markov chain Monte Carlo (MCMC). The overall procedure can then be iterated to choose new optimal borehole locations for the next expeditions.Through this work, we demonstrate powerful UQ methods for designing experiments, calibrating models, making predictions, and assessing sensitivity--all performed under an uncertain environment. We develop a theoretical framework as well as practical software within an intuitive workflow, and illustrate their usefulness for combining data and models for environmental and climate research.
Suppression of work fluctuations by optimal control: An approach based on Jarzynski's equality
NASA Astrophysics Data System (ADS)
Xiao, Gaoyang; Gong, Jiangbin
2014-11-01
Understanding and manipulating work fluctuations in microscale and nanoscale systems are of both fundamental and practical interest. For example, aspects of work fluctuations will be an important factor in designing nanoscale heat engines. In this work, an optimal control approach directly exploiting Jarzynski's equality is proposed to effectively suppress the fluctuations in the work statistics, for systems (initially at thermal equilibrium) subject to a work protocol but isolated from a bath during the protocol. The control strategy is to minimize the deviations of individual values of e-β W from their ensemble average given by e-β Δ F, where W is the work, β is the inverse temperature, and Δ F is the free energy difference between two equilibrium states. It is further shown that even when the system Hamiltonian is not fully known, it is still possible to suppress work fluctuations through a feedback loop, by refining the control target function on the fly through Jarzynski's equality itself. Numerical experiments are based on linear and nonlinear parametric oscillators. Optimal control results for linear parametric oscillators are also benchmarked with early results based on shortcuts to adiabaticity.
Lactic acid production from submerged fermentation of broken rice using undefined mixed culture.
Nunes, Luiza Varela; de Barros Correa, Fabiane Fernanda; de Oliva Neto, Pedro; Mayer, Cassia Roberta Malacrida; Escaramboni, Bruna; Campioni, Tania Sila; de Barros, Natan Roberto; Herculano, Rondinelli Donizetti; Fernández Núñez, Eutimio Gustavo
2017-04-01
The present work aimed to characterize and optimize the submerged fermentation of broken rice for lactic acid (LA) production using undefined mixed culture from dewatered activated sludge. A microorganism with amylolytic activity, which also produces LA, Lactobacillus amylovorus, was used as a control to assess the extent of mixed culture on LA yield. Three level full factorial designs were performed to optimize and define the influence of fermentation temperature (20-50 °C), gelatinization time (30-60 min) and broken rice concentration in culture medium (40-80 g L -1 ) on LA production in pure and undefined mixed culture. LA production in mixed culture (9.76 g L -1 ) increased in sixfold respect to pure culture in optimal assessed experimental conditions. The optimal conditions for maximizing LA yield in mixed culture bioprocess were 31 °C temperature, 45 min gelatinization time and 79 g L -1 broken rice concentration in culture medium. This study demonstrated the positive effect of undefined mixed culture from dewatered activated sludge to produce LA from culture medium formulated with broken rice. In addition, this work establishes the basis for an efficient and low-cost bioprocess to manufacture LA from this booming agro-industrial by-product.
NASA Astrophysics Data System (ADS)
Açıkkalp, Emin; Yamık, Hasan
2015-03-01
In classical thermodynamics, the maximum power obtained from a system is defined as exergy (availability). However, the term exergy is used for reversible cycles only; in reality, reversible cycles do not exist, and all systems are irreversible. Reversible cycles do not have such restrictions as time and dimension, and are assumed to work in an equilibrium state. The objective of this study is to obtain maximum available work for SI, CI and Brayton cycles while considering the aforementioned restrictions and assumptions. We assume that the specific heat of the working fluid varies with temperature, we define optimum compression ratios and pressure ratio in order to obtain maximum available work, and we discuss the results obtained. The design parameter most appropriate for the results obtained is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnan, Shankar; Karri, Naveen K.; Gogna, Pawan K.
2012-03-13
Enormous military and commercial interests exist in developing quiet, lightweight, and compact thermoelectric (TE) power generation systems. This paper investigates design integration and analysis of an advanced TE power generation system implementing JP-8 fueled combustion and thermal recuperation. Design and development of a portable TE power system using a JP-8 combustor as a high temperature heat source and optimal process flows depend on efficient heat generation, transfer, and recovery within the system are explored. Design optimization of the system required considering the combustion system efficiency and TE conversion efficiency simultaneously. The combustor performance and TE sub-system performance were coupled directlymore » through exhaust temperatures, fuel and air mass flow rates, heat exchanger performance, subsequent hot-side temperatures, and cold-side cooling techniques and temperatures. Systematic investigation of this system relied on accurate thermodynamic modeling of complex, high-temperature combustion processes concomitantly with detailed thermoelectric converter thermal/mechanical modeling. To this end, this work reports on design integration of systemlevel process flow simulations using commercial software CHEMCADTM with in-house thermoelectric converter and module optimization, and heat exchanger analyses using COMSOLTM software. High-performance, high-temperature TE materials and segmented TE element designs are incorporated in coupled design analyses to achieve predicted TE subsystem level conversion efficiencies exceeding 10%. These TE advances are integrated with a high performance microtechnology combustion reactor based on recent advances at the Pacific Northwest National Laboratory (PNNL). Predictions from this coupled simulation established a basis for optimal selection of fuel and air flow rates, thermoelectric module design and operating conditions, and microtechnology heat-exchanger design criteria. This paper will discuss this simulation process that leads directly to system efficiency power maps defining potentially available optimal system operating conditions and regimes. This coupled simulation approach enables pathways for integrated use of high-performance combustor components, high performance TE devices, and microtechnologies to produce a compact, lightweight, combustion driven TE power system prototype that operates on common fuels.« less
Investigation of two-phase thermosyphon performance filled with modern HFC refrigerants
NASA Astrophysics Data System (ADS)
Gorecki, Grzegorz
2018-02-01
Two-phase closed thermosyphons (TPCTs) are widely utilized as heat exchanger elements in waste heat recovery systems and as passive heating/cooling devices. They are popular because of their high thermal conductivity, simple construction and reliability. Previous researches indicate that refrigerants are performing better than typical TPCT working fluids like deionized water or alcohols in the low temperature range. In the present study three HFC (Hydrofluorocarbons) refrigerants were tested: R134a, R404A and R407C. The total length of the investigated TPCT is 550 mm with equal length (245 mm) condenser and evaporator sections. Its outer diameter is 22 mm with 1 mm wall thickness. The evaporator section was heated by hot water with varying inlet temperature by 5 K step in the range of 288 K - 323 K. The condenser was cooled by cold water with inlet temperature kept at a constant value of 283 K. It was found that using R134a and R404A as working fluids heat transfer rates are the highest. For both refrigerants 10% is optimal filling ratio. They can be utilized interchangeably because the differences between their throughputs are within uncertainty bands. R407C performance was 50% lower. Other disadvantages of using this refrigerant are relatively high working pressures and higher optimal filling ratio (30%).
Investigation of two-phase thermosyphon performance filled with modern HFC refrigerants
NASA Astrophysics Data System (ADS)
Gorecki, Grzegorz
2018-07-01
Two-phase closed thermosyphons (TPCTs) are widely utilized as heat exchanger elements in waste heat recovery systems and as passive heating/cooling devices. They are popular because of their high thermal conductivity, simple construction and reliability. Previous researches indicate that refrigerants are performing better than typical TPCT working fluids like deionized water or alcohols in the low temperature range. In the present study three HFC (Hydrofluorocarbons) refrigerants were tested: R134a, R404A and R407C. The total length of the investigated TPCT is 550 mm with equal length (245 mm) condenser and evaporator sections. Its outer diameter is 22 mm with 1 mm wall thickness. The evaporator section was heated by hot water with varying inlet temperature by 5 K step in the range of 288 K - 323 K. The condenser was cooled by cold water with inlet temperature kept at a constant value of 283 K. It was found that using R134a and R404A as working fluids heat transfer rates are the highest. For both refrigerants 10% is optimal filling ratio. They can be utilized interchangeably because the differences between their throughputs are within uncertainty bands. R407C performance was 50% lower. Other disadvantages of using this refrigerant are relatively high working pressures and higher optimal filling ratio (30%).
Fraser, Kirk A.; St-Georges, Lyne; Kiss, Laszlo I.
2014-01-01
Recognition of the friction stir welding process is growing in the aeronautical and aero-space industries. To make the process more available to the structural fabrication industry (buildings and bridges), being able to model the process to determine the highest speed of advance possible that will not cause unwanted welding defects is desirable. A numerical solution to the transient two-dimensional heat diffusion equation for the friction stir welding process is presented. A non-linear heat generation term based on an arbitrary piecewise linear model of friction as a function of temperature is used. The solution is used to solve for the temperature distribution in the Al 6061-T6 work pieces. The finite difference solution of the non-linear problem is used to perform a Monte-Carlo simulation (MCS). A polynomial response surface (maximum welding temperature as a function of advancing and rotational speed) is constructed from the MCS results. The response surface is used to determine the optimum tool speed of advance and rotational speed. The exterior penalty method is used to find the highest speed of advance and the associated rotational speed of the tool for the FSW process considered. We show that good agreement with experimental optimization work is possible with this simplified model. Using our approach an optimal weld pitch of 0.52 mm/rev is obtained for 3.18 mm thick AA6061-T6 plate. Our method provides an estimate of the optimal welding parameters in less than 30 min of calculation time. PMID:28788627
Fraser, Kirk A; St-Georges, Lyne; Kiss, Laszlo I
2014-04-30
Recognition of the friction stir welding process is growing in the aeronautical and aero-space industries. To make the process more available to the structural fabrication industry (buildings and bridges), being able to model the process to determine the highest speed of advance possible that will not cause unwanted welding defects is desirable. A numerical solution to the transient two-dimensional heat diffusion equation for the friction stir welding process is presented. A non-linear heat generation term based on an arbitrary piecewise linear model of friction as a function of temperature is used. The solution is used to solve for the temperature distribution in the Al 6061-T6 work pieces. The finite difference solution of the non-linear problem is used to perform a Monte-Carlo simulation (MCS). A polynomial response surface (maximum welding temperature as a function of advancing and rotational speed) is constructed from the MCS results. The response surface is used to determine the optimum tool speed of advance and rotational speed. The exterior penalty method is used to find the highest speed of advance and the associated rotational speed of the tool for the FSW process considered. We show that good agreement with experimental optimization work is possible with this simplified model. Using our approach an optimal weld pitch of 0.52 mm/rev is obtained for 3.18 mm thick AA6061-T6 plate. Our method provides an estimate of the optimal welding parameters in less than 30 min of calculation time.
Patel, Rajankumar L.; Jiang, Ying-Bing; Choudhury, Amitava; Liang, Xinhua
2016-01-01
Atomic layer deposition (ALD) has evolved as an important technique to coat conformal protective thin films on cathode and anode particles of lithium ion batteries to enhance their electrochemical performance. Coating a conformal, conductive and optimal ultrathin film on cathode particles has significantly increased the capacity retention and cycle life as demonstrated in our previous work. In this work, we have unearthed the synergetic effect of electrochemically active iron oxide films coating and partial doping of iron on LiMn1.5Ni0.5O4 (LMNO) particles. The ionic Fe penetrates into the lattice structure of LMNO during the ALD process. After the structural defects were saturated, the iron started participating in formation of ultrathin oxide films on LMNO particle surface. Owing to the conductive nature of iron oxide films, with an optimal film thickness of ~0.6 nm, the initial capacity improved by ~25% at room temperature and by ~26% at an elevated temperature of 55 °C at a 1C cycling rate. The synergy of doping of LMNO with iron combined with the conductive and protective nature of the optimal iron oxide film led to a high capacity retention (~93% at room temperature and ~91% at 55 °C) even after 1,000 cycles at a 1C cycling rate. PMID:27142704
Zamora, R M Ramirez; Ayala, F Espesel; Garcia, L Chavez; Moreno, A Duran; Schouwenaars, R
2008-11-01
The aim of this work is to optimize, via Response Surface Methodology, the values of the main process parameters for the production of ceramic products using sludges obtained from drinking water treatment in order to valorise them. In the first experimental stage, sludges were collected from a drinking water treatment plant for characterization. In the second stage, trials were carried out to elaborate thin cross-section specimens and fired bricks following an orthogonal central composite design of experiments with three factors (sludge composition, grain size and firing temperature) and five levels. The optimization parameters (Y(1)=shrinking by firing (%), Y(2)=water absorption (%), Y(3)=density (g/cm(3)) and Y(4)=compressive strength (kg/cm(2))) were determined according to standardized analytical methods. Two distinct physicochemical processes were active during firing at different conditions in the experimental design, preventing the determination of a full response surface, which would allow direct optimization of production parameters. Nevertheless, the temperature range for the production of classical red brick was closely delimitated by the results; above this temperature, a lightweight ceramic with surprisingly high strength was produced, opening possibilities for the valorisation of a product with considerably higher added value than what was originally envisioned.
Nonlinear Burn Control and Operating Point Optimization in ITER
NASA Astrophysics Data System (ADS)
Boyer, Mark; Schuster, Eugenio
2013-10-01
Control of the fusion power through regulation of the plasma density and temperature will be essential for achieving and maintaining desired operating points in fusion reactors and burning plasma experiments like ITER. In this work, a volume averaged model for the evolution of the density of energy, deuterium and tritium fuel ions, alpha-particles, and impurity ions is used to synthesize a multi-input multi-output nonlinear feedback controller for stabilizing and modulating the burn condition. Adaptive control techniques are used to account for uncertainty in model parameters, including particle confinement times and recycling rates. The control approach makes use of the different possible methods for altering the fusion power, including adjusting the temperature through auxiliary heating, modulating the density and isotopic mix through fueling, and altering the impurity density through impurity injection. Furthermore, a model-based optimization scheme is proposed to drive the system as close as possible to desired fusion power and temperature references. Constraints are considered in the optimization scheme to ensure that, for example, density and beta limits are avoided, and that optimal operation is achieved even when actuators reach saturation. Supported by the NSF CAREER award program (ECCS-0645086).
Performance of discrete heat engines and heat pumps in finite time
Feldmann; Kosloff
2000-05-01
The performance in finite time of a discrete heat engine with internal friction is analyzed. The working fluid of the engine is composed of an ensemble of noninteracting two level systems. External work is applied by changing the external field and thus the internal energy levels. The friction induces a minimal cycle time. The power output of the engine is optimized with respect to time allocation between the contact time with the hot and cold baths as well as the adiabats. The engine's performance is also optimized with respect to the external fields. By reversing the cycle of operation a heat pump is constructed. The performance of the engine as a heat pump is also optimized. By varying the time allocation between the adiabats and the contact time with the reservoir a universal behavior can be identified. The optimal performance of the engine when the cold bath is approaching absolute zero is studied. It is found that the optimal cooling rate converges linearly to zero when the temperature approaches absolute zero.
Ye, Zhuolin; Hu, Yingying; He, Jizhou; Wang, Jianhui
2017-07-24
We study the performance of a cyclic heat engine which uses a small system with a finite number of ultracold atoms as its working substance and works between two heat reservoirs at constant temperatures T h and T c (
Idrees, Muhammad; Adnan, Ahmad; Malik, Farnaz; Qureshi, Fahim Ashraf
2013-01-01
This work estimates the potential of banana pseudo-stem with high cellulosic content 42.2-63 %, for the production of fermentable sugars for lactic acid production through statistically optimized pretreatment method. To evaluate the catalyzed pretreatment efficiency of banana pseudo stem based on the enzymatic digestibility, Response Surface Methodology (RSM) was employed for the optimization of pretreatment temperature and time using lowest concentrations of H2SO4, NaOH, NaOH catalyzed Na2S and Na2SO3 that seemed to be significant variables with P<0.05. High F and R2 values and low p-value for hydrolysis yield indicated the model predictability. The optimized condition for NaOH was determined to be conc. 1 %, temperature 130 oC for 2.6 hr; Na2S; conc. 1 %, temperature 130 oC for 2.29 hr; Na2SO3; conc. 1 %, temperature 130 oC for 2.41 hr and H2SO4; conc. 1 %, temperature 129.45 oC for 2.18 hr, produced 84.91 %, 85.23 %, 81.2 % and 76.02 % hydrolysis yield, respectively. Sulphuric acid provided 33+1 gL-1 reducing sugars in pretreatment step along with 38+0.5 gL-1 during enzymatic hydrolysis. Separate hydrolysis and fermentation of resulting sugars showed that the conversion of glucans into lactic acid reached 92 % of the theoretical yield of glucose. PMID:26966423
NASA Astrophysics Data System (ADS)
Chadel, Meriem; Moustafa Bouzaki, Mohammed; Chadel, Asma; Aillerie, Michel; Benyoucef, Boumediene
2017-07-01
The influence of the thickness of a Zinc Oxide (ZnO) transparent conductive oxide (TCO) layer on the performance of the CZTSSe solar cell is shown in detail. In a photovoltaic cell, the thickness of each layer largely influence the performance of the solar cell and optimization of each layer constitutes a complete work. Here, using the Solar Cell Capacitance Simulation (SCAPS) software, we present simulation results obtained in the analyze of the influence of the TCO layer thickness on the performance of a CZTSSe solar cell, starting from performance of a CZTSSe solar cell commercialized in 2014 with an initial efficiency equal to 12.6%. In simulation, the temperature was considered as a functioning parameter and the evolution of tthe performance of the cell for various thickness of the TCO layer when the external temperature changes is simulated and discussed. The best efficiency of the solar cell based in CZTSSe is obtained with a ZnO thickness equal to 50 nm and low temperature. Based on the considered marketed cell, we show a technological possible increase of the global efficiency achieving 13% by optimization of ZnO based TCO layer.
LiMn2O4–yBryNanoparticles Synthesized by a Room Temperature Solid-State Coordination Method
2009-01-01
LiMn2O4–yBrynanoparticles were synthesized successfully for the first time by a room temperature solid-state coordination method. X-ray diffractometry patterns indicated that the LiMn2O4–yBrypowders were well-crystallized pure spinel phase. Transmission electron microscopy images showed that the LiMn2O4–yBrypowders consisted of small and uniform nanosized particles. Synthesis conditions such as the calcination temperature and the content of Br−were investigated to optimize the ideal condition for preparing LiMn2O4–yBrywith the best electrochemical performances. The optimized synthesis condition was found in this work; the calcination temperature is 800 °C and the content of Br−is 0.05. The initial discharge capacity of LiMn2O3.95Br0.05obtained from the optimized synthesis condition was 134 mAh/g, which is far higher than that of pure LiMn2O4, indicating introduction of Br−in LiMn2O4is quite effective in improving the initial discharge capacity. PMID:20628635
Docetaxel-loaded thermosensitive liquid suppository: optimization of rheological properties.
Yeo, Woo Hyun; Ramasamy, Thiruganesh; Kim, Dong-Wuk; Cho, Hyuk Jun; Kim, Yong-Il; Cho, Kwan Hyung; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon
2013-12-01
The main purpose of this work was to optimize the rheological properties of docetaxel (DCT)-loaded thermosensitive liquid suppositories for rectal administration. DCT-loaded liquid suppositories were prepared by a cold method and characterized in terms of physicochemical and viscoelastic properties. Major formulation parameters including poloxamer (P407) and Tween 80 were optimized to adjust the thermogelling and mucoadhesive properties for rectal administration. Notably, the gel strength and mucoadhesive force significantly increased with the increase in these variables. Furthermore, DCT incorporation did not alter the viscoelastic behavior, and the mean particle size of nanomicelles in it was approximately 16 nm with a distinct spherical shape. The formulation existed as liquid at room temperature and transformed into gel at physiological temperature through the reverse gelation phenomenon. Thus, DCT-loaded thermosensitive liquid suppositories [DCT/P407/P188/Tween 80 (0.25/11/15/10 %)] with optimal gel properties were easy to prepare and administer rectally, and might enable the gel to stay in the rectum without getting out from rectum.
Comparison of optimization algorithms for the slow shot phase in HPDC
NASA Astrophysics Data System (ADS)
Frings, Markus; Berkels, Benjamin; Behr, Marek; Elgeti, Stefanie
2018-05-01
High-pressure die casting (HPDC) is a popular manufacturing process for aluminum processing. The slow shot phase in HPDC is the first phase of this process. During this phase, the molten metal is pushed towards the cavity under moderate plunger movement. The so-called shot curve describes this plunger movement. A good design of the shot curve is important to produce high-quality cast parts. Three partially competing process goals characterize the slow shot phase: (1) reducing air entrapment, (2) avoiding temperature loss, and (3) minimizing oxide caused by the air-aluminum contact. Due to the rough process conditions with high pressure and temperature, it is hard to design the shot curve experimentally. There exist a few design rules that are based on theoretical considerations. Nevertheless, the quality of the shot curve design still depends on the experience of the machine operator. To improve the shot curve it seems to be natural to use numerical optimization. This work compares different optimization strategies for the slow shot phase optimization. The aim is to find the best optimization approach on a simple test problem.
NASA Astrophysics Data System (ADS)
Bogovalov, S. V.; Borisevich, V. D.; Borman, V. D.; Tronin, I. V.; Tronin, V. N.
2016-06-01
Numerical modelling and optimization of the gas flow and isotope separation in the Iguasu gas centrifuge (GC) for uranium enrichment have been performed for different lengths of the rotor. The calculations show that the specific separative power of the GC reduces with the length of the rotor. We show that the reduction of the specific separative power is connected with the growth of the pressure in the optimal regime and corresponding growth of temperature to prevent the working gas sublimation. The specific separative power remains constant with the growth of the rotor length provided that the temperature of the gas is taken to be constant.
Numerical Modeling of Dependence of Separative Power of the Gas Centrifuge on the Length of Rotor
NASA Astrophysics Data System (ADS)
Bogovalov, S. V.; Borisevich, V. D.; Borman, V. D.; Tronin, I. V.; Tronin, V. N.
Numerical modelling and optimization of the gas flow and isotope separation in the Iguasu gas centrifuge (GC) for uranium enrichment have been performed for different lengths of the rotor. The calculations show that the specific separative power of the GC reduces with the length of the rotor. We show that the reduction of the specific separative power is connected with the growth of the pressure in the optimal regime and corresponding growth of temperature to prevent the working gas sublimation. The specific separative power remains constant with the growth of the rotor length provided that the temperature of the rotor is taken to be constant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogovalov, S. V.; Borisevich, V. D.; Borman, V. D.
Numerical modelling and optimization of the gas flow and isotope separation in the Iguasu gas centrifuge (GC) for uranium enrichment have been performed for different lengths of the rotor. The calculations show that the specific separative power of the GC reduces with the length of the rotor. We show that the reduction of the specific separative power is connected with the growth of the pressure in the optimal regime and corresponding growth of temperature to prevent the working gas sublimation. The specific separative power remains constant with the growth of the rotor length provided that the temperature of the gasmore » is taken to be constant.« less
Sensitive Infrared Photodetectors: Optimized Electron Kinetics for Room-Temperature Operation
2010-12-20
QD levels; (iii) High photoconductive gain and responsivity; (iv) Low generation-recombination noise due to the long photoelectron lifetime. The...etc. [1-6]. For example, quantum-well infrared photodetectors ( QWIPs ) is currently a well-established technology, which is widely employed in...various imaging devices working at liquid nitrogen temperatures and below [7,8]. At 77K, modern QWIPs operating around λ = 10 μm demonstrate the
Design of a high power TM01 mode launcher optimized for manufacturing by milling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dal Forno, Massimo
2016-12-15
Recent research on high-gradient rf acceleration found that hard metals, such as hard copper and hard copper-silver, have lower breakdown rate than soft metals. Traditional high-gradient accelerating structures are manufactured with parts joined by high-temperature brazing. The high temperature used in brazing makes the metal soft; therefore, this process cannot be used to manufacture structures out of hard metal alloys. In order to build the structure with hard metals, the components must be designed for joining without high-temperature brazing. One method is to build the accelerating structures out of two halves, and join them by using a low-temperature technique, atmore » the symmetry plane along the beam axis. The structure has input and output rf power couplers. We use a TM01 mode launcher as a rf power coupler, which was introduced during the Next Linear Collider (NLC) work. The part of the mode launcher will be built in each half of the structure. This paper presents a novel geometry of a mode launcher, optimized for manufacturing by milling. The coupler was designed for the CERN CLIC working frequency f = 11.9942 GHz; the same geometry can be scaled to any other frequency.« less
Thales Cryogenics rotary cryocoolers for HOT applications
NASA Astrophysics Data System (ADS)
Martin, Jean-Yves; Cauquil, Jean-Marc; Benschop, Tonny; Freche, Sébastien
2012-06-01
Thales Cryogenics has an extensive background in delivering reliable linear and rotary coolers for military, civil and space programs. Recent work carried out at detector level enable to consider a higher operation temperature for the cooled detectors. This has a direct impact on the cooling power required to the cryocooler. In continuation of the work presented last year, Thales cryogenics has studied the operation and optimization of the rotary cryocoolers at high cold regulation temperature. In this paper, the performances of the Thales Cryogenics rotary cryocoolers at elevated cold regulation temperature will be presented. From these results, some trade-offs can be made to combine correct operation of the cryocooler on all the ambient operational range and maximum efficiency of the cryocooler. These trade-offs and the impact on MTTF of elevated cold regulation temperature will be presented and discussed. In correlation with the increase of the cold operation temperature, the cryocooler input power is significantly decreased. As a consequence, the cooler drive electronics own consumption becomes relatively important and must be reduced in order to minimize global input power to the cooling function (cryocooler and cooler drive electronics). Thales Cryogenics has developed a new drive electronics optimized for low input power requirements. In parallel, improvements on RM1 and RM2 cryocoolers have been defined and implemented. The main impacts on performances of these new designs will be presented. Thales cryogenics is now able to propose an efficient cooling function for application requiring a high cold regulation temperature including a range of tuned rotary coolers.
Thermal Property Parameter Estimation of TPS Materials
NASA Technical Reports Server (NTRS)
Maddren, Jesse
1998-01-01
Accurate knowledge of the thermophysical properties of TPS (thermal protection system) materials is necessary for pre-flight design and post-flight data analysis. Thermal properties, such as thermal conductivity and the volumetric specific heat, can be estimated from transient temperature measurements using non-linear parameter estimation methods. Property values are derived by minimizing a functional of the differences between measured and calculated temperatures. High temperature thermal response testing of TPS materials is usually done in arc-jet or radiant heating facilities which provide a quasi one-dimensional heating environment. Last year, under the NASA-ASEE-Stanford Fellowship Program, my work focused on developing a radiant heating apparatus. This year, I have worked on increasing the fidelity of the experimental measurements, optimizing the experimental procedures and interpreting the data.
NASA Astrophysics Data System (ADS)
Zhang, Jing; Wang, Yagang; Zega, Valentina; Su, Yan; Corigliano, Alberto
2018-07-01
In this work the nonlinear dynamic behaviour under varying temperature conditions of the resonating beams of a differential resonant accelerometer is studied from the theoretical, numerical and experimental points of view. A complete analytical model based on the Hamilton’s principle is proposed to describe the nonlinear behaviour of the resonators under varying temperature conditions and numerical solutions are presented in comparison with experimental data. This provides a novel perspective to examine the relationship between temperature and nonlinearity, which helps predicting the dynamic behaviour of resonant devices and can guide their optimal design.
Wei, Zhen-Hua; Bai, Linquan; Deng, Zixin; Zhong, Jian-Jiang
2012-09-01
Validamycin A (VAL-A) is an important and widely used agricultural antibiotic. In this study, statistical screening designs were applied to identify significant medium variables for VAL-A production and to find their optimal levels. The optimized medium caused 70% enhancement of VAL-A production. The difference between optimized medium and original medium suggested that low nitrogen source level might attribute to the enhancement of VAL-A production. The addition of different nitrogen sources to the optimized medium inhibited VAL-A production, which confirmed the importance of nitrogen concentration for VAL-A production. Furthermore, differences in structural gene transcription and enzyme activity between the two media were assayed. The results showed that lower nitrogen level in the optimized medium could regulate VAL-A production in gene transcriptional level. Our previous study indicated that the transcription of VAL-A structural genes could be enhanced at elevated temperature. In this work, the increased fermentation temperature from 37 to 42 °C with the optimized medium enhanced VAL-A production by 39%, which testified to the importance of structural gene transcription in VAL-A production. The information is useful for further VAL-A production enhancement.
A Fast Proceduere for Optimizing Thermal Protection Systems of Re-Entry Vehicles
NASA Astrophysics Data System (ADS)
Ferraiuolo, M.; Riccio, A.; Tescione, D.; Gigliotti, M.
The aim of the present work is to introduce a fast procedure to optimize thermal protection systems for re-entry vehicles subjected to high thermal loads. A simplified one-dimensional optimization process, performed in order to find the optimum design variables (lengths, sections etc.), is the first step of the proposed design procedure. Simultaneously, the most suitable materials able to sustain high temperatures and meeting the weight requirements are selected and positioned within the design layout. In this stage of the design procedure, simplified (generalized plane strain) FEM models are used when boundary and geometrical conditions allow the reduction of the degrees of freedom. Those simplified local FEM models can be useful because they are time-saving and very simple to build; they are essentially one dimensional and can be used for optimization processes in order to determine the optimum configuration with regard to weight, temperature and stresses. A triple-layer and a double-layer body, subjected to the same aero-thermal loads, have been optimized to minimize the overall weight. Full two and three-dimensional analyses are performed in order to validate those simplified models. Thermal-structural analyses and optimizations are executed by adopting the Ansys FEM code.
Numerical optimization of the ramp-down phase with the RAPTOR code
NASA Astrophysics Data System (ADS)
Teplukhina, Anna; Sauter, Olivier; Felici, Federico; The Tcv Team; The ASDEX-Upgrade Team; The Eurofusion Mst1 Team
2017-10-01
The ramp-down optimization goal in this work is defined as the fastest possible decrease of a plasma current while avoiding any disruptions caused by reaching physical or technical limits. Numerical simulations and preliminary experiments on TCV and AUG have shown that a fast decrease of plasma elongation and an adequate timing of the H-L transition during current ramp-down can help to avoid reaching high values of the plasma internal inductance. The RAPTOR code (F. Felici et al., 2012 PPCF 54; F. Felici, 2011 EPFL PhD thesis), developed for real-time plasma control, has been used for an optimization problem solving. Recently the transport model has been extended to include the ion temperature and electron density transport equations in addition to the electron temperature and current density transport equations, increasing the physical applications of the code. The gradient-based models for the transport coefficients (O. Sauter et al., 2014 PPCF 21; D. Kim et al., 2016 PPCF 58) have been implemented to RAPTOR and tested during this work. Simulations of the AUG and TCV entire plasma discharges will be presented. See the author list of S. Coda et al., Nucl. Fusion 57 2017 102011.
Rankine cycle waste heat recovery system
Ernst, Timothy C.; Nelson, Christopher R.
2015-09-22
A waste heat recovery (WHR) system connects a working fluid to fluid passages formed in an engine block and/or a cylinder head of an internal combustion engine, forming an engine heat exchanger. The fluid passages are formed near high temperature areas of the engine, subjecting the working fluid to sufficient heat energy to vaporize the working fluid while the working fluid advantageously cools the engine block and/or cylinder head, improving fuel efficiency. The location of the engine heat exchanger downstream from an EGR boiler and upstream from an exhaust heat exchanger provides an optimal position of the engine heat exchanger with respect to the thermodynamic cycle of the WHR system, giving priority to cooling of EGR gas. The configuration of valves in the WHR system provides the ability to select a plurality of parallel flow paths for optimal operation.
Optimization of sintering conditions for cerium-doped yttrium aluminum garnet
NASA Astrophysics Data System (ADS)
Cranston, Robert Wesley McEachern
YAG:Ce phosphors have become widely used as blue/yellow light converters in camera projectors, white light emitting diodes (WLEDs) and general lighting applications. Many studies have been published on the production, characterization, and analysis of this optical ceramic but few have been done on determining optimal synthesis conditions. In this work, YAG:Ce phosphors were synthesized through solid state mixing and sintering. The synthesized powders and the highest quality commercially available powders were pressed and sintered to high densities and their photoluminescence (PL) intensity measured. The optimization process involved the sintering temperature, sintering time, annealing temperature and the level of Ce concentration. In addition to the PL intensity, samples were also characterized using particle size analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The PL data was compared with data produced from a YAG:Ce phosphor sample provided by Christie Digital. The peak intensities of the samples were converted to a relative percentage of this industry product. The highest value for the intensity of the commercial powder was measured for a Ce concentration of 0.3 mole% with a sintering temperature of 1540°C and a sintering dwell time of 7 hours. The optimal processing parameters for the in-house synthesized powder were slightly different from those of commercial powders. The optimal Ce concentration was 0.4 mole% Ce, sintering temperature was 1560°C and sintering dwell time was 10 hours. These optimal conditions produced a relative intensity of 94.20% and 95.28% for the in-house and commercial powders respectively. Polishing of these samples resulted in an increase of 5% in the PL intensity.
Further development of the dynamic gas temperature measurement system. Volume 1: Technical efforts
NASA Technical Reports Server (NTRS)
Elmore, D. L.; Robinson, W. W.; Watkins, W. B.
1986-01-01
A compensated dynamic gas temperature thermocouple measurement method was experimentally verified. Dynamic gas temperature signals from a flow passing through a chopped-wheel signal generator and an atmospheric pressure laboratory burner were measured by the dynamic temperature sensor and other fast-response sensors. Compensated data from dynamic temperature sensor thermoelements were compared with fast-response sensors. Results from the two experiments are presented as time-dependent waveforms and spectral plots. Comparisons between compensated dynamic temperature sensor spectra and a commercially available optical fiber thermometer compensated spectra were made for the atmospheric burner experiment. Increases in precision of the measurement method require optimization of several factors, and directions for further work are identified.
Yu, Jia; Yu, Zhichao; Tang, Chenlong
2016-07-04
The hot work environment of electronic components in the instrument cabin of spacecraft was researched, and a new thermal protection structure, namely graphite carbon foam, which is an impregnated phase-transition material, was adopted to implement the thermal control on the electronic components. We used the optimized parameters obtained from ANSYS to conduct 2D optimization, 3-D modeling and simulation, as well as the strength check. Finally, the optimization results were verified by experiments. The results showed that after optimization, the structured carbon-based energy-storing composite material could reduce the mass and realize the thermal control over electronic components. This phase-transition composite material still possesses excellent temperature control performance after its repeated melting and solidifying.
Optimization of Geothermal Well Placement under Geological Uncertainty
NASA Astrophysics Data System (ADS)
Schulte, Daniel O.; Arnold, Dan; Demyanov, Vasily; Sass, Ingo; Geiger, Sebastian
2017-04-01
Well placement optimization is critical to commercial success of geothermal projects. However, uncertainties of geological parameters prohibit optimization based on a single scenario of the subsurface, particularly when few expensive wells are to be drilled. The optimization of borehole locations is usually based on numerical reservoir models to predict reservoir performance and entails the choice of objectives to optimize (total enthalpy, minimum enthalpy rate, production temperature) and the development options to adjust (well location, pump rate, difference in production and injection temperature). Optimization traditionally requires trying different development options on a single geological realization yet there are many possible different interpretations possible. Therefore, we aim to optimize across a range of representative geological models to account for geological uncertainty in geothermal optimization. We present an approach that uses a response surface methodology based on a large number of geological realizations selected by experimental design to optimize the placement of geothermal wells in a realistic field example. A large number of geological scenarios and design options were simulated and the response surfaces were constructed using polynomial proxy models, which consider both geological uncertainties and design parameters. The polynomial proxies were validated against additional simulation runs and shown to provide an adequate representation of the model response for the cases tested. The resulting proxy models allow for the identification of the optimal borehole locations given the mean response of the geological scenarios from the proxy (i.e. maximizing or minimizing the mean response). The approach is demonstrated on the realistic Watt field example by optimizing the borehole locations to maximize the mean heat extraction from the reservoir under geological uncertainty. The training simulations are based on a comprehensive semi-synthetic data set of a hierarchical benchmark case study for a hydrocarbon reservoir, which specifically considers the interpretational uncertainty in the modeling work flow. The optimal choice of boreholes prolongs the time to cold water breakthrough and allows for higher pump rates and increased water production temperatures.
Patil, Ajit A; Sachin, Bhusari S; Wakte, Pravin S; Shinde, Devanand B
2014-11-01
The purpose of this work is to provide a complete study of the influence of operational parameters of the supercritical carbon dioxide assisted extraction (SC CO2E) on yield of wedelolactone from Wedelia calendulacea Less., and to find an optimal combination of factors that maximize the wedelolactone yield. In order to determine the optimal combination of the four factors viz. operating pressure, temperature, modifier concentration and extraction time, a Taguchi experimental design approach was used: four variables (three levels) in L9 orthogonal array. Wedelolactone content was determined using validated HPLC methodology. Optimum extraction conditions were found to be as follows: extraction pressure, 25 MPa; temperature, 40 °C; modifier concentration, 10% and extraction time, 90 min. Optimum extraction conditions demonstrated wedelolactone yield of 8.01 ± 0.34 mg/100 g W. calendulacea Less. Pressure, temperature and time showed significant (p < 0.05) effect on the wedelolactone yield. The supercritical carbon dioxide extraction showed higher selectivity than the conventional Soxhlet assisted extraction method.
Patil, Ajit A.; Sachin, Bhusari S.; Wakte, Pravin S.; Shinde, Devanand B.
2013-01-01
The purpose of this work is to provide a complete study of the influence of operational parameters of the supercritical carbon dioxide assisted extraction (SC CO2E) on yield of wedelolactone from Wedelia calendulacea Less., and to find an optimal combination of factors that maximize the wedelolactone yield. In order to determine the optimal combination of the four factors viz. operating pressure, temperature, modifier concentration and extraction time, a Taguchi experimental design approach was used: four variables (three levels) in L9 orthogonal array. Wedelolactone content was determined using validated HPLC methodology. Optimum extraction conditions were found to be as follows: extraction pressure, 25 MPa; temperature, 40 °C; modifier concentration, 10% and extraction time, 90 min. Optimum extraction conditions demonstrated wedelolactone yield of 8.01 ± 0.34 mg/100 g W. calendulacea Less. Pressure, temperature and time showed significant (p < 0.05) effect on the wedelolactone yield. The supercritical carbon dioxide extraction showed higher selectivity than the conventional Soxhlet assisted extraction method. PMID:25687584
Richetti, Aline; Leite, Selma G F; Antunes, Octávio A C; de Souza, Andrea L F; Lerin, Lindomar A; Dallago, Rogério M; Paroul, Natalia; Di Luccio, Marco; Oliveira, J Vladimir; Treichel, Helen; de Oliveira, Débora
2010-04-01
This work reports the application of a lipase in the 2-ethylhexyl palmitate esterification in a solvent-free system with an immobilized lipase (Lipozyme RM IM). A sequential strategy was used applying two experimental designs to optimize the 2-ethylhexyl palmitate production. An empirical model was then built so as to assess the effects of process variables on the reaction conversion. Afterwards, the operating conditions that optimized 2-ethylhexyl palmitate production were established as being acid/alcohol molar ratio 1:3, temperature of 70 degrees C, stirring rate of 150 rpm, 10 wt.% of enzyme, leading to a reaction conversion as high as 95%. From this point, a kinetic study was carried out evaluating the effect of acid:alcohol molar ratio, the enzyme concentration and the temperature on product conversion. The results obtained in this step permit to verify that an excess of alcohol (acid to alcohol molar ratio of 1:6), relatively low enzyme concentration (10 wt.%) and temperature of 70 degrees C, led to conversions next to 100%.
Schoubben, Aurélie; Blasi, Paolo; Giovagnoli, Stefano; Nocchetti, Morena; Ricci, Maurizio; Perioli, Luana; Rossi, Carlo
2006-03-01
The aim of the study is to optimize the intercalation conditions of ferulic acid (FERH), an antioxidant compound, into Mg-Al-hydrotalcite for a safe skin photoprotection. The intercalation products were prepared incubating hydrotalcite (HTlc) in aqueous solutions of FERH sodium salt at different temperatures over 4 and 8 days. Quantitative determination of intercalated FERH was performed by thermogravimetric analysis and morphology by scanning electron microscopy (SEM). FERH stability study was carried out at different pHs and temperatures. FERH was analyzed by reversed phase-high-performance liquid chromatography. Response surface methods (RSMs) were used to assess optimal intercalation conditions and FERH stability. In all intercalation products, FERH content was found to be about 48% w/w except when the intercalation process was carried out at 52 degrees C for 8 days and at 60 degrees C for both 4 and 8 days, which resulted to be 40.39, 39.99, and 34.99%, respectively. The RSM designs showed that intercalation improvement can be achieved by working at pH 6, at temperatures below 40 degrees C, and over 4 days of incubation. The optimal conditions for a proper FERH intercalation were assessed. The development of a new optimized protocol may improve HTlc-FER complex performances and safety by augmenting dosage and reducing the presence of harmful reactive species in the final formulation.
Investigating Liquid CO2 as a Coolant for a MTSA Heat Exchanger Design
NASA Technical Reports Server (NTRS)
Paul, Heather L.; Padilla, Sebastian; Powers, Aaron; Iacomini, Christie
2009-01-01
Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO 2) control for a future Portable Life Support System (PLSS), as well as water recycling. CO 2 removal and rejection is accomplished by driving a sorbent through a temperature swing of approximately 210 K to 280 K . The sorbent is cooled to these sub-freezing temperatures by a Sublimating Heat Exchanger (SHX) with liquid coolant expanded to sublimation temperatures. Water is the baseline coolant available on the moon, and if used, provides a competitive solution to the current baseline PLSS schematic. Liquid CO2 (LCO2) is another non-cryogenic coolant readily available from Martian resources which can be produced and stored using relatively low power and minimal infrastructure. LCO 2 expands from high pressure liquid (5800 kPa) to Mars ambient (0.8 kPa) to produce a gas / solid mixture at temperatures as low as 156 K. Analysis and experimental work are presented to investigate factors that drive the design of a heat exchanger to effectively use this sink. Emphasis is given to enabling efficient use of the CO 2 cooling potential and mitigation of heat exchanger clogging due to solid formation. Minimizing mass and size as well as coolant delivery are also considered. The analysis and experimental work is specifically performed in an MTSA-like application to enable higher fidelity modeling for future optimization of a SHX design. In doing so, the work also demonstrates principles and concepts so that the design can be further optimized later in integrated applications (including Lunar application where water might be a choice of coolant).
Optimisation of low temperature extraction of banana juice using commercial pectinase.
Sagu, Sorel Tchewonpi; Nso, Emmanuel Jong; Karmakar, Sankha; De, Sirshendu
2014-05-15
The objective of this work was to develop a process with optimum conditions for banana juice. The procedure involves hydrolyzing the banana pulp by commercial pectinase followed by cloth filtration. Response surface methodology with Doehlert design was utilised to optimize the process parameters. The temperature of incubation (30-60 °C), time of reaction (20-120 min) and concentration of pectinase (0.01-0.05% v/w) were the independent variables and viscosity, clarity, alcohol insoluble solids (AIS), total polyphenol and protein concentration were the responses. Total soluble sugar, pH, conductivity, calcium, sodium and potassium concentration in the juice were also evaluated. The results showed reduction of AIS and viscosity with reaction time and pectinase concentration and reduction of polyphenol and protein concentration with temperature. Using numerical optimization, the optimum conditions for the enzymatic extraction of banana juice were estimated. Depectinization kinetics was also studied at optimum temperature and variation of kinetic constants with enzyme dose was evaluated. Copyright © 2013 Elsevier Ltd. All rights reserved.
Seebacher, Frank; James, Rob S
2008-03-01
Thermoregulation and thermal sensitivity of performance are thought to have coevolved so that performance is optimized within the selected body temperature range. However, locomotor performance in thermoregulating crocodiles (Crocodylus porosus) is plastic and maxima shift to different selected body temperatures in different thermal environments. Here we test the hypothesis that muscle metabolic and biomechanical parameters are optimized at the body temperatures selected in different thermal environments. Hence, we related indices of anaerobic (lactate dehydrogenase) and aerobic (cytochrome c oxidase) metabolic capacities and myofibrillar ATPase activity to the biomechanics of isometric and work loop caudofemoralis muscle function. Maximal isometric stress (force per muscle cross-sectional area) did not change with thermal acclimation, but muscle work loop power output increased with cold acclimation as a result of shorter activation and relaxation times. The thermal sensitivity of myofibrillar ATPase activity decreased with cold acclimation in caudofemoralis muscle. Neither aerobic nor anaerobic metabolic capacities were directly linked to changes in muscle performance during thermal acclimation, although there was a negative relationship between anaerobic capacity and isometric twitch stress in cold-acclimated animals. We conclude that by combining thermoregulation with plasticity in biomechanical function, crocodiles maximize performance in environments with highly variable thermal properties.
Optimization design and performance analysis of a miniature stirling engine
NASA Astrophysics Data System (ADS)
You, Zhanping; Yang, Bo; Pan, Lisheng; Hao, Changsheng
2017-10-01
Under given operation conditions, a stirling engine of 2 kW is designed which takes hydrogen as working medium. Through establishment of adiabatic model, the ways are achieved about performance improving. The ways are raising the temperature of hot terminal, lowering the temperature of cold end, increasing the average cycle pressure, speeding up the speed, phase angle being 90°, stroke volume ratio approximating to 1 and increasing the performance of regenerator.
Pivot method for global optimization: A study of structures and phase changes in water clusters
NASA Astrophysics Data System (ADS)
Nigra, Pablo Fernando
In this thesis, we have carried out a study of water clusters. The research work has been developed in two stages. In the first stage, we have investigated the properties of water clusters at zero temperature by means of global optimization. The clusters were modeled by using two well known pairwise potentials having distinct characteristics. One is the Matsuoka-Clementi-Yoshimine potential (MCY) that is an ab initio fitted function based on a rigid-molecule model, the other is the Sillinger-Rahman potential (SR) which is an empirical function based on a flexible-molecule model. The algorithm used for the global optimization of the clusters was the pivot method, which was developed in our group. The results have shown that, under certain conditions, the pivot method may yield optimized structures which are related to one another in such a way that they seem to form structural families. The structures in a family can be thought of as formed from the aggregation of single units. The particular types of structures we have found are quasi-one dimensional tubes built from stacking cyclic units such as tetramers, pentamers, and hexamers. The binding energies of these tubes form sequences that span smooth curves with clear asymptotic behavior; therefore, we have also studied the sequences applying the Bulirsch-Stoer (BST) algorithm to accelerate convergence. In the second stage of the research work, we have studied the thermodynamic properties of a typical water cluster at finite temperatures. The selected cluster was the water octamer which exhibits a definite solid-liquid phase change. The water octamer also has several low lying energy cubic structures with large energetic barriers that cause ergodicity breaking in regular Monte Carlo simulations. For that reason we have simulated the octamer using paralell tempering Monte Carlo combined with the multihistogram method. This has permited us to calculate the heat capacity from very low temperatures up to T = 230 K. We have found the melting temperature to be 178.5 K. In addition, we have been able to estimate at 12 K the onset temperature of a solid-solid phase change between the two lowest energy lying isomers.
NASA Astrophysics Data System (ADS)
Besson, Pierre; Dominguez, Cesar; Voarino, Philippe; Garcia-Linares, Pablo; Weick, Clement; Lemiti, Mustapha; Baudrit, Mathieu
2015-09-01
The optical characterization and electrical performance evaluation are essential in the design and optimization of a concentrator photovoltaic system. The geometry, materials, and size of concentrator optics are diverse and different environmental conditions impact their performance. CEA has developed a new concentrator photovoltaic system characterization bench, METHOD, which enables multi-physics optimization studies. The lens and cell temperatures are controlled independently with the METHOD to study their isolated effects on the electrical and optical performance of the system. These influences can be studied in terms of their effect on optical efficiency, focal distance, spectral sensitivity, electrical efficiency, or cell current matching. Furthermore, the irradiance map of a concentrator optic can be mapped to study its variations versus the focal length or the lens temperature. The present work shows this application to analyze the performance of a Fresnel lens linking temperature to optical and electrical performance.
Dietrich, Joseph P; Van Gaest, Ahna L; Strickland, Stacy A; Arkoosh, Mary R
2014-08-01
Anthropogenic stressors, including chemical contamination and temperature stress, may contribute to increased disease susceptibility in aquatic animals. Specifically, the organophosphate pesticide malathion has been detected in surface waters inhabited by threatened and endangered salmon. In the presence of increasing water temperatures, malathion may increase susceptibility to disease and ultimately threaten salmon survival. This work examines the effect of acute and sublethal exposures to malathion on ocean-type subyearling Chinook salmon held under two temperature regimes. Chinook salmon were exposed to malathion at optimal (11 °C) or elevated (19 and 20 °C) temperatures. The influence of temperature on the acute toxicity of malathion was determined by generating 96-h lethal concentration (LC) curves. A disease challenge assay was also used to assess the effects of sublethal malathion exposure. The malathion concentration that resulted in 50% mortality (LC50; 274.1 μg L(-1)) of the Chinook salmon at 19 °C was significantly less than the LC50 at 11 °C (364.2 μg L(-1)). Mortality increased 11.2% in Chinook salmon exposed to malathion at the elevated temperature and challenged with Aeromonas salmonicida compared to fish held at the optimal temperature and exposed to malathion or the carrier control. No difference in disease challenge mortality was observed among malathion-exposed and unexposed fish at the optimal temperature. The interaction of co-occurring stressors may have a greater impact on salmon than if they occur in isolation. Ecological risk assessments considering the effects of an individual stressor on threatened and endangered salmon may underestimate risk when additional stressors are present in the environment. Published by Elsevier Ltd.
A Miniature Palladium-Iron Thermometer for Temperatures Down to 0.05 K
NASA Technical Reports Server (NTRS)
Tuttle, Jim; DiPirro, Michael; Canavan, Ed; Shirron, Peter; Kunes, Evan; Hait, Tom; Krebs, Carolyn (Technical Monitor)
2001-01-01
Magnetic thermometers are appealing at temperatures below about 0.1 Kelvin, because the avoid the noise self-heating problems associated with resistive thermometers. In practical, metallic dilute electronic thermometers add the advantages of chemical stability, high thermal conductivity, and easy in heat sinking work we describe a palladium-iron thermometer which was designed to be small and conveniently packaged and optimized for use at temperatures down to 0.05 Kelvin. The device showed Curie-Weiss behavior above about 0.06 Kelvin, and we achieve 41 nK/ square root of z temperature resolution at a temperature of 49 mK. We describe the design and operation of this thermometers and present the test results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, S.; Bengoechea-Encabo, A.; Sanchez-Garcia, M. A.
This work reports on the morphology and light emission characteristics of ordered InGaN nanocolumns grown by plasma-assisted molecular beam epitaxy. Within the growth temperature range of 750 to 650 Degree-Sign C, the In incorporation can be modified either by the growth temperature, the In/Ga ratio, or the III/V ratio, following different mechanisms. Control of these factors allows the optimization of the InGaN nanocolumns light emission wavelength and line-shape. Furthermore, yellow-white emission is obtained at room temperature from nanostructures with a composition-graded active InGaN region obtained by temperature gradients during growth.
Fuereder, Markus; Majeed, Imthiyas N; Panke, Sven; Bechtold, Matthias
2014-06-13
Teicoplanin aglycone columns allow efficient separation of amino acid enantiomers in aqueous mobile phases and enable robust and predictable simulated moving bed (SMB) separation of racemic methionine despite a dependency of the adsorption behavior on the column history (memory effect). In this work we systematically investigated the influence of the mobile phase (methanol content) and temperature on SMB performance using a model-based optimization approach that accounts for methionine solubility, adsorption behavior and back pressure. Adsorption isotherms became more favorable with increasing methanol content but methionine solubility was decreased and back pressure increased. Numerical optimization suggested a moderate methanol content (25-35%) for most efficient operation. Higher temperature had a positive effect on specific productivity and desorbent requirement due to higher methionine solubility, lower back pressure and virtually invariant selectivity at high loadings of racemic methionine. However, process robustness (defined as a difference in flow rate ratios) decreased strongly with increasing temperature to the extent that any significant increase in temperature over 32°C will likely result in operating points that cannot be realized technically even with the lab-scale piston pump SMB system employed in this study. Copyright © 2014. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Gupta, Manisha; Chowdhury, Fatema Rezwana; Barlage, Douglas; Tsui, Ying Yin
2013-03-01
In this work we present the optimization of zinc oxide (ZnO) film properties for a thin-film transistor (TFT) application. Thin films, 50±10 nm, of ZnO were deposited by Pulsed Laser Deposition (PLD) under a variety of growth conditions. The oxygen pressure, laser fluence, substrate temperature and annealing conditions were varied as a part of this study. Mobility and carrier concentration were the focus of the optimization. While room-temperature ZnO growths followed by air and oxygen annealing showed improvement in the (002) phase formation with a carrier concentration in the order of 1017-1018/cm3 with low mobility in the range of 0.01-0.1 cm2/V s, a Hall mobility of 8 cm2/V s and a carrier concentration of 5×1014/cm3 have been achieved on a relatively low temperature growth (250 °C) of ZnO. The low carrier concentration indicates that the number of defects have been reduced by a magnitude of nearly a 1000 as compared to the room-temperature annealed growths. Also, it was very clearly seen that for the (002) oriented films of ZnO a high mobility film is achieved.
Gallardo, A; Mougabure Cueto, G; Picollo, M I
2009-07-01
Human pediculosis is produced by Pediculus humanus humanus (Linnaeus 1758) and Pediculus humanus capitis (De Geer 1767). Laboratory-reared body lice, susceptible to insecticides, were used as reference in toxicological studies on head lice. In this work, we evaluated the survival of both subspecies at different temperatures and relative humidities and we propose the optimal conditions for comparative bioassays. Moreover, we used these conditions to test the activity of three monoterpenoids against both lice. The results showed differential response to changes in temperature and humidity between both organisms. The survival of body lice ranged between 83% and 100% and was not affected for the tested conditions. The survival of head lice depended on temperature, humidity, and exposure time. The optimal conditions for head lice were 18 masculineC and 97% relative humidity at 18 h of exposition. The insecticidal activity of three monoterpenoids (pulegone, linalool, and 1,8-cineole), evaluated according the selected conditions by topical application, showed no significant differences between males of body and head lice. To conclude, as head lice required more special laboratory conditions than body lice, the optimal head lice conditions should be used in both organisms in comparative bioassays. Body louse is an appropriate organism for testing products against of head louse.
Statistical mechanics of influence maximization with thermal noise
NASA Astrophysics Data System (ADS)
Lynn, Christopher W.; Lee, Daniel D.
2017-03-01
The problem of optimally distributing a budget of influence among individuals in a social network, known as influence maximization, has typically been studied in the context of contagion models and deterministic processes, which fail to capture stochastic interactions inherent in real-world settings. Here, we show that by introducing thermal noise into influence models, the dynamics exactly resemble spins in a heterogeneous Ising system. In this way, influence maximization in the presence of thermal noise has a natural physical interpretation as maximizing the magnetization of an Ising system given a budget of external magnetic field. Using this statistical mechanical formulation, we demonstrate analytically that for small external-field budgets, the optimal influence solutions exhibit a highly non-trivial temperature dependence, focusing on high-degree hub nodes at high temperatures and on easily influenced peripheral nodes at low temperatures. For the general problem, we present a projected gradient ascent algorithm that uses the magnetic susceptibility to calculate locally optimal external-field distributions. We apply our algorithm to synthetic and real-world networks, demonstrating that our analytic results generalize qualitatively. Our work establishes a fruitful connection with statistical mechanics and demonstrates that influence maximization depends crucially on the temperature of the system, a fact that has not been appreciated by existing research.
Sawoszczuk, Tomasz; Syguła-Cholewińska, Justyna; del Hoyo-Meléndez, Julio M
2015-08-28
The main goal of this work was to optimize the SPME sampling method for measuring microbial volatile organic compounds (MVOCs) emitted by active molds that may deteriorate historical objects. A series of artificially aged model materials that resemble those found in historical objects was prepared and evaluated after exposure to four different types of fungi. The investigated pairs consisted of: Alternaria alternata on silk, Aspergillus niger on parchment, Chaetomium globosum on paper and wool, and Cladosporium herbarum on paper. First of all, a selection of the most efficient SPME fibers was carried out as there are six different types of fibers commercially available. It was important to find a fiber that absorbs the biggest number and the highest amount of MVOCs. The results allowed establishing and selecting the DVB/CAR/PDMS fiber as the most effective SPME fiber for this kind of an analysis. Another task was to optimize the time of MVOCs extraction on the fiber. It was recognized that a time between 12 and 24h is adequate for absorbing a high enough amount of MVOCs. In the last step the temperature of MVOCs desorption in the GC injection port was optimized. It was found that desorption at a temperature of 250°C allowed obtaining chromatograms with the highest abundances of compounds. To the best of our knowledge this work constitutes the first attempt of the SPME method optimization for sampling MVOCs emitted by molds growing on historical objects. Copyright © 2015 Elsevier B.V. All rights reserved.
Sensor for performance monitoring of advanced gas turbines
NASA Astrophysics Data System (ADS)
Latvakoski, Harri M.; Markham, James R.; Harrington, James A.; Haan, David J.
1999-01-01
Advanced thermal coating materials are being developed for use in the combustor section of high performance turbine engines to allow for higher combustion temperatures. To optimize the use of these thermal barrier coatings (TBC), accurate surface temperature measurements are required to understand their response to changes in the combustion environment. Present temperature sensors, which are based on the measurement of emitted radiation, are not well studied for coated turbine blades since their operational wavelengths are not optimized for the radiative properties of the TBC. This work is concerned with developing an instrument to provide accurate, real-time measurements of the temperature of TBC blades in an advanced turbine engine. The instrument will determine the temperature form a measurement of the radiation emitted at the optimum wavelength, where the TBC radiates as a near-blackbody. The operational wavelength minimizes interference from the high temperature and pressure environment. A hollow waveguide is used to transfer the radiation from the engine cavity to a high-speed detector and data acquisition system. A prototype of this system was successfully tested at an atmospheric burner test facility, and an on-engine version is undergoing testing for installation on a high-pressure rig.
Optimization of plasma etching of SiO2 as hard mask for HgCdTe dry etching
NASA Astrophysics Data System (ADS)
Chen, Yiyu; Ye, Zhenhua; Sun, Changhong; Zhang, Shan; Xin, Wen; Hu, Xiaoning; Ding, Ruijun; He, Li
2016-10-01
HgCdTe is one of the dominating materials for infrared detection. To pattern this material, our group has proven the feasibility of SiO2 as a hard mask in dry etching process. In recent years, the SiO2 mask patterned by plasma with an auto-stopping layer of ZnS sandwiched between HgCdTe and SiO2 has been developed by our group. In this article, we will report the optimization of SiO2 etching on HgCdTe. The etching of SiO2 is very mature nowadays. Multiple etching recipes with deferent gas mixtures can be used. We utilized a recipe containing Ar and CHF3. With strictly controlled photolithography, the high aspect-ratio profile of SiO2 was firstly achieved on GaAs substrate. However, the same recipe could not work well on MCT because of the low thermal conductivity of HgCdTe and CdTe, resulting in overheated and deteriorated photoresist. By decreasing the temperature, the photoresist maintained its good profile. A starting table temperature around -5°C worked well enough. And a steep profile was achieved as checked by the SEM. Further decreasing of temperature introduced profile with beveled corner. The process window of the temperature is around 10°C. Reproducibility and uniformity were also confirmed for this recipe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Faming; Cheng, Yichen; Lin, Guang
2014-06-13
Simulated annealing has been widely used in the solution of optimization problems. As known by many researchers, the global optima cannot be guaranteed to be located by simulated annealing unless a logarithmic cooling schedule is used. However, the logarithmic cooling schedule is so slow that no one can afford to have such a long CPU time. This paper proposes a new stochastic optimization algorithm, the so-called simulated stochastic approximation annealing algorithm, which is a combination of simulated annealing and the stochastic approximation Monte Carlo algorithm. Under the framework of stochastic approximation Markov chain Monte Carlo, it is shown that themore » new algorithm can work with a cooling schedule in which the temperature can decrease much faster than in the logarithmic cooling schedule, e.g., a square-root cooling schedule, while guaranteeing the global optima to be reached when the temperature tends to zero. The new algorithm has been tested on a few benchmark optimization problems, including feed-forward neural network training and protein-folding. The numerical results indicate that the new algorithm can significantly outperform simulated annealing and other competitors.« less
Sb2Te3 and Its Superlattices: Optimization by Statistical Design.
Behera, Jitendra K; Zhou, Xilin; Ranjan, Alok; Simpson, Robert E
2018-05-02
The objective of this work is to demonstrate the usefulness of fractional factorial design for optimizing the crystal quality of chalcogenide van der Waals (vdW) crystals. We statistically analyze the growth parameters of highly c axis oriented Sb 2 Te 3 crystals and Sb 2 Te 3 -GeTe phase change vdW heterostructured superlattices. The statistical significance of the growth parameters of temperature, pressure, power, buffer materials, and buffer layer thickness was found by fractional factorial design and response surface analysis. Temperature, pressure, power, and their second-order interactions are the major factors that significantly influence the quality of the crystals. Additionally, using tungsten rather than molybdenum as a buffer layer significantly enhances the crystal quality. Fractional factorial design minimizes the number of experiments that are necessary to find the optimal growth conditions, resulting in an order of magnitude improvement in the crystal quality. We highlight that statistical design of experiment methods, which is more commonly used in product design, should be considered more broadly by those designing and optimizing materials.
Raut, Sangeeta; Raut, Smita; Sharma, Manisha; Srivastav, Chaitanya; Adhikari, Basudam; Sen, Sudip Kumar
2015-09-01
In the present study, artificial neural network (ANN) modelling coupled with particle swarm optimization (PSO) algorithm was used to optimize the process variables for enhanced low density polyethylene (LDPE) degradation by Curvularia lunata SG1. In the non-linear ANN model, temperature, pH, contact time and agitation were used as input variables and polyethylene bio-degradation as the output variable. Further, on application of PSO to the ANN model, the optimum values of the process parameters were as follows: pH = 7.6, temperature = 37.97 °C, agitation rate = 190.48 rpm and incubation time = 261.95 days. A comparison between the model results and experimental data gave a high correlation coefficient ([Formula: see text]). Significant enhancement of LDPE bio-degradation using C. lunata SG1by about 48 % was achieved under optimum conditions. Thus, the novelty of the work lies in the application of combination of ANN-PSO as optimization strategy to enhance the bio-degradation of LDPE.
NASA Astrophysics Data System (ADS)
Husain, Ali; Vig, Sean; Kogar, Anshul; Mishra, Vivek; Rak, Melinda; Mitrano, Matteo; Johnson, Peter; Gu, Genda; Fradkin, Eduardo; Norman, Michael; Abbamonte, Peter
Static charge order is a ubiquitous feature of the underdoped cuprates. However, at optimal doping, charge-order has been thought to be completely suppressed, suggesting an interplay between the charge-ordering and superconducting order parameters. Using Momentum-resolved Electron Energy Loss Spectroscopy (M-EELS) we show the existence of diffuse fluctuating charge-order in the optimally doped cuprate Bi2Sr2CaCu2O8+δ (Bi-2212) at low-temperature. We present full momentum-space maps of both elastic and inelastic scattering at room temperature and below the superconducting transition with 4meV resolution. We show that the ``rods'' of diffuse scattering indicate nematic-like fluctuations, and the energy width defines a fluctuation timescale of 160 fs. We discuss the implications of fluctuating charge-order on the dynamics at optimal doping. This work was supported by the Gordon and Betty Moore Foundation's EPiQS Initiative through Grant GBMF-4542. An early prototype of the M-EELS instrument was supported by the DOE Center for Emergent Superconductivity under Award No. DE-AC02-98CH10886.
Evaluation of cold workplaces: an overview of standards for assessment of cold stress.
Holmér, Ingvar
2009-07-01
Many persons world wide are exposed to cold environments, either indoors for example in cold stores, or outdoors. Cold is a hazard to health and may affect safety and performance of work. Basis for the creation of safe and optimal working conditions may be obtained by the application of relevant international standards. ISO 11079 presents a method for evaluation of whole body heat balance. On the basis of climate and activity a required clothing insulation (IREQ) for heat balance is determined. For clothing with known insulation value an exposure time limited is calculated. ISO 11079 also includes criteria for assessment of local cooling. Finger temperatures should not be below 24 degrees C during prolonged exposures or 15 degrees C occasionally. Wind chill temperature indicates the risk of bare skin to freeze for combinations of wind and low temperatures. Special protection of airways is recommended at temperatures below -20 degrees C, in particular during heavy work. Additional standards are available describing evaluation strategies, work place observation checklists and checklist for medical screening. Risks associated with contact with cold surfaces can be evaluated with ISO 13732. The strategy and principles for assessment and prevention of cold stress are reviewed in this paper.
NASA Astrophysics Data System (ADS)
Liu, Yu-fang; Han, Xin; Shi, De-heng
2008-03-01
Based on the Kirchhoff's Law, a practical dual-wavelength fiber-optic colorimeter, with the optimal work wavelength centered at 2.1 μm and 2.3 μm is presented. The effect of the emissivity on the precision of the measured temperature has been explored under various circumstances (i.e. temperature, wavelength) and for different materials. In addition, by fitting several typical material emissivity-temperature dependencies curves, the influence of the irradiation (radiant flux originating from the surroundings) and the surface reflected radiation on the temperature accuracy is studied. The results show that the calibration of the measured temperature for reflected radiant energy is necessary especially in low target temperature or low target emissivity, and the temperature accuracy is suitable for requirements in the range of 400-1200K.
A study of power cycles using supercritical carbon dioxide as the working fluid
NASA Astrophysics Data System (ADS)
Schroder, Andrew Urban
A real fluid heat engine power cycle analysis code has been developed for analyzing the zero dimensional performance of a general recuperated, recompression, precompression supercritical carbon dioxide power cycle with reheat and a unique shaft configuration. With the proposed shaft configuration, several smaller compressor-turbine pairs could be placed inside of a pressure vessel in order to avoid high speed, high pressure rotating seals. The small compressor-turbine pairs would share some resemblance with a turbocharger assembly. Variation in fluid properties within the heat exchangers is taken into account by discretizing zero dimensional heat exchangers. The cycle analysis code allows for multiple reheat stages, as well as an option for the main compressor to be powered by a dedicated turbine or an electrical motor. Variation in performance with respect to design heat exchanger pressure drops and minimum temperature differences, precompressor pressure ratio, main compressor pressure ratio, recompression mass fraction, main compressor inlet pressure, and low temperature recuperator mass fraction have been explored throughout a range of each design parameter. Turbomachinery isentropic efficiencies are implemented and the sensitivity of the cycle performance and the optimal design parameters is explored. Sensitivity of the cycle performance and optimal design parameters is studied with respect to the minimum heat rejection temperature and the maximum heat addition temperature. A hybrid stochastic and gradient based optimization technique has been used to optimize critical design parameters for maximum engine thermal efficiency. A parallel design exploration mode was also developed in order to rapidly conduct the parameter sweeps in this design space exploration. A cycle thermal efficiency of 49.6% is predicted with a 320K [47°C] minimum temperature and 923K [650°C] maximum temperature. The real fluid heat engine power cycle analysis code was expanded to study a theoretical recuperated Lenoir cycle using supercritical carbon dioxide as the working fluid. The real fluid cycle analysis code was also enhanced to study a combined cycle engine cascade. Two engine cascade configurations were studied. The first consisted of a traditional open loop gas turbine, coupled with a series of recuperated, recompression, precompression supercritical carbon dioxide power cycles, with a predicted combined cycle thermal efficiency of 65.0% using a peak temperature of 1,890K [1,617°C]. The second configuration consisted of a hybrid natural gas powered solid oxide fuel cell and gas turbine, coupled with a series of recuperated, recompression, precompression supercritical carbon dioxide power cycles, with a predicted combined cycle thermal efficiency of 73.1%. Both configurations had a minimum temperature of 306K [33°C]. The hybrid stochastic and gradient based optimization technique was used to optimize all engine design parameters for each engine in the cascade such that the entire engine cascade achieved the maximum thermal efficiency. The parallel design exploration mode was also utilized in order to understand the impact of different design parameters on the overall engine cascade thermal efficiency. Two dimensional conjugate heat transfer (CHT) numerical simulations of a straight, equal height channel heat exchanger using supercritical carbon dioxide were conducted at various Reynolds numbers and channel lengths.
NASA Astrophysics Data System (ADS)
Chandrakanth, Balaji; Venkatesan, G; Prakash Kumar, L. S. S; Jalihal, Purnima; Iniyan, S
2018-03-01
The present work discusses the design and selection of a shell and tube condenser used in Low Temperature Thermal Desalination (LTTD). To optimize the key geometrical and process parameters of the condenser with multiple parameters and levels, a design of an experiment approach using Taguchi method was chosen. An orthogonal array (OA) of 25 designs was selected for this study. The condenser was designed, analysed using HTRI software and the heat transfer area with respective tube side pressure drop were computed using the same, as these two objective functions determine the capital and running cost of the condenser. There was a complex trade off between the heat transfer area and pressure drop in the analysis, however second law analysis was worked out for determining the optimal heat transfer area vs pressure drop for condensing the required heat load.
Li, Tian-Jiao; Li, Sai; Yuan, Yuan; Liu, Yu-Dong; Xu, Chuan-Long; Shuai, Yong; Tan, He-Ping
2017-04-03
Plenoptic cameras are used for capturing flames in studies of high-temperature phenomena. However, simulations of plenoptic camera models can be used prior to the experiment improve experimental efficiency and reduce cost. In this work, microlens arrays, which are based on the established light field camera model, are optimized into a hexagonal structure with three types of microlenses. With this improved plenoptic camera model, light field imaging of static objects and flame are simulated using the calibrated parameters of the Raytrix camera (R29). The optimized models improve the image resolution, imaging screen utilization, and shooting range of depth of field.
NASA Astrophysics Data System (ADS)
Masternak, Tadeusz J.
This research determines temperature-constrained optimal trajectories for a scramjet-based hypersonic reconnaissance vehicle by developing an optimal control formulation and solving it using a variable order Gauss-Radau quadrature collocation method with a Non-Linear Programming (NLP) solver. The vehicle is assumed to be an air-breathing reconnaissance aircraft that has specified takeoff/landing locations, airborne refueling constraints, specified no-fly zones, and specified targets for sensor data collections. A three degree of freedom scramjet aircraft model is adapted from previous work and includes flight dynamics, aerodynamics, and thermal constraints. Vehicle control is accomplished by controlling angle of attack, roll angle, and propellant mass flow rate. This model is incorporated into an optimal control formulation that includes constraints on both the vehicle and mission parameters, such as avoidance of no-fly zones and coverage of high-value targets. To solve the optimal control formulation, a MATLAB-based package called General Pseudospectral Optimal Control Software (GPOPS-II) is used, which transcribes continuous time optimal control problems into an NLP problem. In addition, since a mission profile can have varying vehicle dynamics and en-route imposed constraints, the optimal control problem formulation can be broken up into several "phases" with differing dynamics and/or varying initial/final constraints. Optimal trajectories are developed using several different performance costs in the optimal control formulation: minimum time, minimum time with control penalties, and maximum range. The resulting analysis demonstrates that optimal trajectories that meet specified mission parameters and constraints can be quickly determined and used for larger-scale operational and campaign planning and execution.
Properties of Gas Mixtures and Their Use in Mixed-Refrigerant Joule-Thomson Refrigerators
NASA Astrophysics Data System (ADS)
Luo, E.; Gong, M.; Wu, J.; Zhou, Y.
2004-06-01
The Joule-Thomson (J-T) effect has been widely used for achieving low temperatures. In the past few years, much progress has been made in better understanding the working mechanism of the refrigeration method and in developing prototypes for different applications. In this talk, there are three aspects of our research work to be discussed. First, some special thermal properties of the mixtures for achieving liquid nitrogen temperature range will be presented. Secondly, some important conclusions from the optimization of various mixed-refrigerant J-T cycles such as a simple J-T cycle and an auto-cascade mixed-refrigerant J-T cycle will be presented. Moreover, an auto-cascade, mixed-refrigerant J-T refrigerator with a special mixture capable of achieving about 50K will be mentioned. Finally, various prototypes based on the mixed-refrigerant refrigeration technology will be described. These applications include miniature J-T cryocoolers for cooling infrared detectors and high-temperature superconducting devices, cryosurgical knife for medical treatment, low-temperature refrigerators for biological storage and so forth. The on-going research work and unanswered questions for this technology will be also discussed.
Optimization of the Bridgman crystal growth process
NASA Astrophysics Data System (ADS)
Margulies, M.; Witomski, P.; Duffar, T.
2004-05-01
A numerical optimization method of the vertical Bridgman growth configuration is presented and developed. It permits to optimize the furnace temperature field and the pulling rate versus time in order to decrease the radial thermal gradients in the sample. Some constraints are also included in order to insure physically realistic results. The model includes the two classical non-linearities associated to crystal growth processes, the radiative thermal exchange and the release of latent heat at the solid-liquid interface. The mathematical analysis and development of the problem is shortly described. On some examples, it is shown that the method works in a satisfactory way; however the results are dependent on the numerical parameters. Improvements of the optimization model, on the physical and numerical point of view, are suggested.
Influence of the cooling degree upon performances of internal combustion engine
NASA Astrophysics Data System (ADS)
Grǎdinariu, Andrei Cristian; Mihai, Ioan
2016-12-01
Up to present, air cooling systems still raise several unsolved problems due to conditions imposed by the environment in terms of temperature and pollution levels. The present paper investigates the impact of the engine cooling degree upon its performances, as important specific power is desired for as low as possible fuel consumption. A technical solution advanced by the authors[1], consists of constructing a bi-flux compressor, which can enhance the engine's performances. The bi-flux axial compressor accomplishes two major functions, that is it cools down the engine and it also turbocharges it. The present paper investigates the temperature changes corresponding to the fresh load, during the use of a bi-flux axial compressor. This compressor is economically simple, compact, and offers an optimal response at low rotational speeds of the engine, when two compression steps are used. The influence of the relative coefficient of air temperature drop upon working agent temperature at the intercooler exit is also investigated in the present work. The variation of the thermal load coefficient by report to the working agent temperature is also investigated during engine cooling. The variation of the average combustion temperature is analyzed in correlation to the thermal load coefficient and the temperatures of the working fluid at its exit from the cooling system. An exergetic analysis was conducted upon the influence of the cooling degree on the motor fluid and the gases resulted from the combustion process.
Van Derlinden, E; Bernaerts, K; Van Impe, J F
2010-05-21
Optimal experiment design for parameter estimation (OED/PE) has become a popular tool for efficient and accurate estimation of kinetic model parameters. When the kinetic model under study encloses multiple parameters, different optimization strategies can be constructed. The most straightforward approach is to estimate all parameters simultaneously from one optimal experiment (single OED/PE strategy). However, due to the complexity of the optimization problem or the stringent limitations on the system's dynamics, the experimental information can be limited and parameter estimation convergence problems can arise. As an alternative, we propose to reduce the optimization problem to a series of two-parameter estimation problems, i.e., an optimal experiment is designed for a combination of two parameters while presuming the other parameters known. Two different approaches can be followed: (i) all two-parameter optimal experiments are designed based on identical initial parameter estimates and parameters are estimated simultaneously from all resulting experimental data (global OED/PE strategy), and (ii) optimal experiments are calculated and implemented sequentially whereby the parameter values are updated intermediately (sequential OED/PE strategy). This work exploits OED/PE for the identification of the Cardinal Temperature Model with Inflection (CTMI) (Rosso et al., 1993). This kinetic model describes the effect of temperature on the microbial growth rate and encloses four parameters. The three OED/PE strategies are considered and the impact of the OED/PE design strategy on the accuracy of the CTMI parameter estimation is evaluated. Based on a simulation study, it is observed that the parameter values derived from the sequential approach deviate more from the true parameters than the single and global strategy estimates. The single and global OED/PE strategies are further compared based on experimental data obtained from design implementation in a bioreactor. Comparable estimates are obtained, but global OED/PE estimates are, in general, more accurate and reliable. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Abdel Wahab, Walaa A; Karam, Eman A; Hassan, Mohamed E; Kansoh, Amany L; Esawy, Mona A; Awad, Ghada E A
2018-07-01
Pectinase produced by a honey derived from the fungus Aspergillus awamori KX943614 was covalently immobilized onto gel beads made of alginate and agar. Polyethyleneimine, glutaraldehyde, loading time and enzyme's units were optimized by 2 4 full factorial central composite design (CCD). The immobilization process increased the optimal working pH for the free pectinase from 5 to a broader range of pH4.5-5.5 and the optimum operational temperature from 55°C to a higher temperature, of 60°C, which is favored to reduce the enzyme's microbial contamination. The thermodynamics studies showed a thermal stability enhancement against high temperature for the immobilized formula. Moreover, an increase in half-lives and D-values was achieved. The thermodynamic studies proved that immobilization of pectinase made a remarkable increase in enthalpy and free energy because of enzyme stability enhancement. The reusability test revealed that 60% of pectinase's original activity was retained after 8 successive cycles. This gel formula may be convenient for immobilization of other industrial enzymes. Copyright © 2018 Elsevier B.V. All rights reserved.
Liwo, Adam; Khalili, Mey; Czaplewski, Cezary; Kalinowski, Sebastian; Ołdziej, Stanisław; Wachucik, Katarzyna; Scheraga, Harold A.
2011-01-01
We report the modification and parameterization of the united-residue (UNRES) force field for energy-based protein-structure prediction and protein-folding simulations. We tested the approach on three training proteins separately: 1E0L (β), 1GAB (α), and 1E0G (α + β). Heretofore, the UNRES force field had been designed and parameterized to locate native-like structures of proteins as global minima of their effective potential-energy surfaces, which largely neglected the conformational entropy because decoys composed of only lowest-energy conformations were used to optimize the force field. Recently, we developed a mesoscopic dynamics procedure for UNRES, and applied it with success to simulate protein folding pathways. How ever, the force field turned out to be largely biased towards α-helical structures in canonical simulations because the conformational entropy had been neglected in the parameterization. We applied the hierarchical optimization method developed in our earlier work to optimize the force field, in which the conformational space of a training protein is divided into levels each corresponding to a certain degree of native-likeness. The levels are ordered according to increasing native-likeness; level 0 corresponds to structures with no native-like elements and the highest level corresponds to the fully native-like structures. The aim of optimization is to achieve the order of the free energies of levels, decreasing as their native-likeness increases. The procedure is iterative, and decoys of the training protein(s) generated with the energy-function parameters of the preceding iteration are used to optimize the force field in a current iteration. We applied the multiplexing replica exchange molecular dynamics (MREMD) method, recently implemented in UNRES, to generate decoys; with this modification, conformational entropy is taken into account. Moreover, we optimized the free-energy gaps between levels at temperatures corresponding to a predominance of folded or unfolded structures, as well as to structures at the putative folding-transition temperature, changing the sign of the gaps at the transition temperature. This enabled us to obtain force fields characterized by a single peak in the heat capacity at the transition temperature. Furthermore, we introduced temperature dependence to the UNRES force field; this is consistent with the fact that it is a free-energy and not a potential-energy function. PMID:17201450
Deformation and annealing study of NiCrAlY
NASA Technical Reports Server (NTRS)
Ebert, L. J.; Trela, D. M.
1978-01-01
The elevated temperature properties (tensile and creep) of NiCrALY, a nickel base alloy containing nominally 16% chromium, 4% aluminum, and 2 to 3% yttria (Y2O3) were evaluated and the optimal combination of thermomechanical treatments for maximum creep resistance was determined. Stored strain energy in as-extruded bars (14:1 extrusion ratio) permitted the development of a large grain size in the material when it was annealed at the maximum safe temperature 2450 F (1343 C). With a one-hour anneal at this temperature, the relatively fine grain size of the as-extruded material was changed to one in which the average grain diameter approached 1 mm, and the aspect ratio was about 10. The material was capable of being cold worked (by rolling) in amounts greater than 30% reduction in area. When the cold worked material was given a relaxation treatment, consisting of heating one hour at 1600 F(871 C), and then a high temperature anneal at 2450 F (1343 C) for one hour, both the high temperature strength and the high temperature creep resistance of the material was further enhanced.
The development of low temperature curing adhesives
NASA Technical Reports Server (NTRS)
Green, H. E.; Sutherland, J. D.; Hom, J. M.; Sheppard, C. H.
1975-01-01
An approach for the development of a practical low temperature (293 K-311 K/68 F-100 F) curing adhesive system based on a family of amide/ester resins was studied and demonstrated. The work was conducted on resin optimization and adhesive compounding studies. An improved preparative method was demonstrated which involved the reaction of an amine-alcohol precursor, in a DMF solution with acid chloride. Experimental studies indicated that an adhesive formulation containing aluminum powder provided the best performance when used in conjunction with a commercial primer.
Design of a wearable bio-patch for monitoring patient's temperature.
Vicente, Jose M; Avila-Navarro, Ernesto; Juan, Carlos G; Garcia, Nicolas; Sabater-Navarro, Jose M
2016-08-01
New communication technologies allow us developing useful and more practical medical applications, in particular for ambulatory monitoring. NFC communication has the advantages of low powering and low influence range area, what makes this technology suitable for health applications. This work presents an explanation of the design process of planar NFC antennas in a wearable biopatch. The problem of optimizing the communication distance is addressed. Design of a biopatch for continuous temperature monitoring and experimental results obtained wearing this biopatch during daily activities are presented.
NASA Technical Reports Server (NTRS)
Grugel, Richard
2015-01-01
The intent of the work proposed here is to ascertain the viability of ionic liquid (IL) epoxy based carbon fiber composites for use as storage tanks at cryogenic temperatures. This IL epoxy has been specifically developed to address composite cryogenic tank challenges associated with achieving NASA's in-space propulsion and exploration goals. Our initial work showed that an unadulterated ionic liquid (IL) carbon-fiber composite exhibited improved properties over an optimized commercial product at cryogenic temperatures. Subsequent investigative work has significantly improved the IL epoxy and our first carbon-fiber Composite Overwrap Pressure Vessel (COPV) was successfully fabricated. Here additional COPVs, using a further improved IL epoxy, will be fabricated and pressure tested at cryogenic temperatures with the results rigorously analyzed. Investigation of the IL composite for lower pressure liner-less cryogenic tank applications will also be initiated. It is expected that the current Technology Readiness Level (TRL) will be raised from about TRL 3 to TRL 5 where unambiguous predictions for subsequent development/testing can be made.
Optimization of bone drilling parameters using Taguchi method based on finite element analysis
NASA Astrophysics Data System (ADS)
Rosidi, Ayip; Lenggo Ginta, Turnad; Rani, Ahmad Majdi Bin Abdul
2017-05-01
Thermal necrosis results fracture problems and implant failure if temperature exceeds 47 °C for one minute during bone drilling. To solve this problem, this work studied a new thermal model by using three drilling parameters: drill diameter, feed rate and spindle speed. Effects of those parameters to heat generation were studied. The drill diameters were 4 mm, 6 mm and 6 mm; the feed rates were 80 mm/min, 100 mm/min and 120 mm/min whereas the spindle speeds were 400 rpm, 500 rpm and 600 rpm then an optimization was done by Taguchi method to which combination parameter can be used to prevent thermal necrosis during bone drilling. The results showed that all the combination of parameters produce confidence results which were below 47 °C and finite element analysis combined with Taguchi method can be used for predicting temperature generation and optimizing bone drilling parameters prior to clinical bone drilling. All of the combination parameters can be used for surgeon to achieve sustainable orthopaedic surgery.
Numerical investigation of optimized CZTSSe based solar cell in Wx-Amps environment
NASA Astrophysics Data System (ADS)
Mohanty, Soumya Priyadarshini; Padhy, Srinibasa; Chowdhury, Joy; Sing, Udai P.
2018-05-01
The CZTSSe is the modified version of CZTS with selenium infusion. It shows maximum efficiency in the band gap from 1 to 1.4 eV. In our present work CZTSSe based solar cell is investigated using Wx-Amps tool. The Mo layer, absorber layer, CdS layer, i-ZnO [4]and Al-ZnO layers with their electrical, optical and material parameters are fitted in the tool. The vital parameters such as carrier density, thickness of the CZTSSe absorber layer, operating temperature, CdS buffer layer thickness and its carrier density on the cell interpretation are calculated. From[4] the simulation results it is apparent that the optimal absorber layer varies from 2.9 µm to 3.7 µm. The temperature variation has a strong influence on the efficiency of the cell. An optimal efficiency of 22% (With Jsc=33 mA/cm2, Voc=0.98 V, and fill factor= 68%) are attained. These results will give some insight for makeing higher efficiency CZTSSe based solar cell.
NASA Astrophysics Data System (ADS)
Venkata, Santhosh Krishnan; Roy, Binoy Krishna
2016-03-01
Design of an intelligent flow measurement technique using venturi flow meter is reported in this paper. The objectives of the present work are: (1) to extend the linearity range of measurement to 100 % of full scale input range, (2) to make the measurement technique adaptive to variations in discharge coefficient, diameter ratio of venturi nozzle and pipe (β), liquid density, and liquid temperature, and (3) to achieve the objectives (1) and (2) using an optimized neural network. The output of venturi flow meter is differential pressure. It is converted to voltage by using a suitable data conversion unit. A suitable optimized artificial neural network (ANN) is added, in place of conventional calibration circuit. ANN is trained, tested with simulated data considering variations in discharge coefficient, diameter ratio between venturi nozzle and pipe, liquid density, and liquid temperature. The proposed technique is then subjected to practical data for validation. Results show that the proposed technique has fulfilled the objectives.
NASA Astrophysics Data System (ADS)
Vasu, M.; Shivananda, Nayaka H.
2018-04-01
EN47 steel samples are machined on a self-centered lathe using Chemical Vapor Deposition of coated TiCN/Al2O3/TiN and uncoated tungsten carbide tool inserts, with nose radius 0.8mm. Results are compared with each other and optimized using statistical tool. Input (cutting) parameters that are considered in this work are feed rate (f), cutting speed (Vc), and depth of cut (ap), the optimization criteria are based on the Taguchi (L9) orthogonal array. ANOVA method is adopted to evaluate the statistical significance and also percentage contribution for each model. Multiple response characteristics namely cutting force (Fz), tool tip temperature (T) and surface roughness (Ra) are evaluated. The results discovered that coated tool insert (TiCN/Al2O3/TiN) exhibits 1.27 and 1.29 times better than the uncoated tool insert for tool tip temperature and surface roughness respectively. A slight increase in cutting force was observed for coated tools.
CFD simulation of the gas flow in a pulse tube cryocooler with two pulse tubes
NASA Astrophysics Data System (ADS)
Yin, C. L.
2015-12-01
In this paper, in order to instruct the next optimization work, a two-dimension Computational Fluid Dynamics (CFD) model is developed to simulate temperature distribution and velocity distribution of oscillating fluid in the DPTC by individual phase-shifting. It is found that the axial temperature distribution of regenerator is generally uniform and the temperatures near the center at the same cross setion of two pulse tubes are obviously higher than their near wall temperatures. The wall temperature difference about 0-7 K exists between the two pulse tubes. The velocity distribution near the center of the regenerator is uniform and there is obvious injection stream coming at the center of the pulse tubes from the hot end. The formation reason of temperature distribution and velocity distribution is explained.
NASA Astrophysics Data System (ADS)
Pominova, Daria V.; Ryabova, Anastasia V.; Romanishkin, Igor D.; Grachev, Pavel V.; Burmistrov, Ivan A.; Kuznetsov, Sergei V.
2018-04-01
For clinical application in photothermal therapy the nanoparticles should be efficient light-to-heat converters and luminescent markers. In this work, we investigate upconversion nanoparticles with NaYxGd1-xF4 (x=0-1) host lattice as self-monitored thermo-agents for bioimaging and local laser hyperthermia with real-time temperature control. The ability of non-contact temperature sensing using NaYxGd1-xF4 on one hand and laser induced heating on the other hand was shown. It was found, that the heat conversion luminescence efficiency is strongly affected by the concentration ratio of Gd3+ to Y3+ ions in host lattice. The optimal composition among the studied is NaY0.4Gd0.4Yb0.17Er0.03 with luminescence efficiency of 3.5% under 1 W/cm2 pumping power. Higher Gd3+ concentrations lead to higher heating temperature, but also to the decrease of the luminescence intensity and the accuracy of the ratiometric temperature determination. It was also shown that the optimization of Yb3+ doping concentration is one of the possible ways for optimization of the conditions of laser induced photothermal effects. Experimental in vitro study of hyperthermia with use of upconversion nanoparticles on HeLa and C6 cell lines was performed. The investigated nanoparticles are capable of in vitro photothermal heating, luminescent localization and thermal sensing.
NASA Astrophysics Data System (ADS)
Waldrop, Spencer Laine
The study of thermoelectrics is nearly two centuries old. In that time a large number of applications have been discovered for these materials which are capable of transforming thermal energy into electricity or using electrical work to create a thermal gradient. Current use of thermoelectric materials is in very niche applications with contemporary focus being upon their capability to recover waste heat. A relatively undeveloped region for thermoelectric application is focused upon Peltier cooling at low temperatures. Materials based on bismuth telluride semiconductors have been the gold standard for close to room temperature applications for over sixty years. For applications below room temperature, semiconductors based on bismuth antimony reign supreme with few other possible materials. The cause of this diculty in developing new, higher performing materials is due to the interplay of the thermoelectric properties of these materials. The Seebeck coecient, which characterizes the phenomenon of the conversion of heat to electricity, the electrical conductivity, and the thermal conductivity are all interconnected properties of a material which must be optimized to generate a high performance thermoelectric material. While for above room temperature applications many advancements have been made in the creation of highly ecient thermoelectric materials, the below room temperature regime has been stymied by ill-suited properties, low operating temperatures, and a lack of research. The focus of this work has been to investigate and optimize the thermoelectric properties of platinum diantimonide, PtSb2, a nearly zero gap semiconductor. The electronic properties of PtSb2 are very favorable for cryogenic Peltier applications, as it exhibits good conductivity and large Seebeck coecient below 200 K. It is shown that both n- and p-type doping may be applied to this compound to further improve its electronic properties. Through both solid solution formation and processing techniques, the thermal conductivity may be reduced in order to increase the thermoelectric gure of merit. Further reduction in thermal conductivity using other novel approaches is identied as an area of promising future research. Continued development of this material has the potential to generate a suitable replacement for some low temperature applications, but will certainly further scientic knowledge and understanding of the optimization of thermoelectric materials in this temperature regime.
NASA Astrophysics Data System (ADS)
Hamdi, Basma; Mabrouk, Mohamed Tahar; Kairouani, Lakdar; Kheiri, Abdelhamid
2017-06-01
Different configurations of organic Rankine cycle (ORC) systems are potential thermodynamic concepts for power generation from low grade heat. The aim of this work is to investigate and optimize the performances of the three main ORC systems configurations: basic ORC, ORC with internal heat exchange (IHE) and regenerative ORC. The evaluation for those configurations was performed using seven working fluids with typical different thermodynamic behaviours (R245fa, R601a, R600a, R227ea, R134a, R1234ze and R1234yf). The optimization has been performed using a genetic algorithm under a comprehensive set of operative parameters such as the fluid evaporating temperature, the fraction of flow rate or the pressure at the steam extracting point in the turbine. Results show that there is no general best ORC configuration for all those fluids. However, there is a suitable configuration for each fluid. Contribution to the topical issue "Materials for Energy harvesting, conversion and storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui
Study on the method of maintaining bathtub water temperature
NASA Astrophysics Data System (ADS)
Wang, Xiaoyan
2017-05-01
In order to make the water temperature constant and the spillage to its minimum, we use finite element method and grid transformation and have established an optimized model for people in the bathtub both in time and space, which is based on theories of heat convection and heat conduction and three-dimensional second-order equation. For the first question, we have worked out partial differential equations for three-dimensional heat convection. In the meantime, we also create an optimized temperature model in time and space by using initial conditions and boundary conditions. For the second question we have simulated the shape and volume of the tub and the human gestures in the tub based on the first question. As for the shape and volume of the tub, we draw conclusion that the tub whose surface area is little contains water with higher temperature. Thus, when we are designing bathtubs we can decrease the area so that we'll have less loss heat. For different gestures when people are bathing, we have found that gestures have no obvious influence on variations of water temperature. Finally, we did some simulating calculations, and did some analysis on precision and sensitivity
Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam Sm, Jahangir
2016-10-14
A piezo-resistive pressure sensor is made of silicon, the nature of which is considerably influenced by ambient temperature. The effect of temperature should be eliminated during the working period in expectation of linear output. To deal with this issue, an approach consists of a hybrid kernel Least Squares Support Vector Machine (LSSVM) optimized by a chaotic ions motion algorithm presented. To achieve the learning and generalization for excellent performance, a hybrid kernel function, constructed by a local kernel as Radial Basis Function (RBF) kernel, and a global kernel as polynomial kernel is incorporated into the Least Squares Support Vector Machine. The chaotic ions motion algorithm is introduced to find the best hyper-parameters of the Least Squares Support Vector Machine. The temperature data from a calibration experiment is conducted to validate the proposed method. With attention on algorithm robustness and engineering applications, the compensation result shows the proposed scheme outperforms other compared methods on several performance measures as maximum absolute relative error, minimum absolute relative error mean and variance of the averaged value on fifty runs. Furthermore, the proposed temperature compensation approach lays a foundation for more extensive research.
Optimization of SIS mixer elements
NASA Technical Reports Server (NTRS)
Mattauch, Robert J.
1985-01-01
Superconductor-Insulator-Superconductor (SIS) quantum mixers provide an approach to millimeter wave mixing - potentially offering conversion gain, a low local oscillator power demand, and potential mixer noise temperatures near the quantum limit. The development of a reliable fabrication technology for producing such high quality SIS devices for mixer applications in radio astronomy is the focus of the work.
Sun, Yonghui; Liu, Pengtao; Liu, Zhong
2016-05-20
The principal goal of this work was to reuse the carbohydrates and recycle sulfuric acid in the waste liquid of acid hydrolysis nanocrystalline cellulose (NCC). Therefore, in this work, the optimizations of further hydrolysis of waste liquid of acid hydrolysis NCC and catalytic conversion of L4 to 5-hydroxymethylfurfural (5-HMF) were studied. Sulfuric acid was separated by spiral wound diffusion dialysis (SWDD). The results revealed that cellulose can be hydrolyze to glucose absolutely under the condition of temperature 35 °C, 3 h, and sulfuric acid's concentration 62 wt%. And 78.3% sulfuric acid was recovered by SWDD. The yield of 5-HMF was highest in aqueous solution under the optimal condition was as follows, temperature 160 °C, 3 h, and sulfuric acid's concentration 12 wt%. Then the effect of biphasic solvent systems catalytic conversion and inorganic salt as additives were still examined. The results showed that both of them contributed to prepare 5-HMF. The yield and selectivity of 5-HMF was up to 21.0% and 31.4%, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Growth process optimization of ZnO thin film using atomic layer deposition
NASA Astrophysics Data System (ADS)
Weng, Binbin; Wang, Jingyu; Larson, Preston; Liu, Yingtao
2016-12-01
The work reports experimental studies of ZnO thin films grown on Si(100) wafers using a customized thermal atomic layer deposition. The impact of growth parameters including H2O/DiethylZinc (DEZn) dose ratio, background pressure, and temperature are investigated. The imaging results of scanning electron microscopy and atomic force microscopy reveal that the dose ratio is critical to the surface morphology. To achieve high uniformity, the H2O dose amount needs to be at least twice that of DEZn per each cycle. If the background pressure drops below 400 mTorr, a large amount of nanoflower-like ZnO grains would emerge and increase surface roughness significantly. In addition, the growth temperature range between 200 °C and 250 °C is found to be the optimal growth window. And the crystal structures and orientations are also strongly correlated to the temperature as proved by electron back-scattering diffraction and x-ray diffraction results.
Enayatifard, Reza; Mahjoob, Aiding; Ebrahimi, Pouneh; Ebrahimnejad, Pedram
2015-01-01
Objective(s): A Box-Behnken design was used for evaluation of Eudragit coated diclofenac pellets. The purpose of this work was to optimize diclofenac pellets to improve the physicochemical properties using experimental design. Materials and Methods: Diclofenac was loaded onto the non-pareil beads using conventional coating pan. Film coating of pellets was done at the same pan. The effect of plasticizer level, curing temperature and curing time was determined on the release of diclofenac from pellets coated with polymethacrylates. Results: Increasing the plasticizer in the coating formula led to decrease in drug release and increasing the curing temperature and time resulted in higher drug release. The optimization process generated an optimum of 35% drug release at 3 hr. The level of plasticizer concentration, curing temperature and time were 20% w/w, 55 °C and 24 hr, respectively. Conclusion: This study showed that by controllinig the physical variables optimum drug release were obtained. PMID:26351563
NASA Technical Reports Server (NTRS)
Williams, Powtawche N.
1998-01-01
To assess engine performance during the testing of Space Shuttle Main Engines (SSMEs), the design of an optimal altitude diffuser is studied for future Space Transportation Systems (STS). For other Space Transportation Systems, rocket propellant using kerosene is also studied. Methane and dodecane have similar reaction schemes as kerosene, and are used to simulate kerosene combustion processes at various temperatures. The equations for the methane combustion mechanism at high temperature are given, and engine combustion is simulated on the General Aerodynamic Simulation Program (GASP). The successful design of an altitude diffuser depends on the study of a sub-scaled diffuser model tested through two-dimensional (2-D) flow-techniques. Subroutines given calculate the static temperature and pressure at each Mach number within the diffuser flow. Implementing these subroutines into program code for the properties of 2-D compressible fluid flow determines all fluid characteristics, and will be used in the development of an optimal diffuser design.
Combining pressure and temperature control in dynamics on energy landscapes
NASA Astrophysics Data System (ADS)
Hoffmann, Karl Heinz; Christian Schön, J.
2017-05-01
Complex systems from science, technology or mathematics usually appear to be very different in their specific dynamical evolution. However, the concept of an energy landscape with its basins corresponding to locally ergodic regions separated by energy barriers provides a unifying approach to the description of complex systems dynamics. In such systems one is often confronted with the task to control the dynamics such that a certain basin is reached with the highest possible probability. Typically one aims for the global minimum, e.g. when dealing with global optimization problems, but frequently other local minima such as the metastable compounds in materials science are of primary interest. Here we show how this task can be solved by applying control theory using magnesium fluoride as an example system, where different modifications of MgF2 are considered as targets. In particular, we generalize previous work restricted to temperature controls only and present controls which simultaneously adjust temperature and pressure in an optimal fashion.
Theoretical study of the characteristics of a continuous wave iron-doped ZnSe laser
NASA Astrophysics Data System (ADS)
Pan, Qikun; Chen, Fei; Xie, Jijiang; Wang, Chunrui; He, Yang; Yu, Deyang; Zhang, Kuo
2018-03-01
A theoretical model describing the dynamic process of a continuous-wave Fe2+:ZnSe laser is presented. The influence of some of the operating parameters on the output characteristics of an Fe2+:ZnSe laser is studied in detail. The results indicate that the temperature rise of the Fe2+:ZnSe crystal is significant with the use of a high power pump laser, especially for a high doped concentration of crystal. The optimal crystal length increases with decreasing the doped concentration of crystal, so an Fe2+:ZnSe crystal with simultaneous doping during growth is an attractive choice, which usually has a low doped concentration and long length. The laser pumping threshold is almost stable at low temperatures, but increases exponentially with a working temperature in the range of 180 K to room temperature. The main reason for this phenomenon is the short upper level lifetime and serious thermal temperature rise when the working temperature is higher than 180 K. The calculated optimum output mirror transmittance is about 35% and the performance of a continuous-wave Fe2+:ZnSe laser is more efficient at a lower operating temperature.
Optimized Li-Ion Electrolytes Containing Fluorinated Ester Co-Solvents
NASA Technical Reports Server (NTRS)
Prakash, G. K. Surya; Smart, Marshall; Smith, Kiah; Bugga, Ratnakumar
2010-01-01
A number of experimental lithium-ion cells, consisting of MCMB (meso-carbon microbeads) carbon anodes and LiNi(0.8)Co(0.2)O2 cathodes, have been fabricated with increased safety and expanded capability. These cells serve to verify and demonstrate the reversibility, low-temperature performance, and electrochemical aspects of each electrode as determined from a number of electrochemical characterization techniques. A number of Li-ion electrolytes possessing fluorinated ester co-solvents, namely trifluoroethyl butyrate (TFEB) and trifluoroethyl propionate (TFEP), were demonstrated to deliver good performance over a wide temperature range in experimental lithium-ion cells. The general approach taken in the development of these electrolyte formulations is to optimize the type and composition of the co-solvents in ternary and quaternary solutions, focusing upon adequate stability [i.e., EC (ethylene carbonate) content needed for anode passivation, and EMC (ethyl methyl carbonate) content needed for lowering the viscosity and widening the temperature range, while still providing good stability], enhancing the inherent safety characteristics (incorporation of fluorinated esters), and widening the temperature range of operation (the use of both fluorinated and non-fluorinated esters). Further - more, the use of electrolyte additives, such as VC (vinylene carbonate) [solid electrolyte interface (SEI) promoter] and DMAc (thermal stabilizing additive), provide enhanced high-temperature life characteristics. Multi-component electrolyte formulations enhance performance over a temperature range of -60 to +60 C. With the need for more safety with the use of these batteries, flammability was a consideration. One of the solvents investigated, TFEB, had the best performance with improved low-temperature capability and high-temperature resilience. This work optimized the use of TFEB as a co-solvent by developing the multi-component electrolytes, which also contain non-halogenated esters, film forming additives, thermal stabilizing additives, and flame retardant additives. Further optimization of these electrolyte formulations is anticipated to yield improved performance. It is also anticipated that much improved performance will be demonstrated once these electrolyte solutions are incorporated into hermetically sealed, large capacity prototype cells, especially if effort is devoted to ensure that all electrolyte components are highly pure.
Ahmad, Ajaz; Alkharfy, Khalid M; Wani, Tanveer A; Raish, Mohammad
2015-01-01
The objective of the present work was to study the ultrasonic assisted extraction and optimization of polysaccharides from Paeonia emodi and evaluation of its anti-inflammatory response. Specifically, the optimization of polysaccharides was carried out using Box-Behnken statistical experimental design. Response surface methodology (RSM) of three factors (extraction temperature, extraction time and liquid solid ratio) was employed to optimize the percentage yield of the polysaccharides. The experimental data were fitted to quadratic response surface models using multiple regression analysis with high coefficient of determination value (R) of 0.9906. The highest polysaccharide yield (8.69%) as per the Derringer's desirability prediction tool was obtained under the optimal extraction condition (extraction temperature 47.03 °C, extraction time 15.68 min, and liquid solid ratio 1.29 ml/g) with a desirability value of 0.98. These optimized values of tested parameters were validated under similar conditions (n = 6), an average of 8.13 ± 2.08% of polysaccharide yield was obtained in an optimized extraction conditions with 93.55% validity. The anti-inflammatory effect of polysaccharides of P. emodi were studied on carrageenan induced paw edema. In vivo results showed that the P. emodi 200mg/kg of polysaccharide extract exhibited strong potential against inflammatory response induced by 1% suspension of carrageenean in normal saline. Copyright © 2014 Elsevier B.V. All rights reserved.
A Taguchi approach on optimal process control parameters for HDPE pipe extrusion process
NASA Astrophysics Data System (ADS)
Sharma, G. V. S. S.; Rao, R. Umamaheswara; Rao, P. Srinivasa
2017-06-01
High-density polyethylene (HDPE) pipes find versatile applicability for transportation of water, sewage and slurry from one place to another. Hence, these pipes undergo tremendous pressure by the fluid carried. The present work entails the optimization of the withstanding pressure of the HDPE pipes using Taguchi technique. The traditional heuristic methodology stresses on a trial and error approach and relies heavily upon the accumulated experience of the process engineers for determining the optimal process control parameters. This results in setting up of less-than-optimal values. Hence, there arouse a necessity to determine optimal process control parameters for the pipe extrusion process, which can ensure robust pipe quality and process reliability. In the proposed optimization strategy, the design of experiments (DoE) are conducted wherein different control parameter combinations are analyzed by considering multiple setting levels of each control parameter. The concept of signal-to-noise ratio ( S/ N ratio) is applied and ultimately optimum values of process control parameters are obtained as: pushing zone temperature of 166 °C, Dimmer speed at 08 rpm, and Die head temperature to be 192 °C. Confirmation experimental run is also conducted to verify the analysis and research result and values proved to be in synchronization with the main experimental findings and the withstanding pressure showed a significant improvement from 0.60 to 1.004 Mpa.
Heat-driven thermoacoustic cryocooler operating at liquid hydrogen temperature with a unique coupler
NASA Astrophysics Data System (ADS)
Hu, J. Y.; Luo, E. C.; Li, S. F.; Yu, B.; Dai, W.
2008-05-01
A heat-driven thermoacoustic cryocooler is constructed. A unique coupler composed of a tube, reservoir, and elastic diaphragm is introduced to couple a traveling-wave thermoacoustic engine (TE) and two-stage pulse tube refrigerator (PTR). The amplitude of the pressure wave generated in the engine is first amplified in the coupler and the wave then passes into the refrigerator to pump heat. The TE uses nitrogen as its working gas and the PTR still uses helium as its working gas. With this coupler, the efficiency of the system is doubled. The engine and coupler match at a much lower operating frequency, which is of great benefit for the PTR to obtain a lower cooling temperature. The coupling place between the coupler and engine is also optimized. The onset problem is effectively solved. With these improvements, the heat-driven thermoacoustic cryocooler reaches a lowest temperature of 18.1K, which is the demonstration of heat-driven thermoacoustic refrigeration technology used for cooling at liquid hydrogen temperatures.
NASA Astrophysics Data System (ADS)
Zacharias, Marios; Giustino, Feliciano
Electron-phonon interactions are of fundamental importance in the study of the optical properties of solids at finite temperatures. Here we present a new first-principles computational technique based on the Williams-Lax theory for performing predictive calculations of the optical spectra, including quantum zero-point renormalization and indirect absorption. The calculation of the Williams-Lax optical spectra is computationally challenging, as it involves the sampling over all possible nuclear quantum states. We develop an efficient computational strategy for performing ''one-shot'' finite-temperature calculations. These require only a single optimal configuration of the atomic positions. We demonstrate our methodology for the case of Si, C, and GaAs, yielding absorption coefficients in good agreement with experiment. This work opens the way for systematic calculations of optical spectra at finite temperature. This work was supported by the UK EPSRC (EP/J009857/1 and EP/M020517/) and the Leverhulme Trust (RL-2012-001), and the Graphene Flagship (EU-FP7-604391).
NASA Astrophysics Data System (ADS)
Chen, Xuefeng; Liu, Zhen; Xu, Chenhong; Cao, Fei; Wang, Genshui; Dong, Xianlin
2016-05-01
The dielectric and energy-storage properties of Pb0.99Nb0.02[(Zr0.60Sn0.40)0.95Ti0.05]0.98O3 (PNZST) bulk ceramics near the antiferroelectric (AFE)-ferroelectric (FE) phase boundary are investigated as a function of temperature. Three characteristic temperatures T0, TC, T2 are obtained from the dielectric temperature spectrum. At different temperature regions (below T0, between T0 and TC, and above TC), three types of hysteresis loops are observed as square double loop, slim loop and linear loop, respectively. The switching fields and recoverable energy density all first increase and then decrease with increasing temperature, and reach their peak values at ˜T0. These results provide a convenient method to optimize the working temperature of antiferroelectric electronic devices through testing the temperature dependent dielectric properties of antiferroelectric ceramics.
NASA Astrophysics Data System (ADS)
Shukla, Adarsh
In a thermodynamic system which contains several elements, the phase relationships among the components are usually very complex. Especially, systems containing oxides are generally very difficult to investigate owing to the very high experimental temperatures and corrosive action of slags. Due to such difficulties, large inconsistencies are often observed among the available experimental data. In order to investigate and understand the complex phase relationships effectively, it is very useful to develop thermodynamic databases containing optimized model parameters giving the thermodynamic properties of all phases as functions of temperature and composition. In a thermodynamic optimization, adjustable model parameters are calculated using, simultaneously, all available thermodynamic and phase-equilibrium data in order to obtain one set of model equations as functions of temperature and composition. Thermodynamic data, such as activities, can aid in the evaluation of the phase diagrams, and information on phase equilibria can be used to deduce thermodynamic properties. Thus, it is frequently possible to resolve discrepancies in the available data. From the model equations, all the thermodynamic properties and phase diagrams can be back-calculated, and interpolations and extrapolations can be made in a thermodynamically correct manner. The data are thereby rendered self-consistent and consistent with thermodynamic principles, and the available data are distilled into a small set of model parameters, ideal for computer storage. As part of a broader research project at the Centre de Recherche en Calcul Thermochimique (CRCT), Ecole Polytechnique to develop a thermodynamic database for multicomponent oxide systems, this thesis deals with the addition of components SrO and BaO to the existing multicomponent database of the SiO2-B2O3-Al2O 3-CaO-MgO system. Over the years, in collaboration with many industrial companies, a thermodynamic database for the SiO2-B2O 3-Al2O3-CaO-MgO system has been built quite satisfactorily. The aim of the present work was to improve the applicability of this five component database by adding SrO and BaO to it. The databases prepared in this work will be of special importance to the glass and steel industries. In the SiO2-B2O3-Al2O 3-CaO-MgO-BaO-SrO system there are 11 binary systems and 25 ternary systems which contain either BaO or SrO or both. For most of these binary systems, and for none of these ternary systems, is there a previous thermodynamic optimization available in the literature. In this thesis, thermodynamic evaluation and optimization for the 11 binary, 17 ternary and 5 quaternary BaO- and SrO- containing systems in the SiO2-B2O3-Al 2O3-CaO-MgO-BaO-SrO system is presented. All these thermodynamic optimizations were performed based on the experimental data available in the literature, except for the SrO-B2O3-SiO2 system. This latter system was optimized on the basis of a few experimental data points generated in the present work together with the data from the literature. In the present work, all the calculations were performed using the FactSage™ thermochemical software. The Modified Quasichemical Model (MQM), which is capable of taking short-range ordering into account, was used for the liquid phase. All the binary systems were critically evaluated and optimized using available phase equilibrium and thermodynamic data. The model parameters obtained as a result of this simultaneous optimization were used to represent the Gibbs energies of all phases as functions of temperature and composition. Optimized binary model parameters were used to estimate the thermodynamic properties of phases in the ternary systems. Proper “geometric” models were used for these estimations. Ternary phase diagram were calculated and compared with available experimental data. Wherever required, ternary interaction parameters were also added. The first part of this thesis comprises a general literature review on the subject of thermodynamic modeling and experimental techniques for phase diagram determination. The next chapters include the literature review and the thermodynamic optimizations of the various systems. The last part of the thesis is the presentation of experiments performed in the present work, by quenching and EPMA, in the SrO-B2O3-SiO2 system. The experiments were designed to generate the maximum amount of information with the minimum number of experiments using the thermodynamic optimization, based only on the data available in the literature, as a guide. These newly-obtained data improved the (preceding) thermodynamic optimization, based on the experimental data in the literature, of this ternary system.
Andrade-Eiroa, Auréa; Diévart, Pascal; Dagaut, Philippe
2010-04-15
A new procedure for optimizing PAHs separation in very complex mixtures by reverse phase high performance (RPLC) is proposed. It is based on changing gradually the experimental conditions all along the chromatographic procedure as a function of the physical properties of the compounds eluted. The temperature and speed flow gradients allowed obtaining the optimum resolution in large chromatographic determinations where PAHs with very different medium polarizability have to be separated. Whereas optimization procedures of RPLC methodologies had always been accomplished regardless of the physico-chemical properties of the target analytes, we found that resolution is highly dependent on the physico-chemical properties of the target analytes. Based on resolution criterion, optimization process for a 16 EPA PAHs mixture was performed on three sets of difficult-to-separate PAHs pairs: acenaphthene-fluorene (for the optimization procedure in the first part of the chromatogram where light PAHs elute), benzo[g,h,i]perylene-dibenzo[a,h]anthracene and benzo[g,h,i]perylene-indeno[1,2,3-cd]pyrene (for the optimization procedure of the second part of the chromatogram where the heavier PAHs elute). Two-level full factorial designs were applied to detect interactions among variables to be optimized: speed flow, temperature of column oven and mobile-phase gradient in the two parts of the studied chromatogram. Experimental data were fitted by multivariate nonlinear regression models and optimum values of speed flow and temperature were obtained through mathematical analysis of the constructed models. An HPLC system equipped with a reversed phase 5 microm C18, 250 mm x 4.6mm column (with acetonitrile/water mobile phase), a column oven, a binary pump, a photodiode array detector (PDA), and a fluorimetric detector were used in this work. Optimum resolution was achieved operating at 1.0 mL/min in the first part of the chromatogram (until 45 min) and 0.5 mL/min in the second one (from 45 min to the end) and by applying programmed temperature gradient (15 degrees C until 30 min and progressively increasing temperature until reaching 40 degrees C at 45 min). (c) 2009 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Vendittozzi, Cristian; Felli, Ferdinando; Lupi, Carla
2018-05-01
Fiber optics with photo-imprinted Bragg grating have been studied in order to be used as temperature sensors in cryogenic applications. The main disadvantage presented by Fiber Bragg Grating (FBG) sensors is the significant drop in sensitivity as temperature decreases, mainly due to the critical lowering of the thermo-optic coefficient of the fiber and the very low thermal expansion coefficient (CTE) of fused silica at cryogenic temperatures. Thus, especially for the latter, it is important to enhance sensitivity to temperature by depositing a metal coating presenting higher CTE. In this work the thermal sensitivity of metal-coated FBG sensors has been evaluated by considering their elongation within temperature variations in the cryogenic range, as compared to bare fiber sensors. To this purpose, a theoretical model simulating elongation of metal-coated sensors has been developed. The model has been used to evaluate the behaviour of different metals which can be used as coating (Ni, Cu, Al, Zn, Pb and In). The optimal coating thickness has been calculated at different fixed temperature (from 5 K to 100 K) for each metal. It has been found that the metal coating effectiveness depends on thickness and operating temperature in accordance to our previous experimental work and theory suggest.
Air-Cooled Heat Exchanger for High-Temperature Power Electronics: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waye, S. K.; Lustbader, J.; Musselman, M.
2015-05-06
This work demonstrates a direct air-cooled heat exchanger strategy for high-temperature power electronic devices with an application specific to automotive traction drive inverters. We present experimental heat dissipation and system pressure curves versus flow rate for baseline and optimized sub-module assemblies containing two ceramic resistance heaters that provide device heat fluxes. The maximum allowable junction temperature was set to 175 deg.C. Results were extrapolated to the inverter scale and combined with balance-of-inverter components to estimate inverter power density and specific power. The results exceeded the goal of 12 kW/L and 12 kW/kg for power density and specific power, respectively.
Quality of mango nectar processed by high-pressure homogenization with optimized heat treatment.
Tribst, Alline Artigiani Lima; Franchi, Mark Alexandrow; de Massaguer, Pilar Rodriguez; Cristianini, Marcelo
2011-03-01
This work aimed to evaluate the effect of high-pressure homogenization (HPH) with heat shock on Aspergillus niger, vitamin C, and color of mango nectar. The nectar was processed at 200 MPa followed by heat shock, which was optimized by response surface methodology by using mango nectar ratio (45 to 70), heat time (10 to 20), and temperature (60 to 85 °C) as variables. The color of mango nectar and vitamin C retention were evaluated at the optimized treatments, that is, 200 MPa + 61.5 °C/20 min or 73.5 °C/10 min. The mathematical model indicates that heat shock time and temperature showed a positive effect in the mould inactivation, whereas increasing ratio resulted in a protective effect on A. niger. The optimized treatments did not increase the retention of vitamin C, but had positive effect for the nectar color, in particular for samples treated at 200 MPa + 61.5 °C/20 min. The results obtained in this study show that the conidia can be inactivated by applying HPH with heat shock, particularly to apply HPH as an option to pasteurize fruit nectar for industries.
NASA Astrophysics Data System (ADS)
Namwong, Lawit; Authayanun, Suthida; Saebea, Dang; Patcharavorachot, Yaneeporn; Arpornwichanop, Amornchai
2016-11-01
Proton-conducting solid oxide electrolysis cells (SOEC-H+) are a promising technology that can utilize carbon dioxide to produce syngas. In this work, a detailed electrochemical model was developed to predict the behavior of SOEC-H+ and to prove the assumption that the syngas is produced through a reversible water gas-shift (RWGS) reaction. The simulation results obtained from the model, which took into account all of the cell voltage losses (i.e., ohmic, activation, and concentration losses), were validated using experimental data to evaluate the unknown parameters. The developed model was employed to examine the structural and operational parameters. It is found that the cathode-supported SOEC-H+ is the best configuration because it requires the lowest cell potential. SOEC-H+ operated favorably at high temperatures and low pressures. Furthermore, the simulation results revealed that the optimal S/C molar ratio for syngas production, which can be used for methanol synthesis, is approximately 3.9 (at a constant temperature and pressure). The SOEC-H+ was optimized using a response surface methodology, which was used to determine the optimal operating conditions to minimize the cell potential and maximize the carbon dioxide flow rate.
Production of biodiesel from bioethanol and Brassica carinata oil: oxidation stability study.
Bouaid, Abderrahim; Martinez, Mercedes; Aracil, Jose
2009-04-01
In the present work the synthesis from bioethanol and Brassica carinata, as alternative vegetable oil, using KOH as catalyst, has been developed and optimized by application of the factorial design and response surface methodology (RSM). Temperature and catalyst concentration were found to have significant influence on conversion. A second-order model was obtained to predict conversions as a function of temperature and catalyst concentration. The maximum yield of ester (98.04%) was obtained working with an initial concentration of catalyst (1.5%) and an operation temperature of (35 degrees C). Results show that the acid value, peroxide value, and viscosity, increased while the iodine value decreased with increasing storage time of the biodiesel sample. Fatty acid ethyl esters (biodiesel) from B. carinata oil were very stable because they did not demonstrate rapid increase in peroxide value, acid value, and viscosity with increasing storage time to a period of 12 months.
Sturtevant, Blake T; Davulis, Peter M; da Cunha, Mauricio Pereira
2009-04-01
This work reports on the determination of langatate elastic and piezoelectric constants and their associated temperature coefficients employing 2 independent methods, the pulse echo overlap (PEO) and a combined resonance technique (CRT) to measure bulk acoustic wave (BAW) phase velocities. Details on the measurement techniques are provided and discussed, including the analysis of the couplant material in the PEO technique used to couple signal to the sample, which showed to be an order of magnitude more relevant than the experimental errors involved in the data extraction. At room temperature, elastic and piezoelectric constants were extracted by the PEO and the CRT methods and showed results consistent to within a few percent for the elastic constants. Both raw acquired data and optimized constants, based on minimization routines applied to all the modes involved in the measurements, are provided and discussed. Comparison between the elastic constants and their temperature behavior with the literature reveals the recent efforts toward the consistent growth and characterization of LGT, in spite of significant variations (between 1 and 30%) among the constants extracted by different groups at room temperature. The density, dielectric permittivity constants, and respective temperature coefficients used in this work have also been independently determined based on samples from the same crystal boule. The temperature behavior of the BAW modes was extracted using the CRT technique, which has the advantage of not relying on temperature dependent acoustic couplants. Finally, the extracted temperature coefficients for the elastic and piezoelectric constants between room temperature and 120 degrees C are reported and discussed in this work.
Thermoelectric Exhaust Heat Recovery with Heat Pipe-Based Thermal Control
NASA Astrophysics Data System (ADS)
Brito, F. P.; Martins, Jorge; Hançer, Esra; Antunes, Nuno; Gonçalves, L. M.
2015-06-01
Heat pipe (HP)-based heat exchangers can be used for very low resistance heat transfer between a hot and a cold source. Their operating temperature depends solely on the boiling point of their working fluid, so it is possible to control the heat transfer temperature if the pressure of the HP can be adjusted. This is the case of the variable conductance HPs (VCHP). This solution makes VCHPs ideal for the passive control of thermoelectric generator (TEG) temperature levels. The present work assesses, both theoretically and experimentally, the merit of the aforementioned approach. A thermal and electrical model of a TEG with VCHP assist is proposed. Experimental results obtained with a proof of concept prototype attached to a small single-cylinder engine are presented and used to validate the model. It was found that the HP heat exchanger indeed enables the TEG to operate at a constant, optimal temperature in a passive and safe way, and with a minimal overall thermal resistance, under part load, it effectively reduces the active module area without deprecating the temperature level of the active modules.
Effects of chromium addition on the metallurgy and P/M processing response of Alumix 431D
NASA Astrophysics Data System (ADS)
Mosher, Michael Patrick
The ever growing industry of Powder Metallurgy (P/M) is developing to include new alloys and improve those currently available. This project relates to the optimization of a commercially available Al-Zn-Mg-Cu based alloy (Alumix 431D). This alloy is the P/M equivalent of the wrought 7075 alloy, and yields some of the top performance found in any available aluminum alloy. Optimization of the alloy has been conducted with a focus on sintering conditions; in particular the effect of sintering temperature and post-sintering cooling. Five sintering temperatures were investigated and the optimal temperature was found to be 605°C. Cr was added in trace amounts as per literature recommendations in an attempt to improve corrosion resistance. Both the Cr-free and Cr-containing alloys were then assessed for post-sinter cooling effects. The Alumix 431D w/Cr compacted and sintered to a higher density which further resulted in improved hardness over the Cr-free counterpart. The cooling profile was modified to include an increasingly larger post-sinter furnace-cooling section, before gas quenching. Seven quenching temperatures were chosen to investigate ranging from the sintering temperature (605°C) down to 480°C. This furnace cooling allowed the alloy-rich liquid phase to dwell for an extended time at elevated temperature and thereby diffuse into the matrix grains increasing the alloy content. This was confirmed through EPMA and correlated with an increase in mechanical properties. For both alloys peak hardness was produced by specimens cooled to 520°C before quenching. Tensile strength also increased by as much as 12% when furnace cooled to 540°C. The heat treatment parameters were determined to yield an optimal T6 temper. Specimens of both alloys processed under all conditions were then subjected to this heat treatment and further characterized. Many of the improvements offered by furnace cooling that were obvious in the T1 'as-sintered' product, became less pronounced after heat treatment. Corrosion resistance was also studied and compared to the wrought 7075 equivalent. For 'as-sintered' P/M components the Tafel extrapolation was less effective in accurately determining corrosion rate due to the effect of porosity on surface area. To remedy this, samples were hot worked to near full density (>99.5% theoretical), heat treated and tested. The hot worked P/M samples performed up to 2x better than the wrought 7075 with respect to corrosion current densities.
Al-Dhabi, Naif Abdullah; Ponmurugan, Karuppiah; Maran Jeganathan, Prakash
2017-01-01
In this current work, Box-Behnken statistical experimental design (BBD) was adopted to evaluate and optimize USLE (ultrasound-assisted solid-liquid extraction) of phytochemicals from spent coffee grounds. Factors employed in this study are ultrasonic power, temperature, time and solid-liquid (SL) ratio. Individual and interactive effect of independent variables over the extraction yield was depicted through mathematical models, which are generated from the experimental data. Determined optimum process conditions are 244W of ultrasonic power, 40°C of temperature, 34min of time and 1:17g/ml of SL ratio. The predicted values were in correlation with experimental values with 95% confidence level, under the determined optimal conditions. This indicates the significance of selected method for USLE of phytochemicals from SCG. Copyright © 2016 Elsevier B.V. All rights reserved.
Preparation and physicochemical of microemulsion based on macadamia nut oil
NASA Astrophysics Data System (ADS)
Tu, Xinghao; Chen, Hong; Du, Liqing
2018-03-01
The objective of the present work was to study the preparation, optimization and characteristic of nanostructured lipid carriers(NLCs) based on macadamia nut oil. NLC with various macadamia nut oil content were successfully prepared by an optimized microfluidization method using stearic acid as solid lipid and pluronic F68 as surfactant. As a result, NLC with particle size about 286nm were obtained, and the polydispersity index(PI) of all developed NLC were below 0.2 which indicate a narrow size distribution. Furthermore, the encapsulation efficiency and loading capability were investigated as well. Physical stability of NLC demonstrated that particles of system were stable at room temperature and low temperature. Differential scanning calorimetry(DSC) investigation show that the inner structure and recrystallinity of lipid matrix within NLC were greatly influenced by the content of macadamia nut oil.
Optimization of Bread Enriched with Garcinia mangostana Pericarp Powder
NASA Astrophysics Data System (ADS)
Ibrahim, U. K.; Salleh, R. Mohd; Maqsood-ul-Hague, S. N. S.; Hashib, S. Abd; Karim, S. F. Abd
2018-05-01
The aim of present work is to optimize the formulation of bread enhanced with Garcinia mangostana pericarp powder with the combination of baking process conditions. The independent variables used were baking time (15 - 30 minutes), baking temperature (180 - 220°C) and pericarp powder concentration (0.5 - 2.0%). The physical and chemical properties of bread sample such as antioxidant activity, phenolic content, moisture analysis and colour parameters were studied. Bread dough without fortification of pericarp powder was used as control. Data obtained were analyzed by multiple regressions and the significant model such as linear and quadratic with variables interactions were used. As a conclusion, the optimum baking conditions were found at 213°C baking temperature with 23 minutes baking time and addition of 0.87% for Garcinia mangostana pericarp powder to the bread formulation.
Twin InSb/GaAs quantum nano-stripes: Growth optimization and related properties
NASA Astrophysics Data System (ADS)
Narabadeesuphakorn, Phisut; Thainoi, Supachok; Tandaechanurat, Aniwat; Kiravittaya, Suwit; Nuntawong, Noppadon; Sopitopan, Suwat; Yordsri, Visittapong; Thanachayanont, Chanchana; Kanjanachuchai, Songphol; Ratanathammaphan, Somchai; Panyakeow, Somsak
2018-04-01
Growth of InSb/GaAs quantum nanostructures on GaAs substrate by using molecular beam epitaxy with low growth temperature and slow growth rate typically results in a mixture of isolated and paired nano-stripe structures, which are termed as single and twin nano-stripes, respectively. In this work, we investigate the growth conditions to maximize the number ratio between twin and single nano-stripes. The highest percentage of the twin nano-stripes of up to 59% was achieved by optimizing the substrate temperature and the nano-stripe growth rate. Transmission electron microscopy reveals the substantial size and height reduction of the buried nano-stripes. We also observed the Raman shift and photon emission from our twin nano-stripes. These twin nano-stripes are promising for spintronics and quantum computing devices.
Li, Zhongwei; Xin, Yuezhen; Wang, Xun; Sun, Beibei; Xia, Shengyu; Li, Hui
2016-01-01
Phellinus is a kind of fungus and is known as one of the elemental components in drugs to avoid cancers. With the purpose of finding optimized culture conditions for Phellinus production in the laboratory, plenty of experiments focusing on single factor were operated and large scale of experimental data were generated. In this work, we use the data collected from experiments for regression analysis, and then a mathematical model of predicting Phellinus production is achieved. Subsequently, a gene-set based genetic algorithm is developed to optimize the values of parameters involved in culture conditions, including inoculum size, PH value, initial liquid volume, temperature, seed age, fermentation time, and rotation speed. These optimized values of the parameters have accordance with biological experimental results, which indicate that our method has a good predictability for culture conditions optimization. PMID:27610365
Modeling the irradiance and temperature rependence of photovoltaic modules in PVsyst
Sauer, Kenneth J.; Roessler, Thomas; Hansen, Clifford W.
2014-11-10
In order to reliably simulate the energy yield of photovoltaic (PV) systems, it is necessary to have an accurate model of how the PV modules perform with respect to irradiance and cell temperature. Building on previous work that addresses the irradiance dependence, two approaches to fit the temperature dependence of module power in PVsyst have been developed and are applied here to recent multi-irradiance and -temperature data for a standard Yingli Solar PV module type. The results demonstrate that it is possible to match the measured irradiance and temperature dependence of PV modules in PVsyst. As a result, improvements inmore » energy yield prediction using the optimized models relative to the PVsyst standard model are considered significant for decisions about project financing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hitchcock, D.; Colon-Mercado, H.; Krentz, T.
Hydrogen isotope separation is critical to the DOE’s mission in environmental remediation and nuclear nonproliferation. Isotope separation is also a critical technology for the NNSA, and the ability to perform the separations at room temperature with a relatively small amount of power and space would be a major advancement for their respective missions. Recent work has shown that 2-D materials such as graphene and hexagonal boron nitride can act as an isotopic sieve at room temperature; efficiently separating hydrogen isotopes in water with reported separation ratios of 10:1 for hydrogen: deuterium separation for a single pass. The work performed heremore » suggests that this technique has merit, and furthermore, we are investigating optimization and scale up of the required 2-D material based membranes.« less
Ab-initio study of thermodynamic properties of boron nanowire at atomic scale
NASA Astrophysics Data System (ADS)
Bhuyan, Prabal D.; Gupta, Sanjeev K.; Sonvane, Y.; Gajjar, P. N.
2018-04-01
In the present work, we have optimized ribbon like zigzag structure of boron (B) nanowire (NW) and investigated vibrational and thermodynamic properties using quasi-harmonic approximations (QHA). All positive phonon in the phonon dispersive curve have confirmed dynamical stability of ribbon B-NW. The thermodynamic properties, like Debye temperature, internal energy and specific heat, are calculated as a function of temperature. The variation of specific heat is proportional to T3 Debye law at lower temperature for B-NW, while it becomes constant above room temperature at 1200K; obeys Dulong-Petit's law. The high Debye temperature of 1120K is observed at ambient temperature, which can be attributed to high thermal conductivity. Our study shows that B-NW with high thermal conductivity could be the next generation electron connector for nanoscale electronic devices.
Hot Deformation Behavior of Hot-Extruded AA7175 Through Hot Torsion Tests.
Lee, Se-Yeon; Jung, Taek-Kyun; Son, Hyeon-Woo; Kim, Sang-Wook; Son, Kwang-Tae; Choi, Ho-Joon; Oh, Sang-Ho; Lee, Ji-Woon; Hyun, Soong-Keun
2018-03-01
The hot deformation behavior of hot-extruded AA7175 was investigated with flow curves and processing maps through hot torsion tests. The flow curves and the deformed microstructures revealed that dynamic recrystallization (DRX) occurred in the hot-extruded AA7175 during hot working. The failure strain was highest at medium temperature. This was mainly influenced by the dynamic precipitation of fine rod-shaped MgZn2. The processing map determined the optimal deformation condition for the alloy during hot working.
Thermal management and design for optical refrigeration
NASA Astrophysics Data System (ADS)
Symonds, G.; Farfan, B. G.; Ghasemkhani, M. R.; Albrecht, A. R.; Sheik-Bahae, M.; Epstein, R. I.
2016-03-01
We present our recent work in developing a robust and versatile optical refrigerator. This work focuses on minimizing parasitic energy losses through efficient design and material optimization. The cooler's thermal linkage system and housing are studied using thermal analysis software to minimize thermal gradients through the device. Due to the extreme temperature differences within the device, material selection and characterization are key to constructing an efficient device. We describe the design constraints and material selections necessary for thermally efficient and durable optical refrigeration.
The effects of experimental pain and induced optimism on working memory task performance.
Boselie, Jantine J L M; Vancleef, Linda M G; Peters, Madelon L
2016-07-01
Pain can interrupt and deteriorate executive task performance. We have previously shown that experimentally induced optimism can diminish the deteriorating effect of cold pressor pain on a subsequent working memory task (i.e., operation span task). In two successive experiments we sought further evidence for the protective role of optimism on pain-induced working memory impairments. We used another working memory task (i.e., 2-back task) that was performed either after or during pain induction. Study 1 employed a 2 (optimism vs. no-optimism)×2 (pain vs. no-pain)×2 (pre-score vs. post-score) mixed factorial design. In half of the participants optimism was induced by the Best Possible Self (BPS) manipulation, which required them to write and visualize about a life in the future where everything turned out for the best. In the control condition, participants wrote and visualized a typical day in their life (TD). Next, participants completed either the cold pressor task (CPT) or a warm water control task (WWCT). Before (baseline) and after the CPT or WWCT participants working memory performance was measured with the 2-back task. The 2-back task measures the ability to monitor and update working memory representation by asking participants to indicate whether the current stimulus corresponds to the stimulus that was presented 2 stimuli ago. Study 2 had a 2 (optimism vs. no-optimism)×2 (pain vs. no-pain) mixed factorial design. After receiving the BPS or control manipulation, participants completed the 2-back task twice: once with painful heat stimulation, and once without any stimulation (counter-balanced order). Continuous heat stimulation was used with temperatures oscillating around 1°C above and 1°C below the individual pain threshold. In study 1, the results did not show an effect of cold pressor pain on subsequent 2-back task performance. Results of study 2 indicated that heat pain impaired concurrent 2-back task performance. However, no evidence was found that optimism protected against this pain-induced performance deterioration. Experimentally induced pain impairs concurrent but not subsequent working memory task performance. Manipulated optimism did not counteract pain-induced deterioration of 2-back performance. It is important to explore factors that may diminish the negative impact of pain on the ability to function in daily life, as pain itself often cannot be remediated. We are planning to conduct future studies that should shed further light on the conditions, contexts and executive operations for which optimism can act as a protective factor. Copyright © 2016 Scandinavian Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shchelik, S. V.; Pavlov, A. S.
2013-07-01
Results of work on restoring the service properties of filtering material used in the high-temperature reactor coolant purification system of a VVER-1000 reactor are presented. A quantitative assessment is given to the effect from subjecting a high-temperature sorbent to backwashing operations carried out with the use of regular capacities available in the design process circuit in the first years of operation of Unit 3 at the Kalinin nuclear power plant. Approaches to optimizing this process are suggested. A conceptual idea about comprehensively solving the problem of achieving more efficient and safe operation of the high-temperature active water treatment system (AWT-1) on a nuclear power industry-wide scale is outlined.
Exponential bound in the quest for absolute zero
NASA Astrophysics Data System (ADS)
Stefanatos, Dionisis
2017-10-01
In most studies for the quantification of the third law of thermodynamics, the minimum temperature which can be achieved with a long but finite-time process scales as a negative power of the process duration. In this article, we use our recent complete solution for the optimal control problem of the quantum parametric oscillator to show that the minimum temperature which can be obtained in this system scales exponentially with the available time. The present work is expected to motivate further research in the active quest for absolute zero.
Exponential bound in the quest for absolute zero.
Stefanatos, Dionisis
2017-10-01
In most studies for the quantification of the third law of thermodynamics, the minimum temperature which can be achieved with a long but finite-time process scales as a negative power of the process duration. In this article, we use our recent complete solution for the optimal control problem of the quantum parametric oscillator to show that the minimum temperature which can be obtained in this system scales exponentially with the available time. The present work is expected to motivate further research in the active quest for absolute zero.
Evaluation and optimization of lidar temperature analysis algorithms using simulated data
NASA Technical Reports Server (NTRS)
Leblanc, Thierry; McDermid, I. Stuart; Hauchecorne, Alain; Keckhut, Philippe
1998-01-01
The middle atmosphere (20 to 90 km altitude) ha received increasing interest from the scientific community during the last decades, especially since such problems as polar ozone depletion and climatic change have become so important. Temperature profiles have been obtained in this region using a variety of satellite-, rocket-, and balloon-borne instruments as well as some ground-based systems. One of the more promising of these instruments, especially for long-term high resolution measurements, is the lidar. Measurements of laser radiation Rayleigh backscattered, or Raman scattered, by atmospheric air molecules can be used to determine the relative air density profile and subsequently the temperature profile if it is assumed that the atmosphere is in hydrostatic equilibrium and follows the ideal gas law. The high vertical and spatial resolution make the lidar a well adapted instrument for the study of many middle atmospheric processes and phenomena as well as for the evaluation and validation of temperature measurements from satellites, such as the Upper Atmosphere Research Satellite (UARS). In the Network for Detection of Stratospheric Change (NDSC) lidar is the core instrument for measuring middle atmosphere temperature profiles. Using the best lidar analysis algorithm possible is therefore of crucial importance. In this work, the JPL and CNRS/SA lidar analysis software were evaluated. The results of this evaluation allowed the programs to be corrected and optimized and new production software versions were produced. First, a brief description of the lidar technique and the method used to simulate lidar raw-data profiles from a given temperature profile is presented. Evaluation and optimization of the JPL and CNRS/SA algorithms are then discussed.
Re-evaluation of the reported experimental values of the heat of vaporization of N-methylacetamide
MacKerell, Alexander D.; Shim, Ji Hyun; Anisimov, Victor M.
2010-01-01
The accuracy of empirical force fields is inherently related to the quality of the target data used for optimization of the model. With the heat of vaporization (ΔHvap) of N-methylacetamide (NMA), a range of values have been reported as target data for optimization of the nonbond parameters associated with the peptide bond in proteins. In the present work, the original experimental data and Antoine constants used for the determination of the ΔHvap of NMA are reanalyzed. Based on this analysis, the wide range of ΔHvap values reported in the literature are shown to be due to incorrect reporting of the temperatures at which the original values were extracted and limitations in the quality of experimental vapor pressure-temperature data over a wide range of temperatures. Taking these problems into account, a consistent ΔHvap value is extracted from three studies for which experimental data are available. This analysis suggests that the most reliable value for ΔHvap is 13.0±0.1 at 410 K for use in force field optimization studies. The present results also indicate that similar analyses, including analysis of Antoine constants alone, may be of utility when reported ΔHvap values are not consistent for a given neat liquid. PMID:20445813
NASA Astrophysics Data System (ADS)
Zacharias, Marios; Giustino, Feliciano
2016-08-01
Recently, Zacharias et al. [Phys. Rev. Lett. 115, 177401 (2015), 10.1103/PhysRevLett.115.177401] developed an ab initio theory of temperature-dependent optical absorption spectra and band gaps in semiconductors and insulators. In that work, the zero-point renormalization and the temperature dependence were obtained by sampling the nuclear wave functions using a stochastic approach. In the present work, we show that the stochastic sampling of Zacharias et al. can be replaced by fully deterministic supercell calculations based on a single optimal configuration of the atomic positions. We demonstrate that a single calculation is able to capture the temperature-dependent band-gap renormalization including quantum nuclear effects in direct-gap and indirect-gap semiconductors, as well as phonon-assisted optical absorption in indirect-gap semiconductors. In order to demonstrate this methodology, we calculate from first principles the temperature-dependent optical absorption spectra and the renormalization of direct and indirect band gaps in silicon, diamond, and gallium arsenide, and we obtain good agreement with experiment and with previous calculations. In this work we also establish the formal connection between the Williams-Lax theory of optical transitions and the related theories of indirect absorption by Hall, Bardeen, and Blatt, and of temperature-dependent band structures by Allen and Heine. The present methodology enables systematic ab initio calculations of optical absorption spectra at finite temperature, including both direct and indirect transitions. This feature will be useful for high-throughput calculations of optical properties at finite temperature and for calculating temperature-dependent optical properties using high-level theories such as G W and Bethe-Salpeter approaches.
Bioactive compounds and encapsulation of Yanang (Tiliacora triandra) leaves.
Singthong, Jittra; Oonsivilai, Ratchadaporn; Oonmetta-Aree, Jirawan; Ningsanond, Suwayd
2014-01-01
Yanang (Tiliacora triandra) has been known as vegetable and herbal in northeast Thailand and Lao People's Democratic Republic. Extracts from Yanang leaves contain high amounts of polyphenol constituents possessing antioxidant activity. This work investigated bioactive compounds of Yanang extracts prepared by infusion with water, ethanol and acetone. Furthermore, this paper reports the design of the experimental method for optimization of Yanang encapsulation using three independent variables: the ratio of core material (Yanang), to wall material (gum Arabic), gum Arabic concentration and inlet temperature of spray drying on bioactive compounds stability. The stability of bioactive compounds was evaluated using phenolic compounds, total antioxidant, carotenoids and chlorophyll. The study of the bioactivity of Yanang extracts found that extraction with water was the appropriate application. The study of Yanang encapsulation demonstrated that gum Arabic, as coating agents, protected bioactive compounds of Yanang. Optimized condition for the encapsulation was at the ratio of core to wall {1:4}, in gum Arabic concentration 10% (w/v), and inlet temperature at 160▯C. The results show that the bioactive compounds were mainly affected by the ratio of core to wall material. Besides, moisture content and particle size of encapsulation depend on inlet temperature of spray drying, and gum Arabic concentration, respectively. This optimization reveals that the encapsulation process did not lose the bioactive compounds. Yanang extract with water was the main phenolic compound and showed high antioxidant activities. This study demonstrates the potentials of using spray drying process and optimization for the encapsulation of herbal products.
In-Space Radiator Shape Optimization using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Hull, Patrick V.; Kittredge, Ken; Tinker, Michael; SanSoucie, Michael
2006-01-01
Future space exploration missions will require the development of more advanced in-space radiators. These radiators should be highly efficient and lightweight, deployable heat rejection systems. Typical radiators for in-space heat mitigation commonly comprise a substantial portion of the total vehicle mass. A small mass savings of even 5-10% can greatly improve vehicle performance. The objective of this paper is to present the development of detailed tools for the analysis and design of in-space radiators using evolutionary computation techniques. The optimality criterion is defined as a two-dimensional radiator with a shape demonstrating the smallest mass for the greatest overall heat transfer, thus the end result is a set of highly functional radiator designs. This cross-disciplinary work combines topology optimization and thermal analysis design by means of a genetic algorithm The proposed design tool consists of the following steps; design parameterization based on the exterior boundary of the radiator, objective function definition (mass minimization and heat loss maximization), objective function evaluation via finite element analysis (thermal radiation analysis) and optimization based on evolutionary algorithms. The radiator design problem is defined as follows: the input force is a driving temperature and the output reaction is heat loss. Appropriate modeling of the space environment is added to capture its effect on the radiator. The design parameters chosen for this radiator shape optimization problem fall into two classes, variable height along the width of the radiator and a spline curve defining the -material boundary of the radiator. The implementation of multiple design parameter schemes allows the user to have more confidence in the radiator optimization tool upon demonstration of convergence between the two design parameter schemes. This tool easily allows the user to manipulate the driving temperature regions thus permitting detailed design of in-space radiators for unique situations. Preliminary results indicate an optimized shape following that of the temperature distribution regions in the "cooler" portions of the radiator. The results closely follow the expected radiator shape.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, SH; Yip, NY; Cath, TY
2014-05-06
We present a novel hybrid membrane system that operates as a heat engine capable of utilizing low-grade thermal energy, which is not readily recoverable with existing technologies. The closed-loop system combines membrane distillation (MD), which generates concentrated and pure water streams by thermal separation, and pressure retarded osmosis (PRO), which converts the energy of mixing to electricity by a hydro-turbine. The PRO-MD system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages for heat source temperatures ranging from 40 to 80 degrees C and working concentrations of 1.0, 2.0, andmore » 4.0 mol/kg NaCl. The factors controlling the energy efficiency of the heat engine were evaluated for both limited and unlimited mass and heat transfer kinetics in the thermal separation stage. In both cases, the relative flow rate between the MD permeate (distillate) and feed streams is identified as an important operation parameter. There is an optimal relative flow rate that maximizes the overall energy efficiency of the PRO-MD system for given working temperatures and concentration. In the case of unlimited mass and heat transfer kinetics, the energy efficiency of the system can be analytically determined based on thermodynamics. Our assessment indicates that the hybrid PRO-MD system can theoretically achieve an energy efficiency of 9.8% (81.6% of the Carnot efficiency) with hot and cold working temperatures of 60 and 20 degrees C, respectively, and a working solution of 1.0 M NaCl. When mass and heat transfer kinetics are limited, conditions that more closely represent actual operations, the practical energy efficiency will be lower than the theoretically achievable efficiency. In such practical operations, utilizing a higher working concentration will yield greater energy efficiency. Overall, our study demonstrates the theoretical viability of the PRO-MD system and identifies the key factors for performance optimization.« less
Lin, Shihong; Yip, Ngai Yin; Cath, Tzahi Y; Osuji, Chinedum O; Elimelech, Menachem
2014-05-06
We present a novel hybrid membrane system that operates as a heat engine capable of utilizing low-grade thermal energy, which is not readily recoverable with existing technologies. The closed-loop system combines membrane distillation (MD), which generates concentrated and pure water streams by thermal separation, and pressure retarded osmosis (PRO), which converts the energy of mixing to electricity by a hydro-turbine. The PRO-MD system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages for heat source temperatures ranging from 40 to 80 °C and working concentrations of 1.0, 2.0, and 4.0 mol/kg NaCl. The factors controlling the energy efficiency of the heat engine were evaluated for both limited and unlimited mass and heat transfer kinetics in the thermal separation stage. In both cases, the relative flow rate between the MD permeate (distillate) and feed streams is identified as an important operation parameter. There is an optimal relative flow rate that maximizes the overall energy efficiency of the PRO-MD system for given working temperatures and concentration. In the case of unlimited mass and heat transfer kinetics, the energy efficiency of the system can be analytically determined based on thermodynamics. Our assessment indicates that the hybrid PRO-MD system can theoretically achieve an energy efficiency of 9.8% (81.6% of the Carnot efficiency) with hot and cold working temperatures of 60 and 20 °C, respectively, and a working solution of 1.0 M NaCl. When mass and heat transfer kinetics are limited, conditions that more closely represent actual operations, the practical energy efficiency will be lower than the theoretically achievable efficiency. In such practical operations, utilizing a higher working concentration will yield greater energy efficiency. Overall, our study demonstrates the theoretical viability of the PRO-MD system and identifies the key factors for performance optimization.
Solution Behavior and Activity of a Halophilic Esterase under High Salt Concentration
Rao, Lang; Zhao, Xiubo; Pan, Fang; Li, Yin; Xue, Yanfen; Ma, Yanhe; Lu, Jian R.
2009-01-01
Background Halophiles are extremophiles that thrive in environments with very high concentrations of salt. Although the salt reliance and physiology of these extremophiles have been widely investigated, the molecular working mechanisms of their enzymes under salty conditions have been little explored. Methodology/Principal Findings A halophilic esterolytic enzyme LipC derived from archeaon Haloarcula marismortui was overexpressed from Escherichia coli BL21. The purified enzyme showed a range of hydrolytic activity towards the substrates of p-nitrophenyl esters with different alkyl chains (n = 2−16), with the highest activity being observed for p-nitrophenyl acetate, consistent with the basic character of an esterase. The optimal esterase activities were found to be at pH 9.5 and [NaCl] = 3.4 M or [KCl] = 3.0 M and at around 45°C. Interestingly, the hydrolysis activity showed a clear reversibility against changes in salt concentration. At the ambient temperature of 22°C, enzyme systems working under the optimal salt concentrations were very stable against time. Increase in temperature increased the activity but reduced its stability. Circular dichroism (CD), dynamic light scattering (DLS) and small angle neutron scattering (SANS) were deployed to determine the physical states of LipC in solution. As the salt concentration increased, DLS revealed substantial increase in aggregate sizes, but CD measurements revealed the maximal retention of the α-helical structure at the salt concentration matching the optimal activity. These observations were supported by SANS analysis that revealed the highest proportion of unimers and dimers around the optimal salt concentration, although the coexistent larger aggregates showed a trend of increasing size with salt concentration, consistent with the DLS data. Conclusions/Significance The solution α-helical structure and activity relation also matched the highest proportion of enzyme unimers and dimers. Given that all the solutions studied were structurally inhomogeneous, it is important for future work to understand how the LipC's solution aggregation affected its activity. PMID:19759821
Wide-Temperature Electrolytes for Lithium-Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Qiuyan; Jiao, Shuhong; Luo, Langli
2017-05-26
Formulating electrolytes with solvents of low freezing points and high dielectric constants is a direct approach to extend the service temperature range of lithium (Li)-ion batteries (LIBs), for which propylene carbonate (PC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), methyl butyrate (MB) are excellent candidates. In this work, we report such low temperature electrolyte formulations by optimizing the content of ethylene carbonate (EC) in the EC-PC-EMC ternary solvent system with LiPF6 salt and CsPF6 additive. An extended service temperature range from 40°C to 60°C was obtained in LIBs with lithium nickel cobalt aluminum mixed oxide (LiNi0.80Co0.15Al0.05O2, NCA) as cathode andmore » graphite as anode. The discharge capacities at low temperatures and the cycle life at room and elevated temperatures were systematically investigated in association with the ionic conductivity and phase transition behaviors. The most promising electrolyte formulation was identified as 1.0 M LiPF6 in EC-PC-EMC (1:1:8 by wt.) with 0.05 M CsPF6, which was demonstrated in both coin cells of graphite||NCA and 1 Ah pouch cells of graphite||LiNi1/3Mn1/3Co1/3O2. This optimized electrolyte enables excellent wide-temperature performances, as evidenced by the 68% capacity retention at 40C and C/5 rate, and nearly identical stable cycle life at room and elevated temperatures up to 60C.« less
Analysis of optimal design of low temperature economizer
NASA Astrophysics Data System (ADS)
Song, J. H.; Wang, S.
2017-11-01
This paper has studied the Off-design characteristic of low temperature economizer system based on thermodynamics analysis. Based on the data from one 1000 MW coal-fired unit, two modes of operation are contrasted and analyzed. One is to fix exhaust gas temperature and the other one is to take into account both of the average temperature difference and the exhaust gas temperature. Meanwhile, the cause of energy saving effect change is explored. Result shows that: in mode 1, the amount of decrease in coal consumption reduces from 1.11 g/kWh (under full load) to 0.54 g/kWh (under half load), and in mode 2, when the load decreases from 90% to 50%, the decrease in coal consumption reduces from 1.29 g/kWh to 0.84 g/kWh. From the result, under high load, the energy saving effect is superior, and under lower work load, energy saving effect declines rapidly when load is reduced. When load changes, the temperature difference of heat transfer, gas flow, the flue gas heat rejection and the waste heat recovery change. The energy saving effect corresponding changes result in that the energy saving effect under high load is superior and more stable. However, rational adjustment to the temperature of outlet gas can alleviate the decline of the energy saving effect under low load. The result provides theoretical analysis data for the optimal design and operation of low temperature economizer system of power plant.
Wide Bandgap Semiconductor Detector Optimization for Flash X-Ray Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roecker, Caleb Daniel; Schirato, Richard C.
2017-11-17
Charge trapping, resulting in a decreased and spatially dependent electric field, has long been a concern for wide bandgap semiconductor detectors. While significant work has been performed to characterize this degradation at varying temperatures and radiation environments, this work concentrates upon examining the event-to-event response in a flash X-ray environment. The following work investigates if charge trapping is a problem for CZT detectors, with particular emphasis on flash X-ray radiation fields at cold temperatures. Results are compared to a non-flash radiation field, using an Am-241 alpha source and similar temperature transitions. Our ability to determine if a response change occurredmore » was hampered by the repeatability of our flash X-ray systems; a small response change was observed with the Am-241 source. Due to contrast of these results, we are in the process of revisiting the Am-241 measurements in the presence of a high radiation environment. If the response change is more pronounced in the high radiation environment, a similar test will be performed in the flash X-ray environment.« less
NASA Astrophysics Data System (ADS)
Wang, Meng; Jiang, Chunlei; Zhang, Songquan; Song, Xiaohe; Tang, Yongbing; Cheng, Hui-Ming
2018-06-01
Calcium-ion batteries (CIBs) are attractive candidates for energy storage because Ca2+ has low polarization and a reduction potential (-2.87 V versus standard hydrogen electrode, SHE) close to that of Li+ (-3.04 V versus SHE), promising a wide voltage window for a full battery. However, their development is limited by difficulties such as the lack of proper cathode/anode materials for reversible Ca2+ intercalation/de-intercalation, low working voltages (<2 V), low cycling stability, and especially poor room-temperature performance. Here, we report a CIB that can work stably at room temperature in a new cell configuration using graphite as the cathode and tin foils as the anode as well as the current collector. This CIB operates on a highly reversible electrochemical reaction that combines hexafluorophosphate intercalation/de-intercalation at the cathode and a Ca-involved alloying/de-alloying reaction at the anode. An optimized CIB exhibits a working voltage of up to 4.45 V with capacity retention of 95% after 350 cycles.
Thermodynamic analysis of onset characteristics in a miniature thermoacoustic Stirling engine
NASA Astrophysics Data System (ADS)
Huang, Xin; Zhou, Gang; Li, Qing
2013-06-01
This paper analyzes the onset characteristics of a miniature thermoacoustic Stirling heat engine using the thermodynamic analysis method. The governing equations of components are reduced from the basic thermodynamic relations and the linear thermoacoustic theory. By solving the governing equation group numerically, the oscillation frequencies and onset temperatures are obtained. The dependences of the kinds of working gas, the length of resonator tube, the diameter of resonator tube, on the oscillation frequency are calculated. Meanwhile, the influences of hydraulic radius and mean pressure on the onset temperature for different working gas are also presented. The calculation results indicate that there exists an optimal dimensionless hydraulic radius to obtain the lowest onset temperature, whose value lies in the range of 0.30-0.35 for different working gases. Furthermore, the amplitude and phase relationship of pressures and volume flows are analyzed in the time-domain. Some experiments have been performed to validate the calculations. The calculation results agree well with the experimental values. Finally, an error analysis is made, giving the reasons that cause the errors of theoretical calculations.
National Space Biomedical Research Institute (NSBRI) JSC Summer Projects
NASA Technical Reports Server (NTRS)
Dowdy, Forrest Ryan
2014-01-01
This project optimized the calorie content in a breakfast meal replacement bar for the Advanced Food Technology group. Use of multivariable optimization yielded the highest weight savings possible while simultaneously matching NASA Human Standards nutritional guidelines. The scope of this research included the study of shelf-life indicators such as water activity, moisture content, and texture analysis. Key metrics indicate higher protein content, higher caloric density, and greater mass savings as a result of the reformulation process. The optimization performed for this study demonstrated wide application to other food bars in the Advanced Food Technology portfolio. Recommendations for future work include shelf life studies on bar hardening and overall acceptability data over increased time frames and temperature fluctuation scenarios.
NASA Astrophysics Data System (ADS)
Nasef, Mohamed Mahmoud; Ahmad Ali, Amgad; Saidi, Hamdani; Ahmad, Arshad
2014-01-01
Modeling and optimization aspects of radiation induced grafting (RIG) of 4-vinylpyridine (4-VP) onto partially fluorinated polymers such as poly(ethylene-co-tetrafluoroethene) (ETFE) and poly(vinylidene fluoride) (PVDF) films were comparatively investigated using response surface method (RSM). The effects of independent parameters: absorbed dose, monomer concentration, grafting time and reaction temperature on the response, grafting yield (GY) were correlated through two quadratic models. The results of this work confirm that RSM is a reliable tool not only for optimization of the reaction parameters and prediction of GY in RIG processes, but also for the reduction of the number of the experiments, monomer consumption and absorbed dose leading to an improvement of the overall reaction cost.
NASA Astrophysics Data System (ADS)
Qi, Qian; Liu, Yan; Wang, Lujie; Huang, Jian; Xin, Xianshuang; Gai, Linlin; Huang, Zhengren
2017-08-01
Titanium carbide/hastelloy (TiC/hastelloy) composites are potential candidates for intermediate-temperature solid oxide fuel cell interconnects. In this work, TiC/hastelloy composites with suitable coefficient of thermal expansion are fabricated by in-situ reactive infiltration method, and their properties are optimized by adjusting TiC particle size (dTiC). The oxidation process of TiC/hastelloy composites is comprehensive performance of TiC and Ni-Cr alloy and determined by outward diffusion of Ti and Ni atoms and internal diffusion of O2. The oxidation resistance of composites could be improved by the decrease of dTiC through accelerating the formation of continuous and dense TiO2/Cr2O3 oxide scale. Moreover, the electrical conductivity of composites at 800 °C for 100 h is 5600-7500 S cm-1 and changes little with the prolongation of oxidation time. The decrease of dTiC is favorable for the properties optimization, and composites with 2.16 μm TiC exhibits good integrated properties.
Taamalli, Amani; Arráez-Román, David; Ibañez, Elena; Zarrouk, Mokhtar; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto
2012-01-25
In the present work, a simple and rapid method for the extraction of phenolic compounds from olive leaves, using microwave-assisted extraction (MAE) technique, has been developed. The experimental variables that affect the MAE process, such as the solvent type and composition, microwave temperature, and extraction time, were optimized using a univariate method. The obtained extracts were analyzed by using high-performance liquid chromatography (HPLC) coupled to electrospray time-of-flight mass spectrometry (ESI-TOF-MS) and electrospray ion trap tandem mass spectrometry (ESI-IT-MS(2)) to prove the MAE extraction efficiency. The optimal MAE conditions were methanol:water (80:20, v/v) as extracting solvent, at a temperature equal to 80 °C for 6 min. Under these conditions, several phenolic compounds could be characterized by HPLC-ESI-MS/MS(2). As compared to the conventional method, MAE can be used as an alternative extraction method for the characterization of phenolic compounds from olive leaves due to its efficiency and speed.
Bioleaching of nickel from spent petroleum catalyst using Acidithiobacillus thiooxidans DSM- 11478.
Sharma, Mohita; Bisht, Varsha; Singh, Bina; Jain, Pratiksha; Mandal, Ajoy K; Lal, Banwari; Sarma, Priyangshu M
2015-06-01
The present work deals with optimization of culture conditions and process parameters for bioleaching of spent petroleum catalyst collected from a petroleum refinery. The efficacy of Ni bioleaching from spent petroleum catalyst was determined using pure culture of Acidithiobacillus thiooxidans DSM- 11478. The culture conditions of pH, temperature and headspace volume to media volume ratio were optimized. EDX analysis was done to confirm the presence of Ni in the spent catalyst after roasting it to decoke its surface. The optimum temperature for A. thiooxidans DSM-11478 growth was found to be 32 degrees C. The enhanced recovery of nickel at very low pH was attributed to the higher acidic strength of sulfuric acid produced in the culture medium by the bacterium. During the bioleaching process, 89% of the Ni present in the catalyst waste could be successfully recovered in optimized conditions. This environment friendly bioleaching process proved efficient than the chemical method. Taking leads from the lab scale results, bioleaching in larger volumes (1, 5 and 10 L) was also performed to provide guidelines for taking up this technology for in situ industrial waste management.
Optimization of extraction of high purity all-trans-lycopene from tomato pulp waste.
Poojary, Mahesha M; Passamonti, Paolo
2015-12-01
The aim of this work was to optimize the extraction of pure all-trans-lycopene from the pulp fractions of tomato processing waste. A full factorial design (FFD) consisting of four independent variables including extraction temperature (30-50 °C), time (1-60 min), percentage of acetone in n-hexane (25-75%, v/v) and solvent volume (10-30 ml) was used to investigate the effects of process variables on the extraction. The absolute amount of lycopene present in the pulp waste was found to be 0.038 mg/g. The optimal conditions for extraction were as follows: extraction temperature 20 °C, time 40 min, a solvent composition of 25% acetone in n-hexane (v/v) and solvent volume 40 ml. Under these conditions, the maximal recovery of lycopene was 94.7%. The HPLC-DAD analysis demonstrated that, lycopene was obtained in the all-trans-configuration at a very high purity grade of 98.3% while the amount of cis-isomers and other carotenoids were limited. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Boden, Seth; Karam, P.; Schmidt, A.; Pennathur, S.
2017-05-01
Fused silica is an ideal material for nanofluidic systems due to its extreme purity, chemical inertness, optical transparency, and native hydrophilicity. However, devices requiring embedded electrodes (e.g., for bioanalytical applications) are difficult to realize given the typical high temperature fusion bonding requirements (˜1000 °C). In this work, we optimize a two-step plasma activation process which involves an oxygen plasma treatment followed by a nitrogen plasma treatment to increase the fusion bonding strength of fused silica at room temperature. We conduct a parametric study of this treatment to investigate its effect on bonding strength, surface roughness, and microstructure morphology. We find that by including a nitrogen plasma treatment to the standard oxygen plasma activation process, the room temperature bonding strength increases by 70% (0.342 J/m2 to 0.578 J/m2). Employing this optimized process, we fabricate and characterize a nanofluidic device with an integrated and dielectrically separated electrode. Our results prove that the channels do not leak with over 1 MPa of applied pressure after a 24 h storage time, and the electrode exhibits capacitive behavior with a finite parallel resistance in the upper MΩ range for up to a 6.3Vdc bias. These data thus allow us to overcome the barrier that has barred nanofluidic progress for the last decade, namely, the development of nanometer scale well-defined channels with embedded metallic materials for far-reaching applications such as the exquisite manipulation of biomolecules.
Validating the Heat Stress Indices for Using In Heavy Work Activities in Hot and Dry Climates.
Hajizadeh, Roohalah; Golbabaei, Farideh; Farhang Dehghan, Somayeh; Beheshti, Mohammad Hossein; Jafari, Sayed Mohammad; Taheri, Fereshteh
2016-01-01
Necessity of evaluating heat stress in the workplace, require validation of indices and selection optimal index. The present study aimed to assess the precision and validity of some heat stress indices and select the optimum index for using in heavy work activities in hot and dry climates. It carried out on 184 workers from 40 brick kilns workshops in the city of Qom, central Iran (as representative hot and dry climates). After reviewing the working process and evaluation the activity of workers and the type of work, environmental and physiological parameters according to standards recommended by International Organization for Standardization (ISO) including ISO 7243 and ISO 9886 were measured and indices were calculated. Workers engaged in indoor kiln experienced the highest values of natural wet temperature, dry temperature, globe temperature and relative humidity among studied sections (P<0.05). Indoor workplaces had the higher levels of all environmental parameters than outdoors (P=0.0001), except for air velocity. The wet-bulb globe temperature (WBGT) and heat stress index (HSI) indices had the highest correlation with other physiological parameters among the other heat stress indices. Relationship between WBGT index and carotid artery temperature (r=0.49), skin temperature (r=0.319), and oral temperature (r=0.203) was statistically significant (P=0.006). Since WBGT index, as the most applicable index for evaluating heat stress in workplaces is approved by ISO, and due to the positive features of WBGT such as ease of measurement and calculation, and with respect to some limitation in application of HSI; WBGT can be introduced as the most valid empirical index of heat stress in the brick workshops.
Lassnig, R; Hollerer, M; Striedinger, B; Fian, A; Stadlober, B; Winkler, A
2015-11-01
In this work we present in situ electrical and surface analytical, as well as ex situ atomic force microscopy (AFM) studies on temperature and surface condition induced pentacene layer growth modifications, leading to the selection of optimized deposition conditions and entailing performance improvements. We prepared p ++ -silicon/silicon dioxide bottom-gate, gold bottom-contact transistor samples and evaluated the pentacene layer growth for three different surface conditions (sputtered, sputtered + carbon and unsputtered + carbon) at sample temperatures during deposition of 200 K, 300 K and 350 K. The AFM investigations focused on the gold contacts, the silicon dioxide channel region and the highly critical transition area. Evaluations of coverage dependent saturation mobilities, threshold voltages and corresponding AFM analysis were able to confirm that the first 3-4 full monolayers contribute to the majority of charge transport within the channel region. At high temperatures and on sputtered surfaces uniform layer formation in the contact-channel transition area is limited by dewetting, leading to the formation of trenches and the partial development of double layer islands within the channel region instead of full wetting layers. By combining the advantages of an initial high temperature deposition (well-ordered islands in the channel) and a subsequent low temperature deposition (continuous film formation for low contact resistance) we were able to prepare very thin (8 ML) pentacene transistors of comparably high mobility.
Lassnig, R.; Hollerer, M.; Striedinger, B.; Fian, A.; Stadlober, B.; Winkler, A.
2015-01-01
In this work we present in situ electrical and surface analytical, as well as ex situ atomic force microscopy (AFM) studies on temperature and surface condition induced pentacene layer growth modifications, leading to the selection of optimized deposition conditions and entailing performance improvements. We prepared p++-silicon/silicon dioxide bottom-gate, gold bottom-contact transistor samples and evaluated the pentacene layer growth for three different surface conditions (sputtered, sputtered + carbon and unsputtered + carbon) at sample temperatures during deposition of 200 K, 300 K and 350 K. The AFM investigations focused on the gold contacts, the silicon dioxide channel region and the highly critical transition area. Evaluations of coverage dependent saturation mobilities, threshold voltages and corresponding AFM analysis were able to confirm that the first 3–4 full monolayers contribute to the majority of charge transport within the channel region. At high temperatures and on sputtered surfaces uniform layer formation in the contact–channel transition area is limited by dewetting, leading to the formation of trenches and the partial development of double layer islands within the channel region instead of full wetting layers. By combining the advantages of an initial high temperature deposition (well-ordered islands in the channel) and a subsequent low temperature deposition (continuous film formation for low contact resistance) we were able to prepare very thin (8 ML) pentacene transistors of comparably high mobility. PMID:26543442
Pretreatment of corn straw using the alkaline solution of ionic liquids.
Liu, Zhen; Li, Longfei; Liu, Cheng; Xu, Airong
2018-07-01
In the present work, the pretreatment of corn stalk with the solution of 1-ethyl-3-methylimidazolium acetate ([Emim]Ac) ionic liquid containing NaOH was explored for its lignin removal. The effects of reaction temperature, reaction time, and solid-liquid ratio on the lignin removal efficiency were determined by the response surface methodology (RSM). The pretreatment conditions were optimized by the Box-Behnken design and the comparative study of the composition and structure of corn straw before and after the pretreatment to be: reaction temperature 98.5 °C, reaction time 1.31 h, and solid-liquid ratio 1:8.7. Under the optimized conditions, the cellulose and hemicellulose contents of the corn straw were increased to 85.69% and 9.1%, respectively, and the lignin content was reduced to 2.27% with the lignin removal efficiency up to 87.4%. Copyright © 2018 Elsevier Ltd. All rights reserved.
Okut, Dilara; Devseren, Esra; Koç, Mehmet; Ocak, Özgül Özdestan; Karataş, Haluk; Kaymak-Ertekin, Figen
2018-01-01
Purpose of this study was to develop prototype cooking equipment that can work at reduced pressure and to evaluate its performance for production of strawberry jam. The effect of vacuum cooking conditions on color soluble solid content, reducing sugars total sugars HMF and sensory properties were investigated. Also, the optimum vacuum cooking conditions for strawberry jam were optimized for Composite Rotatable Design. The optimum cooking temperature and time were determined targeting maximum soluble solid content and sensory attributes (consistency) and minimum Hue value and HMF content. The optimum vacuum cooking conditions determined were 74.4 °C temperature and 19.8 time. The soluble solid content strawberry jam made by vacuum process were similar to those prepared by traditional method. HMF contents of jams produced with vacuum cooking method were well within limit of standards.
Liu, Cai-qin; Chen, Qi-he; Cheng, Qian-jun; Wang, Jin-ling; He, Guo-qing
2007-05-01
The work is intended to achieve optimum culture conditions of alpha-galactosidase production by a mutant strain Aspergillus foetidus ZU-G1 in solid-state fermentation (SSF). Certain fermentation parameters involving moisture content, incubation temperature, cultivation period of seed, inoculum volume, initial pH value, layers of pledget, load size of medium and period of cultivation were investigated separately. The optimal cultivating conditions of alpha-galactosidase production in SSF were 60% initial moisture of medium, 28 degrees C incubation temperature, 18 h cultivation period of seed, 10% inoculum volume, 5.0 approximately 6.0 initial pH of medium, 6 layers of pledget and 10 g dry matter loadage. Under the optimized cultivation conditions, the maximum alpha-galactosidase production was 2 037.51 U/g dry matter near the 144th hour of fermentation.
Liu, Cai-qin; Chen, Qi-he; Cheng, Qian-jun; Wang, Jin-ling; He, Guo-qing
2007-01-01
The work is intended to achieve optimum culture conditions of α-galactosidase production by a mutant strain Aspergillus foetidus ZU-G1 in solid-state fermentation (SSF). Certain fermentation parameters involving moisture content, incubation temperature, cultivation period of seed, inoculum volume, initial pH value, layers of pledget, load size of medium and period of cultivation were investigated separately. The optimal cultivating conditions of α-galactosidase production in SSF were 60% initial moisture of medium, 28 °C incubation temperature, 18 h cultivation period of seed, 10% inoculum volume, 5.0~6.0 initial pH of medium, 6 layers of pledget and 10 g dry matter loadage. Under the optimized cultivation conditions, the maximum α-galactosidase production was 2 037.51 U/g dry matter near the 144th hour of fermentation. PMID:17542067
NASA Astrophysics Data System (ADS)
Karstedt, Jörg; Ogrzewalla, Jürgen; Severin, Christopher; Pischinger, Stefan
In this work, the concept development, system layout, component simulation and the overall DOE system optimization of a HT-PEM fuel cell APU with a net electric power output of 4.5 kW and an onboard methane fuel processor are presented. A highly integrated system layout has been developed that enables fast startup within 7.5 min, a closed system water balance and high fuel processor efficiencies of up to 85% due to the recuperation of the anode offgas burner heat. The integration of the system battery into the load management enhances the transient electric performance and the maximum electric power output of the APU system. Simulation models of the carbon monoxide influence on HT-PEM cell voltage, the concentration and temperature profiles within the autothermal reformer (ATR) and the CO conversion rates within the watergas shift stages (WGSs) have been developed. They enable the optimization of the CO concentration in the anode gas of the fuel cell in order to achieve maximum system efficiencies and an optimized dimensioning of the ATR and WGS reactors. Furthermore a DOE optimization of the global system parameters cathode stoichiometry, anode stoichiometry, air/fuel ratio and steam/carbon ratio of the fuel processing system has been performed in order to achieve maximum system efficiencies for all system operating points under given boundary conditions.
Performance and Mass Modeling Subtleties in Closed-Brayton-Cycle Space Power Systems
NASA Technical Reports Server (NTRS)
Barrett, Michael J.; Johnson, Paul K.
2005-01-01
Contents include the following: 1. Closed-Brayton-cycle (CBC) thermal energy conversion is one available option for future spacecraft and surface systems. 2. Brayton system conceptual designs for milliwatt to megawatt power converters have been developed 3. Numerous features affect overall optimized power conversion system performance: Turbomachinery efficiency. Heat exchanger effectiveness. Working-fluid composition. Cycle temperatures and pressures.
Qualitative thermal characterization and cooling of lithium batteries for electric vehicles
NASA Astrophysics Data System (ADS)
Mariani, A.; D'Annibale, F.; Boccardi, G.; Celata, G. P.; Menale, C.; Bubbico, R.; Vellucci, F.
2014-04-01
The paper deals with the cooling of batteries. The first step was the thermal characterization of a single cell of the module, which consists in the detection of the thermal field by means of thermographic tests during electric charging and discharging. The purpose was to identify possible critical hot points and to evaluate the cooling demand during the normal operation of an electric car. After that, a study on the optimal configuration to obtain the flattening of the temperature profile and to avoid hot points was executed. An experimental plant for cooling capacity evaluation of the batteries, using air as cooling fluid, was realized in our laboratory in ENEA Casaccia. The plant is designed to allow testing at different flow rate and temperatures of the cooling air, useful for the assessment of operative thermal limits in different working conditions. Another experimental facility was built to evaluate the thermal behaviour changes with water as cooling fluid. Experimental tests were carried out on the LiFePO4 batteries, under different electric working conditions using the two loops. In the future, different type of batteries will be tested and the influence of various parameters on the heat transfer will be assessed for possible optimal operative solutions.
NASA Astrophysics Data System (ADS)
Kemp, G. Elijah; Colvin, J. D.; Fournier, K. B.; May, M. J.; Barrios, M. A.; Patel, M. V.; Koning, J. M.; Scott, H. A.; Marinak, M. M.
2015-11-01
Laser-driven, spectrally tailored, high-flux x-ray sources have been developed over the past decade for testing the radiation hardness of materials used in various civilian, space and military applications. The optimal electron temperatures for these x-ray sources occur around twice the desired photon energy. At the National Ignition Facility (NIF) laser, the available energy can produce plasmas with ~ 10keV electron temperatures which result in highly-efficient ~ 5keV radiation but less than optimal emission from the > 10keV sources. In this work, we present a possible venue for enhancing multi-keV x-ray emission on existing laser platforms through the application of an external magnetic field. Preliminary radiation-hydrodynamics calculations with
Schram, Edward; Bierman, Stijn; Teal, Lorna R.; Haenen, Olga; van de Vis, Hans; Rijnsdorp, Adriaan D.
2013-01-01
Dover sole (Solea solea) is an obligate ectotherm with a natural thermal habitat ranging from approximately 5 to 27°C. Thermal optima for growth lie in the range of 20 to 25°C. More precise information on thermal optima for growth is needed for cost-effective Dover sole aquaculture. The main objective of this study was to determine the optimal growth temperature of juvenile Dover sole (Solea solea) and in addition to test the hypothesis that the final preferendum equals the optimal growth temperature. Temperature preference was measured in a circular preference chamber for Dover sole acclimated to 18, 22 and 28°C. Optimal growth temperature was measured by rearing Dover sole at 19, 22, 25 and 28°C. The optimal growth temperature resulting from this growth experiment was 22.7°C for Dover sole with a size between 30 to 50 g. The temperature preferred by juvenile Dover sole increases with acclimation temperature and exceeds the optimal temperature for growth. A final preferendum could not be detected. Although a confounding effect of behavioural fever on temperature preference could not be entirely excluded, thermal preference and thermal optima for physiological processes seem to be unrelated in Dover sole. PMID:23613837
Schram, Edward; Bierman, Stijn; Teal, Lorna R; Haenen, Olga; van de Vis, Hans; Rijnsdorp, Adriaan D
2013-01-01
Dover sole (Solea solea) is an obligate ectotherm with a natural thermal habitat ranging from approximately 5 to 27°C. Thermal optima for growth lie in the range of 20 to 25°C. More precise information on thermal optima for growth is needed for cost-effective Dover sole aquaculture. The main objective of this study was to determine the optimal growth temperature of juvenile Dover sole (Solea solea) and in addition to test the hypothesis that the final preferendum equals the optimal growth temperature. Temperature preference was measured in a circular preference chamber for Dover sole acclimated to 18, 22 and 28°C. Optimal growth temperature was measured by rearing Dover sole at 19, 22, 25 and 28°C. The optimal growth temperature resulting from this growth experiment was 22.7°C for Dover sole with a size between 30 to 50 g. The temperature preferred by juvenile Dover sole increases with acclimation temperature and exceeds the optimal temperature for growth. A final preferendum could not be detected. Although a confounding effect of behavioural fever on temperature preference could not be entirely excluded, thermal preference and thermal optima for physiological processes seem to be unrelated in Dover sole.
The optimization on flow scheme of helium liquefier with genetic algorithm
NASA Astrophysics Data System (ADS)
Wang, H. R.; Xiong, L. Y.; Peng, N.; Liu, L. Q.
2017-01-01
There are several ways to organize the flow scheme of the helium liquefiers, such as arranging the expanders in parallel (reverse Brayton stage) or in series (modified Brayton stages). In this paper, the inlet mass flow and temperatures of expanders in Collins cycle are optimized using genetic algorithm (GA). Results show that maximum liquefaction rate can be obtained when the system is working at the optimal parameters. However, the reliability of the system is not well due to high wheel speed of the first turbine. Study shows that the scheme in which expanders are arranged in series with heat exchangers between them has higher operation reliability but lower plant efficiency when working at the same situation. Considering both liquefaction rate and system stability, another flow scheme is put forward hoping to solve the dilemma. The three configurations are compared from different aspects, they are respectively economic cost, heat exchanger size, system reliability and exergy efficiency. In addition, the effect of heat capacity ratio on heat transfer efficiency is discussed. A conclusion of choosing liquefier configuration is given in the end, which is meaningful for the optimal design of helium liquefier.
Thermoelectric properties of an interacting quantum dot based heat engine
NASA Astrophysics Data System (ADS)
Erdman, Paolo Andrea; Mazza, Francesco; Bosisio, Riccardo; Benenti, Giuliano; Fazio, Rosario; Taddei, Fabio
2017-06-01
We study the thermoelectric properties and heat-to-work conversion performance of an interacting, multilevel quantum dot (QD) weakly coupled to electronic reservoirs. We focus on the sequential tunneling regime. The dynamics of the charge in the QD is studied by means of master equations for the probabilities of occupation. From here we compute the charge and heat currents in the linear response regime. Assuming a generic multiterminal setup, and for low temperatures (quantum limit), we obtain analytical expressions for the transport coefficients which account for the interplay between interactions (charging energy) and level quantization. In the case of systems with two and three terminals we derive formulas for the power factor Q and the figure of merit Z T for a QD-based heat engine, identifying optimal working conditions which maximize output power and efficiency of heat-to-work conversion. Beyond the linear response we concentrate on the two-terminal setup. We first study the thermoelectric nonlinear coefficients assessing the consequences of large temperature and voltage biases, focusing on the breakdown of the Onsager reciprocal relation between thermopower and Peltier coefficient. We then investigate the conditions which optimize the performance of a heat engine, finding that in the quantum limit output power and efficiency at maximum power can almost be simultaneously maximized by choosing appropriate values of electrochemical potential and bias voltage. At last we study how energy level degeneracy can increase the output power.
NASA Astrophysics Data System (ADS)
Zhou, Meng-Jun; Wang, Jian-Jun; Chen, Long-Qing; Nan, Ce-Wen
2018-04-01
A KNbO3-based solid solution system is environmentally friendly with good electromechanical performance. This work established the misfit strain-strain and temperature-strain phase diagrams for K0.5Na0.5NbO3 thin films and calculated the polarization switching, phase transition, and piezoelectric responses of K0.5Na0.5NbO3 thin films under various strains, temperatures, and electric fields. The results show that the piezoelectric coefficient d33 can be enhanced near the phase boundaries. For the ferroelectric phase with a nonzero out-of-plane polarization component, an optimal electric field is identified for maximizing d33, which is desired in applications such as thin-film piezoelectric micro-electromechanical systems, transducers for ultrasound medical imaging, and energy harvesting. The present results are expected to provide guidance for the future experimental study of KxNa1-xNbO3 thin films and the optimization of ferroelectric thin film-based devices.
Ab initio optimization of phonon drag effect for lower-temperature thermoelectric energy conversion.
Zhou, Jiawei; Liao, Bolin; Qiu, Bo; Huberman, Samuel; Esfarjani, Keivan; Dresselhaus, Mildred S; Chen, Gang
2015-12-01
Although the thermoelectric figure of merit zT above 300 K has seen significant improvement recently, the progress at lower temperatures has been slow, mainly limited by the relatively low Seebeck coefficient and high thermal conductivity. Here we report, for the first time to our knowledge, success in first-principles computation of the phonon drag effect--a coupling phenomenon between electrons and nonequilibrium phonons--in heavily doped region and its optimization to enhance the Seebeck coefficient while reducing the phonon thermal conductivity by nanostructuring. Our simulation quantitatively identifies the major phonons contributing to the phonon drag, which are spectrally distinct from those carrying heat, and further reveals that although the phonon drag is reduced in heavily doped samples, a significant contribution to Seebeck coefficient still exists. An ideal phonon filter is proposed to enhance zT of silicon at room temperature by a factor of 20 to ∼ 0.25, and the enhancement can reach 70 times at 100 K. This work opens up a new venue toward better thermoelectrics by harnessing nonequilibrium phonons.
Wang, Xiao-Ling; Ding, Zhong-Yang; Zhao, Yan; Liu, Gao-Qiang; Zhou, Guo-Ying
2017-01-01
Triterpene acids are among the major bioactive constituents of lucidum. However, submerged fermentation techniques for isolating triterpene acids from G. lucidum have not been optimized for commercial use, and the antitumor activity of the mycelial triterpene acids needs to be further proven. The aim of this work was to optimize the conditions for G. lucidum culture with respect to triterpene acid production, scaling up the process, and examining the in vitro antitumor activity of mycelial triterpene acids. The key conditions (i.e., initial pH, fermentation temperature, and rotation speed) were optimized using response surface methodology, and the in vitro antitumor activity was evaluated using the MTT method. The optimum key fermentation conditions for triterpene acid production were pH 6.0; rotation speed, 161.9 rpm; and temperature, 30.1°C, resulting in a triterpene acid yield of 291.0 mg/L in the validation experiment in a 5-L stirred bioreactor; this yield represented a 70.8% increase in titer compared with the nonoptimized conditions. Furthermore, the optimized conditions were then successfully scaled up to a production scale of 200 L, and a triterpene productivity of 47.9 mg/L/day was achieved, which is, to our knowledge, the highest reported in the large-scale fermentation of G. lucidum. In addition, the mycelial triterpene acids were found to be cytotoxic to the SMMC-7721 and SW620 cell lines in vitro. Chemical analysis showed that the key active triterpene acid compounds, ganoderic acids T and Me, predominated in the extract, at 69.2 and 41.6 mg/g, respectively. Thus, this work develops a simple and feasible batch fermentation technique for the large-scale production of antitumor triterpene acids from G. lucidum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yachao; Zhou, Xiaowei; Xu, Shengrui
Pulsed metal organic chemical vapor deposition (P-MOCVD) is introduced into the growth of high quality InGaN channel heterostructures. The effects of InGaN channel growth temperature on the structural and transport properties of the heterostructures are investigated in detail. High resolution x-ray diffraction (HRXRD) and Photoluminescence (PL) spectra indicate that the quality of InGaN channel strongly depends on the growth temperature. Meanwhile, the atomic force microscopy (AFM) results show that the interface morphology between the InGaN channel and the barrier layer also relies on the growth temperature. Since the variation of material properties of InGaN channel has a significant influence onmore » the electrical properties of InAlN/InGaN heterostructures, the optimal transport properties can be achieved by adjusting the growth temperature. A very high two dimension electron gas (2DEG) density of 1.92 × 10{sup 13} cm{sup −2} and Hall electron mobility of 1025 cm{sup 2}/(V⋅s) at room temperature are obtained at the optimal growth temperature around 740 °C. The excellent transport properties in our work indicate that the heterostructure with InGaN channel is a promising candidate for the microwave power devices, and the results in this paper will be instructive for further study of the InGaN channel heterostructures.« less
Standardized EMCS Energy Savings Calculations.
1982-09-01
Reset 56 4.12 Boiler Optimization 57 4.13 Chiller Optimization 58 4.14 Chiller Water Temperature Reset 58 4.15 Condenser Water Temperature.Reset 59...gal, Btu/kwh, etc. (See page 32) 4.13 CHILLER OPTIMIZATION These savings are applicable only to chilled water plants with multiple chillers . The...temperature at end of shutdown period in OF To = hot water temperature setpoint in °F TON = chiller capacity in tons Ts = average temperature of surroundings in
Quasiparticle recombination dynamics in the model cuprate superconductor HgBa2CuO4+δ
NASA Astrophysics Data System (ADS)
Hinton, J. P.; Thewalt, E.; Koralek, J. D.; Orenstein, J.; Barisic, N.; Xhao, X.; Chan, M.; Dorow, C.; Veit, M.; Ji, L.; Greven, M.
2014-03-01
The cuprate family of high temperature superconductors is characterized by a variety of electronic phases which emerge when charge carriers are added to the antiferromagnetic parent compound. The structural simplicity of the single layer cuprate system HgBa2CuO4+δ (Hg1201) is advantageous for experimentally detecting subtle features of these phases. In this work, we investigate the recombination dynamics of photo-excited quasiparticles in Hg1201 as a function of doping, temperature, and magnetic field using pump-probe optical reflectivity. We observe two distinct onset temperatures above TC in the underdoped part of the phase diagram, corresponding to T* and T** as observed in transport and neutron scattering experiments. We also measure a suppression of the recombination rate near TC which peaks at 8% hole concentration. We associate this suppression with coherence effects. Lastly, we observe a complex, non-monotonic temperature dependence in the dynamics around optimal doping, providing evidence for reentrant phase transitions near the apex of the superconducting dome. Work supported by DOE-BES
Virupakshappa, Praveen Kumar Siddalingappa; Mishra, Gaurav; Mehkri, Mohammed Ameenuddin
2016-01-01
The present paper describes the process optimization study for crude oil degradation which is a continuation of our earlier work on hydrocarbon degradation study of the isolate Stenotrophomonas rhizophila (PM-1) with GenBank accession number KX082814. Response Surface Methodology with Box-Behnken Design was used to optimize the process wherein temperature, pH, salinity, and inoculum size (at three levels) were used as independent variables and Total Petroleum Hydrocarbon, Biological Oxygen Demand, and Chemical Oxygen Demand of crude oil and PAHs as dependent variables (response). The statistical analysis, via ANOVA, showed coefficient of determination R 2 as 0.7678 with statistically significant P value 0.0163 fitting in second-order quadratic regression model for crude oil removal. The predicted optimum parameters, namely, temperature, pH, salinity, and inoculum size, were found to be 32.5°C, 9, 12.5, and 12.5 mL, respectively. At this optimum condition, the observed and predicted PAHs and crude oil removal were found to be 71.82% and 79.53% in validation experiments, respectively. The % TPH results correlate with GC/MS studies, BOD, COD, and TPC. The validation of numerical optimization was done through GC/MS studies and % removal of crude oil. PMID:28116165
NASA Astrophysics Data System (ADS)
A'yun, Q.; Takarina, N. D.
2017-07-01
Growth and survival of fishes can be influenced by temperature [1]. Variation among size like weight and length could be the preference how temperature works on growth of fishes [2]. This could be key factor in determining in production as well as market demand since people like heavy and large fishes. The main purpose of this study was to determine the effects of temperature on the growth of milkfish (Chanos Chanos) on weight and length parameters in fish farms Blanakan. This study conducted to assess the optimal temperature for the growth of fish of different sizes to optimize the culture conditions for raising milkfishes in scale cultivation in Blanakan, West Java. Milkfishes were reared in the aquaculture Blanakan ponds because they can adapt very well. The weight and length of milkfishes were measured together with water temperature. The results showed the temperature min (tmin) and max (tmax) were ranged from 29-35 °C. Based on the result, there were significant differences in mean weight (p = 0.00) between temperature with the fish reared in tmax group having the lowest mean weight (99.87±11.51 g) and fish reared in tmin group having the highest mean weight (277.17±33.76 g). Likewise, the significant differences were also observed in mean length (p = 0.00) between temperature with the fish reared in tmax group having the lowest mean length (176.50±12.50 mm) and fish reared in tmin group having the highest mean length (183.60±23.86 mm). Therefore, this paper confirmed the significant effects of temperature on the fish growth reared in aquaculture ponds. More, maintaining aquaculture to lower temperature can be considered as way to keep growth of milkfish well.
NASA Astrophysics Data System (ADS)
Kafle, Amol; Coy, Stephen L.; Wong, Bryan M.; Fornace, Albert J.; Glick, James J.; Vouros, Paul
2014-07-01
A systematic study involving the use and optimization of gas-phase modifiers in quantitative differential mobility-mass spectrometry (DMS-MS) analysis is presented using nucleoside-adduct biomarkers of DNA damage as an important reference point for analysis in complex matrices. Commonly used polar protic and polar aprotic modifiers have been screened for use against two deoxyguanosine adducts of DNA: N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-4-ABP) and N-(deoxyguanosin-8-y1)-2-amino-l-methyl-6-phenylimidazo[4,5-b]pyridine (dG-C8-PhIP). Particular attention was paid to compensation voltage (CoV) shifts, peak shapes, and product ion signal intensities while optimizing the DMS-MS conditions. The optimized parameters were then applied to rapid quantitation of the DNA adducts in calf thymus DNA. After a protein precipitation step, adduct levels corresponding to less than one modification in 106 normal DNA bases were detected using the DMS-MS platform. Based on DMS fundamentals and ab initio thermochemical results, we interpret the complexity of DMS modifier responses in terms of thermal activation and the development of solvent shells. At very high bulk gas temperature, modifier dipole moment may be the most important factor in cluster formation and cluster geometry, but at lower temperatures, multi-neutral clusters are important and less predictable. This work provides a useful protocol for targeted DNA adduct quantitation and a basis for future work on DMS modifier effects.
Kafle, Amol; Coy, Stephen L.; Wong, Bryan M.; Fornace, Albert J.; Glick, James J.; Vouros, Paul
2014-01-01
A systematic study involving the use and optimization of gas phase modifiers in quantitative differential mobility- mass spectrometry (DMS-MS) analysis is presented using mucleoside-adduct biomarkers of DNA damage as an important reference point for analysis in complex matrices. Commonly used polar protic and polar aprotic modifiers have been screened for use against two deoxyguanosine adducts of DNA: N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-4-ABP) and N-(deoxyguanosin-8-y1)-2-amino-l-methyl-6-phenylimidazo[4,5-b]pyridine (dG-C8-PhIP). Particular attention was paid to compensation voltage (CoV) shifts, peak shapes and product ion signal intensities while optimizing the DMS-MS conditions. The optimized parameters were then applied to rapid quantitation of the DNA adducts in calf thymus DNA. After a protein precipitation step, adduct levels corresponding to less than one modification in 106 normal DNA bases were detected using the DMS-MS platform. Based on DMS fundamentals and ab-initio thermochemical results we interpret the complexity of DMS modifier responses in terms of thermal activation and the development of solvent shells. At very high bulk gas temperature, modifier dipole moment may be the most important factor in cluster formation and cluster geometry in mobility differences, but at lower temperatures multi-neutral clusters are important and less predictable. This work provides a useful protocol for targeted DNA adduct quantitation and a basis for future work on DMS modifier effects. PMID:24452298
NASA Astrophysics Data System (ADS)
Riesch, J.; Han, Y.; Almanstötter, J.; Coenen, J. W.; Höschen, T.; Jasper, B.; Zhao, P.; Linsmeier, Ch; Neu, R.
2016-02-01
For the next step fusion reactor the use of tungsten is inevitable to suppress erosion and allow operation at elevated temperature and high heat loads. Tungsten fibre-reinforced composites overcome the intrinsic brittleness of tungsten and its susceptibility to operation embrittlement and thus allow its use as a structural as well as an armour material. That this concept works in principle has been shown in recent years. In this contribution we present a development approach towards its use in a future fusion reactor. A multilayer approach is needed addressing all composite constituents and manufacturing steps. A huge potential lies in the optimization of the tungsten wire used as fibre. We discuss this aspect and present studies on potassium doped tungsten wire in detail. This wire, utilized in the illumination industry, could be a replacement for the so far used pure tungsten wire due to its superior high temperature properties. In tensile tests the wire showed high strength and ductility up to an annealing temperature of 2200 K. The results show that the use of doped tungsten wire could increase the allowed fabrication temperature and the overall working temperature of the composite itself.
Pulsed Inductive Plasma Acceleration: Performance Optimization Criteria
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.
2014-01-01
Optimization criteria for pulsed inductive plasma acceleration are developed using an acceleration model consisting of a set of coupled circuit equations describing the time-varying current in the thruster and a one-dimensional momentum equation. The model is nondimensionalized, resulting in the identification of several scaling parameters that are varied to optimize the performance of the thruster. The analysis reveals the benefits of underdamped current waveforms and leads to a performance optimization criterion that requires the matching of the natural period of the discharge and the acceleration timescale imposed by the inertia of the working gas. In addition, the performance increases when a greater fraction of the propellant is initially located nearer to the inductive acceleration coil. While the dimensionless model uses a constant temperature formulation in calculating performance, the scaling parameters that yield the optimum performance are shown to be relatively invariant if a self-consistent description of energy in the plasma is instead used.
Li, Wei; Zhao, Li-Chun; Sun, Yin-Shi; Lei, Feng-Jie; Wang, Zi; Gui, Xiong-Bin; Wang, Hui
2012-01-01
In this work, pressurized liquid extraction (PLE) of three acetophenones (4-hydroxyacetophenone, baishouwubenzophenone, and 2,4-dihydroxyacetophenone) from Cynanchum bungei (ACB) were investigated. The optimal conditions for extraction of ACB were obtained using a Box-Behnken design, consisting of 17 experimental points, as follows: Ethanol (100%) as the extraction solvent at a temperature of 120 °C and an extraction pressure of 1500 psi, using one extraction cycle with a static extraction time of 17 min. The extracted samples were analyzed by high-performance liquid chromatography using an UV detector. Under this optimal condition, the experimental values agreed with the predicted values by analysis of variance. The ACB extraction yield with optimal PLE was higher than that obtained by soxhlet extraction and heat-reflux extraction methods. The results suggest that the PLE method provides a good alternative for acetophenone extraction. PMID:23203079
Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms.
Niu, Shuli; Luo, Yiqi; Fei, Shenfeng; Yuan, Wenping; Schimel, David; Law, Beverly E; Ammann, Christof; Arain, M Altaf; Arneth, Almut; Aubinet, Marc; Barr, Alan; Beringer, Jason; Bernhofer, Christian; Black, T Andrew; Buchmann, Nina; Cescatti, Alessandro; Chen, Jiquan; Davis, Kenneth J; Dellwik, Ebba; Desai, Ankur R; Etzold, Sophia; Francois, Louis; Gianelle, Damiano; Gielen, Bert; Goldstein, Allen; Groenendijk, Margriet; Gu, Lianhong; Hanan, Niall; Helfter, Carole; Hirano, Takashi; Hollinger, David Y; Jones, Mike B; Kiely, Gerard; Kolb, Thomas E; Kutsch, Werner L; Lafleur, Peter; Lawrence, David M; Li, Linghao; Lindroth, Anders; Litvak, Marcy; Loustau, Denis; Lund, Magnus; Marek, Michal; Martin, Timothy A; Matteucci, Giorgio; Migliavacca, Mirco; Montagnani, Leonardo; Moors, Eddy; Munger, J William; Noormets, Asko; Oechel, Walter; Olejnik, Janusz; Kyaw Tha Paw U; Pilegaard, Kim; Rambal, Serge; Raschi, Antonio; Scott, Russell L; Seufert, Günther; Spano, Donatella; Stoy, Paul; Sutton, Mark A; Varlagin, Andrej; Vesala, Timo; Weng, Ensheng; Wohlfahrt, Georg; Yang, Bai; Zhang, Zhongda; Zhou, Xuhui
2012-05-01
• It is well established that individual organisms can acclimate and adapt to temperature to optimize their functioning. However, thermal optimization of ecosystems, as an assemblage of organisms, has not been examined at broad spatial and temporal scales. • Here, we compiled data from 169 globally distributed sites of eddy covariance and quantified the temperature response functions of net ecosystem exchange (NEE), an ecosystem-level property, to determine whether NEE shows thermal optimality and to explore the underlying mechanisms. • We found that the temperature response of NEE followed a peak curve, with the optimum temperature (corresponding to the maximum magnitude of NEE) being positively correlated with annual mean temperature over years and across sites. Shifts of the optimum temperature of NEE were mostly a result of temperature acclimation of gross primary productivity (upward shift of optimum temperature) rather than changes in the temperature sensitivity of ecosystem respiration. • Ecosystem-level thermal optimality is a newly revealed ecosystem property, presumably reflecting associated evolutionary adaptation of organisms within ecosystems, and has the potential to significantly regulate ecosystem-climate change feedbacks. The thermal optimality of NEE has implications for understanding fundamental properties of ecosystems in changing environments and benchmarking global models. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
NASA Technical Reports Server (NTRS)
Bigelow, Glen S.; Gaydosh, Darrell; Garg, Anita; Padula, Santo A., II; Noebe, Ronald D.
2007-01-01
High-temperature shape memory NiTiPd and NiTiPdX (X=Au, Pt, Hf) alloys were produced with titanium equivalent (Ti+Hf) compositions of 50.5, 50.0, 49.5, and 49.0 at.%. Thermo-mechanical testing in compression was used to evaluate the transformation temperatures, transformation strain, work output, and permanent deformation behavior of each alloy to study the effects of quaternary alloying and stoichiometry on high-temperature shape memory alloy behavior. Microstructural evaluation showed the presence of second phases for all alloy compositions. No load transformation temperatures in the stoichiometric alloys were relatively unchanged by Au and Pt substitutions, while the substitution of Hf for Ti causes a drop in transformation temperatures. The NiTiPd, NiTiPdAu and NiTiPdHf alloys exhibited transformation temperatures that were highest in the Ti-rich compositions, slightly lower at stoichiometry, and significantly reduced when the Ti equivalent composition was less than 50 at.%. For the NiTiPdPt alloy, transformation temperatures were highest for the Ti-rich compositions, lowest at stoichiometry, and slightly higher in the Ni-rich composition. When thermally cycled under constant stresses of up to 300 MPa, all of the alloys had transformation strains, and therefore work outputs, which increased with increasing stress. In each series of alloys, the transformation strain and thus work output was highest for stoichiometric or Ti-rich compositions while permanent strain associated with the constant-load thermal cycling was lowest for alloys with Ni-equivalent-rich compositions. Based on these results, basic rules for optimizing the composition of NiTiPd alloys for actuator performance will be discussed.
Analysis of the Enameled AISI 316LVM Stainless Steel
NASA Astrophysics Data System (ADS)
Bukovec, Mitja; Xhanari, Klodian; Lešer, Tadej; Petovar, Barbara; Finšgar, Matjaž
2018-03-01
In this work, four different enamels were coated on AISI 316LVM stainless steel and the corrosion resistance of these samples was tested in 5 wt.% NaCl solution at room temperature. The preparation procedure of the enamels was optimized in terms of firing temperature, time and composition. First the thermal expansion was measured using dilatometry followed by electrochemical analysis using chronopotentiometry, electrochemical impedance spectroscopy and cyclic polarization. The topography of the most resistant sample was obtained by 3D-profilometry. All samples coated with enamel showed significantly higher corrosion and dilatation resistance compared with the uncoated stainless steel material.
Ferroelectric Zinc Oxide Nanowire Embedded Flexible Sensor for Motion and Temperature Sensing.
Shin, Sung-Ho; Park, Dae Hoon; Jung, Joo-Yun; Lee, Min Hyung; Nah, Junghyo
2017-03-22
We report a simple method to realize multifunctional flexible motion sensor using ferroelectric lithium-doped ZnO-PDMS. The ferroelectric layer enables piezoelectric dynamic sensing and provides additional motion information to more precisely discriminate different motions. The PEDOT:PSS-functionalized AgNWs, working as electrode layers for the piezoelectric sensing layer, resistively detect a change of both movement or temperature. Thus, through the optimal integration of both elements, the sensing limit, accuracy, and functionality can be further expanded. The method introduced here is a simple and effective route to realize a high-performance flexible motion sensor with integrated multifunctionalities.
Study on the Influence of the Cold-End Cooling Water Thickness on the Generative Performance of TEG
NASA Astrophysics Data System (ADS)
Zhou, Li; Guo, Xuexun; Tan, Gangfeng; Ji, Kangping; Xiao, Longjie
2017-05-01
At present, about 40% of the fuel energy is discharged into air with the exhaust gas when an automobile is working, which is a big waste of energy. A thermoelectric generator (TEG) has the ability to harvest the waste heat energy in the exhaust gas. The traditional TEG cold-end is cooled by the engine cooling system, and although its structure is compact, the TEG weight and the space occupied are important factors restricting its application. In this paper, under the premise of ensuring the TEG maximum net output power and reducing the TEG water consumption as much as possible, the optimization of the TEG water thickness in the normal direction of the cold-end surface (WTNCS) is studied, which results in lighter weight, less space occupied and better automobile fuel economy. First, the thermal characteristics of the target diesel vehicle exhaust gas are evaluated based on the experimental data. Then, according to the thermoelectric generation model and the cold-end heat transfer model, the effect of the WTNCS on the cold-end temperature control stability and the system flow resistance are studied. The results show that the WTNCS influences the TEG cold-end temperature. When the engine works in a stable condition, the cold-end temperature decreases with the decrease of the WTNCS. The optimal value of the WTNCS is 0.02 m and the TEG water consumption is 8.8 L. Comparin it with the traditional vehicle exhaust TEG structure, the power generation increased slightly, but the water consumption decreased by about 39.5%, which can save fuel at0.18 L/h when the vehicle works at the speed of 60 km/h.
Glennan Microsystems Initiative
NASA Technical Reports Server (NTRS)
Brillson, Leonard J.
2002-01-01
During the 2001-2002 award period, we performed research on Pt/Ti/bare 6H-SiC and bare 4H-SiC interfaces in order to identify their electronic properties as a function of surface preparation. The overall aim of this work is to optimize the electronic properties of metal contacts to SiC as well as the active SiC material itself as a function of surface preparation and subsequent processing. Initially, this work has involved identifying bare surface, subsurface, and metal induced gap states at the metal-SiC contact and correlating energies and densities of deep levels with Schottky barrier heights. We used low energy electron-excited nanoluminescence (LEEN) spectroscopy, X-ray photoemission spectroscopy (XPS), and Secondary Ion Mass Spectrometry (SIMS) in order to correlate electronic states and energy bands with chemical composition, bonding, and crystal structure. A major development has been the discovery of polytype transformations that occur in 4H-SiC under standard microelectronic process conditions used to fabricate SiC devices. Our results are consistent with the stacking fault generation, defect formation, and consequent degradation of SiC recently reported for state-of-the-art ABB commercial diodes under localized electrical stress. Our results highlight the importance of -optimizing process conditions and material properties - anneal times, temperatures and doping to control such structural changes within epitaxial SiC layers. Thus far, we have established threshold times and temperatures beyond which 4H-SiC exhibits 3C-SiC transformation bands for a subset of dopant concentrations and process conditions. On the basis of this temperature time behavior, we have been able to establish an activation energy of approximately 2.5 eV for polytype transformation and dislocation motion. Work continues to establish the fundamental mechanisms underlying the polytype changes and its dependence on material parameters.
NASA Astrophysics Data System (ADS)
Norlina, M. S.; Diyana, M. S. Nor; Mazidah, P.; Rusop, M.
2016-07-01
In the RF magnetron sputtering process, the desirable layer properties are largely influenced by the process parameters and conditions. If the quality of the thin film has not reached up to its intended level, the experiments have to be repeated until the desirable quality has been met. This research is proposing Gravitational Search Algorithm (GSA) as the optimization model to reduce the time and cost to be spent in the thin film fabrication. The optimization model's engine has been developed using Java. The model is developed based on GSA concept, which is inspired by the Newtonian laws of gravity and motion. In this research, the model is expected to optimize four deposition parameters which are RF power, deposition time, oxygen flow rate and substrate temperature. The results have turned out to be promising and it could be concluded that the performance of the model is satisfying in this parameter optimization problem. Future work could compare GSA with other nature based algorithms and test them with various set of data.
Ideal heat transfer conditions for tubular solar receivers with different design constraints
NASA Astrophysics Data System (ADS)
Kim, Jin-Soo; Potter, Daniel; Gardner, Wilson; Too, Yen Chean Soo; Padilla, Ricardo Vasquez
2017-06-01
The optimum heat transfer condition for a tubular type solar receiver was investigated for various receiver pipe size, heat transfer fluid, and design requirement and constraint(s). Heat transfer of a single plain receiver pipe exposed to concentrated solar energy was modelled along the flow path of the heat transfer fluid. Three different working fluids, molten salt, sodium, and supercritical carbon dioxide (sCO2) were considered in the case studies with different design conditions. The optimized ideal heat transfer condition was identified through fast iterative heat transfer calculations solving for all relevant radiation, conduction and convection heat transfers throughout the entire discretized tubular receiver. The ideal condition giving the best performance was obtained by finding the highest acceptable solar energy flux optimally distributed to meet different constraint(s), such as maximum allowable material temperature of receiver, maximum allowable film temperature of heat transfer fluid, and maximum allowable stress of receiver pipe material. The level of fluid side turbulence (represented by pressure drop in this study) was also optimized to give the highest net power production. As the outcome of the study gives information on the most ideal heat transfer condition, it can be used as a useful guideline for optimal design of a real receiver and solar field in a combined manner. The ideal heat transfer condition is especially important for high temperature tubular receivers (e.g. for supplying heat to high efficiency Brayton cycle turbines) where the system design and performance is tightly constrained by the receiver pipe material strength.
Why "suboptimal" is optimal: Jensen's inequality and ectotherm thermal preferences.
Martin, Tara Laine; Huey, Raymond B
2008-03-01
Body temperature (T(b)) profoundly affects the fitness of ectotherms. Many ectotherms use behavior to control T(b) within narrow levels. These temperatures are assumed to be optimal and therefore to match body temperatures (Trmax) that maximize fitness (r). We develop an optimality model and find that optimal body temperature (T(o)) should not be centered at Trmax but shifted to a lower temperature. This finding seems paradoxical but results from two considerations relating to Jensen's inequality, which deals with how variance and skew influence integrals of nonlinear functions. First, ectotherms are not perfect thermoregulators and so experience a range of T(b). Second, temperature-fitness curves are asymmetric, such that a T(b) higher than Trmax depresses fitness more than will a T(b) displaced an equivalent amount below Trmax. Our model makes several predictions. The magnitude of the optimal shift (Trmax - To) should increase with the degree of asymmetry of temperature-fitness curves and with T(b) variance. Deviations should be relatively large for thermal specialists but insensitive to whether fitness increases with Trmax ("hotter is better"). Asymmetric (left-skewed) T(b) distributions reduce the magnitude of the optimal shift but do not eliminate it. Comparative data (insects, lizards) support key predictions. Thus, "suboptimal" is optimal.
Colossal Dielectric Behavior of Ga+Nb Co-Doped Rutile TiO2.
Dong, Wen; Hu, Wanbiao; Berlie, Adam; Lau, Kenny; Chen, Hua; Withers, Ray L; Liu, Yun
2015-11-18
Stimulated by the excellent colossal permittivity (CP) behavior achieved in In+Nb co-doped rutile TiO2, in this work we investigate the CP behavior of Ga and Nb co-doped rutile TiO2, i.e., (Ga(0.5)Nb(0.5))(x)Ti(1-x)O2, where Ga(3+) is from the same group as In(3+) but with a much smaller ionic radius. Colossal permittivity of up to 10(4)-10(5) with an acceptably low dielectric loss (tan δ = 0.05-0.1) over broad frequency/temperature ranges is obtained at x = 0.5% after systematic synthesis optimizations. Systematic structural, defect, and dielectric characterizations suggest that multiple polarization mechanisms exist in this system: defect dipoles at low temperature (∼10-40 K), polaronlike electron hopping/transport at higher temperatures, and a surface barrier layer capacitor effect. Together these mechanisms contribute to the overall dielectric properties, especially apparent observed CP. We believe that this work provides comprehensive guidance for the design of new CP materials.
Shi, Bobo; Ma, Lingjun; Dong, Wei; Zhou, Fubao
2015-01-01
With the continually increasing mining depths, heat stress and spontaneous combustion hazards in high-temperature mines are becoming increasingly severe. Mining production risks from natural hazards and exposures to hot and humid environments can cause occupational diseases and other work-related injuries. Liquid nitrogen injection, an engineering control developed to reduce heat stress and spontaneous combustion hazards in mines, was successfully utilized for environmental cooling and combustion prevention in an underground mining site named "Y120205 Working Face" (Y120205 mine) of Yangchangwan colliery. Both localized humidities and temperatures within the Y120205 mine decreased significantly with liquid nitrogen injection. The maximum percentage drop in temperature and humidity of the Y120205 mine were 21.9% and 10.8%, respectively. The liquid nitrogen injection system has the advantages of economical price, process simplicity, energy savings and emission reduction. The optimized heat exchanger used in the liquid nitrogen injection process achieved superior air-cooling results, resulting in considerable economic benefits.
Thermodynamics of Gas Turbine Cycles with Analytic Derivatives in OpenMDAO
NASA Technical Reports Server (NTRS)
Gray, Justin; Chin, Jeffrey; Hearn, Tristan; Hendricks, Eric; Lavelle, Thomas; Martins, Joaquim R. R. A.
2016-01-01
A new equilibrium thermodynamics analysis tool was built based on the CEA method using the OpenMDAO framework. The new tool provides forward and adjoint analytic derivatives for use with gradient based optimization algorithms. The new tool was validated against the original CEA code to ensure an accurate analysis and the analytic derivatives were validated against finite-difference approximations. Performance comparisons between analytic and finite difference methods showed a significant speed advantage for the analytic methods. To further test the new analysis tool, a sample optimization was performed to find the optimal air-fuel equivalence ratio, , maximizing combustion temperature for a range of different pressures. Collectively, the results demonstrate the viability of the new tool to serve as the thermodynamic backbone for future work on a full propulsion modeling tool.
Bagul, Mayuri B; Sonawane, Sachin K; Arya, Shalini S
2018-04-01
Tamarind seed has been a source of valuable nutrients such as protein (contains high amount of many essential amino acids), essential fatty acids, and minerals which are recognized as additive to develop perfect balanced functional foods. The objective of present work was to optimize the process parameters for extraction and hydrolysis of protein from tamarind seeds. Papain-derived hydrolysates showed a maximum degree of hydrolysis (39.49%) and radical scavenging activity (42.92 ± 2.83%) at optimized conditions such as enzyme-to-substrate ratio (1:5), hydrolysis time (3 h), hydrolysis temperature (65 °C), and pH 6. From this study, papain hydrolysate can be considered as good source of natural antioxidants in developing food formulations.
Temperature Scaling Law for Quantum Annealing Optimizers.
Albash, Tameem; Martin-Mayor, Victor; Hen, Itay
2017-09-15
Physical implementations of quantum annealing unavoidably operate at finite temperatures. We point to a fundamental limitation of fixed finite temperature quantum annealers that prevents them from functioning as competitive scalable optimizers and show that to serve as optimizers annealer temperatures must be appropriately scaled down with problem size. We derive a temperature scaling law dictating that temperature must drop at the very least in a logarithmic manner but also possibly as a power law with problem size. We corroborate our results by experiment and simulations and discuss the implications of these to practical annealers.
Benefits Analysis of Past Projects. Volume 2. Individual Project Assessments.
1984-11-01
209 S- ..-...-......... a nineteenth century one which had been developed for .he braiding of fire hoses . Project Results The program revealed...was found for protecting the drilling and position sensing optics from expelled metal particles. Process and work-material variables were optimized...HPT vane material. Hastelloy X is a nickel-chromium superalloy used in high temperature sheet metal applications, such as combustion liners and
Temperature Mapping of 3D Printed Polymer Plates: Experimental and Numerical Study
Kousiatza, Charoula; Chatzidai, Nikoleta; Karalekas, Dimitris
2017-01-01
In Fused Deposition Modeling (FDM), which is a common thermoplastic Additive Manufacturing (AM) method, the polymer model material that is in the form of a flexible filament is heated above its glass transition temperature (Tg) to a semi-molten state in the head’s liquefier. The heated material is extruded in a rastering configuration onto the building platform where it rapidly cools and solidifies with the adjoining material. The heating and rapid cooling cycles of the work materials exhibited during the FDM process provoke non-uniform thermal gradients and cause stress build-up that consequently result in part distortions, dimensional inaccuracy and even possible part fabrication failure. Within the purpose of optimizing the FDM technique by eliminating the presence of such undesirable effects, real-time monitoring is essential for the evaluation and control of the final parts’ quality. The present work investigates the temperature distributions developed during the FDM building process of multilayered thin plates and on this basis a numerical study is also presented. The recordings of temperature changes were achieved by embedding temperature measuring sensors at various locations into the middle-plane of the printed structures. The experimental results, mapping the temperature variations within the samples, were compared to the corresponding ones obtained by finite element modeling, exhibiting good correlation. PMID:28245557
NASA Astrophysics Data System (ADS)
Adeyeri, Michael Kanisuru; Mpofu, Khumbulani; Kareem, Buliaminu
2016-03-01
This article describes the integration of temperature and vibration models for maintenance monitoring of conventional machinery parts in which their optimal and best functionalities are affected by abnormal changes in temperature and vibration values thereby resulting in machine failures, machines breakdown, poor quality of products, inability to meeting customers' demand, poor inventory control and just to mention a few. The work entails the use of temperature and vibration sensors as monitoring probes programmed in microcontroller using C language. The developed hardware consists of vibration sensor of ADXL345, temperature sensor of AD594/595 of type K thermocouple, microcontroller, graphic liquid crystal display, real time clock, etc. The hardware is divided into two: one is based at the workstation (majorly meant to monitor machines behaviour) and the other at the base station (meant to receive transmission of machines information sent from the workstation), working cooperatively for effective functionalities. The resulting hardware built was calibrated, tested using model verification and validated through principles pivoted on least square and regression analysis approach using data read from the gear boxes of extruding and cutting machines used for polyethylene bag production. The results got therein confirmed related correlation existing between time, vibration and temperature, which are reflections of effective formulation of the developed concept.
Mapping Sensory Spots for Moderate Temperatures on the Back of Hand.
Yang, Fan; Chen, Guixu; Zhou, Sikai; Han, Danhong; Xu, Jingjing; Xu, Shengyong
2017-12-04
Thermosensation with thermoreceptors plays an important role in maintaining body temperature at an optimal state and avoiding potential damage caused by harmful hot or cold environmental temperatures. In this work, the locations of sensory spots for sensing moderate temperatures of 40-50 °C on the back of the hands of young Chinese people were mapped in a blind-test manner with a thermal probe of 1.0 mm spatial resolution. The number of sensory spots increased along with the testing temperature; however, the surface density of sensory spots was remarkably lower than those reported previously. The locations of the spots were irregularly distributed and subject-dependent. Even for the same subject, the number and location of sensory spots were unbalanced and asymmetric between the left and right hands. The results may offer valuable information for designing artificial electronic skin and wearable devices, as well as for clinical applications.
NASA Astrophysics Data System (ADS)
Chang, Kai-Shiun; Lin, Yi-Feng; Tung, Kuo-Lun
A molecular dynamics (MD) simulation is used to reveal the grain boundary effect on the ionic transport of yttria-stabilized zirconia (YSZ). The oxygen ion displacements and diffusivities of the ideal and grain boundary-inserted YSZ models are analyzed at elevated temperatures. An optimized Y 2O 3 concentration within YSZ for the best ionic conductivity is achieved by balancing the trade-off between the increased vacancies and the decreased accessible free space. The mass transfer resistance of the grain boundary in YSZ can be more easily found at higher temperatures by observing the oxygen ion diffusivities or traveling trajectories. At lower temperatures, the grain interior and the grain boundary control the ionic transport. In contrast, the grain boundary effect on the diffusion barrier is gradually eliminated at elevated temperatures. The modeled results in this work agree well with previous experimental data.
Strong Temperature Dependence in the Reactivity of H 2 on RuO 2 (110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, Michael A.; Dahal, Arjun; Dohnálek, Zdenek
2016-08-04
The ability of hydrogen to facilitate many types of heterogeneous catalysis starts with its adsorption. As such, understanding the temperature-dependence sticking of H2 is critical toward controlling and optimizing catalytic conditions in those cases where adsorption is rate-limiting. In this work, we examine the temperature-dependent sticking of H2/D2 to the clean RuO2(110) surface using the King & Wells molecular beam approach, temperature programmed desorption (TPD) and scanning tunneling microscopy (STM). We show that the sticking probability (molecular or dissociative) of H2/D2 on this surface is highly temperature-dependent, decreasing from ~0.4-0.5 below 25 K to effectively zero above 200 K. Bothmore » STM and TPD reveal that OH/OD formation is severely limited for adsorption temperatures above ~150 K. Previous literature reports of extensive surface hydroxylation from H2/D2 exposures at room temperature were most likely the result of inadvertent contamination brought about from dosing by chamber backfilling.« less
NASA Astrophysics Data System (ADS)
Xu, Janet L.; Batista, Caio F. G.; Tittmann, Bernhard R.
2018-04-01
Structural health monitoring of large valve bodies in high-temperature environments such as power plants faces several limitations: commercial transducers are not rated for such high temperatures, gel couplants will evaporate, and measurements cannot be made in-situ. To solve this, we have furthered the work of Ledford in applying a practical transducer in liquid form which hardens and air dries directly onto the substrate. The transducer material is a piezoceramic film composed of bismuth titanate and a high-temperature binding agent, Ceramabind 830. The effects of several fabrication conditions were studied to optimize transducer performance and ensure repeatability. These fabrication conditions include humidity, binder ratio, water ratio, substrate roughness, and film thickness. The final product is stable for both reactive and non-reactive substrates, has a quick fabrication time, and has an operating temperature up to the Curie temperature of BIT, 650°C, well beyond the safe operating temperature of PZT (150°C).
Muley, Pranjali D; Boldor, Dorin
2012-01-01
Use of advanced microwave technology for biodiesel production from vegetable oil is a relatively new technology. Microwave dielectric heating increases the process efficiency and reduces reaction time. Microwave heating depends on various factors such as material properties (dielectric and thermo-physical), frequency of operation and system design. Although lab scale results are promising, it is important to study these parameters and optimize the process before scaling up. Numerical modeling approach can be applied for predicting heating and temperature profiles including at larger scale. The process can be studied for optimization without actually performing the experiments, reducing the amount of experimental work required. A basic numerical model of continuous electromagnetic heating of biodiesel precursors was developed. A finite element model was built using COMSOL Multiphysics 4.2 software by coupling the electromagnetic problem with the fluid flow and heat transfer problem. Chemical reaction was not taken into account. Material dielectric properties were obtained experimentally, while the thermal properties were obtained from the literature (all the properties were temperature dependent). The model was tested for the two different power levels 4000 W and 4700 W at a constant flow rate of 840ml/min. The electric field, electromagnetic power density flow and temperature profiles were studied. Resulting temperature profiles were validated by comparing to the temperatures obtained at specific locations from the experiment. The results obtained were in good agreement with the experimental data.
NASA Astrophysics Data System (ADS)
Li, Fangsen; Ding, Hao; Tang, Chenjia; Peng, Junping; Zhang, Qinghua; Zhang, Wenhao; Zhou, Guanyu; Zhang, Ding; Song, Can-Li; He, Ke; Ji, Shuaihua; Chen, Xi; Gu, Lin; Wang, Lili; Ma, Xu-Cun; Xue, Qi-Kun
2015-06-01
Recently discovered high-temperature superconductivity in single-unit-cell (UC) FeSe films on SrTi O3 (STO) substrate has stimulated tremendous research interest, both experimental and theoretical. Whether this scenario could be extended to other superconductors is vital in both identifying the enhanced superconductivity mechanism and further raising the critical transition temperature (Tc). Here we successfully prepared single-UC FeT e1 -xS ex(0.1 ≤x ≤0.6 ) films on STO substrates by molecular beam epitaxy and observed U -shaped superconducting gaps (Δ ) up to ˜16.5 meV , nearly ten times the gap value (Δ ˜1.7 meV ) of the optimally doped bulk FeT e0 .6S e0 .4 single crystal (Tc˜14.5 K ). No superconducting gap has been observed on the second UC and thicker FeT e1 -xS ex films at 5.7 K, indicating the important role of the interface. This interface-enhanced high-temperature superconductivity is further confirmed by ex situ transport measurements, which revealed an onset superconducting transition temperature above 40 K, nearly two times higher than that of the optimally doped bulk FeT e0 .6S e0 .4 single crystal. This work demonstrates that interface engineering is a feasible way to discover alternative superconductors with higher Tc.
Mixture optimization for mixed gas Joule-Thomson cycle
NASA Astrophysics Data System (ADS)
Detlor, J.; Pfotenhauer, J.; Nellis, G.
2017-12-01
An appropriate gas mixture can provide lower temperatures and higher cooling power when used in a Joule-Thomson (JT) cycle than is possible with a pure fluid. However, selecting gas mixtures to meet specific cooling loads and cycle parameters is a challenging design problem. This study focuses on the development of a computational tool to optimize gas mixture compositions for specific operating parameters. This study expands on prior research by exploring higher heat rejection temperatures and lower pressure ratios. A mixture optimization model has been developed which determines an optimal three-component mixture based on the analysis of the maximum value of the minimum value of isothermal enthalpy change, ΔhT , that occurs over the temperature range. This allows optimal mixture compositions to be determined for a mixed gas JT system with load temperatures down to 110 K and supply temperatures above room temperature for pressure ratios as small as 3:1. The mixture optimization model has been paired with a separate evaluation of the percent of the heat exchanger that exists in a two-phase range in order to begin the process of selecting a mixture for experimental investigation.
Optimization of an auto-thermal ammonia synthesis reactor using cyclic coordinate method
NASA Astrophysics Data System (ADS)
A-N Nguyen, T.; Nguyen, T.-A.; Vu, T.-D.; Nguyen, K.-T.; K-T Dao, T.; P-H Huynh, K.
2017-06-01
The ammonia synthesis system is an important chemical process used in the manufacture of fertilizers, chemicals, explosives, fibers, plastics, refrigeration. In the literature, many works approaching the modeling, simulation and optimization of an auto-thermal ammonia synthesis reactor can be found. However, they just focus on the optimization of the reactor length while keeping the others parameters constant. In this study, the other parameters are also considered in the optimization problem such as the temperature of feed gas enters the catalyst zone, the initial nitrogen proportion. The optimal problem requires the maximization of an objective function which is multivariable function and subject to a number of equality constraints involving the solution of coupled differential equations and also inequality constraint. The cyclic coordinate search was applied to solve the multivariable-optimization problem. In each coordinate, the golden section method was applied to find the maximum value. The inequality constraints were treated using penalty method. The coupled differential equations system was solved using Runge-Kutta 4th order method. The results obtained from this study are also compared to the results from the literature.
Grodowska, Katarzyna; Parczewski, Andrzej
2013-01-01
The purpose of the present work was to find optimum conditions of headspace gas chromatography (HS-GC) determination of residual solvents which usually appear in pharmaceutical products. Two groups of solvents were taken into account in the present examination. Group I consisted of isopropanol, n-propanol, isobutanol, n-butanol and 1,4-dioxane and group II included cyclohexane, n-hexane and n-heptane. The members of the groups were selected in previous investigations in which experimental design and chemometric methods were applied. Four factors were taken into consideration in optimization which describe HS conditions: sample volume, equilibration time, equilibrium temperature and NaCl concentration in a sample. The relative GC peak area served as an optimization criterion which was considered separately for each analyte. Sequential variable size simplex optimization strategy was used and the progress of optimization was traced and visualized in various ways simultaneously. The optimum HS conditions appeared different for the groups of solvents tested, which proves that influence of experimental conditions (factors) depends on analyte properties. The optimization resulted in significant signal increase (from seven to fifteen times).
Generation of low-temperature air plasma for food processing
NASA Astrophysics Data System (ADS)
Stepanova, Olga; Demidova, Maria; Astafiev, Alexander; Pinchuk, Mikhail; Balkir, Pinar; Turantas, Fulya
2015-11-01
The project is aimed at developing a physical and technical foundation of generating plasma with low gas temperature at atmospheric pressure for food industry needs. As known, plasma has an antimicrobial effect on the numerous types of microorganisms, including those that cause food spoilage. In this work an original experimental setup has been developed for the treatment of different foods. It is based on initiating corona or dielectric-barrier discharge in a chamber filled with ambient air in combination with a certain helium admixture. The experimental setup provides various conditions of discharge generation (including discharge gap geometry, supply voltage, velocity of gas flow, content of helium admixture in air and working pressure) and allows for the measurement of the electrical discharge parameters. Some recommendations on choosing optimal conditions of discharge generation for experiments on plasma food processing are developed.
NASA Astrophysics Data System (ADS)
Sudibyo, Hermida, L.; Junaedi, A.; Putra, F. A.
2017-11-01
Nickel and cobalt metal able to process from low grade laterite using solvent extraction and electrowinning. One of electrowinning methods which has good performance to produce pure metal is electrometal-electrowinninge(EMEW). In this work, solventextraction was used to separate nickel and cobalt which useCyanex-Versatic Acid in toluene as an organic phase. An aqueous phase of extraction was processed using EMEW in order to deposit the nickel metal in Cathode electrode. The parameters which used in this work were batch temperature, operation time, voltage, and boric acid concentration. Those parameters were studied and optimized using the design of experiment of Taguchi. The Taguchi analysis result shows that the optimum result of EMEW was at 60°C of batch temperature, 2 Voltage, 6 hours operation and 0.5 M of boric acid.
NASA Astrophysics Data System (ADS)
Piccininni, A.; Palumbo, G.; Franco, A. Lo; Sorgente, D.; Tricarico, L.; Russello, G.
2018-05-01
The continuous research for lightweight components for transport applications to reduce the harmful emissions drives the attention to the light alloys as in the case of Aluminium (Al) alloys, capable to combine low density with high values of the strength-to-weight ratio. Such advantages are partially counterbalanced by the poor formability at room temperature. A viable solution is to adopt a localized heat treatment by laser of the blank before the forming process to obtain a tailored distribution of material properties so that the blank can be formed at room temperature by means of conventional press machines. Such an approach has been extensively investigated for age hardenable alloys, but in the present work the attention is focused on the 5000 series; in particular, the optimization of the deep drawing process of the alloy AA5754 H32 is proposed through a numerical/experimental approach. A preliminary investigation was necessary to correctly tune the laser parameters (focus length, spot dimension) to effectively obtain the annealed state. Optimal process parameters were then obtained coupling a 2D FE model with an optimization platform managed by a multi-objective genetic algorithm. The optimal solution (i.e. able to maximize the LDR) in terms of blankholder force and extent of the annealed region was thus evaluated and validated through experimental trials. A good matching between experimental and numerical results was found. The optimal solution allowed to obtain an LDR of the locally heat treated blank larger than the one of the material either in the wrought condition (H32) either in the annealed condition (H111).
Genetic algorithm optimization of a film cooling array on a modern turbine inlet vane
NASA Astrophysics Data System (ADS)
Johnson, Jamie J.
In response to the need for more advanced gas turbine cooling design methods that factor in the 3-D flowfield and heat transfer characteristics, this study involves the computational optimization of a pressure side film cooling array on a modern turbine inlet vane. Latin hypersquare sampling, genetic algorithm reproduction, and Reynolds-Averaged Navier Stokes (RANS) computational fluid dynamics (CFD) as an evaluation step are used to assess a total of 1,800 film cooling designs over 13 generations. The process was efficient due to the Leo CFD code's ability to estimate cooling mass flux at surface grid cells using a transpiration boundary condition, eliminating the need for remeshing between designs. The optimization resulted in a unique cooling design relative to the baseline with new injection angles, compound angles, cooling row patterns, hole sizes, a redistribution of cooling holes away from the over-cooled midspan to hot areas near the shroud, and a lower maximum surface temperature. To experimentally confirm relative design trends between the optimized and baseline designs, flat plate infrared thermography assessments were carried out at design flow conditions. Use of flat plate experiments to model vane pressure side cooling was justified through a conjugate heat transfer CFD comparison of the 3-D vane and flat plate which showed similar cooling performance trends at multiple span locations. The optimized flat plate model exhibited lower minimum surface temperatures at multiple span locations compared to the baseline. Overall, this work shows promise of optimizing film cooling to reduce design cycle time and save cooling mass flow in a gas turbine.
Continuous-variable quantum probes for structured environments
NASA Astrophysics Data System (ADS)
Bina, Matteo; Grasselli, Federico; Paris, Matteo G. A.
2018-01-01
We address parameter estimation for structured environments and suggest an effective estimation scheme based on continuous-variables quantum probes. In particular, we investigate the use of a single bosonic mode as a probe for Ohmic reservoirs, and obtain the ultimate quantum limits to the precise estimation of their cutoff frequency. We assume the probe prepared in a Gaussian state and determine the optimal working regime, i.e., the conditions for the maximization of the quantum Fisher information in terms of the initial preparation, the reservoir temperature, and the interaction time. Upon investigating the Fisher information of feasible measurements, we arrive at a remarkable simple result: homodyne detection of canonical variables allows one to achieve the ultimate quantum limit to precision under suitable, mild, conditions. Finally, upon exploiting a perturbative approach, we find the invariant sweet spots of the (tunable) characteristic frequency of the probe, able to drive the probe towards the optimal working regime.
Optimisation Of Cutting Parameters Of Composite Material Laser Cutting Process By Taguchi Method
NASA Astrophysics Data System (ADS)
Lokesh, S.; Niresh, J.; Neelakrishnan, S.; Rahul, S. P. Deepak
2018-03-01
The aim of this work is to develop a laser cutting process model that can predict the relationship between the process input parameters and resultant surface roughness, kerf width characteristics. The research conduct is based on the Design of Experiment (DOE) analysis. Response Surface Methodology (RSM) is used in this work. It is one of the most practical and most effective techniques to develop a process model. Even though RSM has been used for the optimization of the laser process, this research investigates laser cutting of materials like Composite wood (veneer)to be best circumstances of laser cutting using RSM process. The input parameters evaluated are focal length, power supply and cutting speed, the output responses being kerf width, surface roughness, temperature. To efficiently optimize and customize the kerf width and surface roughness characteristics, a machine laser cutting process model using Taguchi L9 orthogonal methodology was proposed.
Improved Low-Temperature Performance of Li-Ion Cells Using New Electrolytes
NASA Technical Reports Server (NTRS)
Smart, Marshall C.; Buga, Ratnakumar V.; Gozdz, Antoni S.; Mani, Suresh
2010-01-01
As part of the continuing efforts to develop advanced electrolytes to improve the performance of lithium-ion cells, especially at low temperatures, a number of electrolyte formulations have been developed that result in improved low-temperature performance (down to 60 C) of 26650 A123Systems commercial lithium-ion cells. The cell type/design, in which the new technology has been demonstrated, has found wide application in the commercial sector (i.e., these cells are currently being used in commercial portable power tools). In addition, the technology is actively being considered for hybrid electric vehicle (HEV) and electric vehicle (EV) applications. In current work, a number of low-temperature electrolytes have been developed based on advances involving lithium hexafluorophosphate-based solutions in carbonate and carbonate + ester solvent blends, which have been further optimized in the context of the technology and targeted applications. The approaches employed, which include the use of ternary mixtures of carbonates, the use of ester co-solvents [e.g., methyl butyrate (MB)], and optimized lithium salt concentrations (e.g., LiPF6), were compared with the commercial baseline electrolyte, as well as an electrolyte being actively considered for DoE HEV applications and previously developed by a commercial enterprise, namely LiPF6 in ethylene carbonate (EC) + ethyl methyl carbonate (EMC)(30:70%).
Producing >60,000-fold room-temperature 89Y NMR signal enhancement
NASA Astrophysics Data System (ADS)
Lumata, Lloyd; Jindal, Ashish; Merritt, Matthew; Malloy, Craig; Sherry, A. Dean; Kovacs, Zoltan
2011-03-01
89 Y in chelated form is potentially valuable in medical imaging because its chemical shift is sensitive to local factors in tumors such as pH. However, 89 Y has a low gyromagnetic ratio γn thus its NMR signal is hampered by low thermal polarization. Here we show that we can enhance the room-temperature NMR signal of 89 Y up to 65,000 times the thermal signal, which corresponds to 10 % nuclear polarization, via fast dissolution dynamic nuclear polarization (DNP). The relatively long spin-lattice relaxation time T1 (~ 500 s) of 89 Y translates to a long polarization lifetime. The 89 Y NMR enhancement is optimized by varying the glassing matrices and paramagnetic agents as well as doping the samples with a gadolinium relaxation agent. Co-polarization of 89 Y-DOTA with a 13 C sample shows that both nuclear spin species acquire the same spin temperature Ts , consistent with thermal mixing mechanism of DNP. The high room-temperature NMR signal enhancement places 89 Y, one of the most challenging nuclei to detect by NMR, in the list of viable magnetic resonance imaging (MRI) agents when hyperpolarized under optimized conditions. This work is supported in part by the National Institutes of Health grant numbers 1R21EB009147-01 and RR02584.
Numerical study of a VM type multi-bypass pulse tube cryocooler operating at 4K
NASA Astrophysics Data System (ADS)
Pan, Changzhao; Zhang, Tong; Wang, Jue; Chen, Liubiao; Cui, Chen; Wang, Junjie; Zhou, Yuan
2017-12-01
VM cryocooler is one kind of Stirling type cryocooler working at low frequency. At present, we have obtained the liquid helium temperature by using a two-stage VM/pulse tube hybrid cryocooler. As a new kind of 4K cryocooler, there are many aspects need to be studied and optimized in detail. In order to reducing the vibration and improving the stability of this cryocooler, a pulse tube cryocooler was designed to get rid of the displacer in the first stage. This paper presents a detail numerical investigation on this pulse tube cryocooler by using the SAGE software. The low temperature phase shifters were adopted in this cryocooler, which were low temperature gas reservoir, low temperature double-inlet and multi-bypass. After optimizing, the structure parameters and the best diameters of orifice, multi-bypass and double-inlet were obtained. With the pressure ratio of about 1.6 and operating frequency 2Hz, this cryocooler could supply above 40mW cooling power at 4.2K, and the total input power needs no more than 60W at 77K. Based on the highest efficiency of 77K high capacity cryocooler, the overall efficiency of this VM type pulse tube cryocooler is above 0.5% relative Carnot efficient.
Enhancement of Sn-Bi-Ag Solder Joints with ENEPIG Surface Finish for Low-Temperature Interconnection
NASA Astrophysics Data System (ADS)
Pun, Kelvin P. L.; Islam, M. N.; Rotanson, Jason; Cheung, Chee-wah; Chan, Alan H. S.
2018-05-01
Low-temperature soldering constitutes a promising solution in interconnect technology with the increasing trend of heat-sensitive materials in integrated circuit packaging. Experimental work was carried out to investigate the effect of electroless Ni/electroless Pd/immersion gold (ENEPIG) layer thicknesses on Sn-Bi-Ag solder joint integrity during extended reflow at peak temperatures as low as 175°C. Optimizations are proposed to obtain reliable solder joints through analysis of interfacial microstructure with the resulting joint integrity under extended reflow time. A thin Ni(P) layer with thin Pd led to diffusion of Cu onto the interface resulting in Ni3Sn4 intermetallic compound (IMC) spalling with the formation of thin interfacial (Ni,Cu)3Sn4 IMCs which enhance the robustness of the solder after extended reflow, while thick Ni(P) with thin Pd resulted in weakened solder joints with reflow time due to thick interfacial Ni3Sn4 IMCs with the entrapped brittle Bi-phase. With a suitable thin Ni(P), the Pd thickness has to be optimized to prevent excessive Ni-P consumption and early Cu outward diffusion to enhance the solder joint during extended reflow. Based on these findings, suitable Ni(P) and Pd thicknesses of ENEPIG are recommended for the formation of robust low-temperature solder joints.
Modelling and performance of Nb SIS mixers in the 1.3 mm and 0.8 mm bands
NASA Technical Reports Server (NTRS)
Karpov, A.; Carter, M.; Lazareff, B.; Billon-Pierron, D.; Gundlach, K. H.
1992-01-01
We describe the modeling and subsequent improvements of SIS waveguide mixers for the 200-270 and 330-370 GHz bands (Blundell, Carter, and Gundlach 1988, Carter et al 1991). These mixers are constructed for use in receivers on IRAM radiotelescopes on Pico Veleta (Spain, Sierra Nevada) and Plateau de Bure (French Alps), and must meet specific requirements. The standard reduced height waveguide structure with suspended stripline is first analyzed and a model is validated through comparison with scale model and working scale measurements. In the first step, the intrinsic limitations of the standard mixer structure are identified, and the parameters are optimized bearing in mind the radioastronomical applications. In the second step, inductive tuning of the junctions is introduced and optimized for minimum noise and maximum bandwidth. In the 1.3 mm band, a DSB receiver temperature of less than 110 K (minimum 80 K) is measured from 180 through 260 GHz. In the 0.8 mm band, a DSB receiver temperature of less than 250 K (minimum 175 K) is obtained between 325 and 355 GHz. All these results are obtained with room-temperature optics and a 4 GHz IF chain having a 500 MHz bandwidth and a noise temperature of 14 K.
Multivariable optimization of an auto-thermal ammonia synthesis reactor using genetic algorithm
NASA Astrophysics Data System (ADS)
Anh-Nga, Nguyen T.; Tuan-Anh, Nguyen; Tien-Dung, Vu; Kim-Trung, Nguyen
2017-09-01
The ammonia synthesis system is an important chemical process used in the manufacture of fertilizers, chemicals, explosives, fibers, plastics, refrigeration. In the literature, many works approaching the modeling, simulation and optimization of an auto-thermal ammonia synthesis reactor can be found. However, they just focus on the optimization of the reactor length while keeping the others parameters constant. In this study, the other parameters are also considered in the optimization problem such as the temperature of feed gas enters the catalyst zone. The optimal problem requires the maximization of a multivariable objective function which subjects to a number of equality constraints involving the solution of coupled differential equations and also inequality constraints. The solution of an optimization problem can be found through, among others, deterministic or stochastic approaches. The stochastic methods, such as evolutionary algorithm (EA), which is based on natural phenomenon, can overcome the drawbacks such as the requirement of the derivatives of the objective function and/or constraints, or being not efficient in non-differentiable or discontinuous problems. Genetic algorithm (GA) which is a class of EA, exceptionally simple, robust at numerical optimization and is more likely to find a true global optimum. In this study, the genetic algorithm is employed to find the optimum profit of the process. The inequality constraints were treated using penalty method. The coupled differential equations system was solved using Runge-Kutta 4th order method. The results showed that the presented numerical method could be applied to model the ammonia synthesis reactor. The optimum economic profit obtained from this study are also compared to the results from the literature. It suggests that the process should be operated at higher temperature of feed gas in catalyst zone and the reactor length is slightly longer.
Numerical minimization of AC losses in coaxial coated conductor cables
NASA Astrophysics Data System (ADS)
Rostila, L.; Suuriniemi, S.; Lehtonen, J.; Grasso, G.
2010-02-01
Power cables are one of the most promising applications for the superconducting coated conductors. In the AC use, only small resistive loss is generated, but the removal of the dissipated heat from the cryostat is inefficient due to the large temperature difference. The aim of this work is to minimize the AC losses in a multilayer coaxial cable, in which the tapes form current carrying cylinders. The optimized parameters are the tape numbers and lay angles in these cylinders. This work shows how to cope with the mechanical constraints for the lay angles and discrete tape number in optimization. Three common types of coaxial cables are studied here to demonstrate the feasibility of optimization, in which the AC losses were computed with a circuit analysis model formulated here for arbitrary phase currents, number of phases, and layers. Because the current sharing is practically determined by the inductances of the layers, the optima were obtained much faster by neglecting the nonlinear resistances caused by the AC losses. In addition, the example calculations show that the optimal cable structure do not usually depend on the AC loss model for the individual tapes. On the other hand, depending on the cable type, the losses of the optimized cables may be sensitive to the lay angles, and therefore, we recommend to study the sensitivity for the new cable designs individually.
Delpla, Ianis; Florea, Mihai; Pelletier, Geneviève; Rodriguez, Manuel J
2018-06-04
Trihalomethanes (THMs) and Haloacetic Acids (HAAs) are the main groups detected in drinking water and are consequently strictly regulated. However, the increasing quantity of data for disinfection byproducts (DBPs) produced from research projects and regulatory programs remains largely unexploited, despite a great potential for its use in optimizing drinking water quality monitoring to meet specific objectives. In this work, we developed a procedure to optimize locations and periods for DBPs monitoring based on a set of monitoring scenarios using the cluster analysis technique. The optimization procedure used a robust set of spatio-temporal monitoring results on DBPs (THMs and HAAs) generated from intensive sampling campaigns conducted in a residential sector of a water distribution system. Results shows that cluster analysis allows for the classification of water quality in different groups of THMs and HAAs according to their similarities, and the identification of locations presenting water quality concerns. By using cluster analysis with different monitoring objectives, this work provides a set of monitoring solutions and a comparison between various monitoring scenarios for decision-making purposes. Finally, it was demonstrated that the data from intensive monitoring of free chlorine residual and water temperature as DBP proxy parameters, when processed using cluster analysis, could also help identify the optimal sampling points and periods for regulatory THMs and HAAs monitoring. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Reyes-Belmonte, Miguel A.; Sebastián, Andrés; González-Aguilar, José; Romero, Manuel
2017-06-01
The potential of using different thermodynamic cycles coupled to a solar tower central receiver that uses a novel heat transfer fluid is analyzed. The new fluid, named as DPS, is a dense suspension of solid particles aerated through a tubular receiver used to convert concentrated solar energy into thermal power. This novel fluid allows reaching high temperatures at the solar receiver what opens a wide range of possibilities for power cycle selection. This work has been focused into the assessment of power plant performance using conventional, but optimized cycles but also novel thermodynamic concepts. Cases studied are ranging from subcritical steam Rankine cycle; open regenerative Brayton air configurations at medium and high temperature; combined cycle; closed regenerative Brayton helium scheme and closed recompression supercritical carbon dioxide Brayton cycle. Power cycle diagrams and working conditions for design point are compared amongst the studied cases for a common reference thermal power of 57 MWth reaching the central cavity receiver. It has been found that Brayton air cycle working at high temperature or using supercritical carbon dioxide are the most promising solutions in terms of efficiency conversion for the power block of future generation by means of concentrated solar power plants.
Analytic Thermoelectric Couple Modeling: Variable Material Properties and Transient Operation
NASA Technical Reports Server (NTRS)
Mackey, Jonathan A.; Sehirlioglu, Alp; Dynys, Fred
2015-01-01
To gain a deeper understanding of the operation of a thermoelectric couple a set of analytic solutions have been derived for a variable material property couple and a transient couple. Using an analytic approach, as opposed to commonly used numerical techniques, results in a set of useful design guidelines. These guidelines can serve as useful starting conditions for further numerical studies, or can serve as design rules for lab built couples. The analytic modeling considers two cases and accounts for 1) material properties which vary with temperature and 2) transient operation of a couple. The variable material property case was handled by means of an asymptotic expansion, which allows for insight into the influence of temperature dependence on different material properties. The variable property work demonstrated the important fact that materials with identical average Figure of Merits can lead to different conversion efficiencies due to temperature dependence of the properties. The transient couple was investigated through a Greens function approach; several transient boundary conditions were investigated. The transient work introduces several new design considerations which are not captured by the classic steady state analysis. The work helps to assist in designing couples for optimal performance, and also helps assist in material selection.
Influence of Temperature and Grain Size on Austenite Stability in Medium Manganese Steels
NASA Astrophysics Data System (ADS)
Zhang, Yulong; Wang, Li; Findley, Kip O.; Speer, John G.
2017-05-01
With an aim to elucidate the influence of temperature and grain size on austenite stability, a commercial cold-rolled 7Mn steel was annealed at 893 K (620 °C) for times varying between 3 minutes and 96 hours to develop different grain sizes. The austenite fraction after 3 minutes was 34.7 vol pct, and at longer times was around 40 pct. An elongated microstructure was retained after shorter annealing times while other conditions exhibited equiaxed ferrite and austenite grains. All conditions exhibit similar temperature dependence of mechanical properties. With increasing test temperature, the yield and tensile strength decrease gradually, while the uniform and total elongation increase, followed by an abrupt drop in strength and ductility at 393 K (120 °C). The Olson-Cohen model was applied to fit the transformed austenite fractions for strained tensile samples, measured by means of XRD. The fit results indicate that the parameters α and β decrease with increasing test temperature, consistent with increased austenite stability. The 7Mn steels exhibit a distinct temperature dependence of the work hardening rate. Optimized austenite stability provides continuous work hardening in the temperature range of 298 K to 353 K (25 °C to 80 °C). The yield and tensile strengths have a strong dependence on grain size, although grain size variations have less effect on uniform and total elongation.
Muthukkumaran, A; Aravamudan, K
2017-12-15
Adsorption, a popular technique for removing azo dyes from aqueous streams, is influenced by several factors such as pH, initial dye concentration, temperature and adsorbent dosage. Any strategy that seeks to identify optimal conditions involving these factors, should take into account both kinetic and equilibrium aspects since they influence rate and extent of removal by adsorption. Hence rigorous kinetics and accurate equilibrium models are required. In this work, the experimental investigations pertaining to adsorption of acid orange 10 dye (AO10) on activated carbon were carried out using Central Composite Design (CCD) strategy. The significant factors that affected adsorption were identified to be solution temperature, solution pH, adsorbent dosage and initial solution concentration. Thermodynamic analysis showed the endothermic nature of the dye adsorption process. The kinetics of adsorption has been rigorously modeled using the Homogeneous Surface Diffusion Model (HSDM) after incorporating the non-linear Freundlich adsorption isotherm. Optimization was performed for kinetic parameters (color removal time and surface diffusion coefficient) as well as the equilibrium affected response viz. percentage removal. Finally, the optimum conditions predicted were experimentally validated. Copyright © 2017 Elsevier Ltd. All rights reserved.
Brgles, Marija; Prebeg, Pero; Kurtović, Tihana; Ranić, Jelena; Marchetti-Deschmann, Martina; Allmaier, Günter; Halassy, Beata
2016-10-02
Tetanus toxoid (TTd) is a highly immunogenic, detoxified form of tetanus toxin, a causative agent of tetanus disease, produced by Clostridium tetani. Since tetanus disease cannot be eradicated but is easily prevented by vaccination, the need for the tetanus vaccine is permanent. The aim of this work was to investigate the possibility of optimizing TTd purification, i.e., ammonium sulfate precipitation process. The influence of the percentage of ammonium sulfate, starting amount of TTd, buffer type, pH, temperature, and starting purity of TTd on the purification process were investigated using optimal design for response surface models. Responses measured for evaluation of the ammonium sulfate precipitation process were TTd amount (Lf/mL) and total protein content. These two parameters were used to calculate purity (Lf/mgPN) and the yield of the process. Results indicate that citrate buffer, lower temperature, and lower starting amount of TTd result in higher purities of precipitates. Gel electrophoresis combined with matrix-assisted laser desorption ionization-mass spectrometric analysis of precipitates revealed that there are no inter-protein cross-links and that all contaminating proteins have pIs similar to TTd, so this is most probably the reason for the limited success of purification by precipitation.
Optimization of the anaerobic treatment of a waste stream from an enhanced oil recovery process.
Alimahmoodi, Mahmood; Mulligan, Catherine N
2011-01-01
The aim of this work was to optimize the anaerobic treatment of a waste stream from an enhanced oil recovery (EOR) process. The treatment of a simulated waste water containing about 150 mg chemical oxygen demand (COD)/L of total petroleum hydrocarbons (TPH) and the saturation level of CO2 was evaluated. A two-step anaerobic system was undertaken in the mesophilic temperature range (30-40°C). The method of evolutionary operation EVOP factorial design was used to optimize pH, temperature and organic loading rate with the target parameters of CO2 reduction and CH4 production in the first reactor and TPH removal in the second reactor. The results showed 98% methanogenic removal of CO2 and CH4 yield of 0.38 L/gCOD in the first reactor and 83% TPH removal in the second reactor. In addition to enhancing CO2 and TPH removal and CH4 production, application of this method showed the degree of importance of the operational variables and their interactive effects for the two reactors in series. Copyright © 2010 Elsevier Ltd. All rights reserved.
de Faria, Janaína T; Rocha, Pollyana F; Converti, Attilio; Passos, Flávia M L; Minim, Luis A; Sampaio, Fábio C
2013-12-01
The aim of our study was to select the optimal operating conditions to permeabilize Kluyveromyces lactis cells using ethanol as a solvent as an alternative to cell disruption and extraction. Cell permeabilization was carried out by a non-mechanical method consisting of chemical treatment with ethanol, and the results were expressed as β-galactosidase activity. Experiments were conducted under different conditions of ethanol concentration, treatment time and temperature according to a central composite rotatable design (CCRD), and the collected results were then worked out by response surface methodology (RSM). Cell permeabilization was improved by an increase in ethanol concentration and simultaneous decreases in the incubation temperature and treatment time. Such an approach allowed us to identify an optimal range of the independent variables within which the β-galactosidase activity was optimized. A maximum permeabilization of 2,816 mmol L(-1) oNP min(-1) g(-1) was obtained by treating cells with 75.0% v/v of ethanol at 20.0 °C for 15.0 min. The proposed methodology resulted to be effective and suited for K. lactis cells permeabilization at a lab-scale and promises to be of possible interest for future applications mainly in the food industry.
Chantre, Guillermo R; Batlla, Diego; Sabbatini, Mario R; Orioli, Gustavo
2009-06-01
Models based on thermal-time approaches have been a useful tool for characterizing and predicting seed germination and dormancy release in relation to time and temperature. The aims of the present work were to evaluate the relative accuracy of different thermal-time approaches for the description of germination in Lithospermum arvense and to develop an after-ripening thermal-time model for predicting seed dormancy release. Seeds were dry-stored at constant temperatures of 5, 15 or 24 degrees C for up to 210 d. After different storage periods, batches of 50 seeds were incubated at eight constant temperature regimes of 5, 8, 10, 13, 15, 17, 20 or 25 degrees C. Experimentally obtained cumulative-germination curves were analysed using a non-linear regression procedure to obtain optimal population thermal parameters for L. arvense. Changes in these parameters were described as a function of after-ripening thermal-time and storage temperature. The most accurate approach for simulating the thermal-germination response of L. arvense was achieved by assuming a normal distribution of both base and maximum germination temperatures. The results contradict the widely accepted assumption of a single T(b) value for the entire seed population. The after-ripening process was characterized by a progressive increase in the mean maximum germination temperature and a reduction in the thermal-time requirements for germination at sub-optimal temperatures. The after-ripening thermal-time model developed here gave an acceptable description of the observed field emergence patterns, thus indicating its usefulness as a predictive tool to enhance weed management tactics.
Design, Development and Application of New, High-Performance Gear Steels
2010-02-01
thesis work focused on design principles for advanced carburized bearing steels . He also received a Master of Product Development degree from...Design computational design technology to develop a new class of high-strength, secondary hardening gear steels that are optimized for high-temperature...high contact fatigue resistance, which makes it a candidate for applications such as camshafts and bearings , as well as gear sets. (Printed with
Design and optimization analysis of dual material gate on DG-IMOS
NASA Astrophysics Data System (ADS)
Singh, Sarabdeep; Raman, Ashish; Kumar, Naveen
2017-12-01
An impact ionization MOSFET (IMOS) is evolved for overcoming the constraint of less than 60 mV/decade sub-threshold slope (SS) of conventional MOSFET at room temperature. In this work, first, the device performance of the p-type double gate impact ionization MOSFET (DG-IMOS) is optimized by adjusting the device design parameters. The adjusted parameters are ratio of gate and intrinsic length, gate dielectric thickness and gate work function. Secondly, the DMG (dual material gate) DG-IMOS is proposed and investigated. This DMG DG-IMOS is further optimized to obtain the best possible performance parameters. Simulation results reveal that DMG DG-IMOS when compared to DG-IMOS, shows better I ON, I ON/I OFF ratio, and RF parameters. Results show that by properly tuning the lengths of two materials at a ratio of 1.5 in DMG DG-IMOS, optimized performance is achieved including I ON/I OFF ratio of 2.87 × 109 A/μm with I ON as 11.87 × 10-4 A/μm and transconductance of 1.06 × 10-3 S/μm. It is analyzed that length of drain side material should be greater than the length of source side material to attain the higher transconductance in DMG DG-IMOS.
Numerical study of a cryogen-free vuilleumier type pulse tube cryocooler operating below 10 K
NASA Astrophysics Data System (ADS)
Wang, Y. N.; Wang, X. T.; Dai, W.; Luo, E. C.
2017-12-01
This paper presents a numerical investigation on a Vuilleumier (VM) type pulse tube cooler. Different from previous systems that use liquid nitrogen, Stirling type pre-coolers are used to provide the cooling power for the thermal compressor, which leads to a convenient cryogen-free system and offers the flexibility of changing working temperature range of the thermal compressor to obtain an optimum efficiency. Firstly, main component dimensions were optimized with lowest no-load temperature as the target. Then the dependence of system performance on average pressure, frequency, displacer displacement amplitude and thermal compressor pre-cooling temperature were studied. Finally, the effect of pre-cooling temperature on overall cooling efficiency at 5 K was studied. A highest relative Carnot efficiency of 0.82 % was predicted with an average pressure of 2.5 MPa, a frequency of 3 Hz, a displacer displacement amplitude of 6.5 mm, ambient end temperature 300 K and pre-cooling temperature 65 K, respectively.
NASA Astrophysics Data System (ADS)
Chripunow, Andre; Kubisch, Aline; Ruder, Matthias; Forster, Andreas; Korber, Hannes
2014-06-01
The presented test setup utilises a custom-built furnace realising test temperatures of up to 500°C. In order to ensure always optimal test conditions the temperature cell can be exchanged depending on the mechanical tests and specimen sizes. Cells for tensile and flexural loadings had been developed. With the latter one it is possible to perform three-point-bending tests, interlaminar-shear-strength tests as well as tests to determine the interlaminar fracture toughness. In this work the effect of fibre orientation on the mechanical properties of CFRP prepreg material under tensile and flexural loads at elevated temperatures was studied. Especially the matrix dominated layups showed a rather early decay of the mechanical properties even at temperatures quite lower than Tg. An analytical model has been used to describe the temperature-dependent properties. The model shows good agreement concerning the strength whereas the proper prediction of the moduli was only possible for the matrix dominated layups.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Entezari, N; Sarfehnia, A; Renaud, J
Purpose: The purpose of this work is to design and optimize a portable Water Calorimeter (WC) for use in a commercial MRI-linac and Gamma-knife in addition to conventional radiotherapy linacs. Water calorimeters determine absorbed dose to water at a point by measuring radiation-induced temperature rise of the volume (the two are related by the medium specific heat capacity). In this formalism, one important correction factor is heat transfer correction k-ht. It compensates for heat gain/loss due to conductive and convective effects, and is numerically calculated as ratio of temperature rise in the absence of heat loss to that in themore » presence of heat loss. Operating at 4°C ensures convection is minimal. Methods: A commercial finite element software was used to evaluate several WC designs with different insulation materials and thicknesses; channels allowing coolant to travel around WC (to sustain WC at 4°C) were modeled, and worst-case scenario variation in the temperature of the coolant was simulated for optimization purposes (2.6 mK/s). Additionally, several calorimeter vessel design parameters (front/back glass thickness/separation, diameter) were also simulated and optimized. Optimization is based on minimizing long term calorimeter drift (24h) as well as variation and magnitude of k-ht. Results: The final selected WC design reached a modest drift of 11µK/s after 15h for the worst-case coolant temperature variation. This design consists of coolant channels being encompassed on both sides by cryogel insulation. For the MRI-linac beam, glass thickness plays the largest effect on k-ht with variation of upto 0.6% in the first run for thicknesses ranging between 0.5–1.7mm. Subsequent runs vary only within 0.1% with glass thickness. Other factors such as vessel radius and top/bottom glass separation have sub 0.1% effects on k-ht. Conclusion: An MR-safe 4°C stagnant WC appropriate for dosimetry in MRI-linac and Gamma-Knife was designed, optimized, and construction is nearly completed. NSERC Discovery Grant RGPIN-435608.« less
Ant colony system algorithm for the optimization of beer fermentation control.
Xiao, Jie; Zhou, Ze-Kui; Zhang, Guang-Xin
2004-12-01
Beer fermentation is a dynamic process that must be guided along a temperature profile to obtain the desired results. Ant colony system algorithm was applied to optimize the kinetic model of this process. During a fixed period of fermentation time, a series of different temperature profiles of the mixture were constructed. An optimal one was chosen at last. Optimal temperature profile maximized the final ethanol production and minimized the byproducts concentration and spoilage risk. The satisfactory results obtained did not require much computation effort.
Laser engines operating by resonance absorption. [thermodynamic feasibility study
NASA Technical Reports Server (NTRS)
Garbuny, M.; Pechersky, M. J.
1976-01-01
Basic tutorial article on the thermodynamic feasibility of laser engines at the present state of the art. Three main options are considered: (1) laser power applied externally to a heat reservoir (boiler approach); (2) internal heating of working fluid by resonance absorption; and (3) direct conversion of selective excitation into work. Only (2) is considered practically feasible at present. Basic concepts and variants, efficiency relations, upper temperature limits of laser engines, selection of absorbing gases, engine walls, bleaching, thermodynamic cycles of optimized laser engines, laser-powered turbines, laser heat pumps are discussed. Photon engines and laser dissociation engines are also considered.
Project STOP (Spectral Thermal Optimization Program)
NASA Technical Reports Server (NTRS)
Goldhammer, L. J.; Opjorden, R. W.; Goodelle, G. S.; Powe, J. S.
1977-01-01
The spectral thermal optimization of solar cell configurations for various solar panel applications is considered. The method of optimization depends upon varying the solar cell configuration's optical characteristics to minimize panel temperatures, maximize power output and decrease the power delta from beginning of life to end of life. Four areas of primary investigation are: (1) testing and evaluation of ultraviolet resistant coverslide adhesives, primarily FEP as an adhesive; (2) examination of solar cell absolute spectral response and corresponding cell manufacturing processes that affect it; (3) experimental work with solar cell manufacturing processes that vary cell reflectance (solar absorptance); and (4) experimental and theoretical studies with various coverslide filter designs, mainly a red rejection filter. The Hughes' solar array prediction program has been modified to aid in evaluating the effect of each of the above four areas on the output of a solar panel in orbit.
NASA Astrophysics Data System (ADS)
Li, Leyuan; Liu, lh64. Hong
2012-07-01
It has been confirmed in our previous work that in bioregenerative life support systems, feeding yellow mealworms (Tenebrio molitor L.) using fermented straw has the potential to provide good animal protein for astronauts, meanwhile treating with plant wastes. However, since the nitrogen content in straw is very low, T. molitor larvae can not obtain sufficient nitrogen, which results in a relatively low growth efficiency. In this study, wheat straw powder was mixed with simulated human urine before fermentation. Condition parameters, e.g. urine:straw ratio, moisture content, inoculation dose, fermentation time, fermentation temperature and pH were optimized using Taguchi method. Larval growth rate and average individual mass of mature larva increased significantly in the group of T. molitor larvae fed with feedstuff prepared with the optimized process.
He, Jun; Shamsi, Shahab A.
2012-01-01
In the present work we report, for the first time, the successful on-line coupling of chiral micellar electrokinetic chromatography (CMEKC) to atmospheric pressure photo-ionization mass spectrometry (APPI-MS). Four structurally similar neutral test solutes (e.g., benzoin derivatives) were successfully ionized by APPI-MS. The mass spectra in the positive ion mode showed that the protonated molecular ions of benzoins are not the most abundant fragment ions. Simultaneous enantioseparation by CMEKC and on-line APPI-MS detection of four photoinitiators: hydrobenzoin (HBNZ), benzoin (BNZ), benzoin methyl ether (BME), benzoin ethyl ether (BEE), were achieved using an optimized molar ratio of mixed molecular micelle of two polymeric chiral surfactants (polysodium N-undecenoxy carbonyl-L-leucinate and polysodium N-undecenoyl-L,L-leucylvalinate). The CMEKC conditions, such as voltage, chiral polymeric surfactant concentration, buffer pH, and BGE concentration, were optimized using a multivariate central composite design (CCD). The sheath liquid composition (involving % v/v methanol, dopant concentration, electrolyte additive concentration, and flow rate) and spray chamber parameters (drying gas flow rate, drying gas temperature, and vaporizer temperature) were also optimized with CCD. Models built based on the CCD results and response surface method was used to analyze the interactions between factors and their effects on the responses. The final overall optimum conditions for CMEKC-APPI-MS were also predicted and found in agreement with the experimentally optimized parameters. PMID:21500208
Fiber optic thermo-hygrometers for soil moisture and temperature measurements: the SFORI project
NASA Astrophysics Data System (ADS)
Leone, M.; Consales, M.; Laudati, A.; Mennella, F.; Cutolo, A.; Cusano, A.
2015-09-01
This work deals with the development of fiber optic sensors for the measurement of soil moisture and temperature over large areas. It has been carried out within the Regional Project "Sensoristica in Fibra Ottica per il Risparmio Idrico - SFORI". The sensor system is based on the fiber Bragg gratings (FBGs) technology and is aimed at optimizing the irrigation practice in order to guarantee a sustainable water resources management. Two sensors networks, each one based on FBG thermo-hygrometers, have been realized and installed in two experimental sites. Preliminary results envisages good perspectives for a massive usage of the proposed technology.
Recent Advances in the Development of Thick-Section Melt-Infiltrated C/SiC Composites
NASA Technical Reports Server (NTRS)
Babcock, Jason R.; Ramachandran, Gautham; Williams, Brian E.; Effinger, Michael R.
2004-01-01
Using a pressureless melt infiltration and in situ reaction process to form the silicon carbide (SiC) matrix, Ultramet has been developing a means to rapidly fabricate ceramic matrix composites (CMCs) targeting thicker sections. The process also employs a unique route for the application of oxide fiber interface coatings designed to protect the fiber and impart fiber-matrix debond. Working toward a 12 inch diameter, 2.5 inch thick demonstrator component, the effect of various processing parameters on room temperature flexure strength is being studied with plans for more extensive elevated temperature mechanical strength evaluation to follow this initial optimization process.
Effect of ferrate on green algae removal.
Kubiňáková, Emília; Híveš, Ján; Gál, Miroslav; Fašková, Andrea
2017-09-01
Green algae Cladophora aegagropila, present in cooling water of thermal power plants, causes many problems and complications, especially during summer. However, algae and its metabolites are rarely eliminated by common removal methods. In this work, the elimination efficiency of electrochemically prepared potassium ferrate(VI) on algae from cooling water was investigated. The influence of experimental parameters, such as Fe(VI) dosage, application time, pH of the system, temperature and hydrodynamics of the solution on removal efficiency, was optimized. This study demonstrates that algae C. aegagropila can be effectively removed from cooling water by ferrate. Application of ferrate(VI) at the optimized dosage and under the suitable conditions (temperature, pH) leads to 100% removal of green algae Cladophora from the system. Environmentally friendly reduction products (Fe(III)) and coagulation properties favour the application of ferrate for the treatment of water contaminated with studied microorganisms compared to other methods such as chlorination and use of permanganate, where harmful products are produced.
Biodiesel Production using Heterogeneous Catalyst in CSTR: Sensitivity Analysis and Optimization
NASA Astrophysics Data System (ADS)
Keong, L. S.; Patle, D. S.; Shukor, S. R.; Ahmad, Z.
2016-03-01
Biodiesel as a renewable fuel has emerged as a potential replacement for petroleum-based diesels. Heterogeneous catalyst has become the focus of researches in biodiesel production with the intention to overcome problems associated with homogeneous catalyzed processes. The simulation of heterogeneous catalyzed biodiesel production has not been thoroughly studied. Hence, a simulation of carbon-based solid acid catalyzed biodiesel production from waste oil with high FFA content (50 weight%) was developed in the present work to study the feasibility and potential of the simulated process. The simulated process produces biodiesel through simultaneous transesterification and esterification with the consideration of reaction kinetics. The developed simulation is feasible and capable to produce 2.81kmol/hr of FAME meeting the international standard (EN 14214). Yields of 68.61% and 97.19% are achieved for transesterification and esterification respectively. Sensitivity analyses of FFA composition in waste oil, methanol to oil ratio, reactor pressure and temperature towards FAME yield from both reactions were carried out. Optimization of reactor temperature was done to maximize FAME products.
Alkaline in situ transesterification of Aurantiochytrium sp. KRS 101 using potassium carbonate.
Sung, Mina; Han, Jong-In
2016-04-01
The aims of this work were to evaluate K2CO3 as a potent alkaline catalyst for in situ transesterification of Aurantiochytrium sp. KRS 101, one step process in which oil extraction and conversion take place together. This K2CO3-based in situ transesterification was optimized in terms of recovery yield of fatty acid methyl esters (FAMEs) by way of varying biomass concentration, reaction temperature, reaction time, and catalyst concentration. The optimal condition was achieved at 50g/L of biomass concentration and 1% of K2CO3 in the methanol, 25°C of reaction temperature, and 5min of reaction time, resulting in the FAME recovery yield over 90%. It was found that K2CO3 performed better than any other tested catalysts including acids, supporting the notion that K2CO3 is a promising catalyst, especially for in situ transesterification. Copyright © 2016. Published by Elsevier Ltd.
Improving industrial full-scale production of baker's yeast by optimizing aeration control.
Blanco, Carlos A; Rayo, Julia; Giralda, José M
2008-01-01
This work analyzes the control of optimum dissolved oxygen of an industrial fed-batch procedure in which baker's yeast (Saccharomyces cerevisiae) is grown under aerobic conditions. Sugar oxidative metabolism was controlled by monitoring aeration, molasses flows, and yeast concentration in the propagator along the later stage of the propagation, and keeping pH and temperature under controlled conditions. A large number of fed-batch growth experiments were performed in the tank for a period of 16 h, for each of the 3 manufactured commercial products. For optimization and control of cultivations, the growth and metabolite formation were quantified through measurement of specific growth and ethanol concentration. Data were adjusted to a model of multiple lineal regression, and correlations representing dissolved oxygen as a function of aeration, molasses, yeast concentration in the broth, temperature, and pH were obtained. The actual influence of each variable was consistent with the mathematical model, further justified by significant levels of each variable, and optimum aeration profile during the yeast propagation.
Thermodynamic assessments and inter-relationships between systems involving Al, Am, Ga, Pu, and U
NASA Astrophysics Data System (ADS)
Perron, A.; Turchi, P. E. A.; Landa, A.; Oudot, B.; Ravat, B.; Delaunay, F.
2016-12-01
A newly developed self-consistent CALPHAD thermodynamic database involving Al, Am, Ga, Pu, and U is presented. A first optimization of the slightly characterized Am-Al and completely unknown Am-Ga phase diagrams is proposed. To this end, phase diagram features as crystal structures, stoichiometric compounds, solubility limits, and melting temperatures have been studied along the U-Al → Pu-Al → Am-Al, and U-Ga → Pu-Ga → Am-Ga series, and the thermodynamic assessments involving Al and Ga alloying are compared. In addition, two distinct optimizations of the Pu-Al phase diagram are proposed to account for the low temperature and Pu-rich region controversy. The previously assessed thermodynamics of the other binary systems (Am-Pu, Am-U, Pu-U, and Al-Ga) is also included in the database and is briefly described in the present work. Finally, predictions on phase stability of ternary and quaternary systems of interest are reported to check the consistency of the database.
Thermodynamic assessments and inter-relationships between systems involving Al, Am, Ga, Pu, and U
Perron, A.; Turchi, P. E. A.; Landa, A.; ...
2016-12-01
We present a newly developed self-consistent CALPHAD thermodynamic database involving Al, Am, Ga, Pu, and U. A first optimization of the slightly characterized Am-Al and completely unknown Am-Ga phase diagrams is proposed. To this end, phase diagram features as crystal structures, stoichiometric compounds, solubility limits, and melting temperatures have been studied along the U-Al → Pu-Al → Am-Al, and U-Ga → Pu-Ga → Am-Ga series, and the thermodynamic assessments involving Al and Ga alloying are compared. In addition, two distinct optimizations of the Pu-Al phase diagram are proposed to account for the low temperature and Pu-rich region controversy. We includedmore » the previously assessed thermodynamics of the other binary systems (Am-Pu, Am-U, Pu-U, and Al-Ga) in the database and is briefly described in the present work. In conclusion, predictions on phase stability of ternary and quaternary systems of interest are reported to check the consistency of the database.« less
Haq, I; Muhammad, A; Hameed, U
2014-01-01
The use of alternative fuels for the mitigation of ecological impacts by use of diesel has been focus of intensive research. In the present work, algal oils extracted from cultivated biomass of Cladophora sp., Spirogyra sp. and Oedogonium sp. were evaluated for the lipase-mediated synthesis of fatty acid monoalkyl esters (FAME, biodiesel). To optimize the transesterification of these oils, different parameters such as the alkyl group donor, reaction temperature, stirring time and oil to alcohol ratio were investigated. Four different alcohols i.e. methanol, ethanol, n-propanol and n-butanol were tested as alkyl group donor for the biosynthesis FAME and methanol was found to be the best. Similarly, temperature 50 C and stirring time of 6 h were optimized for the transesterification of oils with methanol. The maximum biodiesel conversions from Cladophora (75.0%), Spirogyra (87.5%) and Oedogonium (92.0%) were obtained when oil to alcohol ratio was 1 : 8.
Samavati, Vahid; Adeli, Mostafa
2014-01-30
The present work is focused on the optimization of hydrophobic compounds extraction process from the carbohydrate matrix of Iranian Pistacia atlantica seed at laboratory level using ultrasonic-assisted extraction. Response surface methodology (RSM) was used to optimize oil seed extraction yield. Independent variables were extraction temperature (30, 45, 60, 75 and 90°C), extraction time (10, 15, 20, 25, 30 and 35 min) and power of ultrasonic (20, 40, 60, 80 and 100 W). A second order polynomial equation was used to express the oil extraction yield as a function of independent variables. The responses and variables were fitted well to each other by multiple regressions. The optimum extraction conditions were as follows: extraction temperature of 75°C, extraction time of 25 min, and power of ultrasonic of 80 W. A comparison between seed oil composition extracted by ultrasonic waves under the optimum operating conditions determined by RSM for oil yield and by organic solvent was reported. Copyright © 2013 Elsevier Ltd. All rights reserved.
Effective removal of hydrogen sulfide using 4A molecular sieve zeolite synthesized from attapulgite.
Liu, Xinpeng; Wang, Rui
2017-03-15
In this work, 4A molecular sieve zeolite was synthesized from attapulgite (ATP) in different conditions and was applied initially for H 2 S removal. The sorbent was characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectra and N 2 adsorption/desorption. The effects of the synthesis condition and adsorption temperature were studied by dynamic adsorption experiment. The optimal adsorption temperature is 50°C. The H 2 S adsorption results have showed that the optimal synthesis conditions are as follows: the ratio of silicon to aluminum and ratio of sodium to silicon are both 1.5, the ratio of water to sodium is 30, crystallization temperature and crystallization time is 90°C, 4h, respectively. The breakthrough and saturation sulfur sorption capacities of zeolite synthesized under optimum conditions are up to nearly 10 and 15mg/g-sorbent, respectively, and the H 2 S removal rate is nearly 100%. The adsorption kinetics nonlinear fitting results show that the adsorption system follows Bingham model. These results indicate that 4A molecular sieve zeolite synthesized from attapulgite can be used for H 2 S removal promisingly. Copyright © 2016 Elsevier B.V. All rights reserved.
Finite element design for the HPHT synthesis of diamond
NASA Astrophysics Data System (ADS)
Li, Rui; Ding, Mingming; Shi, Tongfei
2018-06-01
The finite element method is used to simulate the steady-state temperature field in diamond synthesis cell. The 2D and 3D models of the China-type cubic press with large deformation of the synthesis cell was established successfully, which has been verified by situ measurements of synthesis cell. The assembly design, component design and process design for the HPHT synthesis of diamond based on the finite element simulation were presented one by one. The temperature field in a high-pressure synthetic cavity for diamond production is optimized by adjusting the cavity assembly. A series of analysis about the influence of the pressure media parameters on the temperature field are examined through adjusting the model parameters. Furthermore, the formation mechanism of wasteland was studied in detail. It indicates that the wasteland is inevitably exists in the synthesis sample, the distribution of growth region of the diamond with hex-octahedral is move to the center of the synthesis sample from near the heater as the power increasing, and the growth conditions of high quality diamond is locating at the center of the synthesis sample. These works can offer suggestion and advice to the development and optimization of a diamond production process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xuefeng; Liu, Zhen; Xu, Chenhong
2016-05-15
The dielectric and energy-storage properties of Pb{sub 0.99}Nb{sub 0.02}[(Zr{sub 0.60}Sn{sub 0.40}){sub 0.95}Ti{sub 0.05}]{sub 0.98}O{sub 3} (PNZST) bulk ceramics near the antiferroelectric (AFE)-ferroelectric (FE) phase boundary are investigated as a function of temperature. Three characteristic temperatures T{sub 0}, T{sub C}, T{sub 2} are obtained from the dielectric temperature spectrum. At different temperature regions (below T{sub 0}, between T{sub 0} and T{sub C}, and above T{sub C}), three types of hysteresis loops are observed as square double loop, slim loop and linear loop, respectively. The switching fields and recoverable energy density all first increase and then decrease with increasing temperature, and reachmore » their peak values at ∼T{sub 0}. These results provide a convenient method to optimize the working temperature of antiferroelectric electronic devices through testing the temperature dependent dielectric properties of antiferroelectric ceramics.« less
NASA Astrophysics Data System (ADS)
Zainal Ariffin, S.; Razlan, A.; Ali, M. Mohd; Efendee, A. M.; Rahman, M. M.
2018-03-01
Background/Objectives: The paper discusses about the optimum cutting parameters with coolant techniques condition (1.0 mm nozzle orifice, wet and dry) to optimize surface roughness, temperature and tool wear in the machining process based on the selected setting parameters. The selected cutting parameters for this study were the cutting speed, feed rate, depth of cut and coolant techniques condition. Methods/Statistical Analysis Experiments were conducted and investigated based on Design of Experiment (DOE) with Response Surface Method. The research of the aggressive machining process on aluminum alloy (A319) for automotive applications is an effort to understand the machining concept, which widely used in a variety of manufacturing industries especially in the automotive industry. Findings: The results show that the dominant failure mode is the surface roughness, temperature and tool wear when using 1.0 mm nozzle orifice, increases during machining and also can be alternative minimize built up edge of the A319. The exploration for surface roughness, productivity and the optimization of cutting speed in the technical and commercial aspects of the manufacturing processes of A319 are discussed in automotive components industries for further work Applications/Improvements: The research result also beneficial in minimizing the costs incurred and improving productivity of manufacturing firms. According to the mathematical model and equations, generated by CCD based RSM, experiments were performed and cutting coolant condition technique using size nozzle can reduces tool wear, surface roughness and temperature was obtained. Results have been analyzed and optimization has been carried out for selecting cutting parameters, shows that the effectiveness and efficiency of the system can be identified and helps to solve potential problems.
Optimization of thermal processing of canned mussels.
Ansorena, M R; Salvadori, V O
2011-10-01
The design and optimization of thermal processing of solid-liquid food mixtures, such as canned mussels, requires the knowledge of the thermal history at the slowest heating point. In general, this point does not coincide with the geometrical center of the can, and the results show that it is located along the axial axis at a height that depends on the brine content. In this study, a mathematical model for the prediction of the temperature at this point was developed using the discrete transfer function approach. Transfer function coefficients were experimentally obtained, and prediction equations fitted to consider other can dimensions and sampling interval. This model was coupled with an optimization routine in order to search for different retort temperature profiles to maximize a quality index. Both constant retort temperature (CRT) and variable retort temperature (VRT; discrete step-wise and exponential) were considered. In the CRT process, the optimal retort temperature was always between 134 °C and 137 °C, and high values of thiamine retention were achieved. A significant improvement in surface quality index was obtained for optimal VRT profiles compared to optimal CRT. The optimization procedure shown in this study produces results that justify its utilization in the industry.
NASA Astrophysics Data System (ADS)
Zahari, Zakirah Mohd; Zubaidah Adnan, Siti; Kanthasamy, Ramesh; Saleh, Suriyati; Samad, Noor Asma Fazli Abdul
2018-03-01
The specification of the crystal product is usually given in terms of crystal size distribution (CSD). To this end, optimal cooling strategy is necessary to achieve the CSD. The direct design control involving analytical CSD estimator is one of the approaches that can be used to generate the set-point. However, the effects of temperature on the crystal growth rate are neglected in the estimator. Thus, the temperature dependence on the crystal growth rate needs to be considered in order to provide an accurate set-point. The objective of this work is to extend the analytical CSD estimator where Arrhenius expression is employed to cover the effects of temperature on the growth rate. The application of this work is demonstrated through a potassium sulphate crystallisation process. Based on specified target CSD, the extended estimator is capable of generating the required set-point where a proposed controller successfully maintained the operation at the set-point to achieve the target CSD. Comparison with other cooling strategies shows a reduction up to 18.2% of the total number of undesirable crystals generated from secondary nucleation using linear cooling strategy is achieved.
Jiang, Tao; Huang, Mengmeng; He, Hao; Lu, Jian; Zhou, Xiangshan; Cai, Menghao; Zhang, Yuanxing
2016-08-17
Geobacillus sp. 4j, a deep-sea high-salt thermophile, was found to produce thermostable α-amylase. In this work, culture medium and conditions were first optimized to enhance the production of thermostable α-amylase by statistical methodologies. The resulting extracellular production was increased by five times and reached 6.40 U/ml. Then, a high-temperature batch culture of the thermophile in a 15 l in-house-designed bioreactor was studied. The results showed that a relatively high dissolved oxygen (600 rpm and 15 l/min) and culture temperature of 60°C facilitated both cell growth and α-amylase production. Thus, an efficient fermentation process was established with initial medium of pH 6.0, culture temperature of 60°C, and dissolved oxygen above 20%. It gave an α-amylase production of 79 U/ml and productivity of 19804 U/l·hr, which were 10.8 and 208 times higher than those in shake flask, respectively. This work is useful for deep-sea high-salt thermophile culture, where efforts are lacking presently.
NASA Astrophysics Data System (ADS)
Kumar, S.; Singh, A.; Dhar, A.
2017-08-01
The accurate estimation of the photovoltaic parameters is fundamental to gain an insight of the physical processes occurring inside a photovoltaic device and thereby to optimize its design, fabrication processes, and quality. A simulative approach of accurately determining the device parameters is crucial for cell array and module simulation when applied in practical on-field applications. In this work, we have developed a global particle swarm optimization (GPSO) approach to estimate the different solar cell parameters viz., ideality factor (η), short circuit current (Isc), open circuit voltage (Voc), shunt resistant (Rsh), and series resistance (Rs) with wide a search range of over ±100 % for each model parameter. After validating the accurateness and global search power of the proposed approach with synthetic and noisy data, we applied the technique to the extract the PV parameters of ZnO/PCDTBT based hybrid solar cells (HSCs) prepared under different annealing conditions. Further, we examine the variation of extracted model parameters to unveil the physical processes occurring when different annealing temperatures are employed during the device fabrication and establish the role of improved charge transport in polymer films from independent FET measurements. The evolution of surface morphology, optical absorption, and chemical compositional behaviour of PCDTBT co-polymer films as a function of processing temperature has also been captured in the study and correlated with the findings from the PV parameters extracted using GPSO approach.
NASA Astrophysics Data System (ADS)
Guía-Tello, J. C.; Pech-Canul, M. A.; Trujillo-Vázquez, E.; Pech-Canul, M. I.
2017-08-01
Controlled atmosphere brazing has a widespread industrial use in the production of aluminum automotive heat exchangers. Good-quality joints between the components depend on the initial condition of materials as well as on the brazing process parameters. In this work, the Taguchi method was used to optimize the brazing parameters with respect to corrosion performance for tube-fin mini-assemblies of an automotive condenser. The experimental design consisted of five factors (micro-channel tube type, flux type, peak temperature, heating rate and dwell time), with two levels each. The corrosion behavior in acidified seawater solution pH 2.8 was evaluated through potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements. Scanning electron microscope (SEM) and energy-dispersive x-ray spectroscopy (EDS) were used to analyze the microstructural features in the joint zone. The results showed that the parameters that most significantly affect the corrosion rate are the type of flux and the peak temperature. The optimal conditions were: micro-channel tube with 4.2 g/m2 of zinc coating, standard flux, 610 °C peak temperature, 5 °C/min heating rate and 4 min dwell time. The corrosion current density value of the confirmation experiment is in excellent agreement with the predicted value. The electrochemical characterization for selected samples gave indication that the brazing conditions had a more significant effect on the kinetics of the hydrogen evolution reaction than on the kinetics of the metal dissolution reaction.
Spray drying of fruit and vegetable juices--a review.
Verma, Anjali; Singh, Satya Vir
2015-01-01
The main cause of spray drying is to increase the shelf life and easy handling of juices. In the present paper, the studies carried out so far on spray drying of various fruits and vegetables are reported. The major fruit juices dried are mango, banana, orange, guava, bayberry, watermelon, pineapple, etc. However, study on vegetable juices is limited. In spray drying, the major optimized parameters are inlet air temperature, relative humidity of air, outlet air temperature, and atomizer speed that are given for a particular study. The juices in spray drying require addition of drying agents that include matlodextrin, liquid glucose, etc. The drying agents are added to increase the glass transition temperature. Different approaches for spray dryer design have also been discussed in the present work.
Short-wave infrared barriode detectors using InGaAsSb absorption material lattice matched to GaSb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig, A. P.; Percy, B.; Marshall, A. R. J.
2015-05-18
Short-wave infrared barriode detectors were grown by molecular beam epitaxy. An absorption layer composition of In{sub 0.28}Ga{sub 0.72}As{sub 0.25}Sb{sub 0.75} allowed for lattice matching to GaSb and cut-off wavelengths of 2.9 μm at 250 K and 3.0 μm at room temperature. Arrhenius plots of the dark current density showed diffusion limited dark currents approaching those expected for optimized HgCdTe-based detectors. Specific detectivity figures of around 7×10{sup 10} Jones and 1×10{sup 10} Jones were calculated, for 240 K and room temperature, respectively. Significantly, these devices could support focal plane arrays working at higher operating temperatures.
Optical parameters of TN display with dichroic dye
NASA Astrophysics Data System (ADS)
Olifierczuk, Marek; Zielinski, Jerzy; Perkowski, Pawel
2000-05-01
The present work contain the studies on optical parameters (contrast ratio, viewing angle, birefringence and brightness) of twisted nematic display with black dichroic dye which is designed for an application in large-area information and advertising systems. The numerical optimization of display with a dye has been done. The absorption characteristic of the dye has been obtained. Birefringence of doped mixtures (Delta) n has been measured. The contrast ratio of doped mixtures has been measured in wide temperature range from -25 degree(s)C to +70 degree(s)C. The angle characteristics of contrast ratio for +20 degree(s)C have been obtained. In the work the detailed results describing the effect of a dye on temperature dependence of birefringence and contrast ratio, moreover, the effect of dye on the viewing angle for the first and second transmission minimum will be presented. Additionally, the dielectric characteristics of different mixtures will be shown.
NASA Astrophysics Data System (ADS)
Deng, Zhi; He, Li; Liu, Feng; Liu, Yinong; Xue, Tao; Li, Yulan; Yue, Qian
2017-05-01
The paper presents the developments of two cryogenic readout ASICs for the point-contact HPGe detectors for dark matter search and neutrino experiments. Extremely low noise readout electronics were demanded and the capability of working at cryogenic temperatures may bring great advantages. The first ASIC was a monolithic CMOS charge sensitive preamplifier with its noise optimized for ∼1 pF input capacitance. The second ASIC was a waveform recorder based on switched capacitor array. These two ASICs were fabricated in CMOS 350 nm and 180 nm processes respectively. The prototype chips were tested and showed promising results. Both ASICs worked well at low temperature. The preamplifier had achieved ENC of 10.3 electrons with 0.7 pF input capacitance and the SCA chip could run at 9 bit effective resolution and 25 MSPS sampling rate.
Early stages of transition in viscosity-stratified channel flow
NASA Astrophysics Data System (ADS)
Govindarajan, Rama; Jose, Sharath; Brandt, Luca
2013-11-01
In parallel shear flows, it is well known that transition to turbulence usually occurs through a subcritical process. In this work we consider a flow through a channel across which there is a linear temperature variation. The temperature gradient leads to a viscosity variation across the channel. A large body of work has been done in the linear regime for this problem, and it has been seen that viscosity stratification can lead to considerable changes in stability and transient growth characteristics. Moreover contradictory effects of introducing a non uniform viscosity in the system have been reported. We conduct a linear stability analysis and direct numerical simulations (DNS) for this system. We show that the optimal initial structures in the viscosity-stratified case, unlike in unstratified flow, do not span the width of the channel, but are focussed near one wall. The nonlinear consequences of the localisation of the structures will be discussed.
Zhu, Chuanhui; Xu, Qun; Ji, Liang; Ren, Yumei; Fang, Mingming
2017-12-05
Two-dimensional (2D) semiconductors have recently emerged as a remarkable class of plasmonic alternative to conventional noble metals. However, tuning of their plasmonic resonances towards different wavelengths in the visible-light region with physical or chemical methods still remains challenging. In this work, we design a simple room-temperature chemical reaction route to synthesize amorphous molybdenum oxide (MoO 3-x ) nanodots that exhibit strong localized surface plasmon resonances (LSPR) in the visible and near-infrared region. Moreover, tunable plasmon resonances can be achieved in a wide range with the changing surrounding solvent, and accordingly the photoelectrocatalytic activity can be optimized with the varying LSPR peaks. This work boosts the light-matter interaction at the nanoscale and could enable photodetectors, sensors, and photovoltaic devices in the future. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optimizing Heat Treatment Process of Fe-13Cr-3Mo-3Ni Martensitic Stainless of Steel
NASA Astrophysics Data System (ADS)
Anwar, M. S.; Prifiharni, S.; Mabruri, E.
2017-05-01
The Fe-13Cr-3Mo-3Ni stainless steels are modified into martensitic stainless steels for steam turbine blades application. The working temperature of steam turbine was around 600 - 700 °C. The improvement properties of turbine blade material is necessary to maintain steam turbine work. The previous research revealed that it has corrosion resistance of Fe-13Cr-3Mo-3Ni which is better than 13Cr stainless steels in the chloride environment. In this work, the effect of heat treatment on microstructure and hardness of Fe-13Cr-3Mo-3Ni stainless steels has been studied. The steel was prepared by induction melting followed by hot forging. The steels were austenitized at 1000, 1050, and 1100 °C for 1 hour and were tempered at 600, 650, and 700 °C for 1 hour. The steels were then subjected to metallographic observation and hardness test of Rockwell C. The optimal heat treatment of Fe-13Cr-3Mo-3Ni was carried out austenitized in 1050 °C and tempered in 600 - 700 °C.
Generalized two-temperature model for coupled phonon-magnon diffusion.
Liao, Bolin; Zhou, Jiawei; Chen, Gang
2014-07-11
We generalize the two-temperature model [Sanders and Walton, Phys. Rev. B 15, 1489 (1977)] for coupled phonon-magnon diffusion to include the effect of the concurrent magnetization flow, with a particular emphasis on the thermal consequence of the magnon flow driven by a nonuniform magnetic field. Working within the framework of the Boltzmann transport equation, we derive the constitutive equations for coupled phonon-magnon transport driven by gradients of both temperature and external magnetic fields, and the corresponding conservation laws. Our equations reduce to the original Sanders-Walton two-temperature model under a uniform external field, but predict a new magnon cooling effect driven by a nonuniform magnetic field in a homogeneous single-domain ferromagnet. We estimate the magnitude of the cooling effect in an yttrium iron garnet, and show it is within current experimental reach. With properly optimized materials, the predicted cooling effect can potentially supplement the conventional magnetocaloric effect in cryogenic applications in the future.
Nanoelectronic primary thermometry below 4 mK
Bradley, D. I.; George, R. E.; Gunnarsson, D.; Haley, R. P.; Heikkinen, H.; Pashkin, Yu. A.; Penttilä, J.; Prance, J. R.; Prunnila, M.; Roschier, L.; Sarsby, M.
2016-01-01
Cooling nanoelectronic structures to millikelvin temperatures presents extreme challenges in maintaining thermal contact between the electrons in the device and an external cold bath. It is typically found that when nanoscale devices are cooled to ∼10 mK the electrons are significantly overheated. Here we report the cooling of electrons in nanoelectronic Coulomb blockade thermometers below 4 mK. The low operating temperature is attributed to an optimized design that incorporates cooling fins with a high electron–phonon coupling and on-chip electronic filters, combined with low-noise electronic measurements. By immersing a Coulomb blockade thermometer in the 3He/4He refrigerant of a dilution refrigerator, we measure a lowest electron temperature of 3.7 mK and a trend to a saturated electron temperature approaching 3 mK. This work demonstrates how nanoelectronic samples can be cooled further into the low-millikelvin range. PMID:26816217
List-Based Simulated Annealing Algorithm for Traveling Salesman Problem.
Zhan, Shi-hua; Lin, Juan; Zhang, Ze-jun; Zhong, Yi-wen
2016-01-01
Simulated annealing (SA) algorithm is a popular intelligent optimization algorithm which has been successfully applied in many fields. Parameters' setting is a key factor for its performance, but it is also a tedious work. To simplify parameters setting, we present a list-based simulated annealing (LBSA) algorithm to solve traveling salesman problem (TSP). LBSA algorithm uses a novel list-based cooling schedule to control the decrease of temperature. Specifically, a list of temperatures is created first, and then the maximum temperature in list is used by Metropolis acceptance criterion to decide whether to accept a candidate solution. The temperature list is adapted iteratively according to the topology of the solution space of the problem. The effectiveness and the parameter sensitivity of the list-based cooling schedule are illustrated through benchmark TSP problems. The LBSA algorithm, whose performance is robust on a wide range of parameter values, shows competitive performance compared with some other state-of-the-art algorithms.
NASA Astrophysics Data System (ADS)
Jha, Rajesh
AlNiCo magnets are known for high-temperature stability and superior corrosion resistance and have been widely used for various applications. Reported magnetic energy density ((BH) max) for these magnets is around 10 MGOe. Theoretical calculations show that ((BH) max) of 20 MGOe is achievable which will be helpful in covering the gap between AlNiCo and Rare-Earth Elements (REE) based magnets. An extended family of AlNiCo alloys was studied in this dissertation that consists of eight elements, and hence it is important to determine composition-property relationship between each of the alloying elements and their influence on the bulk properties. In the present research, we proposed a novel approach to efficiently use a set of computational tools based on several concepts of artificial intelligence to address a complex problem of design and optimization of high temperature REE-free magnetic alloys. A multi-dimensional random number generation algorithm was used to generate the initial set of chemical concentrations. These alloys were then examined for phase equilibria and associated magnetic properties as a screening tool to form the initial set of alloy. These alloys were manufactured and tested for desired properties. These properties were fitted with a set of multi-dimensional response surfaces and the most accurate meta-models were chosen for prediction. These properties were simultaneously extremized by utilizing a set of multi-objective optimization algorithm. This provided a set of concentrations of each of the alloying elements for optimized properties. A few of the best predicted Pareto-optimal alloy compositions were then manufactured and tested to evaluate the predicted properties. These alloys were then added to the existing data set and used to improve the accuracy of meta-models. The multi-objective optimizer then used the new meta-models to find a new set of improved Pareto-optimized chemical concentrations. This design cycle was repeated twelve times in this work. Several of these Pareto-optimized alloys outperformed most of the candidate alloys on most of the objectives. Unsupervised learning methods such as Principal Component Analysis (PCA) and Heirarchical Cluster Analysis (HCA) were used to discover various patterns within the dataset. This proves the efficacy of the combined meta-modeling and experimental approach in design optimization of magnetic alloys.
Optimizing hydroxyl airglow retrievals from long-slit astronomical spectroscopic observations
NASA Astrophysics Data System (ADS)
Franzen, Christoph; Hibbins, Robert Edward; Espy, Patrick Joseph; Djupvik, Anlaug Amanda
2017-08-01
Astronomical spectroscopic observations from ground-based telescopes contain background emission lines from the terrestrial atmosphere's airglow. In the near infrared, this background is composed mainly of emission from Meinel bands of hydroxyl (OH), which is produced in highly excited vibrational states by reduction of ozone near 90 km. This emission contains a wealth of information on the chemical and dynamical state of the Earth's atmosphere. However, observation strategies and data reduction processes are usually optimized to minimize the influence of these features on the astronomical spectrum. Here we discuss a measurement technique to optimize the extraction of the OH airglow signal itself from routine J-, H-, and K-band long-slit astronomical spectroscopic observations. As an example, we use data recorded from a point-source observation by the Nordic Optical Telescope's intermediate-resolution spectrograph, which has a spatial resolution of approximately 100 m at the airglow layer. Emission spectra from the OH vibrational manifold from v' = 9 down to v' = 3, with signal-to-noise ratios up to 280, have been extracted from 10.8 s integrations. Rotational temperatures representative of the background atmospheric temperature near 90 km, the mesosphere and lower thermosphere region, can be fitted to the OH rotational lines with an accuracy of around 0.7 K. Using this measurement and analysis technique, we derive a rotational temperature distribution with v' that agrees with atmospheric model conditions and the preponderance of previous work. We discuss the derived rotational temperatures from the different vibrational bands and highlight the potential for both the archived and future observations, which are at unprecedented spatial and temporal resolutions, to contribute toward the resolution of long-standing problems in atmospheric physics.
Nanoscale Fe/Ag particles activated persulfate: optimization using response surface methodology.
Silveira, Jefferson E; Barreto-Rodrigues, Marcio; Cardoso, Tais O; Pliego, Gema; Munoz, Macarena; Zazo, Juan A; Casas, José A
2017-05-01
This work studied the bimetallic nanoparticles Fe-Ag (nZVI-Ag) activated persulfate (PS) in aqueous solution using response surface methodology. The Box-Behnken design (BBD) was employed to optimize three parameters (nZVI-Ag dose, reaction temperature, and PS concentration) using 4-chlorophenol (4-CP) as the target pollutant. The synthesis of nZVI-Ag particles was carried out through a reduction of FeCl 2 with NaBH 4 followed by reductive deposition of Ag. The catalyst was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) surface area. The BBD was considered a satisfactory model to optimize the process. Confirmatory tests were carried out using predicted and experimental values under the optimal conditions (50 mg L -1 nZVI-Ag, 21 mM PS at 57 °C) and the complete removal of 4-CP achieved experimentally was successfully predicted by the model, whereas the mineralization degree predicted (90%) was slightly overestimated against the measured data (83%).
Piccolomini, Angelica A; Fiabon, Alex; Borrotti, Matteo; De Lucrezia, Davide
2017-01-01
We optimized the heterologous expression of trans-isoprenyl diphosphate synthase (IDS), the key enzyme involved in the biosynthesis of trans-polyisoprene. trans-Polyisoprene is a particularly valuable compound due to its superior stiffness, excellent insulation, and low thermal expansion coefficient. Currently, trans-polyisoprene is mainly produced through chemical synthesis and no biotechnological processes have been established so far for its large-scale production. In this work, we employed D-optimal design and response surface methodology to optimize the expression of thermophilic enzymes IDS from Thermococcus kodakaraensis. The design of experiment took into account of six factors (preinduction cell density, inducer concentration, postinduction temperature, salt concentration, alternative carbon source, and protein inhibitor) and seven culture media (LB, NZCYM, TB, M9, Ec, Ac, and EDAVIS) at five different pH points. By screening only 109 experimental points, we were able to improve IDS production by 48% in close-batch fermentation. © 2015 International Union of Biochemistry and Molecular Biology, Inc.
Optimization of Shea (Vitellaria paradoxa) butter quality using screw expeller extraction.
Gezahegn, Yonas A; Emire, Shimelis A; Asfaw, Sisay F
2016-11-01
The quality of Shea butter is highly affected by processing factors. Hence, the aim of this work was to evaluate the effects of conditioning duration (CD), moisture content (MC), and die temperature (DT) of screw expeller on Shea butter quality. A combination of 3 3 full factorial design and response surface methodology was used for this investigation. Response variables were refractive index, acid value, and peroxide value. The model enabled to identify the optimum operating settings (CD = 28-30 min, MC = 3-5 g/100 g, and DT = 65-70°C) for maximize refractive index and minimum acid value. For minimum peroxide value 0 min CD, 10 g/100 g MC, and 30°C were discovered. In all-over optimization, optimal values of 30 min CD, 9.7 g/100 g MC, and 70°C DT were found. Hence, the processing factors must be at their optimal values to achieve high butter quality and consistence.
Testing and Optimizing a Stove-Powered Thermoelectric Generator with Fan Cooling.
Zheng, Youqu; Hu, Jiangen; Li, Guoneng; Zhu, Lingyun; Guo, Wenwen
2018-06-07
In order to provide heat and electricity under emergency conditions in off-grid areas, a stove-powered thermoelectric generator (STEG) was designed and optimized. No battery was incorporated, ensuring it would work anytime, anywhere, as long as combustible materials were provided. The startup performance, power load feature and thermoelectric (TE) efficiency were investigated in detail. Furthermore, the heat-conducting plate thickness, cooling fan selection, heat sink dimension and TE module configuration were optimized. The heat flow method was employed to determine the TE efficiency, which was compared to the predicted data. Results showed that the STEG can supply clean-and-warm air (625 W) and electricity (8.25 W at 5 V) continuously at a temperature difference of 148 °C, and the corresponding TE efficiency was measured to be 2.31%. Optimization showed that the choice of heat-conducting plate thickness, heat sink dimensions and cooling fan were inter-dependent, and the TE module configuration affected both the startup process and the power output.
NASA Astrophysics Data System (ADS)
Brown, G. J.; Haugan, H. J.; Mahalingam, K.; Grazulis, L.; Elhamri, S.
2015-01-01
The objective of this work is to establish molecular beam epitaxy (MBE) growth processes that can produce high quality InAs/GaInSb superlattice (SL) materials specifically tailored for very long wavelength infrared (VLWIR) detection. To accomplish this goal, several series of MBE growth optimization studies, using a SL structure of 47.0 Å InAs/21.5 Å Ga0.75In0.25Sb, were performed to refine the MBE growth process and optimize growth parameters. Experimental results demonstrated that our "slow" MBE growth process can consistently produce an energy gap near 50 meV. This is an important factor in narrow band gap SLs. However, there are other growth factors that also impact the electrical and optical properties of the SL materials. The SL layers are particularly sensitive to the anion incorporation condition formed during the surface reconstruction process. Since antisite defects are potentially responsible for the inherent residual carrier concentrations and short carrier lifetimes, the optimization of anion incorporation conditions, by manipulating anion fluxes, anion species, and deposition temperature, was systematically studied. Optimization results are reported in the context of comparative studies on the influence of the growth temperature on the crystal structural quality and surface roughness performed under a designed set of deposition conditions. The optimized SL samples produced an overall strong photoresponse signal with a relatively sharp band edge that is essential for developing VLWIR detectors. A quantitative analysis of the lattice strain, performed at the atomic scale by aberration corrected transmission electron microscopy, provided valuable information about the strain distribution at the GaInSb-on-InAs interface and in the InAs layers, which was important for optimizing the anion conditions.
NASA Astrophysics Data System (ADS)
Li, You-Rong; Du, Mei-Tang; Wang, Jian-Ning
2012-12-01
This paper focuses on the research of an evaporator with a binary mixture of organic working fluids in the organic Rankine cycle. Exergoeconomic analysis and performance optimization were performed based on the first and second laws of thermodynamics, and the exergoeconomic theory. The annual total cost per unit heat transfer rate was introduced as the objective function. In this model, the exergy loss cost caused by the heat transfer irreversibility and the capital cost were taken into account; however, the exergy loss due to the frictional pressure drops, heat dissipation to surroundings, and the flow imbalance were neglected. The variation laws of the annual total cost with respect to the number of transfer units and the temperature ratios were presented. Optimal design parameters that minimize the objective function had been obtained, and the effects of some important dimensionless parameters on the optimal performances had also been discussed for three types of evaporator flow arrangements. In addition, optimal design parameters of evaporators were compared with those of condensers.
A Robot Trajectory Optimization Approach for Thermal Barrier Coatings Used for Free-Form Components
NASA Astrophysics Data System (ADS)
Cai, Zhenhua; Qi, Beichun; Tao, Chongyuan; Luo, Jie; Chen, Yuepeng; Xie, Changjun
2017-10-01
This paper is concerned with a robot trajectory optimization approach for thermal barrier coatings. As the requirements of high reproducibility of complex workpieces increase, an optimal thermal spraying trajectory should not only guarantee an accurate control of spray parameters defined by users (e.g., scanning speed, spray distance, scanning step, etc.) to achieve coating thickness homogeneity but also help to homogenize the heat transfer distribution on the coating surface. A mesh-based trajectory generation approach is introduced in this work to generate path curves on a free-form component. Then, two types of meander trajectories are generated by performing a different connection method. Additionally, this paper presents a research approach for introducing the heat transfer analysis into the trajectory planning process. Combining heat transfer analysis with trajectory planning overcomes the defects of traditional trajectory planning methods (e.g., local over-heating), which helps form the uniform temperature field by optimizing the time sequence of path curves. The influence of two different robot trajectories on the process of heat transfer is estimated by coupled FEM models which demonstrates the effectiveness of the presented optimization approach.
Multiphase numerical analysis of heat pipe with different working fluids for solar applications
NASA Astrophysics Data System (ADS)
Aswath, S.; Netaji Naidu, V. H.; Padmanathan, P.; Raja Sekhar, Y.
2017-11-01
Energy crisis is a prognosis predicted in many cases with the indiscriminate encroachment of conventional energy sources for applications on a massive scale. This prediction, further emboldened by the marked surge in global average temperatures, attributed to climate change and global warming, the necessity to conserve the environment and explore alternate sources of energy is at an all-time high. Despite being among the lead candidates for such sources, solar energy is utilized far from its vast potential possibilities due to predominant economic constraints. Even while there is a growing need for solar panels at more affordable rates, the other options to harness better out of sun’s energy is to optimize and improvise existing technology. One such technology is the heat pipe used in Evacuated Tube Collectors (ETC). The applications of heat pipe have been gaining momentum in various fields since its inception and substantial volumes of research have explored optimizing and improving the technology which is proving effective in heat recovery and heat transfer better than conventional systems. This paper carries out a computational analysis on a comparative simulation between two working fluids within heat pipe of same geometry. It further endeavors to study the multiphase transitions within the heat pipe. The work is carried out using ANSYS Fluent with inputs taken from solar data for the location of Vellore, Tamil Nadu. A wickless, gravity-assisted heat pipe (GAHP) is taken for the simulation. Water and ammonia are used as the working fluids for comparative multiphase analysis to arrive at the difference in heat transfer at the condenser section. It is demonstrated that a heat pipe ETC with ammonia as working fluid showed higher heat exchange (temperature difference) as against that of water as working fluid. The multiphase model taken aided in study of phase transitions within both cases and supported the result of ammonia as fluid being a better candidate.
Smart building temperature control using occupant feedback
NASA Astrophysics Data System (ADS)
Gupta, Santosh K.
This work was motivated by the problem of computing optimal commonly-agreeable thermal settings in spaces with multiple occupants. In this work we propose algorithms that take into account each occupant's preferences along with the thermal correlations between different zones in a building, to arrive at optimal thermal settings for all zones of the building in a coordinated manner. In the first part of this work we incorporate active occupant feedback to minimize aggregate user discomfort and total energy cost. User feedback is used to estimate the users comfort range, taking into account possible inaccuracies in the feedback. The control algorithm takes the energy cost into account, trading it off optimally with the aggregate user discomfort. A lumped heat transfer model based on thermal resistance and capacitance is used to model a multi-zone building. We provide a stability analysis and establish convergence of the proposed solution to a desired temperature that minimizes the sum of energy cost and aggregate user discomfort. However, for convergence to the optimal, sufficient separation between the user feedback frequency and the dynamics of the system is necessary; otherwise, the user feedback provided do not correctly reflect the effect of current control input value on user discomfort. The algorithm is further extended using singular perturbation theory to determine the minimum time between successive user feedback solicitations. Under sufficient time scale separation, we establish convergence of the proposed solution. Simulation study and experimental runs on the Watervliet based test facility demonstrates performance of the algorithm. In the second part we develop a consensus algorithm for attaining a common temperature set-point that is agreeable to all occupants of a zone in a typical multi-occupant space. The information on the comfort range functions is indeed held privately by each occupant. Using occupant differentiated dynamically adjusted prices as feedback signals, we propose a distributed solution, which ensures that a consensus is attained among all occupants upon convergence, irrespective of their temperature preferences being in coherence or conflicting. Occupants are only assumed to be rational, in that they choose their own temperature set-points so as to minimize their individual energy cost plus discomfort. We use Alternating Direction Method of Multipliers ( ADMM) to solve our consensus problem. We further establish the convergence of the proposed algorithm to the optimal thermal set point values that minimize the sum of the energy cost and the aggregate discomfort of all occupants in a multi-zone building. For simulating our consensus algorithm we use realistic building parameters based on the Watervliet test facility. The simulation study based on real world building parameters establish the validity of our theoretical model and provide insights on the dynamics of the system with a mobile user population. In the third part we present a game-theoretic (auction) mechanism, that requires occupants to "purchase" their individualized comfort levels beyond what is provided by default by the building operator. The comfort pricing policy, derived as an extension of Vickrey-Clarke-Groves (VCG) pricing, ensures incentive-compatibility of the mechanism, i.e., an occupant acting in self-interest cannot benefit from declaring their comfort function untruthfully, irrespective of the choices made by other occupants. The declared (or estimated) occupant comfort ranges (functions) are then utilized by the building operator---along with the energy cost information---to set the environment controls to optimally balance the aggregate discomfort of the occupants and the energy cost of the building operator. We use realistic building model and parameters based on our test facility to demonstrate the convergence of the actual temperatures in different zones to the desired temperatures, and provide insight to the pricing structure necessary for truthful comfort feedback from the occupants. Finally, we present an end-to-end framework designed for enabling occupant feedback collection and incorporating the feedback data towards energy efficient operation of a building. We have designed a mobile application that occupants can use on their smart phones to provide their thermal preference feedback. When relaying the occupant feedback to the central server the mobile application also uses indoor localization techniques to tie the occupant preference to their current thermal zone. Texas Instruments sensortags are used for real time zonal temperature readings. The mobile application relays the occupant preference along with the location to a central server that also hosts our learning algorithm to learn the environment and using occupant feedback calculates the optimal temperature set point. The entire process is triggered upon change of occupancy, environmental conditions, and or occupant preference. The learning algorithm is scheduled to run at regular intervals to respond dynamically to environmental and occupancy changes. We describe results from experimental studies in two different settings: a single family residential home setting and in a university based laboratory space setting. (Abstract shortened by UMI.).
Metabolic assessments during extra-vehicular activity.
Osipov YuYu; Spichkov, A N; Filipenkov, S N
1998-01-01
Extra-vehicular activity (EVA) has a significant role during extended space flights. It demonstrates that humans can survive and perform useful work outside the Orbital Space Stations (OSS) while wearing protective space suits (SS). When the International Space Station 'Alpha' (ISSA) is fully operational, EVA assembly, installation, maintenance and repair operations will become an everyday repetitive work activity in space. It needs new ergonomic evaluation of the work/rest schedule for an increasing of the labor amount per EVA hour. The metabolism assessment is a helpful method to control the productivity of the EVA astronaut and to optimize the work/rest regime. Three following methods were used in Russia to estimate real-time metabolic rates during EVA: 1. Oxygen consumption, computed from the pressure drop in a high pressure bottle per unit time (with actual thermodynamic oxygen properties under high pressure and oxygen leakage taken into account). 2. Carbon dioxide production, computed from CO2 concentration at the contaminant control cartridge and gas flow rate in the life support subsystem closed loop (nominal mode) or gas leakage in the SS open loop (emergency mode). 3. Heat removal, computed from the difference between the temperatures of coolant water or gas and its flow rate in a unit of time (with assumed humidity and wet oxygen state taken into account). Comparison of heat removal values with metabolic rates enables us to determine the thermal balance during an operative medical control of EVA at "Salyut-6", "Salyut-7" and "Mir" OSS. Complex analysis of metabolism, body temperature and heat rate supports a differential diagnosis between emotional and thermal components of stress during EVA. It gives a prognosis of human homeostasis during EVA. Available information has been acquired into an EVA data base which is an effective tool for ergonomical optimization.
Metabolic assessments during extra-vehicular activity
NASA Astrophysics Data System (ADS)
Osipov, Yu. Yu.; Spichkov, A. N.; Filipenkov, S. N.
Extra-vehicular activity (EVA) has a significant role during extended space flights. It demonstrates that humans can survive and perform useful work outside the Orbital Space Stations (OSS) while wearing protective space suits (SS). When the International Space Station 'Alpha'(ISSA) is fully operational, EVA assembly, installation, maintenance and repair operations will become an everyday repetitive work activity in space. It needs new ergonomic evaluation of the work/rest schedule for an increasing of the labor amount per EVA hour. The metabolism assessment is a helpful method to control the productivity of the EVA astronaut and to optimize the work/rest regime. Three following methods were used in Russia to estimate real-time metabolic rates during EVA: 1. Oxygen consumption, computed from the pressure drop in a high pressure bottle per unit time (with actual thermodynamic oxygen properties under high pressure and oxygen leakage taken into account). 2. Carbon dioxide production, computed from CO 2 concentration at the contaminant control cartridge and gas flow rate in the life support subsystem closed loop (nominal mode) or gas leakage in the SS open loop (emergency mode). 3. Heat removal, computed from the difference between the temperatures of coolant water or gas and its flow rate in a unit of time (with assumed humidity and wet oxygen state taken into account). Comparison of heat removal values with metabolic rates enables us to determine the thermal balance during an operative medical control of EVA at "Salyut-6", "Salyut-7" and "Mir" OSS. Complex analysis of metabolism, body temperature and heat rate supports a differential diagnosis between emotional and thermal components of stress during EVA. It gives a prognosis of human homeostasis during EVA. Available information has been acquired into an EVA data base which is an effective tool for ergonomical optimization.
Room-temperature CO Thermoelectric Gas Sensor based on Au/Co3O4 Catalyst Tablet.
Sun, L; Luan, W L; Wang, T C; Su, W X; Zhang, L X
2017-02-17
A carbon monoxide (CO) thermoelectric (TE) gas sensor was fabricated by affixing a Au/Co 3 O 4 catalyst tablet on a TE film layer. The Au/Co 3 O 4 catalyst tablet was prepared by a co-precipitation and tablet compression method and its possible catalytic mechanism was discussed by means of x-ray diffraction, field emission scanning electron microscopy, high resolution transmission electron microscopy, x-ray photoelectron spectroscopy, temperature-programmed reduction of hydrogen, Fourier transform infrared spectroscopy and Brunauer-Emmett-Teller analysis. The optimal catalyst, with a Au content of 10 wt%, was obtained at a calcination temperature between 200 and 300 °C. The small size of the Au nanoparticles, high specific surface, the existence of Co 3+ and water-derived species contributed to high catalytic activity. Based on the optimal Au/Co 3 O 4 catalyst tablet, the CO TE gas sensor worked at room temperature and showed a response voltage signal (ΔV) of 23 mV, high selectivity among hydrogen and methane, high stability, and a fast response time of 106 s for 30 000 ppm CO/air. In addition, a CO concentration in the range of 5000-30 000 ppm could obviously be detected and exhibited a linear relationship with ΔV. The CO TE gas sensor provides a promising option for the detection of CO gas at room temperature.
NASA Astrophysics Data System (ADS)
Hartl, D. J.; Frank, G. J.; Malak, R. J.; Baur, J. W.
2017-02-01
Research on the structurally embedded vascular antenna concept leverages past efforts on liquid metal (LM) reconfigurable electronics, microvascular composites, and structurally integrated and reconfigurable antennas. Such a concept has potential for reducing system weight or volume while simultaneously allowing in situ adjustment of resonant frequencies and/or changes in antenna directivity. This work considers a microvascular pattern embedded in a laminated composite and filled with LM. The conductive liquid provides radio frequency (RF) functionality while also allowing self-cooling. Models describing RF propagation and heat transfer, in addition to the structural effects of both the inclusion of channels and changes in temperature, were described in part 1 of this two-part work. In this part 2, the engineering models developed and demonstrated in part 1 toward the initial exploration of design trends are implemented into multiple optimization frameworks for more detailed design studies, one of which being novel and particularly applicable to this class of problem. The computational expense associated with the coupled multiphysical analysis of the structurally embedded LM transmitting antenna motivates the consideration of surrogate-based optimization methods. Both static and adaptive approaches are explored; it is shown that iteratively correcting the surrogate leads to more accurate optimized design predictions. The expected strong dependence of antenna performance on thermal environment motivates the consideration of a novel ‘parameterized’ optimization approach that simultaneously calculates whole families of optimal designs based on changes in design or operational variables generally beyond the control of the designer. The change in Pareto-optimal response with evolution in operating conditions is clearly demonstrated.
NASA Astrophysics Data System (ADS)
Sisto, Marco Michele; Gauvin, Jonny
2014-09-01
Accurate color control of LED lighting systems is a challenging task: noticeable chromaticity shifts are commonly observed in mixed-color and phosphor converted LEDs due to intensity dimming. Furthermore, the emitted color varies with the LED temperature. We present a novel color control method for tri-chromatic and tetra-chromatic LEDs, which enable to set and maintain the LED emission at a target color, or combination of correlated color temperature (CCT) and intensity. The LED color point is maintained over variations in the LED junctions' temperatures and intensity dimming levels. The method does not require color feedback sensors, so to minimize system complexity and cost, but relies on estimation of the LED junctions' temperatures from the junction voltages. If operated with tetra-chromatic LEDs, the method allows meeting an additional optimization criterion: for example, the maximization of a color rendering metric like the Color Rendering Index (CRI) or the Color Quality Scale (CQS), thus providing a high quality and clarity of colors on the surface illuminated by the LED. We demonstrate the control of a RGBW LED at target D65 white point with CIELAB color difference metric triangle;a,bE < 1 for simultaneous variations of flux from approximately 30 lm to 100 lm and LED heat sink temperature from 25°C to 58°C. In the same conditions, we demonstrate a CCT error <1%. Furthermore, the method allows varying the LED CCT from 5500K to 8000K while maintaining luminance within 1% of target. Further work is ongoing to evaluate the stability of the method over LED aging.
A numerical model on thermodynamic analysis of free piston Stirling engines
NASA Astrophysics Data System (ADS)
Mou, Jian; Hong, Guotong
2017-02-01
In this paper, a new numerical thermodynamic model which bases on the energy conservation law has been used to analyze the free piston Stirling engine. In the model all data was taken from a real free piston Stirling engine which has been built in our laboratory. The energy conservation equations have been applied to expansion space and compression space of the engine. The equation includes internal energy, input power, output power, enthalpy and the heat losses. The heat losses include regenerative heat conduction loss, shuttle heat loss, seal leakage loss and the cavity wall heat conduction loss. The numerical results show that the temperature of expansion space and the temperature of compression space vary with the time. The higher regeneration effectiveness, the higher efficiency and bigger output work. It is also found that under different initial pressures, the heat source temperature, phase angle and engine work frequency pose different effects on the engine’s efficiency and power. As a result, the model is expected to be a useful tool for simulation, design and optimization of Stirling engines.
NASA Astrophysics Data System (ADS)
Zhao, W.; Sun, Z.; Tang, Z.; Liaw, P. K.; Li, J.; Liu, R. P.; Li, Gong
2014-05-01
2D finite element analysis was conducted on the temperature field to create an amorphous ingot by vacuum water quenching. An optimized analysis document was then written by ANSYS parametric design language, and the optimal design modules of ANSYS were used to study the inside diameter and wall thickness of the quartz tube, as well as the water temperature. The microstructure and the phase structure of the amorphous ingot were evaluated by scanning electron microscopy and X-ray diffraction, respectively. Results show that during the cooling process, the thinner wall thickness, smaller diameter of the ingot, or lower temperature of the water environment can result in higher cooling rate at a given temperature. Besides, the gap between the different cooling rates induced by wall thickness or diameter of the ingot narrows down as the temperature decreases, and the gap between the different cooling rates induced by temperature of the water environment remains constant. The process parameters in creating an amorphous ingot, which is optimized by the finite element analysis on the temperature field, are reliable.
Prospective treatment planning to improve locoregional hyperthermia for oesophageal cancer.
Kok, H P; van Haaren, P M A; van de Kamer, J B; Zum Vörde Sive Vörding, P J; Wiersma, J; Hulshof, M C C M; Geijsen, E D; van Lanschot, J J B; Crezee, J
2006-08-01
In the Academic Medical Center (AMC) Amsterdam, locoregional hyperthermia for oesophageal tumours is applied using the 70 MHz AMC-4 phased array system. Due to the occurrence of treatment-limiting hot spots in normal tissue and systemic stress at high power, the thermal dose achieved in the tumour can be sub-optimal. The large number of degrees of freedom of the heating device, i.e. the amplitudes and phases of the antennae, makes it difficult to avoid treatment-limiting hot spots by intuitive amplitude/phase steering. Prospective hyperthermia treatment planning combined with high resolution temperature-based optimization was applied to improve hyperthermia treatment of patients with oesophageal cancer. All hyperthermia treatments were performed with 'standard' clinical settings. Temperatures were measured systemically, at the location of the tumour and near the spinal cord, which is an organ at risk. For 16 patients numerically optimized settings were obtained from treatment planning with temperature-based optimization. Steady state tumour temperatures were maximized, subject to constraints to normal tissue temperatures. At the start of 48 hyperthermia treatments in these 16 patients temperature rise (DeltaT) measurements were performed by applying a short power pulse with the numerically optimized amplitude/phase settings, with the clinical settings and with mixed settings, i.e. numerically optimized amplitudes combined with clinical phases. The heating efficiency of the three settings was determined by the measured DeltaT values and the DeltaT-ratio between the DeltaT in the tumour (DeltaToes) and near the spinal cord (DeltaTcord). For a single patient the steady state temperature distribution was computed retrospectively for all three settings, since the temperature distributions may be quite different. To illustrate that the choice of the optimization strategy is decisive for the obtained settings, a numerical optimization on DeltaT-ratio was performed for this patient and the steady state temperature distribution for the obtained settings was computed. A higher DeltaToes was measured with the mixed settings compared to the calculated and clinical settings; DeltaTcord was higher with the mixed settings compared to the clinical settings. The DeltaT-ratio was approximately 1.5 for all three settings. These results indicate that the most effective tumour heating can be achieved with the mixed settings. DeltaT is proportional to the Specific Absorption Rate (SAR) and a higher SAR results in a higher steady state temperature, which implies that mixed settings are likely to provide the most effective heating at steady state as well. The steady state temperature distributions for the clinical and mixed settings, computed for the single patient, showed some locations where temperatures exceeded the normal tissue constraints used in the optimization. This demonstrates that the numerical optimization did not prescribe the mixed settings, because it had to comply with the constraints set to the normal tissue temperatures. However, the predicted hot spots are not necessarily clinically relevant. Numerical optimization on DeltaT-ratio for this patient yielded a very high DeltaT-ratio ( approximately 380), albeit at the cost of excessive heating of normal tissue and lower steady state tumour temperatures compared to the conventional optimization. Treatment planning can be valuable to improve hyperthermia treatments. A thorough discussion on clinically relevant objectives and constraints is essential.
3D thermal model of laser surface glazing for H13 tool steel
NASA Astrophysics Data System (ADS)
Kabir, I. R.; Yin, D.; Naher, S.
2017-10-01
In this work a three dimensional (3D) finite element model of laser surface glazing (LSG) process has been developed. The purpose of the 3D thermal model of LSG was to achieve maximum accuracy towards the predicted outcome for optimizing the process. A cylindrical geometry of 10mm diameter and 1mm length was used in ANSYS 15 software. Temperature distribution, depth of modified zone and cooling rates were analysed from the thermal model. Parametric study was carried out varying the laser power from 200W-300W with constant beam diameter and residence time which were 0.2mm and 0.15ms respectively. The maximum surface temperature 2554°K was obtained for power 300W and minimum surface temperature 1668°K for power 200W. Heating and cooling rates increased with increasing laser power. The depth of the laser modified zone attained for 300W power was 37.5µm and for 200W power was 30µm. No molten zone was observed at 200W power. Maximum surface temperatures obtained from 3D model increased 4% than 2D model presented in author's previous work. In order to verify simulation results an analytical solution of temperature distribution for laser surface modification was used. The surface temperature after heating was calculated for similar laser parameters which is 1689°K. The difference in maximum surface temperature is around 20.7°K between analytical and numerical analysis of LSG for power 200W.
Multicriteria ranking of workplaces regarding working conditions in a mining company.
Bogdanović, Dejan; Stanković, Vladimir; Urošević, Snežana; Stojanović, Miloš
2016-12-01
Ranking of workplaces with respect to working conditions is very significant for each company. It indicates the positions where employees are most exposed to adverse effects resulting from the working environment, which endangers their health. This article presents the results obtained for 12 different production workplaces in the copper mining and smelting complex RTB Bor - 'Veliki Krivelj' open pit, based on six parameters measured regularly which defined the following working environment conditions: air temperature, light, noise, dustiness, chemical hazards and vibrations. The ranking of workplaces has been performed by PROMETHEE/GAIA. Additional optimization of workplaces is done by PROMETHEE V with the given limits related to maximum permitted values for working environment parameters. The obtained results indicate that the most difficult workplace is on the excavation location (excavator operator). This method can be successfully used for solving similar kinds of problems, in order to improve working conditions.
Exergy optimization in a steady moving bed heat exchanger.
Soria-Verdugo, A; Almendros-Ibáñez, J A; Ruiz-Rivas, U; Santana, D
2009-04-01
This work provides an energy and exergy optimization analysis of a moving bed heat exchanger (MBHE). The exchanger is studied as a cross-flow heat exchanger where one of the phases is a moving granular medium. The optimal MBHE dimensions and the optimal particle diameter are obtained for a range of incoming fluid flow rates. The analyses are carried out over operation data of the exchanger obtained in two ways: a numerical simulation of the steady-state problem and an analytical solution of the simplified equations, neglecting the conduction terms. The numerical simulation considers, for the solid, the convection heat transfer to the fluid and the diffusion term in both directions, and for the fluid only the convection heat transfer to the solid. The results are compared with a well-known analytical solution (neglecting conduction effects) for the temperature distribution in the exchanger. Next, the analytical solution is used to derive an expression for the exergy destruction. The optimal length of the MBHE depends mainly on the flow rate and does not depend on particle diameter unless they become very small (thus increasing sharply the pressure drop). The exergy optimal length is always smaller than the thermal one, although the difference is itself small.
A novel dismantling process of waste printed circuit boards using water-soluble ionic liquid.
Zeng, Xianlai; Li, Jinhui; Xie, Henghua; Liu, Lili
2013-10-01
Recycling processes for waste printed circuit boards (WPCBs) have been well established in terms of scientific research and field pilots. However, current dismantling procedures for WPCBs have restricted the recycling process, due to their low efficiency and negative impacts on environmental and human health. This work aimed to seek an environmental-friendly dismantling process through heating with water-soluble ionic liquid to separate electronic components and tin solder from two main types of WPCBs-cathode ray tubes and computer mainframes. The work systematically investigates the influence factors, heating mechanism, and optimal parameters for opening solder connections on WPCBs during the dismantling process, and addresses its environmental performance and economic assessment. The results obtained demonstrate that the optimal temperature, retention time, and turbulence resulting from impeller rotation during the dismantling process, were 250 °C, 12 min, and 45 rpm, respectively. Nearly 90% of the electronic components were separated from the WPCBs under the optimal experimental conditions. This novel process offers the possibility of large industrial-scale operations for separating electronic components and recovering tin solder, and for a more efficient and environmentally sound process for WPCBs recycling. Copyright © 2013 Elsevier Ltd. All rights reserved.
Modeling the Effect of pH and Temperature for Cellulases Immobilized on Enzymogel Nanoparticles.
Samaratunga, Ashani; Kudina, Olena; Nahar, Nurun; Zakharchenko, Andrey; Minko, Sergiy; Voronov, Andriy; Pryor, Scott W
2015-06-01
Production costs of cellulosic biofuels can be lowered if cellulases are recovered and reused using particulate carriers that can be extracted after biomass hydrolysis. Such enzyme recovery was recently demonstrated using enzymogel nanoparticles with grafted polymer brushes loaded with cellulases. In this work, cellulase (NS50013) and β-glucosidase (Novozyme 188) were immobilized on enzymogels made of poly(acrylic acid) polymer brushes grafted to the surface of silica nanoparticles. Response surface methodology was used to model effects of pH and temperature on hydrolysis and recovery of free and attached enzymes. Hydrolysis yields using both enzymogels and free cellulase and β-glucosidase were highest at the maximum temperature tested, 50 °C. The optimal pH for cellulase enzymogels and free enzyme was 5.0 and 4.4, respectively, while both free β-glucosidase and enzymogels had an optimal pH near 4.4. Highest hydrolysis sugar concentrations with cellulase and β-glucosidase enzymogels were 69 and 53 % of those with free enzymes, respectively. Enzyme recovery using enzymogels decreased with increasing pH, but cellulase recovery remained greater than 88 % throughout the operating range of pH values less than 5.0 and was greater than 95 % at pH values below 4.3. Recovery of β-glucosidase enzymogels was not affected by temperature and had little impact on cellulase recovery.
Diaby, M; Kinani, S; Genty, C; Bouchonnet, S; Sablier, M; Le Negrate, A; El Fassi, M
2009-12-01
This article establishes an alternative method for the characterization of volatiles organic matter (VOM) contained in deposits of the piston first ring grooves of diesel engines using a ChromatoProbe direct sample introduction (DSI) device coupled to gas chromatography/mass spectrometry (GC/MS) analysis. The addition of an organic solvent during thermal desorption leads to an efficient extraction and a good chromatographic separation of extracted products. The method was optimized investigating the effects of several solvents, the volume added to the solid sample, and temperature programming of the ChromatoProbe DSI device. The best results for thermal desorption were found using toluene as an extraction solvent and heating the programmable temperature injector from room temperature to 300 degrees C with a temperature step of 105 degrees C. With the use of the optimized thermal desorption conditions, several components have been positively identified in the volatile fraction of the deposits: aromatics, antioxidants, and antioxidant degradation products. Moreover, this work highlighted the presence of diesel fuel in the VOM of the piston deposits and gave new facts on the absence of the role of diesel fuel in the deposit formation process. Most importantly, it opens the possibility of quickly performing the analysis of deposits with small amounts of samples while having a good separation of the volatiles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renaud, J; Seuntjens, J; Sarfehnia, A
2015-06-15
Purpose: In this work, the feasibility of performing absolute dose to water measurements using a constant temperature graphite probe calorimeter (GPC) in a clinical environment is established. Methods: A numerical design optimization study was conducted by simulating the heat transfer in the GPC resulting from irradiation using a finite element method software package. The choice of device shape, dimensions, and materials was made to minimize the heat loss in the sensitive volume of the GPC. The resulting design, which incorporates a novel aerogel-based thermal insulator, and 15 temperature sensitive resistors capable of both Joule heating and measuring temperature, was constructedmore » in house. A software based process controller was developed to stabilize the temperatures of the GPC’s constituent graphite components to within a few 10’s of µK. This control system enables the GPC to operate in either the quasi-adiabatic or isothermal mode, two well-known, and independent calorimetry techniques. Absorbed dose to water measurements were made using these two methods under standard conditions in a 6 MV 1000 MU/min photon beam and subsequently compared against TG-51 derived values. Results: Compared to an expected dose to water of 76.9 cGy/100 MU, the average GPC-measured doses were 76.5 ± 0.5 and 76.9 ± 0.5 cGy/100 MU for the adiabatic and isothermal modes, respectively. The Monte Carlo calculated graphite to water dose conversion was 1.013, and the adiabatic heat loss correction was 1.003. With an overall uncertainty of about 1%, the most significant contributions were the specific heat capacity (type B, 0.8%) and the repeatability (type A, 0.6%). Conclusion: While the quasi-adiabatic mode of operation had been validated in previous work, this is the first time that the GPC has been successfully used isothermally. This proof-of-concept will serve as the basis for further study into the GPC’s application to small fields and MRI-linac dosimetry. This work has been supported in part by the CREATE Medical Physics Research Training Network of the Natural Sciences and Engineering Research Council (NSERC) grant 432290, NSERC grants RGPIN 298191 & 435608-13, Canadian Institutes of Health Research doctoral scholarship GSD-121793. This work has also been supported by Sun Nuclear Corporation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogel, John A.
The program began on August 1, 2003 and ended on July 31, 2007. The goal of the project was to optimize a high-temperature polybenzimidazole (PBI) membrane to meet the performance, durability, and cost targets required for stationary fuel cell applications. These targets were identified in the Fuel Cell section (3.4) of DOE’s Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan. A membrane that operates at high temperatures is important to the fuel cell industry because it is insensitive to carbon monoxide (a poison to low-temperature fuel cells), and does not require complex water management strategies.more » Together, these two benefits greatly simplify the fuel cell system. As a result, the high-temperature fuel cell system realizes a cost benefit as the number of components is reduced by nearly 30%. There is also an inherent reliability benefit as components such as humidifiers and pumps for water management are unnecessary. Furthermore, combined heat and power (CHP) systems may be the best solution for a commercial, grid-connected, stationary product that must offer a cost benefit to the end user. For a low-temperature system, the quality of the heat supplied is insufficient to meet consumer needs and comfort requirements, so peak heaters or supplemental boilers are required. The higher operating temperature of PBI technology allows the fuel cell to meet the heat and comfort demand without the additional equipment. Plug Power, working with the Rensselaer Polytechnic Institute (RPI) Polymer Science Laboratory, made significant advances in optimizing the PBI membrane material for operation at temperatures greater than 160oC with a lifetime of 40,000 hours. Supporting hardware such as flow field plates and a novel sealing concept were explored to yield the lower-cost stack assembly and corresponding manufacturing process. Additional work was conducted on acid loss, flow field design and cathode electrode development. Membranes and MEAs were supplied by team member BASF Fuel Cell (formerly PEMEAS), a manufacturer of polymer and fiber. Additional subcontractors Entegris, the University of South Carolina (USC) Fuel Cell Center, and RPI’s Fuel Cell Center conducted activities with regard to stack sealing, acid modeling, and electrode development.« less
Chantre, Guillermo R.; Batlla, Diego; Sabbatini, Mario R.; Orioli, Gustavo
2009-01-01
Background and Aims Models based on thermal-time approaches have been a useful tool for characterizing and predicting seed germination and dormancy release in relation to time and temperature. The aims of the present work were to evaluate the relative accuracy of different thermal-time approaches for the description of germination in Lithospermum arvense and to develop an after-ripening thermal-time model for predicting seed dormancy release. Methods Seeds were dry-stored at constant temperatures of 5, 15 or 24 °C for up to 210 d. After different storage periods, batches of 50 seeds were incubated at eight constant temperature regimes of 5, 8, 10, 13, 15, 17, 20 or 25 °C. Experimentally obtained cumulative-germination curves were analysed using a non-linear regression procedure to obtain optimal population thermal parameters for L. arvense. Changes in these parameters were described as a function of after-ripening thermal-time and storage temperature. Key Results The most accurate approach for simulating the thermal-germination response of L. arvense was achieved by assuming a normal distribution of both base and maximum germination temperatures. The results contradict the widely accepted assumption of a single Tb value for the entire seed population. The after-ripening process was characterized by a progressive increase in the mean maximum germination temperature and a reduction in the thermal-time requirements for germination at sub-optimal temperatures. Conclusions The after-ripening thermal-time model developed here gave an acceptable description of the observed field emergence patterns, thus indicating its usefulness as a predictive tool to enhance weed management tactics. PMID:19332426
Optimization of Dish Solar Collectors with and without Secondary Concentrators
NASA Technical Reports Server (NTRS)
Jaffe, L. D.
1982-01-01
Methods for optimizing parabolic dish solar collectors and the consequent effects of various optical, thermal, mechanical, and cost variables are examined. The most important performance optimization is adjusting the receiver aperture to maximize collector efficiency. Other parameters that can be adjusted to optimize efficiency include focal length, and, if a heat engine is used, the receiver temperature. The efficiency maxima associated with focal length and receiver temperature are relatively broad; it may, accordingly, be desirable to design somewhat away from the maxima. Performance optimization is sensitive to the slope and specularity errors of the concentrator. Other optical and thermal variables affecting optimization are the reflectance and blocking factor of the concentrator, the absorptance and losses of the receiver, and, if a heat engine is used, the shape of the engine efficiency versus temperature curve. Performance may sometimes be improved by use of an additional optical element (a secondary concentrator) or a receiver window if the errors of the primary concentrator are large or the receiver temperature is high.
NASA Astrophysics Data System (ADS)
Ducru, Pablo; Josey, Colin; Dibert, Karia; Sobes, Vladimir; Forget, Benoit; Smith, Kord
2017-04-01
This article establishes a new family of methods to perform temperature interpolation of nuclear interactions cross sections, reaction rates, or cross sections times the energy. One of these quantities at temperature T is approximated as a linear combination of quantities at reference temperatures (Tj). The problem is formalized in a cross section independent fashion by considering the kernels of the different operators that convert cross section related quantities from a temperature T0 to a higher temperature T - namely the Doppler broadening operation. Doppler broadening interpolation of nuclear cross sections is thus here performed by reconstructing the kernel of the operation at a given temperature T by means of linear combination of kernels at reference temperatures (Tj). The choice of the L2 metric yields optimal linear interpolation coefficients in the form of the solutions of a linear algebraic system inversion. The optimization of the choice of reference temperatures (Tj) is then undertaken so as to best reconstruct, in the L∞ sense, the kernels over a given temperature range [Tmin ,Tmax ]. The performance of these kernel reconstruction methods is then assessed in light of previous temperature interpolation methods by testing them upon isotope 238U. Temperature-optimized free Doppler kernel reconstruction significantly outperforms all previous interpolation-based methods, achieving 0.1% relative error on temperature interpolation of 238U total cross section over the temperature range [ 300 K , 3000 K ] with only 9 reference temperatures.
Iáñez-Rodríguez, Irene; Martín-Lara, María Ángeles; Blázquez, Gabriel; Pérez, Antonio; Calero, Mónica
2017-11-01
This work investigated the possibility of using a greenhouse crop waste as a fuel, since it is an abundant residue in the Mediterranean area of Spain. The residue is mainly composed by biomass with a little quantity of plastic. The physical and chemical characteristics of the biomass were determined by elemental analysis, proximate analysis, FT-IR, FE-SEM and thermogravimetry. Additionally, a torrefaction process was carried out as a pre-treatment to improve the energy properties of the biomass material. The optimal conditions (time and temperature) of torrefaction were found to be 263°C and 15min using the gain and loss method. Further studies were carried out with the sample prepared with the nearest conditions to the optimal in order to determine the effect of the plastic fraction in the characteristics and torrefaction process of the waste studied. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Li; Su, Pengyu; Yao, Huizhen; Wang, Jun; Fu, Wuyou; Liu, Xizhe; Yang, Haibin
2018-06-01
Doping, interface optimization and recrystallization are effective approaches for fabricating high performance perovskite solar cells (PSCs). In our work, simple CsBr treatment is introduced to improve the performance of TiO2 nanorods-based PSCs. Both Cs+ and Br- are doped into CH3NH3PbI3 simultaneously, as well as optimizes the interface between perovskite and hole-transporting material (HTM). In addition, the perovskite grains are recrystallized through this method. Finally, a power conversion efficiency (PCE) of 16.02% with 0.72 in fill factor (FF) and 1.08 in open circuit voltage (VOC) is obtained through CsBr treatment, which is 19.91% higher than that of untreated devices (13.36% with 0.65 in FF and 1.02 in VOC). Furthermore, the power output maintains ∼14% after 3500 h under the humidity within 15% at room temperature.
NASA Astrophysics Data System (ADS)
Tahaei, Ali; Horley, Paul; Merlin, Mattia; Torres-Torres, David; Garagnani, Gian Luca; Praga, Rolando; Vázquez, Felipe J. García; Arizmendi-Morquecho, Ana
2017-03-01
This work is dedicated to optimization of carbide particle system in a weld bead deposited by PTAW technique over D2 tool steel with high chromium content. The paper reports partial melting of the original carbide grains of the Ni-based filling powder, and growing of the secondary carbide phase (Cr, Ni)_3W_3C in the form of dendrites with wide branches that enhanced mechanical properties of the weld. The optimization of bead parameters was made with design of experiment methodology complemented by a complex sample characterization including SEM, EDXS, XRD, and nanoindentation measurements. It was shown that the preheat of the substrate to a moderate temperature 523 K (250° C) establishes linear pattern of metal flow in the weld pool, resulting in the most homogeneous distribution of the primary carbides in the microstructure of weld bead.
NASA Astrophysics Data System (ADS)
Srinivasagupta, Deepak; Kardos, John L.
2004-05-01
Injected pultrusion (IP) is an environmentally benign continuous process for low-cost manufacture of prismatic polymer composites. IP has been of recent regulatory interest as an option to achieve significant vapour emissions reduction. This work describes the design of the IP process with multiple design objectives. In our previous work (Srinivasagupta D et al 2003 J. Compos. Mater. at press), an algorithm for economic design using a validated three-dimensional physical model of the IP process was developed, subject to controllability considerations. In this work, this algorithm was used in a multi-objective optimization approach to simultaneously meet economic, quality related, and environmental objectives. The retrofit design of a bench-scale set-up was considered, and the concept of exergy loss in the process, as well as in vapour emission, was introduced. The multi-objective approach was able to determine the optimal values of the processing parameters such as heating zone temperatures and resin injection pressure, as well as the equipment specifications (die dimensions, heater, puller and pump ratings) that satisfy the various objectives in a weighted sense, and result in enhanced throughput rates. The economic objective did not coincide with the environmental objective, and a compromise became necessary. It was seen that most of the exergy loss is in the conversion of electric power into process heating. Vapour exergy loss was observed to be negligible for the most part.
Study of CdTe/CdS solar cell at low power density for low-illumination applications
NASA Astrophysics Data System (ADS)
Devi, Nisha; Aziz, Anver; Datta, Shouvik
2016-05-01
In this paper, we numerically investigate CdTe/CdS PV cell properties using a simulation program Solar Cell Capacitance Simulator in 1D (SCAPS-1D). A simple structure of CdTe PV cell has been optimized to study the effect of temperature, absorber thickness and work function at very low incident power. Objective of this research paper is to build an efficient and cost effective solar cell for portable electronic devices such as portable computers and cell phones that work at low incident power because most of such devices work at diffused and reflected sunlight. In this report, we simulated a simple CdTe PV cell at very low incident power, which gives good efficiency.
Optimization analysis of thermal management system for electric vehicle battery pack
NASA Astrophysics Data System (ADS)
Gong, Huiqi; Zheng, Minxin; Jin, Peng; Feng, Dong
2018-04-01
Electric vehicle battery pack can increase the temperature to affect the power battery system cycle life, charge-ability, power, energy, security and reliability. The Computational Fluid Dynamics simulation and experiment of the charging and discharging process of the battery pack were carried out for the thermal management system of the battery pack under the continuous charging of the battery. The simulation result and the experimental data were used to verify the rationality of the Computational Fluid Dynamics calculation model. In view of the large temperature difference of the battery module in high temperature environment, three optimization methods of the existing thermal management system of the battery pack were put forward: adjusting the installation position of the fan, optimizing the arrangement of the battery pack and reducing the fan opening temperature threshold. The feasibility of the optimization method is proved by simulation and experiment of the thermal management system of the optimized battery pack.
Optimal leveling of flow over one-dimensional topography by Marangoni stresses
NASA Astrophysics Data System (ADS)
Gramlich, C. M.; Homsy, G. M.; Kalliadasis, Serafim
2001-11-01
A thin viscous film flowing over a step down in topography exhibits a capillary ridge near the step, which may be undesirable in applications. This paper investigates optimal leveling of the ridge by means of a Marangoni stress such as might be produced by a localized heater creating temperature variations at the film surface. Lubrication theory results in a differential equation for the free surface, which can be solved numerically for any given topography and temperature profile. Leveling the ridge is then formulated as an optimization problem to minimize the maximum free-surface height by varying the heater strength, position, and width. Optimized heaters with 'top-hat' or parabolic temperature profiles replace the original ridge with two smaller ridges of equal size, achieving leveling of better than 50%. An optimized asymmetric n-step temperature distribution results in (n+1) ridges and reduces the variation in surface height by a factor of better than 1/(n+1).
Design and proof of concept of an innovative very high temperature ceramic solar absorber
NASA Astrophysics Data System (ADS)
Leray, Cédric; Ferriere, Alain; Toutant, Adrien; Olalde, Gabriel; Peroy, Jean-Yves; Chéreau, Patrick; Ferrato, Marc
2017-06-01
Hybrid solar gas-turbine (HSGT) is an attractive technology to foster market penetration of CSP. HSGT offers some major advantages like for example high solar-to-electric conversion efficiency, reduced water requirement and low capital cost. A very high temperature solar receiver is needed when elevated solar share is claimed. A few research works, as reported by Karni et al. [8] and by Buck et al. [1], have been dedicated to solar receiver technologies able to deliver pressurized air at temperature above 750°C. The present work focuses on research aiming at developing an efficient and reliable solar absorber able to provide pressurized air at temperature up to 1000°C and more. A surface absorber technology is selected and a modular design of receiver is proposed in which each absorber module is made of BOOSTEC® SiC ceramic (silicon carbide) as bulk material with straight air channels inside. Early stage experimental works done at CNRS/PROMES on lab-scale absorbers showed that the thermo-mechanical behavior of this material is a critical issue, resulting in elevated probability of failure under severe conditions like large temperature gradient or steep variation of solar flux density in situations of cloud covering. This paper reports on recent progress made at CNRS/PROMES to address this critical issue. The design of the absorber has been revised and optimized according to thermo-mechanical numerical simulations, and an experimental proof of concept has been done on a pilot-scale absorber module at Themis solar tower facility.
NASA Astrophysics Data System (ADS)
Hosford, Kyle S.
Clean distributed generation power plants can provide a much needed balance to our energy infrastructure in the future. A high-temperature fuel cell and an absorption chiller can be integrated to create an ideal combined cooling, heat, and power system that is efficient, quiet, fuel flexible, scalable, and environmentally friendly. With few real-world installations of this type, research remains to identify the best integration and operating strategy and to evaluate the economic viability and market potential of this system. This thesis informs and documents the design of a high-temperature fuel cell and absorption chiller demonstration system at a generic office building on the University of California, Irvine (UCI) campus. This work details the extension of prior theoretical work to a financially-viable power purchase agreement (PPA) with regard to system design, equipment sizing, and operating strategy. This work also addresses the metering and monitoring for the system showcase and research and details the development of a MATLAB code to evaluate the economics associated with different equipment selections, building loads, and economic parameters. The series configuration of a high-temperature fuel cell, heat recovery unit, and absorption chiller with chiller exhaust recirculation was identified as the optimal system design for the installation in terms of efficiency, controls, ducting, and cost. The initial economic results show that high-temperature fuel cell and absorption chiller systems are already economically competitive with utility-purchased generation, and a brief case study of a southern California hospital shows that the systems are scalable and viable for larger stationary power applications.
NASA Astrophysics Data System (ADS)
Lim, Mikyung; Song, Jaeman; Kim, Jihoon; Lee, Seung S.; Lee, Ikjin; Lee, Bong Jae
2018-05-01
The present work successfully achieves a strong enhancement in performance of a near-field thermophotovoltaic (TPV) system operating at low temperature and large-vacuum-gap width by introducing a hyperbolic-metamaterial (HMM) emitter, multilayered graphene, and an Au-backside reflector. Design variables for the HMM emitter and the multilayered-graphene-covered TPV cell are optimized for maximizing the power output of the near-field TPV system with the genetic algorithm. The near-field TPV system with the optimized configuration results in 24.2 times of enhancement in power output compared with that of the system with a bulk emitter and a bare TPV cell. Through the analysis of the radiative heat transfer together with surface-plasmon-polariton (SPP) dispersion curves, it is found that coupling of SPPs generated from both the HMM emitter and the multilayered-graphene-covered TPV cell plays a key role in a substantial increase in the heat transfer even at a 200-nm vacuum gap. Further, the backside reflector at the bottom of the TPV cell significantly increases not only the conversion efficiency, but also the power output by generating additional polariton modes which can be readily coupled with the existing SPPs of the HMM emitter and the multilayered-graphene-covered TPV cell.
NASA Astrophysics Data System (ADS)
Łapka, P.; Jaworski, M.
2017-10-01
In this paper thermal energy storage (TES) unit in a form of a ceiling panel made of gypsum-microencapsulated PCM composite with internal U-shaped channels was considered and optimal characteristics of the microencapsulated PCM were determined. This panel may be easily incorporated into, e.g., an office or residential ventilation system in order to reduce daily variations of air temperature during the summer without additional costs related to the consumption of energy for preparing air parameters to the desired level. For the purpose of the analysis of heat transfer in the panel, a novel numerical simulator was developed. The numerical model consists of two coupled parts, i.e., the 1D which deals with the air flowing through the U-shaped channel and the 3D which deals with heat transfer in the body of the panel. The computational tool was validated based on the experimental study performed on the special set-up. Using this tool an optimization of parameters of the gypsum-microencapsulated PCM composite was performed in order to determine its most appropriate properties for the application under study. The analyses were performed for averaged local summer conditions in Warsaw, Poland.
Optimization of sputter deposition parameters for magnetostrictive Fe62Co19Ga19/Si(100) films
NASA Astrophysics Data System (ADS)
Jen, S. U.; Tsai, T. L.
2012-04-01
A good magnetostrictive material should have large saturation magnetostriction (λS) and low saturation (or anisotropy) field (HS), such that its magnetostriction susceptibility (SH) can be as large as possible. In this study, we have made Fe62Co19Ga19/Si(100) nano-crystalline films by using the dc magnetron sputtering technique under various deposition conditions: Ar working gas pressure (pAr) was varied from 1 to 15 mTorr; sputtering power (Pw) was from 10 to 120 W; deposition temperature (TS) was from room temperature (RT) to 300 °C, The film thickness (tf) was fixed at 175 nm. Each magnetic domain looked like a long leaf, with a long-axis of about 12-15 μm and a short-axis of about 1.5 μm. The optimal magnetic and electrical properties were found from the Fe62Co19Ga19 film made with the sputter deposition parameters of pAr = 5 mTorr, Pw = 80 W, and TS = RT. Those optimal properties include λS = 80 ppm, HS = 19.8 Oe, SH = 6.1 ppm/Oe, and electrical resistivity ρ = 57.0 μΩ cm. Note that SH for the conventional magnetostrictive Terfenol-D film is, in general, equal to 1.5 ppm/Oe only.
Straub, Anthony P; Elimelech, Menachem
2017-11-07
Low-grade heat energy from sources below 100 °C is available in massive quantities around the world, but cannot be converted to electricity effectively using existing technologies due to variability in the heat output and the small temperature difference between the source and environment. The recently developed thermo-osmotic energy conversion (TOEC) process has the potential to harvest energy from low-grade heat sources by using a temperature difference to create a pressurized liquid flux across a membrane, which can be converted to mechanical work via a turbine. In this study, we perform the first analysis of energy efficiency and the expected performance of the TOEC technology, focusing on systems utilizing hydrophobic porous vapor-gap membranes and water as a working fluid. We begin by developing a framework to analyze realistic mass and heat transport in the process, probing the impact of various membrane parameters and system operating conditions. Our analysis reveals that an optimized system can achieve heat-to-electricity energy conversion efficiencies up to 4.1% (34% of the Carnot efficiency) with hot and cold working temperatures of 60 and 20 °C, respectively, and an operating pressure of 5 MPa (50 bar). Lower energy efficiencies, however, will occur in systems operating with high power densities (>5 W/m 2 ) and with finite-sized heat exchangers. We identify that the most important membrane properties for achieving high performance are an asymmetric pore structure, high pressure resistance, a high porosity, and a thickness of 30 to 100 μm. We also quantify the benefits in performance from utilizing deaerated water streams, strong hydrodynamic mixing in the membrane module, and high heat exchanger efficiencies. Overall, our study demonstrates the promise of full-scale TOEC systems to extract energy from low-grade heat and identifies key factors for performance optimization moving forward.
High capacity demonstration of honeycomb panel heat pipes
NASA Technical Reports Server (NTRS)
Tanzer, H. J.
1989-01-01
The feasibility of performance enhancing the sandwich panel heat pipe was investigated for moderate temperature range heat rejection radiators on future-high-power spacecraft. The hardware development program consisted of performance prediction modeling, fabrication, ground test, and data correlation. Using available sandwich panel materials, a series of subscale test panels were augumented with high-capacity sideflow and temperature control variable conductance features, and test evaluated for correlation with performance prediction codes. Using the correlated prediction model, a 50-kW full size radiator was defined using methanol working fluid and closely spaced sideflows. A new concept called the hybrid radiator individually optimizes heat pipe components. A 2.44-m long hybrid test vehicle demonstrated proof-of-principle performance.
NASA Astrophysics Data System (ADS)
Cai, Huai-yu; Dong, Xiao-tong; Zhu, Meng; Huang, Zhan-hua
2018-01-01
Wavefront coding for athermal technique can effectively ensure the stability of the optical system imaging in large temperature range, as well as the advantages of compact structure and low cost. Using simulation method to analyze the properties such as PSF and MTF of wavefront coding athermal system under several typical temperature gradient distributions has directive function to characterize the working state of non-ideal temperature environment, and can effectively realize the system design indicators as well. In this paper, we utilize the interoperability of data between Solidworks and ZEMAX to simplify the traditional process of structure/thermal/optical integrated analysis. Besides, we design and build the optical model and corresponding mechanical model of the infrared imaging wavefront coding athermal system. The axial and radial temperature gradients of different degrees are applied to the whole system by using SolidWorks software, thus the changes of curvature, refractive index and the distance between the lenses are obtained. Then, we import the deformation model to ZEMAX for ray tracing, and obtain the changes of PSF and MTF in optical system. Finally, we discuss and evaluate the consistency of the PSF (MTF) of the wavefront coding athermal system and the image restorability, which provides the basis and reference for the optimal design of the wavefront coding athermal system. The results show that the adaptability of single material infrared wavefront coding athermal system to axial temperature gradient can reach the upper limit of temperature fluctuation of 60°C, which is much higher than that of radial temperature gradient.
Martorell, María M; Rosales Soro, María Del M; Pajot, Hipólito F; de Figueroa, Lucía I C
2017-09-16
Trichosporon akiyoshidainum HP2023 is a basidiomycetous yeast isolated from Las Yungas rainforest (Tucumán, Argentina) and selected based on its outstanding textile-dye-decolorizing ability. In this work, the decolorization process was optimized using Reactive Black 5 as dye model. Lactose and urea were chosen as carbon and nitrogen sources through a one-at-time approach. Afterwards, factorial designs were employed for medium optimization, leading to the formulation of a simpler optimized medium which contains in g L -1 : lactose 10, yeast extract 1, urea 0.5, KH 2 PO 4 1 and MgSO 4 1. Temperature and agitation conditions were also optimized. The optimized medium and incubation conditions for dye removal were extrapolated to other dyes individually and a mixture of them. Dye removal process happened through both biosorption and biodegradation mechanisms, depending primarily on the dye structure. A positive relation between initial inoculum and dye removal rate and a negative relation between initial dye concentration and final dye removal percentages were found. Under optimized conditions, T. akiyoshidainum HP2023 was able to completely remove a mixture of dyes up to a concentration of 300 mg L -1 , a concentration much higher than those expected in real effluents.
Multi-objective trajectory optimization for the space exploration vehicle
NASA Astrophysics Data System (ADS)
Qin, Xiaoli; Xiao, Zhen
2016-07-01
The research determines temperature-constrained optimal trajectory for the space exploration vehicle by developing an optimal control formulation and solving it using a variable order quadrature collocation method with a Non-linear Programming(NLP) solver. The vehicle is assumed to be the space reconnaissance aircraft that has specified takeoff/landing locations, specified no-fly zones, and specified targets for sensor data collections. A three degree of freedom aircraft model is adapted from previous work and includes flight dynamics, and thermal constraints.Vehicle control is accomplished by controlling angle of attack, roll angle, and propellant mass flow rate. This model is incorporated into an optimal control formulation that includes constraints on both the vehicle and mission parameters, such as avoidance of no-fly zones and exploration of space targets. In addition, the vehicle models include the environmental models(gravity and atmosphere). How these models are appropriately employed is key to gaining confidence in the results and conclusions of the research. Optimal trajectories are developed using several performance costs in the optimal control formation,minimum time,minimum time with control penalties,and maximum distance.The resulting analysis demonstrates that optimal trajectories that meet specified mission parameters and constraints can be quickly determined and used for large-scale space exloration.
Analysis of materials used for Greenhouse roof covering - structure using CFD
NASA Astrophysics Data System (ADS)
Subin, M. C.; Savio Lourence, Jason; Karthikeyan, Ram; Periasamy, C.
2018-04-01
Greenhouse is widely used to create a suitable environment for the growth of plant. During summer, high temperatures cause harm to the plant. This work calculates characteristics required to optimize the above-mentioned parameters using different roof structure covering materials for the greenhouse. Moreover, this work also presents a simulation of the cooling and heating system. In addition, a computer model based on Ansys Fluent has been using to predict the temperature profiles inside the greenhouse. Greenhouse roof structure shading may have a time-dependent effect the production, water and nutrient uptake in plants. An experiment was conducted in the emirate of Dubai in United Arab Emirates to discover the impact of different materials in order to have an optimal plant growth zone and yield production. These structures were poly ethylene and poly carbonate sheets of 2 different configurations. Results showed that poly carbonate sheets configuration of optimal thickness has given a high result in terms of yield production. Therefore, there is a need for appropriate material selection of greenhouse roof structure in this area of UAE. Major parameters and properties need to be considered while selecting a greenhouse roof structure are the resistance to solar radiation, weathering, thermal as well as mechanical properties and good abrasion resistance. In the present study, an experiment has been conducted to find out the material suitability of the greenhouse roof structure in terms of developing proper ambient conditions especially to minimize the energy lose by reducing the HVAC and lighting expenses. The configuration verified using the CFD, so it has been concluded that polycarbonate can be safely used in the greenhouse than other roof structure material having white or green colour.
Kaneda, Shohei; Ono, Koichi; Fukuba, Tatsuhiro; Nojima, Takahiko; Yamamoto, Takatoki; Fujii, Teruo
2011-01-01
In this paper, a rapid and simple method to determine the optimal temperature conditions for denaturant electrophoresis using a temperature-controlled on-chip capillary electrophoresis (CE) device is presented. Since on-chip CE operations including sample loading, injection and separation are carried out just by switching the electric field, we can repeat consecutive run-to-run CE operations on a single on-chip CE device by programming the voltage sequences. By utilizing the high-speed separation and the repeatability of the on-chip CE, a series of electrophoretic operations with different running temperatures can be implemented. Using separations of reaction products of single-stranded DNA (ssDNA) with a peptide nucleic acid (PNA) oligomer, the effectiveness of the presented method to determine the optimal temperature conditions required to discriminate a single-base substitution (SBS) between two different ssDNAs is demonstrated. It is shown that a single run for one temperature condition can be executed within 4 min, and the optimal temperature to discriminate the SBS could be successfully found using the present method. PMID:21845077
Li, Sheng; Yao, Xinhua; Fu, Jianzhong
2014-07-16
Thermoelectric energy harvesting is emerging as a promising alternative energy source to drive wireless sensors in mechanical systems. Typically, the waste heat from spindle units in machine tools creates potential for thermoelectric generation. However, the problem of low and fluctuant ambient temperature differences in spindle units limits the application of thermoelectric generation to drive a wireless sensor. This study is devoted to presenting a transformer-based power management system and its associated control strategy to make the wireless sensor work stably at different speeds of the spindle. The charging/discharging time of capacitors is optimized through this energy-harvesting strategy. A rotating spindle platform is set up to test the performance of the power management system at different speeds. The experimental results show that a longer sampling cycle time will increase the stability of the wireless sensor. The experiments also prove that utilizing the optimal time can make the power management system work more effectively compared with other systems using the same sample cycle.
Li, Sheng; Yao, Xinhua; Fu, Jianzhong
2014-01-01
Thermoelectric energy harvesting is emerging as a promising alternative energy source to drive wireless sensors in mechanical systems. Typically, the waste heat from spindle units in machine tools creates potential for thermoelectric generation. However, the problem of low and fluctuant ambient temperature differences in spindle units limits the application of thermoelectric generation to drive a wireless sensor. This study is devoted to presenting a transformer-based power management system and its associated control strategy to make the wireless sensor work stably at different speeds of the spindle. The charging/discharging time of capacitors is optimized through this energy-harvesting strategy. A rotating spindle platform is set up to test the performance of the power management system at different speeds. The experimental results show that a longer sampling cycle time will increase the stability of the wireless sensor. The experiments also prove that utilizing the optimal time can make the power management system work more effectively compared with other systems using the same sample cycle. PMID:25033189
Bouguecha, Salah T; Boubakri, Ali; Aly, Samir E; Al-Beirutty, Mohammad H; Hamdi, Mohamed M
2016-01-01
Membrane distillation (MD) is considered as a relatively high-energy requirement. To overcome this drawback, it is recommended to couple the MD process with solar energy as the renewable energy source in order to provide heat energy required to optimize its performance to produce permeate flux. In the present work, an original solar energy driven direct contact membrane distillation (DCMD) pilot plant was built and tested under actual weather conditions at Jeddah, KSA, in order to model and optimize permeate flux. The dependency of permeate flux on various operating parameters such as feed temperature (46.6-63.4°C), permeate temperature (6.6-23.4°C), feed flow rate (199-451L/h) and permeate flow rate (199-451L/h) was studied by response surface methodology based on central composite design approach. The analysis of variance (ANOVA) confirmed that all independent variables had significant influence on the model (where P-value <0.05). The high coefficient of determination (R(2) = 0.9644 and R(adj)(2) = 0.9261) obtained by ANOVA demonstrated good correlation between experimental and predicted values of the response. The optimized conditions, determined using desirability function, were T(f) = 63.4°C, Tp = 6.6°C, Q(f) = 451L/h and Q(p) = 451L/h. Under these conditions, the maximum permeate flux of 6.122 kg/m(2).h was achieved, which was close to the predicted value of 6.398 kg/m(2).h.
Paixão, Susana M; Arez, Bruno F; Roseiro, José C; Alves, Luís
2016-11-01
Biodesulfurization can be a complementary technology to the hydrodesulfurization, the commonly physical-chemical process used for sulfur removal from crude oil. The desulfurizing bacterium Gordonia alkanivorans strain 1B as a fructophilic microorganism requires fructose as C-source. In this context, the main goal of this work was the optimization of a simultaneous saccharification and fermentation (SSF) approach using the Zygosaccharomyces bailii strain Talf1 crude enzymes with invertase activity and sucrose as a cheaper fructose-rich commercial C-source (50% fructose) towards dibenzothiophene (DBT) desulfurization by strain 1B. The determination of optimal conditions, for both sucrose hydrolysis and DBT desulfurization was carried out through two sequential experimental uniform designs according to the Doehlert distribution for two factors: pH (5.5-7.5) and temperature (28-38 °C), with the enzyme load of 1.16 U/g/L; and enzyme load (0-4 U/g/L) and temperature (28-38 °C), with pH at 7.5. Based on 2-hydroxybiphenyl production, the analysis of the response surfaces obtained pointed out for pH 7.5, 32 °C and 1.8 U/g/L as optimal conditions. Further optimized SSF of sucrose during the DBT desulfurization process permitted to attain a 4-fold enhanced biodesulfurization. This study opens a new focus of research through the exploitation of sustainable low cost sucrose-rich feedstocks towards a more economical viable bioprocess scale-up. Copyright © 2016 Elsevier Ltd. All rights reserved.
Segovia, Francisco; Lupo, Bryshila; Peiró, Sara; Gordon, Michael H; Almajano, María Pilar
2014-05-06
Borage (Borago officinalis L.) is a typical Spanish plant. During processing, 60% are leaves. The aim of this work is to model and optimize the extraction of polyphenol from borage leaves using the response surface method (RSM) and to use this extract for application in emulsions. The responses were: total polyphenol content (TPC), antioxidant capacity by ORAC, and rosmarinic acid by HPLC. The ranges of the variables temperature, ethanol content and time were 50-90 °C, 0%-30%-60% ethanol (v/v), and 10-15 min. For ethanolic extraction, optimal conditions were at 75.9 °C, 52% ethanol and 14.8 min, yielding activity of 27.05 mg GAE/g DW TPC; 115.96 mg TE/g DW in ORAC and 11.02 mg/L rosmarinic acid. For water extraction, optimal activity was achieved with extraction at 98.3 °C and 22 min, with responses of 22.3 mg GAE/g DW TPC; 81.6 mg TE/g DW in ORAC and 3.9 mg/L rosmarinic acid. The significant variables were ethanol concentration and temperature. For emulsions, the peroxide value was inhibited by 60% for 3% extract concentration; and 80% with 3% extract concentration and 0.2% of BSA. The p-anisidine value between the control and the emulsion with 3% extract was reduced to 73.6% and with BSA 86.3%, and others concentrations had similar behavior.
He, Jun; Shamsi, Shahab A
2011-05-01
In the present work we report, for the first time, the successful on-line coupling of chiral MEKC (CMEKC) to atmospheric pressure photoionization MS (APPI-MS). Four structurally similar neutral test solutes (e.g. benzoin (BNZ) derivatives) were successfully ionized by APPI-MS. The mass spectra in the positive ion mode showed that the protonated molecular ions of BNZs are not the most abundant fragment ions. Simultaneous enantioseparation by CMEKC and on-line APPI-MS detection of four photoinitiators, hydrobenzoin, BNZ, benzoin methyl ether, benzoin ethyl ether, were achieved using an optimized molar ratio of mixed molecular micelle of two polymeric chiral surfactants (polysodium N-undecenoxy carbonyl-L-leucinate and polysodium N-undecenoyl-L,L-leucylvalinate). The CMEKC conditions, such as voltage, chiral polymeric surfactant concentration, buffer pH, and BGE concentration, were optimized using a multivariate central composite design (CCD). The sheath liquid composition (involving %v/v methanol, dopant concentration, electrolyte additive concentration, and flow rate) and spray chamber parameters (drying gas flow rate, drying gas temperature, and vaporizer temperature) were also optimized with CCD. Models built based on the CCD results and response surface method were used to analyze the interactions between factors and their effects on the responses. The final overall optimum conditions for CMEKC-APPI-MS were also predicted and found in agreement with the experimentally optimized parameters. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
GOLDMAN, M; DEIBEL, R H; NIVEN, C F
1963-05-01
Goldman, Manuel (American Meat Institute Foundation, Chicago, Ill.), R. H. Deibel, and C. F. Niven, Jr. Interrelationship between temperature and sodium chloride on growth of lactic acid bacteria isolated from meat-curing brines. J. Bacteriol. 85:1017-1021. 1963.-An elevation of the temperature limit for growth of some Pediococcus homari (Gaffkya homari) and motile Lactobacillus strains could be effected by the addition of sodium chloride to the growth medium. At the optimal temperature for growth, sodium chloride was stimulatory, and as the temperature of incubation was increased a mandatory requirement for sodium chloride was manifested. At the optimal temperature for growth (30 C), the highest sodium chloride concentrations were tolerated; as the temperature was increased, this tolerance decreased, although the optimal sodium chloride concentration increased. No other substances were found that would replace the sodium chloride requirement at higher temperatures of incubation.
Goldman, Manuel; Deibel, R. H.; Niven, C. F.
1963-01-01
Goldman, Manuel (American Meat Institute Foundation, Chicago, Ill.), R. H. Deibel, and C. F. Niven, Jr. Interrelationship between temperature and sodium chloride on growth of lactic acid bacteria isolated from meat-curing brines. J. Bacteriol. 85:1017–1021. 1963.—An elevation of the temperature limit for growth of some Pediococcus homari (Gaffkya homari) and motile Lactobacillus strains could be effected by the addition of sodium chloride to the growth medium. At the optimal temperature for growth, sodium chloride was stimulatory, and as the temperature of incubation was increased a mandatory requirement for sodium chloride was manifested. At the optimal temperature for growth (30 C), the highest sodium chloride concentrations were tolerated; as the temperature was increased, this tolerance decreased, although the optimal sodium chloride concentration increased. No other substances were found that would replace the sodium chloride requirement at higher temperatures of incubation. PMID:14043988
Transversely diode-pumped alkali metal vapour laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parkhomenko, A I; Shalagin, A M
2015-09-30
We have studied theoretically the operation of a transversely diode-pumped alkali metal vapour laser. For the case of high-intensity laser radiation, we have obtained an analytical solution to a complex system of differential equations describing the laser. This solution allows one to exhaustively determine all the energy characteristics of the laser and to find optimal parameters of the working medium and pump radiation (temperature, buffer gas pressure, and intensity and width of the pump spectrum). (lasers)
Prediction of energy balance and utilization for solar electric cars
NASA Astrophysics Data System (ADS)
Cheng, K.; Guo, L. M.; Wang, Y. K.; Zafar, M. T.
2017-11-01
Solar irradiation and ambient temperature are characterized by region, season and time-domain, which directly affects the performance of solar energy based car system. In this paper, the model of solar electric cars used was based in Xi’an. Firstly, the meteorological data are modelled to simulate the change of solar irradiation and ambient temperature, and then the temperature change of solar cell is calculated using the thermal equilibrium relation. The above work is based on the driving resistance and solar cell power generation model, which is simulated under the varying radiation conditions in a day. The daily power generation and solar electric car cruise mileage can be predicted by calculating solar cell efficiency and power. The above theoretical approach and research results can be used in the future for solar electric car program design and optimization for the future developments.
Magnetic materials for mobile communication antennas substrate application
NASA Astrophysics Data System (ADS)
Chen, Hui; Liang, Difei; Li, Weijia; Pang, Chao
2017-11-01
In this work, 3Ba0.7Sr0.3O·2CoO·10.8Fe2O3 and Ba2Co2Fe12O22 had been fabricated successfully by conventional ceramic process. Crystallographic structure and electromagnetic properties of two kind of hexagonal ferrite with different sintering temperature were investigated. X-ray Diffraction (XRD), Agilent-N5230A Network Analyzer were used to measure ferrite samples. The mobile phone antenna performance was analysed by HFSS. The results revealed that the main phase of two ferrite samples generated at lower temperature due to additive. The optimized parameters of ferrite are sintering temperature at 1000°C. And to emulate antenna model by HFSS find that Z-type and Y-type ferrite substrate can contribute to antenna frequency shifting, radiation efficiency were affected a little.
NASA Astrophysics Data System (ADS)
Karasik, Max; Weaver, J. L.; Aglitskiy, Y.; Zalesak, S. T.; Velikovich, A. L.; Oh, J.; Obenschain, S. P.; Arikawa, Y.; Watari, T.
2010-11-01
We will present results from follow-on experiments to the record-high velocities of 1000 km/s achieved on Nike [Karasik et al., Phys. Plasmas 17, 056317 (2010) ], in which highly accelerated planar foils of deuterated polystyrene were made to collide with a witness foil to produce extreme shock pressures and result in heating of matter to thermonuclear temperatures. Still higher velocities and higher target densities are required for impact fast ignition. The aim of these experiments is shaping the driving pulse to minimize shock heating of the accelerated target and using the focal zoom capability of Nike to achieve higher densities and velocities. Spectroscopic measurements of electron temperature achieved upon impact will complement the neutron time-of-flight ion temperature measurement. Work is supported by US DOE and Office of Naval Research.
Phase equilibria computations of multicomponent mixtures at specified internal energy and volume
NASA Astrophysics Data System (ADS)
Myint, Philip C.; Nichols, Albert L., III; Springer, H. Keo
2017-06-01
Hydrodynamic simulation codes for high-energy density science applications often use internal energy and volume as their working variables. As a result, the codes must determine the thermodynamic state that corresponds to the specified energy and volume by finding the global maximum in entropy. This task is referred to as the isoenergetic-isochoric flash. Solving it for multicomponent mixtures is difficult because one must find not only the temperature and pressure consistent with the energy and volume, but also the number of phases present and the composition of the phases. The few studies on isoenergetic-isochoric flash that currently exist all require the evaluation of many derivatives that can be tedious to implement. We present an alternative approach that is based on a derivative-free method: particle swarm optimization. The global entropy maximum is found by running several instances of particle swarm optimization over different sets of randomly selected points in the search space. For verification, we compare the predicted temperature and pressure to results from the related, but simpler problem of isothermal-isobaric flash. All of our examples involve the equation of state we have recently developed for multiphase mixtures of the energetic materials HMX, RDX, and TNT. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Jeyashekar, Nigil Satish
Scramjet engines propelled at hypersonic velocities have the potential to replace existing rocket launchers. Commercializing the vehicle is an arduous task, owing to issues relating to low combustion efficiency. The performance, thrust, and speed of the engine can be improved by optimizing: turbulence-chemistry interaction to provide mixing conditions favorable for the chemistry, pressure buildup, and re-circulation of hydrogen throughout the engine. The performance of the engine can be measured, flow and chemical dynamics can be evaluated when all three variables in the transport equations are known. The variables are instantaneous flow velocity, static temperature (refers to the macroscopic temperature and not the molecular species temperature), and total number density at a point in the flow. The motive is to build a non-intrusive tool to measure thermodynamic quantities (static temperature and total number density). This can be integrated with a velocity measurement tool, in the future, to obtain all three variables simultaneously and instantaneously. The dissertation describes in detail the motivation for the proposed work, with introduction to the formalism involved, with a concise literature review, followed by mathematical perspective to obtain the working equations for temperature and number density. The design of the adiabatic burner and the experimental setup used for calibration is discussed with the uncertainty involved in measurements. The measurements are made for a certain set of flow conditions in the laminar burner by Raman scattering and is validated by comparing it to the theoretical/adiabatic flame temperature and mole fraction plots, in lean and rich regime. This technique is applied to turbulent, supersonic, hydrogen-air flame of an afterburning rocket nozzle. The statistics of temperature and total number density versus the corresponding values at adiabatic conditions gives the departure from thermal and chemical equilibrium. The extent of mixing and combustion can be concluded from such statistics. The future work will involve experimental modifications to make line and planar measurements in combusting jets.
Laser ablation of iron-rich black films from exposed granite surfaces
NASA Astrophysics Data System (ADS)
Delgado Rodrigues, J.; Costa, D.; Mascalchi, M.; Osticioli, I.; Siano, S.
2014-10-01
Here, we investigated the potential of laser removal of iron-rich dark films from weathered granite substrates, which represents a very difficult conservation problem because of the polymineralic nature of the stone and of its complex deterioration mechanisms. As often occurs, biotite was the most critical component because of its high optical absorption, low melting temperature, and pronounced cleavage, which required a careful control of the photothermal and photomechanical effects to optimize the selective ablation of the mentioned unwanted dark film. Different pulse durations and wavelengths Nd:YAG lasers were tested and optimal irradiation conditions were determined through thorough analytical characterisations. Besides addressing a specific conservation problem, the present work provides information of general valence in laser uncovering of encrusted granite.
Determination of the propellant combustion law under ballistic experiment conditions
NASA Astrophysics Data System (ADS)
Ishchenko, A. N.; Diachkovskii, A. S.; Zykova, A. I.; Kasimov, VZ; Samorokova, N. M.
2017-11-01
The main characteristics of ballistic experiment are the maximum pressure in the combustion chamber P max and the projectile velocity at the time of barrel leaving U M. During the work the burning law of the new high-energy fuel was determined in a ballistic experiment. This burning law was used for a parametric study of depending P max and U M from a powder charge mass and a traveling charge at initial temperature of + 20 °C was carried out. The optimal conditions for loading were obtained for improving the muzzle velocity by 14.9 %. Under optimal loading, there is defined the conditions, which is possible to get the greatest value muzzle velocity projectile at pressures up to 600 MPa.
NASA Astrophysics Data System (ADS)
Coan, Stephen; Shamimi, Ali; Duerig, T. W.
2017-12-01
Slightly nickel-rich Ni-Ti alloys (typically 50.5-51% atomic percent nickel) are commonly used to produce devices that are superelastic at body temperature. This excess nickel can be tolerated in the NiTi matrix when its temperature is above the solvus of about 600 °C, but will precipitate out during lower temperatures. Recent work has been done on exploring the effect lower temperatures have on the material properties of NiTi. Findings showed that properties begin to change at temperatures as low as 100 °C. It is because of these results that it was deemed important to better understand what may be happening during the quenching process itself. Through running a combination of DSC and tensile tests on samples cooled at varying rates, it was found that the cooling rate has an effect on properties when heat treated above a specific temperature. Understanding how quickly the alloy must be cooled to fully retain the supersaturated NiTi matrix is important to optimizing processes and anticipating material properties after a heat treatment.
Adjustment of Conformational Flexibility is a Key Event in the Thermal Adaptation of Proteins
NASA Astrophysics Data System (ADS)
Zavodszky, Peter; Kardos, Jozsef; Svingor, Adam; Petsko, Gregory A.
1998-06-01
3-Isopropylmalate dehydrogenase (IPMDH, E.C. 1.1.1.85) from the thermophilic bacterium Thermus thermophilus HB8 is homologous to IPMDH from the mesophilic Escherichia coli, but has an approximately 17 degrees C higher melting temperature. Its temperature optimum is 22-25 degrees C higher than that of the E. coli enzyme; however, it is hardly active at room temperature. The increased conformational rigidity required to stabilize the thermophilic enzyme against heat denaturation might explain its different temperature-activity profile. Hydrogen/deuterium exchange studies were performed on this thermophilic-mesophilic enzyme pair to compare their conformational flexibilities. It was found that Th. thermophilus IPMDH is significantly more rigid at room temperature than E. coli IPMDH, whereas the enzymes have nearly identical flexibilities under their respective optimal working conditions, suggesting that evolutionary adaptation tends to maintain a ``corresponding state'' regarding conformational flexibility. These observations confirm that conformational fluctuations necessary for catalytic function are restricted at room temperature in the thermophilic enzyme, suggesting a close relationship between conformational flexibility and enzyme function.
Ducru, Pablo; Josey, Colin; Dibert, Karia; ...
2017-01-25
This paper establishes a new family of methods to perform temperature interpolation of nuclear interactions cross sections, reaction rates, or cross sections times the energy. One of these quantities at temperature T is approximated as a linear combination of quantities at reference temperatures (T j). The problem is formalized in a cross section independent fashion by considering the kernels of the different operators that convert cross section related quantities from a temperature T 0 to a higher temperature T — namely the Doppler broadening operation. Doppler broadening interpolation of nuclear cross sections is thus here performed by reconstructing the kernelmore » of the operation at a given temperature T by means of linear combination of kernels at reference temperatures (T j). The choice of the L 2 metric yields optimal linear interpolation coefficients in the form of the solutions of a linear algebraic system inversion. The optimization of the choice of reference temperatures (T j) is then undertaken so as to best reconstruct, in the L∞ sense, the kernels over a given temperature range [T min,T max]. The performance of these kernel reconstruction methods is then assessed in light of previous temperature interpolation methods by testing them upon isotope 238U. Temperature-optimized free Doppler kernel reconstruction significantly outperforms all previous interpolation-based methods, achieving 0.1% relative error on temperature interpolation of 238U total cross section over the temperature range [300 K,3000 K] with only 9 reference temperatures.« less
Analysis of a Temperature-Controlled Exhaust Thermoelectric Generator During a Driving Cycle
NASA Astrophysics Data System (ADS)
Brito, F. P.; Alves, A.; Pires, J. M.; Martins, L. B.; Martins, J.; Oliveira, J.; Teixeira, J.; Goncalves, L. M.; Hall, M. J.
2016-03-01
Thermoelectric generators can be used in automotive exhaust energy recovery. As car engines operate under wide variable loads, it is a challenge to design a system for operating efficiently under these variable conditions. This means being able to avoid excessive thermal dilution under low engine loads and being able to operate under high load, high temperature events without the need to deflect the exhaust gases with bypass systems. The authors have previously proposed a thermoelectric generator (TEG) concept with temperature control based on the operating principle of the variable conductance heat pipe/thermosiphon. This strategy allows the TEG modules’ hot face to work under constant, optimized temperature. The variable engine load will only affect the number of modules exposed to the heat source, not the heat transfer temperature. This prevents module overheating under high engine loads and avoids thermal dilution under low engine loads. The present work assesses the merit of the aforementioned approach by analysing the generator output during driving cycles simulated with an energy model of a light vehicle. For the baseline evaporator and condenser configuration, the driving cycle averaged electrical power outputs were approximately 320 W and 550 W for the type-approval Worldwide harmonized light vehicles test procedure Class 3 driving cycle and for a real-world highway driving cycle, respectively.
Analysis and Design of Novel Nanophotonic Structures
NASA Astrophysics Data System (ADS)
Shugayev, Roman
Nanophotonic devices hold promise to revolutionize the fields of optical communications, quantum computing and bioimaging. Designing viable solutions to these pressing problems require developing accurate models of the relevant systems. While a great deal of work has been performed in terms of developing individual models with varying levels of fidelity, some of these more complex systems still require improved links between scales to allow for accurate design and optimization within a reasonable amount of computing time. For instance, color centers in nanocrystals appear to be a promising platform for room-temperature scalable quantum information science, but questions still remain about the optimal structures to control single-photon emitter rates, coupling fidelity, and suitable scaling architectures. In this work, a method for efficient optical access and readout of nanocrystal states via magnetic transitions was demonstrated. Separately novel Mie resonant devices that guarantee on-demand enhancement of emission from the single vacancy sources were shown. To improve addressability of the crystal-based impurities, a new approach for realization of single photon electro-optical devices is also proposed in this work. Furthermore, this work on color centers in nanocrystals has been shown to be sensitive to the local refractive index environment. This allows this system to be adapted to biomedical applications, such as sensitive, minimally invasive cancer detection. In this work, a novel scheme for propagation loss-free sensing of local refractive index using nanocrystal probes with broken symmetry is carefully investigated. In conclusion, this thesis develops several novel simulation and optimization techniques that combine existing nanophotonic modeling tools into a unique multi-scale modeling tool. It has been successfully applied to nanophotonically-tuned color vacancy centers. Potential applications span optical communications, quantum information processing, and biomedical sensing.
Unobtrusive Monitoring of Neonatal Brain Temperature Using a Zero-Heat-Flux Sensor Matrix.
Atallah, Louis; Bongers, Edwin; Lamichhane, Bishal; Bambang-Oetomo, Sidarto
2016-01-01
The temperature of preterm neonates must be maintained within a narrow window to ensure their survival. Continuously measuring their core temperature provides an optimal means of monitoring their thermoregulation and their response to environmental changes. However, existing methods of measuring core temperature can be very obtrusive, such as rectal probes, or inaccurate/lagging, such as skin temperature sensors and spot-checks using tympanic temperature sensors. This study investigates an unobtrusive method of measuring brain temperature continuously using an embedded zero-heat-flux (ZHF) sensor matrix placed under the head of the neonate. The measured temperature profile is used to segment areas of motion and incorrect positioning, where the neonate's head is not above the sensors. We compare our measurements during low motion/stable periods to esophageal temperatures for 12 preterm neonates, measured for an average of 5 h per neonate. The method we propose shows good correlation with the reference temperature for most of the neonates. The unobtrusive embedding of the matrix in the neonate's environment poses no harm or disturbance to the care work-flow, while measuring core temperature. To address the effect of motion on the ZHF measurements in the current embodiment, we recommend a more ergonomic embedding ensuring the sensors are continuously placed under the neonate's head.
Optimal formation and enhanced superconductivity of Tl-1212 phase (Tl0.6Pb0.4)(Ba,Sr)CaCu2O7
NASA Astrophysics Data System (ADS)
Ranjbar, M. G.; Ghoranneviss, Mahmood; Abd-Shukor, R.
2018-06-01
The effect of heating temperature on the formation of Tl-1212 phase with nominal starting composition (Tl0.6Pb0.4)(Ba,Sr)CaCu2O7 (Tl-1212) is reported. The Ba-bearing Tl-1212 phase is normally prepared at around 900 °C while with Sr-bearing sample is prepared at a much higher temperature of around 1000 °C. This work was conducted to determine the optimal temperature to synthesis the Tl-1212 phase when the sample contains Ba and Sr with 1:1 ratio. (Tl0.6Pb0.4)(Ba,Sr)CaCu2O7 samples were prepared using the solid-state reaction method via the precursor route. In the final preparation stage, the samples were heated at 850, 870, 900, 920, 950, 970 and 1000 °C in oxygen flow. X-Ray diffraction patterns showed that most samples consisted of a mixed (Tl0.6Pb0.4)(Ba,Sr)Ca2Cu3O9 (Tl-1223) and Tl-1212 phase except for the sample heated at 970 °C which showed a single Tl-1212 phase and the sample heated at 850 °C which showed the Tl-1223 phase. The transition temperature measured by four-probe method showed that the sample heated at 970 °C exhibited the highest onset temperature of 118 K and zero-resistance temperature of 100 K. This transition temperature is higher than the usually reported value for the Tl-1212 phase. AC susceptibility measurements also showed the 970 °C heated sample with the highest transition temperature T c χ' = 109 K. The interplay of ionic radius (Ba2+ and Sr2+) decreases of the unit cell volume and changes in the internal lattice strain enhanced the transition temperature and the formation of the Tl-1212 phase.
NASA Astrophysics Data System (ADS)
Dharmalingam, Gnanaprakash; Carpenter, Michael A.
2015-05-01
Monitoring polluting gases such as CO and NOx emitted from gas turbines in power plants and aircraft is important, in order to both reduce the effects of such gases on the environment as well as to optimize the performance of the respective power system. Fuel cost savings as well as a reduced environmental impact can be realized if air traffic utilized next generation jet turbines with an emission/performance control sensing system. These monitoring systems must be sensitive and selective to gases as well as be reliable and stable under harsh environmental conditions where the operation temperatures are in excess of 500 °C within a highly reactive environment. In this work, plasmonics based chemical sensors with nanocomposites of a combination of gold nano particles and Yttria Stabilized Zirconia (YSZ) has enabled the sensitive (PPM) and stable detection (100s of hrs.) of H2, NO2 and CO at temperatures of 500 °C. Selectivity remains a challenging parameter to optimize and a layer by layer sputter deposition approach has been recently demonstrated to modify the resulting sensing properties through a change in the morphology of the deposited films. It is expected that further enhancements would be realized through control of the shape and geometry of the catalytically active Au nanoparticles. This level of control has been realized through the use of electron beam lithography to fabricate nanocomposite arrays. Sensing results towards the detection of H2 will be highlighted with specific concerns related to optimization of these nanorod arrays detailed.
Paz, Beatriz; Vázquez, José A; Riobó, Pilar; Franco, José M
2006-10-01
A complete first order orthogonal plan was used to optimize the growth and the production of yessotoxin (YTX) by the dinoflagellate Protoceratium reticulatum in culture by controlling salinity, temperature and irradiance. Initially, an approach to the kinetic data of cellular density and YTX production for each one of the experimental design conditions was performed. The P. reticulatum growth and YTX production were fitted to logistical equations and to a first-order kinetic model, respectively. The parameters obtained from this adjustment were used as dependent variables for the formulation of the empirical equations of the factorial design tested. The results showed that in practically all the cases for both, P. reticulatum growth and YTX production, irradiance is the primary independent variable and has a positive effect in the range 50-90 micromol photons m(-2) s(-1). Additionally, in certain specific cases, temperature reveals significant positive effects when maintained between 15 and 23 degrees C and salinity in the range of 20-34 displays negative effects. Despite the narrow ranges used in the work, results showed the suitability of factorial analysis to evaluate the optimal conditions for growth and yessotoxin production by the dinoflagellate P. reticulatum.
NASA Astrophysics Data System (ADS)
Wendel, Christopher H.; Kazempoor, Pejman; Braun, Robert J.
2016-01-01
Reversible solid oxide cell (ReSOC) systems are being increasingly considered for electrical energy storage, although much work remains before they can be realized, including cell materials development and system design optimization. These systems store electricity by generating a synthetic fuel in electrolysis mode and subsequently recover electricity by electrochemically oxidizing the stored fuel in fuel cell mode. System thermal management is improved by promoting methane synthesis internal to the ReSOC stack. Within this strategy, the cell-stack operating conditions are highly impactful on system performance and optimizing these parameters to suit both operating modes is critical to achieving high roundtrip efficiency. Preliminary analysis shows the thermoneutral voltage to be a useful parameter for analyzing ReSOC systems and the focus of this study is to quantitatively examine how it is affected by ReSOC operating conditions. The results reveal that the thermoneutral voltage is generally reduced by increased pressure, and reductions in temperature, fuel utilization, and hydrogen-to-carbon ratio. Based on the thermodynamic analysis, many different combinations of these operating conditions are expected to promote efficient energy storage. Pressurized systems can achieve high efficiency at higher temperature and fuel utilization, while non-pressurized systems may require lower stack temperature and suffer from reduced energy density.
Shahid, Muhammad; Xue, Xinkai; Fan, Chao; Ninham, Barry W; Pashley, Richard M
2015-06-25
An enhanced thermal decomposition of chemical compounds in aqueous solution has been achieved at reduced solution temperatures. The technique exploits hitherto unrecognized properties of a bubble column evaporator (BCE). It offers better heat transfer efficiency than conventional heat transfer equipment. This is obtained via a continuous flow of hot, dry air bubbles of optimal (1-3 mm) size. Optimal bubble size is maintained by using the bubble coalescence inhibition property of some salts. This novel method is illustrated by a study of thermal decomposition of ammonium bicarbonate (NH4HCO3) and potassium persulfate (K2S2O8) in aqueous solutions. The decomposition occurs at significantly lower temperatures than those needed in bulk solution. The process appears to work via the continuous production of hot (e.g., 150 °C) dry air bubbles, which do not heat the solution significantly but produce a transient hot surface layer around each rising bubble. This causes the thermal decomposition of the solute. The decomposition occurs due to the effective collision of the solute with the surface of the hot bubbles. The new process could, for example, be applied to the regeneration of the ammonium bicarbonate draw solution used in forward osmosis.
Ghacham, Alia Ben; Pasquier, Louis-César; Cecchi, Emmanuelle; Blais, Jean-François; Mercier, Guy
2016-09-01
This work focuses on the influence of different parameters on the efficiency of steel slag carbonation in slurry phase under ambient temperature. In the first part, a response surface methodology was used to identify the effect and the interactions of the gas pressure, liquid/solid (L/S) ratio, gas/liquid ratio (G/L), and reaction time on the CO2 removed/sample and to optimize the parameters. In the second part, the parameters' effect on the dissolution of CO2 and its conversion into carbonates were studied more in detail. The results show that the pressure and the G/L ratio have a positive effect on both the dissolution and the conversion of CO2. These results have been correlated with the higher CO2 mass introduced in the reactor. On the other hand, an important effect of the L/S ratio on the overall CO2 removal and more specifically on the carbonate precipitation has been identified. The best results were obtained L/S ratios of 4:1 and 10:1 with respectively 0.046 and 0.052 gCO2 carbonated/g sample. These yields were achieved after 10 min reaction, at ambient temperature, and 10.68 bar of total gas pressure following direct gas treatment.
Thin-film cadmium telluride photovoltaic cells
NASA Astrophysics Data System (ADS)
Compaan, A. D.; Bohn, R. G.
1994-09-01
This report describes work to develop and optimize radio-frequency (RF) sputtering for the deposition of thin films of cadmium telluride (CdTe) and related semiconductors for thin-film solar cells. Pulsed laser physical vapor deposition was also used for exploratory work on these materials, especially where alloying or doping are involved, and for the deposition of cadmium chloride layers. The sputtering work utilized a 2-in diameter planar magnetron sputter gun. The film growth rate by RF sputtering was studied as a function of substrate temperature, gas pressure, and RF power. Complete solar cells were fabricated on tin-oxide-coated soda-lime glass substrates. Currently, work is being done to improve the open-circuit voltage by varying the CdTe-based absorber layer, and to improve the short-circuit current by modifying the CdS window layer.
NASA Astrophysics Data System (ADS)
Sui, Dashan; Wang, Tao; Zhu, Lingling; Gao, Liang; Cui, Zhenshan
2016-11-01
The hot deformation behavior and hot workability characteristics of as-cast SA508-3 steel were studied by modeling the constitutive equations and developing hot processing maps. The isothermal compression experiments were carried out at temperatures of 950°C, 1050°C, 1150°C, and 1250°C and strain rates of 0.001 s-1, 0.01 s-1, 0.1 s-1, and 1 s-1 respectively. The two-stage flow stress models were established through the classical theories on work hardening and softening, and the solution of activation energy for hot deformation was 355.0 kJ mol-1 K-1. Based on the dynamic material model, the power dissipation and instability maps were developed separately at strains of 0.2, 0.4, 0.6 and 0.8. The power dissipation rate increases with both the increase of temperature and the decrease of strain rate, and the instable region mainly appears on the conditions of low temperature and high strain rate. The optimal hot working parameters for as-cast SA508-3 steel are 1050-1200°C/0.001-0.1 s-1, with about 25-40% peak efficiency of power dissipation.
Investigation of Hot Deformation Behavior of Duplex Stainless Steel Grade 2507
NASA Astrophysics Data System (ADS)
Kingklang, Saranya; Uthaisangsuk, Vitoon
2017-01-01
Recently, duplex stainless steels (DSSs) are being increasingly employed in chemical, petro-chemical, nuclear, and energy industries due to the excellent combination of high strength and corrosion resistance. Better understanding of deformation behavior and microstructure evolution of the material under hot working process is significant for achieving desired mechanical properties. In this work, plastic flow curves and microstructure development of the DSS grade 2507 were investigated. Cylindrical specimens were subjected to hot compression tests for different elevated temperatures and strain rates by a deformation dilatometer. It was found that stress-strain responses of the examined steel strongly depended on the forming rate and temperature. The flow stresses increased with higher strain rates and lower temperatures. Subsequently, predictions of the obtained stress-strain curves were done according to the Zener-Hollomon equation. Determination of material parameters for the constitutive model was presented. It was shown that the calculated flow curves agreed well with the experimental results. Additionally, metallographic examinations of hot compressed samples were performed by optical microscope using color tint etching. Area based phase fractions of the existing phases were determined for each forming condition. Hardness of the specimens was measured and discussed with the resulted microstructures. The proposed flow stress model can be used to design and optimize manufacturing process at elevated temperatures for the DSS.
NASA Astrophysics Data System (ADS)
Zheng, Yuying; Dou, Zhengjie; Fang, Yanxiong; Li, Muwu; Wu, Xin; Zeng, Jianhuang; Hou, Zhaohui; Liao, Shijun
2016-02-01
Polyol approach is commonly used in synthesizing Pt nanoparticles in polymer electrolyte membrane fuel cells. However, the application of this process consumes a great deal of time and energy, as the reduction of precursors requires elevated temperatures and several hours. Moreover, the ethylene glycol and its oxidizing products bound to Pt are difficult to remove. In this work, we utilize the advantages of ethylene glycol and prepare Pt nanoparticles through a room-temperature hydrogen gas reduction in an ethylene glycol/water mixed solvent, which is followed by subsequent harvesting by carbon nanotubes as electrocatalysts. This method is simple, facile, and time-efficient, as the entire room-temperature reduction process is completed in a few minutes. As the solvent changes from water to an ethylene glycol/water mix, the size of Pt nanoparticles varies from 10 to 3 nm and their shape transitions from polyhedral to spherical. Pt nanoparticles prepared in a 1:1 volume ratio mixture of ethylene glycol/water are uniformly dispersed with an average size of ∼3 nm. The optimized carbon nanotube-supported Pt electrocatalyst exhibits excellent methanol oxidation and oxygen reduction activities. This work demonstrates the potential use of mixed solvents as an approach in materials synthesis.
NASA Astrophysics Data System (ADS)
Hammouda, Imen; Mihoubi, Daoued
2017-12-01
This work deals with a numerical study of the response of a porcelain slab when subjected to convective drying in stationary and non-stationary conditions. The used model describes heat, mass, and momentum transfers is applied to an unsaturated viscoelastic medium described by a Maxwell model. The numerical code allows us to determine the effect of the surrounding air temperature on drying kinetics and on mechanical stress intensities. Von Mises stresses are analysed in order to foresee an eventual damage that may occur during drying. Simulation results for several temperatures in the range of [30 °C, 90 °C] shows that for the temperature from 30 °C to 60 °C, Von Mises stresses are always lower than the yield strength. But above 70 °C, Von Mises stresses are higher than the ultimate strength, and consequently there is a risk of crack at the end of the constant drying rate period. The idea proposed in this work is to integrate a reducing temperature phase when the predicted Von Mises stress intensity exceeds the admissible stress. Simulation results shows that a non-stationary convective drying (90-60 °C) allows us to optimize costs and quality by reducing the drying time and maintaining Von Mises stress values under the admissible stress.
Gibson, Oliver R; Mee, Jessica A; Tuttle, James A; Taylor, Lee; Watt, Peter W; Maxwell, Neil S
2015-01-01
Heat acclimation requires the interaction between hot environments and exercise to elicit thermoregulatory adaptations. Optimal synergism between these parameters is unknown. Common practise involves utilising a fixed workload model where exercise prescription is controlled and core temperature is uncontrolled, or an isothermic model where core temperature is controlled and work rate is manipulated to control core temperature. Following a baseline heat stress test; 24 males performed a between groups experimental design performing short term heat acclimation (STHA; five 90 min sessions) and long term heat acclimation (LTHA; STHA plus further five 90 min sessions) utilising either fixed intensity (50% VO2peak), continuous isothermic (target rectal temperature 38.5 °C for STHA and LTHA), or progressive isothermic heat acclimation (target rectal temperature 38.5 °C for STHA, and 39.0 °C for LTHA). Identical heat stress tests followed STHA and LTHA to determine the magnitude of adaptation. All methods induced equal adaptation from baseline however isothermic methods induced adaptation and reduced exercise durations (STHA = -66% and LTHA = -72%) and mean session intensity (STHA = -13% VO2peak and LTHA = -9% VO2peak) in comparison to fixed (p < 0.05). STHA decreased exercising heart rate (-10 b min(-1)), core (-0.2 °C) and skin temperature (-0.51 °C), with sweat losses increasing (+0.36 Lh(-1)) (p<0.05). No difference between heat acclimation methods, and no further benefit of LTHA was observed (p > 0.05). Only thermal sensation improved from baseline to STHA (-0.2), and then between STHA and LTHA (-0.5) (p<0.05). Both the continuous and progressive isothermic methods elicited exercise duration, mean session intensity, and mean T(rec) analogous to more efficient administration for maximising adaptation. Short term isothermic methods are therefore optimal for individuals aiming to achieve heat adaptation most economically, i.e. when integrating heat acclimation into a pre-competition taper. Fixed methods may be optimal for military and occupational applications due to lower exercise intensity and simplified administration. Copyright © 2015 Elsevier Ltd. All rights reserved.
Laser cutting: industrial relevance, process optimization, and laser safety
NASA Astrophysics Data System (ADS)
Haferkamp, Heinz; Goede, Martin; von Busse, Alexander; Thuerk, Oliver
1998-09-01
Compared to other technological relevant laser machining processes, up to now laser cutting is the application most frequently used. With respect to the large amount of possible fields of application and the variety of different materials that can be machined, this technology has reached a stable position within the world market of material processing. Reachable machining quality for laser beam cutting is influenced by various laser and process parameters. Process integrated quality techniques have to be applied to ensure high-quality products and a cost effective use of the laser manufacturing plant. Therefore, rugged and versatile online process monitoring techniques at an affordable price would be desirable. Methods for the characterization of single plant components (e.g. laser source and optical path) have to be substituted by an omnivalent control system, capable of process data acquisition and analysis as well as the automatic adaptation of machining and laser parameters to changes in process and ambient conditions. At the Laser Zentrum Hannover eV, locally highly resolved thermographic measurements of the temperature distribution within the processing zone using cost effective measuring devices are performed. Characteristic values for cutting quality and plunge control as well as for the optimization of the surface roughness at the cutting edges can be deducted from the spatial distribution of the temperature field and the measured temperature gradients. Main influencing parameters on the temperature characteristic within the cutting zone are the laser beam intensity and pulse duration in pulse operation mode. For continuous operation mode, the temperature distribution is mainly determined by the laser output power related to the cutting velocity. With higher cutting velocities temperatures at the cutting front increase, reaching their maximum at the optimum cutting velocity. Here absorption of the incident laser radiation is drastically increased due to the angle between the normal of the cutting front and the laser beam axis. Beneath process optimization and control further work is focused on the characterization of particulate and gaseous laser generated air contaminants and adequate safety precautions like exhaust and filter systems.
NASA Astrophysics Data System (ADS)
Ohkubo, I.; Christen, H. M.; Kalinin, Sergei V.; Jellison, G. E.; Rouleau, C. M.; Lowndes, D. H.
2004-02-01
We have developed a multisample film growth method on a temperature-gradient substrate holder to quickly optimize the film growth temperature in pulsed-laser deposition. A smooth temperature gradient is achieved, covering a range of temperatures from 200 to 830 °C. In a single growth run, the optimal growth temperature for SrxBa1-xNb2O6 thin films on MgO(001) substrates was determined to be 750 °C, based on results from ellipsometry and piezoresponse force microscopy. Variations in optical properties and ferroelectric domains structures were clearly observed as function of growth temperature, and these physical properties can be related to their different crystalline quality. Piezoresponse force microscopy indicated the formation of uniform ferroelectric film for deposition temperatures above 750 °C. At 660 °C, isolated micron-sized ferroelectric islands were observed, while samples deposited below 550 °C did not exhibit clear piezoelectric contrast.
Laikhtman, A; Rapoport, L; Perfilyev, V; Moshkovich, A; Akhvlediani, R; Hoffman, A
2011-09-01
In the present work we perform optimization of mechanical and crystalline properties of CVD microcrystalline diamond films grown on steel substrates. A chromium-nitride (Cr-N) interlayer had been previously proposed to serve as a buffer for carbon and iron inter-diffusion and as a matching layer for the widely differing expansion coefficients of diamond and steel. However, adhesion and wear as well as crystalline perfection of diamond films are strongly affected by conditions of both Cr-N interlayer preparation and CVD diamond deposition. In this work we assess the effects of two parameters. The first one is the temperature of the Cr-N interlayer preparation: temperatures in the range of 500 degrees C-800 degrees C were used. The second one is diamond film thickness in the 0.5 microm-2 microm range monitored through variation of the deposition time from approximately 30 min to 2 hours. The mechanical properties of so deposited diamond films were investigated. For this purpose, scratch tests were performed at different indentation loads. The friction coefficient and wear loss were assessed. The mechanical and tribological properties were related to structure, composition, and crystalline perfection of diamond films which were extensively analyzed using different microscopic and spectroscopic techniques. It was found that relatively thick diamond film deposited on the Cr-N interlayer prepared at the temperature similar to that of the CVD process has the best mechanical and adhesion strength. This film was stable without visible cracks around the wear track during all scratch tests with different indentation loads. In other cases, cracking and delamination of the films took place at low to moderate indentation loads.
FY17 Status Report on the Initial Development of a Constitutive Model for Grade 91 Steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Messner, M. C.; Phan, V. -T.; Sham, T. -L.
Grade 91 is a candidate structural material for high temperature advanced reactor applications. Existing ASME Section III, Subsection HB, Subpart B simplified design rules based on elastic analysis are setup as conservative screening tools with the intent to supplement these screening rules with full inelastic analysis when required. The Code provides general guidelines for suitable inelastic models but does not provide constitutive model implementations. This report describes the development of an inelastic constitutive model for Gr. 91 steel aimed at fulfilling the ASME Code requirements and being included into a new Section III Code appendix, HBB-Z. A large database ofmore » over 300 experiments on Gr. 91 was collected and converted to a standard XML form. Five families of Gr. 91 material models were identified in the literature. Of these five, two are potentially suitable for use in the ASME code. These two models were implemented and evaluated against the experimental database. Both models have deficiencies so the report develops a framework for developing and calibrating an improved model. This required creating a new modeling method for representing changes in material rate sensitivity across the full ASME allowable temperature range for Gr. 91 structural components: room temperature to 650° C. On top of this framework for rate sensitivity the report describes calibrating a model for work hardening and softening in the material using genetic algorithm optimization. Future work will focus on improving this trial model by including tension/compression asymmetry observed in experiments and necessary to capture material ratcheting under zero mean stress and by improving the optimization and analysis framework.« less
NASA Astrophysics Data System (ADS)
Lei, Wang; Yanzhong, Li; Yonghua, Jin; Yuan, Ma
2015-03-01
Sufficient knowledge of thermal performance and pressurization behaviors in cryogenic tanks during rocket launching period is of importance to the design and optimization of a pressurization system. In this paper, ground experiments with liquid oxygen (LO2) as the cryogenic propellant, high-temperature helium exceeding 600 K as the pressurant gas, and radial diffuser and anti-cone diffuser respectively at the tank inlet were performed. The pressurant gas requirements, axial and radial temperature distributions, and energy distributions inside the propellant tank were obtained and analyzed to evaluate the comprehensive performance of the pressurization system. It was found that the pressurization system with high-temperature helium as the pressurant gas could work well that the tank pressure was controlled within a specified range and a stable discharging liquid rate was achieved. For the radial diffuser case, the injected gas had a direct impact on the tank inner wall. The severe gas-wall heat transfer resulted in about 59% of the total input energy absorbed by the tank wall. For the pressurization case with anti-cone diffuser, the direct impact of high-temperature gas flowing toward the liquid surface resulted in a greater deal of energy transferred to the liquid propellant, and the percentage even reached up to 38%. Moreover, both of the two cases showed that the proportion of energy left in ullage to the total input energy was quite small, and the percentage was only about 22-24%. This may indicate that a more efficient diffuser should be developed to improve the pressurization effect. Generally, the present experimental results are beneficial to the design and optimization of the pressurization system with high-temperature gas supplying the pressurization effect.
Ito, Vanessa Mayumi; Batistella, César Benedito; Maciel, Maria Regina Wolf; Maciel Filho, Rubens
2007-04-01
Soybean oil deodorized distillate is a product derived from the refining process and it is rich in high value-added products. The recovery of these unsaponifiable fractions is of great commercial interest, because of the fact that in many cases, the "valuable products" have vitamin activities such as tocopherols (vitamin E), as well as anticarcinogenic properties such as sterols. Molecular distillation has large potential to be used in order to concentrate tocopherols, as it uses very low temperatures owing to the high vacuum and short operating time for separation, and also, it does not use solvents. Then, it can be used to separate and to purify thermosensitive material such as vitamins. In this work, the molecular distillation process was applied for tocopherol concentration, and the response surface methodology was used to optimize free fatty acids (FFA) elimination and tocopherol concentration in the residue and in the distillate streams, both of which are the products of the molecular distiller. The independent variables studied were feed flow rate (F) and evaporator temperature (T) because they are the very important process variables according to previous experience. The experimental range was 4-12 mL/min for F and 130-200 degrees C for T. It can be noted that feed flow rate and evaporator temperature are important operating variables in the FFA elimination. For decreasing the loss of FFA, in the residue stream, the operating range should be changed, increasing the evaporator temperature and decreasing the feed flow rate; D/F ratio increases, increasing evaporator temperature and decreasing feed flow rate. High concentration of tocopherols was obtained in the residue stream at low values of feed flow rate and high evaporator temperature. These results were obtained through experimental results based on experimental design.
Choice of optimal working fluid for binary power plants at extremely low temperature brine
NASA Astrophysics Data System (ADS)
Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.
2016-12-01
The geothermal energy development problems based on using binary power plants utilizing lowpotential geothermal resources are considered. It is shown that one of the possible ways of increasing the efficiency of heat utilization of geothermal brine in a wide temperature range is the use of multistage power systems with series-connected binary power plants based on incremental primary energy conversion. Some practically significant results of design-analytical investigations of physicochemical properties of various organic substances and their influence on the main parameters of the flowsheet and the technical and operational characteristics of heat-mechanical and heat-exchange equipment for binary power plant operating on extremely-low temperature geothermal brine (70°C) are presented. The calculation results of geothermal brine specific flow rate, capacity (net), and other operation characteristics of binary power plants with the capacity of 2.5 MW at using various organic substances are a practical interest. It is shown that the working fluid selection significantly influences on the parameters of the flowsheet and the operational characteristics of the binary power plant, and the problem of selection of working fluid is in the search for compromise based on the priorities in the field of efficiency, safety, and ecology criteria of a binary power plant. It is proposed in the investigations on the working fluid selection of the binary plant to use the plotting method of multiaxis complex diagrams of relative parameters and characteristic of binary power plants. Some examples of plotting and analyzing these diagrams intended to choose the working fluid provided that the efficiency of geothermal brine is taken as main priority.
NASA Astrophysics Data System (ADS)
Shklavtsova, Ekaterina; Ushakova, Sofya; Shikhov, Valentin; Kudenko, Yurii
Plants inclusion in the photosynthesizing unit of bioregenerative life support systems (BLSS) expects knowledge of both production characteristics of plants cultivated under optimal condi-tions and their tolerance to stress-factors' effect caused by contingency origination in a system. The work was aimed at investigation of chufa (Cyperus esculentus) tolerance to the effect of super optimal air temperature of 44 subject to PAR intensity and exposure duration. Chufa was grown in light culture conditions by hydroponics method on expanded clay aggregate. The Knop solution was used as nutrition medium. Up to 30 days the plants were cultivated at the intensity of 690 micromole*m-2*s*-1 and air temperature of 25. Heat shock was employed at the age of 30 days under the air temperature of 44 during 7, 20 and 44 hours at two different PAR intensities of 690 and 1150 micromole*m-2*s*-1. Chufa heat tolerance was estimated by intensity of external 2 gas exchange and by state of leaves' photosynthetic apparatus (PSA). Effect of disturbing temperature during 44 hours at PAR intensity of 690 micromole*m-2*s*-1 resulted in frozen-in damage of PSA-leaves' die-off. Chufa plants exposed to heat stress at PAR intensity of 690 micromole*m-2*s*-1 during both 7 and 20-hours demonstrated respiration dominance over photosynthesis; and 2 emission was observed by light. Functional activity of photosynthetic apparatus estimated with respect to parameters of pulse-amplitude-modulated chlorophyll fluorescence of photosystem 2 (PS 2) decreased on 40
Generalized ensemble method applied to study systems with strong first order transitions
Malolepsza, E.; Kim, J.; Keyes, T.
2015-09-28
At strong first-order phase transitions, the entropy versus energy or, at constant pressure, enthalpy, exhibits convex behavior, and the statistical temperature curve correspondingly exhibits an S-loop or back-bending. In the canonical and isothermal-isobaric ensembles, with temperature as the control variable, the probability density functions become bimodal with peaks localized outside of the S-loop region. Inside, states are unstable, and as a result simulation of equilibrium phase coexistence becomes impossible. To overcome this problem, a method was proposed by Kim, Keyes and Straub, where optimally designed generalized ensemble sampling was combined with replica exchange, and denoted generalized replica exchange method (gREM).more » This new technique uses parametrized effective sampling weights that lead to a unimodal energy distribution, transforming unstable states into stable ones. In the present study, the gREM, originally developed as a Monte Carlo algorithm, was implemented to work with molecular dynamics in an isobaric ensemble and coded into LAMMPS, a highly optimized open source molecular simulation package. Lastly, the method is illustrated in a study of the very strong solid/liquid transition in water.« less
Sun, Mei; Jiang, Man; Cui, Jihong; Liu, Wei; Yin, Lu; Xu, Chunli; Wei, Qi; Yan, Xingrong; Chen, Fulin
2016-03-01
Tissue-engineered skin (TES) holds great promise for wound healing in the clinic. However, optimized preservation methods remain an obstacle for its wide application. In this experimental work, we developed a novel approach to preserve TES in the desiccated state with trehalose. The uptake of trehalose by fibroblasts under various conditions, including the trehalose concentration, incubation temperature and time, was studied. The cell viability was investigated by the MTT assay and CFSE/PI staining after cryodesiccation and rehydration. TES was then prepared and incubated with trehalose, and the wound healing effect was investigated after desiccated preservation. The results showed that the optimized conditions for trehalose uptake by fibroblasts were incubation in 200 mM trehalose at 37 °C for 8 h. Cryodesiccated cells and TES maintained 37.55% and 28.31% viabilities of controls, respectively. Furthermore, cryodesiccated TES exhibited a similar wound healing effect to normal TES. This novel approach enabled the preservation and transportation of TES at ambient temperature with a prolonged shelf time, which provides great advantages for the application of TES. Copyright © 2015 Elsevier B.V. All rights reserved.
Spent coffee grounds-based activated carbon preparation for sequestering of malachite green
NASA Astrophysics Data System (ADS)
Lim, Jun-Wei; Lam, Keat-Ying; Bashir, Mohammed J. K.; Yeong, Yin-Fong; Lam, Man-Kee; Ho, Yeek-Chia
2016-11-01
The key of reported work was to optimize the fabricating factors of spent coffee grounds-based activated carbon (SCG-bAC) used to sequester Malachite Green (MG) form aqueous solution via adsorption process. The fabricating factors of impregnation ratio with ortho-phosphoric acid, activation temperature and activation time were simultaneously optimized by central composite design (CCD) of response surface methodology (RSM) targeting on maximum removal of MG. At the optimum condition, 96.3% of MG was successfully removed by SCG-bAC at the impregnation ratio with ortho-phosphoric acid of 0.50, activation temperature of 554°C and activation time of 31.4 min. Statistical model that could predict the MG removal percentage was also derived and had been statistically confirmed to be significant. Subsequently, the MG adsorption equilibrium data was found well-fitted to Langmuir isotherm model, indicating the predominance of monolayer adsorption of MG on SCG-bAC surface. To conclude, the findings from the this study unveil the potential of spent coffee grounds as an alternative precursor in fabricating low-cost AC for the treatment of wastewater loaded with MG pollutant.
NASA Astrophysics Data System (ADS)
Swain, Ranjita; Bhima Rao, R.
2018-04-01
In the present investigation, response surface methodology (RSM) is used for a quadratic model that continuously controls the process parameters. This model is used to optimize the removal of iron oxide from Partially Laterised Khondalite (PLK) rocks which is influenced by several independent variables namely acid concentration, time and temperature. Second order response functions are produced for leaching of iron oxide from PLK rocks-a bauxite mining waste. In RSM, Box-Behnken design is used for the process optimization to achieve maximum removal of iron oxide. The influence of the process variables of leaching of iron oxide is presented in the form of 3-D response graphs. The results of this investigation reveals that 3 M hydrochloric acid concentration, 240 min time and 373 K temperature are found to be the best conditions for removal of 99% Fe2O3. The product obtain at this condition contain 80% brightness which is suitable for ceramic and filler industry applications. The novelity of the work is that the waste can be a value added product after suitable physical beneficiation and chemical treatment.
Filleron, Anne; Simon, Margaux; Hantova, Stefaniya; Jacquot, Aurélien; Cambonie, Gilles; Marchandin, Hélène; Jumas-Bilak, Estelle
2014-03-01
Coagulase negative staphylococci (CoNS) are a leading cause of infections in preterm infants, mostly involved in late-onset infection in low birth weight neonates. The epidemiology and pathophysiology of these infections remain unclear, notably because the causing agents are gathered in the artificial CoNS group. The aim of this work was to optimize the study of Staphylococcus species diversity in human breast milk and neonate stool, two sample types with bacterial communities dominated by CoNS, using PCR-temporal temperature gel electrophoresis based on the tuf gene. The optimized protocol identified 18 Staphylococcus species involved in neonate gut microbiota and infections and was applied to cultivation-independent study of breast milk and neonate stool. The efficiency, sensitivity, specificity and species discrimination of the proposed protocol appears suitable for patient follow-up in order to link microbiological data at the community level in milk and stool and interpret them from epidemiological and pathophysiological points of view. Copyright © 2014 Elsevier B.V. All rights reserved.
Novel plasma source for safe beryllium spectral line studies in the presence of beryllium dust
NASA Astrophysics Data System (ADS)
Stankov, B. D.; Vinić, M.; Gavrilović Božović, M. R.; Ivković, M.
2018-05-01
Plasma source for beryllium spectral line studies in the presence of beryllium dust particles was realised. The guideline during construction was to prevent exposure to formed dust, considering the toxicity of beryllium. Plasma source characterization through determination of optimal working conditions is described. The necessary conditions for Be spectral line appearance and optimal conditions for line shape measurements are found. It is proven experimentally that under these conditions dust appears coincidently with the second current maximum. The electron density measured after discharge current maximum is determined from the peak separation of the hydrogen Balmer beta spectral line, and the electron temperature is determined from the ratios of the relative intensities of Be spectral lines emitted from successive ionized stages of atoms. Maximum values of electron density and temperature are measured to be 9.3 × 1022 m-3 and 16 800 K, respectively. Construction details and testing of the BeO discharge tube in comparison with SiO2 and Al2O3 discharge tubes are also presented in this paper.
Thermo-optical Modelling of Laser Matter Interactions in Selective Laser Melting Processes.
NASA Astrophysics Data System (ADS)
Vinnakota, Raj; Genov, Dentcho
Selective laser melting (SLM) is one of the promising advanced manufacturing techniques, which is providing an ideal platform to manufacture components with zero geometric constraints. Coupling the electromagnetic and thermodynamic processes involved in the SLM, and developing the comprehensive theoretical model of the same is of great importance since it can provide significant improvements in the printing processes by revealing the optimal parametric space related to applied laser power, scan velocity, powder material, layer thickness and porosity. Here, we present a self-consistent Thermo-optical model which simultaneously solves the Maxwell's and the heat transfer equations and provides an insight into the electromagnetic energy released in the powder-beds and the concurrent thermodynamics of the particles temperature rise and onset of melting. The numerical calculations are compared with developed analytical model of the SLM process providing insight into the dynamics between laser facilitated Joule heating and radiation mitigated rise in temperature. These results provide guidelines toward improved energy efficiency and optimization of the SLM process scan rates. The current work is funded by the NSF EPSCoR CIMM project under award #OIA-1541079.
Nicolasora, Niko; Downham, Rory; Dyer, Rachel-May; Hussey, Laura; Luscombe, Aoife; Sears, Vaughn
2018-05-02
This paper contains details of work carried out to identify the most effective processing conditions for the optimized 1,2-indandione/zn formulation developed for use under UK conditions. Using direct measurements of fluorescence taken from test spots of amino acids and eccrine sweat during oven processing, complemented with experiments on real fingermarks, it was established that processing temperatures above 120°C in the oven were detrimental to the fluorescence of the developed mark. Alternative methods of development to oven processing were found to be effective, but less controllable. High levels of humidification were also found to be detrimental to the fluorescence of 1,2-indandione developed marks, and oven processing at 100°C and 0% relative humidity is therefore recommended for further studies. It has also been shown that 1,2-indandione can develop fingermarks at temperatures as low as 20°C, making it a candidate for use at crime scenes. Copyright © 2018. Published by Elsevier B.V.
Generalized ensemble method applied to study systems with strong first order transitions
NASA Astrophysics Data System (ADS)
Małolepsza, E.; Kim, J.; Keyes, T.
2015-09-01
At strong first-order phase transitions, the entropy versus energy or, at constant pressure, enthalpy, exhibits convex behavior, and the statistical temperature curve correspondingly exhibits an S-loop or back-bending. In the canonical and isothermal-isobaric ensembles, with temperature as the control variable, the probability density functions become bimodal with peaks localized outside of the S-loop region. Inside, states are unstable, and as a result simulation of equilibrium phase coexistence becomes impossible. To overcome this problem, a method was proposed by Kim, Keyes and Straub [1], where optimally designed generalized ensemble sampling was combined with replica exchange, and denoted generalized replica exchange method (gREM). This new technique uses parametrized effective sampling weights that lead to a unimodal energy distribution, transforming unstable states into stable ones. In the present study, the gREM, originally developed as a Monte Carlo algorithm, was implemented to work with molecular dynamics in an isobaric ensemble and coded into LAMMPS, a highly optimized open source molecular simulation package. The method is illustrated in a study of the very strong solid/liquid transition in water.
Alizadeh, A; Wang, J K; Pooyan, S; Mirbozorgi, S A; Wang, M
2013-10-01
In this paper, the effect of temperature difference between inlet flow and walls on the electro-osmotic flow through a two-dimensional microchannel is investigated. The main objective is to study the effect of temperature variations on the distribution of ions and consequently internal electric potential field, electric body force, and velocity fields in an electro-osmotic flow. We assume constant temperature and zeta potential on walls and use the mean temperature of each cross section to characterize the Boltzmann ion distribution across the channel. Based on these assumptions, the multiphysical transports are still able to be described by the classical Poisson-Boltzmann model. In this work, the Navier-Stokes equation for fluid flow, the Poisson-Boltzmann equation for ion distribution, and the energy equation for heat transfer are solved by a couple lattice Boltzmann method. The modeling results indicate that the temperature difference between walls and the inlet solution may lead to two symmetrical vortices at the entrance region of the microchannel which is appropriate for mixing enhancements. The advantage of this phenomenon for active control of mixing in electro-osmotic flow is the manageability of the vortex scale without extra efforts. For instance, the effective domain of this pattern could broaden by the following modulations: decreasing the external electric potential field, decreasing the electric double layer thickness, or increasing the temperature difference between inlet flow and walls. This work may provide a novel strategy for design or optimization of microsystems. Copyright © 2013 Elsevier Inc. All rights reserved.
Changes in body surface temperature during speed endurance work-out in highly-trained male sprinters
NASA Astrophysics Data System (ADS)
Korman, Paweł; Straburzyńska-Lupa, Anna; Kusy, Krzysztof; Kantanista, Adam; Zieliński, Jacek
2016-09-01
The mechanism of thermoregulatory adaptation to exercise cannot yet be fully explained, however, infrared thermography (IRT) seems to have potential for monitoring physiological changes during exercise and training. It is a non-contact and easy to use technology to measure heat radiation from the body surface. The objective of the study was to examine the temperature changes over time on lower limbs in sprinters during speed endurance training session. Eight sprinters, specialized in distances 100 m and 200 m, aged 21-29 years, members of the Polish national team, were evaluated during an outdoor speed endurance work-out. Their track session comprised of warm-up, specific drills for sprinting technique, and speed endurance exercise. The surface temperature of lower limbs was measured and thermal images were taken using infrared camera after each part of the session. The speed endurance training session brought about specific time course of body surface (legs) temperature. The warm-up induced a significant decline in surface temperature by ∼2.5 °C, measured both on the front and back of lower limbs (p < 0.001), followed by a temperature stabilization until the end of the session. No significant asymmetry between the front and back sides of legs was observed. Body surface temperature may help identify an individual optimal time to terminate warm up and start the main part of the training session. It may also be useful for the assessment of muscle activity symmetry in cyclical activities, such as sprint running. This is of particular relevance when a training session is performed outdoors in changeable weather conditions.
Research on crude oil storage and transportation based on optimization algorithm
NASA Astrophysics Data System (ADS)
Yuan, Xuhua
2018-04-01
At present, the optimization theory and method have been widely used in the optimization scheduling and optimal operation scheme of complex production systems. Based on C++Builder 6 program development platform, the theoretical research results are implemented by computer. The simulation and intelligent decision system of crude oil storage and transportation inventory scheduling are designed. The system includes modules of project management, data management, graphics processing, simulation of oil depot operation scheme. It can realize the optimization of the scheduling scheme of crude oil storage and transportation system. A multi-point temperature measuring system for monitoring the temperature field of floating roof oil storage tank is developed. The results show that by optimizing operating parameters such as tank operating mode and temperature, the total transportation scheduling costs of the storage and transportation system can be reduced by 9.1%. Therefore, this method can realize safe and stable operation of crude oil storage and transportation system.
Mercurio, Vittorio; Venturelli, Chiara; Paganelli, Daniele
2014-12-01
As regards the incineration process of the urban solid waste, the composition correct management allows not only the valorization of precise civil and industrial groups of waste as alternative fuels but also a considerable increase of the furnace work temperature leading to a remarkable improvement of the related energy efficiency. In this sense, the study of the melting behavior of ashes deriving from several kinds of fuels that have to be processed to heat treatment is really important. This approach, indeed, ensures to know in depth the features defining the melting behavior of these analyzed samples, and as a consequence, gives us the necessary data in order to identify the best mixture of components to be incinerated as a function of the specific working temperatures of the power plant. Firstly, this study aims to find a way to establish the softening and melting temperatures of the ashes because they are those parameters that strongly influence the use of fuels. For this reason, in this work, the fusibility of waste-derived ashes with different composition has been investigated by means of the heating microscope. This instrument is fundamental to prove the strict dependence of the ashes fusion temperature on the heating rate that the samples experienced during the thermal cycle. In addition, in this work, another technological feature of the instrument has been used allowing to set an instantaneous heating directly on the sample in order to accurately reproduce the industrial conditions which characterize the incineration plants. The comparison between the final results shows that, in effect, the achievement of the best performances of the furnace is due to the a priori study of the melting behavior of the single available components.
Topology optimization of natural convection: Flow in a differentially heated cavity
NASA Astrophysics Data System (ADS)
Saglietti, Clio; Schlatter, Philipp; Berggren, Martin; Henningson, Dan
2017-11-01
The goal of the present work is to develop methods for optimization of the design of natural convection cooled heat sinks, using resolved simulation of both fluid flow and heat transfer. We rely on mathematical programming techniques combined with direct numerical simulations in order to iteratively update the topology of a solid structure towards optimality, i.e. until the design yielding the best performance is found, while satisfying a specific set of constraints. The investigated test case is a two-dimensional differentially heated cavity, in which the two vertical walls are held at different temperatures. The buoyancy force induces a swirling convective flow around a solid structure, whose topology is optimized to maximize the heat flux through the cavity. We rely on the spectral-element code Nek5000 to compute a high-order accurate solution of the natural convection flow arising from the conjugate heat transfer in the cavity. The laminar, steady-state solution of the problem is evaluated with a time-marching scheme that has an increased convergence rate; the actual iterative optimization is obtained using a steepest-decent algorithm, and the gradients are conveniently computed using the continuous adjoint equations for convective heat transfer.
Chaimovich, Aviel; Shell, M Scott
2009-03-28
Recent efforts have attempted to understand many of liquid water's anomalous properties in terms of effective spherically-symmetric pairwise molecular interactions entailing two characteristic length scales (so-called "core-softened" potentials). In this work, we examine the extent to which such simple descriptions of water are representative of the true underlying interactions by extracting coarse-grained potential functions that are optimized to reproduce the behavior of an all-atom model. To perform this optimization, we use a novel procedure based upon minimizing the relative entropy, a quantity that measures the extent to which a coarse-grained configurational ensemble overlaps with a reference all-atom one. We show that the optimized spherically-symmetric water models exhibit notable variations with the state conditions at which they were optimized, reflecting in particular the shifting accessibility of networked hydrogen bonding interactions. Moreover, we find that water's density and diffusivity anomalies are only reproduced when the effective coarse-grained potentials are allowed to vary with state. Our results therefore suggest that no state-independent spherically-symmetric potential can fully capture the interactions responsible for water's unique behavior; rather, the particular way in which the effective interactions vary with temperature and density contributes significantly to anomalous properties.
Optimal Detection of Global Warming using Temperature Profiles
NASA Technical Reports Server (NTRS)
Leroy, Stephen S.
1997-01-01
Optimal fingerprinting is applied to estimate the amount of time it would take to detect warming by increased concentrations of carbon dioxide in monthly averages of temperature profiles over the Indian Ocean.
Determination of a temperature sensor location for monitoring weld pool size in GMAW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boo, K.S.; Cho, H.S.
1994-11-01
This paper describes a method of determining the optimal sensor location to measure weldment surface temperature, which has a close correlation with weld pool size in the gas metal arc (GMA) welding process. Due to the inherent complexity and nonlinearity in the GMA welding process, the relationship between the weldment surface temperature and the weld pool size varies with the point of measurement. This necessitates an optimal selection of the measurement point to minimize the process nonlinearity effect in estimating the weld pool size from the measured temperature. To determine the optimal sensor location on the top surface of themore » weldment, the correlation between the measured temperature and the weld pool size is analyzed. The analysis is done by calculating the correlation function, which is based upon an analytical temperature distribution model. To validate the optimal sensor location, a series of GMA bead-on-plate welds are performed on a medium-carbon steel under various welding conditions. A comparison study is given in detail based upon the simulation and experimental results.« less
Novel Heat Controller for Thermogenerators Working on Uncontrolled Stoves
NASA Astrophysics Data System (ADS)
Juanicó, Luis E.; Rinalde, Fabián; Taglialavore, Eduardo; Molina, Marcelo
2013-07-01
This paper describes the development of a thermogenerator designed for uncontrolled firewood household stoves. It was built on BiTe thermoelectric (TE) modules, and it uses a water pot as a cooling device that also serves as a hot water source. An original heat controller was developed; it has low thermal resistance ( R) during low-power operation, but its R can be continuously increased according to the stove temperature so that the TE never overheats while its power generation is optimized.
Simulation of the bimetal cast in the case of milling rolls
NASA Astrophysics Data System (ADS)
Mihut, G.; Popa, E.
2015-06-01
In the paper it is proposed, in main, to obtain of a model of numerical simulation, valid general and applicable the whole peculiars cases of bimetal casting, model with which help can be studied through the computer, the optimization possibility of flowing working condition of liquid alloy of the distribution of temperatures field, of the liquid phase and contraction during the solidification, with the minimum price (necessary reimbursement of the software and calculus equipment) in very short time etc.
NASA Astrophysics Data System (ADS)
Wakamatsu, Hidetoshi; Gaohua, Lu
Various surface-cooling apparatus such as the cooling cap, muffler and blankets have been commonly used for the cooling of the brain to provide hypothermic neuro-protection for patients of hypoxic-ischemic encephalopathy. The present paper is aimed at the brain temperature regulation from the viewpoint of automatic system control, in order to help clinicians decide an optimal temperature of the cooling fluid provided for these three types of apparatus. At first, a biothermal model characterized by dynamic ambient temperatures is constructed for adult patient, especially on account of the clinical practice of hypothermia and anesthesia in the brain hypothermia treatment. Secondly, the model is represented by the state equation as a lumped parameter linear dynamic system. The biothermal model is justified from their various responses corresponding to clinical phenomena and treatment. Finally, the optimal regulator is tentatively designed to give clinicians some suggestions on the optimal temperature regulation of the patient’s brain. It suggests the patient’s brain temperature could be optimally controlled to follow-up the temperature process prescribed by the clinicians. This study benefits us a great clinical possibility for the automatic hypothermia treatment.
Optimization of an incubation step to maximize sulforaphane content in pre-processed broccoli.
Mahn, Andrea; Pérez, Carmen
2016-11-01
Sulforaphane is a powerful anticancer compound, found naturally in food, which comes from the hydrolysis of glucoraphanin, the main glucosinolate of broccoli. The aim of this work was to maximize sulforaphane content in broccoli by designing an incubation step after subjecting broccoli pieces to an optimized blanching step. Incubation was optimized through a Box-Behnken design using ascorbic acid concentration, incubation temperature and incubation time as factors. The optimal incubation conditions were 38 °C for 3 h and 0.22 mg ascorbic acid per g fresh broccoli. The maximum sulforaphane concentration predicted by the model was 8.0 µmol g -1 , which was confirmed experimentally yielding a value of 8.1 ± 0.3 µmol g -1 . This represents a 585% increase with respect to fresh broccoli and a 119% increase in relation to blanched broccoli, equivalent to a conversion of 94% of glucoraphanin. The process proposed here allows maximizing sulforaphane content, thus avoiding artificial chemical synthesis. The compound could probably be isolated from broccoli, and may find application as nutraceutical or functional ingredient.
NASA Astrophysics Data System (ADS)
Kusumaningrum, I.; Pranoto, Y.; Hadiwiyoto, S.
2018-04-01
This work was to optimized gelatin extraction from dry skin of Spanish mackerel (Scomberromorus commersoni) using Response Surface Methodology (RSM). The aim of this study was to determine the optimal condition of temperature and time for extraction process and properties of the gelatin extracted from dry mackerel skin. The optimal condition for extraction was 59.71°C for 4.25 hours. Results showed that predicted yield by RSM was 13.69% and predicted gel strength was 291.93 Bloom, whereas the actual experiment for yield and gel strength were 13.03% and 291.33 Bloom, respectively. The gelatin extracted from dried skin were analyzed for their proximate composition, yield, gel strength, viscosity, color, and amino acid composition. The results of dried skin gelatin properties compared to the commercial gelatin. Gelatin extracted from the dried skin gave content lower moisture, ash and protein content but higher fat compared to commercial gelatin. This study also shows that the gelatin extracted from the dried skin gave higher gel strength and pH but the lower amino acid composition compared to commercial gelatin.
Optimization of uncatalyzed steam explosion pretreatment of rapeseed straw for biofuel production.
López-Linares, Juan C; Ballesteros, Ignacio; Tourán, Josefina; Cara, Cristóbal; Castro, Eulogio; Ballesteros, Mercedes; Romero, Inmaculada
2015-08-01
Rapeseed straw constitutes an agricultural residue with great potential as feedstock for ethanol production. In this work, uncatalyzed steam explosion was carried out as a pretreatment to increase the enzymatic digestibility of rapeseed straw. Experimental statistical design and response surface methodology were used to evaluate the influence of the temperature (185-215°C) and the process time (2.5-7.5min). According to the rotatable central composite design applied, 215°C and 7.5min were confirmed to be the optimal conditions, considering the maximization of enzymatic hydrolysis yield as optimization criterion. These conditions led to a maximum yield of 72.3%, equivalent to 81% of potential glucose in pretreated solid. Different configurations for bioethanol production from steam exploded rapeseed straw were investigated using the pretreated solid obtained under optimal conditions as a substrate. As a relevant result, concentrations of ethanol as high as 43.6g/L (5.5% by volume) were obtained as a consequence of using 20% (w/v) solid loading, equivalent to 12.4g ethanol/100g biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Vignesh, S.; Dinesh Babu, P.; Surya, G.; Dinesh, S.; Marimuthu, P.
2018-02-01
The ultimate goal of all production entities is to select the process parameters that would be of maximum strength, minimum wear and friction. The friction and wear are serious problems in most of the industries which are influenced by the working set of parameters, oxidation characteristics and mechanism involved in formation of wear. The experimental input parameters such as sliding distance, applied load, and temperature are utilized in finding out the optimized solution for achieving the desired output responses such as coefficient of friction, wear rate, and volume loss. The optimization is performed with the help of a novel method, Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) based on an evolutionary algorithm. The regression equations obtained using Response Surface Methodology (RSM) are used in determining the optimum process parameters. Further, the results achieved through desirability approach in RSM are compared with that of the optimized solution obtained through NSGA-II. The results conclude that proposed evolutionary technique is much effective and faster than the desirability approach.
Tripathi, Swati; Das, Aparajita; Chandra, Anil; Varma, Ajit
2015-02-01
Endophytic fungi are plant beneficial rhizospheric microorganisms often applied as bioinoculants for enhanced and disease-free crop production. The objectives of the present work were to develop a carrier-based formulation of root endophyte Piriformospora indica as a bioinoculant. Powder formulation of four different carrier materials viz., talcum powder, clay, sawdust and bioboost (organic supplement) were evaluated and a talc-based formulation was optimized for a longer shelf life with respect to microbial concentration, storage temperature and biological activity. Finally the effect of optimized talc formulation on plant productivity was determined. The application dosages were optimized by studies on plant growth parameters of Phaseolus vulgaris L. plants under green house conditions. Five percent formulation (w/w) of talcum powder was observed to be the most stable at 30 °C with 10(8) CFU g(-1) and effective for a storage period of 6 months. The application of this optimized formulation resulted in increase of growth parameters of P. vulgaris L. and better adaptation of plants under green house conditions.
Modeling of organic solar cell using response surface methodology
NASA Astrophysics Data System (ADS)
Suliman, Rajab; Mitul, Abu Farzan; Mohammad, Lal; Djira, Gemechis; Pan, Yunpeng; Qiao, Qiquan
Polymer solar cells have drawn much attention during the past few decades due to their low manufacturing cost and incompatibility for flexible substrates. In solution-processed organic solar cells, the optimal thickness, annealing temperature, and morphology are key components to achieving high efficiency. In this work, response surface methodology (RSM) is used to find optimal fabrication conditions for polymer solar cells. In order to optimize cell efficiency, the central composite design (CCD) with three independent variables polymer concentration, polymer-fullerene ratio, and active layer spinning speed was used. Optimal device performance was achieved using 10.25 mg/ml polymer concentration, 0.42 polymer-fullerene ratio, and 1624 rpm of active layer spinning speed. The predicted response (the efficiency) at the optimum stationary point was found to be 5.23% for the Poly(diketopyrrolopyrrole-terthiophene) (PDPP3T)/PC60BM solar cells. Moreover, 97% of the variation in the device performance was explained by the best model. Finally, the experimental results are consistent with the CCD prediction, which proves that this is a promising and appropriate model for optimum device performance and fabrication conditions.
NASA Astrophysics Data System (ADS)
vellaichamy, Lakshmanan; Paulraj, Sathiya
2018-02-01
The dissimilar welding of Incoloy 800HT and P91 steel using Gas Tungsten arc welding process (GTAW) This material is being used in the Nuclear Power Plant and Aerospace Industry based application because Incoloy 800HT possess good corrosion and oxidation resistance and P91 possess high temperature strength and creep resistance. This work discusses on multi-objective optimization using gray relational analysis (GRA) using 9CrMoV-N filler materials. The experiment conducted L9 orthogonal array. The input parameter are current, voltage, speed. The output response are Tensile strength, Hardness and Toughness. To optimize the input parameter and multiple output variable by using GRA. The optimal parameter is combination was determined as A2B1C1 so given input parameter welding current at 120 A, voltage at 16 V and welding speed at 0.94 mm/s. The output of the mechanical properties for best and least grey relational grade was validated by the metallurgical characteristics.
Study of CdTe/CdS solar cell at low power density for low-illumination applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devi, Nisha, E-mail: nishatanwer1989@gmail.com; Aziz, Anver, E-mail: aaziz@jmi.ac.in; Datta, Shouvik
In this paper, we numerically investigate CdTe/CdS PV cell properties using a simulation program Solar Cell Capacitance Simulator in 1D (SCAPS-1D). A simple structure of CdTe PV cell has been optimized to study the effect of temperature, absorber thickness and work function at very low incident power. Objective of this research paper is to build an efficient and cost effective solar cell for portable electronic devices such as portable computers and cell phones that work at low incident power because most of such devices work at diffused and reflected sunlight. In this report, we simulated a simple CdTe PV cellmore » at very low incident power, which gives good efficiency.« less
Evaluation of ultra-low expansion spacer in the Fabry-Perot cavity with optical frequency comb
NASA Astrophysics Data System (ADS)
Šmíd, Radek; Čížek, Martin; Buchta, Zdeněk.; Lazar, Josef; Číp, Ondřej
2012-01-01
The work presents measurements of the length stability of Zerodur glass ceramic with temperature change. Measurement of this thermal characteristic is necessary for determination of the optimal temperature at which the Zerodur glass ceramic has a coefficient of thermal expansion close to zero. The principle of the measurement is to monitor the length changes using an optical resonator with a cavity mirror spacer made from the Zerodur material to be studied. The resonator is placed inside a vacuum chamber with a temperature control. A tunable laser diode is locked to a certain optical mode of the resonator to monitor the optical frequency of this mode. A beat-note signal from optical mixing between the laser and a stabilized femtosecond frequency comb is detected and processed. The temperature dependence of the glass ceramics was determined and analyzed. The resolution of the length measurement of the experimental set-up is on the order of 0.1 nm.
NASA Astrophysics Data System (ADS)
Číp, Ondřej; Šmíd, Radek; Čížek, Martin; Buchta, Zdeněk; Lazar, Josef
2012-04-01
The work presents measurements of the length stability of Zerodur glass ceramic with temperature change. Measurement of this thermal characteristic is necessary for determination of the optimal temperature at which the Zerodur glass ceramic has a coefficient of thermal expansion close to zero. The principle of the measurement is to monitor the length changes using an optical resonator with a cavity mirror spacer made from the Zerodur material to be studied. The resonator is placed inside a vacuum chamber with a temperature control. A tunable laser diode is locked to a certain optical mode of the resonator to monitor the optical frequency of this mode. A beat-note signal from optical mixing between the laser and a stabilized femtosecond frequency comb is detected and processed. The temperature dependence of the glass ceramics was determined and analyzed. The resolution of the length measurement of the experimental set-up is on the order of 0.1 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Nathan H.; Chen, Zhen; Fan, Shanhui
Solar thermal energy conversion has attracted substantial renewed interest due to its applications in industrial heating, air conditioning, and electricity generation. Achieving stagnation temperatures exceeding 200 °C, pertinent to these technologies, with unconcentrated sunlight requires spectrally selective absorbers with exceptionally low emissivity in the thermal wavelength range and high visible absorptivity for the solar spectrum. In this Communication, we then report a semiconductor-based multilayer selective absorber that exploits the sharp drop in optical absorption at the bandgap energy to achieve a measured absorptance of 76% at solar wavelengths and a low emittance of approximately 5% at thermal wavelengths. In fieldmore » tests, we obtain a peak temperature of 225 °C, comparable to that achieved with state-of-the-art selective surfaces. Furthemore, with straightforward optimization to improve solar absorption, our work shows the potential for unconcentrated solar thermal systems to reach stagnation temperatures exceeding 300 °C, thereby eliminating the need for solar concentrators for mid-temperature solar applications such as supplying process heat« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, X. H.; Zhou, X. H., E-mail: xhzhou@mail.sitp.ac.cn; Li, N.
2014-03-28
The temperature- and bias-dependent photocurrent spectra of very long wavelength GaAs/AlGaAs quantum well infrared photodetectors (QWIPs) are studied using spectroscopic measurements and corresponding theoretical calculations. It is found that the peak response wavelength will shift as the bias and temperature change. Aided by band structure calculations, we propose a model of the double excited states and explain the experimental observations very well. In addition, the working mechanisms of the quasi-bound state confined in the quantum well, including the processes of tunneling and thermionic emission, are also investigated in detail. We confirm that the first excited state, which belongs to themore » quasi-bound state, can be converted into a quasi-continuum state induced by bias and temperature. These obtained results provide a full understanding of the bound-to-quasi-bound state and the bound-to-quasi-continuum state transition, and thus allow for a better optimization of QWIPs performance.« less
Thomas, Nathan H.; Chen, Zhen; Fan, Shanhui; ...
2017-07-13
Solar thermal energy conversion has attracted substantial renewed interest due to its applications in industrial heating, air conditioning, and electricity generation. Achieving stagnation temperatures exceeding 200 °C, pertinent to these technologies, with unconcentrated sunlight requires spectrally selective absorbers with exceptionally low emissivity in the thermal wavelength range and high visible absorptivity for the solar spectrum. In this Communication, we then report a semiconductor-based multilayer selective absorber that exploits the sharp drop in optical absorption at the bandgap energy to achieve a measured absorptance of 76% at solar wavelengths and a low emittance of approximately 5% at thermal wavelengths. In fieldmore » tests, we obtain a peak temperature of 225 °C, comparable to that achieved with state-of-the-art selective surfaces. Furthemore, with straightforward optimization to improve solar absorption, our work shows the potential for unconcentrated solar thermal systems to reach stagnation temperatures exceeding 300 °C, thereby eliminating the need for solar concentrators for mid-temperature solar applications such as supplying process heat« less
Thomas, Nathan H; Chen, Zhen; Fan, Shanhui; Minnich, Austin J
2017-07-13
Solar thermal energy conversion has attracted substantial renewed interest due to its applications in industrial heating, air conditioning, and electricity generation. Achieving stagnation temperatures exceeding 200 °C, pertinent to these technologies, with unconcentrated sunlight requires spectrally selective absorbers with exceptionally low emissivity in the thermal wavelength range and high visible absorptivity for the solar spectrum. In this Communication, we report a semiconductor-based multilayer selective absorber that exploits the sharp drop in optical absorption at the bandgap energy to achieve a measured absorptance of 76% at solar wavelengths and a low emittance of approximately 5% at thermal wavelengths. In field tests, we obtain a peak temperature of 225 °C, comparable to that achieved with state-of-the-art selective surfaces. With straightforward optimization to improve solar absorption, our work shows the potential for unconcentrated solar thermal systems to reach stagnation temperatures exceeding 300 °C, thereby eliminating the need for solar concentrators for mid-temperature solar applications such as supplying process heat.
List-Based Simulated Annealing Algorithm for Traveling Salesman Problem
Zhan, Shi-hua; Lin, Juan; Zhang, Ze-jun
2016-01-01
Simulated annealing (SA) algorithm is a popular intelligent optimization algorithm which has been successfully applied in many fields. Parameters' setting is a key factor for its performance, but it is also a tedious work. To simplify parameters setting, we present a list-based simulated annealing (LBSA) algorithm to solve traveling salesman problem (TSP). LBSA algorithm uses a novel list-based cooling schedule to control the decrease of temperature. Specifically, a list of temperatures is created first, and then the maximum temperature in list is used by Metropolis acceptance criterion to decide whether to accept a candidate solution. The temperature list is adapted iteratively according to the topology of the solution space of the problem. The effectiveness and the parameter sensitivity of the list-based cooling schedule are illustrated through benchmark TSP problems. The LBSA algorithm, whose performance is robust on a wide range of parameter values, shows competitive performance compared with some other state-of-the-art algorithms. PMID:27034650
NASA Astrophysics Data System (ADS)
Chen, Muyan; Zhang, Xiumei; Gao, Tianxiang; Chen, Chao
2006-09-01
The protease activity in digestive tract of young turbot Scophthalmus maximum was studied, and the optimal pH, temperature and NaCl concentration were determined for different portions of the fish's internal organs. The optimal activity in the fish's stomach was at pH of 2.2, while that in the intestinal extracts was within the alkaline range from 9.5 to 10.0. In hepatopancreas, the optimal pH was in low alkalinity at 8.5. The optimal reaction temperature was above 40°C in stomach, intestine and hepatopancreas. With increasing temperature, the pH value increased in stomach, while in the intestine, an opposite tendency was observed due to combined effect of pH and temperature. NaCl concentration showed inhibitory impact on protein digestion in hepatopancreas. The main protease for protein digestion in turbot seemed to be pepsin. Moreover, the maximum protease activity in different segments of intestine existed in the hindgut.
Optimal current waveforms for brushless permanent magnet motors
NASA Astrophysics Data System (ADS)
Moehle, Nicholas; Boyd, Stephen
2015-07-01
In this paper, we give energy-optimal current waveforms for a permanent magnet synchronous motor that result in a desired average torque. Our formulation generalises previous work by including a general back-electromotive force (EMF) wave shape, voltage and current limits, an arbitrary phase winding connection, a simple eddy current loss model, and a trade-off between power loss and torque ripple. Determining the optimal current waveforms requires solving a small convex optimisation problem. We show how to use the alternating direction method of multipliers to find the optimal current in milliseconds or hundreds of microseconds, depending on the processor used, which allows the possibility of generating optimal waveforms in real time. This allows us to adapt in real time to changes in the operating requirements or in the model, such as a change in resistance with winding temperature, or even gross changes like the failure of one winding. Suboptimal waveforms are available in tens or hundreds of microseconds, allowing for quick response after abrupt changes in the desired torque. We demonstrate our approach on a simple numerical example, in which we give the optimal waveforms for a motor with a sinusoidal back-EMF, and for a motor with a more complicated, nonsinusoidal waveform, in both the constant-torque region and constant-power region.
Hameda, A Ben; Elosta, S; Havel, J
2005-08-19
Huperzine A, natural product from Huperzia serrata, is quite an important compound used to treat the Alzheimer's disease as a food supplement and also proposed as a prospective and prophylactic antidote against organophosphate poisoning. In this work, simple and fast capillary electrophoresis (CE) procedure with UV detection (at 230 nm) for determination of Huperzine A was developed and optimized. Capillary electrophoresis determination of Huperzine A was optimized using a combination of the experimental design (ED) and the artificial neural networks (ANN). In the first stage of optimization, the experiments were done according to the appropriate ED. Data evaluated by ANN allowed finding the optimal values of several analytical parameters (peak area, peak height, and analysis time). Optimal conditions found were 50 mM acetate buffer, pH 4.6, separation voltage 10 kV, hydrodynamic injection time 10 s and temperature 25 degrees C. The developed method shows good repeatability as relative standard division (R.S.D. = 0.9%) and it has been applied for determination of Huperzine A in various pharmaceutical products and in biological liquids. The limit of detection (LOD) in aqueous media was 0.226 ng/ml and 0.233 ng/ml for determination in the serum.
Al-Madboly, Lamiaa A; Khedr, Eman G; Ali, Safaa M
2017-01-01
In this work, we aim to optimize the production of reduced glutathione (GSH) synthesized intracellularly by a food-grade microorganism through a statistical approach. Using a colorimetric method, 25 Lactobacillus plantarum isolates were screened in an attempt to find a GSH-producing strain. It was found that 36% of the tested isolates showed positive result. Isolate (L 7 ) was found to produce 152.61 μM glutathione per gram which was the highest amount produced intracellularly. Accordingly, the later isolate was selected for the optimization process using Plackett-Burman and Box-Behnken designs. Temperature, amino acids, and urea were found to be the most significant independent variables. Following data analysis, the composition of the optimized medium was De Man-Sharp-Rogosa broth as a basal medium supplemented with NaCl (5%), H 2 O 2 (0.05%), sodium dodecyl sulfate (0.05%), amino acids (0.0281%), and urea (0.192%). The pH of the medium was adjusted to 8 and incubated for 24 h at 40°C. The GSH amount was increased by 10-fold (851%) using the optimized medium. Hence, our optimization design estimated the biotechnological potential of L. plantarum (L 7 ) for the production of GSH in the industry.
Energy Conservation: Heating Navy Hangars
1984-07-01
temperature, IF Tf Inside air temperature 1 foot above the floor, OF T. Inside design temperature, IF To Hot water temperature setpoint , OF TON Chiller ...systems capable of optimizing energy usage base-wide. An add-on to an existing large scale EMCS is probably the first preference, followed by single...the building comfort conditions are met during hours of building occupancy. 2. Optimized Start/Stop turns on equipment at the latest possible time and
NASA Astrophysics Data System (ADS)
Oh, Hyun-Ung; Lee, Min-Kyu; Shin, Somin; Hong, Joo-Sung
2011-09-01
Spaceborne pulse tube type cryocoolers are widely used for providing cryogenic temperatures for sensitive infrared, gamma-ray and X-ray detectors. Thermal control for the compressor of the cryocooler is one of the important technologies for the cooling performance, mission life time, and jitter stability of the cooler. The thermal design of the compressor assembly proposed in this study is basically composed of a heat pipe, a radiator, and a heater. In the present work, a method for heat pipe implementation is proposed and investigated to ensure the jitter stability of the compressor under the condition that one heat pipe is not working. An optimal design of the radiator that uses ribs for effective use by minimizing the temperature gradient on the radiator and reducing its weight is introduced. The effectiveness of the thermal design of the compressor assembly is demonstrated by on-orbit thermal analysis using the correlated thermal model obtained from the thermal balance test that is performed under a space simulating environment.
Multistage degradation modeling for BLDC motor based on Wiener process
NASA Astrophysics Data System (ADS)
Yuan, Qingyang; Li, Xiaogang; Gao, Yuankai
2018-05-01
Brushless DC motors are widely used, and their working temperatures, regarding as degradation processes, are nonlinear and multistage. It is necessary to establish a nonlinear degradation model. In this research, our study was based on accelerated degradation data of motors, which are their working temperatures. A multistage Wiener model was established by using the transition function to modify linear model. The normal weighted average filter (Gauss filter) was used to improve the results of estimation for the model parameters. Then, to maximize likelihood function for parameter estimation, we used numerical optimization method- the simplex method for cycle calculation. Finally, the modeling results show that the degradation mechanism changes during the degradation of the motor with high speed. The effectiveness and rationality of model are verified by comparison of the life distribution with widely used nonlinear Wiener model, as well as a comparison of QQ plots for residual. Finally, predictions for motor life are gained by life distributions in different times calculated by multistage model.
Development and optimization of a stove-powered thermoelectric generator
NASA Astrophysics Data System (ADS)
Mastbergen, Dan
Almost a third of the world's population still lacks access to electricity. Most of these people use biomass stoves for cooking which produce significant amounts of wasted thermal energy, but no electricity. Less than 1% of this energy in the form of electricity would be adequate for basic tasks such as lighting and communications. However, an affordable and reliable means of accomplishing this is currently nonexistent. The goal of this work is to develop a thermoelectric generator to convert a small amount of wasted heat into electricity. Although this concept has been around for decades, previous attempts have failed due to insufficient analysis of the system as a whole, leading to ineffective and costly designs. In this work, a complete design process is undertaken including concept generation, prototype testing, field testing, and redesign/optimization. Detailed component models are constructed and integrated to create a full system model. The model encompasses the stove operation, thermoelectric module, heat sinks, charging system and battery. A 3000 cycle endurance test was also conducted to evaluate the effects of operating temperature, module quality, and thermal interface quality on the generator's reliability, lifetime and cost effectiveness. The results from this testing are integrated into the system model to determine the lowest system cost in $/Watt over a five year period. Through this work the concept of a stove-based thermoelectric generator is shown to be technologically and economically feasible. In addition, a methodology is developed for optimizing the system for specific regional stove usage habits.
Jiang, Chuanxing; Yin, Nailiang; Yao, Yao; Shaymurat, Talgar; Zhou, Xiaoyan
2017-01-01
This paper demonstrates an acetylene gas sensor based on an Ag-decorated tin dioxide/reduced graphene oxide (Ag–SnO2/rGO) nanocomposite film, prepared by layer-by-layer (LbL) self-assembly technology. The as-prepared Ag–SnO2/rGO nanocomposite was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectrum. The acetylene sensing properties were investigated using different working temperatures and gas concentrations. An optimal temperature of 90 °C was determined, and the Ag–SnO2/rGO nanocomposite sensor exhibited excellent sensing behaviors towards acetylene, in terms of response, repeatability, stability and response/recovery characteristics, which were superior to the pure SnO2 and SnO2/rGO film sensors. The sensing mechanism of the Ag–SnO2/rGO sensor was attributed to the synergistic effect of the ternary nanomaterials, and the heterojunctions created at the interfaces between SnO2 and rGO. This work indicates that the Ag–SnO2/rGO nanocomposite is a good candidate for constructing a low-temperature acetylene sensor. PMID:28927021
Fabrication of thin film TiO2 nanotube arrays on Co-28Cr-6Mo alloy by anodization.
Ni, Jiahua; Frandsen, Christine J; Noh, Kunbae; Johnston, Gary W; He, Guo; Tang, Tingting; Jin, Sungho
2013-04-01
Titanium oxide (TiO2) nanotube arrays were prepared by anodization of Ti/Au/Ti trilayer thin film DC sputtered onto forged and cast Co-28Cr-6Mo alloy substrate at 400 °C. Two different types of deposited film structures (Ti/Au/Ti trilayer and Ti monolayer), and two deposition temperatures (room temperature and 400 °C) were compared in this work. The concentrations of ammonium fluoride (NH4F) and H2O in glycerol electrolyte were varied to study their effect on the formation of TiO2 nanotube arrays on a forged and cast Co-28Cr-6Mo alloy. The results show that Ti/Au/Ti trilayer thin film and elevated temperature sputtered films are favorable for the formation of well-ordered nanotube arrays. The optimized electrolyte concentration for the growth of TiO2 nanotube arrays on forged and cast Co-28Cr-6Mo alloy was obtained. This work contains meaningful results for the application of a TiO2 nanotube coating to a CoCr alloy implant for potential next-generation orthopedic implant surface coatings with improved osseointegrative capabilities. Copyright © 2013 Elsevier B.V. All rights reserved.
Design and optimization of organic rankine cycle for low temperature geothermal power plant
NASA Astrophysics Data System (ADS)
Barse, Kirtipal A.
Rising oil prices and environmental concerns have increased attention to renewable energy. Geothermal energy is a very attractive source of renewable energy. Although low temperature resources (90°C to 150°C) are the most common and most abundant source of geothermal energy, they were not considered economical and technologically feasible for commercial power generation. Organic Rankine Cycle (ORC) technology makes it feasible to use low temperature resources to generate power by using low boiling temperature organic liquids. The first hypothesis for this research is that using ORC is technologically and economically feasible to generate electricity from low temperature geothermal resources. The second hypothesis for this research is redesigning the ORC system for the given resource condition will improve efficiency along with improving economics. ORC model was developed using process simulator and validated with the data obtained from Chena Hot Springs, Alaska. A correlation was observed between the critical temperature of the working fluid and the efficiency for the cycle. Exergy analysis of the cycle revealed that the highest exergy destruction occurs in evaporator followed by condenser, turbine and working fluid pump for the base case scenarios. Performance of ORC was studied using twelve working fluids in base, Internal Heat Exchanger and turbine bleeding constrained and non-constrained configurations. R601a, R245ca, R600 showed highest first and second law efficiency in the non-constrained IHX configuration. The highest net power was observed for R245ca, R601a and R601 working fluids in the non-constrained base configuration. Combined heat exchanger area and size parameter of the turbine showed an increasing trend as the critical temperature of the working fluid decreased. The lowest levelized cost of electricity was observed for R245ca followed by R601a, R236ea in non-constrained base configuration. The next best candidates in terms of LCOE were R601a, R245ca and R600 in non-constrained IHX configuration. LCOE is dependent on net power and higher net power favors to lower the cost of electricity. Overall R245ca, R601, R601a, R600 and R236ea show better performance among the fluids studied. Non constrained configurations display better performance compared to the constrained configurations. Base non-constrained offered the highest net power and lowest LCOE.
NASA Astrophysics Data System (ADS)
Hetmaniok, Edyta; Hristov, Jordan; Słota, Damian; Zielonka, Adam
2017-05-01
The paper presents the procedure for solving the inverse problem for the binary alloy solidification in a two-dimensional space. This is a continuation of some previous works of the authors investigating a similar problem but in the one-dimensional domain. Goal of the problem consists in identification of the heat transfer coefficient on boundary of the region and in reconstruction of the temperature distribution inside the considered region in case when the temperature measurements in selected points of the alloy are known. Mathematical model of the problem is based on the heat conduction equation with the substitute thermal capacity and with the liquidus and solidus temperatures varying in dependance on the concentration of the alloy component. For describing this concentration the Scheil model is used. Investigated procedure involves also the parallelized Ant Colony Optimization algorithm applied for minimizing a functional expressing the error of approximate solution.
Nanostructured ZnO films for potential use in LPG gas sensors
NASA Astrophysics Data System (ADS)
Latyshev, V. M.; Berestok, T. O.; Opanasyuk, A. S.; Kornyushchenko, A. S.; Perekrestov, V. I.
2017-05-01
The aim of the work was to obtain ZnO nanostructures with heightened surface area and to study relationship between formation method and gas sensor properties towards propane-butane mixture (LPG). In order to synthesize ZnO nanostructures chemical and physical formation methods have been utilized. The first one was chemical bath deposition technology and the second one magnetron sputtering of Zn followed by oxidation. Optimal method and technological parameters corresponding to formation of material with the highest sensor response have been determined experimentally. Dynamical gas sensor response at different temperature values and dependencies of the sensor sensitivity on the temperature at different LPG concentrations in air have been investigated. It has been found, that sensor response depends on the sample morphology and has the highest value for the structure consisting of thin nanowires. The factors that lead to the decrease in the gas sensor operating temperature have been determined.
NASA Astrophysics Data System (ADS)
Raimee, N. A.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.
2017-09-01
The plastic injection moulding process produces large numbers of parts of high quality with great accuracy and quickly. It has widely used for production of plastic part with various shapes and geometries. Side arm is one of the product using injection moulding to manufacture it. However, there are some difficulties in adjusting the parameter variables which are mould temperature, melt temperature, packing pressure, packing time and cooling time as there are warpage happen at the tip part of side arm. Therefore, the work reported herein is about minimizing warpage on side arm product by optimizing the process parameter using Response Surface Methodology (RSM) and with additional artificial intelligence (AI) method which is Genetic Algorithm (GA).
NASA Astrophysics Data System (ADS)
Lang, Ye; Chen, Yanzhong; Liao, Lifen; Guo, Guangyan; He, Jianguo; Fan, Zhongwei
2018-03-01
In high power diode lasers, the input cooling water temperature would affect both output power and output spectrum. In double face pumped slab laser, the spectrum of two laser diode arrays (LDAs) must be optimized for efficiency reason. The spectrum mismatch of two LDAs would result in energy storing decline. In this work, thermal induced efficiency decline due to spectral overlap between high power LDAs and laser medium was investigated. A numerical model was developed to describe the energy storing variation with changing LDAs cooling water temperature and configuration (series/parallel connected). A confirmatory experiment was conducted using a double face pumped slab module. The experiment results show good agreements with simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandt, Riley E.; Mangan, Niall M.; Li, Jian V.
2016-11-21
In novel photovoltaic absorbers, it is often difficult to assess the root causes of low open-circuit voltages, which may be due to bulk recombination or sub-optimal contacts. In the present work, we discuss the role of temperature- and illumination-dependent device electrical measurements in quantifying and distinguishing these performance losses - in particular, for determining bounds on interface recombination velocities, band alignment, and minority carrier lifetime. We assess the accuracy of this approach by direct comparison to photoelectron spectroscopy. Then, we demonstrate how more computationally intensive model parameter fitting approaches can draw more insights from this broad measurement space. We applymore » this measurement and modeling approach to high-performance III-V and thin-film chalcogenide devices.« less
Effect of annealing temperature on the PEC performance of electrodeposited copper oxides
NASA Astrophysics Data System (ADS)
Marathey, Priyanka; Pati, Ranjan; Mukhopadhyay, Indrajit; Ray, Abhijit
2018-05-01
In this work, we have deposited Cu2O film on fluorine doped tin oxide (FTO) substrate by electrodeposition. Pure CuO phase has been obtained by annealing the electrodeposited Cu2O film at optimized temperature (500°C) for two hours in air. Copper(I) oxide films showed good photo response with a current density of 0.54mA/cm2 at 0 V vs RHE. It is evident from UV-Visible spectroscopic analysis that the bandgap of Cu(I) and Cu(II) oxides differs from each other resulting in significant change in photo current for these two phases, observed in the PEC study. However CuO film showed better stability as compared to Cu2O film.
NASA Technical Reports Server (NTRS)
Tawfik, Hazem H.
1996-01-01
Thermally sprayed coatings have been extensively used to enhance materials properties and provide surface protection against their working environments in a number of industrial applications. Thermal barrier coatings (TBC) are used to reduce the thermal conductivity of aerospace turbine blades and improve the turbine overall thermal efficiency. TBC allows higher gas operating temperatures and lower blade material temperatures due to the thermal insulation provided by these ceramic coatings. In the automotive industry, coatings are currently applied to a number of moving parts that are subjected to friction and wear inside the engine such as pistons, cylinder liners, valves and crankshafts to enhance their wear resistance and prolong their useful operation and lifetime.
Coscollà, Clara; Navarro-Olivares, Santiago; Martí, Pedro; Yusà, Vicent
2014-02-01
When attempting to discover the important factors and then optimise a response by tuning these factors, experimental design (design of experiments, DoE) gives a powerful suite of statistical methodology. DoE identify significant factors and then optimise a response with respect to them in method development. In this work, a headspace-solid-phase micro-extraction (HS-SPME) combined with gas chromatography tandem mass spectrometry (GC-MS/MS) methodology for the simultaneous determination of six important organotin compounds namely monobutyltin (MBT), dibutyltin (DBT), tributyltin (TBT), monophenyltin (MPhT), diphenyltin (DPhT), triphenyltin (TPhT) has been optimized using a statistical design of experiments (DOE). The analytical method is based on the ethylation with NaBEt4 and simultaneous headspace-solid-phase micro-extraction of the derivative compounds followed by GC-MS/MS analysis. The main experimental parameters influencing the extraction efficiency selected for optimization were pre-incubation time, incubation temperature, agitator speed, extraction time, desorption temperature, buffer (pH, concentration and volume), headspace volume, sample salinity, preparation of standards, ultrasonic time and desorption time in the injector. The main factors (excitation voltage, excitation time, ion source temperature, isolation time and electron energy) affecting the GC-IT-MS/MS response were also optimized using the same statistical design of experiments. The proposed method presented good linearity (coefficient of determination R(2)>0.99) and repeatibilty (1-25%) for all the compounds under study. The accuracy of the method measured as the average percentage recovery of the compounds in spiked surface and marine waters was higher than 70% for all compounds studied. Finally, the optimized methodology was applied to real aqueous samples enabled the simultaneous determination of all compounds under study in surface and marine water samples obtained from Valencia region (Spain). © 2013 Elsevier B.V. All rights reserved.
Thermal physiology, disease, and amphibian declines on the eastern slopes of the Andes.
Catenazzi, Alessandro; Lehr, Edgar; Vredenburg, Vance T
2014-04-01
Rising temperatures, a widespread consequence of climate change, have been implicated in enigmatic amphibian declines from habitats with little apparent human impact. The pathogenic fungus Batrachochytrium dendrobatidis (Bd), now widespread in Neotropical mountains, may act in synergy with climate change causing collapse in thermally stressed hosts. We measured the thermal tolerance of frogs along a wide elevational gradient in the Tropical Andes, where frog populations have collapsed. We used the difference between critical thermal maximum and the temperature a frog experiences in nature as a measure of tolerance to high temperatures. Temperature tolerance increased as elevation increased, suggesting that frogs at higher elevations may be less sensitive to rising temperatures. We tested the alternative pathogen optimal growth hypothesis that prevalence of the pathogen should decrease as temperatures fall outside the optimal range of pathogen growth. Our infection-prevalence data supported the pathogen optimal growth hypothesis because we found that prevalence of Bd increased when host temperatures matched its optimal growth range. These findings suggest that rising temperatures may not be the driver of amphibian declines in the eastern slopes of the Andes. Zoonotic outbreaks of Bd are the most parsimonious hypothesis to explain the collapse of montane amphibian faunas; but our results also reveal that lowland tropical amphibians, despite being shielded from Bd by higher temperatures, are vulnerable to climate-warming stress. © 2013 Society for Conservation Biology.
Optimization design of LED heat dissipation structure based on strip fins
NASA Astrophysics Data System (ADS)
Xue, Lingyun; Wan, Wenbin; Chen, Qingguang; Rao, Huanle; Xu, Ping
2018-03-01
To solve the heat dissipation problem of LED, a radiator structure based on strip fins is designed and the method to optimize the structure parameters of strip fins is proposed in this paper. The combination of RBF neural networks and particle swarm optimization (PSO) algorithm is used for modeling and optimization respectively. During the experiment, the 150 datasets of LED junction temperature when structure parameters of number of strip fins, length, width and height of the fins have different values are obtained by ANSYS software. Then RBF neural network is applied to build the non-linear regression model and the parameters optimization of structure based on particle swarm optimization algorithm is performed with this model. The experimental results show that the lowest LED junction temperature reaches 43.88 degrees when the number of hidden layer nodes in RBF neural network is 10, the two learning factors in particle swarm optimization algorithm are 0.5, 0.5 respectively, the inertia factor is 1 and the maximum number of iterations is 100, and now the number of fins is 64, the distribution structure is 8*8, and the length, width and height of fins are 4.3mm, 4.48mm and 55.3mm respectively. To compare the modeling and optimization results, LED junction temperature at the optimized structure parameters was simulated and the result is 43.592°C which approximately equals to the optimal result. Compared with the ordinary plate-fin-type radiator structure whose temperature is 56.38°C, the structure greatly enhances heat dissipation performance of the structure.
Servili, Maurizio; Selvaggini, Roberto; Taticchi, Agnese; Esposto, Sonia; Montedoro, GianFrancesco
2003-12-31
The operative conditions of malaxation such as temperature and time of exposure of olive pastes to air contact (TEOPAC) affect volatile and phenolic composition of virgin olive oil (VOO) and, as a consequence, its sensory and healthy qualities. In this paper, optimal temperature and TEOPAC during malaxation were studied, in lab scale, in two Italian cultivars using phenolic compounds, volatile composition, and sensory analysis of VOO as markers. The optimal temperature and TEOPAC, selected by response surface modeling,were cultivar-dependent being 30 min of TEOPAC at the lowest temperature investigated (22 degrees C) and 0 min of TEOPAC at 26 degrees C for Frantoio and Moraiolo cultivars, respectively.
Investigation of instability of displacement front in non-isothermal flow problems
NASA Astrophysics Data System (ADS)
Syulyukina, Natalia; Pergament, Anna
2012-11-01
In this paper, we investigate the issues of front instability arising in non-isothermal flow displacement processes. The problem of two-phase flow of immiscible fluids, oil and water, is considered, including sources and dependence of viscosity on temperature. Three-dimensional problem with perturbation close to the injection well was considered to find the characteristic scale of the instability. As a result of numerical calculations, theoretical studies on the development of the instability due to the fact that the viscosity of the displacing fluid is less than the viscosity of the displaced have been confirmed. The influence of temperature on the evolution of the instability was considered. For this purpose, the dependence of oil viscosity on temperature has been added to the problem. Numerical calculations were carried out for different values of temperature and it was shown that with increasing of production rate. Thus, it has been demonstrated that the selection of the optimal temperature for injected fluids a possible way for stimulation of oil production also delaying the field water-flooding. This work was supporting by the RFBR grant 12-01-00793-a.
Alhazzaa, Ramez; Bridle, Andrew R; Nichols, Peter D; Carter, Chris G
2013-06-01
Metabolic responses to sub-optimal temperature deplete lipid depots, remodel membrane lipid and alter the fatty acid profile in the whole body and tissues of ectothermic vertebrates including fish. The magnitude of these changes may depend on dietary history including oil sources with different fatty acid compositions. Barramundi, Lates calcarifer (Perciformes, Latidae), a tropical ectothermic fish, was fed on diets either rich in dietary long-chain (≥C(20)) polyunsaturated fatty acids (LC-PUFA) from fish oil, rich in stearidonic and γ-linolenic acid (SDA and GLA, respectively) from Echium plantagineum, or rapeseed oil deficient in LC-PUFA. Following 5 weeks at the optimum temperature of 30 °C when growth rates were comparable amongst dietary treatments, water temperature was dropped to 20 °C for 1 week for half of the animals and maintained at 30 °C for the other half. Decreased temperature increased the liver and skeletal muscle content of LC-PUFA in fish fed on echium oil compared with rapeseed oil, while dietary LC-PUFA depots in fish oil fed-fish depleted rapidly in the week of sub-optimal temperature. The lipid unsaturation index of cellular membrane in the liver and muscle increased under low temperature at the same rate regardless of dietary oil. Therefore, rapid exposure of an ectothermic vertebrate to a lower and sub-optimal temperature caused significant modulation in fatty acid composition. We propose that the tolerance of barramundi, a representative of tropical farmed fish, to sub-optimal temperature will be enhanced when fatty acid substrates closer to the LC-PUFA are available in their diet. Copyright © 2013 Elsevier Inc. All rights reserved.
Scardigno, Domenico; Fanelli, Emanuele; Viggiano, Annarita; Braccio, Giacobbe; Magi, Vinicio
2016-06-01
This article provides the dataset of operating conditions of a hybrid organic Rankine plant generated by the optimization procedure employed in the research article "A genetic optimization of a hybrid organic Rankine plant for solar and low-grade energy sources" (Scardigno et al., 2015) [1]. The methodology used to obtain the data is described. The operating conditions are subdivided into two separate groups: feasible and unfeasible solutions. In both groups, the values of the design variables are given. Besides, the subset of feasible solutions is described in details, by providing the thermodynamic and economic performances, the temperatures at some characteristic sections of the thermodynamic cycle, the net power, the absorbed powers and the area of the heat exchange surfaces.
Screen printing technology applied to silicon solar cell fabrication
NASA Technical Reports Server (NTRS)
Thornhill, J. W.; Sipperly, W. E.
1980-01-01
The process for producing space qualified solar cells in both the conventional and wraparound configuration using screen printing techniques was investigated. Process modifications were chosen that could be easily automated or mechanized. Work was accomplished to optimize the tradeoffs associated with gridline spacing, gridline definition and junction depth. An extensive search for possible front contact metallization was completed. The back surface field structures along with the screen printed back contacts were optimized to produce open circuit voltages of at least an average of 600 millivolts. After all intended modifications on the process sequence were accomplished, the cells were exhaustively tested. Electrical tests at AMO and 28 C were made before and after boiling water immersion, thermal shock, and storage under conditions of high temperature and high humidity.
NASA Astrophysics Data System (ADS)
Azharuddin; Santarelli, Massimo
2016-09-01
Thermodynamic analysis of a closed cycle, solar powered Brayton gas turbine power plant with Concentrating Receiver system has been studied. A Brayton cycle is simpler than a Rankine cycle and has an advantage where the water is scarce. With the normal Brayton cycle a Concentrating Receiver System has been analysed which has a dependence on field density and optical system. This study presents a method of optimization of design parameter, such as the receiver working temperature and the heliostats density. This method aims at maximizing the overall efficiency of the three major subsystem that constitute the entire plant, namely, the heliostat field and the tower, the receiver and the power block. The results of the optimization process are shown and analysed.
Optimization of palm fruit sterilization by microwave irradiation using response surface methodology
NASA Astrophysics Data System (ADS)
Sarah, M.; Madinah, I.; Salamah, S.
2018-02-01
This study reported optimization of palm fruit sterilization process by microwave irradiation. The results of fractional factorial experiments showed no significant external factors affecting temperature of microwave sterilization (MS). Response surface methodology (RSM) was employed and model equation of MS of palm fruit was built. Response surface plots and their corresponding contour plots were analyzed as well as solving model equation. The optimum process parameters for lipase reduction were obtained from MS of 1 kg palm fruit at microwave power of 486 Watt and heating time of 14 minutes. The experimental results showed reduction of lipase activity in the present work under MS treatment. The adequacy of the model equation for predicting the optimum response value was verified by validation data (P>0.15).
Efficient protocols for Stirling heat engines at the micro-scale
NASA Astrophysics Data System (ADS)
Muratore-Ginanneschi, Paolo; Schwieger, Kay
2015-10-01
We investigate the thermodynamic efficiency of sub-micro-scale Stirling heat engines operating under the conditions described by overdamped stochastic thermodynamics. We show how to construct optimal protocols such that at maximum power the efficiency attains for constant isotropic mobility the universal law η=2 ηC/(4-ηC) , where ηC is the efficiency of an ideal Carnot cycle. We show that these protocols are specified by the solution of an optimal mass transport problem. Such solution can be determined explicitly using well-known Monge-Ampère-Kantorovich reconstruction algorithms. Furthermore, we show that the same law describes the efficiency of heat engines operating at maximum work over short time periods. Finally, we illustrate the straightforward extension of these results to cases when the mobility is anisotropic and temperature dependent.
NASA Astrophysics Data System (ADS)
Wang, Dong-Bo; Zhang, Jin-Chuan; Cheng, Feng-Min; Zhao, Yue; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo
2018-02-01
In this work, quantum cascade lasers (QCLs) based on strain compensation combined with two-phonon resonance design are presented. Distributed feedback (DFB) laser emitting at 4.76 μm was fabricated through a standard buried first-order grating and buried heterostructure (BH) processing. Stable single-mode emission is achieved under all injection currents and temperature conditions without any mode hop by the optimized antireflection (AR) coating on the front facet. The AR coating consists of a double layer dielectric of Al2O3 and Ge. For a 2-mm laser cavity, the maximum output power of the AR-coated DFB-QCL was more than 170 mW at 20 °C with a high wall-plug efficiency (WPE) of 4.7% in a continuous-wave (CW) mode.
Kuu, Wei Y; Nail, Steven L
2009-09-01
Computer programs in FORTRAN were developed to rapidly determine the optimal shelf temperature, T(f), and chamber pressure, P(c), to achieve the shortest primary drying time. The constraint for the optimization is to ensure that the product temperature profile, T(b), is below the target temperature, T(target). Five percent mannitol was chosen as the model formulation. After obtaining the optimal sets of T(f) and P(c), each cycle was assigned with a cycle rank number in terms of the length of drying time. Further optimization was achieved by dividing the drying time into a series of ramping steps for T(f), in a cascading manner (termed the cascading T(f) cycle), to further shorten the cycle time. For the purpose of demonstrating the validity of the optimized T(f) and P(c), four cycles with different predicted lengths of drying time, along with the cascading T(f) cycle, were chosen for experimental cycle runs. Tunable diode laser absorption spectroscopy (TDLAS) was used to continuously measure the sublimation rate. As predicted, maximum product temperatures were controlled slightly below the target temperature of -25 degrees C, and the cascading T(f)-ramping cycle is the most efficient cycle design. In addition, the experimental cycle rank order closely matches with that determined by modeling.
NASA Astrophysics Data System (ADS)
Wang, Zhuo; Li, Qi; Trinh, Wei; Lu, Qianli; Cho, Heejin; Wang, Qing; Chen, Lei
2017-07-01
The objective of this paper is to design and optimize the high temperature metalized thin-film polymer capacitor by a combined computational and experimental method. A finite-element based thermal model is developed to incorporate Joule heating and anisotropic heat conduction arising from anisotropic geometric structures of the capacitor. The anisotropic thermal conductivity and temperature dependent electrical conductivity required by the thermal model are measured from the experiments. The polymer represented by thermally crosslinking benzocyclobutene (BCB) in the presence of boron nitride nanosheets (BNNSs) is selected for high temperature capacitor design based on the results of highest internal temperature (HIT) and the time to achieve thermal equilibrium. The c-BCB/BNNS-based capacitor aiming at the operating temperature of 250 °C is geometrically optimized with respect to its shape and volume. "Safe line" plot is also presented to reveal the influence of the cooling strength on capacitor geometry design.
Panić, Sanja; Rakić, Dušan; Guzsvány, Valéria; Kiss, Erne; Boskovic, Goran; Kónya, Zoltán; Kukovecz, Ákos
2015-12-01
The aim of this work was to evaluate significant factors affecting the thiamethoxam adsorption efficiency using oxidized multi-walled carbon nanotubes (MWCNTs) as adsorbents. Five factors (initial solution concentration of thiamethoxam in water, temperature, solution pH, MWCNTs weight and contact time) were investigated using 2V(5-1) fractional factorial design. The obtained linear model was statistically tested using analysis of variance (ANOVA) and the analysis of residuals was used to investigate the model validity. It was observed that the factors and their second-order interactions affecting the thiamethoxam removal can be divided into three groups: very important, moderately important and insignificant ones. The initial solution concentration was found to be the most influencing parameter on thiamethoxam adsorption from water. Optimization of the factors levels was carried out by minimizing those parameters which are usually critical in real life: the temperature (energy), contact time (money) and weight of MWCNTs (potential health hazard), in order to maximize the adsorbed amount of the pollutant. The results of maximal adsorbed thiamethoxam amount in both real and optimized experiments indicate that among minimized parameters the adsorption time is one that makes the largest difference. The results of this study indicate that fractional factorial design is very useful tool for screening the higher number of parameters and reducing the number of adsorption experiments. Copyright © 2015 Elsevier Ltd. All rights reserved.
Olive pomace valorization by Aspergillus species: lipase production using solid-state fermentation.
Oliveira, Felisbela; Moreira, Cláudia; Salgado, José Manuel; Abrunhosa, Luís; Venâncio, Armando; Belo, Isabel
2016-08-01
Pollution by olive mill wastes is an important problem in the Mediterranean area and novel solutions for their proper management and valorization are needed. The aim of this work was to optimize a solid-state fermentation (SSF) process to produce lipase using olive pomace (OP) as the main source of nutrients by several Aspergillus spp. Optimized variables in two different designs were: ratio between olive pomace and wheat bran (OP:WB), NaNO3 , Czapek nutrients, fermentation time, moisture content (MC) and temperature. Results showed that the mixture OP:WB and MC were the most significant factors affecting lipase production for all fungi strains tested. With MC and temperature optimization, a 4.4-fold increase in A. ibericus lipase was achieved (90.5 ± 1.5 U g(-1) ), using a mixture of OP and WB at 1:1 ratio, 0.02 g NaNO3 g(-1) dry substrate, absence of Czapek nutrients, 60% of MC and incubation at 30 °C for 7 days. For A. niger and A. tubingensis, highest lipase activity obtained was 56.6 ± 5.4 and 7.6 ± 0.6 U g(-1) , respectively. Aspergillus ibericus was found to be the most promising microorganism for lipase production using mixtures of OP and WB. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Cai, Kai; Xiang, Zhangmin; Li, Hongqin; Zhao, Huina; Lin, Yechun; Pan, Wenjie; Lei, Bo
2017-12-01
This work describes a rapid, stable, and accurate method for determining the free amino acids, biogenic amines, and ammonium in tobacco. The target analytes were extracted with microwave-assisted extraction and then derivatized with diethyl ethoxymethylenemalonate, followed by ultra high performance liquid chromatography analysis. The experimental design used to optimize the microwave-assisted extraction conditions showed that the optimal extraction time was 10 min with a temperature of 60°C. The stability of aminoenone derivatives was improved by keeping the pH near 9.0, and there was no obvious degradation during the 80°C heating and room temperature storage. Under optimal conditions, this method showed good linearity (R 2 > 0.999) and sensitivity (limits of detection 0.010-0.081 μg/mL). The extraction recoveries were between 88.4 and 106.5%, while the repeatability and reproducibility ranged from 0.48 to 5.12% and from 1.56 to 6.52%, respectively. The newly developed method was employed to analyze the tobacco from different geographical origins. Principal component analysis showed that four geographical origins of tobacco could be clearly distinguished and that each had their characteristic components. The proposed method also showed great potential for further investigations on nitrogen metabolism in plants. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Xi-fen; Zhou, Huai-chun
2005-01-01
The control of 3-D temperature distribution in a utility boiler furnace is essential for the safe, economic and clean operation of pc-fired furnace with multi-burner system. The development of the visualization of 3-D temperature distributions in pc-fired furnaces makes it possible for a new combustion control strategy directly with the furnace temperature as its goal to improve the control quality for the combustion processes. Studied in this paper is such a new strategy that the whole furnace is divided into several parts in the vertical direction, and the average temperature and its bias from the center in every cross section can be extracted from the visualization results of the 3-D temperature distributions. In the simulation stage, a computational fluid dynamics (CFD) code served to calculate the 3-D temperature distributions in a furnace, then a linear model was set up to relate the features of the temperature distributions with the input of the combustion processes, such as the flow rates of fuel and air fed into the furnaces through all the burners. The adaptive genetic algorithm was adopted to find the optimal combination of the whole input parameters which ensure to form an optimal 3-D temperature field in the furnace desired for the operation of boiler. Simulation results showed that the strategy could soon find the factors making the temperature distribution apart from the optimal state and give correct adjusting suggestions.
A Slag Management Toolset for Determining Optimal Coal Gasification Temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwong, Kyei-Sing; Bennett, James P.
Abstract Gasifier operation is an intricate process because of the complex relationship between slag chemistry and temperature, limitations of feedstock materials, and operational preference. High gasification temperatures increase refractory degradation, while low gasification temperatures can lead to slag buildup on the gasifier sidewall or exit, either of which are problematic during operation. Maximizing refractory service life and gasifier performance require finding an optimized operating temperature range which is a function of the coal slag chemistry and viscosity. Gasifier operators typically use a slag’s viscosity-temperature relationship and/or ash-fusion fluid temperature to determine the gasification temperature range. NETL has built a slagmore » management toolset to determine the optimal temperature range for gasification of a carbon feedstock. This toolset is based on a viscosity database containing experimental data, and a number of models used to predict slag viscosity as a function of composition and temperature. Gasifier users typically have no scientific basis for selecting an operational temperature range for gasification, instead using experience to select operational conditions. The use of the toolset presented in this paper provides a basis for estimating or modifying carbon feedstock slags generated from ash impurities in carbon feedstock.« less
A Slag Management Toolset for Determining Optimal Coal Gasification Temperatures
Kwong, Kyei-Sing; Bennett, James P.
2016-11-25
Abstract Gasifier operation is an intricate process because of the complex relationship between slag chemistry and temperature, limitations of feedstock materials, and operational preference. High gasification temperatures increase refractory degradation, while low gasification temperatures can lead to slag buildup on the gasifier sidewall or exit, either of which are problematic during operation. Maximizing refractory service life and gasifier performance require finding an optimized operating temperature range which is a function of the coal slag chemistry and viscosity. Gasifier operators typically use a slag’s viscosity-temperature relationship and/or ash-fusion fluid temperature to determine the gasification temperature range. NETL has built a slagmore » management toolset to determine the optimal temperature range for gasification of a carbon feedstock. This toolset is based on a viscosity database containing experimental data, and a number of models used to predict slag viscosity as a function of composition and temperature. Gasifier users typically have no scientific basis for selecting an operational temperature range for gasification, instead using experience to select operational conditions. The use of the toolset presented in this paper provides a basis for estimating or modifying carbon feedstock slags generated from ash impurities in carbon feedstock.« less
Delanaud, Stéphane; Decima, Pauline; Pelletier, Amandine; Libert, Jean-Pierre; Durand, Estelle; Stephan-Blanchard, Erwan; Bach, Véronique; Tourneux, Pierre
2017-08-01
Low-birth-weight (LBW) neonates are nursed in closed incubators to prevent transcutaneous water loss. The RH's impact on the optimal incubator air temperature setting has not been studied. On the basis of a clinical cohort study, we modelled all the ambient parameters influencing body heat losses and gains. The algorithm quantifies the change in RH on the air temperature, to maintain optimal thermal conditions in the incubator. Twenty-three neonates (gestational age (GA): 30.0 [28.9-31.6] weeks) were included. A 20% increase and a 20% decrease in the RH induced a change in air temperature of between -1.51 and +1.85°C for a simulated 650g neonate (GA: 26 weeks), between -1.66 and +1.87°C for a 1000g neonate (GA: 31 weeks), and between -1.77 and +1.97°C for a 2000g neonate (GA: 33 weeks) (p<0.001). According to regression analyses, the optimal incubator air temperature=a+b relative humidity +c age +d weight (p<0.001). We have developed new mathematical equations for calculating the optimal temperature for the incubator air as a function of the latter's relative humidity. The software constitutes a decision support tool for improving patient care in routine clinical practice. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, C.; Armstrong, B.; Maxey, C.
2012-12-15
Oak Ridge National Laboratory and A123 Systems, Inc. collaborated on this project to develop a better understanding, quality control procedures, and safety testing for A123 System’s nanocomposite separator (NCS) technology which is a cell based patented technology and separator. NCS demonstrated excellent performance. x3450 prismatic cells were shown to survive >8000 cycles (1C/2C rate) at room temperature with greater than 80% capacity retention with only NCS present as an alternative to conventional polyolefin. However, for a successful commercialization, the coating conditions required to provide consistent and reliable product had not been optimized and QC techniques for being able to removemore » defective material before incorporation into a cell had not been developed. The work outlined in this report addresses these latter two points. First, experiments were conducted to understand temperature profiles during the different drying stages of the NCS coating when applied to both anode and cathode. One of the more interesting discoveries of this study was the observation of the large temperature decrease experienced by the wet coating between the end of the infrared (IR) drying stage and the beginning of the exposure to the convection drying oven. This is not a desirable situation as the temperature gradient could have a deleterious effect on coating quality. Based on this and other experimental data a radiative transfer model was developed for IR heating that also included a mass transfer module for drying. This will prove invaluable for battery coating optimization especially where IR drying is being employed. A stress model was also developed that predicts that under certain drying conditions tensile stresses are formed in the coating which could lead to cracking that is sometimes observed after drying is complete. Prediction of under what conditions these stresses form is vital to improving coating quality. In addition to understanding the drying process other parameters such as slurry quality and equipment optimization were examined. Removal of particles and gels by filtering, control of viscosity by %solids and mixing adjustments, removal of trapped gas in the slurry and modification of coater speed and slot die gap were all found to be important for producing uniform and flaw-free coatings. Second, an in-line Hi-Pot testing method has been developed specifically for NCS that will enable detection of coating flaws that could lead to soft or hard electrical shorts within the cell. In this way flawed material can be rejected before incorporation into the cell thus greatly reducing the amount of scrap that is generated. Improved battery safety is an extremely important benefit of NCS. Evaluation of battery safety is usually accomplished by conducting a variety of tests including nail penetration, hot box, over charge, etc. For these tests entire batteries must be built but the resultant temperature and voltage responses reveal little about the breakdown mechanism. In this report is described a pinch test which is used to evaluate NCS quality at various stages including coated anode and cathode as well as assembled cell. Coupled with post-microscopic examination of the damaged ‘pinch point’ test data can assist in the coating optimization from an improved end-use standpoint. As a result of this work two invention disclosures, one for optimizing drying methodology and the other for an in-line system for flaw detection, have been filed. In addition, 2 papers are being written for submission to peer-reviewed journals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, Claus; Armstrong, Beth L; Maxey, L Curt
2013-08-01
Oak Ridge National Laboratory and A123 Systems, Inc. collaborated on this project to develop a better understanding, quality control procedures, and safety testing for A123 System s nanocomposite separator (NCS) technology which is a cell based patented technology and separator. NCS demonstrated excellent performance. x3450 prismatic cells were shown to survive >8000 cycles (1C/2C rate) at room temperature with greater than 80% capacity retention with only NCS present as an alternative to conventional polyolefin. However, for a successful commercialization, the coating conditions required to provide consistent and reliable product had not been optimized and QC techniques for being able tomore » remove defective material before incorporation into a cell had not been developed. The work outlined in this report addresses these latter two points. First, experiments were conducted to understand temperature profiles during the different drying stages of the NCS coating when applied to both anode and cathode. One of the more interesting discoveries of this study was the observation of the large temperature decrease experienced by the wet coating between the end of the infrared (IR) drying stage and the beginning of the exposure to the convection drying oven. This is not a desirable situation as the temperature gradient could have a deleterious effect on coating quality. Based on this and other experimental data a radiative transfer model was developed for IR heating that also included a mass transfer module for drying. This will prove invaluable for battery coating optimization especially where IR drying is being employed. A stress model was also developed that predicts that under certain drying conditions tensile stresses are formed in the coating which could lead to cracking that is sometimes observed after drying is complete. Prediction of under what conditions these stresses form is vital to improving coating quality. In addition to understanding the drying process other parameters such as slurry quality and equipment optimization were examined. Removal of particles and gels by filtering, control of viscosity by %solids and mixing adjustments, removal of trapped gas in the slurry and modification of coater speed and slot die gap were all found to be important for producing uniform and flaw-free coatings. Second, an in-line Hi-Pot testing method has been developed specifically for NCS that will enable detection of coating flaws that could lead to soft or hard electrical shorts within the cell. In this way flawed material can be rejected before incorporation into the cell thus greatly reducing the amount of scrap that is generated. Improved battery safety is an extremely important benefit of NCS. Evaluation of battery safety is usually accomplished by conducting a variety of tests including nail penetration, hot box, over charge, etc. For these tests entire batteries must be built but the resultant temperature and voltage responses reveal little about the breakdown mechanism. In this report is described a pinch test which is used to evaluate NCS quality at various stages including coated anode and cathode as well as assembled cell. Coupled with post-microscopic examination of the damaged pinch point test data can assist in the coating optimization from an improved end-use standpoint. As a result of this work two invention disclosures, one for optimizing drying methodology and the other for an in-line system for flaw detection, have been filed. In addition, 2 papers are being written for submission to peer-reviewed journals.« less
Kok, H P; de Greef, M; Bel, A; Crezee, J
2009-08-01
In regional hyperthermia, optimization is useful to obtain adequate applicator settings. A speed-up of the previously published method for high resolution temperature based optimization is proposed. Element grouping as described in literature uses selected voxel sets instead of single voxels to reduce computation time. Elements which achieve their maximum heating potential for approximately the same phase/amplitude setting are grouped. To form groups, eigenvalues and eigenvectors of precomputed temperature matrices are used. At high resolution temperature matrices are unknown and temperatures are estimated using low resolution (1 cm) computations and the high resolution (2 mm) temperature distribution computed for low resolution optimized settings using zooming. This technique can be applied to estimate an upper bound for high resolution eigenvalues. The heating potential of elements was estimated using these upper bounds. Correlations between elements were estimated with low resolution eigenvalues and eigenvectors, since high resolution eigenvectors remain unknown. Four different grouping criteria were applied. Constraints were set to the average group temperatures. Element grouping was applied for five patients and optimal settings for the AMC-8 system were determined. Without element grouping the average computation times for five and ten runs were 7.1 and 14.4 h, respectively. Strict grouping criteria were necessary to prevent an unacceptable exceeding of the normal tissue constraints (up to approximately 2 degrees C), caused by constraining average instead of maximum temperatures. When strict criteria were applied, speed-up factors of 1.8-2.1 and 2.6-3.5 were achieved for five and ten runs, respectively, depending on the grouping criteria. When many runs are performed, the speed-up factor will converge to 4.3-8.5, which is the average reduction factor of the constraints and depends on the grouping criteria. Tumor temperatures were comparable. Maximum exceeding of the constraint in a hot spot was 0.24-0.34 degree C; average maximum exceeding over all five patients was 0.09-0.21 degree C, which is acceptable. High resolution temperature based optimization using element grouping can achieve a speed-up factor of 4-8, without large deviations from the conventional method.
Ozdemir, Utkan; Ozbay, Bilge; Ozbay, Ismail; Veli, Sevil
2014-09-01
In this work, Taguchi L32 experimental design was applied to optimize biosorption of Cu(2+) ions by an easily available biosorbent, Spaghnum moss. With this aim, batch biosorption tests were performed to achieve targeted experimental design with five factors (concentration, pH, biosorbent dosage, temperature and agitation time) at two different levels. Optimal experimental conditions were determined by calculated signal-to-noise ratios. "Higher is better" approach was followed to calculate signal-to-noise ratios as it was aimed to obtain high metal removal efficiencies. The impact ratios of factors were determined by the model. Within the study, Cu(2+) biosorption efficiencies were also predicted by using Taguchi method. Results of the model showed that experimental and predicted values were close to each other demonstrating the success of Taguchi approach. Furthermore, thermodynamic, isotherm and kinetic studies were performed to explain the biosorption mechanism. Calculated thermodynamic parameters were in good accordance with the results of Taguchi model. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S. M.; Kim, K. Y.
Printed circuit heat exchanger (PCHE) is recently considered as a recuperator for the high temperature gas cooled reactor. In this work, the zigzag-channels of a PCHE have been optimized by using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) analysis and response surface approximation (RSA) modeling technique to enhance thermal-hydraulic performance. Shear stress transport turbulence model is used as a turbulence closure. The objective function is defined as a linear combination of the functions related to heat transfer and friction loss of the PCHE, respectively. Three geometric design variables viz., the ratio of the radius of the fillet to hydraulic diameter of the channels,more » the ratio of wavelength to hydraulic diameter of the channels, and the ratio of wave height to hydraulic diameter of the channels, are used for the optimization. Design points are selected through Latin-hypercube sampling. The optimal design is determined through the RSA model which uses RANS derived calculations at the design points. The results show that the optimum shape enhances considerably the thermal-hydraulic performance than a reference shape. (authors)« less
Optimizing LX-17 Thermal Decomposition Model Parameters with Evolutionary Algorithms
NASA Astrophysics Data System (ADS)
Moore, Jason; McClelland, Matthew; Tarver, Craig; Hsu, Peter; Springer, H. Keo
2017-06-01
We investigate and model the cook-off behavior of LX-17 because this knowledge is critical to understanding system response in abnormal thermal environments. Thermal decomposition of LX-17 has been explored in conventional ODTX (One-Dimensional Time-to-eXplosion), PODTX (ODTX with pressure-measurement), TGA (thermogravimetric analysis), and DSC (differential scanning calorimetry) experiments using varied temperature profiles. These experimental data are the basis for developing multiple reaction schemes with coupled mechanics in LLNL's multi-physics hydrocode, ALE3D (Arbitrary Lagrangian-Eulerian code in 2D and 3D). We employ evolutionary algorithms to optimize reaction rate parameters on high performance computing clusters. Once experimentally validated, this model will be scalable to a number of applications involving LX-17 and can be used to develop more sophisticated experimental methods. Furthermore, the optimization methodology developed herein should be applicable to other high explosive materials. This work was performed under the auspices of the U.S. DOE by LLNL under contract DE-AC52-07NA27344. LLNS, LLC.
Liu, Cong; Ngo, Huu Hao; Guo, Wenshan; Tung, Kuo-Lun
2012-09-01
In this study, three agro-waste materials were used as biosorbents for removal of copper (Cu) from water. This work aims to optimise conditions for preparation of these materials to obtain maximum Cu adsorption capacity. The optimal conditions were determined in terms of Cu removal efficiency and/or energy consumption. The results indicate that banana peels dried at 120°C for 2h and ground into powder form led to a better performance in terms of both copper removal efficiency and energy consumption. For sugarcane bagasse and watermelon rind, 120°C was the suitable drying temperature. However, the best drying time was 1h for sugarcane bagasse and 3h for watermelon rind. The powder form with size of <150 μm was optimal for all biosorbents in terms of removal efficiency and equilibration time. The findings are beneficial to the application of these agro-waste materials for Cu removal from water and wastewater treatment. Copyright © 2012. Published by Elsevier Ltd.
A new approach to synthesis of benzyl cinnamate: Optimization by response surface methodology.
Zhang, Dong-Hao; Zhang, Jiang-Yan; Che, Wen-Cai; Wang, Yun
2016-09-01
In this work, the new approach to synthesis of benzyl cinnamate by enzymatic esterification of cinnamic acid with benzyl alcohol is optimized by response surface methodology. The effects of various reaction conditions, including temperature, enzyme loading, substrate molar ratio of benzyl alcohol to cinnamic acid, and reaction time, are investigated. A 5-level-4-factor central composite design is employed to search for the optimal yield of benzyl cinnamate. A quadratic polynomial regression model is used to analyze the experimental data at a 95% confidence level (P<0.05). The coefficient of determination of this model is found to be 0.9851. Three sets of optimum reaction conditions are established, and the verified experimental trials are performed for validating the optimum points. Under the optimum conditions (40°C, 31mg/mL enzyme loading, 2.6:1 molar ratio, 27h), the yield reaches 97.7%, which provides an efficient processes for industrial production of benzyl cinnamate. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Punov, Plamen; Milkov, Nikolay; Danel, Quentin; Perilhon, Christelle; Podevin, Pierre; Evtimov, Teodossi
2017-02-01
An optimization study of the Rankine cycle as a function of diesel engine operating mode is presented. The Rankine cycle here, is studied as a waste heat recovery system which uses the engine exhaust gases as heat source. The engine exhaust gases parameters (temperature, mass flow and composition) were defined by means of numerical simulation in advanced simulation software AVL Boost. Previously, the engine simulation model was validated and the Vibe function parameters were defined as a function of engine load. The Rankine cycle output power and efficiency was numerically estimated by means of a simulation code in Python(x,y). This code includes discretized heat exchanger model and simplified model of the pump and the expander based on their isentropic efficiency. The Rankine cycle simulation revealed the optimum value of working fluid mass flow and evaporation pressure according to the heat source. Thus, the optimal Rankine cycle performance was obtained over the engine operating map.
Optimized Design of the SGA-WZ Strapdown Airborne Gravimeter Temperature Control System
Cao, Juliang; Wang, Minghao; Cai, Shaokun; Zhang, Kaidong; Cong, Danni; Wu, Meiping
2015-01-01
The temperature control system is one of the most important subsystems of the strapdown airborne gravimeter. Because the quartz flexible accelerometer based on springy support technology is the core sensor in the strapdown airborne gravimeter and the magnet steel in the electromagnetic force equilibrium circuits of the quartz flexible accelerometer is greatly affected by temperature, in order to guarantee the temperature control precision and minimize the effect of temperature on the gravimeter, the SGA-WZ temperature control system adopts a three-level control method. Based on the design experience of the SGA-WZ-01, the SGA-WZ-02 temperature control system came out with a further optimized design. In 1st level temperature control, thermoelectric cooler is used to conquer temperature change caused by hot weather. The experiments show that the optimized stability of 1st level temperature control is about 0.1 °C and the max cool down capability is about 10 °C. The temperature field is analyzed in the 2nd and 3rd level temperature control using the finite element analysis software ANSYS. The 2nd and 3rd level temperature control optimization scheme is based on the foundation of heat analysis. The experimental results show that static accuracy of SGA-WZ-02 reaches 0.21 mGal/24 h, with internal accuracy being 0.743 mGal/4.8 km and external accuracy being 0.37 mGal/4.8 km compared with the result of the GT-2A, whose internal precision is superior to 1 mGal/4.8 km and all of them are better than those in SGA-WZ-01. PMID:26633407
Optimal Body Temperature in Transitional ELBW Infants Using Heart Rate and Temperature as Indicators
Knobel, Robin B.; Holditch-Davis, Diane; Schwartz, Todd A.
2013-01-01
Extremely low birth weight (ELBW) infants are vulnerable to cold stress after birth. Therefore, caregivers need to control body temperature optimally to minimize energy expenditure. Objective We explored body temperature in relationship to heart rate in ELBW infants during their first 12 hours to help identify the ideal set point for incubator control of body temperature. Design Within subject, multiple-case design. Setting A tertiary NICU in North Carolina. Participants 10 infants, born less than 29 weeks gestation and weighing 400-1000 grams. Methods Heart rate and abdominal body temperature were measured at 1-minute intervals for 12 hours. Heart rates were considered normal if they were between the 25th and 75th percentile for each infant. Results Abdominal temperatures were low throughout the 12-hour study period (mean 35.17° C-36.68° C). Seven of ten infants had significant correlations between abdominal temperature and heart rate. Heart rates above the 75th percentile were associated with low and high abdominal temperatures; heart rates less than the 25th percentile were associated with very low abdominal temperatures. The extent to which abdominal temperature was abnormally low was related the extent to which the heart rate trended away from normal in six of the ten infants. Optimal temperature control point that maximized normal heart rate observations for each infant was between 36.8° C and 37° C. Conclusions Hypothermia was associated with abnormal heart rates in transitional ELBW infants. We suggest nurses set incubator servo between 36.8° C and 36.9° C to optimally control body temperature for ELBW infants. PMID:20409098
Optimized Design of the SGA-WZ Strapdown Airborne Gravimeter Temperature Control System.
Cao, Juliang; Wang, Minghao; Cai, Shaokun; Zhang, Kaidong; Cong, Danni; Wu, Meiping
2015-12-01
The temperature control system is one of the most important subsystems of the strapdown airborne gravimeter. Because the quartz flexible accelerometer based on springy support technology is the core sensor in the strapdown airborne gravimeter and the magnet steel in the electromagnetic force equilibrium circuits of the quartz flexible accelerometer is greatly affected by temperature, in order to guarantee the temperature control precision and minimize the effect of temperature on the gravimeter, the SGA-WZ temperature control system adopts a three-level control method. Based on the design experience of the SGA-WZ-01, the SGA-WZ-02 temperature control system came out with a further optimized design. In 1st level temperature control, thermoelectric cooler is used to conquer temperature change caused by hot weather. The experiments show that the optimized stability of 1st level temperature control is about 0.1 °C and the max cool down capability is about 10 °C. The temperature field is analyzed in the 2nd and 3rd level temperature control using the finite element analysis software ANSYS. The 2nd and 3rd level temperature control optimization scheme is based on the foundation of heat analysis. The experimental results show that static accuracy of SGA-WZ-02 reaches 0.21 mGal/24 h, with internal accuracy being 0.743 mGal/4.8 km and external accuracy being 0.37 mGal/4.8 km compared with the result of the GT-2A, whose internal precision is superior to 1 mGal/4.8 km and all of them are better than those in SGA-WZ-01.