Sample records for optimally coherent sets

  1. Optimal discrimination of M coherent states with a small quantum computer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, Marcus P. da; Guha, Saikat; Dutton, Zachary

    2014-12-04

    The ability to distinguish between coherent states optimally plays in important role in the efficient usage of quantum resources for classical communication and sensing applications. While it has been known since the early 1970’s how to optimally distinguish between two coherent states, generalizations to larger sets of coherent states have so far failed to reach optimality. In this work we outline how optimality can be achieved by using a small quantum computer, building on recent proposals for optimal qubit state discrimination with multiple copies.

  2. Polarimetric SAR Interferometry to Monitor Land Subsidence in Tehran

    NASA Astrophysics Data System (ADS)

    Sadeghi, Zahra; Valadan Zoej, Mohammad Javad; Muller, Jan-Peter

    2016-08-01

    This letter uses a combination of ADInSAR with a coherence optimization method. Polarimetric DInSAR is able to enhance pixel phase quality and thus coherent pixel density. The coherence optimization method is a search-based approach to find the optimized scattering mechanism introduced by Navarro-Sanchez [1]. The case study is southwest of Tehran basin located in the North of Iran. It suffers from a high-rate of land subsidence and is covered by agricultural fields. Usually such an area would significantly decorrelate but applying polarimetric ADInSAR it is possible to obtain a more coherent pixel coverage. A set of dual-pol TerraSAR-X images was ordered for polarimetric ADInSAR procedure. The coherence optimization method is shown to have increased the density and phase quality of coherent pixels significantly.

  3. Achieving minimum-error discrimination of an arbitrary set of laser-light pulses

    NASA Astrophysics Data System (ADS)

    da Silva, Marcus P.; Guha, Saikat; Dutton, Zachary

    2013-05-01

    Laser light is widely used for communication and sensing applications, so the optimal discrimination of coherent states—the quantum states of light emitted by an ideal laser—has immense practical importance. Due to fundamental limits imposed by quantum mechanics, such discrimination has a finite minimum probability of error. While concrete optical circuits for the optimal discrimination between two coherent states are well known, the generalization to larger sets of coherent states has been challenging. In this paper, we show how to achieve optimal discrimination of any set of coherent states using a resource-efficient quantum computer. Our construction leverages a recent result on discriminating multicopy quantum hypotheses [Blume-Kohout, Croke, and Zwolak, arXiv:1201.6625]. As illustrative examples, we analyze the performance of discriminating a ternary alphabet and show how the quantum circuit of a receiver designed to discriminate a binary alphabet can be reused in discriminating multimode hypotheses. Finally, we show that our result can be used to achieve the quantum limit on the rate of classical information transmission on a lossy optical channel, which is known to exceed the Shannon rate of all conventional optical receivers.

  4. Coherent optimal control of photosynthetic molecules

    NASA Astrophysics Data System (ADS)

    Caruso, F.; Montangero, S.; Calarco, T.; Huelga, S. F.; Plenio, M. B.

    2012-04-01

    We demonstrate theoretically that open-loop quantum optimal control techniques can provide efficient tools for the verification of various quantum coherent transport mechanisms in natural and artificial light-harvesting complexes under realistic experimental conditions. To assess the feasibility of possible biocontrol experiments, we introduce the main settings and derive optimally shaped and robust laser pulses that allow for the faithful preparation of specified initial states (such as localized excitation or coherent superposition, i.e., propagating and nonpropagating states) of the photosystem and probe efficiently the subsequent dynamics. With these tools, different transport pathways can be discriminated, which should facilitate the elucidation of genuine quantum dynamical features of photosystems and therefore enhance our understanding of the role that coherent processes may play in actual biological complexes.

  5. Coherent Coupled Qubits for Quantum Annealing

    NASA Astrophysics Data System (ADS)

    Weber, Steven J.; Samach, Gabriel O.; Hover, David; Gustavsson, Simon; Kim, David K.; Melville, Alexander; Rosenberg, Danna; Sears, Adam P.; Yan, Fei; Yoder, Jonilyn L.; Oliver, William D.; Kerman, Andrew J.

    2017-07-01

    Quantum annealing is an optimization technique which potentially leverages quantum tunneling to enhance computational performance. Existing quantum annealers use superconducting flux qubits with short coherence times limited primarily by the use of large persistent currents Ip. Here, we examine an alternative approach using qubits with smaller Ip and longer coherence times. We demonstrate tunable coupling, a basic building block for quantum annealing, between two flux qubits with small (approximately 50-nA) persistent currents. Furthermore, we characterize qubit coherence as a function of coupler setting and investigate the effect of flux noise in the coupler loop on qubit coherence. Our results provide insight into the available design space for next-generation quantum annealers with improved coherence.

  6. Time-optimal excitation of maximum quantum coherence: Physical limits and pulse sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Köcher, S. S.; Institute of Energy and Climate Research; Heydenreich, T.

    Here we study the optimum efficiency of the excitation of maximum quantum (MaxQ) coherence using analytical and numerical methods based on optimal control theory. The theoretical limit of the achievable MaxQ amplitude and the minimum time to achieve this limit are explored for a set of model systems consisting of up to five coupled spins. In addition to arbitrary pulse shapes, two simple pulse sequence families of practical interest are considered in the optimizations. Compared to conventional approaches, substantial gains were found both in terms of the achieved MaxQ amplitude and in pulse sequence durations. For a model system, theoreticallymore » predicted gains of a factor of three compared to the conventional pulse sequence were experimentally demonstrated. Motivated by the numerical results, also two novel analytical transfer schemes were found: Compared to conventional approaches based on non-selective pulses and delays, double-quantum coherence in two-spin systems can be created twice as fast using isotropic mixing and hard spin-selective pulses. Also it is proved that in a chain of three weakly coupled spins with the same coupling constants, triple-quantum coherence can be created in a time-optimal fashion using so-called geodesic pulses.« less

  7. Structured Set Intra Prediction With Discriminative Learning in a Max-Margin Markov Network for High Efficiency Video Coding

    PubMed Central

    Dai, Wenrui; Xiong, Hongkai; Jiang, Xiaoqian; Chen, Chang Wen

    2014-01-01

    This paper proposes a novel model on intra coding for High Efficiency Video Coding (HEVC), which simultaneously predicts blocks of pixels with optimal rate distortion. It utilizes the spatial statistical correlation for the optimal prediction based on 2-D contexts, in addition to formulating the data-driven structural interdependences to make the prediction error coherent with the probability distribution, which is desirable for successful transform and coding. The structured set prediction model incorporates a max-margin Markov network (M3N) to regulate and optimize multiple block predictions. The model parameters are learned by discriminating the actual pixel value from other possible estimates to maximize the margin (i.e., decision boundary bandwidth). Compared to existing methods that focus on minimizing prediction error, the M3N-based model adaptively maintains the coherence for a set of predictions. Specifically, the proposed model concurrently optimizes a set of predictions by associating the loss for individual blocks to the joint distribution of succeeding discrete cosine transform coefficients. When the sample size grows, the prediction error is asymptotically upper bounded by the training error under the decomposable loss function. As an internal step, we optimize the underlying Markov network structure to find states that achieve the maximal energy using expectation propagation. For validation, we integrate the proposed model into HEVC for optimal mode selection on rate-distortion optimization. The proposed prediction model obtains up to 2.85% bit rate reduction and achieves better visual quality in comparison to the HEVC intra coding. PMID:25505829

  8. Family Dynamics and Personal Strengths among Dementia Caregivers in Argentina

    PubMed Central

    Elnasseh, Aaliah G.; Trujillo, Michael A.; Peralta, Silvina Victoria; Stolfi, Miriam E.; Morelli, Eliana; Perrin, Paul B.

    2016-01-01

    This study examined whether healthier family dynamics were associated with higher personal strengths of resilience, sense of coherence, and optimism among dementia caregivers in Argentina. Caregivers are usually required to assist individuals with dementia, and family members have typically fulfilled that role. Personal strengths such as resilience, sense of coherence, and optimism have been shown to protect caregivers from some of the negative experiences of providing care, though the family-related variables associated with these personal strengths are largely unknown. Hierarchical multiple regressions investigated the extent to which family dynamics variables are associated with each of the caregiver personal strengths after controlling for demographic and caregiver characteristics. A sample of 105 caregivers from Argentina completed a set of questionnaires during a neurologist visit. Family dynamics explained 32% of the variance in resilience and 39% of the variance in sense of coherence. Greater family empathy and decreased family problems were uniquely associated with higher resilience. Greater communication and decreased family problems were uniquely associated with higher sense of coherence. Optimism was not found to be significantly associated with family dynamics. These results suggest that caregiver intervention research focused on the family may help improve caregiver personal strengths in Argentina and other Latin American countries. PMID:27413574

  9. Recovering metabolic pathways via optimization.

    PubMed

    Beasley, John E; Planes, Francisco J

    2007-01-01

    A metabolic pathway is a coherent set of enzyme catalysed biochemical reactions by which a living organism transforms an initial (source) compound into a final (target) compound. Some of the different metabolic pathways adopted within organisms have been experimentally determined. In this paper, we show that a number of experimentally determined metabolic pathways can be recovered by a mathematical optimization model.

  10. Relating the Resource Theories of Entanglement and Quantum Coherence.

    PubMed

    Chitambar, Eric; Hsieh, Min-Hsiu

    2016-07-08

    Quantum coherence and quantum entanglement represent two fundamental features of nonclassical systems that can each be characterized within an operational resource theory. In this Letter, we unify the resource theories of entanglement and coherence by studying their combined behavior in the operational setting of local incoherent operations and classical communication (LIOCC). Specifically, we analyze the coherence and entanglement trade-offs in the tasks of state formation and resource distillation. For pure states we identify the minimum coherence-entanglement resources needed to generate a given state, and we introduce a new LIOCC monotone that completely characterizes a state's optimal rate of bipartite coherence distillation. This result allows us to precisely quantify the difference in operational powers between global incoherent operations, LIOCC, and local incoherent operations without classical communication. Finally, a bipartite mixed state is shown to have distillable entanglement if and only if entanglement can be distilled by LIOCC, and we strengthen the well-known Horodecki criterion for distillability.

  11. Relating the Resource Theories of Entanglement and Quantum Coherence

    NASA Astrophysics Data System (ADS)

    Chitambar, Eric; Hsieh, Min-Hsiu

    2016-07-01

    Quantum coherence and quantum entanglement represent two fundamental features of nonclassical systems that can each be characterized within an operational resource theory. In this Letter, we unify the resource theories of entanglement and coherence by studying their combined behavior in the operational setting of local incoherent operations and classical communication (LIOCC). Specifically, we analyze the coherence and entanglement trade-offs in the tasks of state formation and resource distillation. For pure states we identify the minimum coherence-entanglement resources needed to generate a given state, and we introduce a new LIOCC monotone that completely characterizes a state's optimal rate of bipartite coherence distillation. This result allows us to precisely quantify the difference in operational powers between global incoherent operations, LIOCC, and local incoherent operations without classical communication. Finally, a bipartite mixed state is shown to have distillable entanglement if and only if entanglement can be distilled by LIOCC, and we strengthen the well-known Horodecki criterion for distillability.

  12. Online tracking of outdoor lighting variations for augmented reality with moving cameras.

    PubMed

    Liu, Yanli; Granier, Xavier

    2012-04-01

    In augmented reality, one of key tasks to achieve a convincing visual appearance consistency between virtual objects and video scenes is to have a coherent illumination along the whole sequence. As outdoor illumination is largely dependent on the weather, the lighting condition may change from frame to frame. In this paper, we propose a full image-based approach for online tracking of outdoor illumination variations from videos captured with moving cameras. Our key idea is to estimate the relative intensities of sunlight and skylight via a sparse set of planar feature-points extracted from each frame. To address the inevitable feature misalignments, a set of constraints are introduced to select the most reliable ones. Exploiting the spatial and temporal coherence of illumination, the relative intensities of sunlight and skylight are finally estimated by using an optimization process. We validate our technique on a set of real-life videos and show that the results with our estimations are visually coherent along the video sequences.

  13. Complex Instruction Set Quantum Computing

    NASA Astrophysics Data System (ADS)

    Sanders, G. D.; Kim, K. W.; Holton, W. C.

    1998-03-01

    In proposed quantum computers, electromagnetic pulses are used to implement logic gates on quantum bits (qubits). Gates are unitary transformations applied to coherent qubit wavefunctions and a universal computer can be created using a minimal set of gates. By applying many elementary gates in sequence, desired quantum computations can be performed. This reduced instruction set approach to quantum computing (RISC QC) is characterized by serial application of a few basic pulse shapes and a long coherence time. However, the unitary matrix of the overall computation is ultimately a unitary matrix of the same size as any of the elementary matrices. This suggests that we might replace a sequence of reduced instructions with a single complex instruction using an optimally taylored pulse. We refer to this approach as complex instruction set quantum computing (CISC QC). One trades the requirement for long coherence times for the ability to design and generate potentially more complex pulses. We consider a model system of coupled qubits interacting through nearest neighbor coupling and show that CISC QC can reduce the time required to perform quantum computations.

  14. Automatic theory generation from analyst text files using coherence networks

    NASA Astrophysics Data System (ADS)

    Shaffer, Steven C.

    2014-05-01

    This paper describes a three-phase process of extracting knowledge from analyst textual reports. Phase 1 involves performing natural language processing on the source text to extract subject-predicate-object triples. In phase 2, these triples are then fed into a coherence network analysis process, using a genetic algorithm optimization. Finally, the highest-value sub networks are processed into a semantic network graph for display. Initial work on a well- known data set (a Wikipedia article on Abraham Lincoln) has shown excellent results without any specific tuning. Next, we ran the process on the SYNthetic Counter-INsurgency (SYNCOIN) data set, developed at Penn State, yielding interesting and potentially useful results.

  15. Optimal continuous variable quantum teleportation protocol for realistic settings

    NASA Astrophysics Data System (ADS)

    Luiz, F. S.; Rigolin, Gustavo

    2015-03-01

    We show the optimal setup that allows Alice to teleport coherent states | α > to Bob giving the greatest fidelity (efficiency) when one takes into account two realistic assumptions. The first one is the fact that in any actual implementation of the continuous variable teleportation protocol (CVTP) Alice and Bob necessarily share non-maximally entangled states (two-mode finitely squeezed states). The second one assumes that Alice's pool of possible coherent states to be teleported to Bob does not cover the whole complex plane (| α | < ∞). The optimal strategy is achieved by tuning three parameters in the original CVTP, namely, Alice's beam splitter transmittance and Bob's displacements in position and momentum implemented on the teleported state. These slight changes in the protocol are currently easy to be implemented and, as we show, give considerable gain in performance for a variety of possible pool of input states with Alice.

  16. Optimally cloned binary coherent states

    NASA Astrophysics Data System (ADS)

    Müller, C. R.; Leuchs, G.; Marquardt, Ch.; Andersen, U. L.

    2017-10-01

    Binary coherent state alphabets can be represented in a two-dimensional Hilbert space. We capitalize this formal connection between the otherwise distinct domains of qubits and continuous variable states to map binary phase-shift keyed coherent states onto the Bloch sphere and to derive their quantum-optimal clones. We analyze the Wigner function and the cumulants of the clones, and we conclude that optimal cloning of binary coherent states requires a nonlinearity above second order. We propose several practical and near-optimal cloning schemes and compare their cloning fidelity to the optimal cloner.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spagnolo, Nicolo; Consorzio Interuniversitario per le Scienze Fisiche della Materia, piazzale Aldo Moro 5, I-00185 Roma; Sciarrino, Fabio

    We show that the quantum states generated by universal optimal quantum cloning of a single photon represent a universal set of quantum superpositions resilient to decoherence. We adopt the Bures distance as a tool to investigate the persistence of quantum coherence of these quantum states. According to this analysis, the process of universal cloning realizes a class of quantum superpositions that exhibits a covariance property in lossy configuration over the complete set of polarization states in the Bloch sphere.

  18. Relationship Between Optimal Gain and Coherence Zone in Flight Simulation

    NASA Technical Reports Server (NTRS)

    Gracio, Bruno Jorge Correia; Pais, Ana Rita Valente; vanPaassen, M. M.; Mulder, Max; Kely, Lon C.; Houck, Jacob A.

    2011-01-01

    In motion simulation the inertial information generated by the motion platform is most of the times different from the visual information in the simulator displays. This occurs due to the physical limits of the motion platform. However, for small motions that are within the physical limits of the motion platform, one-to-one motion, i.e. visual information equal to inertial information, is possible. It has been shown in previous studies that one-to-one motion is often judged as too strong, causing researchers to lower the inertial amplitude. When trying to measure the optimal inertial gain for a visual amplitude, we found a zone of optimal gains instead of a single value. Such result seems related with the coherence zones that have been measured in flight simulation studies. However, the optimal gain results were never directly related with the coherence zones. In this study we investigated whether the optimal gain measurements are the same as the coherence zone measurements. We also try to infer if the results obtained from the two measurements can be used to differentiate between simulators with different configurations. An experiment was conducted at the NASA Langley Research Center which used both the Cockpit Motion Facility and the Visual Motion Simulator. The results show that the inertial gains obtained with the optimal gain are different than the ones obtained with the coherence zone measurements. The optimal gain is within the coherence zone.The point of mean optimal gain was lower and further away from the one-to-one line than the point of mean coherence. The zone width obtained for the coherence zone measurements was dependent on the visual amplitude and frequency. For the optimal gain, the zone width remained constant when the visual amplitude and frequency were varied. We found no effect of the simulator configuration in both the coherence zone and optimal gain measurements.

  19. Selecting appropriate singular values of transmission matrix to improve precision of incident wavefront retrieval

    NASA Astrophysics Data System (ADS)

    Fang, Longjie; Zhang, Xicheng; Zuo, Haoyi; Pang, Lin; Yang, Zuogang; Du, Jinglei

    2018-06-01

    A method of selecting appropriate singular values of the transmission matrix to improve the precision of incident wavefront retrieval in focusing light through scattering media is proposed. The optimal singular values selected by this method can reduce the degree of ill-conditionedness of the transmission matrix effectively, which indicates that the incident wavefront retrieved from the optimal set of singular values is more accurate than the incident wavefront retrieved from other sets of singular values. The validity of this method is verified by numerical simulation and actual measurements of the incident wavefront of coherent light through ground glass.

  20. Coupled Qubits for Next Generation Quantum Annealing: Improving Coherence

    NASA Astrophysics Data System (ADS)

    Weber, Steven; Samach, Gabriel; Hover, David; Rosenberg, Danna; Yoder, Jonilyn; Kim, David K.; Kerman, Andrew; Oliver, William D.

    Quantum annealing is an optimization technique which potentially leverages quantum tunneling to enhance computational performance. Existing quantum annealers use superconducting flux qubits with short coherence times, limited primarily by the use of large persistent currents. Here, we examine an alternative approach, using flux qubits with smaller persistent currents and longer coherence times. We demonstrate tunable coupling, a basic building-block for quantum annealing, between two such qubits. Furthermore, we characterize qubit coherence as a function of coupler setting and investigate the effect of flux noise in the coupler loop on qubit coherence. Our results provide insight into the available design space for next-generation quantum annealers with improved coherence. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) and by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  1. X-ray optics simulation and beamline design for the APS upgrade

    NASA Astrophysics Data System (ADS)

    Shi, Xianbo; Reininger, Ruben; Harder, Ross; Haeffner, Dean

    2017-08-01

    The upgrade of the Advanced Photon Source (APS) to a Multi-Bend Achromat (MBA) will increase the brightness of the APS by between two and three orders of magnitude. The APS upgrade (APS-U) project includes a list of feature beamlines that will take full advantage of the new machine. Many of the existing beamlines will be also upgraded to profit from this significant machine enhancement. Optics simulations are essential in the design and optimization of these new and existing beamlines. In this contribution, the simulation tools used and developed at APS, ranging from analytical to numerical methods, are summarized. Three general optical layouts are compared in terms of their coherence control and focusing capabilities. The concept of zoom optics, where two sets of focusing elements (e.g., CRLs and KB mirrors) are used to provide variable beam sizes at a fixed focal plane, is optimized analytically. The effects of figure errors on the vertical spot size and on the local coherence along the vertical direction of the optimized design are investigated.

  2. Bifurcation analysis of eight coupled degenerate optical parametric oscillators

    NASA Astrophysics Data System (ADS)

    Ito, Daisuke; Ueta, Tetsushi; Aihara, Kazuyuki

    2018-06-01

    A degenerate optical parametric oscillator (DOPO) network realized as a coherent Ising machine can be used to solve combinatorial optimization problems. Both theoretical and experimental investigations into the performance of DOPO networks have been presented previously. However a problem remains, namely that the dynamics of the DOPO network itself can lower the search success rates of globally optimal solutions for Ising problems. This paper shows that the problem is caused by pitchfork bifurcations due to the symmetry structure of coupled DOPOs. Some two-parameter bifurcation diagrams of equilibrium points express the performance deterioration. It is shown that the emergence of non-ground states regarding local minima hampers the system from reaching the ground states corresponding to the global minimum. We then describe a parametric strategy for leading a system to the ground state by actively utilizing the bifurcation phenomena. By adjusting the parameters to break particular symmetry, we find appropriate parameter sets that allow the coherent Ising machine to obtain the globally optimal solution alone.

  3. Impact of B-Scan Averaging on Spectralis Optical Coherence Tomography Image Quality before and after Cataract Surgery

    PubMed Central

    Podkowinski, Dominika; Sharian Varnousfaderani, Ehsan; Simader, Christian; Bogunovic, Hrvoje; Philip, Ana-Maria; Gerendas, Bianca S.

    2017-01-01

    Background and Objective To determine optimal image averaging settings for Spectralis optical coherence tomography (OCT) in patients with and without cataract. Study Design/Material and Methods In a prospective study, the eyes were imaged before and after cataract surgery using seven different image averaging settings. Image quality was quantitatively evaluated using signal-to-noise ratio, distinction between retinal layer image intensity distributions, and retinal layer segmentation performance. Measures were compared pre- and postoperatively across different degrees of averaging. Results 13 eyes of 13 patients were included and 1092 layer boundaries analyzed. Preoperatively, increasing image averaging led to a logarithmic growth in all image quality measures up to 96 frames. Postoperatively, increasing averaging beyond 16 images resulted in a plateau without further benefits to image quality. Averaging 16 frames postoperatively provided comparable image quality to 96 frames preoperatively. Conclusion In patients with clear media, averaging 16 images provided optimal signal quality. A further increase in averaging was only beneficial in the eyes with senile cataract. However, prolonged acquisition time and possible loss of details have to be taken into account. PMID:28630764

  4. Fast detection of vascular plaque in optical coherence tomography images using a reduced feature set

    NASA Astrophysics Data System (ADS)

    Prakash, Ammu; Ocana Macias, Mariano; Hewko, Mark; Sowa, Michael; Sherif, Sherif

    2018-03-01

    Optical coherence tomography (OCT) images are capable of detecting vascular plaque by using the full set of 26 Haralick textural features and a standard K-means clustering algorithm. However, the use of the full set of 26 textural features is computationally expensive and may not be feasible for real time implementation. In this work, we identified a reduced set of 3 textural feature which characterizes vascular plaque and used a generalized Fuzzy C-means clustering algorithm. Our work involves three steps: 1) the reduction of a full set 26 textural feature to a reduced set of 3 textural features by using genetic algorithm (GA) optimization method 2) the implementation of an unsupervised generalized clustering algorithm (Fuzzy C-means) on the reduced feature space, and 3) the validation of our results using histology and actual photographic images of vascular plaque. Our results show an excellent match with histology and actual photographic images of vascular tissue. Therefore, our results could provide an efficient pre-clinical tool for the detection of vascular plaque in real time OCT imaging.

  5. Mean-deviation analysis in the theory of choice.

    PubMed

    Grechuk, Bogdan; Molyboha, Anton; Zabarankin, Michael

    2012-08-01

    Mean-deviation analysis, along with the existing theories of coherent risk measures and dual utility, is examined in the context of the theory of choice under uncertainty, which studies rational preference relations for random outcomes based on different sets of axioms such as transitivity, monotonicity, continuity, etc. An axiomatic foundation of the theory of coherent risk measures is obtained as a relaxation of the axioms of the dual utility theory, and a further relaxation of the axioms are shown to lead to the mean-deviation analysis. Paradoxes arising from the sets of axioms corresponding to these theories and their possible resolutions are discussed, and application of the mean-deviation analysis to optimal risk sharing and portfolio selection in the context of rational choice is considered. © 2012 Society for Risk Analysis.

  6. YAPPA: a Compiler-Based Parallelization Framework for Irregular Applications on MPSoCs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovergine, Silvia; Tumeo, Antonino; Villa, Oreste

    Modern embedded systems include hundreds of cores. Because of the difficulty in providing a fast, coherent memory architecture, these systems usually rely on non-coherent, non-uniform memory architectures with private memories for each core. However, programming these systems poses significant challenges. The developer must extract large amounts of parallelism, while orchestrating communication among cores to optimize application performance. These issues become even more significant with irregular applications, which present data sets difficult to partition, unpredictable memory accesses, unbalanced control flow and fine grained communication. Hand-optimizing every single aspect is hard and time-consuming, and it often does not lead to the expectedmore » performance. There is a growing gap between such complex and highly-parallel architectures and the high level languages used to describe the specification, which were designed for simpler systems and do not consider these new issues. In this paper we introduce YAPPA (Yet Another Parallel Programming Approach), a compilation framework for the automatic parallelization of irregular applications on modern MPSoCs based on LLVM. We start by considering an efficient parallel programming approach for irregular applications on distributed memory systems. We then propose a set of transformations that can reduce the development and optimization effort. The results of our initial prototype confirm the correctness of the proposed approach.« less

  7. Identifying finite-time coherent sets from limited quantities of Lagrangian data.

    PubMed

    Williams, Matthew O; Rypina, Irina I; Rowley, Clarence W

    2015-08-01

    A data-driven procedure for identifying the dominant transport barriers in a time-varying flow from limited quantities of Lagrangian data is presented. Our approach partitions state space into coherent pairs, which are sets of initial conditions chosen to minimize the number of trajectories that "leak" from one set to the other under the influence of a stochastic flow field during a pre-specified interval in time. In practice, this partition is computed by solving an optimization problem to obtain a pair of functions whose signs determine set membership. From prior experience with synthetic, "data rich" test problems, and conceptually related methods based on approximations of the Perron-Frobenius operator, we observe that the functions of interest typically appear to be smooth. We exploit this property by using the basis sets associated with spectral or "mesh-free" methods, and as a result, our approach has the potential to more accurately approximate these functions given a fixed amount of data. In practice, this could enable better approximations of the coherent pairs in problems with relatively limited quantities of Lagrangian data, which is usually the case with experimental geophysical data. We apply this method to three examples of increasing complexity: The first is the double gyre, the second is the Bickley Jet, and the third is data from numerically simulated drifters in the Sulu Sea.

  8. Identifying finite-time coherent sets from limited quantities of Lagrangian data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Matthew O.; Rypina, Irina I.; Rowley, Clarence W.

    A data-driven procedure for identifying the dominant transport barriers in a time-varying flow from limited quantities of Lagrangian data is presented. Our approach partitions state space into coherent pairs, which are sets of initial conditions chosen to minimize the number of trajectories that “leak” from one set to the other under the influence of a stochastic flow field during a pre-specified interval in time. In practice, this partition is computed by solving an optimization problem to obtain a pair of functions whose signs determine set membership. From prior experience with synthetic, “data rich” test problems, and conceptually related methods basedmore » on approximations of the Perron-Frobenius operator, we observe that the functions of interest typically appear to be smooth. We exploit this property by using the basis sets associated with spectral or “mesh-free” methods, and as a result, our approach has the potential to more accurately approximate these functions given a fixed amount of data. In practice, this could enable better approximations of the coherent pairs in problems with relatively limited quantities of Lagrangian data, which is usually the case with experimental geophysical data. We apply this method to three examples of increasing complexity: The first is the double gyre, the second is the Bickley Jet, and the third is data from numerically simulated drifters in the Sulu Sea.« less

  9. Joint optimization of a partially coherent Gaussian beam for free-space optical communication over turbulent channels with pointing errors.

    PubMed

    Lee, It Ee; Ghassemlooy, Zabih; Ng, Wai Pang; Khalighi, Mohammad-Ali

    2013-02-01

    Joint beam width and spatial coherence length optimization is proposed to maximize the average capacity in partially coherent free-space optical links, under the combined effects of atmospheric turbulence and pointing errors. An optimization metric is introduced to enable feasible translation of the joint optimal transmitter beam parameters into an analogous level of divergence of the received optical beam. Results show that near-ideal average capacity is best achieved through the introduction of a larger receiver aperture and the joint optimization technique.

  10. Optimal control of population and coherence in three-level Λ systems

    NASA Astrophysics Data System (ADS)

    Kumar, Praveen; Malinovskaya, Svetlana A.; Malinovsky, Vladimir S.

    2011-08-01

    Optimal control theory (OCT) implementations for an efficient population transfer and creation of maximum coherence in a three-level system are considered. We demonstrate that the half-stimulated Raman adiabatic passage scheme for creation of the maximum Raman coherence is the optimal solution according to the OCT. We also present a comparative study of several implementations of OCT applied to the complete population transfer and creation of the maximum coherence. Performance of the conjugate gradient method, the Zhu-Rabitz method and the Krotov method has been analysed.

  11. Searches for millisecond pulsations in low-mass X-ray binaries

    NASA Technical Reports Server (NTRS)

    Wood, K. S.; Hertz, P.; Norris, J. P.; Vaughan, B. A.; Michelson, P. F.; Mitsuda, K.; Lewin, W. H. G.; Van Paradijs, J.; Penninx, W.; Van Der Klis, M.

    1991-01-01

    High-sensitivity search techniques for millisecond periods are presented and applied to data from the Japanese satellite Ginga and HEAO 1. The search is optimized for pulsed signals whose period, drift rate, and amplitude conform with what is expected for low-class X-ray binary (LMXB) sources. Consideration is given to how the current understanding of LMXBs guides the search strategy and sets these parameter limits. An optimized one-parameter coherence recovery technique (CRT) developed for recovery of phase coherence is presented. This technique provides a large increase in sensitivity over the method of incoherent summation of Fourier power spectra. The range of spin periods expected from LMXB phenomenology is discussed, the necessary constraints on the application of CRT are described in terms of integration time and orbital parameters, and the residual power unrecovered by the quadratic approximation for realistic cases is estimated.

  12. Multiobjective optimization design of an rf gun based electron diffraction beam line

    NASA Astrophysics Data System (ADS)

    Gulliford, Colwyn; Bartnik, Adam; Bazarov, Ivan; Maxson, Jared

    2017-03-01

    Multiobjective genetic algorithm optimizations of a single-shot ultrafast electron diffraction beam line comprised of a 100 MV /m 1.6-cell normal conducting rf (NCRF) gun, as well as a nine-cell 2 π /3 bunching cavity placed between two solenoids, have been performed. These include optimization of the normalized transverse emittance as a function of bunch charge, as well as optimization of the transverse coherence length as a function of the rms bunch length of the beam at the sample location for a fixed charge of 1 06 electrons. Analysis of the resulting solutions is discussed in terms of the relevant scaling laws, and a detailed description of one of the resulting solutions from the coherence length optimizations is given. For a charge of 1 06 electrons and final beam sizes of σx≥25 μ m and σt≈5 fs , we found a relative coherence length of Lc ,x/σx≈0.07 using direct optimization of the coherence length. Additionally, based on optimizations of the emittance as a function of final bunch length, we estimate the relative coherence length for bunch lengths of 30 and 100 fs to be roughly 0.1 and 0.2 nm /μ m , respectively. Finally, using the scaling of the optimal emittance with bunch charge, for a charge of 1 05 electrons, we estimate relative coherence lengths of 0.3, 0.5, and 0.92 nm /μ m for final bunch lengths of 5, 30 and 100 fs, respectively.

  13. Noncommutative Geometry of the Moyal Plane: Translation Isometries, Connes' Distance on Coherent States, Pythagoras Equality

    NASA Astrophysics Data System (ADS)

    Martinetti, Pierre; Tomassini, Luca

    2013-10-01

    We study the metric aspect of the Moyal plane from Connes' noncommutative geometry point of view. First, we compute Connes' spectral distance associated with the natural isometric action of on the algebra of the Moyal plane . We show that the distance between any state of and any of its translated states is precisely the amplitude of the translation. As a consequence, we obtain the spectral distance between coherent states of the quantum harmonic oscillator as the Euclidean distance on the plane. We investigate the classical limit, showing that the set of coherent states equipped with Connes' spectral distance tends towards the Euclidean plane as the parameter of deformation goes to zero. The extension of these results to the action of the symplectic group is also discussed, with particular emphasis on the orbits of coherent states under rotations. Second, we compute the spectral distance in the double Moyal plane, intended as the product of (the minimal unitization of) by . We show that on the set of states obtained by translation of an arbitrary state of , this distance is given by the Pythagoras theorem. On the way, we prove some Pythagoras inequalities for the product of arbitrary unital and non-degenerate spectral triples. Applied to the Doplicher- Fredenhagen-Roberts model of quantum spacetime [DFR], these two theorems show that Connes' spectral distance and the DFR quantum length coincide on the set of states of optimal localization.

  14. Accelerating Time-Varying Hardware Volume Rendering Using TSP Trees and Color-Based Error Metrics

    NASA Technical Reports Server (NTRS)

    Ellsworth, David; Chiang, Ling-Jen; Shen, Han-Wei; Kwak, Dochan (Technical Monitor)

    2000-01-01

    This paper describes a new hardware volume rendering algorithm for time-varying data. The algorithm uses the Time-Space Partitioning (TSP) tree data structure to identify regions within the data that have spatial or temporal coherence. By using this coherence, the rendering algorithm can improve performance when the volume data is larger than the texture memory capacity by decreasing the amount of textures required. This coherence can also allow improved speed by appropriately rendering flat-shaded polygons instead of textured polygons, and by not rendering transparent regions. To reduce the polygonization overhead caused by the use of the hierarchical data structure, we introduce an optimization method using polygon templates. The paper also introduces new color-based error metrics, which more accurately identify coherent regions compared to the earlier scalar-based metrics. By showing experimental results from runs using different data sets and error metrics, we demonstrate that the new methods give substantial improvements in volume rendering performance.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexanian, Moorad

    The fidelity for cloning coherent states is improved over that provided by optimal Gaussian and non-Gaussian cloners for the subset of coherent states that are prepared with known phases. Gaussian quantum cloning duplicates all coherent states with an optimal fidelity of 2/3. Non-Gaussian cloners give optimal single-clone fidelity for a symmetric 1-to-2 cloner of 0.6826. Coherent states that have known phases can be cloned with a fidelity of 4/5. The latter is realized by a combination of two beam splitters and a four-wave mixer operated in the nonlinear regime, all of which are realized by interaction Hamiltonians that are quadraticmore » in the photon operators. Therefore, the known Gaussian devices for cloning coherent states are extended when cloning coherent states with known phases by considering a nonbalanced beam splitter at the input side of the amplifier.« less

  16. Adaptive coupling optimized spiking coherence and synchronization in Newman-Watts neuronal networks

    NASA Astrophysics Data System (ADS)

    Gong, Yubing; Xu, Bo; Wu, Ya'nan

    2013-09-01

    In this paper, we have numerically studied the effect of adaptive coupling on the temporal coherence and synchronization of spiking activity in Newman-Watts Hodgkin-Huxley neuronal networks. It is found that random shortcuts can enhance the spiking synchronization more rapidly when the increment speed of adaptive coupling is increased and can optimize the temporal coherence of spikes only when the increment speed of adaptive coupling is appropriate. It is also found that adaptive coupling strength can enhance the synchronization of spikes and can optimize the temporal coherence of spikes when random shortcuts are appropriate. These results show that adaptive coupling has a big influence on random shortcuts related spiking activity and can enhance and optimize the temporal coherence and synchronization of spiking activity of the network. These findings can help better understand the roles of adaptive coupling for improving the information processing and transmission in neural systems.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiurasek, Jaromir; Cerf, Nicolas J.

    We investigate the asymmetric Gaussian cloning of coherent states which produces M copies from N input replicas in such a way that the fidelity of each copy may be different. We show that the optimal asymmetric Gaussian cloning can be performed with a single phase-insensitive amplifier and an array of beam splitters. We obtain a simple analytical expression characterizing the set of optimal asymmetric Gaussian cloning machines and prove the optimality of these cloners using the formalism of Gaussian completely positive maps and semidefinite programming techniques. We also present an alternative implementation of the asymmetric cloning machine where the phase-insensitivemore » amplifier is replaced with a beam splitter, heterodyne detector, and feedforward.« less

  18. Operational Resource Theory of Coherence.

    PubMed

    Winter, Andreas; Yang, Dong

    2016-03-25

    We establish an operational theory of coherence (or of superposition) in quantum systems, by focusing on the optimal rate of performance of certain tasks. Namely, we introduce the two basic concepts-"coherence distillation" and "coherence cost"-in the processing quantum states under so-called incoherent operations [Baumgratz, Cramer, and Plenio, Phys. Rev. Lett. 113, 140401 (2014)]. We, then, show that, in the asymptotic limit of many copies of a state, both are given by simple single-letter formulas: the distillable coherence is given by the relative entropy of coherence (in other words, we give the relative entropy of coherence its operational interpretation), and the coherence cost by the coherence of formation, which is an optimization over convex decompositions of the state. An immediate corollary is that there exists no bound coherent state in the sense that one would need to consume coherence to create the state, but no coherence could be distilled from it. Further, we demonstrate that the coherence theory is generically an irreversible theory by a simple criterion that completely characterizes all reversible states.

  19. Data-driven sensor placement from coherent fluid structures

    NASA Astrophysics Data System (ADS)

    Manohar, Krithika; Kaiser, Eurika; Brunton, Bingni W.; Kutz, J. Nathan; Brunton, Steven L.

    2017-11-01

    Optimal sensor placement is a central challenge in the prediction, estimation and control of fluid flows. We reinterpret sensor placement as optimizing discrete samples of coherent fluid structures for full state reconstruction. This permits a drastic reduction in the number of sensors required for faithful reconstruction, since complex fluid interactions can often be described by a small number of coherent structures. Our work optimizes point sensors using the pivoted matrix QR factorization to sample coherent structures directly computed from flow data. We apply this sampling technique in conjunction with various data-driven modal identification methods, including the proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD). In contrast to POD-based sensors, DMD demonstrably enables the optimization of sensors for prediction in systems exhibiting multiple scales of dynamics. Finally, reconstruction accuracy from pivot sensors is shown to be competitive with sensors obtained using traditional computationally prohibitive optimization methods.

  20. Comparison of Flight Simulators Based on Human Motion Perception Metrics

    NASA Technical Reports Server (NTRS)

    Valente Pais, Ana R.; Correia Gracio, Bruno J.; Kelly, Lon C.; Houck, Jacob A.

    2015-01-01

    In flight simulation, motion filters are used to transform aircraft motion into simulator motion. When looking for the best match between visual and inertial amplitude in a simulator, researchers have found that there is a range of inertial amplitudes, rather than a single inertial value, that is perceived by subjects as optimal. This zone, hereafter referred to as the optimal zone, seems to correlate to the perceptual coherence zones measured in flight simulators. However, no studies were found in which these two zones were compared. This study investigates the relation between the optimal and the coherence zone measurements within and between different simulators. Results show that for the sway axis, the optimal zone lies within the lower part of the coherence zone. In addition, it was found that, whereas the width of the coherence zone depends on the visual amplitude and frequency, the width of the optimal zone remains constant.

  1. Associations between knowledge of disease, depression and anxiety, social support, sense of coherence and optimism with health-related quality of life in an ambulatory sample of adolescents with heart disease.

    PubMed

    Wang, Qifeng; Hay, Margaret; Clarke, David; Menahem, Samuel

    2014-02-01

    Advances in overall management have led to an increasing number of adolescents with congenital heart disease reaching adulthood. This study aimed to evaluate the health-related quality of life in adolescents with heart disease, and examine its relationship with the adolescents' knowledge and understanding of their congenital heart disease, its severity, and its relationship to the degree of anxiety and depression, feeling of optimism and sense of coherence experienced by the adolescents together with their social support. Adolescents with heart disease were recruited from an ambulatory setting at a tertiary centre. Patients completed self-report questionnaires including the Paediatric Quality of Life Inventory 3.0-Cardiac Module, a questionnaire assessing the adolescents' knowledge of their cardiac condition, the Hospital Anxiety and Depression Scale, Multidimensional Scale of Perceived Social Support, Life Orientation Test-Revised, and Sense of Coherence-13, supplemented by clinical information provided by the attending cardiologists. A total of 114 patients aged 12-20 years were recruited over 15 months. In all, 98% of patients were in New York Heart Association class I. Their health-related quality of life was found to positively correlate with a low level of anxiety and depression (Pearson correlation, r = -0.57, p < 0.001), a good knowledge of their cardiac condition (r = 0.31, p < 0.01), feelings of optimism (r = 0.39, p < 0.001), adequate social support (r = 0.27, p < 0.01), and a strong sense of coherence (r = 0.24, p < 0.01). Adolescents' knowledge and understanding of their cardiac abnormality together with an improved sense of well-being had a positive influence on their health-related quality of life.

  2. Least squares polynomial chaos expansion: A review of sampling strategies

    NASA Astrophysics Data System (ADS)

    Hadigol, Mohammad; Doostan, Alireza

    2018-04-01

    As non-institutive polynomial chaos expansion (PCE) techniques have gained growing popularity among researchers, we here provide a comprehensive review of major sampling strategies for the least squares based PCE. Traditional sampling methods, such as Monte Carlo, Latin hypercube, quasi-Monte Carlo, optimal design of experiments (ODE), Gaussian quadratures, as well as more recent techniques, such as coherence-optimal and randomized quadratures are discussed. We also propose a hybrid sampling method, dubbed alphabetic-coherence-optimal, that employs the so-called alphabetic optimality criteria used in the context of ODE in conjunction with coherence-optimal samples. A comparison between the empirical performance of the selected sampling methods applied to three numerical examples, including high-order PCE's, high-dimensional problems, and low oversampling ratios, is presented to provide a road map for practitioners seeking the most suitable sampling technique for a problem at hand. We observed that the alphabetic-coherence-optimal technique outperforms other sampling methods, specially when high-order ODE are employed and/or the oversampling ratio is low.

  3. Faithful test of nonlocal realism with entangled coherent states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Chang-Woo; Jeong, Hyunseok; Paternostro, Mauro

    2011-02-15

    We investigate the violation of Leggett's inequality for nonlocal realism using entangled coherent states and various types of local measurements. We prove mathematically the relation between the violation of the Clauser-Horne-Shimony-Holt form of Bell's inequality and Leggett's one when tested by the same resources. For Leggett inequalities, we generalize the nonlocal realistic bound to systems in Hilbert spaces larger than bidimensional ones and introduce an optimization technique that allows one to achieve larger degrees of violation by adjusting the local measurement settings. Our work describes the steps that should be performed to produce a self-consistent generalization of Leggett's original argumentsmore » to continuous-variable states.« less

  4. Improved Plane-Wave Ultrasound Beamforming by Incorporating Angular Weighting and Coherent Compounding in Fourier Domain.

    PubMed

    Chen, Chuan; Hendriks, Gijs A G M; van Sloun, Ruud J G; Hansen, Hendrik H G; de Korte, Chris L

    2018-05-01

    In this paper, a novel processing framework is introduced for Fourier-domain beamforming of plane-wave ultrasound data, which incorporates coherent compounding and angular weighting in the Fourier domain. Angular weighting implies spectral weighting by a 2-D steering-angle-dependent filtering template. The design of this filter is also optimized as part of this paper. Two widely used Fourier-domain plane-wave ultrasound beamforming methods, i.e., Lu's f-k and Stolt's f-k methods, were integrated in the framework. To enable coherent compounding in Fourier domain for the Stolt's f-k method, the original Stolt's f-k method was modified to achieve alignment of the spectra for different steering angles in k-space. The performance of the framework was compared for both methods with and without angular weighting using experimentally obtained data sets (phantom and in vivo), and data sets (phantom) provided by the IEEE IUS 2016 plane-wave beamforming challenge. The addition of angular weighting enhanced the image contrast while preserving image resolution. This resulted in images of equal quality as those obtained by conventionally used delay-and-sum (DAS) beamforming with apodization and coherent compounding. Given the lower computational load of the proposed framework compared to DAS, to our knowledge it can, therefore, be concluded that it outperforms commonly used beamforming methods such as Stolt's f-k, Lu's f-k, and DAS.

  5. Coherent Amplification of Ultrafast Molecular Dynamics in an Optical Oscillator

    NASA Astrophysics Data System (ADS)

    Aharonovich, Igal; Pe'er, Avi

    2016-02-01

    Optical oscillators present a powerful optimization mechanism. The inherent competition for the gain resources between possible modes of oscillation entails the prevalence of the most efficient single mode. We harness this "ultrafast" coherent feedback to optimize an optical field in time, and show that, when an optical oscillator based on a molecular gain medium is synchronously pumped by ultrashort pulses, a temporally coherent multimode field can develop that optimally dumps a general, dynamically evolving vibrational wave packet, into a single vibrational target state. Measuring the emitted field opens a new window to visualization and control of fast molecular dynamics. The realization of such a coherent oscillator with hot alkali dimers appears within experimental reach.

  6. Analysis of Optimum Heterodyne Receivers for Coherent Lidar Applications

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    2002-01-01

    A full analysis of the combined effects of all the noise sources of optical heterodyne receiver and the interaction between the competing control parameters of the receiver detector and pre-amplifier will be presented. This analysis provides the mean for true optimization of the coherent lidar receiver. The significance of the optimization of heterodyne receiver is shown for 2-micron coherent lidar.

  7. Optimal quantum operations at zero energy cost

    NASA Astrophysics Data System (ADS)

    Chiribella, Giulio; Yang, Yuxiang

    2017-08-01

    Quantum technologies are developing powerful tools to generate and manipulate coherent superpositions of different energy levels. Envisaging a new generation of energy-efficient quantum devices, here we explore how coherence can be manipulated without exchanging energy with the surrounding environment. We start from the task of converting a coherent superposition of energy eigenstates into another. We identify the optimal energy-preserving operations, both in the deterministic and in the probabilistic scenario. We then design a recursive protocol, wherein a branching sequence of energy-preserving filters increases the probability of success while reaching maximum fidelity at each iteration. Building on the recursive protocol, we construct efficient approximations of the optimal fidelity-probability trade-off, by taking coherent superpositions of the different branches generated by probabilistic filtering. The benefits of this construction are illustrated in applications to quantum metrology, quantum cloning, coherent state amplification, and ancilla-driven computation. Finally, we extend our results to transitions where the input state is generally mixed and we apply our findings to the task of purifying quantum coherence.

  8. Methods for parameter identification in oscillatory networks and application to cortical and thalamic 600 Hz activity.

    PubMed

    Leistritz, L; Suesse, T; Haueisen, J; Hilgenfeld, B; Witte, H

    2006-01-01

    Directed information transfer in the human brain occurs presumably by oscillations. As of yet, most approaches for the analysis of these oscillations are based on time-frequency or coherence analysis. The present work concerns the modeling of cortical 600 Hz oscillations, localized within the Brodmann Areas 3b and 1 after stimulation of the nervus medianus, by means of coupled differential equations. This approach leads to the so-called parameter identification problem, where based on a given data set, a set of unknown parameters of a system of ordinary differential equations is determined by special optimization procedures. Some suitable algorithms for this task are presented in this paper. Finally an oscillatory network model is optimally fitted to the data taken from ten volunteers.

  9. Optimized Projection Matrix for Compressive Sensing

    NASA Astrophysics Data System (ADS)

    Xu, Jianping; Pi, Yiming; Cao, Zongjie

    2010-12-01

    Compressive sensing (CS) is mainly concerned with low-coherence pairs, since the number of samples needed to recover the signal is proportional to the mutual coherence between projection matrix and sparsifying matrix. Until now, papers on CS always assume the projection matrix to be a random matrix. In this paper, aiming at minimizing the mutual coherence, a method is proposed to optimize the projection matrix. This method is based on equiangular tight frame (ETF) design because an ETF has minimum coherence. It is impossible to solve the problem exactly because of the complexity. Therefore, an alternating minimization type method is used to find a feasible solution. The optimally designed projection matrix can further reduce the necessary number of samples for recovery or improve the recovery accuracy. The proposed method demonstrates better performance than conventional optimization methods, which brings benefits to both basis pursuit and orthogonal matching pursuit.

  10. Composable security proof for continuous-variable quantum key distribution with coherent States.

    PubMed

    Leverrier, Anthony

    2015-02-20

    We give the first composable security proof for continuous-variable quantum key distribution with coherent states against collective attacks. Crucially, in the limit of large blocks the secret key rate converges to the usual value computed from the Holevo bound. Combining our proof with either the de Finetti theorem or the postselection technique then shows the security of the protocol against general attacks, thereby confirming the long-standing conjecture that Gaussian attacks are optimal asymptotically in the composable security framework. We expect that our parameter estimation procedure, which does not rely on any assumption about the quantum state being measured, will find applications elsewhere, for instance, for the reliable quantification of continuous-variable entanglement in finite-size settings.

  11. Optimal signal constellation design for ultra-high-speed optical transport in the presence of nonlinear phase noise.

    PubMed

    Liu, Tao; Djordjevic, Ivan B

    2014-12-29

    In this paper, we first describe an optimal signal constellation design algorithm suitable for the coherent optical channels dominated by the linear phase noise. Then, we modify this algorithm to be suitable for the nonlinear phase noise dominated channels. In optimization procedure, the proposed algorithm uses the cumulative log-likelihood function instead of the Euclidian distance. Further, an LDPC coded modulation scheme is proposed to be used in combination with signal constellations obtained by proposed algorithm. Monte Carlo simulations indicate that the LDPC-coded modulation schemes employing the new constellation sets, obtained by our new signal constellation design algorithm, outperform corresponding QAM constellations significantly in terms of transmission distance and have better nonlinearity tolerance.

  12. Characterization of NaI crystal scintillators for the COHERENT collaboration

    NASA Astrophysics Data System (ADS)

    Erkela, Eric; Coherent Collaboration

    2017-09-01

    The COHERENT project aims to make a first observation of Coherent Elastic Neutrino-Nucleus Scattering (CEvNS) using a set of complimentary detector arrays located at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory. Using NaI scintillators acquired from the DHS-ASP program, we plan to construct a multi-tonne array with the capacity to detect CEvNS even in the presence of moderate background. Such an array would also have sensitivity to charged-current scattering of the SNS' pion Decay-At-Rest neutrinos with potential application to neutrinoless double-beta decay nuclear matrix element calculations. Optimization of the array design requires detailed characterization of the NaI scintillators themselves. We will show results on measurements of the light response and its linearity, as well as the energy resolution as a function of detector voltage. We also measured detector thresholds, dynamic range, and spatial and temporal variation of the detector response. This work is supported by the University of Washington Royalty Research Fund.

  13. Preserving electron spin coherence in solids by optimal dynamical decoupling.

    PubMed

    Du, Jiangfeng; Rong, Xing; Zhao, Nan; Wang, Ya; Yang, Jiahui; Liu, R B

    2009-10-29

    To exploit the quantum coherence of electron spins in solids in future technologies such as quantum computing, it is first vital to overcome the problem of spin decoherence due to their coupling to the noisy environment. Dynamical decoupling, which uses stroboscopic spin flips to give an average coupling to the environment that is effectively zero, is a particularly promising strategy for combating decoherence because it can be naturally integrated with other desired functionalities, such as quantum gates. Errors are inevitably introduced in each spin flip, so it is desirable to minimize the number of control pulses used to realize dynamical decoupling having a given level of precision. Such optimal dynamical decoupling sequences have recently been explored. The experimental realization of optimal dynamical decoupling in solid-state systems, however, remains elusive. Here we use pulsed electron paramagnetic resonance to demonstrate experimentally optimal dynamical decoupling for preserving electron spin coherence in irradiated malonic acid crystals at temperatures from 50 K to room temperature. Using a seven-pulse optimal dynamical decoupling sequence, we prolonged the spin coherence time to about 30 mus; it would otherwise be about 0.04 mus without control or 6.2 mus under one-pulse control. By comparing experiments with microscopic theories, we have identified the relevant electron spin decoherence mechanisms in the solid. Optimal dynamical decoupling may be applied to other solid-state systems, such as diamonds with nitrogen-vacancy centres, and so lay the foundation for quantum coherence control of spins in solids at room temperature.

  14. Exponential Modelling for Mutual-Cohering of Subband Radar Data

    NASA Astrophysics Data System (ADS)

    Siart, U.; Tejero, S.; Detlefsen, J.

    2005-05-01

    Increasing resolution and accuracy is an important issue in almost any type of radar sensor application. However, both resolution and accuracy are strongly related to the available signal bandwidth and energy that can be used. Nowadays, often several sensors operating in different frequency bands become available on a sensor platform. It is an attractive goal to use the potential of advanced signal modelling and optimization procedures by making proper use of information stemming from different frequency bands at the RF signal level. An important prerequisite for optimal use of signal energy is coherence between all contributing sensors. Coherent multi-sensor platforms are greatly expensive and are thus not available in general. This paper presents an approach for accurately estimating object radar responses using subband measurements at different RF frequencies. An exponential model approach allows to compensate for the lack of mutual coherence between independently operating sensors. Mutual coherence is recovered from the a-priori information that both sensors have common scattering centers in view. Minimizing the total squared deviation between measured data and a full-range exponential signal model leads to more accurate pole angles and pole magnitudes compared to single-band optimization. The model parameters (range and magnitude of point scatterers) after this full-range optimization process are also more accurate than the parameters obtained from a commonly used super-resolution procedure (root-MUSIC) applied to the non-coherent subband data.

  15. Generation of Bright, Spatially Coherent Soft X-Ray High Harmonics in a Hollow Waveguide Using Two-Color Synthesized Laser Pulses.

    PubMed

    Jin, Cheng; Stein, Gregory J; Hong, Kyung-Han; Lin, C D

    2015-07-24

    We investigate the efficient generation of low-divergence high-order harmonics driven by waveform-optimized laser pulses in a gas-filled hollow waveguide. The drive waveform is obtained by synthesizing two-color laser pulses, optimized such that highest harmonic yields are emitted from each atom. Optimization of the gas pressure and waveguide configuration has enabled us to produce bright and spatially coherent harmonics extending from the extreme ultraviolet to soft x rays. Our study on the interplay among waveguide mode, atomic dispersion, and plasma effect uncovers how dynamic phase matching is accomplished and how an optimized waveform is maintained when optimal waveguide parameters (radius and length) and gas pressure are identified. Our analysis should help laboratory development in the generation of high-flux bright coherent soft x rays as tabletop light sources for applications.

  16. In Women’s Eyes

    PubMed Central

    Orza, Luisa; Bass, Emily; Bell, Emma; Crone, E. Tyler; Damji, Nazneen; Dilmitis, Sophie; Tremlett, Liz; Aidarus, Nasra; Stevenson, Jacqui; Bensaid, Souhaila; Kenkem, Calorine; Ross, Gracia Violeta; Kudravtseva, Elena

    2017-01-01

    Abstract There is rightly a huge global effort to enable women living with HIV to have long productive lives, through treatment access. However, many women living with HIV experience violence against women (VAW), in both domestic and health care settings. The ways in which VAW might prevent treatment access and adherence for women has not to date been reviewed coherently at the global level, from women’s own perspectives. Meanwhile, funding for global health care, including HIV treatment, is shrinking. To optimize women’s health and know how best to optimize facilitators and minimize barriers to access and adherence, especially in this shrinking funding context, we need to understand more about these issues from women’s own perspectives. In response, we conducted a three-phase review: (1) a literature review (phase one); (2) focus group discussions and interviews with nearly 200 women living with HIV from 17 countries (phase two); and (3) three country case studies (phase three). The results presented here are based predominantly on women’s own experiences and are coherent across all three phases. Recommendations are proposed regarding laws, policies, and programs which are rights-based, gendered, and embrace diversity, to maximize women’s voluntary, informed, confidential, and safe access to and adherence to medication, and optimize their long-term sexual and reproductive health. PMID:29302173

  17. MEG Connectivity and Power Detections with Minimum Norm Estimates Require Different Regularization Parameters.

    PubMed

    Hincapié, Ana-Sofía; Kujala, Jan; Mattout, Jérémie; Daligault, Sebastien; Delpuech, Claude; Mery, Domingo; Cosmelli, Diego; Jerbi, Karim

    2016-01-01

    Minimum Norm Estimation (MNE) is an inverse solution method widely used to reconstruct the source time series that underlie magnetoencephalography (MEG) data. MNE addresses the ill-posed nature of MEG source estimation through regularization (e.g., Tikhonov regularization). Selecting the best regularization parameter is a critical step. Generally, once set, it is common practice to keep the same coefficient throughout a study. However, it is yet to be known whether the optimal lambda for spectral power analysis of MEG source data coincides with the optimal regularization for source-level oscillatory coupling analysis. We addressed this question via extensive Monte-Carlo simulations of MEG data, where we generated 21,600 configurations of pairs of coupled sources with varying sizes, signal-to-noise ratio (SNR), and coupling strengths. Then, we searched for the Tikhonov regularization coefficients (lambda) that maximize detection performance for (a) power and (b) coherence. For coherence, the optimal lambda was two orders of magnitude smaller than the best lambda for power. Moreover, we found that the spatial extent of the interacting sources and SNR, but not the extent of coupling, were the main parameters affecting the best choice for lambda. Our findings suggest using less regularization when measuring oscillatory coupling compared to power estimation.

  18. MEG Connectivity and Power Detections with Minimum Norm Estimates Require Different Regularization Parameters

    PubMed Central

    Hincapié, Ana-Sofía; Kujala, Jan; Mattout, Jérémie; Daligault, Sebastien; Delpuech, Claude; Mery, Domingo; Cosmelli, Diego; Jerbi, Karim

    2016-01-01

    Minimum Norm Estimation (MNE) is an inverse solution method widely used to reconstruct the source time series that underlie magnetoencephalography (MEG) data. MNE addresses the ill-posed nature of MEG source estimation through regularization (e.g., Tikhonov regularization). Selecting the best regularization parameter is a critical step. Generally, once set, it is common practice to keep the same coefficient throughout a study. However, it is yet to be known whether the optimal lambda for spectral power analysis of MEG source data coincides with the optimal regularization for source-level oscillatory coupling analysis. We addressed this question via extensive Monte-Carlo simulations of MEG data, where we generated 21,600 configurations of pairs of coupled sources with varying sizes, signal-to-noise ratio (SNR), and coupling strengths. Then, we searched for the Tikhonov regularization coefficients (lambda) that maximize detection performance for (a) power and (b) coherence. For coherence, the optimal lambda was two orders of magnitude smaller than the best lambda for power. Moreover, we found that the spatial extent of the interacting sources and SNR, but not the extent of coupling, were the main parameters affecting the best choice for lambda. Our findings suggest using less regularization when measuring oscillatory coupling compared to power estimation. PMID:27092179

  19. Parameter Optimization for Selected Correlation Analysis of Intracranial Pathophysiology.

    PubMed

    Faltermeier, Rupert; Proescholdt, Martin A; Bele, Sylvia; Brawanski, Alexander

    2015-01-01

    Recently we proposed a mathematical tool set, called selected correlation analysis, that reliably detects positive and negative correlations between arterial blood pressure (ABP) and intracranial pressure (ICP). Such correlations are associated with severe impairment of the cerebral autoregulation and intracranial compliance, as predicted by a mathematical model. The time resolved selected correlation analysis is based on a windowing technique combined with Fourier-based coherence calculations and therefore depends on several parameters. For real time application of this method at an ICU it is inevitable to adjust this mathematical tool for high sensitivity and distinct reliability. In this study, we will introduce a method to optimize the parameters of the selected correlation analysis by correlating an index, called selected correlation positive (SCP), with the outcome of the patients represented by the Glasgow Outcome Scale (GOS). For that purpose, the data of twenty-five patients were used to calculate the SCP value for each patient and multitude of feasible parameter sets of the selected correlation analysis. It could be shown that an optimized set of parameters is able to improve the sensitivity of the method by a factor greater than four in comparison to our first analyses.

  20. Parameter Optimization for Selected Correlation Analysis of Intracranial Pathophysiology

    PubMed Central

    Faltermeier, Rupert; Proescholdt, Martin A.; Bele, Sylvia; Brawanski, Alexander

    2015-01-01

    Recently we proposed a mathematical tool set, called selected correlation analysis, that reliably detects positive and negative correlations between arterial blood pressure (ABP) and intracranial pressure (ICP). Such correlations are associated with severe impairment of the cerebral autoregulation and intracranial compliance, as predicted by a mathematical model. The time resolved selected correlation analysis is based on a windowing technique combined with Fourier-based coherence calculations and therefore depends on several parameters. For real time application of this method at an ICU it is inevitable to adjust this mathematical tool for high sensitivity and distinct reliability. In this study, we will introduce a method to optimize the parameters of the selected correlation analysis by correlating an index, called selected correlation positive (SCP), with the outcome of the patients represented by the Glasgow Outcome Scale (GOS). For that purpose, the data of twenty-five patients were used to calculate the SCP value for each patient and multitude of feasible parameter sets of the selected correlation analysis. It could be shown that an optimized set of parameters is able to improve the sensitivity of the method by a factor greater than four in comparison to our first analyses. PMID:26693250

  1. Coherent control of plasma dynamics by feedback-optimized wavefront manipulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Z.-H.; Hou, B.; Gao, G.

    2015-05-15

    Plasmas generated by an intense laser pulse can support coherent structures such as large amplitude wakefield that can affect the outcome of an experiment. We investigate the coherent control of plasma dynamics by feedback-optimized wavefront manipulation using a deformable mirror. The experimental outcome is directly used as feedback in an evolutionary algorithm for optimization of the phase front of the driving laser pulse. In this paper, we applied this method to two different experiments: (i) acceleration of electrons in laser driven plasma waves and (ii) self-compression of optical pulses induced by ionization nonlinearity. The manipulation of the laser wavefront leadsmore » to orders of magnitude improvement to electron beam properties such as the peak charge, beam divergence, and transverse emittance. The demonstration of coherent control for plasmas opens new possibilities for future laser-based accelerators and their applications.« less

  2. Phase noise optimization in temporal phase-shifting digital holography with partial coherence light sources and its application in quantitative cell imaging.

    PubMed

    Remmersmann, Christian; Stürwald, Stephan; Kemper, Björn; Langehanenberg, Patrik; von Bally, Gert

    2009-03-10

    In temporal phase-shifting-based digital holographic microscopy, high-resolution phase contrast imaging requires optimized conditions for hologram recording and phase retrieval. To optimize the phase resolution, for the example of a variable three-step algorithm, a theoretical analysis on statistical errors, digitalization errors, uncorrelated errors, and errors due to a misaligned temporal phase shift is carried out. In a second step the theoretically predicted results are compared to the measured phase noise obtained from comparative experimental investigations with several coherent and partially coherent light sources. Finally, the applicability for noise reduction is demonstrated by quantitative phase contrast imaging of pancreas tumor cells.

  3. Multi-dimensional optimization of a terawatt seeded tapered Free Electron Laser with a Multi-Objective Genetic Algorithm

    DOE PAGES

    Wu, Juhao; Hu, Newman; Setiawan, Hananiel; ...

    2016-11-20

    There is a great interest in generating high-power hard X-ray Free Electron Laser (FEL) in the terawatt (TW) level that can enable coherent diffraction imaging of complex molecules like proteins and probe fundamental high-field physics. A feasibility study of producing such X-ray pulses was carried out in this paper employing a configuration beginning with a Self-Amplified Spontaneous Emission FEL, followed by a “self-seeding” crystal monochromator generating a fully coherent seed, and finishing with a long tapered undulator where the coherent seed recombines with the electron bunch and is amplified to high power. The undulator tapering profile, the phase advance inmore » the undulator break sections, the quadrupole focusing strength, etc. are parameters to be optimized. A Genetic Algorithm (GA) is adopted for this multi-dimensional optimization. Concrete examples are given for LINAC Coherent Light Source (LCLS) and LCLS-II-type systems. Finally, analytical estimate is also developed to cross check the simulation and optimization results as a quick and complimentary tool.« less

  4. Optimal Correlations in Many-Body Quantum Systems

    NASA Astrophysics Data System (ADS)

    Amico, L.; Rossini, D.; Hamma, A.; Korepin, V. E.

    2012-06-01

    Information and correlations in a quantum system are closely related through the process of measurement. We explore such relation in a many-body quantum setting, effectively bridging between quantum metrology and condensed matter physics. To this aim we adopt the information-theory view of correlations and study the amount of correlations after certain classes of positive-operator-valued measurements are locally performed. As many-body systems, we consider a one-dimensional array of interacting two-level systems (a spin chain) at zero temperature, where quantum effects are most pronounced. We demonstrate how the optimal strategy to extract the correlations depends on the quantum phase through a subtle interplay between local interactions and coherence.

  5. Supramodal processing optimizes visual perceptual learning and plasticity.

    PubMed

    Zilber, Nicolas; Ciuciu, Philippe; Gramfort, Alexandre; Azizi, Leila; van Wassenhove, Virginie

    2014-06-01

    Multisensory interactions are ubiquitous in cortex and it has been suggested that sensory cortices may be supramodal i.e. capable of functional selectivity irrespective of the sensory modality of inputs (Pascual-Leone and Hamilton, 2001; Renier et al., 2013; Ricciardi and Pietrini, 2011; Voss and Zatorre, 2012). Here, we asked whether learning to discriminate visual coherence could benefit from supramodal processing. To this end, three groups of participants were briefly trained to discriminate which of a red or green intermixed population of random-dot-kinematograms (RDKs) was most coherent in a visual display while being recorded with magnetoencephalography (MEG). During training, participants heard no sound (V), congruent acoustic textures (AV) or auditory noise (AVn); importantly, congruent acoustic textures shared the temporal statistics - i.e. coherence - of visual RDKs. After training, the AV group significantly outperformed participants trained in V and AVn although they were not aware of their progress. In pre- and post-training blocks, all participants were tested without sound and with the same set of RDKs. When contrasting MEG data collected in these experimental blocks, selective differences were observed in the dynamic pattern and the cortical loci responsive to visual RDKs. First and common to all three groups, vlPFC showed selectivity to the learned coherence levels whereas selectivity in visual motion area hMT+ was only seen for the AV group. Second and solely for the AV group, activity in multisensory cortices (mSTS, pSTS) correlated with post-training performances; additionally, the latencies of these effects suggested feedback from vlPFC to hMT+ possibly mediated by temporal cortices in AV and AVn groups. Altogether, we interpret our results in the context of the Reverse Hierarchy Theory of learning (Ahissar and Hochstein, 2004) in which supramodal processing optimizes visual perceptual learning by capitalizing on sensory-invariant representations - here, global coherence levels across sensory modalities. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Optimizing the Laser-Pulse Configuration for Coherent Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pestov, Dmitry; Murawski, Robert K.; Ariunbold, Gombojav O.; Wang, Xi; Zhi, Miaochan; Sokolov, Alexei V.; Sautenkov, Vladimir A.; Rostovtsev, Yuri V.; Dogariu, Arthur; Huang, Yu; Scully, Marlan O.

    2007-04-01

    We introduce a hybrid technique that combines the robustness of frequency-resolved coherent anti-Stokes Raman scattering (CARS) with the advantages of time-resolved CARS spectroscopy. Instantaneous coherent broadband excitation of several characteristic molecular vibrations and the subsequent probing of these vibrations by an optimally shaped time-delayed narrowband laser pulse help to suppress the nonresonant background and to retrieve the species-specific signal. We used this technique for coherent Raman spectroscopy of sodium dipicolinate powder, which is similar to calcium dipicolinate (a marker molecule for bacterial endospores, such as Bacillus subtilis and Bacillus anthracis), and we demonstrated a rapid and highly specific detection scheme that works even in the presence of multiple scattering.

  7. Optimizing the laser-pulse configuration for coherent Raman spectroscopy.

    PubMed

    Pestov, Dmitry; Murawski, Robert K; Ariunbold, Gombojav O; Wang, Xi; Zhi, Miaochan; Sokolov, Alexei V; Sautenkov, Vladimir A; Rostovtsev, Yuri V; Dogariu, Arthur; Huang, Yu; Scully, Marlan O

    2007-04-13

    We introduce a hybrid technique that combines the robustness of frequency-resolved coherent anti-Stokes Raman scattering (CARS) with the advantages of time-resolved CARS spectroscopy. Instantaneous coherent broadband excitation of several characteristic molecular vibrations and the subsequent probing of these vibrations by an optimally shaped time-delayed narrowband laser pulse help to suppress the nonresonant background and to retrieve the species-specific signal. We used this technique for coherent Raman spectroscopy of sodium dipicolinate powder, which is similar to calcium dipicolinate (a marker molecule for bacterial endospores, such as Bacillus subtilis and Bacillus anthracis), and we demonstrated a rapid and highly specific detection scheme that works even in the presence of multiple scattering.

  8. Learning With Mixed Hard/Soft Pointwise Constraints.

    PubMed

    Gnecco, Giorgio; Gori, Marco; Melacci, Stefano; Sanguineti, Marcello

    2015-09-01

    A learning paradigm is proposed and investigated, in which the classical framework of learning from examples is enhanced by the introduction of hard pointwise constraints, i.e., constraints imposed on a finite set of examples that cannot be violated. Such constraints arise, e.g., when requiring coherent decisions of classifiers acting on different views of the same pattern. The classical examples of supervised learning, which can be violated at the cost of some penalization (quantified by the choice of a suitable loss function) play the role of soft pointwise constraints. Constrained variational calculus is exploited to derive a representer theorem that provides a description of the functional structure of the optimal solution to the proposed learning paradigm. It is shown that such an optimal solution can be represented in terms of a set of support constraints, which generalize the concept of support vectors and open the doors to a novel learning paradigm, called support constraint machines. The general theory is applied to derive the representation of the optimal solution to the problem of learning from hard linear pointwise constraints combined with soft pointwise constraints induced by supervised examples. In some cases, closed-form optimal solutions are obtained.

  9. Building coherence and synergy among global health initiatives.

    PubMed

    Zicker, Fabio; Faid, Miriam; Reeder, John; Aslanyan, Garry

    2015-12-09

    The fast growth of global health initiatives (GHIs) has raised concerns regarding achievement of coherence and synergy among distinct, complementary and sometimes competing activities. Herein, we propose an approach to compare GHIs with regard to their main purpose and operational aspects, using the Special Programme for Research and Training in Tropical Diseases (TDR/WHO) as a case study. The overall goal is to identify synergies and optimize efforts to provide solutions to reduce the burden of diseases. Twenty-six long-established GHIs were identified from among initiatives previously associated/partnered with TDR/WHO. All GHIs had working streams that would benefit from linking to the capacity building or implementation research focus of TDR. Individual profiles were created using a common template to collect information on relevant parameters. For analytical purposes, GHIs were simultaneously clustered in five and eight groups according to their 'intended outcome' and 'operational framework', respectively. A set of specific questions was defined to assess coherence/alignment against a TDR reference profile by attributing a score, which was subsequently averaged per GHI cluster. GHI alignment scores for intended outcome were plotted against scores for operational framework; based on the analysis of coherence/alignment with TDR functions and operations, a risk level (high, medium or low) of engagement was attributed to each GHI. The process allowed a bi-dimensional ranking of GHIs with regards to how adequately they fit with or match TDR features and perspectives. Overall, more consistence was observed with regard to the GHIs' main goals and expected outcomes than with their operational aspects, reflecting the diversity of GHI business models. Analysis of coherence indicated an increasing common trend for enhancing the engagement of developing country stakeholders, building research capacity and optimization of knowledge management platforms in support of improved access to healthcare. The process used offers a broader approach that could be adapted by other GHIs to build coherence and synergy with peer organizations and helps highlight the potential contribution of each GHI in the new era of sustainable development goals. Emerging opportunities and new trends suggest that engagement between GHIs should be selective and tailored to ensure efficient collaborations.

  10. Fast wavefront optimization for focusing through biological tissue (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Blochet, Baptiste; Bourdieu, Laurent; Gigan, Sylvain

    2017-02-01

    The propagation of light in biological tissues is rapidly dominated by multiple scattering: ballistic light is exponentially attenuated, which limits the penetration depth of conventional microscopy techniques. For coherent light, the recombination of the different scattered paths creates a complex interference: speckle. Recently, different wavefront shaping techniques have been developed to coherently manipulate the speckle. It opens the possibility to focus light through complex media and ultimately to image in them, provided however that the medium can be considered as stationary. We have studied the possibility to focus in and through time-varying biological tissues. Their intrinsic temporal dynamics creates a fast decorrelation of the speckle pattern. Therefore, focusing through biological tissues requires fast wavefront shaping devices, sensors and algorithms. We have investigated the use of a MEMS-based spatial light modulator (SLM) and a fast photodetector, combined with FPGA electronics to implement a closed-loop optimization. Our optimization process is just limited by the temporal dynamics of the SLM (200µs) and the computation time (45µs), thus corresponding to a rate of 4 kHz. To our knowledge, it's the fastest closed loop optimization using phase modulators. We have studied the focusing through colloidal solutions of TiO2 particles in glycerol, allowing tunable temporal stability, and scattering properties similar to biological tissues. We have shown that our set-up fulfills the required characteristics (speed, enhancement) to focus through biological tissues. We are currently investigating the focusing through acute rat brain slices and the memory effect in dynamic scattering media.

  11. Effect of inhibitory firing pattern on coherence resonance in random neural networks

    NASA Astrophysics Data System (ADS)

    Yu, Haitao; Zhang, Lianghao; Guo, Xinmeng; Wang, Jiang; Cao, Yibin; Liu, Jing

    2018-01-01

    The effect of inhibitory firing patterns on coherence resonance (CR) in random neuronal network is systematically studied. Spiking and bursting are two main types of firing pattern considered in this work. Numerical results show that, irrespective of the inhibitory firing patterns, the regularity of network is maximized by an optimal intensity of external noise, indicating the occurrence of coherence resonance. Moreover, the firing pattern of inhibitory neuron indeed has a significant influence on coherence resonance, but the efficacy is determined by network property. In the network with strong coupling strength but weak inhibition, bursting neurons largely increase the amplitude of resonance, while they can decrease the noise intensity that induced coherence resonance within the neural system of strong inhibition. Different temporal windows of inhibition induced by different inhibitory neurons may account for the above observations. The network structure also plays a constructive role in the coherence resonance. There exists an optimal network topology to maximize the regularity of the neural systems.

  12. Partially coherent polarized atmospheric transmission characteristics and application technology research

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Gao, Duorui; Liu, Zhi; Chen, Chunyi; Lou, Yan; Jiang, Huilin

    2014-11-01

    Based on partially coherent polarized light transmission characteristics of the atmosphere, an intensity expression of completely coherent flashing light is derived from Andrews scale modulation method. According to the generalized Huygens-Fresnel principle and Rytov theory, the phase fluctuation structure function is obtained on condition that the refractive index profile in the atmosphere meet Von Karman spectrum, then get the arrival Angle fluctuation variance. Through the RMS beam width of gaussian beams in turbulent atmosphere, deviation angle formula of fully coherent gaussian beams in turbulence atmosphere is attained, then get the RMS beam width of partially coherent and derivation angle expression of GSM beam in turbulent atmosphere. Combined with transmission properties of radial polarized laser beam, cross spectral density matrix of partially coherent radially polarized light can be gained by using generalized huygens-fresnel principle. And light intensity and polarization after transmission can be known according to the unity of coherence and polarization theory. On the basis of the analysis model and numerical simulation, the simulation results show that: the light spot caused by atmospheric turbulence of partially coherent polarization will be superior to completely polarized light.Taking advantage of this feature, designed a new wireless suppression technology of atmospheric turbulence, that is the optimization criterion of initial degree of coherent light beam. The optimal initial degree of coherent light beam will change along with the change of atmospheric turbulence conditions,make control the beam's initial degree of coherence to realize the initial degree of coherence of light beam in real time and dynamic control. A spatial phase screen before emission aperture of fully coherent light is to generate the partially coherent light, liquid crystal spatial light modulator is is a preferable way to realize the dynamic random phase. Finally look future of the application research of partially coherent light.

  13. ECG based Myocardial Infarction detection using Hybrid Firefly Algorithm.

    PubMed

    Kora, Padmavathi

    2017-12-01

    Myocardial Infarction (MI) is one of the most frequent diseases, and can also cause demise, disability and monetary loss in patients who suffer from cardiovascular disorder. Diagnostic methods of this ailment by physicians are typically invasive, even though they do not fulfill the required detection accuracy. Recent feature extraction methods, for example, Auto Regressive (AR) modelling; Magnitude Squared Coherence (MSC); Wavelet Coherence (WTC) using Physionet database, yielded a collection of huge feature set. A large number of these features may be inconsequential containing some excess and non-discriminative components that present excess burden in computation and loss of execution performance. So Hybrid Firefly and Particle Swarm Optimization (FFPSO) is directly used to optimise the raw ECG signal instead of extracting features using the above feature extraction techniques. Provided results in this paper show that, for the detection of MI class, the FFPSO algorithm with ANN gives 99.3% accuracy, sensitivity of 99.97%, and specificity of 98.7% on MIT-BIH database by including NSR database also. The proposed approach has shown that methods that are based on the feature optimization of the ECG signals are the perfect to diagnosis the condition of the heart patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Coherent perfect rotation

    NASA Astrophysics Data System (ADS)

    Crescimanno, Michael; Dawson, Nathan J.; Andrews, James H.

    2012-09-01

    Two classes of conservative, linear, optical rotary effects (optical activity and Faraday rotation) are distinguished by their behavior under time reversal. Faraday rotation, but not optical activity, is capable of coherent perfect rotation, by which we mean the complete transfer of counterpropagating coherent light fields into their orthogonal polarization. Unlike coherent perfect absorption, however, this process is explicitly energy conserving and reversible. Our study highlights the necessity of time-reversal-odd processes (not just absorption) and coherence in perfect mode conversion and thus informs the optimization of active multiport optical devices.

  15. Relating quantum privacy and quantum coherence: an operational approach.

    PubMed

    Devetak, I; Winter, A

    2004-08-20

    Given many realizations of a state or a channel as a resource, two parties can generate a secret key as well as entanglement. We describe protocols to perform the secret key distillation (as it turns out, with optimal rate). Then we show how to achieve optimal entanglement generation rates by "coherent" implementation of a class of secret key agreement protocols, proving the long-conjectured "hashing inequality."

  16. Performance evaluation of coherent Ising machines against classical neural networks

    NASA Astrophysics Data System (ADS)

    Haribara, Yoshitaka; Ishikawa, Hitoshi; Utsunomiya, Shoko; Aihara, Kazuyuki; Yamamoto, Yoshihisa

    2017-12-01

    The coherent Ising machine is expected to find a near-optimal solution in various combinatorial optimization problems, which has been experimentally confirmed with optical parametric oscillators and a field programmable gate array circuit. The similar mathematical models were proposed three decades ago by Hopfield et al in the context of classical neural networks. In this article, we compare the computational performance of both models.

  17. Optimized suppression of coherent noise from seismic data using the Karhunen-Loève transform

    NASA Astrophysics Data System (ADS)

    Montagne, Raúl; Vasconcelos, Giovani L.

    2006-07-01

    Signals obtained in land seismic surveys are usually contaminated with coherent noise, among which the ground roll (Rayleigh surface waves) is of major concern for it can severely degrade the quality of the information obtained from the seismic record. This paper presents an optimized filter based on the Karhunen-Loève transform for processing seismic images contaminated with ground roll. In this method, the contaminated region of the seismic record, to be processed by the filter, is selected in such way as to correspond to the maximum of a properly defined coherence index. The main advantages of the method are that the ground roll is suppressed with negligible distortion of the remnant reflection signals and that the filtering procedure can be automated. The image processing technique described in this study should also be relevant for other applications where coherent structures embedded in a complex spatiotemporal pattern need to be identified in a more refined way. In particular, it is argued that the method is appropriate for processing optical coherence tomography images whose quality is often degraded by coherent noise (speckle).

  18. Speckle-metric-optimization-based adaptive optics for laser beam projection and coherent beam combining.

    PubMed

    Vorontsov, Mikhail; Weyrauch, Thomas; Lachinova, Svetlana; Gatz, Micah; Carhart, Gary

    2012-07-15

    Maximization of a projected laser beam's power density at a remotely located extended object (speckle target) can be achieved by using an adaptive optics (AO) technique based on sensing and optimization of the target-return speckle field's statistical characteristics, referred to here as speckle metrics (SM). SM AO was demonstrated in a target-in-the-loop coherent beam combining experiment using a bistatic laser beam projection system composed of a coherent fiber-array transmitter and a power-in-the-bucket receiver. SM sensing utilized a 50 MHz rate dithering of the projected beam that provided a stair-mode approximation of the outgoing combined beam's wavefront tip and tilt with subaperture piston phases. Fiber-integrated phase shifters were used for both the dithering and SM optimization with stochastic parallel gradient descent control.

  19. Capacity of optical communications over a lossy bosonic channel with a receiver employing the most general coherent electro-optic feedback control

    NASA Astrophysics Data System (ADS)

    Chung, Hye Won; Guha, Saikat; Zheng, Lizhong

    2017-07-01

    We study the problem of designing optical receivers to discriminate between multiple coherent states using coherent processing receivers—i.e., one that uses arbitrary coherent feedback control and quantum-noise-limited direct detection—which was shown by Dolinar to achieve the minimum error probability in discriminating any two coherent states. We first derive and reinterpret Dolinar's binary-hypothesis minimum-probability-of-error receiver as the one that optimizes the information efficiency at each time instant, based on recursive Bayesian updates within the receiver. Using this viewpoint, we propose a natural generalization of Dolinar's receiver design to discriminate M coherent states, each of which could now be a codeword, i.e., a sequence of N coherent states, each drawn from a modulation alphabet. We analyze the channel capacity of the pure-loss optical channel with a general coherent-processing receiver in the low-photon number regime and compare it with the capacity achievable with direct detection and the Holevo limit (achieving the latter would require a quantum joint-detection receiver). We show compelling evidence that despite the optimal performance of Dolinar's receiver for the binary coherent-state hypothesis test (either in error probability or mutual information), the asymptotic communication rate achievable by such a coherent-processing receiver is only as good as direct detection. This suggests that in the infinitely long codeword limit, all potential benefits of coherent processing at the receiver can be obtained by designing a good code and direct detection, with no feedback within the receiver.

  20. Optimizing a dynamical decoupling protocol for solid-state electronic spin ensembles in diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farfurnik, D.; Jarmola, A.; Pham, L. M.

    2015-08-24

    In this study, we demonstrate significant improvements of the spin coherence time of a dense ensemble of nitrogen-vacancy (NV) centers in diamond through optimized dynamical decoupling (DD). Cooling the sample down to 77 K suppresses longitudinal spin relaxation T 1 effects and DD microwave pulses are used to increase the transverse coherence time T 2 from ~0.7ms up to ~30ms. Furthermore, we extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. Following a theoretical and experimental characterization of pulse and detuning errors, we compare the performance of various DD protocols. We also identify that themore » optimal control scheme for preserving an arbitrary spin state is a recursive protocol, the concatenated version of the XY8 pulse sequence. The improved spin coherence might have an immediate impact on improvements of the sensitivities of ac magnetometry. Moreover, the protocol can be used on denser diamond samples to increase coherence times up to NV-NV interaction time scales, a major step towards the creation of quantum collective NV spin states.« less

  1. Continuous-variable quantum key distribution with a leakage from state preparation

    NASA Astrophysics Data System (ADS)

    Derkach, Ivan; Usenko, Vladyslav C.; Filip, Radim

    2017-12-01

    We address side-channel leakage in a trusted preparation station of continuous-variable quantum key distribution with coherent and squeezed states. We consider two different scenarios: multimode Gaussian modulation, directly accessible to an eavesdropper, or side-channel loss of the signal states prior to the modulation stage. We show the negative impact of excessive modulation on both the coherent- and squeezed-state protocols. The impact is more pronounced for squeezed-state protocols and may require optimization of squeezing in the case of noisy quantum channels. Further, we demonstrate that the coherent-state protocol is immune to side-channel signal state leakage prior to modulation, while the squeezed-state protocol is vulnerable to such attacks, becoming more sensitive to the noise in the channel. In the general case of noisy quantum channels the signal squeezing can be optimized to provide best performance of the protocol in the presence of side-channel leakage prior to modulation. Our results demonstrate that leakage from the trusted source in continuous-variable quantum key distribution should not be underestimated and squeezing optimization is needed to overcome coherent state protocols.

  2. Optimal spectral structure for simultaneous Stimulated Brillouin Scattering suppression and coherent property preservation in high power coherent beam combination system

    NASA Astrophysics Data System (ADS)

    Han, Kai; Xu, Xiaojun; Liu, Zejin

    2013-05-01

    Based on the spectral manipulation technique, the Stimulated Brillouin Scattering (SBS) suppression effect and the coherent beam combination (CBC) effect in multi-tone CBC system are researched theoretically and experimentally. To get satisfactory SBS suppression, the frequency interval of the multi-tone seed laser should be large enough, at least larger than the SBS gain bandwidth. In order to attain excellent CBC effect, the spectra of the multi-tone seed laser need to be matched with the optical path differences among the amplifier chains. Hence, a sufficiently separated matching spectrum is capable at both SBS mitigation and coherent property preservation. By comparing the SBS suppression effect and the CBC effect at various spectra, the optimal spectral structure for simultaneous SBS suppression and excellent CBC effect is found.

  3. Near optimal discrimination of binary coherent signals via atom–light interaction

    NASA Astrophysics Data System (ADS)

    Han, Rui; Bergou, János A.; Leuchs, Gerd

    2018-04-01

    We study the discrimination of weak coherent states of light with significant overlaps by nondestructive measurements on the light states through measuring atomic states that are entangled to the coherent states via dipole coupling. In this way, the problem of measuring and discriminating coherent light states is shifted to finding the appropriate atom–light interaction and atomic measurements. We show that this scheme allows us to attain a probability of error extremely close to the Helstrom bound, the ultimate quantum limit for discriminating binary quantum states, through the simple Jaynes–Cummings interaction between the field and ancilla with optimized light–atom coupling and projective measurements on the atomic states. Moreover, since the measurement is nondestructive on the light state, information that is not detected by one measurement can be extracted from the post-measurement light states through subsequent measurements.

  4. Identification of individual coherent sets associated with flow trajectories using Coherent Structure Coloring

    NASA Astrophysics Data System (ADS)

    Schlueter-Kuck, Kristy; Dabiri, John

    2017-11-01

    In recent years, there has been a proliferation of techniques that aim to characterize fluid flow kinematics on the basis of Lagrangian trajectories of collections of tracer particles. Most of these techniques depend on presence of tracer particles that are initially closely-spaced, in order to compute local gradients of their trajectories. In many applications, the requirement of close tracer spacing cannot be satisfied, especially when the tracers are naturally occurring and their distribution is dictated by the underlying flow. Moreover, current methods often focus on determination of the boundaries of coherent sets, whereas in practice it is often valuable to identify the complete set of trajectories that are coherent with an individual trajectory of interest. We extend the concept of Coherent Structure Coloring to achieve identification of the coherent set associated with individual Lagrangian trajectories. This algorithm is proven successful in identifying coherent structures of varying complexities in canonical unsteady flows. Importantly, although the method is demonstrated here in the context of fluid flow kinematics, the generality of the approach allows for its potential application to other unsupervised clustering problems in dynamical systems. This work was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  5. Phase retrieval with tunable phase transfer function based on the transport of intensity equation

    NASA Astrophysics Data System (ADS)

    Martinez-Carranza, J.; Stepien, P.; Kozacki, T.

    2017-06-01

    Recovering phase information with Deterministic approaches as the Transport of Intensity Equation (TIE) has recently emerged as an alternative tool to the interferometric techniques because it is experimentally easy to implement and provides fast and accurate results. Moreover, the potential of employing partially coherent illumination (PCI) in such techniques allow obtaining high quality phase reconstructions providing that the estimation of the corresponding Phase Transfer Function (PTF) is carried out correctly. Hence, accurate estimation of the PTF requires that the physical properties of the optical system are well known. Typically, these parameters are assumed constant in all the set of measurements, which might not be optimal. In this work, we proposed the use of an amplitude Spatial Light Modulator (aSLM) for tuning the degree of coherence of the optical system. The aSLM will be placed at the Fourier plane of the optical system, and then, band pass filters will be displayed. This methodology will perform amplitude modulation of the propagated field and as a result, the state of coherence of the optical system can be modified. Theoretical and experimental results that validate our proposed technique will be shown.

  6. Optimal laser pulse design for transferring the coherent nuclear wave packet of H+2

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; He, Guang-Qiang; He, Feng

    2014-07-01

    Within the Franck-Condon approximation, the single ionisation of H2 leaves H+2 in a coherent superposition of 19 nuclear vibrational states. We numerically design an optimal laser pulse train to transfer such a coherent nuclear wave packet to the ground vibrational state of H+2. Frequency analysis of the designed optimal pulse reveals that the transfer principle is mainly an anti-Stokes transition, i.e. the H+2 in 1sσg with excited nuclear vibrational states is first pumped to 2pσg state by the pulse at an appropriate time, and then dumped back to 1sσg with lower excited or ground vibrational states. The simulation results show that the population of the ground state after the transfer is more than 91%. To the best of our knowledge, this is the highest transition probability when the driving laser field is dozens of femtoseconds.

  7. 4-channels coherent perfect absorption (CPA)-type demultiplexer using plasmonic nano spheres

    NASA Astrophysics Data System (ADS)

    Soltani, Mohamadreza; Keshavarzi, Rasul

    2017-10-01

    The current research represents a nanoscale and compact 4-channels plasmonic demultiplexer. It includes eight coherent perfect absorption (CPA) - type filters. The operation principle is based on the absorbable formation of a conductive path in the dielectric layer of a plasmonic nano-spheres waveguide. Since the CPA efficiency depends strongly on the number of plasmonic nano-spheres and the nano spheres location, an efficient binary optimization method based on the Particle Swarm Optimization algorithm is used to design an optimized array of the plasmonic nano-sphere in order to achieve the maximum absorption coefficient in the 'off' state.

  8. Parental bonding during childhood affects stress-coping ability and stress reaction.

    PubMed

    Ohtaki, Yuh; Ohi, Yuichi; Suzuki, Shun; Usami, Kazuya; Sasahara, Shinichiro; Matsuzaki, Ichiyo

    2017-07-01

    An online survey examined the effects of parental bonding during childhood on adult workers' stress-coping ability (Sense of Coherence) and stress reactions (General Health Questionnaire and Self-Rating Depression Scale). Participants who completed the questionnaire were grouped into optimal bonding and poor bonding groups. Analyses of covariance by gender with age as a covariate were conducted for the Sense of Coherence, General Health Questionnaire, and Self-Rating Depression Scale scores for 9525 participants. For both genders, the scores of the poor bonding group were significantly lower for the Sense of Coherence and significantly higher for the General Health Questionnaire and Self-Rating Depression Scale compared to those of the optimal bonding group.

  9. Opening-assisted coherent transport in the semiclassical regime

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Celardo, G. Luca; Borgonovi, Fausto; Kaplan, Lev

    2017-02-01

    We study quantum enhancement of transport in open systems in the presence of disorder and dephasing. Quantum coherence effects may significantly enhance transport in open systems even in the semiclassical regime (where the decoherence rate is greater than the intersite hopping amplitude), as long as the disorder is sufficiently strong. When the strengths of disorder and dephasing are fixed, there is an optimal opening strength at which the coherent transport enhancement is optimized. Analytic results are obtained in two simple paradigmatic tight-binding models of large systems: the linear chain and the fully connected network. The physical behavior is also reflected in the Fenna-Matthews-Olson (FMO) photosynthetic complex, which may be viewed as intermediate between these paradigmatic models.

  10. Measuring optical properties of a blood vessel model using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Levitz, David; Hinds, Monica T.; Tran, Noi; Vartanian, Keri; Hanson, Stephen R.; Jacques, Steven L.

    2006-02-01

    In this paper we develop the concept of a tissue-engineered optical phantom that uses engineered tissue as a phantom for calibration and optimization of biomedical optics instrumentation. With this method, the effects of biological processes on measured signals can be studied in a well controlled manner. To demonstrate this concept, we attempted to investigate how the cellular remodeling of a collagen matrix affected the optical properties extracted from optical coherence tomography (OCT) images of the samples. Tissue-engineered optical phantoms of the vascular system were created by seeding smooth muscle cells in a collagen matrix. Four different optical properties were evaluated by fitting the OCT signal to 2 different models: the sample reflectivity ρ and attenuation parameter μ were extracted from the single scattering model, and the scattering coefficient μ s and root-mean-square scattering angle θ rms were extracted from the extended Huygens-Fresnel model. We found that while contraction of the smooth muscle cells was clearly evident macroscopically, on the microscopic scale very few cells were actually embedded in the collagen. Consequently, no significant difference between the cellular and acellular samples in either set of measured optical properties was observed. We believe that further optimization of our tissue-engineering methods is needed in order to make the histology and biochemistry of the cellular samples sufficiently different from the acellular samples on the microscopic level. Once these methods are optimized, we can better verify whether the optical properties of the cellular and acellular collagen samples differ.

  11. The Neuropsychology of Starvation: Set-Shifting and Central Coherence in a Fasted Nonclinical Sample

    PubMed Central

    Pender, Sarah; Gilbert, Sam J.; Serpell, Lucy

    2014-01-01

    Objectives Recent research suggests certain neuropsychological deficits occur in anorexia nervosa (AN). The role of starvation in these deficits remains unclear. Studies of individuals without AN can elucidate our understanding of the effect of short-term starvation on neuropsychological performance. Methods Using a within-subjects repeated measures design, 60 healthy female participants were tested once after fasting for 18 hours, and once when satiated. Measures included two tasks to measure central coherence and a set-shifting task. Results Fasting exacerbated set-shifting difficulties on a rule-change task. Fasting was associated with stronger local and impaired global processing, indicating weaker central coherence. Conclusions Models of AN that propose a central role for set-shifting difficulties or weak central coherence should also consider the impact of short-term fasting on these processes. PMID:25338075

  12. Optimization of the coherence function estimation for multi-core central processing unit

    NASA Astrophysics Data System (ADS)

    Cheremnov, A. G.; Faerman, V. A.; Avramchuk, V. S.

    2017-02-01

    The paper considers use of parallel processing on multi-core central processing unit for optimization of the coherence function evaluation arising in digital signal processing. Coherence function along with other methods of spectral analysis is commonly used for vibration diagnosis of rotating machinery and its particular nodes. An algorithm is given for the function evaluation for signals represented with digital samples. The algorithm is analyzed for its software implementation and computational problems. Optimization measures are described, including algorithmic, architecture and compiler optimization, their results are assessed for multi-core processors from different manufacturers. Thus, speeding-up of the parallel execution with respect to sequential execution was studied and results are presented for Intel Core i7-4720HQ и AMD FX-9590 processors. The results show comparatively high efficiency of the optimization measures taken. In particular, acceleration indicators and average CPU utilization have been significantly improved, showing high degree of parallelism of the constructed calculating functions. The developed software underwent state registration and will be used as a part of a software and hardware solution for rotating machinery fault diagnosis and pipeline leak location with acoustic correlation method.

  13. More Needed for Coherent System

    ERIC Educational Resources Information Center

    Field, John

    2004-01-01

    From a learner's standpoint, Scotland's education system often looks less like a neat set of pathways than a tangled jungle. Since devolution, Scottish policymakers and the education community have set out to create a coherent and transparent set of opportunities for adult learners, of a quality to match Scotland's oft-praised unified system of…

  14. Formation of correlated states and tunneling for a low energy and controlled pulsed action on particles

    NASA Astrophysics Data System (ADS)

    Vysotskii, V. I.; Vysotskyy, M. V.

    2017-08-01

    We consider a method for optimizing the tunnel effect for low-energy particles by using coherent correlated states formed under controllable pulsed action on these particles. Typical examples of such actions are the effect of a pulsed magnetic field on charged particles in a gas or plasma. Coherent correlated states are characterized most comprehensively by the correlation coefficient r( t); an increase of this factor elevates the probability of particle tunneling through a high potential barrier by several orders of magnitude without an appreciable increase in their energy. It is shown for the first time that the formation of coherent correlated states, as well as maximal | r( t)|max and time-averaged 〈| r( t)|〉 amplitudes of the correlation coefficient and the corresponding tunneling probability are characterized by a nonmonotonic (oscillating) dependence on the forming pulse duration and amplitude. This result makes it possible to optimize experiments on the realization of low-energy nuclear fusion and demonstrates the incorrectness of the intuitive idea that the tunneling probability always increases with the amplitude of an external action on a particle. Our conclusions can be used, in particular, for explaining random (unpredictable and low-repeatability) experimental results on optimization of energy release from nuclear reactions occurring under a pulsed action with fluctuations of the amplitude and duration. We also consider physical premises for the observed dependences and obtain optimal relations between the aforementioned parameters, which ensure the formation of an optimal coherent correlated state and optimal low-energy tunneling in various physical systems with allowance for the dephasing action of a random force. The results of theoretical analysis are compared with the data of successful experiments on the generation of neutrons and alpha particles in an electric discharge in air and gaseous deuterium.

  15. Adaptive optimization of reference intensity for optical coherence imaging using galvanometric mirror tilting method

    NASA Astrophysics Data System (ADS)

    Kim, Ji-hyun; Han, Jae-Ho; Jeong, Jichai

    2015-09-01

    Integration time and reference intensity are important factors for achieving high signal-to-noise ratio (SNR) and sensitivity in optical coherence tomography (OCT). In this context, we present an adaptive optimization method of reference intensity for OCT setup. The reference intensity is automatically controlled by tilting a beam position using a Galvanometric scanning mirror system. Before sample scanning, the OCT system acquires two dimensional intensity map with normalized intensity and variables in color spaces using false-color mapping. Then, the system increases or decreases reference intensity following the map data for optimization with a given algorithm. In our experiments, the proposed method successfully corrected the reference intensity with maintaining spectral shape, enabled to change integration time without manual calibration of the reference intensity, and prevented image degradation due to over-saturation and insufficient reference intensity. Also, SNR and sensitivity could be improved by increasing integration time with automatic adjustment of the reference intensity. We believe that our findings can significantly aid in the optimization of SNR and sensitivity for optical coherence tomography systems.

  16. Setup calibration and optimization for comparative digital holography

    NASA Astrophysics Data System (ADS)

    Baumbach, Torsten; Osten, Wolfgang; Kebbel, Volker; von Kopylow, Christoph; Jueptner, Werner

    2004-08-01

    With increasing globalization many enterprises decide to produce the components of their products at different locations all over the world. Consequently, new technologies and strategies for quality control are required. In this context the remote comparison of objects with regard to their shape or response on certain loads is getting more and more important for a variety of applications. For such a task the novel method of comparative digital holography is a suitable tool with interferometric sensitivity. With this technique the comparison in shape or deformation of two objects does not require the presence of both objects at the same place. In contrast to the well known incoherent techniques based on inverse fringe projection this new approach uses a coherent mask for the illumination of the sample object. The coherent mask is created by digital holography to enable the instant access to the complete optical information of the master object at any wanted place. The reconstruction of the mask is done by a spatial light modulator (SLM). The transmission of the digital master hologram to the place of comparison can be done via digital telecommunication networks. Contrary to other interferometric techniques this method enables the comparison of objects with different microstructure. In continuation of earlier reports our investigations are focused here on the analysis of the constraints of the setup with respect to the quality of the hologram reconstruction with a spatial light modulator. For successful measurements the selection of the appropriate reconstruction method and the adequate optical set-up is mandatory. In addition, the use of a SLM for the reconstruction requires the knowledge of its properties for the accomplishment of this method. The investigation results for the display properties such as display curvature, phase shift and the consequences for the technique will be presented. The optimization and the calibration of the set-up and its components lead to improved results in comparative digital holography with respect to the resolution. Examples of measurements before and after the optimization and calibration will be presented.

  17. Reflections on Quantum Data Hiding

    NASA Astrophysics Data System (ADS)

    Winter, Andreas

    Quantum data hiding, originally invented as a limitation on local operations and classical communications (LOCC) in distinguishing globally orthogonal states, is actually a phenomenon arising generically in statistics whenever comparing a `strong' set of measurements (i.e., decision rules) with a `weak' one. The classical statistical analogue of this would be secret sharing, in which two perfectly distinguishable multi-partite hypotheses appear to be indistinguishable when accessing only a marginal. The quantum versions are richer in that for example LOCC allows for state tomography, so the states cannot be come perfectly indistinguishable but only nearly so, and hence the question is one of efficiency. I will discuss two concrete examples and associated sets of problems: 1. Gaussian operations and classical computation (GOCC): Not very surprisingly, GOCC cannot distinguish optimally even two coherent states of a single mode. Here we find states, each a mixture of multi-mode coherent states, which are almost perfectly distinguishable by suitable measurements, by when restricted to GOCC, i.e. linear optics and post-processing, the states appear almost identical. The construction is random and relies on coding arguments. Open questions include whether there one can give a constructive version of the argument, and whether for instance even thermal states can be used, or how efficient the hiding is. 2. Local operation and classical communication (LOCC): It is well-known that in a bipartite dxd-system, asymptotically logd bits can be hidden. Here we show for the first time, using the calculus of min-entropies, that this is asymptotically optimal. In fact, we get bounds on the data hiding capacity of any preparation system; these are however not always tight. While it is known that data hiding by separable states is possible (i.e. the state preparation can be done by LOCC), it is open whether the optimal information efficiency of (asymptotically) log d bits can be achieved by separable states.

  18. Visibility-Based Hypothesis Testing Using Higher-Order Optical Interference

    NASA Astrophysics Data System (ADS)

    Jachura, Michał; Jarzyna, Marcin; Lipka, Michał; Wasilewski, Wojciech; Banaszek, Konrad

    2018-03-01

    Many quantum information protocols rely on optical interference to compare data sets with efficiency or security unattainable by classical means. Standard implementations exploit first-order coherence between signals whose preparation requires a shared phase reference. Here, we analyze and experimentally demonstrate the binary discrimination of visibility hypotheses based on higher-order interference for optical signals with a random relative phase. This provides a robust protocol implementation primitive when a phase lock is unavailable or impractical. With the primitive cost quantified by the total detected optical energy, optimal operation is typically reached in the few-photon regime.

  19. Optimizing coherent anti-Stokes Raman scattering by genetic algorithm controlled pulse shaping

    NASA Astrophysics Data System (ADS)

    Yang, Wenlong; Sokolov, Alexei

    2010-10-01

    The hybrid coherent anti-Stokes Raman scattering (CARS) has been successful applied to fast chemical sensitive detections. As the development of femto-second pulse shaping techniques, it is of great interest to find the optimum pulse shapes for CARS. The optimum pulse shapes should minimize the non-resonant four wave mixing (NRFWM) background and maximize the CARS signal. A genetic algorithm (GA) is developed to make a heuristic searching for optimized pulse shapes, which give the best signal the background ratio. The GA is shown to be able to rediscover the hybrid CARS scheme and find optimized pulse shapes for customized applications by itself.

  20. Optimization of optical systems.

    PubMed

    Champagne, E B

    1966-11-01

    The power signal-to-noise ratios for coherent and noncoherent optical detection are presented, with the expression for noncoherent detection being examined in detail. It is found that for the long range optical system to compete with its microwave counterpart it is necessary to optimize the optical system. The optical system may be optimized by using coherent detection, or noncoherent detection if the signal is the dominate noise factor. A design procedure is presented which, in principle, always allows one to obtain signal shot-noise limited operation with noncoherent detection if pulsed operation is used. The technique should make reasonable extremely long range, high data rate systems of relatively simple design.

  1. Optimum testing of multiple hypotheses in quantum detection theory

    NASA Technical Reports Server (NTRS)

    Yuen, H. P.; Kennedy, R. S.; Lax, M.

    1975-01-01

    The problem of specifying the optimum quantum detector in multiple hypotheses testing is considered for application to optical communications. The quantum digital detection problem is formulated as a linear programming problem on an infinite-dimensional space. A necessary and sufficient condition is derived by the application of a general duality theorem specifying the optimum detector in terms of a set of linear operator equations and inequalities. Existence of the optimum quantum detector is also established. The optimality of commuting detection operators is discussed in some examples. The structure and performance of the optimal receiver are derived for the quantum detection of narrow-band coherent orthogonal and simplex signals. It is shown that modal photon counting is asymptotically optimum in the limit of a large signaling alphabet and that the capacity goes to infinity in the absence of a bandwidth limitation.

  2. MOEMS optical delay line for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Choudhary, Om P.; Chouksey, S.; Sen, P. K.; Sen, P.; Solanki, J.; Andrews, J. T.

    2014-09-01

    Micro-Opto-Electro-Mechanical optical coherence tomography, a lab-on-chip for biomedical applications is designed, studied, fabricated and characterized. To fabricate the device standard PolyMUMPS processes is adopted. We report the utilization of electro-optic modulator for a fast scanning optical delay line for time domain optical coherence tomography. Design optimization are performed using Tanner EDA while simulations are performed using COMSOL. The paper summarizes various results and fabrication methodology adopted. The success of the device promises a future hand-held or endoscopic optical coherence tomography for biomedical applications.

  3. Fundamentals of Coherent Synchrotron Radiation in Storage Rings

    NASA Astrophysics Data System (ADS)

    Sannibale, F.; Byrd, J. M.; Loftsdottir, A.; Martin, M. C.; Venturini, M.

    2004-05-01

    We present the fundamental concepts for producing stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The analysis includes distortion of bunch shape from the synchrotron radiation (SR), enhancing higher frequency coherent emission and limits to stable emission due to a microbunching instability excited by the SR. We use these concepts to optimize the performance of a source for CSR emission.

  4. Coherent-state information concentration and purification in atomic memory

    NASA Astrophysics Data System (ADS)

    Herec, Jiří; Filip, Radim

    2006-12-01

    We propose a feasible method of coherent-state information concentration and purification utilizing quantum memory. The method allows us to optimally concentrate and purify information carried by many noisy copies of an unknown coherent state (randomly distributed in time) to a single copy. Thus nonclassical resources and operations can be saved, if we compare information processing with many noisy copies and a single copy with concentrated and purified information.

  5. Description of quantum coherence in thermodynamic processes requires constraints beyond free energy.

    PubMed

    Lostaglio, Matteo; Jennings, David; Rudolph, Terry

    2015-03-10

    Recent studies have developed fundamental limitations on nanoscale thermodynamics, in terms of a set of independent free energy relations. Here we show that free energy relations cannot properly describe quantum coherence in thermodynamic processes. By casting time-asymmetry as a quantifiable, fundamental resource of a quantum state, we arrive at an additional, independent set of thermodynamic constraints that naturally extend the existing ones. These asymmetry relations reveal that the traditional Szilárd engine argument does not extend automatically to quantum coherences, but instead only relational coherences in a multipartite scenario can contribute to thermodynamic work. We find that coherence transformations are always irreversible. Our results also reveal additional structural parallels between thermodynamics and the theory of entanglement.

  6. Description of quantum coherence in thermodynamic processes requires constraints beyond free energy

    NASA Astrophysics Data System (ADS)

    Lostaglio, Matteo; Jennings, David; Rudolph, Terry

    2015-03-01

    Recent studies have developed fundamental limitations on nanoscale thermodynamics, in terms of a set of independent free energy relations. Here we show that free energy relations cannot properly describe quantum coherence in thermodynamic processes. By casting time-asymmetry as a quantifiable, fundamental resource of a quantum state, we arrive at an additional, independent set of thermodynamic constraints that naturally extend the existing ones. These asymmetry relations reveal that the traditional Szilárd engine argument does not extend automatically to quantum coherences, but instead only relational coherences in a multipartite scenario can contribute to thermodynamic work. We find that coherence transformations are always irreversible. Our results also reveal additional structural parallels between thermodynamics and the theory of entanglement.

  7. Description of quantum coherence in thermodynamic processes requires constraints beyond free energy

    PubMed Central

    Lostaglio, Matteo; Jennings, David; Rudolph, Terry

    2015-01-01

    Recent studies have developed fundamental limitations on nanoscale thermodynamics, in terms of a set of independent free energy relations. Here we show that free energy relations cannot properly describe quantum coherence in thermodynamic processes. By casting time-asymmetry as a quantifiable, fundamental resource of a quantum state, we arrive at an additional, independent set of thermodynamic constraints that naturally extend the existing ones. These asymmetry relations reveal that the traditional Szilárd engine argument does not extend automatically to quantum coherences, but instead only relational coherences in a multipartite scenario can contribute to thermodynamic work. We find that coherence transformations are always irreversible. Our results also reveal additional structural parallels between thermodynamics and the theory of entanglement. PMID:25754774

  8. Optimization of Multicomponent Behavioral and Biobehavioral Interventions for the Prevention and Treatment of HIV/AIDS

    PubMed Central

    Collins, Linda M.; Kugler, Kari C.; Gwadz, Marya Viorst

    2015-01-01

    To move society toward an AIDS-free generation, behavioral interventions for prevention and treatment of HIV/AIDS must be not only effective, but also cost-effective, efficient, and readily scalable. The purpose of this article is to introduce to the HIV/AIDS research community the multiphase optimization strategy (MOST), a new methodological framework inspired by engineering principles and designed to develop behavioral interventions that have these important characteristics. Many behavioral interventions comprise multiple components. In MOST, randomized experimentation is conducted to assess the individual performance of each intervention component, and whether its presence/absence/setting has an impact on the performance of other components. This information is used to engineer an intervention that meets a specific optimization criterion, defined a priori in terms of effectiveness, cost, cost-effectiveness, and/or scalability. MOST will enable intervention science to develop a coherent knowledge base about what works and does not work. Ultimately this will improve behavioral interventions systematically and incrementally. PMID:26238037

  9. Coordinated Control of Cross-Flow Turbines

    NASA Astrophysics Data System (ADS)

    Strom, Benjamin; Brunton, Steven; Polagye, Brian

    2016-11-01

    Cross-flow turbines, also known as vertical-axis turbines, have several advantages over axial-flow turbines for a number of applications including urban wind power, high-density arrays, and marine or fluvial currents. By controlling the angular velocity applied to the turbine as a function of angular blade position, we have demonstrated a 79 percent increase in cross-flow turbine efficiency over constant-velocity control. This strategy uses the downhill simplex method to optimize control parameter profiles during operation of a model turbine in a recirculating water flume. This optimization method is extended to a set of two turbines, where the blade motions and position of the downstream turbine are optimized to beneficially interact with the coherent structures in the wake of the upstream turbine. This control scheme has the potential to enable high-density arrays of cross-flow turbines to operate at cost-effective efficiency. Turbine wake and force measurements are analyzed for insight into the effect of a coordinated control strategy.

  10. Optimization of Multicomponent Behavioral and Biobehavioral Interventions for the Prevention and Treatment of HIV/AIDS.

    PubMed

    Collins, Linda M; Kugler, Kari C; Gwadz, Marya Viorst

    2016-01-01

    To move society toward an AIDS-free generation, behavioral interventions for prevention and treatment of HIV/AIDS must be not only effective, but also cost-effective, efficient, and readily scalable. The purpose of this article is to introduce to the HIV/AIDS research community the multiphase optimization strategy (MOST), a new methodological framework inspired by engineering principles and designed to develop behavioral interventions that have these important characteristics. Many behavioral interventions comprise multiple components. In MOST, randomized experimentation is conducted to assess the individual performance of each intervention component, and whether its presence/absence/setting has an impact on the performance of other components. This information is used to engineer an intervention that meets a specific optimization criterion, defined a priori in terms of effectiveness, cost, cost-effectiveness, and/or scalability. MOST will enable intervention science to develop a coherent knowledge base about what works and does not work. Ultimately this will improve behavioral interventions systematically and incrementally.

  11. Adaptive 4d Psi-Based Change Detection

    NASA Astrophysics Data System (ADS)

    Yang, Chia-Hsiang; Soergel, Uwe

    2018-04-01

    In a previous work, we proposed a PSI-based 4D change detection to detect disappearing and emerging PS points (3D) along with their occurrence dates (1D). Such change points are usually caused by anthropic events, e.g., building constructions in cities. This method first divides an entire SAR image stack into several subsets by a set of break dates. The PS points, which are selected based on their temporal coherences before or after a break date, are regarded as change candidates. Change points are then extracted from these candidates according to their change indices, which are modelled from their temporal coherences of divided image subsets. Finally, we check the evolution of the change indices for each change point to detect the break date that this change occurred. The experiment validated both feasibility and applicability of our method. However, two questions still remain. First, selection of temporal coherence threshold associates with a trade-off between quality and quantity of PS points. This selection is also crucial for the amount of change points in a more complex way. Second, heuristic selection of change index thresholds brings vulnerability and causes loss of change points. In this study, we adapt our approach to identify change points based on statistical characteristics of change indices rather than thresholding. The experiment validates this adaptive approach and shows increase of change points compared with the old version. In addition, we also explore and discuss optimal selection of temporal coherence threshold.

  12. Registering coherent change detection products associated with large image sets and long capture intervals

    DOEpatents

    Perkins, David Nikolaus; Gonzales, Antonio I

    2014-04-08

    A set of co-registered coherent change detection (CCD) products is produced from a set of temporally separated synthetic aperture radar (SAR) images of a target scene. A plurality of transformations are determined, which transformations are respectively for transforming a plurality of the SAR images to a predetermined image coordinate system. The transformations are used to create, from a set of CCD products produced from the set of SAR images, a corresponding set of co-registered CCD products.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filip, Radim; Marek, Petr; Fiurasek, Jaromir

    We analyze a reversibility of optimal Gaussian 1{yields}2 quantum cloning of a coherent state using only local operations on the clones and classical communication between them and propose a feasible experimental test of this feature. Performing Bell-type homodyne measurement on one clone and anticlone, an arbitrary unknown input state (not only a coherent state) can be restored in the other clone by applying appropriate local unitary displacement operation. We generalize this concept to a partial reversal of the cloning using only local operations and classical communication (LOCC) and we show that this procedure converts the symmetric cloner to an asymmetricmore » cloner. Further, we discuss a distributed LOCC reversal in optimal 1{yields}M Gaussian cloning of coherent states which transforms it to optimal 1{yields}M{sup '} cloning for M{sup '}

  14. Coherence-generating power of quantum dephasing processes

    NASA Astrophysics Data System (ADS)

    Styliaris, Georgios; Campos Venuti, Lorenzo; Zanardi, Paolo

    2018-03-01

    We provide a quantification of the capability of various quantum dephasing processes to generate coherence out of incoherent states. The measures defined, admitting computable expressions for any finite Hilbert-space dimension, are based on probabilistic averages and arise naturally from the viewpoint of coherence as a resource. We investigate how the capability of a dephasing process (e.g., a nonselective orthogonal measurement) to generate coherence depends on the relevant bases of the Hilbert space over which coherence is quantified and the dephasing process occurs, respectively. We extend our analysis to include those Lindblad time evolutions which, in the infinite-time limit, dephase the system under consideration and calculate their coherence-generating power as a function of time. We further identify specific families of such time evolutions that, although dephasing, have optimal (over all quantum processes) coherence-generating power for some intermediate time. Finally, we investigate the coherence-generating capability of random dephasing channels.

  15. Emergence of electron coherence and two-color all-optical switching in MoS2 based on spatial self-phase modulation

    PubMed Central

    Wu, Yanling; Wu, Qiong; Sun, Fei; Cheng, Cai; Meng, Sheng; Zhao, Jimin

    2015-01-01

    Generating electron coherence in quantum materials is essential in optimal control of many-body interactions and correlations. In a multidomain system this signifies nonlocal coherence and emergence of collective phenomena, particularly in layered 2D quantum materials possessing novel electronic structures and high carrier mobilities. Here we report nonlocal ac electron coherence induced in dispersed MoS2 flake domains, using coherent spatial self-phase modulation (SSPM). The gap-dependent nonlinear dielectric susceptibility χ(3) measured is surprisingly large, where direct interband transition and two-photon SSPM are responsible for excitations above and below the bandgap, respectively. A wind-chime model is proposed to account for the emergence of the ac electron coherence. Furthermore, all-optical switching is achieved based on SSPM, especially with two-color intraband coherence, demonstrating that electron coherence generation is a ubiquitous property of layered quantum materials. PMID:26351696

  16. Coherent feedback control of a single qubit in diamond

    NASA Astrophysics Data System (ADS)

    Hirose, Masashi; Cappellaro, Paola

    2016-04-01

    Engineering desired operations on qubits subjected to the deleterious effects of their environment is a critical task in quantum information processing, quantum simulation and sensing. The most common approach relies on open-loop quantum control techniques, including optimal-control algorithms based on analytical or numerical solutions, Lyapunov design and Hamiltonian engineering. An alternative strategy, inspired by the success of classical control, is feedback control. Because of the complications introduced by quantum measurement, closed-loop control is less pervasive in the quantum setting and, with exceptions, its experimental implementations have been mainly limited to quantum optics experiments. Here we implement a feedback-control algorithm using a solid-state spin qubit system associated with the nitrogen vacancy centre in diamond, using coherent feedback to overcome the limitations of measurement-based feedback, and show that it can protect the qubit against intrinsic dephasing noise for milliseconds. In coherent feedback, the quantum system is connected to an auxiliary quantum controller (ancilla) that acquires information about the output state of the system (by an entangling operation) and performs an appropriate feedback action (by a conditional gate). In contrast to open-loop dynamical decoupling techniques, feedback control can protect the qubit even against Markovian noise and for an arbitrary period of time (limited only by the coherence time of the ancilla), while allowing gate operations. It is thus more closely related to quantum error-correction schemes, although these require larger and increasing qubit overheads. Increasing the number of fresh ancillas enables protection beyond their coherence time. We further evaluate the robustness of the feedback protocol, which could be applied to quantum computation and sensing, by exploring a trade-off between information gain and decoherence protection, as measurement of the ancilla-qubit correlation after the feedback algorithm voids the protection, even if the rest of the dynamics is unchanged.

  17. Personal Strengths and Health Related Quality of Life in Dementia Caregivers from Latin America

    PubMed Central

    Trapp, Stephen K.; Perrin, Paul B.; Aggarwal, Richa; Peralta, Silvina Victoria; Stolfi, Miriam E.; Morelli, Eliana; Peña Obeso, Leticia Aracely; Arango-Lasprilla, Juan Carlos

    2015-01-01

    The research literature has begun to demonstrate associations between personal strengths and enhanced psychosocial functioning of dementia caregivers, but these relationships have not been examined in the context of dementia caregivers in Latin America. The present study examined whether personal strengths, including resilience, optimism, and sense of coherence, were associated with mental and physical health related quality of life (HRQOL) in 130 dementia caregivers in Mexico and Argentina. Structural equation modeling found that the personal strengths collectively accounted for 58.4% of the variance in caregiver mental HRQOL, and resilience, sense of coherence, and optimism each had unique effects. In comparison, the personal strengths together accounted for 8.9% of the variance in caregiver physical HRQOL, and only sense of coherence yielded a unique effect. These results underscore the need to construct and disseminate empirically supported interventions based in part on important personal strengths, particularly sense of coherence, for this underrepresented group. PMID:26160998

  18. Optimization methods of pulse-to-pulse alignment using femtosecond pulse laser based on temporal coherence function for practical distance measurement

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Yang, Linghui; Guo, Yin; Lin, Jiarui; Cui, Pengfei; Zhu, Jigui

    2018-02-01

    An interferometer technique based on temporal coherence function of femtosecond pulses is demonstrated for practical distance measurement. Here, the pulse-to-pulse alignment is analyzed for large delay distance measurement. Firstly, a temporal coherence function model between two femtosecond pulses is developed in the time domain for the dispersive unbalanced Michelson interferometer. Then, according to this model, the fringes analysis and the envelope extraction process are discussed. Meanwhile, optimization methods of pulse-to-pulse alignment for practical long distance measurement are presented. The order of the curve fitting and the selection of points for envelope extraction are analyzed. Furthermore, an averaging method based on the symmetry of the coherence function is demonstrated. Finally, the performance of the proposed methods is evaluated in the absolute distance measurement of 20 μ m with path length difference of 9 m. The improvement of standard deviation in experimental results shows that these approaches have the potential for practical distance measurement.

  19. Performance of a Combined System Using an X-Ray FEL Oscillator and a High-Gain FEL Amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, L.; Lindberg, R.; Kim, K. -J.

    The LCLS-II at SLAC will feature a 4 GeV CW superconducting (SC) RF linac [1] that can potentially drive a 5th harmonic X-Ray FEL Oscillator (XFELO) to produce fully coherent, 1 MW photon pulses with a 5 meV bandwidth at 14.4 keV [2]. The XFELO output can serve as the input seed signal for a high-gain FEL amplifier employing fs electron beams from the normal conducting SLAC linac, thereby generating coherent, fs x-ray pulses with TW peak powers using a tapered undulator after saturation [3]. Coherent, intense output at several tens of keV will also be feasible if one considersmore » a harmonic generation scheme. Thus, one can potentially reach the 42 keV photon energy required for the MaRIE project [4] by beginning with an XFELO operating at the 3rd harmonic to produce 14.0 keV photons using a 12 GeV SCRF linac, and then subsequently using the high-gain harmonic generation scheme to generate and amplify the 3th harmonic at 42 keV [5]. We report extensive GINGER simulations that determine an optimized parameter set for the combined system.« less

  20. Laser Frequency Noise in Coherent Optical Systems: Spectral Regimes and Impairments.

    PubMed

    Kakkar, Aditya; Rodrigo Navarro, Jaime; Schatz, Richard; Pang, Xiaodan; Ozolins, Oskars; Udalcovs, Aleksejs; Louchet, Hadrien; Popov, Sergei; Jacobsen, Gunnar

    2017-04-12

    Coherent communication networks are based on the ability to use multiple dimensions of the lightwave together with electrical domain compensation of transmission impairments. Electrical-domain dispersion compensation (EDC) provides many advantages such as network flexibility and enhanced fiber nonlinearity tolerance, but makes the system more susceptible to laser frequency noise (FN), e.g. to the local oscillator FN in systems with post-reception EDC. Although this problem has been extensively studied, statistically, for links assuming lasers with white-FN, many questions remain unanswered. Particularly, the influence of a realistic non-white FN-spectrum due to e.g., the presence of 1/f-flicker and carrier induced noise remains elusive and a statistical analysis becomes insufficient. Here we provide an experimentally validated theory for coherent optical links with lasers having general non-white FN-spectrum and EDC. The fundamental reason of the increased susceptibility is shown to be FN-induced symbol displacement that causes timing jitter and/or inter/intra symbol interference. We establish that different regimes of the laser FN-spectrum cause a different set of impairments. The influence of the impairments due to some regimes can be reduced by optimizing the corresponding mitigation algorithms, while other regimes cause irretrievable impairments. Theoretical boundaries of these regimes and corresponding criteria applicable to system/laser design are provided.

  1. Parallelized multi–graphics processing unit framework for high-speed Gabor-domain optical coherence microscopy

    PubMed Central

    Tankam, Patrice; Santhanam, Anand P.; Lee, Kye-Sung; Won, Jungeun; Canavesi, Cristina; Rolland, Jannick P.

    2014-01-01

    Abstract. Gabor-domain optical coherence microscopy (GD-OCM) is a volumetric high-resolution technique capable of acquiring three-dimensional (3-D) skin images with histological resolution. Real-time image processing is needed to enable GD-OCM imaging in a clinical setting. We present a parallelized and scalable multi-graphics processing unit (GPU) computing framework for real-time GD-OCM image processing. A parallelized control mechanism was developed to individually assign computation tasks to each of the GPUs. For each GPU, the optimal number of amplitude-scans (A-scans) to be processed in parallel was selected to maximize GPU memory usage and core throughput. We investigated five computing architectures for computational speed-up in processing 1000×1000 A-scans. The proposed parallelized multi-GPU computing framework enables processing at a computational speed faster than the GD-OCM image acquisition, thereby facilitating high-speed GD-OCM imaging in a clinical setting. Using two parallelized GPUs, the image processing of a 1×1×0.6  mm3 skin sample was performed in about 13 s, and the performance was benchmarked at 6.5 s with four GPUs. This work thus demonstrates that 3-D GD-OCM data may be displayed in real-time to the examiner using parallelized GPU processing. PMID:24695868

  2. Parallelized multi-graphics processing unit framework for high-speed Gabor-domain optical coherence microscopy.

    PubMed

    Tankam, Patrice; Santhanam, Anand P; Lee, Kye-Sung; Won, Jungeun; Canavesi, Cristina; Rolland, Jannick P

    2014-07-01

    Gabor-domain optical coherence microscopy (GD-OCM) is a volumetric high-resolution technique capable of acquiring three-dimensional (3-D) skin images with histological resolution. Real-time image processing is needed to enable GD-OCM imaging in a clinical setting. We present a parallelized and scalable multi-graphics processing unit (GPU) computing framework for real-time GD-OCM image processing. A parallelized control mechanism was developed to individually assign computation tasks to each of the GPUs. For each GPU, the optimal number of amplitude-scans (A-scans) to be processed in parallel was selected to maximize GPU memory usage and core throughput. We investigated five computing architectures for computational speed-up in processing 1000×1000 A-scans. The proposed parallelized multi-GPU computing framework enables processing at a computational speed faster than the GD-OCM image acquisition, thereby facilitating high-speed GD-OCM imaging in a clinical setting. Using two parallelized GPUs, the image processing of a 1×1×0.6  mm3 skin sample was performed in about 13 s, and the performance was benchmarked at 6.5 s with four GPUs. This work thus demonstrates that 3-D GD-OCM data may be displayed in real-time to the examiner using parallelized GPU processing.

  3. Testing the Hydrological Coherence of High-Resolution Gridded Precipitation and Temperature Data Sets

    NASA Astrophysics Data System (ADS)

    Laiti, L.; Mallucci, S.; Piccolroaz, S.; Bellin, A.; Zardi, D.; Fiori, A.; Nikulin, G.; Majone, B.

    2018-03-01

    Assessing the accuracy of gridded climate data sets is highly relevant to climate change impact studies, since evaluation, bias correction, and statistical downscaling of climate models commonly use these products as reference. Among all impact studies those addressing hydrological fluxes are the most affected by errors and biases plaguing these data. This paper introduces a framework, coined Hydrological Coherence Test (HyCoT), for assessing the hydrological coherence of gridded data sets with hydrological observations. HyCoT provides a framework for excluding meteorological forcing data sets not complying with observations, as function of the particular goal at hand. The proposed methodology allows falsifying the hypothesis that a given data set is coherent with hydrological observations on the basis of the performance of hydrological modeling measured by a metric selected by the modeler. HyCoT is demonstrated in the Adige catchment (southeastern Alps, Italy) for streamflow analysis, using a distributed hydrological model. The comparison covers the period 1989-2008 and includes five gridded daily meteorological data sets: E-OBS, MSWEP, MESAN, APGD, and ADIGE. The analysis highlights that APGD and ADIGE, the data sets with highest effective resolution, display similar spatiotemporal precipitation patterns and produce the largest hydrological efficiency indices. Lower performances are observed for E-OBS, MESAN, and MSWEP, especially in small catchments. HyCoT reveals deficiencies in the representation of spatiotemporal patterns of gridded climate data sets, which cannot be corrected by simply rescaling the meteorological forcing fields, as often done in bias correction of climate model outputs. We recommend this framework to assess the hydrological coherence of gridded data sets to be used in large-scale hydroclimatic studies.

  4. Go With the Flow, on Jupiter and Snow. Coherence from Model-Free Video Data Without Trajectories

    NASA Astrophysics Data System (ADS)

    AlMomani, Abd AlRahman R.; Bollt, Erik

    2018-06-01

    Viewing a data set such as the clouds of Jupiter, coherence is readily apparent to human observers, especially the Great Red Spot, but also other great storms and persistent structures. There are now many different definitions and perspectives mathematically describing coherent structures, but we will take an image processing perspective here. We describe an image processing perspective inference of coherent sets from a fluidic system directly from image data, without attempting to first model underlying flow fields, related to a concept in image processing called motion tracking. In contrast to standard spectral methods for image processing which are generally related to a symmetric affinity matrix, leading to standard spectral graph theory, we need a not symmetric affinity which arises naturally from the underlying arrow of time. We develop an anisotropic, directed diffusion operator corresponding to flow on a directed graph, from a directed affinity matrix developed with coherence in mind, and corresponding spectral graph theory from the graph Laplacian. Our methodology is not offered as more accurate than other traditional methods of finding coherent sets, but rather our approach works with alternative kinds of data sets, in the absence of vector field. Our examples will include partitioning the weather and cloud structures of Jupiter, and a local to Potsdam, NY, lake effect snow event on Earth, as well as the benchmark test double-gyre system.

  5. Implementing a quantum cloning machine in separate cavities via the optical coherent pulse as a quantum communication bus

    NASA Astrophysics Data System (ADS)

    Zhu, Meng-Zheng; Ye, Liu

    2015-04-01

    An efficient scheme is proposed to implement a quantum cloning machine in separate cavities based on a hybrid interaction between electron-spin systems placed in the cavities and an optical coherent pulse. The coefficient of the output state for the present cloning machine is just the direct product of two trigonometric functions, which ensures that different types of quantum cloning machine can be achieved readily in the same framework by appropriately adjusting the rotated angles. The present scheme can implement optimal one-to-two symmetric (asymmetric) universal quantum cloning, optimal symmetric (asymmetric) phase-covariant cloning, optimal symmetric (asymmetric) real-state cloning, optimal one-to-three symmetric economical real-state cloning, and optimal symmetric cloning of qubits given by an arbitrary axisymmetric distribution. In addition, photon loss of the qubus beams during the transmission and decoherence effects caused by such a photon loss are investigated.

  6. Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hampton, Jerrad; Doostan, Alireza, E-mail: alireza.doostan@colorado.edu

    2015-01-01

    Sampling orthogonal polynomial bases via Monte Carlo is of interest for uncertainty quantification of models with random inputs, using Polynomial Chaos (PC) expansions. It is known that bounding a probabilistic parameter, referred to as coherence, yields a bound on the number of samples necessary to identify coefficients in a sparse PC expansion via solution to an ℓ{sub 1}-minimization problem. Utilizing results for orthogonal polynomials, we bound the coherence parameter for polynomials of Hermite and Legendre type under their respective natural sampling distribution. In both polynomial bases we identify an importance sampling distribution which yields a bound with weaker dependence onmore » the order of the approximation. For more general orthonormal bases, we propose the coherence-optimal sampling: a Markov Chain Monte Carlo sampling, which directly uses the basis functions under consideration to achieve a statistical optimality among all sampling schemes with identical support. We demonstrate these different sampling strategies numerically in both high-order and high-dimensional, manufactured PC expansions. In addition, the quality of each sampling method is compared in the identification of solutions to two differential equations, one with a high-dimensional random input and the other with a high-order PC expansion. In both cases, the coherence-optimal sampling scheme leads to similar or considerably improved accuracy.« less

  7. A fast bottom-up algorithm for computing the cut sets of noncoherent fault trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corynen, G.C.

    1987-11-01

    An efficient procedure for finding the cut sets of large fault trees has been developed. Designed to address coherent or noncoherent systems, dependent events, shared or common-cause events, the method - called SHORTCUT - is based on a fast algorithm for transforming a noncoherent tree into a quasi-coherent tree (COHERE), and on a new algorithm for reducing cut sets (SUBSET). To assure sufficient clarity and precision, the procedure is discussed in the language of simple sets, which is also developed in this report. Although the new method has not yet been fully implemented on the computer, we report theoretical worst-casemore » estimates of its computational complexity. 12 refs., 10 figs.« less

  8. Acquisition of decision making criteria: reward rate ultimately beats accuracy.

    PubMed

    Balci, Fuat; Simen, Patrick; Niyogi, Ritwik; Saxe, Andrew; Hughes, Jessica A; Holmes, Philip; Cohen, Jonathan D

    2011-02-01

    Speed-accuracy trade-offs strongly influence the rate of reward that can be earned in many decision-making tasks. Previous reports suggest that human participants often adopt suboptimal speed-accuracy trade-offs in single session, two-alternative forced-choice tasks. We investigated whether humans acquired optimal speed-accuracy trade-offs when extensively trained with multiple signal qualities. When performance was characterized in terms of decision time and accuracy, our participants eventually performed nearly optimally in the case of higher signal qualities. Rather than adopting decision criteria that were individually optimal for each signal quality, participants adopted a single threshold that was nearly optimal for most signal qualities. However, setting a single threshold for different coherence conditions resulted in only negligible decrements in the maximum possible reward rate. Finally, we tested two hypotheses regarding the possible sources of suboptimal performance: (1) favoring accuracy over reward rate and (2) misestimating the reward rate due to timing uncertainty. Our findings provide support for both hypotheses, but also for the hypothesis that participants can learn to approach optimality. We find specifically that an accuracy bias dominates early performance, but diminishes greatly with practice. The residual discrepancy between optimal and observed performance can be explained by an adaptive response to uncertainty in time estimation.

  9. Testing nonlocal realism with entangled coherent states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paternostro, Mauro; Jeong, Hyunseok

    2010-03-15

    We investigate the violation of nonlocal realism using entangled coherent states (ECSs) under nonlinear operations and homodyne measurements. We address recently proposed Leggett-type inequalities, including a class of optimized incompatibility inequalities proposed by Branciard et al. [Nature Phys. 4, 681 (2008)], and thoroughly assess the effects of detection inefficiency.

  10. Prototype through-pellicle coherent imaging using a 30nm tabletop EUV source

    NASA Astrophysics Data System (ADS)

    Bevis, Charles S.; Karl, Robert M.; Wang, Bin; Esashi, Yuka; Tanksalvala, Michael; Porter, Christina L.; Johnsen, Peter; Adams, Daniel E.; Murnane, Margaret M.; Kapteyn, Henry C.

    2018-03-01

    We present preliminary through-pellicle imaging using a 30nm tabletop extreme ultraviolet (EUV) coherent diffractive imaging microscope. We show that even in a non-optimized setup, this technique enables through-pellicle imaging of a sample with no detectable impact on image fidelity or resolution.

  11. Coherence number as a discrete quantum resource

    NASA Astrophysics Data System (ADS)

    Chin, Seungbeom

    2017-10-01

    We introduce a discrete coherence monotone named the coherence number, which is a generalization of the coherence rank to mixed states. After defining the coherence number in a manner similar to that of the Schmidt number in entanglement theory, we present a necessary and sufficient condition of the coherence number for a coherent state to be converted to an entangled state of nonzero k concurrence (a member of the generalized concurrence family with 2 ≤k ≤d ). As an application of the coherence number to a practical quantum system, Grover's search algorithm of N items is considered. We show that the coherence number remains N and falls abruptly when the success probability of a searching process becomes maximal. This phenomenon motivates us to analyze the depletion pattern of Cc(N ) (the last member of the generalized coherence concurrence, nonzero when the coherence number is N ), which turns out to be an optimal resource for the process since it is completely consumed to finish the searching task. The generalization of the original Grover algorithm with arbitrary (mixed) initial states is also discussed, which reveals the boundary condition for the coherence to be monotonically decreasing under the process.

  12. Maximal coherence and the resource theory of purity

    NASA Astrophysics Data System (ADS)

    Streltsov, Alexander; Kampermann, Hermann; Wölk, Sabine; Gessner, Manuel; Bruß, Dagmar

    2018-05-01

    The resource theory of quantum coherence studies the off-diagonal elements of a density matrix in a distinguished basis, whereas the resource theory of purity studies all deviations from the maximally mixed state. We establish a direct connection between the two resource theories, by identifying purity as the maximal coherence which is achievable by unitary operations. The states that saturate this maximum identify a universal family of maximally coherent mixed states. These states are optimal resources under maximally incoherent operations, and thus independent of the way coherence is quantified. For all distance-based coherence quantifiers the maximal coherence can be evaluated exactly, and is shown to coincide with the corresponding distance-based purity quantifier. We further show that purity bounds the maximal amount of entanglement and discord that can be generated by unitary operations, thus demonstrating that purity is the most elementary resource for quantum information processing.

  13. A new maximum-likelihood change estimator for two-pass SAR coherent change detection

    DOE PAGES

    Wahl, Daniel E.; Yocky, David A.; Jakowatz, Jr., Charles V.; ...

    2016-01-11

    In previous research, two-pass repeat-geometry synthetic aperture radar (SAR) coherent change detection (CCD) predominantly utilized the sample degree of coherence as a measure of the temporal change occurring between two complex-valued image collects. Previous coherence-based CCD approaches tend to show temporal change when there is none in areas of the image that have a low clutter-to-noise power ratio. Instead of employing the sample coherence magnitude as a change metric, in this paper, we derive a new maximum-likelihood (ML) temporal change estimate—the complex reflectance change detection (CRCD) metric to be used for SAR coherent temporal change detection. The new CRCD estimatormore » is a surprisingly simple expression, easy to implement, and optimal in the ML sense. As a result, this new estimate produces improved results in the coherent pair collects that we have tested.« less

  14. A Simple Application of Compressed Sensing to Further Accelerate Partially Parallel Imaging

    PubMed Central

    Miao, Jun; Guo, Weihong; Narayan, Sreenath; Wilson, David L.

    2012-01-01

    Compressed Sensing (CS) and partially parallel imaging (PPI) enable fast MR imaging by reducing the amount of k-space data required for reconstruction. Past attempts to combine these two have been limited by the incoherent sampling requirement of CS, since PPI routines typically sample on a regular (coherent) grid. Here, we developed a new method, “CS+GRAPPA,” to overcome this limitation. We decomposed sets of equidistant samples into multiple random subsets. Then, we reconstructed each subset using CS, and averaging the results to get a final CS k-space reconstruction. We used both a standard CS, and an edge and joint-sparsity guided CS reconstruction. We tested these intermediate results on both synthetic and real MR phantom data, and performed a human observer experiment to determine the effectiveness of decomposition, and to optimize the number of subsets. We then used these CS reconstructions to calibrate the GRAPPA complex coil weights. In vivo parallel MR brain and heart data sets were used. An objective image quality evaluation metric, Case-PDM, was used to quantify image quality. Coherent aliasing and noise artifacts were significantly reduced using two decompositions. More decompositions further reduced coherent aliasing and noise artifacts but introduced blurring. However, the blurring was effectively minimized using our new edge and joint-sparsity guided CS using two decompositions. Numerical results on parallel data demonstrated that the combined method greatly improved image quality as compared to standard GRAPPA, on average halving Case-PDM scores across a range of sampling rates. The proposed technique allowed the same Case-PDM scores as standard GRAPPA, using about half the number of samples. We conclude that the new method augments GRAPPA by combining it with CS, allowing CS to work even when the k-space sampling pattern is equidistant. PMID:22902065

  15. A scale-based connected coherence tree algorithm for image segmentation.

    PubMed

    Ding, Jundi; Ma, Runing; Chen, Songcan

    2008-02-01

    This paper presents a connected coherence tree algorithm (CCTA) for image segmentation with no prior knowledge. It aims to find regions of semantic coherence based on the proposed epsilon-neighbor coherence segmentation criterion. More specifically, with an adaptive spatial scale and an appropriate intensity-difference scale, CCTA often achieves several sets of coherent neighboring pixels which maximize the probability of being a single image content (including kinds of complex backgrounds). In practice, each set of coherent neighboring pixels corresponds to a coherence class (CC). The fact that each CC just contains a single equivalence class (EC) ensures the separability of an arbitrary image theoretically. In addition, the resultant CCs are represented by tree-based data structures, named connected coherence tree (CCT)s. In this sense, CCTA is a graph-based image analysis algorithm, which expresses three advantages: 1) its fundamental idea, epsilon-neighbor coherence segmentation criterion, is easy to interpret and comprehend; 2) it is efficient due to a linear computational complexity in the number of image pixels; 3) both subjective comparisons and objective evaluation have shown that it is effective for the tasks of semantic object segmentation and figure-ground separation in a wide variety of images. Those images either contain tiny, long and thin objects or are severely degraded by noise, uneven lighting, occlusion, poor illumination, and shadow.

  16. Dynamic isoperimetry and the geometry of Lagrangian coherent structures

    NASA Astrophysics Data System (ADS)

    Froyland, Gary

    2015-10-01

    The study of transport and mixing processes in dynamical systems is particularly important for the analysis of mathematical models of physical systems. We propose a novel, direct geometric method to identify subsets of phase space that remain strongly coherent over a finite time duration. This new method is based on a dynamic extension of classical (static) isoperimetric problems; the latter are concerned with identifying submanifolds with the smallest boundary size relative to their volume. The present work introduces dynamic isoperimetric problems; the study of sets with small boundary size relative to volume as they are evolved by a general dynamical system. We formulate and prove dynamic versions of the fundamental (static) isoperimetric (in)equalities; a dynamic Federer-Fleming theorem and a dynamic Cheeger inequality. We introduce a new dynamic Laplace operator and describe a computational method to identify coherent sets based on eigenfunctions of the dynamic Laplacian. Our results include formal mathematical statements concerning geometric properties of finite-time coherent sets, whose boundaries can be regarded as Lagrangian coherent structures. The computational advantages of our new approach are a well-separated spectrum for the dynamic Laplacian, and flexibility in appropriate numerical approximation methods. Finally, we demonstrate that the dynamic Laplace operator can be realised as a zero-diffusion limit of a newly advanced probabilistic transfer operator method [9] for finding coherent sets, which is based on small diffusion. Thus, the present approach sits naturally alongside the probabilistic approach [9], and adds a formal geometric interpretation.

  17. Dynamic regime of coherent population trapping and optimization of frequency modulation parameters in atomic clocks.

    PubMed

    Yudin, V I; Taichenachev, A V; Basalaev, M Yu; Kovalenko, D V

    2017-02-06

    We theoretically investigate the dynamic regime of coherent population trapping (CPT) in the presence of frequency modulation (FM). We have formulated the criteria for quasi-stationary (adiabatic) and dynamic (non-adiabatic) responses of atomic system driven by this FM. Using the density matrix formalism for Λ system, the error signal is exactly calculated and optimized. It is shown that the optimal FM parameters correspond to the dynamic regime of atomic-field interaction, which significantly differs from conventional description of CPT resonances in the frame of quasi-stationary approach (under small modulation frequency). Obtained theoretical results are in good qualitative agreement with different experiments. Also we have found CPT-analogue of Pound-Driver-Hall regime of frequency stabilization.

  18. Maximum saliency bias in binocular fusion

    NASA Astrophysics Data System (ADS)

    Lu, Yuhao; Stafford, Tom; Fox, Charles

    2016-07-01

    Subjective experience at any instant consists of a single ("unitary"), coherent interpretation of sense data rather than a "Bayesian blur" of alternatives. However, computation of Bayes-optimal actions has no role for unitary perception, instead being required to integrate over every possible action-percept pair to maximise expected utility. So what is the role of unitary coherent percepts, and how are they computed? Recent work provided objective evidence for non-Bayes-optimal, unitary coherent, perception and action in humans; and further suggested that the percept selected is not the maximum a posteriori percept but is instead affected by utility. The present study uses a binocular fusion task first to reproduce the same effect in a new domain, and second, to test multiple hypotheses about exactly how utility may affect the percept. After accounting for high experimental noise, it finds that both Bayes optimality (maximise expected utility) and the previously proposed maximum-utility hypothesis are outperformed in fitting the data by a modified maximum-salience hypothesis, using unsigned utility magnitudes in place of signed utilities in the bias function.

  19. Coherence area profiling in multi-spatial-mode squeezed states

    DOE PAGES

    Lawrie, Benjamin J.; Pooser, Raphael C.; Otterstrom, Nils T.

    2015-09-12

    The presence of multiple bipartite entangled modes in squeezed states generated by four-wave mixing enables ultra-trace sensing, imaging, and metrology applications that are impossible to achieve with single-spatial-mode squeezed states. For Gaussian seed beams, the spatial distribution of these bipartite entangled modes, or coherence areas, across each beam is largely dependent on the spatial modes present in the pump beam, but it has proven difficult to map the distribution of these coherence areas in frequency and space. We demonstrate an accessible method to map the distribution of the coherence areas within these twin beams. In addition, we also show thatmore » the pump shape can impart different noise properties to each coherence area, and that it is possible to select and detect coherence areas with optimal squeezing with this approach.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahl, Daniel E.; Yocky, David A.; Jakowatz, Jr., Charles V.

    In previous research, two-pass repeat-geometry synthetic aperture radar (SAR) coherent change detection (CCD) predominantly utilized the sample degree of coherence as a measure of the temporal change occurring between two complex-valued image collects. Previous coherence-based CCD approaches tend to show temporal change when there is none in areas of the image that have a low clutter-to-noise power ratio. Instead of employing the sample coherence magnitude as a change metric, in this paper, we derive a new maximum-likelihood (ML) temporal change estimate—the complex reflectance change detection (CRCD) metric to be used for SAR coherent temporal change detection. The new CRCD estimatormore » is a surprisingly simple expression, easy to implement, and optimal in the ML sense. As a result, this new estimate produces improved results in the coherent pair collects that we have tested.« less

  1. Continuous-variable quantum cryptography is secure against non-Gaussian attacks.

    PubMed

    Grosshans, Frédéric; Cerf, Nicolas J

    2004-01-30

    A general study of arbitrary finite-size coherent attacks against continuous-variable quantum cryptographic schemes is presented. It is shown that, if the size of the blocks that can be coherently attacked by an eavesdropper is fixed and much smaller than the key size, then the optimal attack for a given signal-to-noise ratio in the transmission line is an individual Gaussian attack. Consequently, non-Gaussian coherent attacks do not need to be considered in the security analysis of such quantum cryptosystems.

  2. Mismatch and resolution in compressive imaging

    NASA Astrophysics Data System (ADS)

    Fannjiang, Albert; Liao, Wenjing

    2011-09-01

    Highly coherent sensing matrices arise in discretization of continuum problems such as radar and medical imaging when the grid spacing is below the Rayleigh threshold as well as in using highly coherent, redundant dictionaries as sparsifying operators. Algorithms (BOMP, BLOOMP) based on techniques of band exclusion and local optimization are proposed to enhance Orthogonal Matching Pursuit (OMP) and deal with such coherent sensing matrices. BOMP and BLOOMP have provably performance guarantee of reconstructing sparse, widely separated objects independent of the redundancy and have a sparsity constraint and computational cost similar to OMP's. Numerical study demonstrates the effectiveness of BLOOMP for compressed sensing with highly coherent, redundant sensing matrices.

  3. Gaussian content as a laser beam quality parameter.

    PubMed

    Ruschin, Shlomo; Yaakobi, Elad; Shekel, Eyal

    2011-08-01

    We propose the Gaussian content (GC) as an optional quality parameter for the characterization of laser beams. It is defined as the overlap integral of a given field with an optimally defined Gaussian. The definition is especially suited for applications where coherence properties are targeted. Mathematical definitions and basic calculation procedures are given along with results for basic beam profiles. The coherent combination of an array of laser beams and the optimal coupling between a diode laser and a single-mode fiber are elaborated as application examples. The measurement of the GC and its conservation upon propagation are experimentally confirmed.

  4. Directly Measuring the Degree of Quantum Coherence using Interference Fringes

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Tao; Tang, Jian-Shun; Wei, Zhi-Yuan; Yu, Shang; Ke, Zhi-Jin; Xu, Xiao-Ye; Li, Chuan-Feng; Guo, Guang-Can

    2017-01-01

    Quantum coherence is the most distinguished feature of quantum mechanics. It lies at the heart of the quantum-information technologies as the fundamental resource and is also related to other quantum resources, including entanglement. It plays a critical role in various fields, even in biology. Nevertheless, the rigorous and systematic resource-theoretic framework of coherence has just been developed recently, and several coherence measures are proposed. Experimentally, the usual method to measure coherence is to perform state tomography and use mathematical expressions. Here, we alternatively develop a method to measure coherence directly using its most essential behavior—the interference fringes. The ancilla states are mixed into the target state with various ratios, and the minimal ratio that makes the interference fringes of the "mixed state" vanish is taken as the quantity of coherence. We also use the witness observable to witness coherence, and the optimal witness constitutes another direct method to measure coherence. For comparison, we perform tomography and calculate l1 norm of coherence, which coincides with the results of the other two methods in our situation. Our methods are explicit and robust, providing a nice alternative to the tomographic technique.

  5. Directly Measuring the Degree of Quantum Coherence using Interference Fringes.

    PubMed

    Wang, Yi-Tao; Tang, Jian-Shun; Wei, Zhi-Yuan; Yu, Shang; Ke, Zhi-Jin; Xu, Xiao-Ye; Li, Chuan-Feng; Guo, Guang-Can

    2017-01-13

    Quantum coherence is the most distinguished feature of quantum mechanics. It lies at the heart of the quantum-information technologies as the fundamental resource and is also related to other quantum resources, including entanglement. It plays a critical role in various fields, even in biology. Nevertheless, the rigorous and systematic resource-theoretic framework of coherence has just been developed recently, and several coherence measures are proposed. Experimentally, the usual method to measure coherence is to perform state tomography and use mathematical expressions. Here, we alternatively develop a method to measure coherence directly using its most essential behavior-the interference fringes. The ancilla states are mixed into the target state with various ratios, and the minimal ratio that makes the interference fringes of the "mixed state" vanish is taken as the quantity of coherence. We also use the witness observable to witness coherence, and the optimal witness constitutes another direct method to measure coherence. For comparison, we perform tomography and calculate l_{1} norm of coherence, which coincides with the results of the other two methods in our situation. Our methods are explicit and robust, providing a nice alternative to the tomographic technique.

  6. Deconvolution Methods and Systems for the Mapping of Acoustic Sources from Phased Microphone Arrays

    NASA Technical Reports Server (NTRS)

    Humphreys, Jr., William M. (Inventor); Brooks, Thomas F. (Inventor)

    2012-01-01

    Mapping coherent/incoherent acoustic sources as determined from a phased microphone array. A linear configuration of equations and unknowns are formed by accounting for a reciprocal influence of one or more cross-beamforming characteristics thereof at varying grid locations among the plurality of grid locations. An equation derived from the linear configuration of equations and unknowns can then be iteratively determined. The equation can be attained by the solution requirement of a constraint equivalent to the physical assumption that the coherent sources have only in phase coherence. The size of the problem may then be reduced using zoning methods. An optimized noise source distribution is then generated over an identified aeroacoustic source region associated with a phased microphone array (microphones arranged in an optimized grid pattern including a plurality of grid locations) in order to compile an output presentation thereof, thereby removing beamforming characteristics from the resulting output presentation.

  7. Spaceborne SAR Imaging Algorithm for Coherence Optimized.

    PubMed

    Qiu, Zhiwei; Yue, Jianping; Wang, Xueqin; Yue, Shun

    2016-01-01

    This paper proposes SAR imaging algorithm with largest coherence based on the existing SAR imaging algorithm. The basic idea of SAR imaging algorithm in imaging processing is that output signal can have maximum signal-to-noise ratio (SNR) by using the optimal imaging parameters. Traditional imaging algorithm can acquire the best focusing effect, but would bring the decoherence phenomenon in subsequent interference process. Algorithm proposed in this paper is that SAR echo adopts consistent imaging parameters in focusing processing. Although the SNR of the output signal is reduced slightly, their coherence is ensured greatly, and finally the interferogram with high quality is obtained. In this paper, two scenes of Envisat ASAR data in Zhangbei are employed to conduct experiment for this algorithm. Compared with the interferogram from the traditional algorithm, the results show that this algorithm is more suitable for SAR interferometry (InSAR) research and application.

  8. Spaceborne SAR Imaging Algorithm for Coherence Optimized

    PubMed Central

    Qiu, Zhiwei; Yue, Jianping; Wang, Xueqin; Yue, Shun

    2016-01-01

    This paper proposes SAR imaging algorithm with largest coherence based on the existing SAR imaging algorithm. The basic idea of SAR imaging algorithm in imaging processing is that output signal can have maximum signal-to-noise ratio (SNR) by using the optimal imaging parameters. Traditional imaging algorithm can acquire the best focusing effect, but would bring the decoherence phenomenon in subsequent interference process. Algorithm proposed in this paper is that SAR echo adopts consistent imaging parameters in focusing processing. Although the SNR of the output signal is reduced slightly, their coherence is ensured greatly, and finally the interferogram with high quality is obtained. In this paper, two scenes of Envisat ASAR data in Zhangbei are employed to conduct experiment for this algorithm. Compared with the interferogram from the traditional algorithm, the results show that this algorithm is more suitable for SAR interferometry (InSAR) research and application. PMID:26871446

  9. DNA Microarray Data Analysis: A Novel Biclustering Algorithm Approach

    NASA Astrophysics Data System (ADS)

    Tchagang, Alain B.; Tewfik, Ahmed H.

    2006-12-01

    Biclustering algorithms refer to a distinct class of clustering algorithms that perform simultaneous row-column clustering. Biclustering problems arise in DNA microarray data analysis, collaborative filtering, market research, information retrieval, text mining, electoral trends, exchange analysis, and so forth. When dealing with DNA microarray experimental data for example, the goal of biclustering algorithms is to find submatrices, that is, subgroups of genes and subgroups of conditions, where the genes exhibit highly correlated activities for every condition. In this study, we develop novel biclustering algorithms using basic linear algebra and arithmetic tools. The proposed biclustering algorithms can be used to search for all biclusters with constant values, biclusters with constant values on rows, biclusters with constant values on columns, and biclusters with coherent values from a set of data in a timely manner and without solving any optimization problem. We also show how one of the proposed biclustering algorithms can be adapted to identify biclusters with coherent evolution. The algorithms developed in this study discover all valid biclusters of each type, while almost all previous biclustering approaches will miss some.

  10. Network-Level Structure-Function Relationships in Human Neocortex

    PubMed Central

    Mišić, Bratislav; Betzel, Richard F.; de Reus, Marcel A.; van den Heuvel, Martijn P.; Berman, Marc G.; McIntosh, Anthony R.; Sporns, Olaf

    2016-01-01

    The dynamics of spontaneous fluctuations in neural activity are shaped by underlying patterns of anatomical connectivity. While numerous studies have demonstrated edge-wise correspondence between structural and functional connections, much less is known about how large-scale coherent functional network patterns emerge from the topology of structural networks. In the present study, we deploy a multivariate statistical technique, partial least squares, to investigate the association between spatially extended structural networks and functional networks. We find multiple statistically robust patterns, reflecting reliable combinations of structural and functional subnetworks that are optimally associated with one another. Importantly, these patterns generally do not show a one-to-one correspondence between structural and functional edges, but are instead distributed and heterogeneous, with many functional relationships arising from nonoverlapping sets of anatomical connections. We also find that structural connections between high-degree hubs are disproportionately represented, suggesting that these connections are particularly important in establishing coherent functional networks. Altogether, these results demonstrate that the network organization of the cerebral cortex supports the emergence of diverse functional network configurations that often diverge from the underlying anatomical substrate. PMID:27102654

  11. Bottom-up construction of artificial molecules for superconducting quantum processors

    NASA Astrophysics Data System (ADS)

    Poletto, Stefano; Rigetti, Chad; Gambetta, Jay M.; Merkel, Seth; Chow, Jerry M.; Corcoles, Antonio D.; Smolin, John A.; Rozen, Jim R.; Keefe, George A.; Rothwell, Mary B.; Ketchen, Mark B.; Steffen, Matthias

    2012-02-01

    Recent experiments on transmon qubits capacitively coupled to superconducting 3-dimensional cavities have shown coherence times much longer than transmons coupled to more traditional planar resonators. For the implementation of a quantum processor this approach has clear advantages over traditional techniques but it poses the challenge of scalability. We are currently implementing multi-qubits experiments based on a bottom-up scaling approach. First, transmon qubits are fabricated on individual chips and are independently characterized. Second, an artificial molecule is assembled by selecting a particular set of previously characterized single-transmon chips. We present recent data on a two-qubit artificial molecule constructed in this way. The two qubits are chosen to generate a strong Z-Z interaction by matching the 0-1 transition energy of one qubit with the 1-2 transition of the other. Single qubit manipulations and state tomography cannot be done with ``traditional'' single tone microwave pulses but instead specifically shaped pulses have to be simultaneously applied on both qubits. Coherence times, coupling strength, and optimal pulses for decoupling the two qubits and perform state tomography are presented

  12. Modulation of a methane Bunsen flame by upstream perturbations

    NASA Astrophysics Data System (ADS)

    de Souza, T. Cardoso; Bastiaans, R. J. M.; De Goey, L. P. H.; Geurts, B. J.

    2017-04-01

    In this paper the effects of an upstream spatially periodic modulation acting on a turbulent Bunsen flame are investigated using direct numerical simulations of the Navier-Stokes equations coupled with the flamelet generated manifold (FGM) method to parameterise the chemistry. The premixed Bunsen flame is spatially agitated with a set of coherent large-scale structures of specific wave-number, K. The response of the premixed flame to the external modulation is characterised in terms of time-averaged properties, e.g. the average flame height ⟨H⟩ and the flame surface wrinkling ⟨W⟩. Results show that the flame response is notably selective to the size of the length scales used for agitation. For example, both flame quantities ⟨H⟩ and ⟨W⟩ present an optimal response, in comparison with an unmodulated flame, when the modulation scale is set to relatively low wave-numbers, 4π/L ≲ K ≲ 6π/L, where L is a characteristic scale. At the agitation scales where the optimal response is observed, the average flame height, ⟨H⟩, takes a clearly defined minimal value while the surface wrinkling, ⟨W⟩, presents an increase by more than a factor of 2 in comparison with the unmodulated reference case. Combined, these two response quantities indicate that there is an optimal scale for flame agitation and intensification of combustion rates in turbulent Bunsen flames.

  13. Quantum error-correction failure distributions: Comparison of coherent and stochastic error models

    NASA Astrophysics Data System (ADS)

    Barnes, Jeff P.; Trout, Colin J.; Lucarelli, Dennis; Clader, B. D.

    2017-06-01

    We compare failure distributions of quantum error correction circuits for stochastic errors and coherent errors. We utilize a fully coherent simulation of a fault-tolerant quantum error correcting circuit for a d =3 Steane and surface code. We find that the output distributions are markedly different for the two error models, showing that no simple mapping between the two error models exists. Coherent errors create very broad and heavy-tailed failure distributions. This suggests that they are susceptible to outlier events and that mean statistics, such as pseudothreshold estimates, may not provide the key figure of merit. This provides further statistical insight into why coherent errors can be so harmful for quantum error correction. These output probability distributions may also provide a useful metric that can be utilized when optimizing quantum error correcting codes and decoding procedures for purely coherent errors.

  14. Microcavity morphology optimization

    NASA Astrophysics Data System (ADS)

    Ferdous, Fahmida; Demchenko, Alena A.; Vyatchanin, Sergey P.; Matsko, Andrey B.; Maleki, Lute

    2014-09-01

    High spectral mode density of conventional optical cavities is detrimental to the generation of broad optical frequency combs and to other linear and nonlinear applications. In this work we optimize the morphology of high-Q whispering gallery (WG) and Fabry-Perot (FP) cavities and find a set of parameters that allows treating them, essentially, as single-mode structures, thus removing limitations associated with a high density of cavity mode spectra. We show that both single-mode WGs and single-mode FP cavities have similar physical properties, in spite of their different loss mechanisms. The morphology optimization does not lead to a reduction of quality factors of modes belonging to the basic family. We study the parameter space numerically and find the region where the highest possible Q factor of the cavity modes can be realized while just having a single bound state in the cavity. The value of the Q factor is comparable with that achieved in conventional cavities. The proposed cavity structures will be beneficial for generation of octave spanning coherent frequency combs and will prevent undesirable effects of parametric instability in laser gravitational wave detectors.

  15. Better, Stronger, Faster: Self-Serving Judgment, Affect Regulation, and the Optimal Vigilance Hypothesis.

    PubMed

    Roese, Neal J; Olson, James M

    2007-06-01

    Self-serving judgments, in which the self is viewed more favorably than other people, are ubiquitous. Their dynamic variation within individuals may be explained in terms of the regulation of affect. Self-serving judgments produce positive emotions, and threat increases self-serving judgments (a compensatory pattern that restores affect to a set point or baseline). Perceived mutability is a key moderator of these judgments; low mutability (i.e., the circumstance is closed to modification) triggers a cognitive response aimed at affect regulation, whereas high mutability (i.e., the circumstance is open to further modification) activates direct behavioral remediation. Threats often require immediate response, whereas positive events do not. Because of this brief temporal window, an active mechanism is needed to restore negative (but not positive) affective shifts back to a set point. Without this active reset, an earlier threat would make the individual less vigilant toward a new threat. Thus, when people are sad, they aim to return their mood to baseline, often via self-serving judgments. We argue that asymmetric homeostasis enables optimal vigilance, which establishes a coherent theoretical account of the role of self-serving judgments in affect regulation. © 2007 Association for Psychological Science.

  16. Better, Stronger, Faster Self-Serving Judgment, Affect Regulation, and the Optimal Vigilance Hypothesis

    PubMed Central

    Roese, Neal J.; Olson, James M.

    2008-01-01

    Self-serving judgments, in which the self is viewed more favorably than other people, are ubiquitous. Their dynamic variation within individuals may be explained in terms of the regulation of affect. Self-serving judgments produce positive emotions, and threat increases self-serving judgments (a compensatory pattern that restores affect to a set point or baseline). Perceived mutability is a key moderator of these judgments; low mutability (i.e., the circumstance is closed to modification) triggers a cognitive response aimed at affect regulation, whereas high mutability (i.e., the circumstance is open to further modification) activates direct behavioral remediation. Threats often require immediate response, whereas positive events do not. Because of this brief temporal window, an active mechanism is needed to restore negative (but not positive) affective shifts back to a set point. Without this active reset, an earlier threat would make the individual less vigilant toward a new threat. Thus, when people are sad, they aim to return their mood to baseline, often via self-serving judgments. We argue that asymmetric homeostasis enables optimal vigilance, which establishes a coherent theoretical account of the role of self-serving judgments in affect regulation. PMID:18552989

  17. Interference Mitigation Effects on Synthetic Aperture Radar Coherent Data Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musgrove, Cameron

    For synthetic aperture radars radio frequency interference from sources external to the radar system and techniques to mitigate the interference can degrade the quality of the image products. Usually the radar system designer will try to balance the amount of mitigation for an acceptable amount of interference to optimize the image quality. This dissertation examines the effect of interference mitigation upon coherent data products of fine resolution, high frequency synthetic aperture radars using stretch processing. Novel interference mitigation techniques are introduced that operate on single or multiple apertures of data that increase average coherence compared to existing techniques. New metricsmore » are applied to evaluate multiple mitigation techniques for image quality and average coherence. The underlying mechanism for interference mitigation techniques that affect coherence is revealed.« less

  18. Experimental evidence of the spatial coherence moiré and the filtering of classes of radiator pairs.

    PubMed

    Castaneda, Roman; Usuga-Castaneda, Mario; Herrera-Ramírez, Jorge

    2007-08-01

    Evidence of the physical existence of the spatial coherence moiré is obtained by confronting numerical results with experimental results of spatially partial interference. Although it was performed for two particular cases, the results reveal a general behavior of the optical fields in any state of spatial coherence. Moreover, the study of the spatial coherence moiré deals with a new type of filtering, named filtering of classes of radiator pairs, which allows changing the power spectrum at the observation plane by modulating the complex degree of spatial coherence, without altering the power distribution at the aperture plane or introducing conventional spatial filters. This new procedure can optimize some technological applications of actual interest, as the beam shaping for instance.

  19. A coherent Ising machine for 2000-node optimization problems

    NASA Astrophysics Data System (ADS)

    Inagaki, Takahiro; Haribara, Yoshitaka; Igarashi, Koji; Sonobe, Tomohiro; Tamate, Shuhei; Honjo, Toshimori; Marandi, Alireza; McMahon, Peter L.; Umeki, Takeshi; Enbutsu, Koji; Tadanaga, Osamu; Takenouchi, Hirokazu; Aihara, Kazuyuki; Kawarabayashi, Ken-ichi; Inoue, Kyo; Utsunomiya, Shoko; Takesue, Hiroki

    2016-11-01

    The analysis and optimization of complex systems can be reduced to mathematical problems collectively known as combinatorial optimization. Many such problems can be mapped onto ground-state search problems of the Ising model, and various artificial spin systems are now emerging as promising approaches. However, physical Ising machines have suffered from limited numbers of spin-spin couplings because of implementations based on localized spins, resulting in severe scalability problems. We report a 2000-spin network with all-to-all spin-spin couplings. Using a measurement and feedback scheme, we coupled time-multiplexed degenerate optical parametric oscillators to implement maximum cut problems on arbitrary graph topologies with up to 2000 nodes. Our coherent Ising machine outperformed simulated annealing in terms of accuracy and computation time for a 2000-node complete graph.

  20. Geodesic denoising for optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Shahrian Varnousfaderani, Ehsan; Vogl, Wolf-Dieter; Wu, Jing; Gerendas, Bianca S.; Simader, Christian; Langs, Georg; Waldstein, Sebastian M.; Schmidt-Erfurth, Ursula

    2016-03-01

    Optical coherence tomography (OCT) is an optical signal acquisition method capturing micrometer resolution, cross-sectional three-dimensional images. OCT images are used widely in ophthalmology to diagnose and monitor retinal diseases such as age-related macular degeneration (AMD) and Glaucoma. While OCT allows the visualization of retinal structures such as vessels and retinal layers, image quality and contrast is reduced by speckle noise, obfuscating small, low intensity structures and structural boundaries. Existing denoising methods for OCT images may remove clinically significant image features such as texture and boundaries of anomalies. In this paper, we propose a novel patch based denoising method, Geodesic Denoising. The method reduces noise in OCT images while preserving clinically significant, although small, pathological structures, such as fluid-filled cysts in diseased retinas. Our method selects optimal image patch distribution representations based on geodesic patch similarity to noisy samples. Patch distributions are then randomly sampled to build a set of best matching candidates for every noisy sample, and the denoised value is computed based on a geodesic weighted average of the best candidate samples. Our method is evaluated qualitatively on real pathological OCT scans and quantitatively on a proposed set of ground truth, noise free synthetic OCT scans with artificially added noise and pathologies. Experimental results show that performance of our method is comparable with state of the art denoising methods while outperforming them in preserving the critical clinically relevant structures.

  1. Automated segmentation and characterization of esophageal wall in vivo by tethered capsule optical coherence tomography endomicroscopy

    PubMed Central

    Ughi, Giovanni J.; Gora, Michalina J.; Swager, Anne-Fré; Soomro, Amna; Grant, Catriona; Tiernan, Aubrey; Rosenberg, Mireille; Sauk, Jenny S.; Nishioka, Norman S.; Tearney, Guillermo J.

    2016-01-01

    Optical coherence tomography (OCT) is an optical diagnostic modality that can acquire cross-sectional images of the microscopic structure of the esophagus, including Barrett’s esophagus (BE) and associated dysplasia. We developed a swallowable tethered capsule OCT endomicroscopy (TCE) device that acquires high-resolution images of entire gastrointestinal (GI) tract luminal organs. This device has a potential to become a screening method that identifies patients with an abnormal esophagus that should be further referred for upper endoscopy. Currently, the characterization of the OCT-TCE esophageal wall data set is performed manually, which is time-consuming and inefficient. Additionally, since the capsule optics optimally focus light approximately 500 µm outside the capsule wall and the best quality images are obtained when the tissue is in full contact with the capsule, it is crucial to provide feedback for the operator about tissue contact during the imaging procedure. In this study, we developed a fully automated algorithm for the segmentation of in vivo OCT-TCE data sets and characterization of the esophageal wall. The algorithm provides a two-dimensional representation of both the contact map from the data collected in human clinical studies as well as a tissue map depicting areas of BE with or without dysplasia. Results suggest that these techniques can potentially improve the current TCE data acquisition procedure and provide an efficient characterization of the diseased esophageal wall. PMID:26977350

  2. Precise and fast spatial-frequency analysis using the iterative local Fourier transform.

    PubMed

    Lee, Sukmock; Choi, Heejoo; Kim, Dae Wook

    2016-09-19

    The use of the discrete Fourier transform has decreased since the introduction of the fast Fourier transform (fFT), which is a numerically efficient computing process. This paper presents the iterative local Fourier transform (ilFT), a set of new processing algorithms that iteratively apply the discrete Fourier transform within a local and optimal frequency domain. The new technique achieves 210 times higher frequency resolution than the fFT within a comparable computation time. The method's superb computing efficiency, high resolution, spectrum zoom-in capability, and overall performance are evaluated and compared to other advanced high-resolution Fourier transform techniques, such as the fFT combined with several fitting methods. The effectiveness of the ilFT is demonstrated through the data analysis of a set of Talbot self-images (1280 × 1024 pixels) obtained with an experimental setup using grating in a diverging beam produced by a coherent point source.

  3. Quantum coherence generating power, maximally abelian subalgebras, and Grassmannian geometry

    NASA Astrophysics Data System (ADS)

    Zanardi, Paolo; Campos Venuti, Lorenzo

    2018-01-01

    We establish a direct connection between the power of a unitary map in d-dimensions (d < ∞) to generate quantum coherence and the geometry of the set Md of maximally abelian subalgebras (of the quantum system full operator algebra). This set can be seen as a topologically non-trivial subset of the Grassmannian over linear operators. The natural distance over the Grassmannian induces a metric structure on Md, which quantifies the lack of commutativity between the pairs of subalgebras. Given a maximally abelian subalgebra, one can define, on physical grounds, an associated measure of quantum coherence. We show that the average quantum coherence generated by a unitary map acting on a uniform ensemble of quantum states in the algebra (the so-called coherence generating power of the map) is proportional to the distance between a pair of maximally abelian subalgebras in Md connected by the unitary transformation itself. By embedding the Grassmannian into a projective space, one can pull-back the standard Fubini-Study metric on Md and define in this way novel geometrical measures of quantum coherence generating power. We also briefly discuss the associated differential metric structures.

  4. Risk-aware multi-armed bandit problem with application to portfolio selection

    PubMed Central

    Huo, Xiaoguang

    2017-01-01

    Sequential portfolio selection has attracted increasing interest in the machine learning and quantitative finance communities in recent years. As a mathematical framework for reinforcement learning policies, the stochastic multi-armed bandit problem addresses the primary difficulty in sequential decision-making under uncertainty, namely the exploration versus exploitation dilemma, and therefore provides a natural connection to portfolio selection. In this paper, we incorporate risk awareness into the classic multi-armed bandit setting and introduce an algorithm to construct portfolio. Through filtering assets based on the topological structure of the financial market and combining the optimal multi-armed bandit policy with the minimization of a coherent risk measure, we achieve a balance between risk and return. PMID:29291122

  5. Influence of coherent mesoscale structures on satellite-based Doppler lidar wind measurements

    NASA Technical Reports Server (NTRS)

    Emmitt, G. D.; Houston, S.

    1985-01-01

    Efforts to develop display routines for overlaying gridded and nongridded data sets are discussed. The primary objective is to have the capability to review global patterns of winds and lidar samples; to zoom in on particular wind features or global areas; and to display contours of wind components and derived fields (e.g., divergence, vorticity, deformation, etc.). Current considerations in support of a polar orbiting shuttle lidar mission are discussed. Ground truth for a shuttle lidar experiment may be limited to fortuitous alignment of lidar wind profiles and scheduled rawinsonde profiles. Any improvement on this would require special rawinsonde launches and/or optimization of the shuttle orbit with global wind measurement networks.

  6. Risk-aware multi-armed bandit problem with application to portfolio selection.

    PubMed

    Huo, Xiaoguang; Fu, Feng

    2017-11-01

    Sequential portfolio selection has attracted increasing interest in the machine learning and quantitative finance communities in recent years. As a mathematical framework for reinforcement learning policies, the stochastic multi-armed bandit problem addresses the primary difficulty in sequential decision-making under uncertainty, namely the exploration versus exploitation dilemma, and therefore provides a natural connection to portfolio selection. In this paper, we incorporate risk awareness into the classic multi-armed bandit setting and introduce an algorithm to construct portfolio. Through filtering assets based on the topological structure of the financial market and combining the optimal multi-armed bandit policy with the minimization of a coherent risk measure, we achieve a balance between risk and return.

  7. A Model Describing Stable Coherent Synchrotron Radiation in Storage Rings

    NASA Astrophysics Data System (ADS)

    Sannibale, F.; Byrd, J. M.; Loftsdóttir, Á.; Venturini, M.; Abo-Bakr, M.; Feikes, J.; Holldack, K.; Kuske, P.; Wüstefeld, G.; Hübers, H.-W.; Warnock, R.

    2004-08-01

    We present a model describing high power stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The model includes distortion of bunch shape from the synchrotron radiation (SR), which enhances higher frequency coherent emission, and limits to stable emission due to an instability excited by the SR wakefield. It gives a quantitative explanation of several features of the recent observations of CSR at the BESSYII storage ring. We also use this model to optimize the performance of a source for stable CSR emission.

  8. Coupling strategies for coherent operation of quantum cascade ring laser arrays

    NASA Astrophysics Data System (ADS)

    Schwarzer, Clemens; Yao, Y.; Mujagić, E.; Ahn, S.; Schrenk, W.; Chen, J.; Gmachl, C.; Strasser, G.

    2011-12-01

    We report the design, fabrication and operation of coherently coupled ring cavity surface emitting quantum cascade lasers, emitting at wavelength around 8 μm. Special emphasis is placed on the evaluation of optimal coupling approaches and corresponding parameters. Evanescent field coupling as well as direct coupling where both devices are physically connected is presented. Furthermore, exploiting the Vernier-effect was used to obtain enhanced mode selectivity and robust coherent coupling of two ring-type quantum cascade lasers. Investigations were performed at pulsed room-temperature operation.

  9. Potentiality of SENTINEL-1 for landslide detection: first results in the Molise Region (Italy)

    NASA Astrophysics Data System (ADS)

    Barra, Anna; Monserrat, Oriol; Mazzanti, Paolo; Esposito, Carlo; Crosetto, Michele; Scarascia Mugnozza, Gabriele

    2016-04-01

    A detailed inventory map, including information on landslide activity, is one of the most important input to landslide susceptibility and hazard analyses. The contribution of satellite SAR Interferometry in landslide risk mitigation is well-known within the scientific community. In fact, many encouraging results have been obtained, principally, in areas characterized by high coherence of the images (e.g. due to rock lithology or urban environment setting). In terms of coherence, the expected increased capabilities of Sentinel-1 for landslide mapping and monitoring are connected to both wavelength (55.5 mm) and short temporal baseline (12 days). The latter one is expected to be a key feature for increasing coherence and for defining monitoring and updating plans. With the aim of assessing these potentialities, we processed a set of 14 Sentinel-1 SLC images, acquired during a temporal span of 7 months, over the Molise region (Southern Italy), a critical area geologically susceptible to landslides. Even though Molise is mostly covered by crops and forested areas (63% and 35% respectively), that means a non-optimal coherence condition for SAR interferometry, promising results have been obtained. This has been achieved by integrating differential interferometric SAR techniques (12-days interferograms and time series) with GIS multilayer analysis (optical, geological, geomorphological, etc.). Specifically, analyzing a single burst of a Sentinel-1 frame (approximately 1875 km2), 62 landslides have been detected, thus allowing to improve the pre-existing inventory maps both in terms of landslide boundaries and state of activity. The results of our ongoing research show that Sentinel-1 can give a significant improvement in terms of exploitation of SAR data for landslide mapping and monitoring. As a matter of fact, by analyzing longer periods, it is expected to achieve a better understanding of landslide behavior and its relationship with triggering factors. This will be key to perform hazard analyses. Further research will be focused in finding algorithms to automatically detect and extract patterns and in developing a more reliable methodology. This will be done by integrating the Sentinel-1 data with other types of data and, in particular, with Sentinel-2 imagery.

  10. Compact representations of partially coherent undulator radiation suitable for wave propagation

    DOE PAGES

    Lindberg, Ryan R.; Kim, Kwang -Je

    2015-09-28

    Undulator radiation is partially coherent in the transverse plane, with the degree of coherence depending on the ratio of the electron beam phase space area (emittance) to the characteristic radiation wavelength λ. Numerical codes used to predict x-ray beam line performance can typically only propagate coherent fields from the source to the image plane. We investigate methods for representing partially coherent undulator radiation using a suitably chosen set of coherent fields that can be used in standard wave propagation codes, and discuss such “coherent mode expansions” for arbitrary degrees of coherence. In the limit when the electron beam emittance alongmore » at least one direction is much larger than λ the coherent modes are orthogonal and therefore compact; when the emittance approaches λ in both planes we discuss an economical method of defining the relevant coherent fields that samples the electron beam phase space using low-discrepancy sequences.« less

  11. Fine tuning breath-hold-based cerebrovascular reactivity analysis models.

    PubMed

    van Niftrik, Christiaan Hendrik Bas; Piccirelli, Marco; Bozinov, Oliver; Pangalu, Athina; Valavanis, Antonios; Regli, Luca; Fierstra, Jorn

    2016-02-01

    We elaborate on existing analysis methods for breath-hold (BH)-derived cerebrovascular reactivity (CVR) measurements and describe novel insights and models toward more exact CVR interpretation. Five blood-oxygen-level-dependent (BOLD) fMRI datasets of neurovascular patients with unilateral hemispheric hemodynamic impairment were used to test various BH CVR analysis methods. Temporal lag (phase), percent BOLD signal change (CVR), and explained variance (coherence) maps were calculated using three different sine models and two novel "Optimal Signal" model-free methods based on the unaffected hemisphere and the sagittal sinus fMRI signal time series, respectively. All models showed significant differences in CVR and coherence between the affected-hemodynamic impaired-and unaffected hemisphere. Voxel-wise phase determination significantly increases CVR (0.60 ± 0.18 vs. 0.82 ± 0.27; P < 0.05). Incorporating different durations of breath hold and resting period in one sine model (two-task) did increase coherence in the unaffected hemisphere, as well as eliminating negative phase commonly obtained by one-task frequency models. The novel model-free "optimal signal" methods both explained the BOLD MR data similar to the two task sine model. Our CVR analysis demonstrates an improved CVR and coherence after implementation of voxel-wise phase and frequency adjustment. The novel "optimal signal" methods provide a robust and feasible alternative to the sine models, as both are model-free and independent of compliance. Here, the sagittal sinus model may be advantageous, as it is independent of hemispheric CVR impairment.

  12. Trellis coding techniques for mobile communications

    NASA Technical Reports Server (NTRS)

    Divsalar, D.; Simon, M. K.; Jedrey, T.

    1988-01-01

    A criterion for designing optimum trellis codes to be used over fading channels is given. A technique is shown for reducing certain multiple trellis codes, optimally designed for the fading channel, to conventional (i.e., multiplicity one) trellis codes. The computational cutoff rate R0 is evaluated for MPSK transmitted over fading channels. Examples of trellis codes optimally designed for the Rayleigh fading channel are given and compared with respect to R0. Two types of modulation/demodulation techniques are considered, namely coherent (using pilot tone-aided carrier recovery) and differentially coherent with Doppler frequency correction. Simulation results are given for end-to-end performance of two trellis-coded systems.

  13. Model Policies in Support of High Performance School Buildings for All Children

    ERIC Educational Resources Information Center

    21st Century School Fund, 2006

    2006-01-01

    Model Policies in Support of High Performance School Buildings for All Children is to begin to create a coherent and comprehensive set of state policies that will provide the governmental infrastructure for effective and creative practice in facility management. There are examples of good policy in many states, but no state has a coherent set of…

  14. Terawatt x-ray free-electron-laser optimization by transverse electron distribution shaping

    DOE PAGES

    Emma, C.; Wu, J.; Fang, K.; ...

    2014-11-03

    We study the dependence of the peak power of a 1.5 Å Terawatt (TW), tapered x-ray free-electron laser (FEL) on the transverse electron density distribution. Multidimensional optimization schemes for TW hard x-ray free-electron lasers are applied to the cases of transversely uniform and parabolic electron beam distributions and compared to a Gaussian distribution. The optimizations are performed for a 200 m undulator and a resonant wavelength of λ r = 1.5 Å using the fully three-dimensional FEL particle code GENESIS. The study shows that the flatter transverse electron distributions enhance optical guiding in the tapered section of the undulator andmore » increase the maximum radiation power from a maximum of 1.56 TW for a transversely Gaussian beam to 2.26 TW for the parabolic case and 2.63 TW for the uniform case. Spectral data also shows a 30%–70% reduction in energy deposited in the sidebands for the uniform and parabolic beams compared with a Gaussian. An analysis of the transverse coherence of the radiation shows the coherence area to be much larger than the beam spotsize for all three distributions, making coherent diffraction imaging experiments possible.« less

  15. Optimized doppler optical coherence tomography for choroidal capillary vasculature imaging

    NASA Astrophysics Data System (ADS)

    Liu, Gangjun; Qi, Wenjuan; Yu, Lingfeng; Chen, Zhongping

    2011-03-01

    In this paper, we analyzed the retinal and choroidal blood vasculature in the posterior segment of the human eye with optimized color Doppler and Doppler variance optical coherence tomography. Depth-resolved structure, color Doppler and Doppler variance images were compared. Blood vessels down to capillary level were able to be obtained with the optimized optical coherence color Doppler and Doppler variance method. For in-vivo imaging of human eyes, bulkmotion induced bulk phase must be identified and removed before using color Doppler method. It was found that the Doppler variance method is not sensitive to bulk motion and the method can be used without removing the bulk phase. A novel, simple and fast segmentation algorithm to indentify retinal pigment epithelium (RPE) was proposed and used to segment the retinal and choroidal layer. The algorithm was based on the detected OCT signal intensity difference between different layers. A spectrometer-based Fourier domain OCT system with a central wavelength of 890 nm and bandwidth of 150nm was used in this study. The 3-dimensional imaging volume contained 120 sequential two dimensional images with 2048 A-lines per image. The total imaging time was 12 seconds and the imaging area was 5x5 mm2.

  16. Denoising and 4D visualization of OCT images

    PubMed Central

    Gargesha, Madhusudhana; Jenkins, Michael W.; Rollins, Andrew M.; Wilson, David L.

    2009-01-01

    We are using Optical Coherence Tomography (OCT) to image structure and function of the developing embryonic heart in avian models. Fast OCT imaging produces very large 3D (2D + time) and 4D (3D volumes + time) data sets, which greatly challenge ones ability to visualize results. Noise in OCT images poses additional challenges. We created an algorithm with a quick, data set specific optimization for reduction of both shot and speckle noise and applied it to 3D visualization and image segmentation in OCT. When compared to baseline algorithms (median, Wiener, orthogonal wavelet, basic non-orthogonal wavelet), a panel of experts judged the new algorithm to give much improved volume renderings concerning both noise and 3D visualization. Specifically, the algorithm provided a better visualization of the myocardial and endocardial surfaces, and the interaction of the embryonic heart tube with surrounding tissue. Quantitative evaluation using an image quality figure of merit also indicated superiority of the new algorithm. Noise reduction aided semi-automatic 2D image segmentation, as quantitatively evaluated using a contour distance measure with respect to an expert segmented contour. In conclusion, the noise reduction algorithm should be quite useful for visualization and quantitative measurements (e.g., heart volume, stroke volume, contraction velocity, etc.) in OCT embryo images. With its semi-automatic, data set specific optimization, we believe that the algorithm can be applied to OCT images from other applications. PMID:18679509

  17. Weighted finite impulse response filter for chromatic dispersion equalization in coherent optical fiber communication systems

    NASA Astrophysics Data System (ADS)

    Zeng, Ziyi; Yang, Aiying; Guo, Peng; Feng, Lihui

    2018-01-01

    Time-domain CD equalization using finite impulse response (FIR) filter is now a common approach for coherent optical fiber communication systems. The complex weights of FIR taps are calculated from a truncated impulse response of the CD transfer function, and the modulus of the complex weights is constant. In our work, we take the limited bandwidth of a single channel signal into account and propose weighted FIRs to improve the performance of CD equalization. The key in weighted FIR filters is the selection and optimization of weighted functions. In order to present the performance of different types of weighted FIR filters, a square-root raised cosine FIR (SRRC-FIR) and a Gaussian FIR (GS-FIR) are investigated. The optimization of square-root raised cosine FIR and Gaussian FIR are made in term of the bit rate error (BER) of QPSK and 16QAM coherent detection signal. The results demonstrate that the optimized parameters of the weighted filters are independent of the modulation format, symbol rate and the length of transmission fiber. With the optimized weighted FIRs, the BER of CD equalization signal is decreased significantly. Although this paper has investigated two types of weighted FIR filters, i.e. SRRC-FIR filter and GS-FIR filter, the principle of weighted FIR can also be extended to other symmetric functions super Gaussian function, hyperbolic secant function and etc.

  18. Coherence in quantum estimation

    NASA Astrophysics Data System (ADS)

    Giorda, Paolo; Allegra, Michele

    2018-01-01

    The geometry of quantum states provides a unifying framework for estimation processes based on quantum probes, and it establishes the ultimate bounds of the achievable precision. We show a relation between the statistical distance between infinitesimally close quantum states and the second order variation of the coherence of the optimal measurement basis with respect to the state of the probe. In quantum phase estimation protocols, this leads to propose coherence as the relevant resource that one has to engineer and control to optimize the estimation precision. Furthermore, the main object of the theory i.e. the symmetric logarithmic derivative, in many cases allows one to identify a proper factorization of the whole Hilbert space in two subsystems. The factorization allows one to discuss the role of coherence versus correlations in estimation protocols; to show how certain estimation processes can be completely or effectively described within a single-qubit subsystem; and to derive lower bounds for the scaling of the estimation precision with the number of probes used. We illustrate how the framework works for both noiseless and noisy estimation procedures, in particular those based on multi-qubit GHZ-states. Finally we succinctly analyze estimation protocols based on zero-temperature critical behavior. We identify the coherence that is at the heart of their efficiency, and we show how it exhibits the non-analyticities and scaling behavior proper of a large class of quantum phase transitions.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Kentaro

    An optimal quantum measurement is considered for the so-called quasi-Bell states under the quantum minimax criterion. It is shown that the minimax-optimal POVM for the quasi-Bell states is given by its square-root measurement and is applicable to the teleportation of a superposition of two coherent states.

  20. Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source

    PubMed Central

    Munke, Anna; Andreasson, Jakob; Aquila, Andrew; Awel, Salah; Ayyer, Kartik; Barty, Anton; Bean, Richard J.; Berntsen, Peter; Bielecki, Johan; Boutet, Sébastien; Bucher, Maximilian; Chapman, Henry N.; Daurer, Benedikt J.; DeMirci, Hasan; Elser, Veit; Fromme, Petra; Hajdu, Janos; Hantke, Max F.; Higashiura, Akifumi; Hogue, Brenda G.; Hosseinizadeh, Ahmad; Kim, Yoonhee; Kirian, Richard A.; Reddy, Hemanth K.N.; Lan, Ti-Yen; Larsson, Daniel S.D.; Liu, Haiguang; Loh, N. Duane; Maia, Filipe R.N.C.; Mancuso, Adrian P.; Mühlig, Kerstin; Nakagawa, Atsushi; Nam, Daewoong; Nelson, Garrett; Nettelblad, Carl; Okamoto, Kenta; Ourmazd, Abbas; Rose, Max; van der Schot, Gijs; Schwander, Peter; Seibert, M. Marvin; Sellberg, Jonas A.; Sierra, Raymond G.; Song, Changyong; Svenda, Martin; Timneanu, Nicusor; Vartanyants, Ivan A.; Westphal, Daniel; Wiedorn, Max O.; Williams, Garth J.; Xavier, Paulraj Lourdu; Yoon, Chun Hong; Zook, James

    2016-01-01

    Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here. PMID:27478984

  1. Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source

    DOE PAGES

    Munke, Anna; Andreasson, Jakob; Aquila, Andrew; ...

    2016-08-01

    Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. Here, the diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB)more » as a resource for algorithm development, the contents of which are described here.« less

  2. Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source.

    PubMed

    Munke, Anna; Andreasson, Jakob; Aquila, Andrew; Awel, Salah; Ayyer, Kartik; Barty, Anton; Bean, Richard J; Berntsen, Peter; Bielecki, Johan; Boutet, Sébastien; Bucher, Maximilian; Chapman, Henry N; Daurer, Benedikt J; DeMirci, Hasan; Elser, Veit; Fromme, Petra; Hajdu, Janos; Hantke, Max F; Higashiura, Akifumi; Hogue, Brenda G; Hosseinizadeh, Ahmad; Kim, Yoonhee; Kirian, Richard A; Reddy, Hemanth K N; Lan, Ti-Yen; Larsson, Daniel S D; Liu, Haiguang; Loh, N Duane; Maia, Filipe R N C; Mancuso, Adrian P; Mühlig, Kerstin; Nakagawa, Atsushi; Nam, Daewoong; Nelson, Garrett; Nettelblad, Carl; Okamoto, Kenta; Ourmazd, Abbas; Rose, Max; van der Schot, Gijs; Schwander, Peter; Seibert, M Marvin; Sellberg, Jonas A; Sierra, Raymond G; Song, Changyong; Svenda, Martin; Timneanu, Nicusor; Vartanyants, Ivan A; Westphal, Daniel; Wiedorn, Max O; Williams, Garth J; Xavier, Paulraj Lourdu; Yoon, Chun Hong; Zook, James

    2016-08-01

    Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here.

  3. Deconvolution from Wavefront Sensing Using Optimal Wavefront Estimators

    DTIC Science & Technology

    1996-12-01

    Error Results ....... ............................ 86 B.1 Introduction ................................ 86 B.1.1 Effect of Light Level, my...86 B.1.2 Effect of Atmospheric Coherence Diameter, r0 . . 86 B.1.3 Effect of Tilt Removal ................... 86 B.2 Summary... Effect of Light Level, my .................... 89 C.1.2 Effect of Atmospheric Coherence Diameter, r0 . . 89 C.1.3 Effect of Tilt Removal

  4. Coherent Structure Detection using Persistent Homology and other Topological Tools

    NASA Astrophysics Data System (ADS)

    Smith, Spencer; Roberts, Eric; Sindi, Suzanne; Mitchell, Kevin

    2017-11-01

    For non-autonomous, aperiodic fluid flows, coherent structures help organize the dynamics, much as invariant manifolds and periodic orbits do for autonomous or periodic systems. The prevalence of such flows in nature and industry has motivated many successful techniques for defining and detecting coherent structures. However, often these approaches require very fine trajectory data to reconstruct velocity fields and compute Cauchy-Green-tensor-related quantities. We use topological techniques to help detect coherent trajectory sets in relatively sparse 2D advection problems. More specifically, we have developed a homotopy-based algorithm, the ensemble-based topological entropy calculation (E-tec), which assigns to each edge in an initial triangulation of advected points a topologically forced lower bound on its future stretching rate. The triangulation and its weighted edges allow us to analyze flows using persistent homology. This topological data analysis tool detects clusters and loops in the triangulation that are robust in the presence of noise and in this case correspond to coherent trajectory sets.

  5. One-Shot Coherence Dilution.

    PubMed

    Zhao, Qi; Liu, Yunchao; Yuan, Xiao; Chitambar, Eric; Ma, Xiongfeng

    2018-02-16

    Manipulation and quantification of quantum resources are fundamental problems in quantum physics. In the asymptotic limit, coherence distillation and dilution have been proposed by manipulating infinite identical copies of states. In the nonasymptotic setting, finite data-size effects emerge, and the practically relevant problem of coherence manipulation using finite resources has been left open. This Letter establishes the one-shot theory of coherence dilution, which involves converting maximally coherent states into an arbitrary quantum state using maximally incoherent operations, dephasing-covariant incoherent operations, incoherent operations, or strictly incoherent operations. We introduce several coherence monotones with concrete operational interpretations that estimate the one-shot coherence cost-the minimum amount of maximally coherent states needed for faithful coherence dilution. Furthermore, we derive the asymptotic coherence dilution results with maximally incoherent operations, incoherent operations, and strictly incoherent operations as special cases. Our result can be applied in the analyses of quantum information processing tasks that exploit coherence as resources, such as quantum key distribution and random number generation.

  6. One-Shot Coherence Dilution

    NASA Astrophysics Data System (ADS)

    Zhao, Qi; Liu, Yunchao; Yuan, Xiao; Chitambar, Eric; Ma, Xiongfeng

    2018-02-01

    Manipulation and quantification of quantum resources are fundamental problems in quantum physics. In the asymptotic limit, coherence distillation and dilution have been proposed by manipulating infinite identical copies of states. In the nonasymptotic setting, finite data-size effects emerge, and the practically relevant problem of coherence manipulation using finite resources has been left open. This Letter establishes the one-shot theory of coherence dilution, which involves converting maximally coherent states into an arbitrary quantum state using maximally incoherent operations, dephasing-covariant incoherent operations, incoherent operations, or strictly incoherent operations. We introduce several coherence monotones with concrete operational interpretations that estimate the one-shot coherence cost—the minimum amount of maximally coherent states needed for faithful coherence dilution. Furthermore, we derive the asymptotic coherence dilution results with maximally incoherent operations, incoherent operations, and strictly incoherent operations as special cases. Our result can be applied in the analyses of quantum information processing tasks that exploit coherence as resources, such as quantum key distribution and random number generation.

  7. Resolvent analysis of shear flows using One-Way Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Rigas, Georgios; Schmidt, Oliver; Towne, Aaron; Colonius, Tim

    2017-11-01

    For three-dimensional flows, questions of stability, receptivity, secondary flows, and coherent structures require the solution of large partial-derivative eigenvalue problems. Reduced-order approximations are thus required for engineering prediction since these problems are often computationally intractable or prohibitively expensive. For spatially slowly evolving flows, such as jets and boundary layers, the One-Way Navier-Stokes (OWNS) equations permit a fast spatial marching procedure that results in a huge reduction in computational cost. Here, an adjoint-based optimization framework is proposed and demonstrated for calculating optimal boundary conditions and optimal volumetric forcing. The corresponding optimal response modes are validated against modes obtained in terms of global resolvent analysis. For laminar base flows, the optimal modes reveal modal and non-modal transition mechanisms. For turbulent base flows, they predict the evolution of coherent structures in a statistical sense. Results from the application of the method to three-dimensional laminar wall-bounded flows and turbulent jets will be presented. This research was supported by the Office of Naval Research (N00014-16-1-2445) and Boeing Company (CT-BA-GTA-1).

  8. LANDSAT-4 and LANDSAT-5 Multispectral Scanner Coherent Noise Characterization and Removal

    NASA Technical Reports Server (NTRS)

    Tilton, James C.; Alford, William L.

    1988-01-01

    A technique is described for characterizing the coherent noise found in LANDSAT-4 and LANDSAT-5 MSS data and a companion technique for filtering out the coherent noise. The techniques are demonstrated on LANDSAT-4 and LANDSAT-5 MSS data sets, and explanations of the noise pattern are suggested in Appendix C. A cookbook procedure for characterizing and filtering the coherent noise using special NASA/Goddard IDIMS functions is included. Also presented are analysis results from the retrofitted LANDSAT-5 MSS sensor, which shows that the coherent noise has been substantially reduced.

  9. Automatic optimization high-speed high-resolution OCT retinal imaging at 1μm

    NASA Astrophysics Data System (ADS)

    Cua, Michelle; Liu, Xiyun; Miao, Dongkai; Lee, Sujin; Lee, Sieun; Bonora, Stefano; Zawadzki, Robert J.; Mackenzie, Paul J.; Jian, Yifan; Sarunic, Marinko V.

    2015-03-01

    High-resolution OCT retinal imaging is important in providing visualization of various retinal structures to aid researchers in better understanding the pathogenesis of vision-robbing diseases. However, conventional optical coherence tomography (OCT) systems have a trade-off between lateral resolution and depth-of-focus. In this report, we present the development of a focus-stacking optical coherence tomography (OCT) system with automatic optimization for high-resolution, extended-focal-range clinical retinal imaging. A variable-focus liquid lens was added to correct for de-focus in real-time. A GPU-accelerated segmentation and optimization was used to provide real-time layer-specific enface visualization as well as depth-specific focus adjustment. After optimization, multiple volumes focused at different depths were acquired, registered, and stitched together to yield a single, high-resolution focus-stacked dataset. Using this system, we show high-resolution images of the ONH, from which we extracted clinically-relevant parameters such as the nerve fiber layer thickness and lamina cribrosa microarchitecture.

  10. Stratus 9/VOCALS: Ninth Setting of the Stratus Ocean Reference Station & VOCALS Regional Experiment. Cruise RB-08-06, September 29-December 2, 2008. Leg 1: Charleston-Arica, September 29-November 3, 2008, Leg 2: Arica-Arica, November 9?December 2, 2008

    DTIC Science & Technology

    2009-04-01

    set-up and data download. xi. High-Resolution Pulse-to-Pulse Coherent Doppler Sonars Upper Ocean Turbulence As part of the Stratus (S9) buoy...deployed during the VOCALS 2008 cruise, pulse-to-pulse coherent Doppler sonars were added to the subsurface instrumentation of the buoy for...measurements of the turbulence and mixing within and below the mixed layer. See Table 3-4. The coherent Doppler sonars are Nortek model Aquadopp HR

  11. Assessment of protein set coherence using functional annotations

    PubMed Central

    Chagoyen, Monica; Carazo, Jose M; Pascual-Montano, Alberto

    2008-01-01

    Background Analysis of large-scale experimental datasets frequently produces one or more sets of proteins that are subsequently mined for functional interpretation and validation. To this end, a number of computational methods have been devised that rely on the analysis of functional annotations. Although current methods provide valuable information (e.g. significantly enriched annotations, pairwise functional similarities), they do not specifically measure the degree of homogeneity of a protein set. Results In this work we present a method that scores the degree of functional homogeneity, or coherence, of a set of proteins on the basis of the global similarity of their functional annotations. The method uses statistical hypothesis testing to assess the significance of the set in the context of the functional space of a reference set. As such, it can be used as a first step in the validation of sets expected to be homogeneous prior to further functional interpretation. Conclusion We evaluate our method by analysing known biologically relevant sets as well as random ones. The known relevant sets comprise macromolecular complexes, cellular components and pathways described for Saccharomyces cerevisiae, which are mostly significantly coherent. Finally, we illustrate the usefulness of our approach for validating 'functional modules' obtained from computational analysis of protein-protein interaction networks. Matlab code and supplementary data are available at PMID:18937846

  12. Coherent transport and energy flow patterns in photosynthesis under incoherent excitation.

    PubMed

    Pelzer, Kenley M; Can, Tankut; Gray, Stephen K; Morr, Dirk K; Engel, Gregory S

    2014-03-13

    Long-lived coherences have been observed in photosynthetic complexes after laser excitation, inspiring new theories regarding the extreme quantum efficiency of photosynthetic energy transfer. Whether coherent (ballistic) transport occurs in nature and whether it improves photosynthetic efficiency remain topics of debate. Here, we use a nonequilibrium Green's function analysis to model exciton transport after excitation from an incoherent source (as opposed to coherent laser excitation). We find that even with an incoherent source, the rate of environmental dephasing strongly affects exciton transport efficiency, suggesting that the relationship between dephasing and efficiency is not an artifact of coherent excitation. The Green's function analysis provides a clear view of both the pattern of excitonic fluxes among chromophores and the multidirectionality of energy transfer that is a feature of coherent transport. We see that even in the presence of an incoherent source, transport occurs by qualitatively different mechanisms as dephasing increases. Our approach can be generalized to complex synthetic systems and may provide a new tool for optimizing synthetic light harvesting materials.

  13. The ESA Cloud CCI project: Generation of Multi Sensor consistent Cloud Properties with an Optimal Estimation Based Retrieval Algorithm

    NASA Astrophysics Data System (ADS)

    Jerg, M.; Stengel, M.; Hollmann, R.; Poulsen, C.

    2012-04-01

    The ultimate objective of the ESA Climate Change Initiative (CCI) Cloud project is to provide long-term coherent cloud property data sets exploiting and improving on the synergetic capabilities of past, existing, and upcoming European and American satellite missions. The synergetic approach allows not only for improved accuracy and extended temporal and spatial sampling of retrieved cloud properties better than those provided by single instruments alone but potentially also for improved (inter-)calibration and enhanced homogeneity and stability of the derived time series. Such advances are required by the scientific community to facilitate further progress in satellite-based climate monitoring, which leads to a better understanding of climate. Some of the primary objectives of ESA Cloud CCI Cloud are (1) the development of inter-calibrated radiance data sets, so called Fundamental Climate Data Records - for ESA and non ESA instruments through an international collaboration, (2) the development of an optimal estimation based retrieval framework for cloud related essential climate variables like cloud cover, cloud top height and temperature, liquid and ice water path, and (3) the development of two multi-annual global data sets for the mentioned cloud properties including uncertainty estimates. These two data sets are characterized by different combinations of satellite systems: the AVHRR heritage product comprising (A)ATSR, AVHRR and MODIS and the novel (A)ATSR - MERIS product which is based on a synergetic retrieval using both instruments. Both datasets cover the years 2007-2009 in the first project phase. ESA Cloud CCI will also carry out a comprehensive validation of the cloud property products and provide a common data base as in the framework of the Global Energy and Water Cycle Experiment (GEWEX). The presentation will give an overview of the ESA Cloud CCI project and its goals and approaches and then continue with results from the Round Robin algorithm comparison exercise carried out at the beginning of the project which included three algorithms. The purpose of the exercise was to assess and compare existing cloud retrieval algorithms in order to chose one of them as backbone of the retrieval system and also identify areas of potential improvement and general strengths and weaknesses of the algorithm. Furthermore the presentation will elaborate on the optimal estimation algorithm subsequently chosen to derive the heritage product and which is presently further developed and will be employed for the AVHRR heritage product. The algorithm's capabilities to coherently and simultaneously process all radiative input and yield retrieval parameters together with associated uncertainty estimates will be presented together with first results for the heritage product. In the course of the project the algorithm is being developed into a freely and publicly available community retrieval system for interested scientists.

  14. Modeling coherent errors in quantum error correction

    NASA Astrophysics Data System (ADS)

    Greenbaum, Daniel; Dutton, Zachary

    2018-01-01

    Analysis of quantum error correcting codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. Here we examine the accuracy of the Pauli approximation for noise containing coherent errors (characterized by a rotation angle ɛ) under the repetition code. We derive an analytic expression for the logical error channel as a function of arbitrary code distance d and concatenation level n, in the small error limit. We find that coherent physical errors result in logical errors that are partially coherent and therefore non-Pauli. However, the coherent part of the logical error is negligible at fewer than {ε }-({dn-1)} error correction cycles when the decoder is optimized for independent Pauli errors, thus providing a regime of validity for the Pauli approximation. Above this number of correction cycles, the persistent coherent logical error will cause logical failure more quickly than the Pauli model would predict, and this may need to be combated with coherent suppression methods at the physical level or larger codes.

  15. Focus characterization at an X-ray free-electron laser by coherent scattering and speckle analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sikorski, Marcin; Song, Sanghoon; Schropp, Andreas

    2015-04-14

    X-ray focus optimization and characterization based on coherent scattering and quantitative speckle size measurements was demonstrated at the Linac Coherent Light Source. Its performance as a single-pulse free-electron laser beam diagnostic was tested for two typical focusing configurations. The results derived from the speckle size/shape analysis show the effectiveness of this technique in finding the focus' location, size and shape. In addition, its single-pulse compatibility enables users to capture pulse-to-pulse fluctuations in focus properties compared with other techniques that require scanning and averaging.

  16. Parameter Trade Studies For Coherent Lidar Wind Measurements of Wind from Space

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Frehlich, Rod G.

    2007-01-01

    The design of an orbiting wind profiling lidar requires selection of dozens of lidar, measurement scenario, and mission geometry parameters; in addition to prediction of atmospheric parameters. Typical mission designs do not include a thorough trade optimization of all of these parameters. We report here the integration of a recently published parameterization of coherent lidar wind velocity measurement performance with an orbiting coherent wind lidar computer simulation; and the use of these combined tools to perform some preliminary parameter trades. We use the 2006 NASA Global Wind Observing Sounder mission design as the starting point for the trades.

  17. Quantitative phase microscopy via optimized inversion of the phase optical transfer function.

    PubMed

    Jenkins, Micah H; Gaylord, Thomas K

    2015-10-01

    Although the field of quantitative phase imaging (QPI) has wide-ranging biomedical applicability, many QPI methods are not well-suited for such applications due to their reliance on coherent illumination and specialized hardware. By contrast, methods utilizing partially coherent illumination have the potential to promote the widespread adoption of QPI due to their compatibility with microscopy, which is ubiquitous in the biomedical community. Described herein is a new defocus-based reconstruction method that utilizes a small number of efficiently sampled micrographs to optimally invert the partially coherent phase optical transfer function under assumptions of weak absorption and slowly varying phase. Simulation results are provided that compare the performance of this method with similar algorithms and demonstrate compatibility with large phase objects. The accuracy of the method is validated experimentally using a microlens array as a test phase object. Lastly, time-lapse images of live adherent cells are obtained with an off-the-shelf microscope, thus demonstrating the new method's potential for extending QPI capability widely in the biomedical community.

  18. Gradient descent algorithm applied to wavefront retrieval from through-focus images by an extreme ultraviolet microscope with partially coherent source

    DOE PAGES

    Yamazoe, Kenji; Mochi, Iacopo; Goldberg, Kenneth A.

    2014-12-01

    The wavefront retrieval by gradient descent algorithm that is typically applied to coherent or incoherent imaging is extended to retrieve a wavefront from a series of through-focus images by partially coherent illumination. For accurate retrieval, we modeled partial coherence as well as object transmittance into the gradient descent algorithm. However, this modeling increases the computation time due to the complexity of partially coherent imaging simulation that is repeatedly used in the optimization loop. To accelerate the computation, we incorporate not only the Fourier transform but also an eigenfunction decomposition of the image. As a demonstration, the extended algorithm is appliedmore » to retrieve a field-dependent wavefront of a microscope operated at extreme ultraviolet wavelength (13.4 nm). The retrieved wavefront qualitatively matches the expected characteristics of the lens design.« less

  19. Gradient descent algorithm applied to wavefront retrieval from through-focus images by an extreme ultraviolet microscope with partially coherent source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamazoe, Kenji; Mochi, Iacopo; Goldberg, Kenneth A.

    The wavefront retrieval by gradient descent algorithm that is typically applied to coherent or incoherent imaging is extended to retrieve a wavefront from a series of through-focus images by partially coherent illumination. For accurate retrieval, we modeled partial coherence as well as object transmittance into the gradient descent algorithm. However, this modeling increases the computation time due to the complexity of partially coherent imaging simulation that is repeatedly used in the optimization loop. To accelerate the computation, we incorporate not only the Fourier transform but also an eigenfunction decomposition of the image. As a demonstration, the extended algorithm is appliedmore » to retrieve a field-dependent wavefront of a microscope operated at extreme ultraviolet wavelength (13.4 nm). The retrieved wavefront qualitatively matches the expected characteristics of the lens design.« less

  20. Phase-space evolution of x-ray coherence in phase-sensitive imaging.

    PubMed

    Wu, Xizeng; Liu, Hong

    2008-08-01

    X-ray coherence evolution in the imaging process plays a key role for x-ray phase-sensitive imaging. In this work we present a phase-space formulation for the phase-sensitive imaging. The theory is reformulated in terms of the cross-spectral density and associated Wigner distribution. The phase-space formulation enables an explicit and quantitative account of partial coherence effects on phase-sensitive imaging. The presented formulas for x-ray spectral density at the detector can be used for performing accurate phase retrieval and optimizing the phase-contrast visibility. The concept of phase-space shearing length derived from this phase-space formulation clarifies the spatial coherence requirement for phase-sensitive imaging with incoherent sources. The theory has been applied to x-ray Talbot interferometric imaging as well. The peak coherence condition derived reveals new insights into three-grating-based Talbot-interferometric imaging and gratings-based x-ray dark-field imaging.

  1. Model-based sensor-less wavefront aberration correction in optical coherence tomography.

    PubMed

    Verstraete, Hans R G W; Wahls, Sander; Kalkman, Jeroen; Verhaegen, Michel

    2015-12-15

    Several sensor-less wavefront aberration correction methods that correct nonlinear wavefront aberrations by maximizing the optical coherence tomography (OCT) signal are tested on an OCT setup. A conventional coordinate search method is compared to two model-based optimization methods. The first model-based method takes advantage of the well-known optimization algorithm (NEWUOA) and utilizes a quadratic model. The second model-based method (DONE) is new and utilizes a random multidimensional Fourier-basis expansion. The model-based algorithms achieve lower wavefront errors with up to ten times fewer measurements. Furthermore, the newly proposed DONE method outperforms the NEWUOA method significantly. The DONE algorithm is tested on OCT images and shows a significantly improved image quality.

  2. A blind hierarchical coherent search for gravitational-wave signals from coalescing compact binaries in a network of interferometric detectors

    NASA Astrophysics Data System (ADS)

    Bose, Sukanta; Dayanga, Thilina; Ghosh, Shaon; Talukder, Dipongkar

    2011-07-01

    We describe a hierarchical data analysis pipeline for coherently searching for gravitational-wave signals from non-spinning compact binary coalescences (CBCs) in the data of multiple earth-based detectors. This search assumes no prior information on the sky position of the source or the time of occurrence of its transient signals and, hence, is termed 'blind'. The pipeline computes the coherent network search statistic that is optimal in stationary, Gaussian noise. More importantly, it allows for the computation of a suite of alternative multi-detector coherent search statistics and signal-based discriminators that can improve the performance of CBC searches in real data, which can be both non-stationary and non-Gaussian. Also, unlike the coincident multi-detector search statistics that have been employed so far, the coherent statistics are different in the sense that they check for the consistency of the signal amplitudes and phases in the different detectors with their different orientations and with the signal arrival times in them. Since the computation of coherent statistics entails searching in the sky, it is more expensive than that of the coincident statistics that do not require it. To reduce computational costs, the first stage of the hierarchical pipeline constructs coincidences of triggers from the multiple interferometers, by requiring their proximity in time and component masses. The second stage follows up on these coincident triggers by computing the coherent statistics. Here, we compare the performances of this hierarchical pipeline with and without the second (or coherent) stage in Gaussian noise. Although introducing hierarchy can be expected to cause some degradation in the detection efficiency compared to that of a single-stage coherent pipeline, nevertheless it improves the computational speed of the search considerably. The two main results of this work are as follows: (1) the performance of the hierarchical coherent pipeline on Gaussian data is shown to be better than the pipeline with just the coincident stage; (2) the three-site network of LIGO detectors, in Hanford and Livingston (USA), and Virgo detector in Cascina (Italy) cannot resolve the polarization of waves arriving from certain parts of the sky. This can cause the three-site coherent statistic at those sky positions to become singular. Regularized versions of the statistic can avoid that problem, but can be expected to be sub-optimal. The aforementioned improvement in the pipeline's performance due to the coherent stage is in spite of this handicap.

  3. Optimized mirror shape tuning using beam weightings based on distance, angle of incidence, reflectivity, and power.

    PubMed

    Goldberg, Kenneth A; Yashchuk, Valeriy V

    2016-05-01

    For glancing-incidence optical systems, such as short-wavelength optics used for nano-focusing, incorporating physical factors in the calculations used for shape optimization can improve performance. Wavefront metrology, including the measurement of a mirror's shape or slope, is routinely used as input for mirror figure optimization on mirrors that can be bent, actuated, positioned, or aligned. Modeling shows that when the incident power distribution, distance from focus, angle of incidence, and the spatially varying reflectivity are included in the optimization, higher Strehl ratios can be achieved. Following the works of Maréchal and Mahajan, optimization of the Strehl ratio (for peak intensity with a coherently illuminated system) occurs when the expectation value of the phase error's variance is minimized. We describe an optimization procedure based on regression analysis that incorporates these physical parameters. This approach is suitable for coherently illuminated systems of nearly diffraction-limited quality. Mathematically, this work is an enhancement of the methods commonly applied for ex situ alignment based on uniform weighting of all points on the surface (or a sub-region of the surface). It follows a similar approach to the optimization of apodized and non-uniformly illuminated optical systems. Significantly, it reaches a different conclusion than a more recent approach based on minimization of focal plane ray errors.

  4. Organizational coherence in health care organizations: conceptual guidance to facilitate quality improvement and organizational change.

    PubMed

    McAlearney, Ann Scheck; Terris, Darcey; Hardacre, Jeanne; Spurgeon, Peter; Brown, Claire; Baumgart, Andre; Nyström, Monica E

    2013-01-01

    We sought to improve our understanding of how health care quality improvement (QI) methods and innovations could be efficiently and effectively translated between settings to reduce persistent gaps in health care quality both within and across countries. We aimed to examine whether we could identify a core set of organizational cultural attributes, independent of context and setting, which might be associated with success in implementing and sustaining QI systems in health care organizations. We convened an international group of investigators to explore the issues of organizational culture and QI in different health care contexts and settings. This group met in person 3 times and held a series of conference calls to discuss emerging ideas over 2 years. Investigators also conducted pilot studies in their home countries to examine the applicability of our conceptual model. We suggest that organizational coherence may be a critical element of QI efforts in health care organizations and propose that there are 3 key components of organizational coherence: (1) people, (2) processes, and (3) perspectives. Our work suggests that the concept of organizational coherence embraces both culture and context and can thus help guide both researchers and practitioners in efforts to enhance health care QI efforts, regardless of organizational type, location, or context.

  5. Organizational coherence in health care organizations: conceptual guidance to facilitate quality improvement and organizational change.

    PubMed

    McAlearney, Ann Scheck; Terris, Darcey; Hardacre, Jeanne; Spurgeon, Peter; Brown, Claire; Baumgart, Andre; Nyström, Monica E

    2014-01-01

    We sought to improve our understanding of how health care quality improvement (QI) methods and innovations could be efficiently and effectively translated between settings to reduce persistent gaps in health care quality both within and across countries. We aimed to examine whether we could identify a core set of organizational cultural attributes, independent of context and setting, which might be associated with success in implementing and sustaining QI systems in health care organizations. We convened an international group of investigators to explore the issues of organizational culture and QI in different health care contexts and settings. This group met in person 3 times and held a series of conference calls to discuss emerging ideas over 2 years. Investigators also conducted pilot studies in their home countries to examine the applicability of our conceptual model. We suggest that organizational coherence may be a critical element of QI efforts in health care organizations and propose that there are 3 key components of organizational coherence: (1) people, (2) processes, and (3) perspectives. Our work suggests that the concept of organizational coherence embraces both culture and context and can thus help guide both researchers and practitioners in efforts to enhance health care QI efforts, regardless of organizational type, location, or context.

  6. Role of quantum coherence in the thermodynamics of energy transfer

    NASA Astrophysics Data System (ADS)

    Henao, Ivan; Serra, Roberto M.

    2018-06-01

    Recent research on the thermodynamic arrow of time, at the microscopic scale, has questioned the universality of its direction. Theoretical studies showed that quantum correlations can be used to revert the natural heat flow (from the hot body to the cold one), posing an apparent challenge to the second law of thermodynamics. Such an "anomalous" heat current was observed in a recent experiment (K. Micadei et al., arXiv:1711.03323), by employing two spin systems initially quantum correlated. Nevertheless, the precise relationship between this intriguing phenomenon and the initial conditions that allow it is not fully evident. Here, we address energy transfer in a wider perspective, identifying a nonclassical contribution that applies to the reversion of the heat flow as well as to more general forms of energy exchange. We derive three theorems that describe the energy transfer between two microscopic systems, for arbitrary initial bipartite states. Using these theorems, we obtain an analytical bound showing that certain type of quantum coherence can optimize such a process, outperforming incoherent states. This genuine quantum advantage is corroborated through a characterization of the energy transfer between two qubits. For this system, it is shown that a large enough amount of coherence is necessary and sufficient to revert the thermodynamic arrow of time. As a second crucial consequence of the presented theorems, we introduce a class of nonequilibrium states that only allow unidirectional energy flow. In this way, we broaden the set where the standard Clausius statement of the second law applies.

  7. Quantification of fibrous cap thickness in intracoronary optical coherence tomography with a contour segmentation method based on dynamic programming.

    PubMed

    Zahnd, Guillaume; Karanasos, Antonios; van Soest, Gijs; Regar, Evelyn; Niessen, Wiro; Gijsen, Frank; van Walsum, Theo

    2015-09-01

    Fibrous cap thickness is the most critical component of plaque stability. Therefore, in vivo quantification of cap thickness could yield valuable information for estimating the risk of plaque rupture. In the context of preoperative planning and perioperative decision making, intracoronary optical coherence tomography imaging can provide a very detailed characterization of the arterial wall structure. However, visual interpretation of the images is laborious, subject to variability, and therefore not always sufficiently reliable for immediate decision of treatment. A novel semiautomatic segmentation method to quantify coronary fibrous cap thickness in optical coherence tomography is introduced. To cope with the most challenging issue when estimating cap thickness (namely the diffuse appearance of the anatomical abluminal interface to be detected), the proposed method is based on a robust dynamic programming framework using a geometrical a priori. To determine the optimal parameter settings, a training phase was conducted on 10 patients. Validated on a dataset of 179 images from 21 patients, the present framework could successfully extract the fibrous cap contours. When assessing minimal cap thickness, segmentation results from the proposed method were in good agreement with the reference tracings performed by a medical expert (mean absolute error and standard deviation of 22 ± 18 μm) and were similar to inter-observer reproducibility (21 ± 19 μm, R = .74), while being significantly faster and fully reproducible. The proposed framework demonstrated promising performances and could potentially be used for online identification of high-risk plaques.

  8. Mechanical design of thin-film diamond crystal mounting apparatus with optimized thermal contact and crystal strain for coherence preservation x-ray optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, Deming; Shvydko, Yury; Stoupin, Stanislav

    A method and mechanical design for a thin-film diamond crystal mounting apparatus for coherence preservation x-ray optics with optimized thermal contact and minimized crystal strain are provided. The novel thin-film diamond crystal mounting apparatus mounts a thin-film diamond crystal supported by a thick chemical vapor deposition (CVD) diamond film spacer with a thickness slightly thicker than the thin-film diamond crystal, and two groups of thin film thermal conductors, such as thin CVD diamond film thermal conductor groups separated by the thick CVD diamond spacer. The two groups of thin CVD film thermal conductors provide thermal conducting interface media with themore » thin-film diamond crystal. A piezoelectric actuator is integrated into a flexural clamping mechanism generating clamping force from zero to an optimal level.« less

  9. Performance evaluation and optimization of multiband phase-modulated radio over IsOWC link with balanced coherent homodyne detection

    NASA Astrophysics Data System (ADS)

    Zong, Kang; Zhu, Jiang

    2018-04-01

    In this paper, we present a multiband phase-modulated (PM) radio over intersatellite optical wireless communication (IsOWC) link with balanced coherent homodyne detection. The proposed system can provide the transparent transport of multiband radio frequency (RF) signals with higher linearity and better receiver sensitivity than intensity modulated with direct detection (IM/DD) system. The expressions of RF gain, noise figure (NF) and third-order spurious-free dynamic range (SFDR) are derived considering the third-order intermodulation product and amplifier spontaneous emission (ASE) noise. The optimal power of local oscillator (LO) optical signal is also derived theoretically. Numerical results for RF gain, NF and third-order SFDR are given for demonstration. Results indicate that the gain of the optical preamplifier and the power of LO optical signal should be optimized to obtain the satisfactory performance.

  10. Optimal design of nanoplasmonic materials using genetic algorithms as a multiparameter optimization tool.

    PubMed

    Yelk, Joseph; Sukharev, Maxim; Seideman, Tamar

    2008-08-14

    An optimal control approach based on multiple parameter genetic algorithms is applied to the design of plasmonic nanoconstructs with predetermined optical properties and functionalities. We first develop nanoscale metallic lenses that focus an incident plane wave onto a prespecified, spatially confined spot. Our results illustrate the mechanism of energy flow through wires and cavities. Next we design a periodic array of silver particles to modify the polarization of an incident, linearly polarized plane wave in a desired fashion while localizing the light in space. The results provide insight into the structural features that determine the birefringence properties of metal nanoparticles and their arrays. Of the variety of potential applications that may be envisioned, we note the design of nanoscale light sources with controllable coherence and polarization properties that could serve for coherent control of molecular, electronic, or electromechanical dynamics in the nanoscale.

  11. ECG Based Heart Arrhythmia Detection Using Wavelet Coherence and Bat Algorithm

    NASA Astrophysics Data System (ADS)

    Kora, Padmavathi; Sri Rama Krishna, K.

    2016-12-01

    Atrial fibrillation (AF) is a type of heart abnormality, during the AF electrical discharges in the atrium are rapid, results in abnormal heart beat. The morphology of ECG changes due to the abnormalities in the heart. This paper consists of three major steps for the detection of heart diseases: signal pre-processing, feature extraction and classification. Feature extraction is the key process in detecting the heart abnormality. Most of the ECG detection systems depend on the time domain features for cardiac signal classification. In this paper we proposed a wavelet coherence (WTC) technique for ECG signal analysis. The WTC calculates the similarity between two waveforms in frequency domain. Parameters extracted from WTC function is used as the features of the ECG signal. These features are optimized using Bat algorithm. The Levenberg Marquardt neural network classifier is used to classify the optimized features. The performance of the classifier can be improved with the optimized features.

  12. An extended transfer operator approach to identify separatrices in open flows

    NASA Astrophysics Data System (ADS)

    Lünsmann, Benedict; Kantz, Holger

    2018-05-01

    Vortices of coherent fluid volume are considered to have a substantial impact on transport processes in turbulent media. Yet, due to their Lagrangian nature, detecting these structures is highly nontrivial. In this respect, transfer operator approaches have been proven to provide useful tools: Approximating a possibly time-dependent flow as a discrete Markov process in space and time, information about coherent structures is contained in the operator's eigenvectors, which is usually extracted by employing clustering methods. Here, we propose an extended approach that couples surrounding filaments using "mixing boundary conditions" and focuses on the separation of the inner coherent set and embedding outer flow. The approach refrains from using unsupervised machine learning techniques such as clustering and uses physical arguments by maximizing a coherence ratio instead. We show that this technique improves the reconstruction of separatrices in stationary open flows and succeeds in finding almost-invariant sets in periodically perturbed flows.

  13. Imaging the eye fundus with real-time en-face spectral domain optical coherence tomography

    PubMed Central

    Bradu, Adrian; Podoleanu, Adrian Gh.

    2014-01-01

    Real-time display of processed en-face spectral domain optical coherence tomography (SD-OCT) images is important for diagnosis. However, due to many steps of data processing requirements, such as Fast Fourier transformation (FFT), data re-sampling, spectral shaping, apodization, zero padding, followed by software cut of the 3D volume acquired to produce an en-face slice, conventional high-speed SD-OCT cannot render an en-face OCT image in real time. Recently we demonstrated a Master/Slave (MS)-OCT method that is highly parallelizable, as it provides reflectivity values of points at depth within an A-scan in parallel. This allows direct production of en-face images. In addition, the MS-OCT method does not require data linearization, which further simplifies the processing. The computation in our previous paper was however time consuming. In this paper we present an optimized algorithm that can be used to provide en-face MS-OCT images much quicker. Using such an algorithm we demonstrate around 10 times faster production of sets of en-face OCT images than previously obtained as well as simultaneous real-time display of up to 4 en-face OCT images of 200 × 200 pixels2 from the fovea and the optic nerve of a volunteer. We also demonstrate 3D and B-scan OCT images obtained from sets of MS-OCT C-scans, i.e. with no FFT and no intermediate step of generation of A-scans. PMID:24761303

  14. Pseudo-coherent demodulation for mobile satellite systems

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Simon, Marvin K.

    1993-01-01

    This paper proposes three so-called pseudo-coherent demodulation schemes for use in land mobile satellite channels. The schemes are derived based on maximum likelihood (ML) estimation and detection of an N-symbol observation of the received signal. Simulation results for all three demodulators are presented to allow comparison with the performance of differential PSK (DPSK) and ideal coherent demodulation for various system parameter sets of practical interest.

  15. Joint Optimization of Vertical Component Gravity and Seismic P-wave First Arrivals by Simulated Annealing

    NASA Astrophysics Data System (ADS)

    Louie, J. N.; Basler-Reeder, K.; Kent, G. M.; Pullammanappallil, S. K.

    2015-12-01

    Simultaneous joint seismic-gravity optimization improves P-wave velocity models in areas with sharp lateral velocity contrasts. Optimization is achieved using simulated annealing, a metaheuristic global optimization algorithm that does not require an accurate initial model. Balancing the seismic-gravity objective function is accomplished by a novel approach based on analysis of Pareto charts. Gravity modeling uses a newly developed convolution algorithm, while seismic modeling utilizes the highly efficient Vidale eikonal equation traveltime generation technique. Synthetic tests show that joint optimization improves velocity model accuracy and provides velocity control below the deepest headwave raypath. Detailed first arrival picking followed by trial velocity modeling remediates inconsistent data. We use a set of highly refined first arrival picks to compare results of a convergent joint seismic-gravity optimization to the Plotrefa™ and SeisOpt® Pro™ velocity modeling packages. Plotrefa™ uses a nonlinear least squares approach that is initial model dependent and produces shallow velocity artifacts. SeisOpt® Pro™ utilizes the simulated annealing algorithm and is limited to depths above the deepest raypath. Joint optimization increases the depth of constrained velocities, improving reflector coherency at depth. Kirchoff prestack depth migrations reveal that joint optimization ameliorates shallow velocity artifacts caused by limitations in refraction ray coverage. Seismic and gravity data from the San Emidio Geothermal field of the northwest Basin and Range province demonstrate that joint optimization changes interpretation outcomes. The prior shallow-valley interpretation gives way to a deep valley model, while shallow antiformal reflectors that could have been interpreted as antiformal folds are flattened. Furthermore, joint optimization provides a clearer image of the rangefront fault. This technique can readily be applied to existing datasets and could replace the existing strategy of forward modeling to match gravity data.

  16. Evolution equation for quantum coherence

    PubMed Central

    Hu, Ming-Liang; Fan, Heng

    2016-01-01

    The estimation of the decoherence process of an open quantum system is of both theoretical significance and experimental appealing. Practically, the decoherence can be easily estimated if the coherence evolution satisfies some simple relations. We introduce a framework for studying evolution equation of coherence. Based on this framework, we prove a simple factorization relation (FR) for the l1 norm of coherence, and identified the sets of quantum channels for which this FR holds. By using this FR, we further determine condition on the transformation matrix of the quantum channel which can support permanently freezing of the l1 norm of coherence. We finally reveal the universality of this FR by showing that it holds for many other related coherence and quantum correlation measures. PMID:27382933

  17. Making Earth Science Data Records for Use in Research Environments (MEaSUREs) Projects Data and Services at the GES DISC

    NASA Technical Reports Server (NTRS)

    Vollmer, Bruce E.; Ostrenga, D.; Savtchenko, A.; Johnson, J.; Wei, J.; Teng, W.; Gerasimov, I.

    2011-01-01

    NASA's Earth Science Program is dedicated to advancing Earth remote sensing and pioneering the scientific use of satellite measurements to improve human understanding of our home planet. Through the MEaSUREs Program, NASA is continuing its commitment to expand understanding of the Earth system using consistent data records. Emphasis is on linking together multiple data sources to form coherent time-series, and facilitating the use of extensive data in the development of comprehensive Earth system models. A primary focus of the MEaSUREs Program is the creation of Earth System Data Records (ESDRs). An ESDR is defined as a unified and coherent set of observations of a given parameter of the Earth system, which is optimized to meet specific requirements for addressing science questions. These records are critical for understanding Earth System processes; for the assessment of variability, long-term trends, and change in the Earth System; and for providing input and validation means to modeling efforts. Seven MEaSUREs projects will be archived and distributed through services at the Goddard Earth Sciences Data and Information Services Center (GES DISC).

  18. The effect of laser unit on photodynamic therapy spot size.

    PubMed

    Ansari-Shahrezaei, Siamak; Binder, Susanne; Stur, Michael

    2011-01-01

    To determine the effect of the laser unit on photodynamic therapy (PDT) spot size. A calibrated Gullstrand-type model eye was used for this study. The axial length of the model eye was set to different values ranging from 22.2 to 27.0 mm, and the actual spot size from the laser console was recorded for treating a spot of 4 mm in the center of the artificial fundus using two different laser units (Coherent Opal laser; Coherent Inc, Santa Clara, California, USA and Zeiss Visulas laser; Carl Zeiss Meditec Inc, Dublin, California, USA) and two indirect contact laser lenses (Volk PDT laser lens and Volk Area Centralis lens; Volk Optical Inc, Mentor, Ohio, USA). From myopia to hyperopia, the total deviation from the intended spot size was -22.5% to -7.5% (Opal laser and PDT laser lens), and -17.5% to +2.5% (Visulas laser and PDT laser lens), -12.5% to +7.5% (Opal laser and Area Centralis lens), and -7.5% to +10% (Visulas laser and Area Centralis lens). The used laser unit has a significant effect on PDT spot size in this model. These findings may be important for optimizing PDT of choroidal neovascular lesions.

  19. Noise models for low counting rate coherent diffraction imaging.

    PubMed

    Godard, Pierre; Allain, Marc; Chamard, Virginie; Rodenburg, John

    2012-11-05

    Coherent diffraction imaging (CDI) is a lens-less microscopy method that extracts the complex-valued exit field from intensity measurements alone. It is of particular importance for microscopy imaging with diffraction set-ups where high quality lenses are not available. The inversion scheme allowing the phase retrieval is based on the use of an iterative algorithm. In this work, we address the question of the choice of the iterative process in the case of data corrupted by photon or electron shot noise. Several noise models are presented and further used within two inversion strategies, the ordered subset and the scaled gradient. Based on analytical and numerical analysis together with Monte-Carlo studies, we show that any physical interpretations drawn from a CDI iterative technique require a detailed understanding of the relationship between the noise model and the used inversion method. We observe that iterative algorithms often assume implicitly a noise model. For low counting rates, each noise model behaves differently. Moreover, the used optimization strategy introduces its own artefacts. Based on this analysis, we develop a hybrid strategy which works efficiently in the absence of an informed initial guess. Our work emphasises issues which should be considered carefully when inverting experimental data.

  20. Evaluation of the MV (CAPON) Coherent Doppler Lidar Velocity Estimator

    NASA Technical Reports Server (NTRS)

    Lottman, B.; Frehlich, R.

    1997-01-01

    The performance of the CAPON velocity estimator for coherent Doppler lidar is determined for typical space-based and ground-based parameter regimes. Optimal input parameters for the algorithm were determined for each regime. For weak signals, performance is described by the standard deviation of the good estimates and the fraction of outliers. For strong signals, the fraction of outliers is zero. Numerical effort was also determined.

  1. Quantum control of coherent π -electron ring currents in polycyclic aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Mineo, Hirobumi; Fujimura, Yuichi

    2017-12-01

    We present results for quantum optimal control (QOC) of the coherent π electron ring currents in polycyclic aromatic hydrocarbons (PAHs). Since PAHs consist of a number of condensed benzene rings, in principle, there exist various coherent ring patterns. These include the ring current localized to a designated benzene ring, the perimeter ring current that flows along the edge of the PAH, and the middle ring current of PAHs having an odd number of benzene rings such as anthracene. In the present QOC treatment, the best target wavefunction for generation of the ring current through a designated path is determined by a Lagrange multiplier method. The target function is integrated into the ordinary QOC theory. To demonstrate the applicability of the QOC procedure, we took naphthalene and anthracene as the simplest examples of linear PAHs. The mechanisms of ring current generation were clarified by analyzing the temporal evolutions of the electronic excited states after coherent excitation by UV pulses or (UV+IR) pulses as well as those of electric fields of the optimal laser pulses. Time-dependent simulations of the perimeter ring current and middle ring current of anthracene, which are induced by analytical electric fields of UV pulsed lasers, were performed to reproduce the QOC results.

  2. Interference Mitigation Effects on Synthetic Aperture Radar Coherent Data Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musgrove, Cameron

    2014-05-01

    For synthetic aperture radar image products interference can degrade the quality of the images while techniques to mitigate the interference also reduce the image quality. Usually the radar system designer will try to balance the amount of mitigation for the amount of interference to optimize the image quality. This may work well for many situations, but coherent data products derived from the image products are more sensitive than the human eye to distortions caused by interference and mitigation of interference. This dissertation examines the e ect that interference and mitigation of interference has upon coherent data products. An improvement tomore » the standard notch mitigation is introduced, called the equalization notch. Other methods are suggested to mitigation interference while improving the quality of coherent data products over existing methods.« less

  3. Assisted Distillation of Quantum Coherence.

    PubMed

    Chitambar, E; Streltsov, A; Rana, S; Bera, M N; Adesso, G; Lewenstein, M

    2016-02-19

    We introduce and study the task of assisted coherence distillation. This task arises naturally in bipartite systems where both parties work together to generate the maximal possible coherence on one of the subsystems. Only incoherent operations are allowed on the target system, while general local quantum operations are permitted on the other; this is an operational paradigm that we call local quantum-incoherent operations and classical communication. We show that the asymptotic rate of assisted coherence distillation for pure states is equal to the coherence of assistance, an analog of the entanglement of assistance, whose properties we characterize. Our findings imply a novel interpretation of the von Neumann entropy: it quantifies the maximum amount of extra quantum coherence a system can gain when receiving assistance from a collaborative party. Our results are generalized to coherence localization in a multipartite setting and possible applications are discussed.

  4. Multiconfigurational quantum propagation with trajectory-guided generalized coherent states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigolo, Adriano, E-mail: agrigolo@ifi.unicamp.br; Aguiar, Marcus A. M. de, E-mail: aguiar@ifi.unicamp.br; Viscondi, Thiago F., E-mail: viscondi@if.usp.br

    2016-03-07

    A generalized version of the coupled coherent states method for coherent states of arbitrary Lie groups is developed. In contrast to the original formulation, which is restricted to frozen-Gaussian basis sets, the extended method is suitable for propagating quantum states of systems featuring diversified physical properties, such as spin degrees of freedom or particle indistinguishability. The approach is illustrated with simple models for interacting bosons trapped in double- and triple-well potentials, most adequately described in terms of SU(2) and SU(3) bosonic coherent states, respectively.

  5. A coherent detection technique via optically biased field for broadband terahertz radiation.

    PubMed

    Du, Hai-Wei; Dong, Jia-Meng; Liu, Yi; Shi, Chang-Cheng; Wu, Jing-Wei; Peng, Xiao-Yu

    2017-09-01

    We demonstrate theoretically and experimentally a coherent terahertz detection technique based on an optically biased field functioning as a local oscillator and a second harmonic induced by the terahertz electric field in the air sensor working in free space. After optimizing the polarization angle and the energy of the probe pulse, and filling the system with dry nitrogen, the terahertz radiation generated from a two-color-femtosecond-laser-pulses induced plasma filament is measured by this technique with a bandwidth of 0.1-10 THz and a signal-to-noise ratio of 48 dB. Our technique provides an alternative simple method for coherent broadband terahertz detection.

  6. Effect of chromatic-dispersion-induced chirp on the temporal coherence properties of individual beams from spontaneous four-wave mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma Xiaoxin; Li Xiaoying; Cui Liang

    2011-08-15

    Temporal coherence of individual signal or idler beam, determined by the spectral correlation property of photon pairs, is important for realizing quantum interference among independent sources. Based on spontaneous four-wave mixing in optical fibers, we study the effect of chirp on the temporal coherence property by introducing a different amount of chirp into either the pulsed pump or individual signal (idler) beam. The investigation shows that the pump chirp induces additional frequency correlation into photon pairs; the mutual spectral correlation of photon pairs and the coherence of individual beam can be characterized by measuring the intensity correlation function g{sup (2)}more » of the individual beam. To improve the coherence degree, the pump chirp should be minimized. Moreover, a Hong-Ou-Mandel-type two-photon interference experiment with the signal beams generated in two different fibers illustrates that the chirp of the individual signal (idler) beam does not change the temporal coherence degree, but affects the temporal mode matching. To achieve high visibility among multiple sources, apart from improving the coherence degree, mode matching should be optimized by managing the chirps of individual beams.« less

  7. Optimal design of tweezer control for chimera states

    NASA Astrophysics Data System (ADS)

    Omelchenko, Iryna; Omel'chenko, Oleh E.; Zakharova, Anna; Schöll, Eckehard

    2018-01-01

    Chimera states are complex spatio-temporal patterns which consist of coexisting domains of spatially coherent and incoherent dynamics in systems of coupled oscillators. In small networks, chimera states usually exhibit short lifetimes and erratic drifting of the spatial position of the incoherent domain. A tweezer feedback control scheme can stabilize and fix the position of chimera states. We analyze the action of the tweezer control in small nonlocally coupled networks of Van der Pol and FitzHugh-Nagumo oscillators, and determine the ranges of optimal control parameters. We demonstrate that the tweezer control scheme allows for stabilization of chimera states with different shapes, and can be used as an instrument for controlling the coherent domains size, as well as the maximum average frequency difference of the oscillators.

  8. Effects of loss on the phase sensitivity with parity detection in an SU(1,1) interferometer

    NASA Astrophysics Data System (ADS)

    Li, Dong; Yuan, Chun-Hua; Yao, Yao; Jiang, Wei; Li, Mo; Zhang, Weiping

    2018-05-01

    We theoretically study the effects of loss on the phase sensitivity of an SU(1,1) interferometer with parity detection with various input states. We show that although the sensitivity of phase estimation decreases in the presence of loss, it can still beat the shot-noise limit with small loss. To examine the performance of parity detection, the comparison is performed among homodyne detection, intensity detection, and parity detection. Compared with homodyne detection and intensity detection, parity detection has a slight better optimal phase sensitivity in the absence of loss, but has a worse optimal phase sensitivity with a significant amount of loss with one-coherent state or coherent $\\otimes$ squeezed state input.

  9. Controlling the Transport of an Ion: Classical and Quantum Mechanical Solutions

    DTIC Science & Technology

    2014-07-09

    quantum systems: tools, achievements, and limitations Christiane P Koch Shortcuts to adiabaticity for an ion in a rotating radially- tight trap M Palmero...Keywords: coherent control, ion traps, quantum information, optimal control theory 1. Introduction Control methods are key enabling techniques in many...figure 6. 3.4. Feasibility analysis of quantum optimal control Numerical optimization of the wavepacket motion is expected to become necessary once

  10. Cortico-muscular coherence on artifact corrected EEG-EMG data recorded with a MRI scanner.

    PubMed

    Muthuraman, M; Galka, A; Hong, V N; Heute, U; Deuschl, G; Raethjen, J

    2013-01-01

    Simultaneous recording of electroencephalogram (EEG) and electromyogram (EMG) with magnetic resonance imaging (MRI) provides great potential for studying human brain activity with high temporal and spatial resolution. But, due to the MRI, the recorded signals are contaminated with artifacts. The correction of these artifacts is important to use these signals for further spectral analysis. The coherence can reveal the cortical representation of peripheral muscle signal in particular motor tasks, e.g. finger movements. The artifact correction of these signals was done by two different algorithms the Brain vision analyzer (BVA) and the Matlab FMRIB plug-in for EEGLAB. The Welch periodogram method was used for estimating the cortico-muscular coherence. Our analysis revealed coherence with a frequency of 5Hz in the contralateral side of the brain. The entropy is estimated for the calculated coherence to get the distribution of coherence in the scalp. The significance of the paper is to identify the optimal algorithm to rectify the MR artifacts and as a first step to use both these signals EEG and EMG in conjunction with MRI for further studies.

  11. Coherence and incoherence collective behavior in financial market

    NASA Astrophysics Data System (ADS)

    Zhao, Shangmei; Xie, Qiuchao; Lu, Qing; Jiang, Xin; Chen, Wei

    2015-10-01

    Financial markets have been extensively studied as highly complex evolving systems. In this paper, we quantify financial price fluctuations through a coupled dynamical system composed of phase oscillators. We find that a Financial Coherence and Incoherence (FCI) coexistence collective behavior emerges as the system evolves into the stable state, in which the stocks split into two groups: one is represented by coherent, phase-locked oscillators, the other is composed of incoherent, drifting oscillators. It is demonstrated that the size of the coherent stock groups fluctuates during the economic periods according to real-world financial instabilities or shocks. Further, we introduce the coherent characteristic matrix to characterize the involvement dynamics of stocks in the coherent groups. Clustering results on the matrix provides a novel manifestation of the correlations among stocks in the economic periods. Our analysis for components of the groups is consistent with the Global Industry Classification Standard (GICS) classification and can also figure out features for newly developed industries. These results can provide potentially implications on characterizing the inner dynamical structure of financial markets and making optimal investment into tragedies.

  12. Spin Number Coherent States and the Problem of Two Coupled Oscillators

    NASA Astrophysics Data System (ADS)

    Ojeda-Guillén, D.; Mota, R. D.; Granados, V. D.

    2015-07-01

    From the definition of the standard Perelomov coherent states we introduce the Perelomov number coherent states for any su(2) Lie algebra. With the displacement operator we apply a similarity transformation to the su(2) generators and construct a new set of operators which also close the su(2) Lie algebra, being the Perelomov number coherent states the new basis for its unitary irreducible representation. We apply our results to obtain the energy spectrum, the eigenstates and the partition function of two coupled oscillators. We show that the eigenstates of two coupled oscillators are the SU(2) Perelomov number coherent states of the two-dimensional harmonic oscillator with an appropriate choice of the coherent state parameters. Supported by SNI-México, COFAA-IPN, EDD-IPN, EDI-IPN, SIP-IPN Project No. 20150935

  13. Receiver-Coupling Schemes Based On Optimal-Estimation Theory

    NASA Technical Reports Server (NTRS)

    Kumar, Rajendra

    1992-01-01

    Two schemes for reception of weak radio signals conveying digital data via phase modulation provide for mutual coupling of multiple receivers, and coherent combination of outputs of receivers. In both schemes, optimal mutual-coupling weights computed according to Kalman-filter theory, but differ in manner of transmission and combination of outputs of receivers.

  14. Coherent control of plasma dynamics

    NASA Astrophysics Data System (ADS)

    He, Zhaohan

    2014-10-01

    The concept of coherent control - precise measurement or determination of a process through control of the phase of an applied oscillating field - has been applied to numerous systems with great success. Here, we demonstrate the use of coherent control on plasma dynamics in a laser wakefield electron acceleration experiment. A tightly focused femtosecond laser pulse (10 mJ, 35 fs) was used to generate electron beams by plasma wakefield acceleration in the density down ramp. The technique is based on optimization of the electron beam using a deformable mirror adaptive optical system with an iterative evolutionary genetic algorithm. The image of the electrons on a scintillator screen was processed and used in a fitness function as direct feedback for the optimization algorithm. This coherent manipulation of the laser wavefront leads to orders of magnitude improvement to the electron beam properties such as the peak charge and beam divergence. The laser beam optimized to generate the best electron beam was not the one with the ``best'' focal spot. When a particular wavefront of laser light interacts with plasma, it can affect the plasma wave structures and trapping conditions of the electrons in a complex way. For example, Raman forward scattering, envelope self-modulation, relativistic self-focusing, and relativistic self-phase modulation and many other nonlinear interactions modify both the pulse envelope and phase as the pulse propagates, in a way that cannot be easily predicted and that subsequently dictates the formation of plasma waves. The optimal wavefront could be successfully determined via the heuristic search under laser-plasma conditions that were not known a priori. Control and shaping of the electron energy distribution was found to be less effective, but was still possible. Particle-in-cell simulations were performed to show that the mode structure of the laser beam can affect the plasma wave structure and trapping conditions of electrons, which subsequently produces electron beams with a different divergence. The proof-of-principle demonstration of coherent control for plasmas opens new possibilities for future laser-based accelerators and their applications. This study should also enable a significantly improved understanding of the complex dynamics of laser plasma interactions. This work was supported by DARPA under Contract No. N66001-11-1-4208, the NSF under Contract No. 0935197 and MCubed at the University of Michigan.

  15. Optimal coherent control of dissipative N -level systems

    NASA Astrophysics Data System (ADS)

    Jirari, H.; Pötz, W.

    2005-07-01

    General optimal coherent control of dissipative N -level systems in the Markovian time regime is formulated within Pointryagin’s principle and the Lindblad equation. In the present paper, we study feasibility and limitations of steering of dissipative two-, three-, and four-level systems from a given initial pure or mixed state into a desired final state under the influence of an external electric field. The time evolution of the system is computed within the Lindblad equation and a conjugate gradient method is used to identify optimal control fields. The influence of both field-independent population and polarization decay on achieving the objective is investigated in systematic fashion. It is shown that, for realistic dephasing times, optimum control fields can be identified which drive the system into the target state with very high success rate and in economical fashion, even when starting from a poor initial guess. Furthermore, the optimal fields obtained give insight into the system dynamics. However, if decay rates of the system cannot be subjected to electromagnetic control, the dissipative system cannot be maintained in a specific pure or mixed state, in general.

  16. From Large Deviations to Semidistances of Transport and Mixing: Coherence Analysis for Finite Lagrangian Data

    NASA Astrophysics Data System (ADS)

    Koltai, Péter; Renger, D. R. Michiel

    2018-06-01

    One way to analyze complicated non-autonomous flows is through trying to understand their transport behavior. In a quantitative, set-oriented approach to transport and mixing, finite time coherent sets play an important role. These are time-parametrized families of sets with unlikely transport to and from their surroundings under small or vanishing random perturbations of the dynamics. Here we propose, as a measure of transport and mixing for purely advective (i.e., deterministic) flows, (semi)distances that arise under vanishing perturbations in the sense of large deviations. Analogously, for given finite Lagrangian trajectory data we derive a discrete-time-and-space semidistance that comes from the "best" approximation of the randomly perturbed process conditioned on this limited information of the deterministic flow. It can be computed as shortest path in a graph with time-dependent weights. Furthermore, we argue that coherent sets are regions of maximal farness in terms of transport and mixing, and hence they occur as extremal regions on a spanning structure of the state space under this semidistance—in fact, under any distance measure arising from the physical notion of transport. Based on this notion, we develop a tool to analyze the state space (or the finite trajectory data at hand) and identify coherent regions. We validate our approach on idealized prototypical examples and well-studied standard cases.

  17. Classification and Evaluation of Coherent Synchronous Sampled-Data Telemetry Systems

    NASA Technical Reports Server (NTRS)

    Viterbi, Andrew

    1961-01-01

    This paper analyzes the various types of continuous wave and pulse modulation for the transmission of sampled data over channels perturbed by white gaussian noise. Optimal coherent synchronous detection schemes for all the different modulation methods are shown to belong to one of two general classes: linear synchronous detection and correlation detection. The figures of merit, mean-square signal-to-error ratio and bandwidth occupancy, are determined for each system and compared.

  18. Biological imaging with coherent Raman scattering microscopy: a tutorial

    PubMed Central

    Alfonso-García, Alba; Mittal, Richa; Lee, Eun Seong; Potma, Eric O.

    2014-01-01

    Abstract. Coherent Raman scattering (CRS) microscopy is gaining acceptance as a valuable addition to the imaging toolset of biological researchers. Optimal use of this label-free imaging technique benefits from a basic understanding of the physical principles and technical merits of the CRS microscope. This tutorial offers qualitative explanations of the principles behind CRS microscopy and provides information about the applicability of this nonlinear optical imaging approach for biological research. PMID:24615671

  19. Bayesian rationality in evaluating multiple testimonies: incorporating the role of coherence.

    PubMed

    Harris, Adam J L; Hahn, Ulrike

    2009-09-01

    Routinely in day-to-day life, as well as in formal settings such as the courtroom, people must aggregate information they receive from different sources. One intuitively important but underresearched factor in this context is the degree to which the reports from different sources fit together, that is, their coherence. The authors examine a version of Bayes' theorem that not only includes factors such as prior beliefs and witness reliability, as do other models of information aggregation, but also makes transparent the effect of the coherence of multiple testimonies on the believability of the information. The results suggest that participants are sensitive to all the normatively relevant factors when assessing the believability of a set of witness testimonies. (c) 2009 APA, all rights reserved.

  20. Pixel-based OPC optimization based on conjugate gradients.

    PubMed

    Ma, Xu; Arce, Gonzalo R

    2011-01-31

    Optical proximity correction (OPC) methods are resolution enhancement techniques (RET) used extensively in the semiconductor industry to improve the resolution and pattern fidelity of optical lithography. In pixel-based OPC (PBOPC), the mask is divided into small pixels, each of which is modified during the optimization process. Two critical issues in PBOPC are the required computational complexity of the optimization process, and the manufacturability of the optimized mask. Most current OPC optimization methods apply the steepest descent (SD) algorithm to improve image fidelity augmented by regularization penalties to reduce the complexity of the mask. Although simple to implement, the SD algorithm converges slowly. The existing regularization penalties, however, fall short in meeting the mask rule check (MRC) requirements often used in semiconductor manufacturing. This paper focuses on developing OPC optimization algorithms based on the conjugate gradient (CG) method which exhibits much faster convergence than the SD algorithm. The imaging formation process is represented by the Fourier series expansion model which approximates the partially coherent system as a sum of coherent systems. In order to obtain more desirable manufacturability properties of the mask pattern, a MRC penalty is proposed to enlarge the linear size of the sub-resolution assistant features (SRAFs), as well as the distances between the SRAFs and the main body of the mask. Finally, a projection method is developed to further reduce the complexity of the optimized mask pattern.

  1. Haemodynamic coherence - The relevance of fluid therapy.

    PubMed

    Arnemann, Philip; Seidel, Laura; Ertmer, Christian

    2016-12-01

    The ultimate goal of fluid therapy is to improve the oxygenation of cells by improving the cardiac output, thus improving microcirculation by optimizing macrocirculation. This haemodynamic coherence is often altered in patients with haemorrhagic shock and sepsis. The loss of haemodynamic coherence is associated with adverse outcomes. It may be influenced by the mechanisms of the underlying disease and properties of different fluids used for resuscitation in these critically ill patients. Monitoring microcirculation and haemodynamic coherence may be an additional tool to predict the response to fluid administration. In addition, microcirculatory analysis may support the clinician in his decision to not administer fluids when microcirculatory blood flow is preserved. In future, the indication, guidance and termination of fluid therapy may be assessed by bedside microvascular analysis in combination with standard haemodynamic monitoring. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Channel noise-induced temporal coherence transitions and synchronization transitions in adaptive neuronal networks with time delay

    NASA Astrophysics Data System (ADS)

    Gong, Yubing; Xie, Huijuan

    2017-09-01

    Using spike-timing-dependent plasticity (STDP), we study the effect of channel noise on temporal coherence and synchronization of adaptive scale-free Hodgkin-Huxley neuronal networks with time delay. It is found that the spiking regularity and spatial synchronization of the neurons intermittently increase and decrease as channel noise intensity is varied, exhibiting transitions of temporal coherence and synchronization. Moreover, this phenomenon depends on time delay, STDP, and network average degree. As time delay increases, the phenomenon is weakened, however, there are optimal STDP and network average degree by which the phenomenon becomes strongest. These results show that channel noise can intermittently enhance the temporal coherence and synchronization of the delayed adaptive neuronal networks. These findings provide a new insight into channel noise for the information processing and transmission in neural systems.

  3. Experimental geometry for simultaneous beam characterization and sample imaging allowing for pink beam Fourier transform holography or coherent diffractive imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flewett, Samuel; Eisebitt, Stefan

    2011-02-20

    One consequence of the self-amplified stimulated emission process used to generate x rays in free electron lasers (FELs) is the intrinsic shot-to-shot variance in the wavelength and temporal coherence. In order to optimize the results from diffractive imaging experiments at FEL sources, it will be advantageous to acquire a means of collecting coherence and spectral information simultaneously with the diffraction pattern from the sample we wish to study. We present a holographic mask geometry, including a grating structure, which can be used to extract both temporal and spatial coherence information alongside the sample scatter from each individual FEL shot andmore » also allows for the real space reconstruction of the sample using either Fourier transform holography or iterative phase retrieval.« less

  4. Coherent anti-Stokes Raman scattering microscopy: overcoming technical barriers for clinical translation

    PubMed Central

    Tu, Haohua; Boppart, Stephen A.

    2015-01-01

    Clinical translation of coherent anti-Stokes Raman scattering microscopy is of great interest because of the advantages of noninvasive label-free imaging, high sensitivity, and chemical specificity. For this to happen, we have identified and review the technical barriers that must be overcome. Prior investigations have developed advanced techniques (features), each of which can be used to effectively overcome one particular technical barrier. However, the implementation of one or a small number of these advanced features in previous attempts for clinical translation has often introduced more tradeoffs than benefits. In this review, we outline a strategy that would integrate multiple advanced features to overcome all the technical barriers simultaneously, effectively reduce tradeoffs, and synergistically optimize CARS microscopy for clinical translation. The operation of the envisioned system incorporates coherent Raman micro-spectroscopy for identifying vibrational biomolecular markers of disease and single-frequency (or hyperspectral) Raman imaging of these specific biomarkers for real-time in vivo diagnostics and monitoring. An optimal scheme of clinical CARS micro-spectroscopy for thin ex vivo tissues. PMID:23674234

  5. Optimized phase gradient measurements and phase-amplitude interplay in optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Zaitsev, Vladimir Y.; Matveyev, Alexander L.; Matveev, Lev A.; Gelikonov, Grigory V.; Sovetsky, Aleksandr A.; Vitkin, Alex

    2016-11-01

    In compressional optical coherence elastography, phase-variation gradients are used for estimating quasistatic strains created in tissue. Using reference and deformed optical coherence tomography (OCT) scans, one typically compares phases from pixels with the same coordinates in both scans. Usually, this limits the allowable strains to fairly small values < to 10-3, with the caveat that such weak phase gradients may become corrupted by stronger measurement noises. Here, we extend the OCT phase-resolved elastographic methodology by (1) showing that an order of magnitude greater strains can significantly increase the accuracy of derived phase-gradient differences, while also avoiding error-phone phase-unwrapping procedures and minimizing the influence of decorrelation noise caused by suprapixel displacements, (2) discussing the appearance of artifactual stiff inclusions in resultant OCT elastograms in the vicinity of bright scatterers due to the amplitude-phase interplay in phase-variation measurements, and (3) deriving/evaluating methods of phase-gradient estimation that can outperform conventionally used least-square gradient fitting. We present analytical arguments, numerical simulations, and experimental examples to demonstrate the advantages of the proposed optimized phase-variation methodology.

  6. A 16-bit Coherent Ising Machine for One-Dimensional Ring and Cubic Graph Problems

    NASA Astrophysics Data System (ADS)

    Takata, Kenta; Marandi, Alireza; Hamerly, Ryan; Haribara, Yoshitaka; Maruo, Daiki; Tamate, Shuhei; Sakaguchi, Hiromasa; Utsunomiya, Shoko; Yamamoto, Yoshihisa

    2016-09-01

    Many tasks in our modern life, such as planning an efficient travel, image processing and optimizing integrated circuit design, are modeled as complex combinatorial optimization problems with binary variables. Such problems can be mapped to finding a ground state of the Ising Hamiltonian, thus various physical systems have been studied to emulate and solve this Ising problem. Recently, networks of mutually injected optical oscillators, called coherent Ising machines, have been developed as promising solvers for the problem, benefiting from programmability, scalability and room temperature operation. Here, we report a 16-bit coherent Ising machine based on a network of time-division-multiplexed femtosecond degenerate optical parametric oscillators. The system experimentally gives more than 99.6% of success rates for one-dimensional Ising ring and nondeterministic polynomial-time (NP) hard instances. The experimental and numerical results indicate that gradual pumping of the network combined with multiple spectral and temporal modes of the femtosecond pulses can improve the computational performance of the Ising machine, offering a new path for tackling larger and more complex instances.

  7. Smoothing the Path: Technology Education and School Transition

    NASA Astrophysics Data System (ADS)

    Mawson, Brent

    2003-08-01

    The lack of coherence between early childhood education settings and primary school classrooms provides a challenge to the creation of a seamless educational experience in the period from birth to age eight. This paper examines the nature of technological activities in Kindergartens and New Entrant/Year One classes in New Zealand. It highlights commonalities between the two and discusses the potential for technology education to provide a bridge for children to ease their passage into the formal school setting and to provide a coherent educational experience.

  8. Coherent acoustic phonons in nanostructures

    NASA Astrophysics Data System (ADS)

    Dekorsy, T.; Taubert, R.; Hudert, F.; Bartels, A.; Habenicht, A.; Merkt, F.; Leiderer, P.; Köhler, K.; Schmitz, J.; Wagner, J.

    2008-02-01

    Phonons are considered as a most important origin of scattering and dissipation for electronic coherence in nanostructures. The generation of coherent acoustic phonons with femtosecond laser pulses opens the possibility to control phonon dynamics in amplitude and phase. We demonstrate a new experimental technique based on two synchronized femtosecond lasers with GHz repetition rate to study the dynamics of coherently generated acoustic phonons in semiconductor heterostructures with high sensitivity. High-speed synchronous optical sampling (ASOPS) enables to scan a time-delay of 1 ns with 100 fs time resolution with a frequency in the kHz range without a moving part in the set-up. We investigate the dynamics of coherent zone-folded acoustic phonons in semiconductor superlattices (GaAs/AlAs and GaSb/InAs) and of coherent vibration of metallic nanostructures of non-spherical shape using ASOPS.

  9. Protected Quantum Computation with Multiple Resonators in Ultrastrong Coupling Circuit QED

    NASA Astrophysics Data System (ADS)

    Nataf, Pierre; Ciuti, Cristiano

    2011-11-01

    We investigate theoretically the dynamical behavior of a qubit obtained with the two ground eigenstates of an ultrastrong coupling circuit-QED system consisting of a finite number of Josephson fluxonium atoms inductively coupled to a transmission line resonator. We show a universal set of quantum gates by using multiple transmission line resonators (each resonator represents a single qubit). We discuss the intrinsic “anisotropic” nature of noise sources for fluxonium artificial atoms. Through a master equation treatment with colored noise and many-level dynamics, we prove that, for a general class of anisotropic noise sources, the coherence time of the qubit and the fidelity of the quantum operations can be dramatically improved in an optimal regime of ultrastrong coupling, where the ground state is an entangled photonic “cat” state.

  10. Coherence and recurrency: maintenance, control and integration in working memory

    PubMed Central

    Raffone, Antonino

    2007-01-01

    Working memory (WM), including a ‘central executive’, is used to guide behavior by internal goals or intentions. We suggest that WM is best described as a set of three interdependent functions which are implemented in the prefrontal cortex (PFC). These functions are maintenance, control of attention and integration. A model for the maintenance function is presented, and we will argue that this model can be extended to incorporate the other functions as well. Maintenance is the capacity to briefly maintain information in the absence of corresponding input, and even in the face of distracting information. We will argue that maintenance is based on recurrent loops between PFC and posterior parts of the brain, and probably within PFC as well. In these loops information can be held temporarily in an active form. We show that a model based on these structural ideas is capable of maintaining a limited number of neural patterns. Not the size, but the coherence of patterns (i.e., a chunking principle based on synchronous firing of interconnected cell assemblies) determines the maintenance capacity. A mechanism that optimizes coherent pattern segregation, also poses a limit to the number of assemblies (about four) that can concurrently reverberate. Top-down attentional control (in perception, action and memory retrieval) can be modelled by the modulation and re-entry of top-down information to posterior parts of the brain. Hierarchically organized modules in PFC create the possibility for information integration. We argue that large-scale multimodal integration of information creates an ‘episodic buffer’, and may even suffice for implementing a central executive. PMID:17901994

  11. Polarimetry noise in fiber-based optical coherence tomography instrumentation

    PubMed Central

    Zhang, Ellen Ziyi; Vakoc, Benjamin J.

    2011-01-01

    High noise levels in fiber-based polarization-sensitive optical coherence tomography (PS-OCT) have broadly limited its clinical utility. In this study we investigate contribution of polarization mode dispersion (PMD) to the polarimetry noise. We develop numerical models of the PS-OCT system including PMD and validate these models with empirical data. Using these models, we provide a framework for predicting noise levels, for processing signals to reduce noise, and for designing an optimized system. PMID:21935044

  12. LOAPEX: The Long-Range Ocean Acoustic Propagation EXperiment

    DTIC Science & Technology

    2009-01-01

    roughly 4200 m, the OBS/H packages at 5000 m received the LOAPEX transmissions. 4) Signal Processing : In general, signal processing for all receptions is...coherently in the time domain. To optimize processing , is based on the coherence time of the received signal and the resulting pro- cessing gain is . The...replica of the transmission. This process produces a triangular-shaped pulse with a time resolution of 1-b length, or 27 ms, and additional processing

  13. Coulomb interaction rules timescales in potassium ion channel tunneling

    NASA Astrophysics Data System (ADS)

    De March, N.; Prado, S. D.; Brunnet, L. G.

    2018-06-01

    Assuming the selectivity filter of KcsA potassium ion channel may exhibit quantum coherence, we extend a previous model by Vaziri and Plenio (2010 New J. Phys. 12 085001) to take into account Coulomb repulsion between potassium ions. We show that typical ion transit timescales are determined by this interaction, which imposes optimal input/output parameter ranges. Also, as observed in other examples of quantum tunneling in biological systems, the addition of moderate noise helps coherent ion transport.

  14. Optimal fiber design for large capacity long haul coherent transmission [Invited].

    PubMed

    Hasegawa, Takemi; Yamamoto, Yoshinori; Hirano, Masaaki

    2017-01-23

    Fiber figure of merit (FOM), derived from the GN-model theory and validated by several experiments, can predict improvement in OSNR or transmission distance using advanced fibers. We review the FOM theory and present design results of optimal fiber for large capacity long haul transmission, showing variation in design results according to system configuration.

  15. Coherence Evolution and Transfer Supplemented by Sender's Initial-State Restoring

    NASA Astrophysics Data System (ADS)

    Fel'dman, E. B.; Zenchuk, A. I.

    2017-12-01

    The evolution of quantum coherences comes with a set of conservation laws provided that the Hamiltonian governing this evolution conserves the spin-excitation number. At that, coherences do not intertwist during the evolution. Using the transmission line and the receiver in the initial ground state we can transfer the coherences to the receiver without interaction between them, although the matrix elements contributing to each particular coherence intertwist in the receiver's state. Therefore we propose a tool based on the unitary transformation at the receiver side to untwist these elements and thus restore (at least partially) the structure of the sender's initial density matrix. A communication line with two-qubit sender and receiver is considered as an example of implementation of this technique.

  16. Coherent x-ray diffraction imaging with nanofocused illumination.

    PubMed

    Schroer, C G; Boye, P; Feldkamp, J M; Patommel, J; Schropp, A; Schwab, A; Stephan, S; Burghammer, M; Schöder, S; Riekel, C

    2008-08-29

    Coherent x-ray diffraction imaging is an x-ray microscopy technique with the potential of reaching spatial resolutions well beyond the diffraction limits of x-ray microscopes based on optics. However, the available coherent dose at modern x-ray sources is limited, setting practical bounds on the spatial resolution of the technique. By focusing the available coherent flux onto the sample, the spatial resolution can be improved for radiation-hard specimens. A small gold particle (size <100 nm) was illuminated with a hard x-ray nanobeam (E=15.25 keV, beam dimensions approximately 100 x 100 nm2) and is reconstructed from its coherent diffraction pattern. A resolution of about 5 nm is achieved in 600 s exposure time.

  17. Retinal optical coherence tomography at 1 μm with dynamic focus control and axial motion tracking

    NASA Astrophysics Data System (ADS)

    Cua, Michelle; Lee, Sujin; Miao, Dongkai; Ju, Myeong Jin; Mackenzie, Paul J.; Jian, Yifan; Sarunic, Marinko V.

    2016-02-01

    High-resolution optical coherence tomography (OCT) retinal imaging is important to noninvasively visualize the various retinal structures to aid in better understanding of the pathogenesis of vision-robbing diseases. However, conventional OCT systems have a trade-off between lateral resolution and depth-of-focus. In this report, we present the development of a focus-stacking OCT system with automatic focus optimization for high-resolution, extended-focal-range clinical retinal imaging by incorporating a variable-focus liquid lens into the sample arm optics. Retinal layer tracking and selection was performed using a graphics processing unit accelerated processing platform for focus optimization, providing real-time layer-specific en face visualization. After optimization, multiple volumes focused at different depths were acquired, registered, and stitched together to yield a single, high-resolution focus-stacked dataset. Using this system, we show high-resolution images of the retina and optic nerve head, from which we extracted clinically relevant parameters such as the nerve fiber layer thickness and lamina cribrosa microarchitecture.

  18. Fluid therapy and the hypovolemic microcirculation.

    PubMed

    Gruartmoner, G; Mesquida, J; Ince, Can

    2015-08-01

    In shock states, optimizing intravascular volume is crucial to promote an adequate oxygen delivery to the tissues. Our current practice in fluid management pivots on the Frank-Starling law of the heart, and the effects of fluids are measured according to the induced changes on stroke volume. The purpose of this review is to evaluate the boundaries of current macrohemodynamic approach to fluid administration, and to introduce the microcirculatory integration as a fundamental part of tissue perfusion monitoring. Macrocirculatory changes induced by volume expansion are not always coupled to proportional changes in microcirculatory perfusion. Loss of hemodynamic coherence limits the value of guiding fluid therapy according to macrohemodynamics, and highlights the importance of evaluating the ultimate target of volume administration, the microcirculation. Current approach to intravascular volume optimization is made from a macrohemodynamic perspective. However, several situations wherein macrocirculatory and microcirculatory coherence is lost have been described. Future clinical trials should explore the usefulness of integrating the microcirculatory evaluation in fluid optimization.

  19. Retinal optical coherence tomography at 1 μm with dynamic focus control and axial motion tracking.

    PubMed

    Cua, Michelle; Lee, Sujin; Miao, Dongkai; Ju, Myeong Jin; Mackenzie, Paul J; Jian, Yifan; Sarunic, Marinko V

    2016-02-01

    High-resolution optical coherence tomography (OCT) retinal imaging is important to noninvasively visualize the various retinal structures to aid in better understanding of the pathogenesis of vision-robbing diseases. However, conventional OCT systems have a trade-off between lateral resolution and depth-of-focus. In this report, we present the development of a focus-stacking OCT system with automatic focus optimization for high-resolution, extended-focal-range clinical retinal imaging by incorporating a variable-focus liquid lens into the sample arm optics. Retinal layer tracking and selection was performed using a graphics processing unit accelerated processing platform for focus optimization, providing real-time layer-specific en face visualization. After optimization, multiple volumes focused at different depths were acquired, registered, and stitched together to yield a single, high-resolution focus-stacked dataset. Using this system, we show high-resolution images of the retina and optic nerve head, from which we extracted clinically relevant parameters such as the nerve fiber layer thickness and lamina cribrosa microarchitecture.

  20. Glucose concentration measured by the hybrid coherent anti-Stokes Raman-scattering technique

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Zhang, Aihua; Zhi, Miaochan; Sokolov, Alexei V.; Welch, George R.

    2010-01-01

    We investigate the possibility of using a hybrid coherent anti-Stokes Raman scattering technique for noninvasive monitoring of blood glucose levels. Our technique combines instantaneous coherent excitation of several characteristic molecular vibrations with subsequent probing of these vibrations by an optimally shaped, time-delayed, narrowband laser pulse. This pulse configuration mitigates the nonresonant four-wave mixing background while maximizing the Raman-resonant signal and allows rapid and highly specific detection even in the presence of multiple scattering. Under certain conditions we find that the measured signal is linearly proportional to the glucose concentration due to optical interference with the residual background light, which allows reliable detection of spectral signatures down to medically relevant glucose levels.

  1. Mechanical design of thin-film diamond crystal mounting apparatus for coherence preservation hard x-ray optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, Deming, E-mail: shu@aps.anl.gov; Shvyd’ko, Yuri V.; Stoupin, Stanislav

    2016-07-27

    A new thin-film diamond crystal mounting apparatus has been designed at the Advanced Photon Source (APS) for coherence preservation hard x-ray optics with optimized thermal contact and minimized crystal strain. This novel mechanical design can be applied to new development in the field of: x-ray optics cavities for hard x-ray free-electron laser oscillators (XFELOs), self-seeding monochromators for hard x-ray free-electron laser (XFEL) with high average thermal loading, high heat load diamond crystal monochromators and beam-sharing/beam-split-and-delay devices for XFEL facilities and future upgraded high-brightness coherent x-ray source in the MBA lattice configuration at the APS.

  2. Achieving Optimal Quantum Acceleration of Frequency Estimation Using Adaptive Coherent Control.

    PubMed

    Naghiloo, M; Jordan, A N; Murch, K W

    2017-11-03

    Precision measurements of frequency are critical to accurate time keeping and are fundamentally limited by quantum measurement uncertainties. While for time-independent quantum Hamiltonians the uncertainty of any parameter scales at best as 1/T, where T is the duration of the experiment, recent theoretical works have predicted that explicitly time-dependent Hamiltonians can yield a 1/T^{2} scaling of the uncertainty for an oscillation frequency. This quantum acceleration in precision requires coherent control, which is generally adaptive. We experimentally realize this quantum improvement in frequency sensitivity with superconducting circuits, using a single transmon qubit. With optimal control pulses, the theoretically ideal frequency precision scaling is reached for times shorter than the decoherence time. This result demonstrates a fundamental quantum advantage for frequency estimation.

  3. Multiband phase-modulated radio over IsOWC link with balanced coherent homodyne detection

    NASA Astrophysics Data System (ADS)

    Zong, Kang; Zhu, Jiang

    2017-11-01

    In this paper, we present a multiband phase-modulated radio over intersatellite optical wireless communication (IsOWC) link with balanced coherent homodyne detection. The proposed system can provide high linearity for transparent transport of multiband radio frequency (RF) signals and better receiver sensitivity than intensity modulated with direct detection (IM/DD) system. The exact analytical expression of signal to noise and distortion ratio (SNDR) is derived considering the third-order intermodulation product and amplifier spontaneous emission (ASE) noise. Numerical results of SNDR with various number of subchannels and modulation index are given. Results indicate that the optimal modulation index exists to maximize the SNDR. With the same system parameters, the value of the optimal modulation index will decrease with the increase of number of subchannels.

  4. Systematic design and three-dimensional simulation of X-ray FEL oscillator for Shanghai Coherent Light Facility

    NASA Astrophysics Data System (ADS)

    Li, Kai; Deng, Haixiao

    2018-07-01

    The Shanghai Coherent Light Facility (SCLF) is a quasi-continuous wave hard X-ray free electron laser facility, which is currently under construction. Due to the high repetition rate and high-quality electron beams, it is straightforward to consider X-ray free electron laser oscillator (XFELO) operation for the SCLF. In this paper, the main processes for XFELO design, and parameter optimization of the undulator, X-ray cavity, and electron beam are described. A three-dimensional X-ray crystal Bragg diffraction code, named BRIGHT, was introduced for the first time, which can be combined with the GENESIS and OPC codes for the numerical simulations of the XFELO. The performance of the XFELO of the SCLF is investigated and optimized by theoretical analysis and numerical simulation.

  5. Capacity of MIMO free space optical communications using multiple partially coherent beams propagation through non-Kolmogorov strong turbulence.

    PubMed

    Deng, Peng; Kavehrad, Mohsen; Liu, Zhiwen; Zhou, Zhou; Yuan, Xiuhua

    2013-07-01

    We study the average capacity performance for multiple-input multiple-output (MIMO) free-space optical (FSO) communication systems using multiple partially coherent beams propagating through non-Kolmogorov strong turbulence, assuming equal gain combining diversity configuration and the sum of multiple gamma-gamma random variables for multiple independent partially coherent beams. The closed-form expressions of scintillation and average capacity are derived and then used to analyze the dependence on the number of independent diversity branches, power law α, refractive-index structure parameter, propagation distance and spatial coherence length of source beams. Obtained results show that, the average capacity increases more significantly with the increase in the rank of MIMO channel matrix compared with the diversity order. The effect of the diversity order on the average capacity is independent of the power law, turbulence strength parameter and spatial coherence length, whereas these effects on average capacity are gradually mitigated as the diversity order increases. The average capacity increases and saturates with the decreasing spatial coherence length, at rates depending on the diversity order, power law and turbulence strength. There exist optimal values of the spatial coherence length and diversity configuration for maximizing the average capacity of MIMO FSO links over a variety of atmospheric turbulence conditions.

  6. Fovea detection in optical coherence tomography using convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Liefers, Bart; Venhuizen, Freerk G.; Theelen, Thomas; Hoyng, Carel; van Ginneken, Bram; Sánchez, Clara I.

    2017-02-01

    The fovea is an important clinical landmark that is used as a reference for assessing various quantitative measures, such as central retinal thickness or drusen count. In this paper we propose a novel method for automatic detection of the foveal center in Optical Coherence Tomography (OCT) scans. Although the clinician will generally aim to center the OCT scan on the fovea, post-acquisition image processing will give a more accurate estimate of the true location of the foveal center. A Convolutional Neural Network (CNN) was trained on a set of 781 OCT scans that classifies each pixel in the OCT B-scan with a probability of belonging to the fovea. Dilated convolutions were used to obtain a large receptive field, while maintaining pixel-level accuracy. In order to train the network more effectively, negative patches were sampled selectively after each epoch. After CNN classification of the entire OCT volume, the predicted foveal center was chosen as the voxel with maximum output probability, after applying an optimized three-dimensional Gaussian blurring. We evaluate the performance of our method on a data set of 99 OCT scans presenting different stages of Age-related Macular Degeneration (AMD). The fovea was correctly detected in 96:9% of the cases, with a mean distance error of 73 μm(+/-112 μm). This result was comparable to the performance of a second human observer who obtained a mean distance error of 69 μm (+/-94 μm). Experiments showed that the proposed method is accurate and robust even in retinas heavily affected by pathology.

  7. GO-based functional dissimilarity of gene sets.

    PubMed

    Díaz-Díaz, Norberto; Aguilar-Ruiz, Jesús S

    2011-09-01

    The Gene Ontology (GO) provides a controlled vocabulary for describing the functions of genes and can be used to evaluate the functional coherence of gene sets. Many functional coherence measures consider each pair of gene functions in a set and produce an output based on all pairwise distances. A single gene can encode multiple proteins that may differ in function. For each functionality, other proteins that exhibit the same activity may also participate. Therefore, an identification of the most common function for all of the genes involved in a biological process is important in evaluating the functional similarity of groups of genes and a quantification of functional coherence can helps to clarify the role of a group of genes working together. To implement this approach to functional assessment, we present GFD (GO-based Functional Dissimilarity), a novel dissimilarity measure for evaluating groups of genes based on the most relevant functions of the whole set. The measure assigns a numerical value to the gene set for each of the three GO sub-ontologies. Results show that GFD performs robustly when applied to gene set of known functionality (extracted from KEGG). It performs particularly well on randomly generated gene sets. An ROC analysis reveals that the performance of GFD in evaluating the functional dissimilarity of gene sets is very satisfactory. A comparative analysis against other functional measures, such as GS2 and those presented by Resnik and Wang, also demonstrates the robustness of GFD.

  8. Development of a 9.3 micrometer CW LIDAR for the study of atmospheric aerosol

    NASA Technical Reports Server (NTRS)

    Whiteside, B. N.; Schotland, R. M.

    1993-01-01

    This report provides a brief summary of the basic requirements to obtain coherent or heterodyne mixing of the optical radiation backscattered by atmospheric aerosols with that from a fixed frequency source. The continuous wave (CW) mode of operation for a coherent lidar is reviewed along with the associated lidar transfer equation. A complete optical design of the three major subsystems of a CW, coherent lidar is given. Lens design software is implemented to model and optimize receiver performance. Techniques for the opto-mechanical assembly and some of the critical tolerances of the coherent lidar are provided along with preliminary tests of the subsystems. Included in these tests is a comparison of the experimental and the theoretical average power signal-to-noise ratio. The analog to digital software used to evaluate the power spectrum of the backscattered signal is presented in the Appendix of this report.

  9. Practical witness for electronic coherences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Allan S.; Department of Physics, Imperial College London, London; Yuen-Zhou, Joel

    2014-12-28

    The origin of the coherences in two-dimensional spectroscopy of photosynthetic complexes remains disputed. Recently, it has been shown that in the ultrashort-pulse limit, oscillations in a frequency-integrated pump-probe signal correspond exclusively to electronic coherences, and thus such experiments can be used to form a test for electronic vs. vibrational oscillations in such systems. Here, we demonstrate a method for practically implementing such a test, whereby pump-probe signals are taken at several different pulse durations and used to extrapolate to the ultrashort-pulse limit. We present analytic and numerical results determining requirements for pulse durations and the optimal choice of pulse centralmore » frequency, which can be determined from an absorption spectrum. Our results suggest that for numerous systems, the required experiment could be implemented by many ultrafast spectroscopy laboratories using pulses of tens of femtoseconds in duration. Such experiments could resolve the standing debate over the nature of coherences in photosynthetic complexes.« less

  10. Assembly and Commissioning of a Liquid Argon Detector and Development of a Slow Control System for the COHERENT Experiment

    NASA Astrophysics Data System (ADS)

    Kaemingk, Michael; Cooper, Robert; Coherent Collaboration

    2016-09-01

    COHERENT is a collaboration whose goal is to measure coherent elastic neutrino-nucleus scattering (CEvNS). COHERENT plans to deploy a suite of detectors to measure the expected number-of-neutrons squared dependence of CEvNS at the Spallation Neutron Source at Oak Ridge National Laboratory. One of these detectors is a liquid argon detector which can measure these low energy nuclear recoil interactions. Ensuring optimal functionality requires the development of a slow control system to monitor and control various aspects, such as the temperature and pressure, of these detectors. Electronics manufactured by Beckhoff, Digilent, and Arduino among others are being used to create these slow control systems. This poster will generally discuss the assembly and commissioning of this CENNS-10 liquid argon detector at Indiana University and will feature work on the slow control systems.

  11. Practical witness for electronic coherences.

    PubMed

    Johnson, Allan S; Yuen-Zhou, Joel; Aspuru-Guzik, Alán; Krich, Jacob J

    2014-12-28

    The origin of the coherences in two-dimensional spectroscopy of photosynthetic complexes remains disputed. Recently, it has been shown that in the ultrashort-pulse limit, oscillations in a frequency-integrated pump-probe signal correspond exclusively to electronic coherences, and thus such experiments can be used to form a test for electronic vs. vibrational oscillations in such systems. Here, we demonstrate a method for practically implementing such a test, whereby pump-probe signals are taken at several different pulse durations and used to extrapolate to the ultrashort-pulse limit. We present analytic and numerical results determining requirements for pulse durations and the optimal choice of pulse central frequency, which can be determined from an absorption spectrum. Our results suggest that for numerous systems, the required experiment could be implemented by many ultrafast spectroscopy laboratories using pulses of tens of femtoseconds in duration. Such experiments could resolve the standing debate over the nature of coherences in photosynthetic complexes.

  12. Relationship between dysfunctional breathing patterns and ability to achieve target heart rate variability with features of "coherence" during biofeedback.

    PubMed

    Courtney, Rosalba; Cohen, Marc; van Dixhoorn, Jan

    2011-01-01

    Heart rate variability (HRV) biofeedback is a self-regulation strategy used to improve conditions including asthma, stress, hypertension, and chronic obstructive pulmonary disease. Respiratory muscle function affects hemodynamic influences on respiratory sinus arrhythmia (RSA), and HRV and HRV-biofeedback protocols often include slow abdominal breathing to achieve physiologically optimal patterns of HRV with power spectral distribution concentrated around the 0.1-Hz frequency and large amplitude. It is likely that optimal balanced breathing patterns and ability to entrain heart rhythms to breathing reflect physiological efficiency and resilience and that individuals with dysfunctional breathing patterns may have difficulty voluntarily modulating HRV and RSA. The relationship between breathing movement patterns and HRV, however, has not been investigated. This study examines how individuals' habitual breathing patterns correspond with their ability to optimize HRV and RSA. Breathing pattern was assessed using the Manual Assessment of Respiratory Motion (MARM) and the Hi Lo manual palpation techniques in 83 people with possible dysfunctional breathing before they attempted HRV biofeedback. Mean respiratory rate was also assessed. Subsequently, participants applied a brief 5-minute biofeedback protocol, involving breathing and positive emotional focus, to achieve HRV patterns proposed to reflect physiological "coherence" and entrainment of heart rhythm oscillations to other oscillating body systems. Thoracic-dominant breathing was associated with decreased coherence of HRV (r = -.463, P = .0001). Individuals with paradoxical breathing had the lowest HRV coherence (t(8) = 10.7, P = .001), and the negative relationship between coherence of HRV and extent of thoracic breathing was strongest in this group (r = -.768, P = .03). Dysfunctional breathing patterns are associated with decreased ability to achieve HRV patterns that reflect cardiorespiratory efficiency and autonomic nervous system balance. This suggests that dysfunctional breathing patterns are not only biomechanically inefficient but also reflect decreased physiological resilience. Breathing assessment using simple manual techniques such as the MARM and Hi Lo may be useful in HRV biofeedback to identify if poor responders require more emphasis on correction of dysfunctional breathing.

  13. Multiobjective optimizations of a novel cryocooled dc gun based ultrafast electron diffraction beam line

    NASA Astrophysics Data System (ADS)

    Gulliford, Colwyn; Bartnik, Adam; Bazarov, Ivan

    2016-09-01

    We present the results of multiobjective genetic algorithm optimizations of a single-shot ultrafast electron diffraction beam line utilizing a 225 kV dc gun with a novel cryocooled photocathode system and buncher cavity. Optimizations of the transverse projected emittance as a function of bunch charge are presented and discussed in terms of the scaling laws derived in the charge saturation limit. Additionally, optimization of the transverse coherence length as a function of final rms bunch length at the sample location have been performed for three different sample radii: 50, 100, and 200 μ m , for two final bunch charges: 1 05 electrons (16 fC) and 1 06 electrons (160 fC). Example optimal solutions are analyzed, and the effects of disordered induced heating estimated. In particular, a relative coherence length of Lc ,x/σx=0.27 nm /μ m was obtained for a final bunch charge of 1 05 electrons and final bunch length of σt≈100 fs . For a final charge of 1 06 electrons the cryogun produces Lc ,x/σx≈0.1 nm /μ m for σt≈100 - 200 fs and σx≥50 μ m . These results demonstrate the viability of using genetic algorithms in the design and operation of ultrafast electron diffraction beam lines.

  14. Study to investigate and evaluate means of optimizing the radar function. [systems engineering of pulse radar for the space shuttle

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The investigations for a rendezvous radar system design and an integrated radar/communication system design are presented. Based on these investigations, system block diagrams are given and system parameters are optimized for the noncoherent pulse and coherent pulse Doppler radar modulation types. Both cooperative (transponder) and passive radar operation are examined including the optimization of the corresponding transponder design for the cooperative mode of operation.

  15. Category Coherence and Category-Based Property Induction

    ERIC Educational Resources Information Center

    Rehder, Bob; Hastie, Reid

    2004-01-01

    One important property of human object categories is that they define the sets of exemplars to which newly observed properties are generalized. We manipulated the causal knowledge associated with novel categories and assessed the resulting strength of property inductions. We found that the theoretical coherence afforded to a category by…

  16. Dazzling Glare: Protection Criteria Versus Visual Performance

    DTIC Science & Technology

    1989-06-07

    6 3 Coherent vs Noncoherent Intraocular Glare ................................................................ 7 4 Coherent vs... Noncoherent Interocular Glare ................................................ 8.............. 5 Filtered Xenon Are Lamp vs Helium Neon Laser...glare effects in order to design more effective protective eyewear and to ensure that those who might be exposed in an operational setting know what

  17. An Integrative Theory of Numerical Development

    ERIC Educational Resources Information Center

    Siegler, Robert; Lortie-Forgues, Hugues

    2014-01-01

    Understanding of numerical development is growing rapidly, but the volume and diversity of findings can make it difficult to perceive any coherence in the process. The integrative theory of numerical development posits that a coherent theme is present, however--progressive broadening of the set of numbers whose magnitudes can be accurately…

  18. Heterodyne efficiency of a coherent free-space optical communication model through atmospheric turbulence.

    PubMed

    Ren, Yongxiong; Dang, Anhong; Liu, Ling; Guo, Hong

    2012-10-20

    The heterodyne efficiency of a coherent free-space optical (FSO) communication model under the effects of atmospheric turbulence and misalignment is studied in this paper. To be more general, both the transmitted beam and local oscillator beam are assumed to be partially coherent based on the Gaussian Schell model (GSM). By using the derived analytical form of the cross-spectral function of a GSM beam propagating through atmospheric turbulence, a closed-form expression of heterodyne efficiency is derived, assuming that the propagation directions for the transmitted and local oscillator beams are slightly different. Then the impacts of atmospheric turbulence, configuration of the two beams (namely, beam radius and spatial coherence width), detector radius, and misalignment angle over heterodyne efficiency are examined. Numerical results suggest that the beam radius of the two overlapping beams can be optimized to achieve a maximum heterodyne efficiency according to the turbulence conditions and the detector radius. It is also found that atmospheric turbulence conditions will significantly degrade the efficiency of heterodyne detection, and compared to fully coherent beams, partially coherent beams are less sensitive to the changes in turbulence conditions and more robust against misalignment at the receiver.

  19. Software Coherence in Multiprocessor Memory Systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Bolosky, William Joseph

    1993-01-01

    Processors are becoming faster and multiprocessor memory interconnection systems are not keeping up. Therefore, it is necessary to have threads and the memory they access as near one another as possible. Typically, this involves putting memory or caches with the processors, which gives rise to the problem of coherence: if one processor writes an address, any other processor reading that address must see the new value. This coherence can be maintained by the hardware or with software intervention. Systems of both types have been built in the past; the hardware-based systems tended to outperform the software ones. However, the ratio of processor to interconnect speed is now so high that the extra overhead of the software systems may no longer be significant. This issue is explored both by implementing a software maintained system and by introducing and using the technique of offline optimal analysis of memory reference traces. It finds that in properly built systems, software maintained coherence can perform comparably to or even better than hardware maintained coherence. The architectural features necessary for efficient software coherence to be profitable include a small page size, a fast trap mechanism, and the ability to execute instructions while remote memory references are outstanding.

  20. Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging

    PubMed Central

    Redding, Brandon; Cerjan, Alexander; Huang, Xue; Lee, Minjoo Larry; Stone, A. Douglas; Choma, Michael A.; Cao, Hui

    2015-01-01

    The spatial coherence of laser sources has limited their application to parallel imaging and projection due to coherent artifacts, such as speckle. In contrast, traditional incoherent light sources, such as thermal sources or light emitting diodes (LEDs), provide relatively low power per independent spatial mode. Here, we present a chip-scale, electrically pumped semiconductor laser based on a novel design, demonstrating high power per mode with much lower spatial coherence than conventional laser sources. The laser resonator was fabricated with a chaotic, D-shaped cavity optimized to achieve highly multimode lasing. Lasing occurs simultaneously and independently in ∼1,000 modes, and hence the total emission exhibits very low spatial coherence. Speckle-free full-field imaging is demonstrated using the chaotic cavity laser as the illumination source. The power per mode of the sample illumination is several orders of magnitude higher than that of a LED or thermal light source. Such a compact, low-cost source, which combines the low spatial coherence of a LED with the high spectral radiance of a laser, could enable a wide range of high-speed, full-field imaging and projection applications. PMID:25605946

  1. Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging.

    PubMed

    Redding, Brandon; Cerjan, Alexander; Huang, Xue; Lee, Minjoo Larry; Stone, A Douglas; Choma, Michael A; Cao, Hui

    2015-02-03

    The spatial coherence of laser sources has limited their application to parallel imaging and projection due to coherent artifacts, such as speckle. In contrast, traditional incoherent light sources, such as thermal sources or light emitting diodes (LEDs), provide relatively low power per independent spatial mode. Here, we present a chip-scale, electrically pumped semiconductor laser based on a novel design, demonstrating high power per mode with much lower spatial coherence than conventional laser sources. The laser resonator was fabricated with a chaotic, D-shaped cavity optimized to achieve highly multimode lasing. Lasing occurs simultaneously and independently in ∼1,000 modes, and hence the total emission exhibits very low spatial coherence. Speckle-free full-field imaging is demonstrated using the chaotic cavity laser as the illumination source. The power per mode of the sample illumination is several orders of magnitude higher than that of a LED or thermal light source. Such a compact, low-cost source, which combines the low spatial coherence of a LED with the high spectral radiance of a laser, could enable a wide range of high-speed, full-field imaging and projection applications.

  2. Identification of individual coherent sets associated with flow trajectories using coherent structure coloring

    NASA Astrophysics Data System (ADS)

    Schlueter-Kuck, Kristy L.; Dabiri, John O.

    2017-09-01

    We present a method for identifying the coherent structures associated with individual Lagrangian flow trajectories even where only sparse particle trajectory data are available. The method, based on techniques in spectral graph theory, uses the Coherent Structure Coloring vector and associated eigenvectors to analyze the distance in higher-dimensional eigenspace between a selected reference trajectory and other tracer trajectories in the flow. By analyzing this distance metric in a hierarchical clustering, the coherent structure of which the reference particle is a member can be identified. This algorithm is proven successful in identifying coherent structures of varying complexities in canonical unsteady flows. Additionally, the method is able to assess the relative coherence of the associated structure in comparison to the surrounding flow. Although the method is demonstrated here in the context of fluid flow kinematics, the generality of the approach allows for its potential application to other unsupervised clustering problems in dynamical systems such as neuronal activity, gene expression, or social networks.

  3. 2011 Quantum Control of Light & Matter Gordon Research Conference (July 31-August 5, 2011, Mount Holyoke College, South Hadley, MA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas Weinacht

    2011-08-05

    Quantum control of light and matter is the quest to steer a physical process to a desirable outcome, employing constructive and destructive interference. Three basic questions address feasibility of quantum control: (1) The problem of controllability, does a control field exist for a preset initial and target state; (2) Synthesis, constructively finding the field that leads to the target; and (3) Optimal Control Theory - optimizing the field that carries out this task. These continue to be the fundamental theoretical questions to be addressed in the conference. How to realize control fields in the laboratory is an ongoing challenge. Thismore » task is very diverse viewing the emergence of control scenarios ranging from attoseconds to microseconds. How do the experimental observations reflect on the theoretical framework? The typical arena of quantum control is an open environment where much of the control is indirect. How are control scenarios realized in dissipative open systems? Can new control opportunities emerge? Can one null decoherence effects? An ideal setting for control is ultracold matter. The initial and final state can be defined more precisely. Coherent control unifies many fields of physical science. A lesson learned in one field can reflect on another. Currently quantum information processing has emerged as a primary target of control where the key issue is controlling quantum gate operation. Modern nonlinear spectroscopy has emerged as another primary field. The challenge is to unravel the dynamics of molecular systems undergoing strong interactions with the environment. Quantum optics where non-classical fields are to be generated and employed. Finally, coherent control is the basis for quantum engineering. These issues will be under the limelight of the Gordon conference on Quantum Control of Light and Matter.« less

  4. Coherence of Personal Narratives across the Lifespan: A Multidimensional Model and Coding Method

    PubMed Central

    Reese, Elaine; Haden, Catherine A.; Baker-Ward, Lynne; Bauer, Patricia; Fivush, Robyn; Ornstein, Peter A.

    2012-01-01

    Personal narratives are integral to autobiographical memory and to identity, with coherent personal narratives being linked to positive developmental outcomes across the lifespan. In this article, we review the theoretical and empirical literature that sets the stage for a new lifespan model of personal narrative coherence. This new model integrates context, chronology, and theme as essential dimensions of personal narrative coherence, each of which relies upon different developmental achievements and has a different developmental trajectory across the lifespan. A multidimensional method of coding narrative coherence (the Narrative Coherence Coding Scheme or NaCCS) was derived from the model and is described here. The utility of this approach is demonstrated by its application to 498 narratives that were collected in six laboratories from participants ranging in age from 3 years to adulthood. The value of the model is illustrated further by a discussion of its potential to guide future research on the developmental foundations of narrative coherence and on the benefits of personal narrative coherence for different aspects of psychological functioning. PMID:22754399

  5. Coherent Two-Mode Dynamics of a Nanowire Force Sensor

    NASA Astrophysics Data System (ADS)

    Braakman, Floris R.; Rossi, Nicola; Tütüncüoglu, Gözde; Morral, Anna Fontcuberta i.; Poggio, Martino

    2018-05-01

    Classically coherent dynamics analogous to those of quantum two-level systems are studied in the setting of force sensing. We demonstrate quantitative control over the coupling between two orthogonal mechanical modes of a nanowire cantilever through measurement of avoided crossings as we deterministically position the nanowire inside an electric field. Furthermore, we demonstrate Rabi oscillations between the two mechanical modes in the strong-coupling regime. These results give prospects of implementing coherent two-mode control techniques for force-sensing signal enhancement.

  6. Ex-CARS: exotic configuration for coherent anti-Stokes Raman scattering microspectroscopy utilizing two laser sources

    PubMed Central

    Yakovlev, Vladislav V.; Petrov, Georgi I.; Noojin, Gary D.; Harbert, Corey; Denton, Michael; Thomas, Robert

    2011-01-01

    We propose and experimentally demonstrate a new coherent anti-Stokes Raman scattering setting, which relies on a coherent excitation of Raman vibration using a broadband ultrashort laser pulse and signal read-out using a conventional continuous wave laser radiation. Such an exotic arrangement does not require any synchronization of two laser sources and can be used for direct comparison of amplitudes of nonlinear and spontaneous Raman signals. Ex-CARS in time- (top panel) and frequency- (bottom panel) domain. PMID:20635427

  7. Demonstration of coherent-state discrimination using a displacement-controlled photon-number-resolving detector.

    PubMed

    Wittmann, Christoffer; Andersen, Ulrik L; Takeoka, Masahiro; Sych, Denis; Leuchs, Gerd

    2010-03-12

    We experimentally demonstrate a new measurement scheme for the discrimination of two coherent states. The measurement scheme is based on a displacement operation followed by a photon-number-resolving detector, and we show that it outperforms the standard homodyne detector which we, in addition, prove to be optimal within all Gaussian operations including conditional dynamics. We also show that the non-Gaussian detector is superior to the homodyne detector in a continuous variable quantum key distribution scheme.

  8. Adiabatic quantum computation with neutral atoms via the Rydberg blockade

    NASA Astrophysics Data System (ADS)

    Goyal, Krittika; Deutsch, Ivan

    2011-05-01

    We study a trapped-neutral-atom implementation of the adiabatic model of quantum computation whereby the Hamiltonian of a set of interacting qubits is changed adiabatically so that its ground state evolves to the desired output of the algorithm. We employ the ``Rydberg blockade interaction,'' which previously has been used to implement two-qubit entangling gates in the quantum circuit model. Here it is employed via off-resonant virtual dressing of the excited levels, so that atoms always remain in the ground state. The resulting dressed-Rydberg interaction is insensitive to the distance between the atoms within a certain blockade radius, making this process robust to temperature and vibrational fluctuations. Single qubit interactions are implemented with global microwaves and atoms are locally addressed with light shifts. With these ingredients, we study a protocol to implement the two-qubit Quadratic Unconstrained Binary Optimization (QUBO) problem. We model atom trapping, addressing, coherent evolution, and decoherence. We also explore collective control of the many-atom system and generalize the QUBO problem to multiple qubits. We study a trapped-neutral-atom implementation of the adiabatic model of quantum computation whereby the Hamiltonian of a set of interacting qubits is changed adiabatically so that its ground state evolves to the desired output of the algorithm. We employ the ``Rydberg blockade interaction,'' which previously has been used to implement two-qubit entangling gates in the quantum circuit model. Here it is employed via off-resonant virtual dressing of the excited levels, so that atoms always remain in the ground state. The resulting dressed-Rydberg interaction is insensitive to the distance between the atoms within a certain blockade radius, making this process robust to temperature and vibrational fluctuations. Single qubit interactions are implemented with global microwaves and atoms are locally addressed with light shifts. With these ingredients, we study a protocol to implement the two-qubit Quadratic Unconstrained Binary Optimization (QUBO) problem. We model atom trapping, addressing, coherent evolution, and decoherence. We also explore collective control of the many-atom system and generalize the QUBO problem to multiple qubits. We acknowledge funding from the AQUARIUS project, Sandia National Laboratories

  9. Continuous Variable Quantum Key Distribution Using Polarized Coherent States

    NASA Astrophysics Data System (ADS)

    Vidiella-Barranco, A.; Borelli, L. F. M.

    We discuss a continuous variables method of quantum key distribution employing strongly polarized coherent states of light. The key encoding is performed using the variables known as Stokes parameters, rather than the field quadratures. Their quantum counterpart, the Stokes operators Ŝi (i=1,2,3), constitute a set of non-commuting operators, being the precision of simultaneous measurements of a pair of them limited by an uncertainty-like relation. Alice transmits a conveniently modulated two-mode coherent state, and Bob randomly measures one of the Stokes parameters of the incoming beam. After performing reconciliation and privacy amplification procedures, it is possible to distill a secret common key. We also consider a non-ideal situation, in which coherent states with thermal noise, instead of pure coherent states, are used for encoding.

  10. High-speed classification of coherent X-ray diffraction patterns on the K computer for high-resolution single biomolecule imaging.

    PubMed

    Tokuhisa, Atsushi; Arai, Junya; Joti, Yasumasa; Ohno, Yoshiyuki; Kameyama, Toyohisa; Yamamoto, Keiji; Hatanaka, Masayuki; Gerofi, Balazs; Shimada, Akio; Kurokawa, Motoyoshi; Shoji, Fumiyoshi; Okada, Kensuke; Sugimoto, Takashi; Yamaga, Mitsuhiro; Tanaka, Ryotaro; Yokokawa, Mitsuo; Hori, Atsushi; Ishikawa, Yutaka; Hatsui, Takaki; Go, Nobuhiro

    2013-11-01

    Single-particle coherent X-ray diffraction imaging using an X-ray free-electron laser has the potential to reveal the three-dimensional structure of a biological supra-molecule at sub-nanometer resolution. In order to realise this method, it is necessary to analyze as many as 1 × 10(6) noisy X-ray diffraction patterns, each for an unknown random target orientation. To cope with the severe quantum noise, patterns need to be classified according to their similarities and average similar patterns to improve the signal-to-noise ratio. A high-speed scalable scheme has been developed to carry out classification on the K computer, a 10PFLOPS supercomputer at RIKEN Advanced Institute for Computational Science. It is designed to work on the real-time basis with the experimental diffraction pattern collection at the X-ray free-electron laser facility SACLA so that the result of classification can be feedback for optimizing experimental parameters during the experiment. The present status of our effort developing the system and also a result of application to a set of simulated diffraction patterns is reported. About 1 × 10(6) diffraction patterns were successfully classificatied by running 255 separate 1 h jobs in 385-node mode.

  11. High-speed classification of coherent X-ray diffraction patterns on the K computer for high-resolution single biomolecule imaging

    PubMed Central

    Tokuhisa, Atsushi; Arai, Junya; Joti, Yasumasa; Ohno, Yoshiyuki; Kameyama, Toyohisa; Yamamoto, Keiji; Hatanaka, Masayuki; Gerofi, Balazs; Shimada, Akio; Kurokawa, Motoyoshi; Shoji, Fumiyoshi; Okada, Kensuke; Sugimoto, Takashi; Yamaga, Mitsuhiro; Tanaka, Ryotaro; Yokokawa, Mitsuo; Hori, Atsushi; Ishikawa, Yutaka; Hatsui, Takaki; Go, Nobuhiro

    2013-01-01

    Single-particle coherent X-ray diffraction imaging using an X-ray free-electron laser has the potential to reveal the three-dimensional structure of a biological supra-molecule at sub-nanometer resolution. In order to realise this method, it is necessary to analyze as many as 1 × 106 noisy X-ray diffraction patterns, each for an unknown random target orientation. To cope with the severe quantum noise, patterns need to be classified according to their similarities and average similar patterns to improve the signal-to-noise ratio. A high-speed scalable scheme has been developed to carry out classification on the K computer, a 10PFLOPS supercomputer at RIKEN Advanced Institute for Computational Science. It is designed to work on the real-time basis with the experimental diffraction pattern collection at the X-ray free-electron laser facility SACLA so that the result of classification can be feedback for optimizing experimental parameters during the experiment. The present status of our effort developing the system and also a result of application to a set of simulated diffraction patterns is reported. About 1 × 106 diffraction patterns were successfully classificatied by running 255 separate 1 h jobs in 385-node mode. PMID:24121336

  12. Key role of coupling, delay, and noise in resting brain fluctuations

    PubMed Central

    Deco, Gustavo; Jirsa, Viktor; McIntosh, A. R.; Sporns, Olaf; Kötter, Rolf

    2009-01-01

    A growing body of neuroimaging research has documented that, in the absence of an explicit task, the brain shows temporally coherent activity. This so-called “resting state” activity or, more explicitly, the default-mode network, has been associated with daydreaming, free association, stream of consciousness, or inner rehearsal in humans, but similar patterns have also been found under anesthesia and in monkeys. Spatiotemporal activity patterns in the default-mode network are both complex and consistent, which raises the question whether they are the expression of an interesting cognitive architecture or the consequence of intrinsic network constraints. In numerical simulation, we studied the dynamics of a simplified cortical network using 38 noise-driven (Wilson–Cowan) oscillators, which in isolation remain just below their oscillatory threshold. Time delay coupling based on lengths and strengths of primate corticocortical pathways leads to the emergence of 2 sets of 40-Hz oscillators. The sets showed synchronization that was anticorrelated at <0.1 Hz across the sets in line with a wide range of recent experimental observations. Systematic variation of conduction velocity, coupling strength, and noise level indicate a high sensitivity of emerging synchrony as well as simulated blood flow blood oxygen level-dependent (BOLD) on the underlying parameter values. Optimal sensitivity was observed around conduction velocities of 1–2 m/s, with very weak coupling between oscillators. An additional finding was that the optimal noise level had a characteristic scale, indicating the presence of stochastic resonance, which allows the network dynamics to respond with high sensitivity to changes in diffuse feedback activity. PMID:19497858

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Xiangyu; Shi, Xianbo; Wang, Yong

    The mutual optical intensity (MOI) model is extended to include the propagation of partially coherent radiation through non-ideal mirrors. The propagation of the MOI from the incident to the exit plane of the mirror is realised by local ray tracing. The effects of figure errors can be expressed as phase shifts obtained by either the phase projection approach or the direct path length method. Using the MOI model, the effects of figure errors are studied for diffraction-limited cases using elliptical cylinder mirrors. Figure errors with low spatial frequencies can vary the intensity distribution, redistribute the local coherence function and distortmore » the wavefront, but have no effect on the global degree of coherence. The MOI model is benchmarked againstHYBRIDand the multi-electronSynchrotron Radiation Workshop(SRW) code. The results show that the MOI model gives accurate results under different coherence conditions of the beam. Other than intensity profiles, the MOI model can also provide the wavefront and the local coherence function at any location along the beamline. The capability of tuning the trade-off between accuracy and efficiency makes the MOI model an ideal tool for beamline design and optimization.« less

  14. Potential role of the glycolytic oscillator in acute hypoxia in tumors

    NASA Astrophysics Data System (ADS)

    Che Fru, Leonard; Adamson, Erin B.; Campos, David D.; Fain, Sean B.; Jacques, Steven L.; van der Kogel, Albert J.; Nickel, Kwang P.; Song, Chihwa; Kimple, Randall J.; Kissick, Michael W.

    2015-12-01

    Tumor acute hypoxia has a dynamic component that is also, at least partially, coherent. Using blood oxygen level dependent magnetic resonance imaging, we observed coherent oscillations in hemoglobin saturation dynamics in cell line xenograft models of head and neck squamous cell carcinoma. We posit a well-established biochemical nonlinear oscillatory mechanism called the glycolytic oscillator as a potential cause of the coherent oscillations in tumors. These data suggest that metabolic changes within individual tumor cells may affect the local tumor microenvironment including oxygen availability and therefore radiosensitivity. These individual cells can synchronize the oscillations in patches of similar intermediate glucose levels. These alterations have potentially important implications for radiation therapy and are a potential target for optimizing the cancer response to radiation.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munke, Anna; Andreasson, Jakob; Aquila, Andrew

    Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. Here, the diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB)more » as a resource for algorithm development, the contents of which are described here.« less

  16. Dynamic stimulation of quantum coherence in systems of lattice bosons.

    PubMed

    Robertson, Andrew; Galitski, Victor M; Refael, Gil

    2011-04-22

    Thermal fluctuations tend to destroy long-range phase correlations. Consequently, bosons in a lattice will undergo a transition from a phase-coherent superfluid as the temperature rises. Contrary to common intuition, however, we show that nonequilibrium driving can be used to reverse this thermal decoherence. This is possible because the energy distribution at equilibrium is rarely optimal for the manifestation of a given quantum property. We demonstrate this in the Bose-Hubbard model by calculating the nonequilibrium spatial correlation function with periodic driving. We show that the nonequilibrium phase boundary between coherent and incoherent states at finite bath temperatures can be made qualitatively identical to the familiar zero-temperature phase diagram, and we discuss the experimental manifestation of this phenomenon in cold atoms.

  17. Power combination of a self-coherent high power microwave source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Xiaolu, E-mail: yanxl-dut@163.com; Zhang, Xiaoping; Li, Yangmei

    2015-09-15

    In our previous work, generating two phase-locked high power microwaves (HPMs) in a single self-coherent HPM device has been demonstrated. In this paper, after optimizing the structure of the previous self-coherent source, we design a power combiner with a folded phase-adjustment waveguide to realize power combination between its two sub-sources. Further particle-in-cell simulation of the combined source shows that when the diode voltage is 687 kV and the axial magnetic field is 0.8 T, a combined output microwave with 3.59 GW and 9.72 GHz is generated. The impedance of the combined device is 36 Ω and the total power conversion efficiency is 28%.

  18. Coherent organization in gene regulation: a study on six networks

    NASA Astrophysics Data System (ADS)

    Aral, Neşe; Kabakçıoğlu, Alkan

    2016-04-01

    Structural and dynamical fingerprints of evolutionary optimization in biological networks are still unclear. Here we analyze the dynamics of genetic regulatory networks responsible for the regulation of cell cycle and cell differentiation in three organisms or cell types each, and show that they follow a version of Hebb's rule which we have termed coherence. More precisely, we find that simultaneously expressed genes with a common target are less likely to act antagonistically at the attractors of the regulatory dynamics. We then investigate the dependence of coherence on structural parameters, such as the mean number of inputs per node and the activatory/repressory interaction ratio, as well as on dynamically determined quantities, such as the basin size and the number of expressed genes.

  19. Visualizing and improving the robustness of phase retrieval algorithms

    DOE PAGES

    Tripathi, Ashish; Leyffer, Sven; Munson, Todd; ...

    2015-06-01

    Coherent x-ray diffractive imaging is a novel imaging technique that utilizes phase retrieval and nonlinear optimization methods to image matter at nanometer scales. We explore how the convergence properties of a popular phase retrieval algorithm, Fienup's HIO, behave by introducing a reduced dimensionality problem allowing us to visualize and quantify convergence to local minima and the globally optimal solution. We then introduce generalizations of HIO that improve upon the original algorithm's ability to converge to the globally optimal solution.

  20. Visualizing and improving the robustness of phase retrieval algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, Ashish; Leyffer, Sven; Munson, Todd

    Coherent x-ray diffractive imaging is a novel imaging technique that utilizes phase retrieval and nonlinear optimization methods to image matter at nanometer scales. We explore how the convergence properties of a popular phase retrieval algorithm, Fienup's HIO, behave by introducing a reduced dimensionality problem allowing us to visualize and quantify convergence to local minima and the globally optimal solution. We then introduce generalizations of HIO that improve upon the original algorithm's ability to converge to the globally optimal solution.

  1. A Method for Analyzing the Coherence of High School Biology Textbooks

    ERIC Educational Resources Information Center

    Roseman, Jo Ellen; Stern, Luli; Koppal, Mary

    2010-01-01

    Because textbooks have the potential to be powerful catalysts for improving science teaching and learning, having reliable methods for analyzing important textbook features, such as their coherence, is essential. This study reports on the development of a method in which trained reviewers, following a set of guidelines defining the ideas to be…

  2. Sleep Increases Explicit Solutions and Reduces Intuitive Judgments of Semantic Coherence

    ERIC Educational Resources Information Center

    Zander, Thea; Volz, Kirsten G.; Born, Jan; Diekelmann, Susanne

    2017-01-01

    Sleep fosters the generation of explicit knowledge. Whether sleep also benefits implicit intuitive decisions about underlying patterns is unclear. We examined sleep's role in explicit and intuitive semantic coherence judgments. Participants encoded sets of three words and after a sleep or wake period were required to judge the potential…

  3. The Improved Power of the Central Lobe in the Beam Combination and High Power Output

    NASA Astrophysics Data System (ADS)

    Liu, Hou-Kang; Xue, Yu-Hao; Li, Zhen; He, Bing; Zhou, Jun; Ding, Ya-Qian; Jiao, Meng-Li; Liu, Chi; Qi, Yun-Feng; Wei, Yun-Rong; Dong, Jing-Xing; Lou, Qi-Hong

    2012-04-01

    In order to increase the power fraction of the central lobe in the coherent beam combination of lasers in an array, the effects of the distance factor of near-field distribution on far-field interference patterns are calculated and demonstrated experimentally. An improved beam array of interwoven distribution is demonstrated to enable the power in the central lobe to reach 41%. An optimized mirror array is carefully designed to obtain a high duty ratio, which is up to 53.3% at a high power level. By using these optimized methods and designs, the passive phase locking of eight Yb-doped fiber amplifiers with ring cavities are obtained, and a pleasing interference pattern with 87% visibility is observed. The maximum coherent output power of the system is up to 1066 W.

  4. A fiber-based quasi-continuous-wave quantum key distribution system

    PubMed Central

    Shen, Yong; Chen, Yan; Zou, Hongxin; Yuan, Jianmin

    2014-01-01

    We report a fiber-based quasi-continuous-wave (CW) quantum key distribution (QKD) system with continuous variables (CV). This system employs coherent light pulses and time multiplexing to maximally reduce cross talk in the fiber. No-switching detection scheme is adopted to optimize the repetition rate. Information is encoded on the sideband of the pulsed coherent light to fully exploit the continuous wave nature of laser field. With this configuration, high secret key rate can be achieved. For the 50 MHz detected bandwidth in our experiment, when the multidimensional reconciliation protocol is applied, a secret key rate of 187 kb/s can be achieved over 50 km of optical fiber against collective attacks, which have been shown to be asymptotically optimal. Moreover, recently studied loopholes have been fixed in our system. PMID:24691409

  5. Bandwidth optimization of femtosecond pure-rotational coherent anti-Stokes Raman scattering by pump/Stokes spectral focusing.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kearney, Sean Patrick

    A simple spectral focusing scheme for bandwidth optimization of gas-phase rotational coherent anti-Stokes Raman scattering (CARS) spectra is presented. The method is useful when femtosecond pump/Stokes preparation of the Raman coherence is utilized. The approach is of practical utility when working with laser pulses that are not strictly transform limited, or when windows or other sources of pulse chirp may be present in the experiment. A delay between the femtosecond preparation pulses is introduced to shift the maximum Raman preparation away from zero frequency and toward the Stokes or anti-Stokes side of the spectrum with no loss in total preparationmore » bandwidth. Shifts of 100 cm -1 or more are attainable and allow for enhanced detection of high-energy (150-300 cm -1) rotational Raman transitions at near transform-limited optimum sensitivity. A simple theoretical treatment for the case of identical pump and Stokes pulses with linear frequency chirp is presented. The approach is then demonstrated experimentally for typical levels of transform-limited laser performance obtained our laboratory with nonresonant CARS in argon and Raman-resonant spectra from a lean H 2/air flat flame.« less

  6. Fully Mechanically Controlled Automated Electron Microscopic Tomography

    DOE PAGES

    Liu, Jinxin; Li, Hongchang; Zhang, Lei; ...

    2016-07-11

    Knowledge of three-dimensional (3D) structures of each individual particles of asymmetric and flexible proteins is essential in understanding those proteins' functions; but their structures are difficult to determine. Electron tomography (ET) provides a tool for imaging a single and unique biological object from a series of tilted angles, but it is challenging to image a single protein for three-dimensional (3D) reconstruction due to the imperfect mechanical control capability of the specimen goniometer under both a medium to high magnification (approximately 50,000-160,000×) and an optimized beam coherence condition. Here, we report a fully mechanical control method for automating ET data acquisitionmore » without using beam tilt/shift processes. This method could reduce the accumulation of beam tilt/shift that used to compensate the error from the mechanical control, but downgraded the beam coherence. Our method was developed by minimizing the error of the target object center during the tilting process through a closed-loop proportional-integral (PI) control algorithm. The validations by both negative staining (NS) and cryo-electron microscopy (cryo-EM) suggest that this method has a comparable capability to other ET methods in tracking target proteins while maintaining optimized beam coherence conditions for imaging.« less

  7. Bandwidth optimization of femtosecond pure-rotational coherent anti-Stokes Raman scattering by pump/Stokes spectral focusing.

    DOE PAGES

    Kearney, Sean Patrick

    2014-07-01

    A simple spectral focusing scheme for bandwidth optimization of gas-phase rotational coherent anti-Stokes Raman scattering (CARS) spectra is presented. The method is useful when femtosecond pump/Stokes preparation of the Raman coherence is utilized. The approach is of practical utility when working with laser pulses that are not strictly transform limited, or when windows or other sources of pulse chirp may be present in the experiment. A delay between the femtosecond preparation pulses is introduced to shift the maximum Raman preparation away from zero frequency and toward the Stokes or anti-Stokes side of the spectrum with no loss in total preparationmore » bandwidth. Shifts of 100 cm -1 or more are attainable and allow for enhanced detection of high-energy (150-300 cm -1) rotational Raman transitions at near transform-limited optimum sensitivity. A simple theoretical treatment for the case of identical pump and Stokes pulses with linear frequency chirp is presented. The approach is then demonstrated experimentally for typical levels of transform-limited laser performance obtained our laboratory with nonresonant CARS in argon and Raman-resonant spectra from a lean H 2/air flat flame.« less

  8. Test One to Test Many: A Unified Approach to Quantum Benchmarks

    NASA Astrophysics Data System (ADS)

    Bai, Ge; Chiribella, Giulio

    2018-04-01

    Quantum benchmarks are routinely used to validate the experimental demonstration of quantum information protocols. Many relevant protocols, however, involve an infinite set of input states, of which only a finite subset can be used to test the quality of the implementation. This is a problem, because the benchmark for the finitely many states used in the test can be higher than the original benchmark calculated for infinitely many states. This situation arises in the teleportation and storage of coherent states, for which the benchmark of 50% fidelity is commonly used in experiments, although finite sets of coherent states normally lead to higher benchmarks. Here, we show that the average fidelity over all coherent states can be indirectly probed with a single setup, requiring only two-mode squeezing, a 50-50 beam splitter, and homodyne detection. Our setup enables a rigorous experimental validation of quantum teleportation, storage, amplification, attenuation, and purification of noisy coherent states. More generally, we prove that every quantum benchmark can be tested by preparing a single entangled state and measuring a single observable.

  9. High-speed asynchronous optical sampling for high-sensitivity detection of coherent phonons

    NASA Astrophysics Data System (ADS)

    Dekorsy, T.; Taubert, R.; Hudert, F.; Schrenk, G.; Bartels, A.; Cerna, R.; Kotaidis, V.; Plech, A.; Köhler, K.; Schmitz, J.; Wagner, J.

    2007-12-01

    A new optical pump-probe technique is implemented for the investigation of coherent acoustic phonon dynamics in the GHz to THz frequency range which is based on two asynchronously linked femtosecond lasers. Asynchronous optical sampling (ASOPS) provides the performance of on all-optical oscilloscope and allows us to record optically induced lattice dynamics over nanosecond times with femtosecond resolution at scan rates of 10 kHz without any moving part in the set-up. Within 1 minute of data acquisition time signal-to-noise ratios better than 107 are achieved. We present examples of the high-sensitivity detection of coherent phonons in superlattices and of the coherent acoustic vibration of metallic nanoparticles.

  10. Quadrupolar transfer pathways

    NASA Astrophysics Data System (ADS)

    Antonijevic, Sasa; Bodenhausen, Geoffrey

    2006-06-01

    A set of graphical conventions called quadrupolar transfer pathways is proposed to describe a wide range of experiments designed for the study of quadrupolar nuclei with spin quantum numbers I = 1, 3/2, 2, 5/2, etc. These pathways, which inter alea allow one to appreciate the distinction between quadrupolar and Zeeman echoes, represent a generalization of the well-known coherence transfer pathways. Quadrupolar transfer pathways not merely distinguish coherences with different orders -2 I ⩽ p ⩽ +2 I, but allow one to follow the fate of coherences associated with single transitions that have the same coherence orderp=mIr-mIs but can be distinguished by a satellite orderq=(mIr)2-(mIs)2.

  11. Quadrupolar transfer pathways.

    PubMed

    Antonijevic, Sasa; Bodenhausen, Geoffrey

    2006-06-01

    A set of graphical conventions called quadrupolar transfer pathways is proposed to describe a wide range of experiments designed for the study of quadrupolar nuclei with spin quantum numbers I=1, 3/2, 2, 5/2, etc. These pathways, which inter alea allow one to appreciate the distinction between quadrupolar and Zeeman echoes, represent a generalization of the well-known coherence transfer pathways. Quadrupolar transfer pathways not merely distinguish coherences with different orders -2I < or = p< or = +2I, but allow one to follow the fate of coherences associated with single transitions that have the same coherence order p=m(I)(r)-m(I)(s) but can be distinguished by a satellite order q=(m(I)(r))(2)-(m(I)(s))(2).

  12. Detecting multiple moving objects in crowded environments with coherent motion regions

    DOEpatents

    Cheriyadat, Anil M.; Radke, Richard J.

    2013-06-11

    Coherent motion regions extend in time as well as space, enforcing consistency in detected objects over long time periods and making the algorithm robust to noisy or short point tracks. As a result of enforcing the constraint that selected coherent motion regions contain disjoint sets of tracks defined in a three-dimensional space including a time dimension. An algorithm operates directly on raw, unconditioned low-level feature point tracks, and minimizes a global measure of the coherent motion regions. At least one discrete moving object is identified in a time series of video images based on the trajectory similarity factors, which is a measure of a maximum distance between a pair of feature point tracks.

  13. Optimizing the multicycle subrotational internal cooling of diatomic molecules

    NASA Astrophysics Data System (ADS)

    Aroch, A.; Kallush, S.; Kosloff, R.

    2018-05-01

    Subrotational cooling of the AlH+ ion to the miliKelvin regime, using optimally shaped pulses, is computed. The coherent electromagnetic fields induce purity-conserved transformations and do not change the sample temperature. A decrease in a sample temperature, manifested by an increase of purity, is achieved by the complementary uncontrolled spontaneous emission which changes the entropy of the system. We employ optimal control theory to find a pulse that stirs the system into a population configuration that will result in cooling, upon multicycle excitation-emission steps. The obtained optimal transformation was shown capable to cool molecular ions to the subkelvins regime.

  14. Perception of power modulation of light in conjunction with acoustic stimulation

    NASA Astrophysics Data System (ADS)

    Hahlweg, Cornelius F.; Weyer, Cornelia; Gercke-Hahn, Harald; Gutzmann, Holger L.; Brahmann, Andre; Rothe, Hendrik

    2013-09-01

    The present paper is derived from an ongoing study on the human perception of combined optical and acoustical periodical stimuli. Originating from problems of occupational medicine concerning artificial illumination and certain machinery with coherent optical and acoustical emissions there are effects which are interesting in the context of Optics and Music. Because of the difficulties in evaluation of physical and psychological effects of such coherent stimuli in a first step we questioned if such coherence is perceivable at all. Concept, experimental set-up and first results are discussed in short.

  15. Coherence protection in coupled quantum systems

    NASA Astrophysics Data System (ADS)

    Cammack, H. M.; Kirton, P.; Stace, T. M.; Eastham, P. R.; Keeling, J.; Lovett, B. W.

    2018-02-01

    The interaction of a quantum system with its environment causes decoherence, setting a fundamental limit on its suitability for quantum information processing. However, we show that if the system consists of coupled parts with different internal energy scales then the interaction of one part with a thermal bath need not lead to loss of coherence from the other. Remarkably, we find that the protected part can remain coherent for longer when the coupling to the bath becomes stronger or the temperature is raised. Our theory will enable the design of decoherence-resistant hybrid quantum computers.

  16. Performance of a 1-micron, 1-joule Coherent Launch Site Atmospheric Wind Sounder

    NASA Technical Reports Server (NTRS)

    Hawley, James G.; Targ, Russell; Bruner, Richard; Henderson, Sammy W.; Hale, Charles P.; Vetorino, Steven; Lee, R. W.; Harper, Scott; Khan, Tayyab

    1992-01-01

    The paper describes the design and performance of the Coherent Launch Site Atmospheric Wind Sounder (CLAWS), which is a test and demonstration program designed for monitoring winds with a solid-state lidar in real time for the launch site vehicle guidance and control application. Analyses were conducted to trade off CO2 (9.11- and 10.6-microns), Ho:YAG (2.09 microns), and Nd:YAG (1.06-micron) laser-based lidars. The measurements set a new altitude record (26 km) for coherent wind measurements in the stratosphere.

  17. Aligning the talent pathway: exploring the role and mechanisms of coherence in development.

    PubMed

    Webb, Vincent; Collins, Dave; Cruickshank, Andrew

    2016-10-01

    Although our understanding of psychological and social factors in talent development continues to expand, knowledge of the broader system that underpins the entire talent pathways is relatively limited. Indeed, little work has moved beyond the recognition that coherence in this system is important to consider how this may be achieved; particularly in relation to coherent coaching. As such, the aim of this article was to address gaps in talent development and coaching literature and explore principles and potential mechanisms of coherent coaching in sport organisations' talent pathways. After defining and contextualising coherence in whole talent pathways, including barriers to attainment, we discuss how an understanding of coach epistemology can provide a basis for integrating personal and collective coach coherence and therefore a coherent performer experience. With epistemology as our focal point, we then consider how coherent coaching may be supported through the strategic recruitment and placement of coaches, complimentary coach education and development and the use of change agents who can set and shape the coaching milieu, facilitate cross-level communication and enable epistemology-focused reflection and evaluation. Finally, we conclude with some brief recommendations for advancing practically-meaningful knowledge in this important area.

  18. Participant, Rater, and Computer Measures of Coherence in Posttraumatic Stress Disorder

    PubMed Central

    Rubin, David C.; Deffler, Samantha A.; Ogle, Christin M.; Dowell, Nia M.; Graesser, Arthur C.; Beckham, Jean C.

    2015-01-01

    We examined the coherence of trauma memories in a trauma-exposed community sample of 30 adults with and 30 without PTSD. The groups had similar categories of traumas and were matched on multiple factors that could affect the coherence of memories. We compared the transcribed oral trauma memories of participants with their most important and most positive memories. A comprehensive set of 28 measures of coherence including 3 ratings by the participants, 7 ratings by outside raters, and 18 computer-scored measures, provided a variety of approaches to defining and measuring coherence. A MANOVA indicated differences in coherence among the trauma, important, and positive memories, but not between the diagnostic groups or their interaction with these memory types. Most differences were small in magnitude; in some cases, the trauma memories were more, rather than less, coherent than the control memories. Where differences existed, the results agreed with the existing literature, suggesting that factors other than the incoherence of trauma memories are most likely to be central to the maintenance of PTSD and thus its treatment. PMID:26523945

  19. X-ray optical simulations supporting advanced commissioning of the coherent hard x-ray beamline at NSLS-II

    NASA Astrophysics Data System (ADS)

    Wiegart, L.; Rakitin, M.; Fluerasu, A.; Chubar, O.

    2017-08-01

    We present the application of fully- and partially-coherent synchrotron radiation wavefront propagation simulation functions, implemented in the "Synchrotron Radiation Workshop" computer code, to create a `virtual beamline' mimicking the Coherent Hard X-ray scattering beamline at NSLS-II. The beamline simulation includes all optical beamline components, such as the insertion device, mirror with metrology data, slits, double crystal monochromator and refractive focusing elements (compound refractive lenses and kinoform lenses). A feature of this beamline is the exploitation of X-ray beam coherence, boosted by the low-emittance NSLS-II storage-ring, for techniques such as X-ray Photon Correlation Spectroscopy or Coherent Diffraction Imaging. The key performance parameters are the degree of Xray beam coherence and photon flux, and the trade-off between them needs to guide the beamline settings for specific experimental requirements. Simulations of key performance parameters are compared to measurements obtained during beamline commissioning, and include the spectral flux of the undulator source, the degree of transverse coherence as well as focal spot sizes.

  20. Optimized blind gamma-ray pulsar searches at fixed computing budget

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pletsch, Holger J.; Clark, Colin J., E-mail: holger.pletsch@aei.mpg.de

    The sensitivity of blind gamma-ray pulsar searches in multiple years worth of photon data, as from the Fermi LAT, is primarily limited by the finite computational resources available. Addressing this 'needle in a haystack' problem, here we present methods for optimizing blind searches to achieve the highest sensitivity at fixed computing cost. For both coherent and semicoherent methods, we consider their statistical properties and study their search sensitivity under computational constraints. The results validate a multistage strategy, where the first stage scans the entire parameter space using an efficient semicoherent method and promising candidates are then refined through a fullymore » coherent analysis. We also find that for the first stage of a blind search incoherent harmonic summing of powers is not worthwhile at fixed computing cost for typical gamma-ray pulsars. Further enhancing sensitivity, we present efficiency-improved interpolation techniques for the semicoherent search stage. Via realistic simulations we demonstrate that overall these optimizations can significantly lower the minimum detectable pulsed fraction by almost 50% at the same computational expense.« less

  1. Low-Coherence light source design for ESPI in-plane displacement measurements

    NASA Astrophysics Data System (ADS)

    Heikkinen, J. J.; Schajer, G. S.

    2018-01-01

    The ESPI method for surface deformation measurements requires the use of a light source with high coherence length to accommodate the optical path length differences present in the apparatus. Such high-coherence lasers, however, are typically large, delicate and costly. Laser diodes, on the other hand, are compact, mechanically robust and inexpensive, but unfortunately they have short coherence length. The present work aims to enable the use of a laser diode as an illumination source by equalizing the path lengths within an ESPI interferometer. This is done by using a reflection type diffraction grating to compensate for the path length differences. The high optical power efficiency of such diffraction gratings allows the use of much lower optical power than in previous interferometer designs using transmission gratings. The proposed concept was experimentally investigated by doing in-plane ESPI measurements using a high-coherence single longitudinal mode (SLM) laser, a laser diode and then a laser diode with path length optimization. The results demonstrated the limitations of using an uncompensated laser diode. They then showed the effectiveness of adding a reflection type diffraction grating to equalize the interferometer path lengths. This addition enabled the laser diode to produce high measurement quality across the entire field of view, rivaling although not quite equaling the performance of a high-coherence SLM laser source.

  2. The Internal Coherence Assessment Protocol & Developmental Framework: Building the Organizational Capacity for Instructional Improvement in Schools. Research Paper

    ERIC Educational Resources Information Center

    Elmore, Richard F.; Forman, Michelle L.; Stosich, Elizabeth L.; Bocala, Candice

    2014-01-01

    Purpose: In this paper we describe the Internal Coherence (IC) model of assessment and professional development, a set of clinical tools and practices designed to help practitioners foster the organizational conditions required for whole-school instructional improvement. Proposed Conceptual Argument: We argue that the data captured by the IC…

  3. Conceptual Coherence of Non-Newtonian Worldviews in Force Concept Inventory Data

    ERIC Educational Resources Information Center

    Scott, Terry F.; Schumayer, Dániel

    2017-01-01

    The Force Concept Inventory is one of the most popular and most analyzed multiple-choice concept tests used to investigate students' understanding of Newtonian mechanics. The correct answers poll a set of underlying Newtonian concepts and the coherence of these underlying concepts has been found in the data. However, this inventory was constructed…

  4. Possible Futures: Using Frameworks of Knowledge to Help Year 9 Connect Past, Present and Future

    ERIC Educational Resources Information Center

    Nuttall, Dan

    2013-01-01

    How can we help pupils integrate history into coherent "Big Pictures" or mental frameworks? Building on traditions of classroom research and theorising reported in earlier editions of Teaching History, Dan Nuttall reports how his department set out to help Year 9 build a coherent big picture of twentieth-century history that would…

  5. Bayesian Rationality in Evaluating Multiple Testimonies: Incorporating the Role of Coherence

    ERIC Educational Resources Information Center

    Harris, Adam J. L.; Hahn, Ulrike

    2009-01-01

    Routinely in day-to-day life, as well as in formal settings such as the courtroom, people must aggregate information they receive from different sources. One intuitively important but underresearched factor in this context is the degree to which the reports from different sources fit together, that is, their coherence. The authors examine a…

  6. Discovering Coherent Structures Using Local Causal States

    NASA Astrophysics Data System (ADS)

    Rupe, Adam; Crutchfield, James P.; Kashinath, Karthik; Prabhat, Mr.

    2017-11-01

    Coherent structures were introduced in the study of fluid dynamics and were initially defined as regions characterized by high levels of coherent vorticity, i.e. regions where instantaneously space and phase correlated vorticity are high. In a more general spatiotemporal setting, coherent structures can be seen as localized broken symmetries which persist in time. Building off the computational mechanics framework, which integrates tools from computation and information theory to capture pattern and structure in nonlinear dynamical systems, we introduce a theory of coherent structures, in the more general sense. Central to computational mechanics is the causal equivalence relation, and a local spatiotemporal generalization of it is used to construct the local causal states, which are utilized to uncover a system's spatiotemporal symmetries. Coherent structures are then identified as persistent, localized deviations from these symmetries. We illustrate how novel patterns and structures can be discovered in cellular automata and outline the path from them to laminar, transitional and turbulent flows. Funded by Intel through the Big Data Center at LBNL and the IPCC at UC Davis.

  7. Probabilistic neural networks for diagnosis of Alzheimer's disease using conventional and wavelet coherence.

    PubMed

    Sankari, Ziad; Adeli, Hojjat

    2011-04-15

    Recently, the authors presented an EEG (electroencephalogram) coherence study of the Alzheimer's disease (AD) and found statistically significant differences between AD and control groups. In this paper a probabilistic neural network (PNN) model is presented for classification of AD and healthy controls using features extracted in coherence and wavelet coherence studies on cortical connectivity in AD. The model is verified using EEGs obtained from 20 AD probable patients and 7 healthy/control subjects based on a standard 10-20 electrode configuration on the scalp. It is shown that extracting features from EEG sub-bands using coherence, as a measure of cortical connectivity, can discriminate AD patients from healthy controls effectively when a mixed band classification model is applied. For the data set used a classification accuracy of 100% is achieved using the conventional coherence and a spread parameter of the Gaussian function in a particular range found in this research. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Quantum-coherent mixtures of causal relations

    NASA Astrophysics Data System (ADS)

    Maclean, Jean-Philippe W.; Ried, Katja; Spekkens, Robert W.; Resch, Kevin J.

    2017-05-01

    Understanding the causal influences that hold among parts of a system is critical both to explaining that system's natural behaviour and to controlling it through targeted interventions. In a quantum world, understanding causal relations is equally important, but the set of possibilities is far richer. The two basic ways in which a pair of time-ordered quantum systems may be causally related are by a cause-effect mechanism or by a common-cause acting on both. Here we show a coherent mixture of these two possibilities. We realize this nonclassical causal relation in a quantum optics experiment and derive a set of criteria for witnessing the coherence based on a quantum version of Berkson's effect, whereby two independent causes can become correlated on observation of their common effect. The interplay of causality and quantum theory lies at the heart of challenging foundational puzzles, including Bell's theorem and the search for quantum gravity.

  9. Quantum-coherent mixtures of causal relations

    PubMed Central

    MacLean, Jean-Philippe W.; Ried, Katja; Spekkens, Robert W.; Resch, Kevin J.

    2017-01-01

    Understanding the causal influences that hold among parts of a system is critical both to explaining that system's natural behaviour and to controlling it through targeted interventions. In a quantum world, understanding causal relations is equally important, but the set of possibilities is far richer. The two basic ways in which a pair of time-ordered quantum systems may be causally related are by a cause-effect mechanism or by a common-cause acting on both. Here we show a coherent mixture of these two possibilities. We realize this nonclassical causal relation in a quantum optics experiment and derive a set of criteria for witnessing the coherence based on a quantum version of Berkson's effect, whereby two independent causes can become correlated on observation of their common effect. The interplay of causality and quantum theory lies at the heart of challenging foundational puzzles, including Bell's theorem and the search for quantum gravity. PMID:28485394

  10. Quantum-coherent mixtures of causal relations.

    PubMed

    MacLean, Jean-Philippe W; Ried, Katja; Spekkens, Robert W; Resch, Kevin J

    2017-05-09

    Understanding the causal influences that hold among parts of a system is critical both to explaining that system's natural behaviour and to controlling it through targeted interventions. In a quantum world, understanding causal relations is equally important, but the set of possibilities is far richer. The two basic ways in which a pair of time-ordered quantum systems may be causally related are by a cause-effect mechanism or by a common-cause acting on both. Here we show a coherent mixture of these two possibilities. We realize this nonclassical causal relation in a quantum optics experiment and derive a set of criteria for witnessing the coherence based on a quantum version of Berkson's effect, whereby two independent causes can become correlated on observation of their common effect. The interplay of causality and quantum theory lies at the heart of challenging foundational puzzles, including Bell's theorem and the search for quantum gravity.

  11. Design, simulation, and optimization of an RGB polarization independent transmission volume hologram

    NASA Astrophysics Data System (ADS)

    Mahamat, Adoum Hassan

    Volume phase holographic (VPH) gratings have been designed for use in many areas of science and technology such as optical communication, medical imaging, spectroscopy and astronomy. The goal of this dissertation is to design a volume phase holographic grating that provides diffraction efficiencies of at least 70% for the entire visible wavelengths and higher than 90% for red, green, and blue light when the incident light is unpolarized. First, the complete design, simulation and optimization of the volume hologram are presented. The optimization is done using a Monte Carlo analysis to solve for the index modulation needed to provide higher diffraction efficiencies. The solutions are determined by solving the diffraction efficiency equations determined by Kogelnik's two wave coupled-wave theory. The hologram is further optimized using the rigorous coupled-wave analysis to correct for effects of absorption omitted by Kogelnik's method. Second, the fabrication or recording process of the volume hologram is described in detail. The active region of the volume hologram is created by interference of two coherent beams within the thin film. Third, the experimental set up and measurement of some properties including the diffraction efficiencies of the volume hologram, and the thickness of the active region are conducted. Fourth, the polarimetric response of the volume hologram is investigated. The polarization study is developed to provide insight into the effect of the refractive index modulation onto the polarization state and diffraction efficiency of incident light.

  12. A coherent discrete variable representation method on a sphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Hua -Gen

    Here, the coherent discrete variable representation (ZDVR) has been extended for construct- ing a multidimensional potential-optimized DVR basis on a sphere. In order to deal with the non-constant Jacobian in spherical angles, two direct product primitive basis methods are proposed so that the original ZDVR technique can be properly implemented. The method has been demonstrated by computing the lowest states of a two dimensional (2D) vibrational model. Results show that the extended ZDVR method gives accurate eigenval- ues and exponential convergence with increasing ZDVR basis size.

  13. A coherent discrete variable representation method on a sphere

    DOE PAGES

    Yu, Hua -Gen

    2017-09-05

    Here, the coherent discrete variable representation (ZDVR) has been extended for construct- ing a multidimensional potential-optimized DVR basis on a sphere. In order to deal with the non-constant Jacobian in spherical angles, two direct product primitive basis methods are proposed so that the original ZDVR technique can be properly implemented. The method has been demonstrated by computing the lowest states of a two dimensional (2D) vibrational model. Results show that the extended ZDVR method gives accurate eigenval- ues and exponential convergence with increasing ZDVR basis size.

  14. Investigation of a broadband coherent perfect absorber in a multi-layer structure by using the transfer matrix method

    NASA Astrophysics Data System (ADS)

    Na, Jihoon; Noh, Heeso

    2018-01-01

    We investigated a multi-layer structure for a broadband coherent perfect absorber (CPA). The transfer matrix method (TMM) is useful for analyzing the optical properties of structures and optimizing multi-layer structures. The broadband CPA strongly depends on the phase of the light traveling in one direction and the light reflected within the structure. The TMM simulation shows that the absorption bandwidth is increased by 95% in a multi-layer CPA compared to that in a single-layer CPA.

  15. Coherent detection of frequency-hopped quadrature modulations in the presence of jamming. I - QPSK and QASK modulations

    NASA Technical Reports Server (NTRS)

    Simon, M. K.; Polydoros, A.

    1981-01-01

    This paper examines the performance of coherent QPSK and QASK systems combined with FH or FH/PN spread spectrum techniques in the presence of partial-band multitone or noise jamming. The worst-case jammer and worst-case performance are determined as functions of the signal-to-background noise ratio (SNR) and signal-to-jammer power ratio (SJR). Asymptotic results for high SNR are shown to have a linear dependence between the jammer's optimal power allocation and the system error probability performance.

  16. Practical quantum appointment scheduling

    NASA Astrophysics Data System (ADS)

    Touchette, Dave; Lovitz, Benjamin; Lütkenhaus, Norbert

    2018-04-01

    We propose a protocol based on coherent states and linear optics operations for solving the appointment-scheduling problem. Our main protocol leaks strictly less information about each party's input than the optimal classical protocol, even when considering experimental errors. Along with the ability to generate constant-amplitude coherent states over two modes, this protocol requires the ability to transfer these modes back-and-forth between the two parties multiple times with very low losses. The implementation requirements are thus still challenging. Along the way, we develop tools to study quantum information cost of interactive protocols in the finite regime.

  17. How exciton-vibrational coherences control charge separation in the photosystem II reaction center.

    PubMed

    Novoderezhkin, Vladimir I; Romero, Elisabet; van Grondelle, Rienk

    2015-12-14

    In photosynthesis absorbed sun light produces collective excitations (excitons) that form a coherent superposition of electronic and vibrational states of the individual pigments. Two-dimensional (2D) electronic spectroscopy allows a visualization of how these coherences are involved in the primary processes of energy and charge transfer. Based on quantitative modeling we identify the exciton-vibrational coherences observed in 2D photon echo of the photosystem II reaction center (PSII-RC). We find that the vibrations resonant with the exciton splittings can modify the delocalization of the exciton states and produce additional states, thus promoting directed energy transfer and allowing a switch between the two charge separation pathways. We conclude that the coincidence of the frequencies of the most intense vibrations with the splittings within the manifold of exciton and charge-transfer states in the PSII-RC is not occurring by chance, but reflects a fundamental principle of how energy conversion in photosynthesis was optimized.

  18. Quantifying Motor Experience in the Infant Brain: EEG Power, Coherence, and Mu Desynchronization

    PubMed Central

    Gonzalez, Sandy L.; Reeb-Sutherland, Bethany C.; Nelson, Eliza L.

    2016-01-01

    The emergence of new motor skills, such as reaching and walking, dramatically changes how infants engage with the world socially and cognitively. Several examples of how motor experience can cascade into cognitive and social development have been documented, yet a significant knowledge gap remains in our understanding of whether these observed behavioral changes are accompanied by underlying neural changes. We propose that electroencephalography (EEG) measures such as power, coherence, and mu desynchronization are optimal tools to quantify motor experience in the infant brain. In this mini-review, we will summarize existing infant research that has separately assessed the relation between motor, cognitive, or social development with coherence, power, or mu desynchronization. We will discuss how the reviewed neural changes seen in seemingly separate developmental domains may be linked based on existing behavioral evidence. We will further propose that power, coherence, and mu desynchronization be used in research exploring the links between motor experience and cognitive and social development. PMID:26925022

  19. Research on the system performance evaluation of minimum-shift keying in uplink ground-to-satellite with gamma-gamma distribution

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Zhang, Ao; Ma, Jing

    2017-07-01

    Minimum-shift keying (MSK) has the advantages of constant envelope, continuous phase, and high spectral efficiency, and it is applied in radio communication and optical fiber communication. MSK modulation of coherent detection is proposed in the ground-to-satellite laser communication system; in addition, considering the inherent noise of uplink, such as intensity scintillation and beam wander, the communication performance of the MSK modulation system with coherent detection is studied in the uplink ground-to-satellite laser. Based on the gamma-gamma channel model, the closed form of bit error rate (BER) of MSK modulation with coherent detection is derived. In weak, medium, and strong turbulence, the BER performance of the MSK modulation system is simulated and analyzed. To meet the requirements of the ground-to-satellite coherent MSK system to optimize the parameters and configuration of the transmitter and receiver, the influence of the beam divergence angle, the zenith angle, the transmitter beam radius, and the receiver diameter are studied.

  20. Single-shot detection of bacterial endospores via coherent Raman spectroscopy.

    PubMed

    Pestov, Dmitry; Wang, Xi; Ariunbold, Gombojav O; Murawski, Robert K; Sautenkov, Vladimir A; Dogariu, Arthur; Sokolov, Alexei V; Scully, Marlan O

    2008-01-15

    Recent advances in coherent Raman spectroscopy hold exciting promise for many potential applications. For example, a technique, mitigating the nonresonant four-wave-mixing noise while maximizing the Raman-resonant signal, has been developed and applied to the problem of real-time detection of bacterial endospores. After a brief review of the technique essentials, we show how extensions of our earlier experimental work [Pestov D, et al. (2007) Science 316:265-268] yield single-shot identification of a small sample of Bacillus subtilis endospores (approximately 10(4) spores). The results convey the utility of the technique and its potential for "on-the-fly" detection of biohazards, such as Bacillus anthracis. The application of optimized coherent anti-Stokes Raman scattering scheme to problems requiring chemical specificity and short signal acquisition times is demonstrated.

  1. Nonrigid registration of 3D longitudinal optical coherence tomography volumes with choroidal neovascularization

    NASA Astrophysics Data System (ADS)

    Wei, Qiangding; Shi, Fei; Zhu, Weifang; Xiang, Dehui; Chen, Haoyu; Chen, Xinjian

    2017-02-01

    In this paper, we propose a 3D registration method for retinal optical coherence tomography (OCT) volumes. The proposed method consists of five main steps: First, a projection image of the 3D OCT scan is created. Second, the vessel enhancement filter is applied on the projection image to detect vessel shadow. Third, landmark points are extracted based on both vessel positions and layer information. Fourth, the coherent point drift method is used to align retinal OCT volumes. Finally, a nonrigid B-spline-based registration method is applied to find the optimal transform to match the data. We applied this registration method on 15 3D OCT scans of patients with Choroidal Neovascularization (CNV). The Dice coefficients (DSC) between layers are greatly improved after applying the nonrigid registration.

  2. Comparison of 2- and 10-micron coherent Doppler lidar performance

    NASA Technical Reports Server (NTRS)

    Frehlich, Rod

    1995-01-01

    The performance of 2- and 10-micron coherent Doppler lidar is presented in terms of the statistical distribution of the maximum-likelihood velocity estimator from simulations for fixed range resolution and fixed velocity search space as a function of the number of coherent photoelectrons per estimate. The wavelength dependence of the aerosol backscatter coefficient, the detector quantum efficiency, and the atmospheric extinction produce a simple shift of the performance curves. Results are presented for a typical boundary layer measurement and a space-based measurement for two regimes: the pulse-dominated regime where the signal statistics are determined by the transmitted pulse, and the atmospheric-dominated regime where the signal statistics are determined by the velocity fluctuations over the range gate. The optimal choice of wavelength depends on the problem under consideration.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Ke-Wei; Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798; Fujihashi, Yuta

    A master equation approach based on an optimized polaron transformation is adopted for dynamics simulation with simultaneous diagonal and off-diagonal spin-boson coupling. Two types of bath spectral density functions are considered, the Ohmic and the sub-Ohmic. The off-diagonal coupling leads asymptotically to a thermal equilibrium with a nonzero population difference P{sub z}(t → ∞) ≠ 0, which implies localization of the system, and it also plays a role in restraining coherent dynamics for the sub-Ohmic case. Since the new method can extend to the stronger coupling regime, we can investigate the coherent-incoherent transition in the sub-Ohmic environment. Relevant phase diagramsmore » are obtained for different temperatures. It is found that the sub-Ohmic environment allows coherent dynamics at a higher temperature than the Ohmic environment.« less

  4. Discrimination of binary coherent states using a homodyne detector and a photon number resolving detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittmann, Christoffer; Sych, Denis; Leuchs, Gerd

    2010-06-15

    We investigate quantum measurement strategies capable of discriminating two coherent states probabilistically with significantly smaller error probabilities than can be obtained using nonprobabilistic state discrimination. We apply a postselection strategy to the measurement data of a homodyne detector as well as a photon number resolving detector in order to lower the error probability. We compare the two different receivers with an optimal intermediate measurement scheme where the error rate is minimized for a fixed rate of inconclusive results. The photon number resolving (PNR) receiver is experimentally demonstrated and compared to an experimental realization of a homodyne receiver with postselection. Inmore » the comparison, it becomes clear that the performance of the PNR receiver surpasses the performance of the homodyne receiver, which we prove to be optimal within any Gaussian operations and conditional dynamics.« less

  5. Complete characterization of the spasing (L-L) curve of a three-level quantum coherence enhanced spaser for design optimization

    NASA Astrophysics Data System (ADS)

    Kumarapperuma, Lakshitha; Premaratne, Malin; Jha, Pankaj K.; Stockman, Mark I.; Agrawal, Govind P.

    2018-05-01

    We demonstrate that it is possible to derive an approximate analytical expression to characterize the spasing (L-L) curve of a coherently enhanced spaser with 3-level gain-medium chromophores. The utility of this solution stems from the fact that it enables optimization of the large parameter space associated with spaser designing, a functionality not offered by the methods currently available in the literature. This is vital for the advancement of spaser technology towards the level of device realization. Owing to the compact nature of the analytical expressions, our solution also facilitates the grouping and identification of key processes responsible for the spasing action, whilst providing significant physical insights. Furthermore, we show that our expression generates results within 0.1% error compared to numerically obtained results for pumping rates higher than the spasing threshold, thereby drastically reducing the computational cost associated with spaser designing.

  6. Laser pulses for coherent xuv Raman excitation

    NASA Astrophysics Data System (ADS)

    Greenman, Loren; Koch, Christiane P.; Whaley, K. Birgitta

    2015-07-01

    We combine multichannel electronic structure theory with quantum optimal control to derive femtosecond-time-scale Raman pulse sequences that coherently populate a valence excited state. For a neon atom, Raman target populations of up to 13% are obtained. Superpositions of the ground and valence Raman states with a controllable relative phase are found to be reachable with up to 4.5% population and arbitrary phase control facilitated by the pump pulse carrier-envelope phase. Analysis of the optimized pulse structure reveals a sequential mechanism in which the valence excitation is reached via a fast (femtosecond) population transfer through an intermediate resonance state in the continuum rather than avoiding intermediate-state population with simultaneous or counterintuitive (stimulated Raman adiabatic passage) pulse sequences. Our results open a route to coupling valence excitations and core-hole excitations in molecules and aggregates that locally address specific atoms and represent an initial step towards realization of multidimensional spectroscopy in the xuv and x-ray regimes.

  7. Generation of single-cycle mid-infrared pulses via coherent synthesis.

    PubMed

    Ma, Fen; Liu, Hongjun; Huang, Nan; Sun, Qibing

    2012-12-17

    A new approach for the generation of single-cycle mid-infrared pulses without complicated control systems is proposed, which is based on direct coherent synthesis of two idlers generated by difference frequency generation (DFG) processes. It is found that the waveform of synthesized pulses is mainly determined by the spectra superposition, the carrier-envelope phase (CEP) difference, the relative timing and the chirp ratio between the idlers. The influences of these parameters on the synthesized waveform are also numerically calculated and analyzed via second-order autocorrelation, which offers general guidelines for the waveform optimization. The single-cycle synthesized mid-infrared pulses, which are centered at 4233 nm with the spectrum spanning from 3000 nm to 7000 nm, are achieved by carefully optimizing these parameters. The single-cycle mid-infrared laser source presents the possibility of investigating and controlling the strong field light-matter interaction.

  8. GPU-Powered Coherent Beamforming

    NASA Astrophysics Data System (ADS)

    Magro, A.; Adami, K. Zarb; Hickish, J.

    2015-03-01

    Graphics processing units (GPU)-based beamforming is a relatively unexplored area in radio astronomy, possibly due to the assumption that any such system will be severely limited by the PCIe bandwidth required to transfer data to the GPU. We have developed a CUDA-based GPU implementation of a coherent beamformer, specifically designed and optimized for deployment at the BEST-2 array which can generate an arbitrary number of synthesized beams for a wide range of parameters. It achieves ˜1.3 TFLOPs on an NVIDIA Tesla K20, approximately 10x faster than an optimized, multithreaded CPU implementation. This kernel has been integrated into two real-time, GPU-based time-domain software pipelines deployed at the BEST-2 array in Medicina: a standalone beamforming pipeline and a transient detection pipeline. We present performance benchmarks for the beamforming kernel as well as the transient detection pipeline with beamforming capabilities as well as results of test observation.

  9. The emergence of coherence over the course of decision making.

    PubMed

    Simon, D; Pham, L B; Le, Q A; Holyoak, K J

    2001-09-01

    Previous research has indicated that decision making is accompanied by an increase in the coherence of assessments of the factors related to the decision alternatives. In the present study, the authors investigated whether this coherence shift is obtained before people commit to a decision, and whether it is obtained in the course of a number of other processing tasks. College students were presented with a complex legal case involving multiple conflicting arguments. Participants rated agreement with the individual arguments in isolation before seeing the case and after processing it under various initial sets, including playing the role of a judge assigned to decide the case. Coherence shifts were observed when participants were instructed to delay making the decision (Experiment 1), to memorize the case (Experiment 2), and to comprehend the case (Experiment 3). The findings support the hypothesis that a coherence-generating mechanism operates in a variety of processing tasks, including decision making.

  10. Optimal generation of spatially coherent soft X-ray isolated attosecond pulses in a gas-filled waveguide using two-color synthesized laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Cheng; Hong, Kyung -Han; Lin, C. D.

    2016-12-08

    Here, we numerically demonstrate the generation of intense, low-divergence soft X-ray isolated attosecond pulses in a gas-filled hollow waveguide using synthesized few-cycle two-color laser waveforms. The waveform is a superposition of a fundamental and its second harmonic optimized such that highest harmonic yields are emitted from each atom. We then optimize the gas pressure and the length and radius of the waveguide such that bright coherent high-order harmonics with angular divergence smaller than 1 mrad are generated, for photon energy from the extreme ultraviolet to soft X-rays. By selecting a proper spectral range enhanced isolated attosecond pulses are generated. Wemore » study how dynamic phase matching caused by the interplay among waveguide mode, neutral atomic dispersion, and plasma effect is achieved at the optimal macroscopic conditions, by performing time-frequency analysis and by analyzing the evolution of the driving laser’s electric field during the propagation. Our results, when combined with the on-going push of high-repetition-rate lasers (sub- to few MHz’s) may eventually lead to the generation of high-flux, low-divergence soft X-ray tabletop isolated attosecond pulses for applications.« less

  11. New Frontiers in Heart Rate Variability and Social Coherence Research: Techniques, Technologies, and Implications for Improving Group Dynamics and Outcomes

    PubMed Central

    McCraty, Rollin

    2017-01-01

    Concepts embraced by the term coherence have been identified as central to fields such as quantum physics, physiology, and social science. There are different types of coherence, although the term always implies a harmonious relationship, correlations and connections between the various parts of a system. A specific measure derived from heart rate variability (HRV) provides a measure of physiological coherence. Another type of coherence, social coherence, relates to the harmonious alignment between couples or pairs, family units, small groups, or larger organizations in which a network of relationships exists among individuals who share common interests and objectives. A high degree of social coherence is reflected by stable and harmonious relationships, which allows for the efficient flow and utilization of energy and communication required for optimal collective cohesion and action. Social coherence requires that group members are attuned and are emotionally connected with each other, and that the group’s emotional energy is organized and regulated by the group as a whole. A number of studies are reviewed which have explored various types of synchronization in infants, pairs and groups, indicating that feelings of cooperation, trust, compassion and increased prosocial behaviors depends largely on the establishment of a spontaneous synchronization of various physiological rhythms between individuals. This article discusses a new application using HRV monitoring in social coherence research and the importance of physiological synchronization in group developmental processes and dynamics. Building on the extensive body of research showing that providing feedback of HRV coherence level at the individual level can improve self-regulation, we suggest the following hypotheses: (1) providing feedback of individual and collective HRV coherence and the degree of heart rhythm synchronization will increase group coherence, and heart rhythm synchronization among group members. (2) Training in techniques to increase group coherence and heart rhythm synchronization will correlate with increased prosocial behaviors, such as kindness and cooperation among individuals, improved communication, and decreases in social discord and adversarial interactions. (3) Biomagnetic fields produced by the heart may be a primary mechanism in mediating HRV synchronization among group members. Data supporting each of the hypothesis is discussed. PMID:29075623

  12. New Frontiers in Heart Rate Variability and Social Coherence Research: Techniques, Technologies, and Implications for Improving Group Dynamics and Outcomes.

    PubMed

    McCraty, Rollin

    2017-01-01

    Concepts embraced by the term coherence have been identified as central to fields such as quantum physics, physiology, and social science. There are different types of coherence, although the term always implies a harmonious relationship, correlations and connections between the various parts of a system. A specific measure derived from heart rate variability (HRV) provides a measure of physiological coherence. Another type of coherence, social coherence, relates to the harmonious alignment between couples or pairs, family units, small groups, or larger organizations in which a network of relationships exists among individuals who share common interests and objectives. A high degree of social coherence is reflected by stable and harmonious relationships, which allows for the efficient flow and utilization of energy and communication required for optimal collective cohesion and action. Social coherence requires that group members are attuned and are emotionally connected with each other, and that the group's emotional energy is organized and regulated by the group as a whole. A number of studies are reviewed which have explored various types of synchronization in infants, pairs and groups, indicating that feelings of cooperation, trust, compassion and increased prosocial behaviors depends largely on the establishment of a spontaneous synchronization of various physiological rhythms between individuals. This article discusses a new application using HRV monitoring in social coherence research and the importance of physiological synchronization in group developmental processes and dynamics. Building on the extensive body of research showing that providing feedback of HRV coherence level at the individual level can improve self-regulation, we suggest the following hypotheses: (1) providing feedback of individual and collective HRV coherence and the degree of heart rhythm synchronization will increase group coherence, and heart rhythm synchronization among group members. (2) Training in techniques to increase group coherence and heart rhythm synchronization will correlate with increased prosocial behaviors, such as kindness and cooperation among individuals, improved communication, and decreases in social discord and adversarial interactions. (3) Biomagnetic fields produced by the heart may be a primary mechanism in mediating HRV synchronization among group members. Data supporting each of the hypothesis is discussed.

  13. Optimization of algorithm of coding of genetic information of Chlamydia

    NASA Astrophysics Data System (ADS)

    Feodorova, Valentina A.; Ulyanov, Sergey S.; Zaytsev, Sergey S.; Saltykov, Yury V.; Ulianova, Onega V.

    2018-04-01

    New method of coding of genetic information using coherent optical fields is developed. Universal technique of transformation of nucleotide sequences of bacterial gene into laser speckle pattern is suggested. Reference speckle patterns of the nucleotide sequences of omp1 gene of typical wild strains of Chlamydia trachomatis of genovars D, E, F, G, J and K and Chlamydia psittaci serovar I as well are generated. Algorithm of coding of gene information into speckle pattern is optimized. Fully developed speckles with Gaussian statistics for gene-based speckles have been used as criterion of optimization.

  14. Mutual optical intensity propagation through non-ideal mirrors

    DOE PAGES

    Meng, Xiangyu; Shi, Xianbo; Wang, Yong; ...

    2017-08-18

    The mutual optical intensity (MOI) model is extended to include the propagation of partially coherent radiation through non-ideal mirrors. The propagation of the MOI from the incident to the exit plane of the mirror is realised by local ray tracing. The effects of figure errors can be expressed as phase shifts obtained by either the phase projection approach or the direct path length method. Using the MOI model, the effects of figure errors are studied for diffraction-limited cases using elliptical cylinder mirrors. Figure errors with low spatial frequencies can vary the intensity distribution, redistribute the local coherence function and distortmore » the wavefront, but have no effect on the global degree of coherence. The MOI model is benchmarked againstHYBRIDand the multi-electronSynchrotron Radiation Workshop(SRW) code. The results show that the MOI model gives accurate results under different coherence conditions of the beam. Other than intensity profiles, the MOI model can also provide the wavefront and the local coherence function at any location along the beamline. The capability of tuning the trade-off between accuracy and efficiency makes the MOI model an ideal tool for beamline design and optimization.« less

  15. On optimal soft-decision demodulation. [in digital communication system

    NASA Technical Reports Server (NTRS)

    Lee, L.-N.

    1976-01-01

    A necessary condition is derived for optimal J-ary coherent demodulation of M-ary (M greater than 2) signals. Optimality is defined as maximality of the symmetric cutoff rate of the resulting discrete memoryless channel. Using a counterexample, it is shown that the condition derived is generally not sufficient for optimality. This condition is employed as the basis for an iterative optimization method to find the optimal demodulator decision regions from an initial 'good guess'. In general, these regions are found to be bounded by hyperplanes in likelihood space; the corresponding regions in signal space are found to have hyperplane asymptotes for the important case of additive white Gaussian noise. Some examples are presented, showing that the regions in signal space bounded by these asymptotic hyperplanes define demodulator decision regions that are virtually optimal.

  16. Coordinated, Collaborative and Coherent: Developing and Implementing E-Learning Guidelines within a National Tertiary Education System

    ERIC Educational Resources Information Center

    Suddaby, Gordon; Milne, John

    2008-01-01

    Purpose: The paper aims to discusses two complementary initiatives focussed on developing and implementing e-learning guidelines to support good pedagogy in e-learning practice. Design/methodology/approach: The first initiative is the development of a coherent set of open access e-learning guidelines for the New Zealand tertiary sector. The second…

  17. Development of Partially-Coherent Wavefront Propagation Simulation Methods for 3rd and 4th Generation Synchrotron Radiation Sources.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chubar O.; Berman, L; Chu, Y.S.

    2012-04-04

    Partially-coherent wavefront propagation calculations have proven to be feasible and very beneficial in the design of beamlines for 3rd and 4th generation Synchrotron Radiation (SR) sources. These types of calculations use the framework of classical electrodynamics for the description, on the same accuracy level, of the emission by relativistic electrons moving in magnetic fields of accelerators, and the propagation of the emitted radiation wavefronts through beamline optical elements. This enables accurate prediction of performance characteristics for beamlines exploiting high SR brightness and/or high spectral flux. Detailed analysis of radiation degree of coherence, offered by the partially-coherent wavefront propagation method, ismore » of paramount importance for modern storage-ring based SR sources, which, thanks to extremely small sub-nanometer-level electron beam emittances, produce substantial portions of coherent flux in X-ray spectral range. We describe the general approach to partially-coherent SR wavefront propagation simulations and present examples of such simulations performed using 'Synchrotron Radiation Workshop' (SRW) code for the parameters of hard X-ray undulator based beamlines at the National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory. These examples illustrate general characteristics of partially-coherent undulator radiation beams in low-emittance SR sources, and demonstrate advantages of applying high-accuracy physical-optics simulations to the optimization and performance prediction of X-ray optical beamlines in these new sources.« less

  18. Resolution and throughput optimized intraoperative spectrally encoded coherence tomography and reflectometry (iSECTR) for multimodal imaging during ophthalmic microsurgery

    NASA Astrophysics Data System (ADS)

    Malone, Joseph D.; El-Haddad, Mohamed T.; Leeburg, Kelsey C.; Terrones, Benjamin D.; Tao, Yuankai K.

    2018-02-01

    Limited visualization of semi-transparent structures in the eye remains a critical barrier to improving clinical outcomes and developing novel surgical techniques. While increases in imaging speed has enabled intraoperative optical coherence tomography (iOCT) imaging of surgical dynamics, several critical barriers to clinical adoption remain. Specifically, these include (1) static field-of-views (FOVs) requiring manual instrument-tracking; (2) high frame-rates require sparse sampling, which limits FOV; and (3) small iOCT FOV also limits the ability to co-register data with surgical microscopy. We previously addressed these limitations in image-guided ophthalmic microsurgery by developing microscope-integrated multimodal intraoperative swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography. Complementary en face images enabled orientation and coregistration with the widefield surgical microscope view while OCT imaging enabled depth-resolved visualization of surgical instrument positions relative to anatomic structures-of-interest. In addition, we demonstrated novel integrated segmentation overlays for augmented-reality surgical guidance. Unfortunately, our previous system lacked the resolution and optical throughput for in vivo retinal imaging and necessitated removal of cornea and lens. These limitations were predominately a result of optical aberrations from imaging through a shared surgical microscope objective lens, which was modeled as a paraxial surface. Here, we present an optimized intraoperative spectrally encoded coherence tomography and reflectometry (iSECTR) system. We use a novel lens characterization method to develop an accurate model of surgical microscope objective performance and balance out inherent aberrations using iSECTR relay optics. Using this system, we demonstrate in vivo multimodal ophthalmic imaging through a surgical microscope

  19. Optical amplifiers for coherent lidar

    NASA Technical Reports Server (NTRS)

    Fork, Richard

    1996-01-01

    We examine application of optical amplification to coherent lidar for the case of a weak return signal (a number of quanta of the return optical field close to unity). We consider the option that has been explored to date, namely, incorporation of an optical amplifier operated in a linear manner located after reception of the signal and immediately prior to heterodyning and photodetection. We also consider alternative strategies where the coherent interaction, the nonlinear processes, and the amplification are not necessarily constrained to occur in the manner investigated to date. We include the complications that occur because of mechanisms that occur at the level of a few, or one, quantum excitation. Two factors combine in the work to date that limit the value of the approach. These are: (1) the weak signal tends to require operation of the amplifier in the linear regime where the important advantages of nonlinear optical processing are not accessed, (2) the linear optical amplifier has a -3dB noise figure (SN(out)/SN(in)) that necessarily degrades the signal. Some improvement is gained because the gain provided by the optical amplifier can be used to overcome losses in the heterodyned process and photodetection. The result, however, is that introduction of an optical amplifier in a well optimized coherent lidar system results in, at best, a modest improvement in signal to noise. Some improvement may also be realized on incorporating more optical components in a coherent lidar system for purely practical reasons. For example, more compact, lighter weight, components, more robust alignment, or more rapid processing may be gained. We further find that there remain a number of potentially valuable, but unexplored options offered both by the rapidly expanding base of optical technology and the recent investigation of novel nonlinear coherent interference phenomena occurring at the single quantum excitation level. Key findings are: (1) insertion of linear optical amplifiers in well optimized conventional lidar systems offers modest improvements, at best, (2) the practical advantages of optical amplifiers, especially fiber amplifiers, such as ease of alignment, compactness, efficiency, lightweight, etc., warrant further investigation for coherent lidar, (3) the possibility of more fully optical lidar systems should be explored, (4) advantages gained by use of coherent interference of optical fields at the level of one, or a few, signal quanta should be explored, (5) amplification without inversion, population trapping, and use of electromagnetic induced transparency warrant investigation in connection with coherent lidar, (6) these new findings are probably more applicable to earth related NASA work, although applications to deep space should not be excluded, and (7) our own work in the Ultrafast Laboratory at UAH along some of the above lines of investigation, may be useful.

  20. Harbingers and latecomers - the order of appearance of exact coherent structures in plane Poiseuille flow

    NASA Astrophysics Data System (ADS)

    Zammert, Stefan; Eckhardt, Bruno

    2017-02-01

    The transition to turbulence in plane Poiseuille flow (PPF) is connected with the presence of exact coherent structures. We here discuss a variety of different structures that are relevant for the transition, compare the critical Reynolds numbers and optimal wavelengths for their appearance, and explore the differences between flows operating at constant mass flux or at constant pressure drop. The Reynolds numbers quoted here are based on the mean flow velocity and refer to constant mass flux. Reynolds numbers based on constant pressure drop are always higher. The Tollmien-Schlichting (TS) waves bifurcate subcritically from the laminar profile at Re = 5772 at wavelength 6.16 and reach down to Re = 2610 at a different optimal wave length of 4.65. Their streamwise localised counter part bifurcates at the even lower value Re = 2334. Three-dimensional exact solutions appear at much lower Reynolds numbers. We describe one exact solutions that has a critical Reynolds number of 316. Streamwise localised versions of this state require higher Reynolds numbers, with the lowest bifurcation occurring near Re = 1018. The analysis shows that the various branches of TS-waves cannot be connected with transition observed near Re ≈ 1000 and that the exact coherent structures related to downstream vortices come in at lower Reynolds numbers and prepare for the transition.

  1. Performance improvement of 64-QAM coherent optical communication system by optimizing symbol decision boundary based on support vector machine

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Zhang, Junfeng; Gao, Mingyi; Shen, Gangxiang

    2018-03-01

    High-order modulation signals are suited for high-capacity communication systems because of their high spectral efficiency, but they are more vulnerable to various impairments. For the signals that experience degradation, when symbol points overlap on the constellation diagram, the original linear decision boundary cannot be used to distinguish the classification of symbol. Therefore, it is advantageous to create an optimum symbol decision boundary for the degraded signals. In this work, we experimentally demonstrated the 64-quadrature-amplitude modulation (64-QAM) coherent optical communication system using support-vector machine (SVM) decision boundary algorithm to create the optimum symbol decision boundary for improving the system performance. We investigated the influence of various impairments on the 64-QAM coherent optical communication systems, such as the impairments caused by modulator nonlinearity, phase skew between in-phase (I) arm and quadrature-phase (Q) arm of the modulator, fiber Kerr nonlinearity and amplified spontaneous emission (ASE) noise. We measured the bit-error-ratio (BER) performance of 75-Gb/s 64-QAM signals in the back-to-back and 50-km transmission. By using SVM to optimize symbol decision boundary, the impairments caused by I/Q phase skew of the modulator, fiber Kerr nonlinearity and ASE noise are greatly mitigated.

  2. The Dolinar Receiver in an Information Theoretic Framework

    NASA Technical Reports Server (NTRS)

    Erkmen, Baris I.; Birnbaum, Kevin M.; Moision, Bruce E.; Dolinar, Samuel J.

    2011-01-01

    Optical communication at the quantum limit requires that measurements on the optical field be maximally informative, but devising physical measurements that accomplish this objective has proven challenging. The Dolinar receiver exemplifies a rare instance of success in distinguishing between two coherent states: an adaptive local oscillator is mixed with the signal prior to photodetection, which yields an error probability that meets the Helstrom lower bound with equality. Here we apply the same local-oscillator-based architecture with aninformation-theoretic optimization criterion. We begin with analysis of this receiver in a general framework for an arbitrary coherent-state modulation alphabet, and then we concentrate on two relevant examples. First, we study a binary antipodal alphabet and show that the Dolinar receiver's feedback function not only minimizes the probability of error, but also maximizes the mutual information. Next, we study ternary modulation consistingof antipodal coherent states and the vacuum state. We derive an analytic expression for a near-optimal local oscillator feedback function, and, via simulation, we determine its photon information efficiency (PIE). We provide the PIE versus dimensional information efficiency (DIE) trade-off curve and show that this modulation and the our receiver combination performs universally better than (generalized) on-off keying plus photoncounting, although, the advantage asymptotically vanishes as the bits-per-photon diverges towards infinity.

  3. The Stonehenge technique. A method for aligning coherent bremsstrahlung radiators

    NASA Astrophysics Data System (ADS)

    Livingston, Ken

    2009-05-01

    This paper describes a technique for the alignment of crystal radiators used to produce high energy, linearly polarized photons via coherent bremsstrahlung scattering at electron beam facilities. In these experiments the crystal is mounted on a goniometer which is used to adjust its orientation relative to the electron beam. The angles and equations which relate the crystal lattice, goniometer and electron beam direction are presented here, and the method of alignment is illustrated with data taken at MAMI (the Mainz microtron). A practical guide to setting up a coherent bremsstrahlung facility and installing new crystals using this technique is also included.

  4. Squeezed states: A geometric framework

    NASA Technical Reports Server (NTRS)

    Ali, S. T.; Brooke, J. A.; Gazeau, J.-P.

    1992-01-01

    A general definition of squeezed states is proposed and its main features are illustrated through a discussion of the standard optical coherent states represented by 'Gaussian pure states'. The set-up involves representations of groups on Hilbert spaces over homogeneous spaces of the group, and relies on the construction of a square integrable (coherent state) group representation modulo a subgroup. This construction depends upon a choice of a Borel section which has a certain permissible arbitrariness in its selection; this freedom is attributable to a squeezing of the defining coherent states of the representation, and corresponds in this way to a sort of gauging.

  5. Quantum-noise randomized data encryption for wavelength-division-multiplexed fiber-optic networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corndorf, Eric; Liang Chuang; Kanter, Gregory S.

    2005-06-15

    We demonstrate high-rate randomized data-encryption through optical fibers using the inherent quantum-measurement noise of coherent states of light. Specifically, we demonstrate 650 Mbit/s data encryption through a 10 Gbit/s data-bearing, in-line amplified 200-km-long line. In our protocol, legitimate users (who share a short secret key) communicate using an M-ry signal set while an attacker (who does not share the secret key) is forced to contend with the fundamental and irreducible quantum-measurement noise of coherent states. Implementations of our protocol using both polarization-encoded signal sets as well as polarization-insensitive phase-keyed signal sets are experimentally and theoretically evaluated. Different from the performancemore » criteria for the cryptographic objective of key generation (quantum key-generation), one possible set of performance criteria for the cryptographic objective of data encryption is established and carefully considered.« less

  6. Continuous-variable measurement-device-independent quantum key distribution with virtual photon subtraction

    NASA Astrophysics Data System (ADS)

    Zhao, Yijia; Zhang, Yichen; Xu, Bingjie; Yu, Song; Guo, Hong

    2018-04-01

    The method of improving the performance of continuous-variable quantum key distribution protocols by postselection has been recently proposed and verified. In continuous-variable measurement-device-independent quantum key distribution (CV-MDI QKD) protocols, the measurement results are obtained from untrusted third party Charlie. There is still not an effective method of improving CV-MDI QKD by the postselection with untrusted measurement. We propose a method to improve the performance of coherent-state CV-MDI QKD protocol by virtual photon subtraction via non-Gaussian postselection. The non-Gaussian postselection of transmitted data is equivalent to an ideal photon subtraction on the two-mode squeezed vacuum state, which is favorable to enhance the performance of CV-MDI QKD. In CV-MDI QKD protocol with non-Gaussian postselection, two users select their own data independently. We demonstrate that the optimal performance of the renovated CV-MDI QKD protocol is obtained with the transmitted data only selected by Alice. By setting appropriate parameters of the virtual photon subtraction, the secret key rate and tolerable excess noise are both improved at long transmission distance. The method provides an effective optimization scheme for the application of CV-MDI QKD protocols.

  7. Comparison of fMRI analysis methods for heterogeneous BOLD responses in block design studies

    PubMed Central

    Bernal-Casas, David; Fang, Zhongnan; Lee, Jin Hyung

    2017-01-01

    A large number of fMRI studies have shown that the temporal dynamics of evoked BOLD responses can be highly heterogeneous. Failing to model heterogeneous responses in statistical analysis can lead to significant errors in signal detection and characterization and alter the neurobiological interpretation. However, to date it is not clear that, out of a large number of options, which methods are robust against variability in the temporal dynamics of BOLD responses in block-design studies. Here, we used rodent optogenetic fMRI data with heterogeneous BOLD responses and simulations guided by experimental data as a means to investigate different analysis methods’ performance against heterogeneous BOLD responses. Evaluations are carried out within the general linear model (GLM) framework and consist of standard basis sets as well as independent component analysis (ICA). Analyses show that, in the presence of heterogeneous BOLD responses, conventionally used GLM with a canonical basis set leads to considerable errors in the detection and characterization of BOLD responses. Our results suggest that the 3rd and 4th order gamma basis sets, the 7th to 9th order finite impulse response (FIR) basis sets, the 5th to 9th order B-spline basis sets, and the 2nd to 5th order Fourier basis sets are optimal for good balance between detection and characterization, while the 1st order Fourier basis set (coherence analysis) used in our earlier studies show good detection capability. ICA has mostly good detection and characterization capabilities, but detects a large volume of spurious activation with the control fMRI data. PMID:27993672

  8. Expected Characteristics of Global Wind Profile Measurements with a Scanning, Hybrid, Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.

    2008-01-01

    Over 20 years of investigation by NASA and NOAA scientists and Doppler lidar technologists into a global wind profiling mission from earth orbit have led to the current favored concept of an instrument with both coherent- and direct-detection pulsed Doppler lidars (i.e., a hybrid Doppler lidar) and a stepstare beam scanning approach covering several azimuth angles with a fixed nadir angle. The nominal lidar wavelengths are 2 microns for coherent detection, and 0.355 microns for direct detection. The two agencies have also generated two sets of sophisticated wind measurement requirements for a space mission: science demonstration requirements and operational requirements. The requirements contain the necessary details to permit mission design and optimization by lidar technologists. Simulations have been developed that connect the science requirements to the wind measurement requirements, and that connect the wind measurement requirements to the Doppler lidar parameters. The simulations also permit trade studies within the multi-parameter space. These tools, combined with knowledge of the state of the Doppler lidar technology, have been used to conduct space instrument and mission design activities to validate the feasibility of the chosen mission and lidar parameters. Recently, the NRC Earth Science Decadal Survey recommended the wind mission to NASA as one of 15 recommended missions. A full description of the wind measurement product from these notional missions and the possible trades available are presented in this paper.

  9. Entanglement-assisted quantum feedback control

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naoki; Mikami, Tomoaki

    2017-07-01

    The main advantage of quantum metrology relies on the effective use of entanglement, which indeed allows us to achieve strictly better estimation performance over the standard quantum limit. In this paper, we propose an analogous method utilizing entanglement for the purpose of feedback control. The system considered is a general linear dynamical quantum system, where the control goal can be systematically formulated as a linear quadratic Gaussian control problem based on the quantum Kalman filtering method; in this setting, an entangled input probe field is effectively used to reduce the estimation error and accordingly the control cost function. In particular, we show that, in the problem of cooling an opto-mechanical oscillator, the entanglement-assisted feedback control can lower the stationary occupation number of the oscillator below the limit attainable by the controller with a coherent probe field and furthermore beats the controller with an optimized squeezed probe field.

  10. Opportunities and benefits as determinants of the direction of scientific research.

    PubMed

    Bhattacharya, Jay; Packalen, Mikko

    2011-07-01

    Scientific research and private-sector technological innovation differ in objectives, constraints, and organizational forms. Scientific research may thus not be driven by the direct practical benefit to others in the way that private-sector innovation is. Alternatively, some - yet largely unexplored - mechanisms drive the direction of scientific research to respond to the expected public benefit. We test these two competing hypotheses of scientific research. This is important because any coherent specification of what constitutes the socially optimal allocation of research requires that scientists take the public practical benefit of their work into account in setting their agenda. We examine whether the composition of medical research responds to changes in disease prevalence, while accounting for the quality of available research opportunities. We match biomedical publications data with disease prevalence data and develop new methods for estimating the quality of research opportunities from textual information and structural productivity parameters. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Opportunities and Benefits as Determinants of the Direction of Scientific Research*

    PubMed Central

    Bhattacharya, Jay; Packale, Mikko

    2017-01-01

    Scientific research and private-sector technological innovation differ in objectives, constraints, and organizational forms. Scientific research may thus not be driven by the direct practical benefit to others in the way that private-sector innovation is. Alternatively, some–yet largely unexplored-mechanisms drive the direction of scientific research to respond to the expected public benefit. We test these two competing hypotheses of scientific research. This is important because any coherent specification of what constitutes the socially optimal allocation of research requires that scientists take the public practical benefit of their work into account in setting their agenda. We examine whether the composition of medical research responds to changes in disease prevalence, while accounting for the quality of available research opportunities. We match biomedical publications data with disease prevalence data and develop new methods for estimating the quality of research opportunities from textual information and structural productivity parameters. PMID:21683461

  12. Value management: optimizing quality, service, and cost.

    PubMed

    Makadon, Harvey J; Bharucha, Farzan; Gavin, Michael; Oliveira, Jason; Wietecha, Mark

    2010-01-01

    Hospitals have wrestled with balancing quality, service, and cost for years--and the visibility and urgency around measuring and communicating real metrics has grown exponentially in the last decade. However, even today, most hospital leaders cannot articulate or demonstrate the "value" they provide to patients and payers. Instead of developing a strategic direction that is based around a core value proposition, they focus their strategic efforts on tactical decisions like physician recruitment, facility expansion, and physician alignment. In the healthcare paradigm of the next decade, alignment of various tactical initiatives will require a more coherent understanding of the hospital's core value positioning. The authors draw on their experience in a variety of healthcare settings to suggest that for most hospitals, quality (i.e., clinical outcomes and patient safety) will become the most visible indicator of value, and introduce a framework to help healthcare providers influence their value positioning based on this variable.

  13. Environmental forcing of the Campeche cold-water coral province, southern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Hebbeln, D.; Wienberg, C.; Wintersteller, P.; Freiwald, A.; Becker, M.; Beuck, L.; Dullo, C.; Eberli, G. P.; Glogowski, S.; Matos, L.; Forster, N.; Reyes-Bonilla, H.; Taviani, M.

    2014-04-01

    With an extension of > 40 km2 the recently discovered Campeche cold-water coral province located at the northeastern rim of the Campeche Bank in the southern Gulf of Mexico belongs to the largest coherent cold-water coral areas discovered so far. The Campeche province consists of numerous 20-40 m-high elongated coral mounds that are developed in intermediate water depths of 500 to 600 m. The mounds are colonized by a vivid cold-water coral ecosystem that covers the upper flanks and summits. The rich coral community is dominated by the framework-building Scleractinia Enallopsammia profunda and Lophelia pertusa, while the associated benthic megafauna shows a rather scarce occurrence. The recent environmental setting is characterized by a high surface water production caused by a local upwelling center and a dynamic bottom-water regime comprising vigorous bottom currents, obvious temporal variability, and strong density contrasts, which all together provide optimal conditions for the growth of cold-water corals. This setting - potentially supported by the diel vertical migration of zooplankton in the Campeche area - controls the delivering of food particles to the corals. The Campeche cold-water coral province is, thus, an excellent example highlighting the importance of the oceanographic setting in securing the food supply for the development of large and vivid cold-water coral ecosystems.

  14. Coherent receiver design based on digital signal processing in optical high-speed intersatellite links with M-phase-shift keying

    NASA Astrophysics Data System (ADS)

    Schaefer, Semjon; Gregory, Mark; Rosenkranz, Werner

    2016-11-01

    We present simulative and experimental investigations of different coherent receiver designs for high-speed optical intersatellite links. We focus on frequency offset (FO) compensation in homodyne and intradyne detection systems. The considered laser communication terminal uses an optical phase-locked loop (OPLL), which ensures stable homodyne detection. However, the hardware complexity increases with the modulation order. Therefore, we show that software-based intradyne detection is an attractive alternative for OPLL-based homodyne systems. Our approach is based on digital FO and phase noise compensation, in order to achieve a more flexible coherent detection scheme. Analytic results will further show the theoretical impact of the different detection schemes on the receiver sensitivity. Finally, we compare the schemes in terms of bit error ratio measurements and optimal receiver design.

  15. HWDA: A coherence recognition and resolution algorithm for hybrid web data aggregation

    NASA Astrophysics Data System (ADS)

    Guo, Shuhang; Wang, Jian; Wang, Tong

    2017-09-01

    Aiming at the object confliction recognition and resolution problem for hybrid distributed data stream aggregation, a distributed data stream object coherence solution technology is proposed. Firstly, the framework was defined for the object coherence conflict recognition and resolution, named HWDA. Secondly, an object coherence recognition technology was proposed based on formal language description logic and hierarchical dependency relationship between logic rules. Thirdly, a conflict traversal recognition algorithm was proposed based on the defined dependency graph. Next, the conflict resolution technology was prompted based on resolution pattern matching including the definition of the three types of conflict, conflict resolution matching pattern and arbitration resolution method. At last, the experiment use two kinds of web test data sets to validate the effect of application utilizing the conflict recognition and resolution technology of HWDA.

  16. The set of triple-resonance sequences with a multiple quantum coherence evolution period

    NASA Astrophysics Data System (ADS)

    Koźmiński, Wiktor; Zhukov, Igor

    2004-12-01

    The new pulse sequence building block that relies on evolution of heteronuclear multiple quantum coherences is proposed. The particular chemical shifts are obtained in multiple quadrature, using linear combinations of frequencies taken from spectra measured at different quantum levels. The pulse sequences designed in this way consist of small number of RF-pulses, are as short as possible, and could be applied for determination of coupling constants. The examples presented involve 2D correlations H NCO, H NCA, H N(CO) CA, and H(N) COCA via heteronuclear zero and double coherences, as well as 2D H NCOCA technique with simultaneous evolution of triple and three distinct single quantum coherences. Applications of the new sequences are presented for 13C, 15N-labeled ubiquitin.

  17. Revisiting the Al/Al₂O₃ interface: coherent interfaces and misfit accommodation.

    PubMed

    Pilania, Ghanshyam; Thijsse, Barend J; Hoagland, Richard G; Lazić, Ivan; Valone, Steven M; Liu, Xiang-Yang

    2014-03-27

    We study the coherent and semi-coherent Al/α-Al2O3 interfaces using molecular dynamics simulations with a mixed, metallic-ionic atomistic model. For the coherent interfaces, both Al-terminated and O-terminated nonstoichiometric interfaces have been studied and their relative stability has been established. To understand the misfit accommodation at the semi-coherent interface, a 1-dimensional (1D) misfit dislocation model and a 2-dimensional (2D) dislocation network model have been studied. For the latter case, our analysis reveals an interface dislocation structure with a network of three sets of parallel dislocations, each with pure-edge character, giving rise to a pattern of coherent and stacking-fault-like regions at the interface. Structural relaxation at elevated temperatures leads to a further change of the dislocation pattern, which can be understood in terms of a competition between the stacking fault energy and the dislocation interaction energy at the interface. Our results are expected to serve as an input for the subsequent dislocation dynamics models to understand and predict the macroscopic mechanical behavior of Al/α-Al2O3 composite heterostructures.

  18. EEG gamma coherence and other correlates of subjective reports during ayahuasca experiences.

    PubMed

    Stuckey, David E; Lawson, Robert; Luna, Luis Eduardo

    2005-06-01

    The current study examined QEEG power and coherence of ayahuasca experiences with two experienced participants in a Brazilian jungle setting. An exploratory case series design was adopted for naturalistic field research. EEGs recorded during visual imagery was compared to eyes-closed baselines. The most important findings were increases in global EEG coherence in the 36-44 Hz and 50-64 Hz frequency bands for both subjects. Widely distributed cortical hyper-coherence seems reasonable given the intense synesthesia during ayahuasca experiences. Other findings include increased modal EEG alpha frequency and global power decreases across the cortex in most frequency bands, which concur with the EEG of psychedelics literature. Exploratory analysis revealed the usefulness of analyzing single Hz bins over the standard wide-band analysis. The discovery-oriented naturalistic approach developed for this study resulted in potentially important findings. We believe that finding increases in global gamma coherence during peak psychedelic experiences might contribute to the discussion of binding theory. Also, in light of recent research with gamma coherence during advanced meditative conditions, our findings might further the comparison of shamanic psychedelic practices with meditation.

  19. Mismatch removal via coherent spatial relations

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Ma, Jiayi; Yang, Changcai; Tian, Jinwen

    2014-07-01

    We propose a method for removing mismatches from the given putative point correspondences in image pairs based on "coherent spatial relations." Under the Bayesian framework, we formulate our approach as a maximum likelihood problem and solve a coherent spatial relation between the putative point correspondences using an expectation-maximization (EM) algorithm. Our approach associates each point correspondence with a latent variable indicating it as being either an inlier or an outlier, and alternatively estimates the inlier set and recovers the coherent spatial relation. It can handle not only the case of image pairs with rigid motions but also the case of image pairs with nonrigid motions. To parameterize the coherent spatial relation, we choose two-view geometry and thin-plate spline as models for rigid and nonrigid cases, respectively. The mismatches could be successfully removed via the coherent spatial relations after the EM algorithm converges. The quantitative results on various experimental data demonstrate that our method outperforms many state-of-the-art methods, it is not affected by low initial correct match percentages, and is robust to most geometric transformations including a large viewing angle, image rotation, and affine transformation.

  20. The Fence at the Edge of the Cliff: Approaching Family Policy in North America. Perspectives.

    ERIC Educational Resources Information Center

    Mirabelli, Alan

    Noting that modern governments have a choice between a deliberate, coherent family policy and one of inconsistency and mischance, this paper presents the family policy of Quebec as a model of a coherent set of measures aimed explicitly at family well-being. This policy, started in the late 1980s, was put into place through the appointment of a…

  1. Security Engineering Pilot

    DTIC Science & Technology

    2013-02-28

    needed to detect and isolate the compromised component • Prevent a cyber attack exploit from reading enough information to form a coherent data set...Analysis Signal Copy Selected Sub-Bands • Gimbaled, Stabilized EO/IR Camera Ball • High Precision GPS & INS (eventual swarm capable inter-UAV coherent ... LIDAR , HSI, Chem-Bio • Multi-Platform Distributed Sensor Experiments (eg, MIMO) • Autonomous & Collaborative Multi-Platform Control • Space for

  2. Holonomic Quantum Control by Coherent Optical Excitation in Diamond.

    PubMed

    Zhou, Brian B; Jerger, Paul C; Shkolnikov, V O; Heremans, F Joseph; Burkard, Guido; Awschalom, David D

    2017-10-06

    Although geometric phases in quantum evolution are historically overlooked, their active control now stimulates strategies for constructing robust quantum technologies. Here, we demonstrate arbitrary single-qubit holonomic gates from a single cycle of nonadiabatic evolution, eliminating the need to concatenate two separate cycles. Our method varies the amplitude, phase, and detuning of a two-tone optical field to control the non-Abelian geometric phase acquired by a nitrogen-vacancy center in diamond over a coherent excitation cycle. We demonstrate the enhanced robustness of detuned gates to excited-state decoherence and provide insights for optimizing fast holonomic control in dissipative quantum systems.

  3. Holonomic Quantum Control by Coherent Optical Excitation in Diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Brian B.; Jerger, Paul C.; Shkolnikov, V. O.

    Although geometric phases in quantum evolution are historically overlooked, their active control now stimulates strategies for constructing robust quantum technologies. Here, we demonstrate arbitrary singlequbit holonomic gates from a single cycle of nonadiabatic evolution, eliminating the need to concatenate two separate cycles. Our method varies the amplitude, phase, and detuning of a two-tone optical field to control the non-Abelian geometric phase acquired by a nitrogen-vacancy center in diamond over a coherent excitation cycle. We demonstrate the enhanced robustness of detuned gates to excited-state decoherence and provide insights for optimizing fast holonomic control in dissipative quantum systems.

  4. Squeezed-state quantum key distribution with a Rindler observer

    NASA Astrophysics Data System (ADS)

    Zhou, Jian; Shi, Ronghua; Guo, Ying

    2018-03-01

    Lengthening the maximum transmission distance of quantum key distribution plays a vital role in quantum information processing. In this paper, we propose a directional squeezed-state protocol with signals detected by a Rindler observer in the relativistic quantum field framework. We derive an analytical solution to the transmission problem of squeezed states from the inertial sender to the accelerated receiver. The variance of the involved signal mode is closer to optimality than that of the coherent-state-based protocol. Simulation results show that the proposed protocol has better performance than the coherent-state counterpart especially in terms of the maximal transmission distance.

  5. The Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source

    DOE PAGES

    Ferguson, Ken R.; Bucher, Maximilian; Bozek, John D.; ...

    2015-05-01

    The Atomic, Molecular and Optical Science (AMO) instrument at the Linac Coherent Light Source (LCLS) provides a tight soft X-ray focus into one of three experimental endstations. The flexible instrument design is optimized for studying a wide variety of phenomena requiring peak intensity. There is a suite of spectrometers and two photon area detectors available. An optional mirror-based split-and-delay unit can be used for X-ray pump–probe experiments. Recent scientific highlights illustrate the imaging, time-resolved spectroscopy and high-power density capabilities of the AMO instrument.

  6. Design and Operational Characteristics of the Shuttle Coherent Wind Lidar

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Spiers, Gary D.; Peters, Bruce R.; Li, Ye; Blackwell, Timothy S.; Geary, Joseph M.

    1998-01-01

    NOAA has identified the measurement of atmospheric wind velocities as one of the key unmet data sets for its next generation of sensing platforms. The merits of coherent lidars for the measurement of atmospheric winds from space platforms have been widely recognized; however, it is only recently that several key technologies have advanced to a point where a compact, high fidelity system could be created. Advances have been made in the areas of the diode-pumped, eye-safe, solid state lasers and room temperature, wide bandwidth, semiconductor detectors operating in the near-infrared region. These new lasers can be integrated into efficient and compact optical systems creating new possibilities for the development of low-cost, reliable, and compact coherent lidar systems for wind measurements. Over the past five years, the University of Alabama in Huntsville (UAH) has been working toward further advancing the solid state coherent lidar technology for the measurement of atmospheric winds from space. As part of this effort, UAH had established the design characteristics and defined the expected performance for three different proposed space-based instruments: a technology demonstrator, an operational prototype, and a 7-year lifetime operational instrument. SPARCLE is an ambitious project that is intended to evaluate the suitability of coherent lidar for wind measurements, demonstrate the maturity of the technology for space application, and provide a useable data set for model development and validation. This paper describes the SPARCLE instrument's major physical and environmental design constraints, optical and mechanical designs, and its operational characteristics.

  7. Optimized tracking of RF carriers with phase noise, including Pioneer 10 results

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V. A.; Hurd, W. J.; Brown, D. H.

    1987-01-01

    The ability to track very weak signals from distant spacecraft is limited by the phase instabilities of the received signal and of the local oscillator employed by the receiver. These instabilities ultimately limit the minimum loop bandwidth that can be used in a phase-coherent receiver, and hence limit the ratio of received carrier power to noise spectral density which can be tracked phase coherently. A method is presented for near real time estimation of the received carrier phase and additive noise spectrum, and optimization of the phase locked loop bandwidth. The method was used with the breadboard Deep Space Network (DSN) Advanced Receiver to optimize tracking of very weak signals from the Pioneer 10 spacecraft, which is now more distant that the edge of the solar system. Tracking with bandwidths of 0.1 Hz to 1.0 Hz reduces tracking signal threshold and increases carrier loop signal to noise ratio (SNR) by 5 dB to 15 dB compared to the 3 Hz bandwidth of the receivers now used operationally in the DSN. This will enable the DSN to track Pioneer 10 until its power sources fails near the end of the century.

  8. The fundamental problem of treating light incoherence in photovoltaics and its practical consequences

    NASA Astrophysics Data System (ADS)

    Herman, Aline; Sarrazin, Michaël; Deparis, Olivier

    2014-01-01

    The incoherence of sunlight has long been suspected to have an impact on solar cell energy conversion efficiency, although the extent of this is unclear. Existing computational methods used to optimize solar cell efficiency under incoherent light are based on multiple time-consuming runs and statistical averaging. These indirect methods show limitations related to the complexity of the solar cell structure. As a consequence, complex corrugated cells, which exploit light trapping for enhancing the efficiency, have not yet been accessible for optimization under incoherent light. To overcome this bottleneck, we developed an original direct method which has the key advantage that the treatment of incoherence can be totally decoupled from the complexity of the cell. As an illustration, surface-corrugated GaAs and c-Si thin-films are considered. The spectrally integrated absorption in these devices is found to depend strongly on the degree of light coherence and, accordingly, the maximum achievable photocurrent can be higher under incoherent light than under coherent light. These results show the importance of taking into account sunlight incoherence in solar cell optimization and point out the ability of our direct method to deal with complex solar cell structures.

  9. Open quantum dots—probing the quantum to classical transition

    NASA Astrophysics Data System (ADS)

    Ferry, D. K.; Burke, A. M.; Akis, R.; Brunner, R.; Day, T. E.; Meisels, R.; Kuchar, F.; Bird, J. P.; Bennett, B. R.

    2011-04-01

    Quantum dots provide a natural system in which to study both quantum and classical features of transport. As a closed testbed, they provide a natural system with a very rich set of eigenstates. When coupled to the environment through a pair of quantum point contacts, each of which passes several modes, the original quantum environment evolves into a set of decoherent and coherent states, which classically would compose a mixed phase space. The manner of this breakup is governed strongly by Zurek's decoherence theory, and the remaining coherent states possess all the properties of his pointer states. These states are naturally studied via traditional magnetotransport at low temperatures. More recently, we have used scanning gate (conductance) microscopy to probe the nature of the coherent states, and have shown that families of states exist through the spectrum in a manner consistent with quantum Darwinism. In this review, we discuss the nature of the various states, how they are formed, and the signatures that appear in magnetotransport and general conductance studies.

  10. Nearly ideal binary communication in squeezed channels

    NASA Astrophysics Data System (ADS)

    Paris, Matteo G.

    2001-07-01

    We analyze the effect of squeezing the channel in binary communication based on Gaussian states. We show that for coding on pure states, squeezing increases the detection probability at fixed size of the strategy, actually saturating the optimal bound already for moderate signal energy. Using Neyman-Pearson lemma for fuzzy hypothesis testing we are able to analyze also the case of mixed states, and to find the optimal amount of squeezing that can be effectively employed. It results that optimally squeezed channels are robust against signal mixing, and largely improve the strategy power by comparison with coherent ones.

  11. Average spectral efficiency analysis of FSO links over turbulence channel with adaptive transmissions and aperture averaging

    NASA Astrophysics Data System (ADS)

    Aarthi, G.; Ramachandra Reddy, G.

    2018-03-01

    In our paper, the impact of adaptive transmission schemes: (i) optimal rate adaptation (ORA) and (ii) channel inversion with fixed rate (CIFR) on the average spectral efficiency (ASE) are explored for free-space optical (FSO) communications with On-Off Keying (OOK), Polarization shift keying (POLSK), and Coherent optical wireless communication (Coherent OWC) systems under different turbulence regimes. Further to enhance the ASE we have incorporated aperture averaging effects along with the above adaptive schemes. The results indicate that ORA adaptation scheme has the advantage of improving the ASE performance compared with CIFR under moderate and strong turbulence regime. The coherent OWC system with ORA excels the other modulation schemes and could achieve ASE performance of 49.8 bits/s/Hz at the average transmitted optical power of 6 dBm under strong turbulence. By adding aperture averaging effect we could achieve an ASE of 50.5 bits/s/Hz under the same conditions. This makes ORA with Coherent OWC modulation as a favorable candidate for improving the ASE of the FSO communication system.

  12. First-Principles Quantum Dynamics of Singlet Fission: Coherent versus Thermally Activated Mechanisms Governed by Molecular π Stacking

    NASA Astrophysics Data System (ADS)

    Tamura, Hiroyuki; Huix-Rotllant, Miquel; Burghardt, Irene; Olivier, Yoann; Beljonne, David

    2015-09-01

    Singlet excitons in π -stacked molecular crystals can split into two triplet excitons in a process called singlet fission that opens a route to carrier multiplication in photovoltaics. To resolve controversies about the mechanism of singlet fission, we have developed a first principles nonadiabatic quantum dynamical model that reveals the critical role of molecular stacking symmetry and provides a unified picture of coherent versus thermally activated singlet fission mechanisms in different acenes. The slip-stacked equilibrium packing structure of pentacene derivatives is found to enhance ultrafast singlet fission mediated by a coherent superexchange mechanism via higher-lying charge transfer states. By contrast, the electronic couplings for singlet fission strictly vanish at the C2 h symmetric equilibrium π stacking of rubrene. In this case, singlet fission is driven by excitations of symmetry-breaking intermolecular vibrations, rationalizing the experimentally observed temperature dependence. Design rules for optimal singlet fission materials therefore need to account for the interplay of molecular π -stacking symmetry and phonon-induced coherent or thermally activated mechanisms.

  13. Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2).

    PubMed

    Harel, Elad; Engel, Gregory S

    2012-01-17

    Light-harvesting antenna complexes transfer energy from sunlight to photosynthetic reaction centers where charge separation drives cellular metabolism. The process through which pigments transfer excitation energy involves a complex choreography of coherent and incoherent processes mediated by the surrounding protein and solvent environment. The recent discovery of coherent dynamics in photosynthetic light-harvesting antennae has motivated many theoretical models exploring effects of interference in energy transfer phenomena. In this work, we provide experimental evidence of long-lived quantum coherence between the spectrally separated B800 and B850 rings of the light-harvesting complex 2 (LH2) of purple bacteria. Spectrally resolved maps of the detuning, dephasing, and the amplitude of electronic coupling between excitons reveal that different relaxation pathways act in concert for optimal transfer efficiency. Furthermore, maps of the phase of the signal suggest that quantum mechanical interference between different energy transfer pathways may be important even at ambient temperature. Such interference at a product state has already been shown to enhance the quantum efficiency of transfer in theoretical models of closed loop systems such as LH2.

  14. Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2)

    PubMed Central

    Harel, Elad; Engel, Gregory S.

    2012-01-01

    Light-harvesting antenna complexes transfer energy from sunlight to photosynthetic reaction centers where charge separation drives cellular metabolism. The process through which pigments transfer excitation energy involves a complex choreography of coherent and incoherent processes mediated by the surrounding protein and solvent environment. The recent discovery of coherent dynamics in photosynthetic light-harvesting antennae has motivated many theoretical models exploring effects of interference in energy transfer phenomena. In this work, we provide experimental evidence of long-lived quantum coherence between the spectrally separated B800 and B850 rings of the light-harvesting complex 2 (LH2) of purple bacteria. Spectrally resolved maps of the detuning, dephasing, and the amplitude of electronic coupling between excitons reveal that different relaxation pathways act in concert for optimal transfer efficiency. Furthermore, maps of the phase of the signal suggest that quantum mechanical interference between different energy transfer pathways may be important even at ambient temperature. Such interference at a product state has already been shown to enhance the quantum efficiency of transfer in theoretical models of closed loop systems such as LH2. PMID:22215585

  15. Developing community based rehabilitation for cancer survivors: organizing for coordination and coherence in practice

    PubMed Central

    2013-01-01

    Background Increasing incidences of cancer combined with prolonged survival have raised the need for developing community based rehabilitation. The objectives of the analysis were to describe and interpret the key issues related to coordination and coherence of community-based cancer rehabilitation in Denmark and to provide insights relevant for other contexts. Methods Twenty-seven rehabilitation managers across 15 municipalities in Denmark comprised the sample. The study was designed with a combination of data collection methods including questionnaires, individual interviews, and focus groups. A Grounded Theory approach was used to analyze the data. Results A lack of shared cultures among health care providers and systems of delivery was a primary barrier to collaboration which was essential for establishing coordination of care. Formal multidisciplinary steering committees, team-based organization, and informal relationships were fundamental for developing coordination and coherence. Conclusions Coordination and coherence in community-based rehabilitation relies on increased collaboration, which may best be optimized by use of shared frameworks within and across systems. Results highlight the challenges faced in practical implementation of community rehabilitation and point to possible strategies for its enhancement. PMID:24004881

  16. Coherent vorticity extraction in resistive drift-wave turbulence: Comparison of orthogonal wavelets versus proper orthogonal decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Futatani, S.; Bos, W.J.T.; Del-Castillo-Negrete, Diego B

    2011-01-01

    We assess two techniques for extracting coherent vortices out of turbulent flows: the wavelet based Coherent Vorticity Extraction (CVE) and the Proper Orthogonal Decomposition (POD). The former decomposes the flow field into an orthogonal wavelet representation and subsequent thresholding of the coefficients allows one to split the flow into organized coherent vortices with non-Gaussian statistics and an incoherent random part which is structureless. POD is based on the singular value decomposition and decomposes the flow into basis functions which are optimal with respect to the retained energy for the ensemble average. Both techniques are applied to direct numerical simulation datamore » of two-dimensional drift-wave turbulence governed by Hasegawa Wakatani equation, considering two limit cases: the quasi-hydrodynamic and the quasi-adiabatic regimes. The results are compared in terms of compression rate, retained energy, retained enstrophy and retained radial flux, together with the enstrophy spectrum and higher order statistics. (c) 2010 Published by Elsevier Masson SAS on behalf of Academie des sciences.« less

  17. Understanding Beam Alignment in a Coherent Lidar System

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Roychoudhari, Chandrasekhar

    2015-01-01

    Optical beam alignment in a coherent lidar (or ladar) receiver system plays a critical role in optimizing its performance. Optical alignment in a coherent lidar system dictates the wavefront curvature (phase front) and Poynting vector) matching of the local oscillator beam with the incoming receiver beam on a detector. However, this alignment is often not easy to achieve and is rarely perfect. Furthermore, optical fibers are being increasingly used in coherent lidar system receivers for transporting radiation to achieve architectural elegance. Single mode fibers also require stringent mode matching for efficient light coupling. The detector response characteristics vary with the misalignment of the two pointing vectors. Misalignment can lead to increase in DC current. Also, a lens in front of the detector may exasperate phase front and Poynting vector mismatch. Non-Interaction of Waves, or the NIW property indicates the light beams do not interfere by themselves in the absence of detecting dipoles. In this paper, we will analyze the extent of misalignment on the detector specifications using pointing vectors of mixing beams in light of the NIW property.

  18. Coherent curvature radiation and fast radio bursts

    NASA Astrophysics Data System (ADS)

    Ghisellini, Gabriele; Locatelli, Nicola

    2018-06-01

    Fast radio bursts are extragalactic radio transient events lasting a few milliseconds with a Jy flux at 1 GHz. We propose that these properties suggest a neutron star progenitor, and focus on coherent curvature radiation as the radiation mechanism. We study for which sets of parameters the emission can fulfil the observational constraints. Even if the emission is coherent, we find that self-absorption can limit the produced luminosities at low radio frequencies and that an efficient re-acceleration process is needed to balance the dramatic energy losses of the emitting particles. Self-absorption limits the luminosities at low radio frequency, while coherence favours steep optically thin spectra. Furthermore, the magnetic geometry must have a high degree of order to obtain coherent curvature emission. Particles emit photons along their velocity vectors, thereby greatly reducing the inverse Compton mechanism. In this case we predict that fast radio bursts emit most of their luminosities in the radio band and have no strong counterpart in any other frequency bands.

  19. FAST CARS: Engineering a laser spectroscopic technique for rapid identification of bacterial spores

    PubMed Central

    Scully, M. O.; Kattawar, G. W.; Lucht, R. P.; Opatrný, T.; Pilloff, H.; Rebane, A.; Sokolov, A. V.; Zubairy, M. S.

    2002-01-01

    Airborne contaminants, e.g., bacterial spores, are usually analyzed by time-consuming microscopic, chemical, and biological assays. Current research into real-time laser spectroscopic detectors of such contaminants is based on e.g., resonance fluorescence. The present approach derives from recent experiments in which atoms and molecules are prepared by one (or more) coherent laser(s) and probed by another set of lasers. However, generating and using maximally coherent oscillation in macromolecules having an enormous number of degrees of freedom is challenging. In particular, the short dephasing times and rapid internal conversion rates are major obstacles. However, adiabatic fast passage techniques and the ability to generate combs of phase-coherent femtosecond pulses provide tools for the generation and utilization of maximal quantum coherence in large molecules and biopolymers. We call this technique FAST CARS (femtosecond adaptive spectroscopic techniques for coherent anti-Stokes Raman spectroscopy), and the present article proposes and analyses ways in which it could be used to rapidly identify preselected molecules in real time. PMID:12177405

  20. White-light parametric instabilities in plasmas.

    PubMed

    Santos, J E; Silva, L O; Bingham, R

    2007-06-08

    Parametric instabilities driven by partially coherent radiation in plasmas are described by a generalized statistical Wigner-Moyal set of equations, formally equivalent to the full wave equation, coupled to the plasma fluid equations. A generalized dispersion relation for stimulated Raman scattering driven by a partially coherent pump field is derived, revealing a growth rate dependence, with the coherence width sigma of the radiation field, scaling with 1/sigma for backscattering (three-wave process), and with 1/sigma1/2 for direct forward scattering (four-wave process). Our results demonstrate the possibility to control the growth rates of these instabilities by properly using broadband pump radiation fields.

  1. Breaking the diffraction barrier using coherent anti-Stokes Raman scattering difference microscopy.

    PubMed

    Wang, Dong; Liu, Shuanglong; Chen, Yue; Song, Jun; Liu, Wei; Xiong, Maozhen; Wang, Guangsheng; Peng, Xiao; Qu, Junle

    2017-05-01

    We propose a method to improve the resolution of coherent anti-Stokes Raman scattering microscopy (CARS), and present a theoretical model. The proposed method, coherent anti-Stokes Raman scattering difference microscopy (CARS-D), is based on the intensity difference between two differently acquired images. One being the conventional CARS image, and the other obtained when the sample is illuminated by a doughnut shaped spot. The final super-resolution CARS-D image is constructed by intensity subtraction of these two images. However, there is a subtractive factor between them, and the theoretical model sets this factor to obtain the best imaging effect.

  2. Optimization of Transmon Qubit Fabrication

    NASA Astrophysics Data System (ADS)

    Chang, Josephine; Rothwell, Mary; Keefe, George; IBM Quantum Computing Group Team

    2013-03-01

    Rapid advances in the field of superconducting transmon qubits have refined our understanding of the role that substrate and interfaces play in qubit decoherence. Here, we review strategies for enhancing coherence times in both 2D and 3D transmon qubits through substrate design, structural improvements, and process optimization. Results correlating processing techniques to decoherence times are presented, and some novel structures are proposed for further consideration. We acknowledge support from IARPA under contract W911NF-10-1-0324

  3. Coherifying quantum channels

    NASA Astrophysics Data System (ADS)

    Korzekwa, Kamil; Czachórski, Stanisław; Puchała, Zbigniew; Życzkowski, Karol

    2018-04-01

    Is it always possible to explain random stochastic transitions between states of a finite-dimensional system as arising from the deterministic quantum evolution of the system? If not, then what is the minimal amount of randomness required by quantum theory to explain a given stochastic process? Here, we address this problem by studying possible coherifications of a quantum channel Φ, i.e., we look for channels {{{Φ }}}{ \\mathcal C } that induce the same classical transitions T, but are ‘more coherent’. To quantify the coherence of a channel Φ we measure the coherence of the corresponding Jamiołkowski state J Φ. We show that the classical transition matrix T can be coherified to reversible unitary dynamics if and only if T is unistochastic. Otherwise the Jamiołkowski state {J}{{Φ }}{ \\mathcal C } of the optimally coherified channel is mixed, and the dynamics must necessarily be irreversible. To assess the extent to which an optimal process {{{Φ }}}{ \\mathcal C } is indeterministic we find explicit bounds on the entropy and purity of {J}{{Φ }}{ \\mathcal C }, and relate the latter to the unitarity of {{{Φ }}}{ \\mathcal C }. We also find optimal coherifications for several classes of channels, including all one-qubit channels. Finally, we provide a non-optimal coherification procedure that works for an arbitrary channel Φ and reduces its rank (the minimal number of required Kraus operators) from {d}2 to d.

  4. Optimization of Transmit Parameters in Cardiac Strain Imaging With Full and Partial Aperture Coherent Compounding.

    PubMed

    Sayseng, Vincent; Grondin, Julien; Konofagou, Elisa E

    2018-05-01

    Coherent compounding methods using the full or partial transmit aperture have been investigated as a possible means of increasing strain measurement accuracy in cardiac strain imaging; however, the optimal transmit parameters in either compounding approach have yet to be determined. The relationship between strain estimation accuracy and transmit parameters-specifically the subaperture, angular aperture, tilt angle, number of virtual sources, and frame rate-in partial aperture (subaperture compounding) and full aperture (steered compounding) fundamental mode cardiac imaging was thus investigated and compared. Field II simulation of a 3-D cylindrical annulus undergoing deformation and twist was developed to evaluate accuracy of 2-D strain estimation in cross-sectional views. The tradeoff between frame rate and number of virtual sources was then investigated via transthoracic imaging in the parasternal short-axis view of five healthy human subjects, using the strain filter to quantify estimation precision. Finally, the optimized subaperture compounding sequence (25-element subperture, 90° angular aperture, 10 virtual sources, 300-Hz frame rate) was compared to the optimized steered compounding sequence (60° angular aperture, 15° tilt, 10 virtual sources, 300-Hz frame rate) via transthoracic imaging of five healthy subjects. Both approaches were determined to estimate cumulative radial strain with statistically equivalent precision (subaperture compounding E(SNRe %) = 3.56, and steered compounding E(SNRe %) = 4.26).

  5. MO-F-CAMPUS-I-03: Tissue Equivalent Material Phantom to Test and Optimize Coherent Scatter Imaging for Tumor Classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albanese, K; Morris, R; Lakshmanan, M

    Purpose: To accurately model different breast geometries using a tissue equivalent phantom, and to classify these tissues in a coherent x-ray scatter imaging system. Methods: A breast phantom has been designed to assess the capability of coded aperture coherent x-ray scatter imaging system to classify different types of breast tissue (adipose, fibroglandular, tumor). The tissue-equivalent phantom was modeled as a hollow plastic cylinder containing multiple cylindrical and spherical inserts that can be positioned, rearranged, or removed to model different breast geometries. Each enclosure can be filled with a tissue-equivalent material and excised human tumors. In this study, beef and lard,more » placed inside 2-mm diameter plastic Nalgene containers, were used as surrogates for fibroglandular and adipose tissue, respectively. The phantom was imaged at 125 kVp, 40 mA for 10 seconds each with a 1-mm pencil beam. The raw data were reconstructed using a model-based reconstruction algorithm and yielded the location and form factor, or momentum transfer (q) spectrum of the materials that were imaged. The measured material form factors were then compared to the ground truth measurements acquired by x-ray diffraction (XRD) imaging. Results: The tissue equivalent phantom was found to accurately model different types of breast tissue by qualitatively comparing our measured form factors to those of adipose and fibroglandular tissue from literature. Our imaging system has been able to define the location and composition of the various materials in the phantom. Conclusion: This work introduces a new tissue equivalent phantom for testing and optimization of our coherent scatter imaging system for material classification. In future studies, the phantom will enable the use of a variety of materials including excised human tissue specimens in evaluating and optimizing our imaging system using pencil- and fan-beam geometries. United States Department of Homeland Security Duke University Medical Center - Department of Radiology Carl E Ravin Advanced Imaging Laboratories Duke University Medical Physics Graduate Program.« less

  6. Chirp effects on impulsive vibrational spectroscopy: a multimode perspective.

    PubMed

    Wand, Amir; Kallush, Shimshon; Shoshanim, Ofir; Bismuth, Oshrat; Kosloff, Ronnie; Ruhman, Sanford

    2010-03-07

    The well-documented propensity of negatively-chirped pulses to enhance resonant impulsive Raman scattering has been rationalized in terms of a one pulse pump-dump sequence which "follows" the evolution of the excited molecules and dumps them back at highly displaced configurations. The aim of this study was to extend the understanding of this effect to molecules with many displaced vibrational modes in the presence of condensed surroundings. In particular, to define an optimally chirped pulse, to investigate what exactly it "follows" and to discover how this depends on the molecule under study. To this end, linear chirp effects on vibrational coherences in poly-atomics are investigated experimentally and theoretically. Chirped pump-impulsive probe experiments are reported for Sulforhodamine-B ("Kiton Red"), Betaine-30 and Oxazine-1 in ethanol solutions with <10 fs resolution. Numerical simulations, including numerous displaced modes and electronic dephasing, are conducted to reproduce experimental results. Through semi-quantitative reproduction of experimental results in all three systems we show that the effect of group velocity dispersion (GVD) on the buildup of ground state wave-packets depends on the pulse spectrum, on the displacements of vibrational modes upon excitation, on the detuning of the excitation pulses from resonance, and on electronic dephasing rates. Akin to scenarios described for frequency-domain resonance Raman, within the small-displacement regime each mode responds to excitation chirp independently and the optimal GVD is mode-specific. Highly-displaced modes entangle the dynamics of excitation in different modes, requiring a multi-dimensional description of the response. Rapid photochemistry and ultrafast electronic dephasing narrow the window of opportunity for coherent manipulations, leading to a reduced and similar optimal chirp for different modes. Finally, non-intuitive coherent aspects of chirp "following" are predicted in the small-displacement and slow-dephasing regime, which remain to be observed in experiment.

  7. Quantum fuel with multilevel atomic coherence for ultrahigh specific work in a photonic Carnot engine

    NASA Astrophysics Data System (ADS)

    Türkpençe, Deniz; Müstecaplıoǧlu, Özgür E.

    2016-01-01

    We investigate scaling of work and efficiency of a photonic Carnot engine with a number of quantum coherent resources. Specifically, we consider a generalization of the "phaseonium fuel" for the photonic Carnot engine, which was first introduced as a three-level atom with two lower states in a quantum coherent superposition by M. O. Scully, M. Suhail Zubairy, G. S. Agarwal, and H. Walther [Science 299, 862 (2003), 10.1126/science.1078955], to the case of N +1 level atoms with N coherent lower levels. We take into account atomic relaxation and dephasing as well as the cavity loss and derive a coarse-grained master equation to evaluate the work and efficiency analytically. Analytical results are verified by microscopic numerical examination of the thermalization dynamics. We find that efficiency and work scale quadratically with the number of quantum coherent levels. Quantum coherence boost to the specific energy (work output per unit mass of the resource) is a profound fundamental difference of quantum fuel from classical resources. We consider typical modern resonator set ups and conclude that multilevel phaseonium fuel can be utilized to overcome the decoherence in available systems. Preparation of the atomic coherences and the associated cost of coherence are analyzed and the engine operation within the bounds of the second law is verified. Our results bring the photonic Carnot engines much closer to the capabilities of current resonator technologies.

  8. Generalization of the coherent-state path integrals and systematic derivation of semiclassical propagators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koda, Shin-ichi; Takatsuka, Kazuo

    The coherent path integral is generalized such that the identity operator represented in a complete (actually overcomplete) set of the coherent states with the ''time-variable'' exponents are inserted between two consecutive short-time propagators. Since such a complete set of any given exponent can constitute the identity operator, the exponent may be varied from time to time without loss of generality as long as it is set common to all the Gaussians. However, a finite truncation of the coherent state expansion should result in different values of the propagator depending on the choice of the exponents. Furthermore, approximation methodology to treatmore » with the exact propagator can also depend on this choice, and thereby many different semiclassical propagators may emerge from these combinations. Indeed, we show that the well-known semiclassical propagators such as those of Van Vleck, Herman-Kluk, Heller's thawed Gaussian, and many others can be derived in a systematic manner, which enables one to comprehend these semiclassical propagators from a unified point of view. We are particularly interested in our generalized form of the Herman-Kluk propagator, since the relative accuracy of this propagator has been well established by Kay, and since, nevertheless, its derivation was not necessarily clear. Thus our generalized Herman-Kluk propagator replaces the classical Hamiltonian with a Gaussian averaged quantum Hamiltonian, generating non-Newtonian trajectories. We perform a numerical test to assess the quality of such a family of generalized Herman-Kluk propagators and find that the original Herman-Kluk gives an accurate result. The reason why this has come about is also discussed.« less

  9. Measurement of time-varying displacement fields in cell culture for traction force optical coherence microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Mulligan, Jeffrey A.; Adie, Steven G.

    2017-02-01

    Mechanobiology is an emerging field which seeks to link mechanical forces and properties to the behaviors of cells and tissues in cancer, stem cell growth, and other processes. Traction force microscopy (TFM) is an imaging technique that enables the study of traction forces exerted by cells on their environment to migrate as well as sense and manipulate their surroundings. To date, TFM research has been performed using incoherent imaging modalities and, until recently, has been largely confined to the study of cell-induced tractions within two-dimensions using highly artificial and controlled environments. As the field of mechanobiology advances, and demand grows for research in physiologically relevant 3D culture and in vivo models, TFM will require imaging modalities that support such settings. Optical coherence microscopy (OCM) is an interferometric imaging modality which enables 3D cellular resolution imaging in highly scattering environments. Moreover, optical coherence elastography (OCE) enables the measurement of tissue mechanical properties. OCE relies on the principle of measuring material deformations in response to artificially applied stress. By extension, similar techniques can enable the measurement of cell-induced deformations, imaged with OCM. We propose traction force optical coherence microscopy (TF-OCM) as a natural extension and partner to existing OCM and OCE methods. We report the first use of OCM data and digital image correlation to track temporally varying displacement fields exhibited within a 3D culture setting. These results mark the first steps toward the realization of TF-OCM in 2D and 3D settings, bolstering OCM as a platform for advancing research in mechanobiology.

  10. Full field vertical scanning in short coherence digital holographic microscope.

    PubMed

    Monemahghdoust, Zahra; Montfort, Frederic; Cuche, Etienne; Emery, Yves; Depeursinge, Christian; Moser, Christophe

    2013-05-20

    In Digital holography Microscopes (DHM) implemented in the so-called "off axis" configuration, the object and reference wave fronts are not co-planar but form an angle of a few degrees. This results into two main drawbacks. First, the contrast of the interference is not uniform spatially when the light source has low coherence. The interference contrast is optimal along a line, but decreases when moving away from it, resulting in a lower image quality. Second, the non-coplanarity between the coherence plane of both wavefronts impacts the coherence vertical scanning measurement mode: when the optical path difference between the signal and the reference beam is changed, the region of maximum interference contrast shifts laterally in the plane of the objective. This results in more complex calculations to extract the topography of the sample and requires scanning over a much larger vertical range, leading to a longer measurement time. We have previously shown that by placing a volume diffractive optical element (VDOE) in the reference arm, the wavefront can be made coplanar with the object wavefront and the image plane of the microscope objective, resulting in a uniform and optimal interferogram. In this paper, we demonstrate a vertical scanning speed improvement by an order of magnitude. Noise in the phase and intensity images caused by scattering and non-uniform diffraction in the VDOE is analyzed quantitatively. Five VDOEs were fabricated with an identical procedure. We observe that VDOEs introduce a small intensity non-uniformity in the reference beam which results in a 20% noise increase in the extracted phase image as compared to the noise in extracted phase image when the VDOE is removed. However, the VDOE has no impact on the temporal noise measured from extracted phase images.

  11. Adaptive estimation of a time-varying phase with coherent states: Smoothing can give an unbounded improvement over filtering

    NASA Astrophysics Data System (ADS)

    Laverick, Kiarn T.; Wiseman, Howard M.; Dinani, Hossein T.; Berry, Dominic W.

    2018-04-01

    The problem of measuring a time-varying phase, even when the statistics of the variation is known, is considerably harder than that of measuring a constant phase. In particular, the usual bounds on accuracy, such as the 1 /(4 n ¯) standard quantum limit with coherent states, do not apply. Here, by restricting to coherent states, we are able to analytically obtain the achievable accuracy, the equivalent of the standard quantum limit, for a wide class of phase variation. In particular, we consider the case where the phase has Gaussian statistics and a power-law spectrum equal to κp -1/|ω| p for large ω , for some p >1 . For coherent states with mean photon flux N , we give the quantum Cramér-Rao bound on the mean-square phase error as [psin(π /p ) ] -1(4N /κ ) -(p -1 )/p . Next, we consider whether the bound can be achieved by an adaptive homodyne measurement in the limit N /κ ≫1 , which allows the photocurrent to be linearized. Applying the optimal filtering for the resultant linear Gaussian system, we find the same scaling with N , but with a prefactor larger by a factor of p . By contrast, if we employ optimal smoothing we can exactly obtain the quantum Cramér-Rao bound. That is, contrary to previously considered (p =2 ) cases of phase estimation, here the improvement offered by smoothing over filtering is not limited to a factor of 2 but rather can be unbounded by a factor of p . We also study numerically the performance of these estimators for an adaptive measurement in the limit where N /κ is not large and find a more complicated picture.

  12. Four-dimensional MRI using an internal respiratory surrogate derived by dimensionality reduction

    NASA Astrophysics Data System (ADS)

    Uh, Jinsoo; Ayaz Khan, M.; Hua, Chiaho

    2016-11-01

    This study aimed to develop a practical and accurate 4-dimensional (4D) magnetic resonance imaging (MRI) method using a non-navigator, image-based internal respiratory surrogate derived by dimensionality reduction (DR). The use of DR has been previously suggested but not implemented for reconstructing 4D MRI, despite its practical advantages. We compared multiple image-acquisition schemes and refined a retrospective-sorting process to optimally implement a DR-derived surrogate. The comparison included an unconventional scheme that acquires paired slices alternately to mitigate the internal surrogate’s dependency on a specific slice location. We introduced ‘target-oriented sorting’, as opposed to conventional binning, to quantify the coherence in retrospectively sorted images, thereby determining the minimal scan time needed for sufficient coherence. This study focused on evaluating the proposed method using digital phantoms which provided unequivocal gold standard. The evaluation indicated that the DR-based respiratory surrogate is highly accurate: the error in amplitude percentile of the surrogate signal was less than 5% with the optimal scheme. Acquiring alternating paired slices was superior to the conventional scheme of acquiring individual slices; the advantage of the unconventional scheme was more pronounced when a substantial phase shift occurred across slice locations. The analysis of coherence across sorted images confirmed the advantage of higher sampling efficiencies in non-navigator respiratory surrogates. We determined that a scan time of 20 s per imaging slice was sufficient to achieve a mean coherence error of less than 1% for the tested respiratory patterns. The clinical applicability of the proposed 4D MRI has been demonstrated with volunteers and patients. The diaphragm motion in 4D MRI was consistent with that in dynamic 2D imaging which was regarded as the gold standard (difference within 1.8 mm on average).

  13. Coherent Waves in Seismic Researches

    NASA Astrophysics Data System (ADS)

    Emanov, A.; Seleznev, V. S.

    2013-05-01

    Development of digital processing algorithms of seismic wave fields for the purpose of useful event picking to study environment and other objects is the basis for the establishment of new seismic techniques. In the submitted paper a fundamental property of seismic wave field coherence is used. The authors extended conception of coherence types of observed wave fields and devised a technique of coherent component selection from observed wave field. Time coherence and space coherence are widely known. In this paper conception "parameter coherence" has been added. The parameter by which wave field is coherent can be the most manifold. The reason is that the wave field is a multivariate process described by a set of parameters. Coherence in the first place means independence of linear connection in wave field of parameter. In seismic wave fields, recorded in confined space, in building-blocks and stratified mediums time coherent standing waves are formed. In prospecting seismology at observation systems with multiple overlapping head waves are coherent by parallel correlation course or, in other words, by one measurement on generalized plane of observation system. For detail prospecting seismology at observation systems with multiple overlapping on basis of coherence property by one measurement of area algorithms have been developed, permitting seismic records to be converted to head wave time sections which have neither reflected nor other types of waves. Conversion in time section is executed on any specified observation base. Energy storage of head waves relative to noise on basis of multiplicity of observation system is realized within area of head wave recording. Conversion on base below the area of wave tracking is performed with lack of signal/noise ratio relative to maximum of this ratio, fit to observation system. Construction of head wave time section and dynamic plots a basis of automatic processing have been developed, similar to CDP procedure in method of reflected waves. With use of developed algorithms of head wave conversion in time sections a work of studying of refracting boundaries in Siberia have been executed. Except for the research by method of refracting waves, the conversion of head waves in time sections, applied to seismograms of reflected wave method, allows to obtain information about refracting horizons in upper part of section in addition to reflecting horizons data. Recovery method of wave field coherent components is the basis of the engineering seismology on the level of accuracy and detail. In seismic microzoning resonance frequency of the upper part of section are determined on the basis of this method. Maps of oscillation amplification and result accuracy are constructed for each of the frequencies. The same method makes it possible to study standing wave field in buildings and constructions with high accuracy and detail, realizing diagnostics of their physical state on set of natural frequencies and form of self-oscillations, examined with high detail. The method of standing waves permits to estimate a seismic stability of structure on new accuracy level.

  14. Simple and versatile long range swept source for optical coherence tomography applications

    NASA Astrophysics Data System (ADS)

    Bräuer, Bastian; Lippok, Norman; Murdoch, Stuart G.; Vanholsbeeck, Frédérique

    2015-12-01

    We present a versatile long coherence length swept-source laser design for optical coherence tomography applications. This design consists of a polygonal spinning mirror and an optical gain chip in a modified Littman-Metcalf cavity. A narrowband intra-cavity filter is implemented through multiple passes off a diffraction grating set at grazing incidence. The key advantage of this design is that it can be readily adapted to any wavelength regions for which broadband gain chips are available. We demonstrate this by implementing sources at 1650 nm, 1550 nm, 1310 nm and 1050 nm. In particular, we present a 1310 nm swept source laser with 24 mm coherence length, 95 nm optical bandwidth, 2 kHz maximum sweep frequency and 7.5 mW average output power. These parameters make it a suitable source for the imaging of biological samples.

  15. A variational eigenvalue solver on a photonic quantum processor

    PubMed Central

    Peruzzo, Alberto; McClean, Jarrod; Shadbolt, Peter; Yung, Man-Hong; Zhou, Xiao-Qi; Love, Peter J.; Aspuru-Guzik, Alán; O’Brien, Jeremy L.

    2014-01-01

    Quantum computers promise to efficiently solve important problems that are intractable on a conventional computer. For quantum systems, where the physical dimension grows exponentially, finding the eigenvalues of certain operators is one such intractable problem and remains a fundamental challenge. The quantum phase estimation algorithm efficiently finds the eigenvalue of a given eigenvector but requires fully coherent evolution. Here we present an alternative approach that greatly reduces the requirements for coherent evolution and combine this method with a new approach to state preparation based on ansätze and classical optimization. We implement the algorithm by combining a highly reconfigurable photonic quantum processor with a conventional computer. We experimentally demonstrate the feasibility of this approach with an example from quantum chemistry—calculating the ground-state molecular energy for He–H+. The proposed approach drastically reduces the coherence time requirements, enhancing the potential of quantum resources available today and in the near future. PMID:25055053

  16. A Biomimetic-Computational Approach to Optimizing the Quantum Efficiency of Photovoltaics

    NASA Astrophysics Data System (ADS)

    Perez, Lisa M.; Holzenburg, Andreas

    The most advanced low-cost organic photovoltaic cells have a quantum efficiency of 10%. This is in stark contrast to plant/bacterial light-harvesting systems which offer quantum efficiencies close to unity. Of particular interest is the highly effective quantum coherence-enabled energy transfer (Fig. 1). Noting that quantum coherence is promoted by charged residues and local dielectrics, classical atomistic simulations and time-dependent density functional theory (DFT) are used to identify charge/dielectric patterns and electronic coupling at exactly defined energy transfer interfaces. The calculations make use of structural information obtained on photosynthetic protein-pigment complexes while still in the native membrane making it possible to establish a link between supramolecular organization and quantum coherence in terms of what length scales enable fast energy transport and prevent quenching. Calculating energy transfer efficiencies between components based on different proximities will permit the search for patterns that enable defining material properties suitable for advanced photovoltaics.

  17. Coherent-state discrimination via nonheralded probabilistic amplification

    NASA Astrophysics Data System (ADS)

    Rosati, Matteo; Mari, Andrea; Giovannetti, Vittorio

    2016-06-01

    A scheme for the detection of low-intensity optical coherent signals was studied which uses a probabilistic amplifier operated in the nonheralded version as the underlying nonlinear operation to improve the detection efficiency. This approach allows us to improve the statistics by keeping track of all possible outcomes of the amplification stage (including failures). When compared with an optimized Kennedy receiver, the resulting discrimination success probability we obtain presents a gain up to ˜1.85 % and it approaches the Helstrom bound appreciably faster than the Dolinar receiver when employed in an adaptive strategy. We also notice that the advantages obtained can ultimately be associated with the fact that, in the high-gain limit, the nonheralded version of the probabilistic amplifier induces a partial dephasing which preserves quantum coherence among low-energy eigenvectors while removing it elsewhere. A proposal to realize such a transformation based on an optical cavity implementation is presented.

  18. Improving the efficiency of hierarchical equations of motion approach and application to coherent dynamics in Aharonov–Bohm interferometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Dong; Xu, RuiXue; Zheng, Xiao, E-mail: xz58@ustc.edu.cn

    2015-03-14

    Several recent advancements for the hierarchical equations of motion (HEOM) approach are reported. First, we propose an a priori estimate for the optimal number of basis functions for the reservoir memory decomposition. Second, we make use of the sparsity of auxiliary density operators (ADOs) and propose two ansatzs to screen out all the intrinsic zero ADO elements. Third, we propose a new truncation scheme by utilizing the time derivatives of higher-tier ADOs. These novel techniques greatly reduce the memory cost of the HEOM approach, and thus enhance its efficiency and applicability. The improved HEOM approach is applied to simulate themore » coherent dynamics of Aharonov–Bohm double quantum dot interferometers. Quantitatively accurate dynamics is obtained for both noninteracting and interacting quantum dots. The crucial role of the quantum phase for the magnitude of quantum coherence and quantum entanglement is revealed.« less

  19. Focal Spot and Wavefront Sensing of an X-Ray Free Electron laser using Ronchi shearing interferometry

    DOE PAGES

    Nagler, Bob; Aquila, Andrew; Boutet, Sebastien; ...

    2017-10-20

    The Linac Coherent Light Source (LCLS) is an X-ray source of unmatched brilliance, that is advancing many scientific fields at a rapid pace. The highest peak intensities that are routinely produced at LCLS take place at the Coherent X-ray Imaging (CXI) instrument, which can produce spotsize at the order of 100 nm, and such spotsizes and intensities are crucial for experiments ranging from coherent diffractive imaging, non-linear x-ray optics and high field physics, and single molecule imaging. Nevertheless, a full characterisation of this beam has up to now not been performed. In this paper we for the first time characterisemore » this nanofocused beam in both phase and intensity using a Ronchi Shearing Interferometric technique. The method is fast, in-situ, uses a straightforward optimization algoritm, and is insensitive to spatial jitter.« less

  20. Heterodyne efficiency for a coherent laser radar with diffuse or aerosol targets

    NASA Technical Reports Server (NTRS)

    Frehlich, R. G.

    1993-01-01

    The performance of a Coherent Laser Radar is determined by the statistics of the coherent Doppler signal. The heterodyne efficiency is an excellent indication of performance because it is an absolute measure of beam alignment and is independent of the transmitter power, the target backscatter coefficient, the atmospheric attenuation, and the detector quantum efficiency and gain. The theoretical calculation of heterodyne efficiency for an optimal monostatic lidar with a circular aperture and Gaussian transmit laser is presented including beam misalignment in the far-field and near-field regimes. The statistical behavior of estimates of the heterodyne efficiency using a calibration hard target are considered. For space based applications, a biased estimate of heterodyne efficiency is proposed that removes the variability due to the random surface return but retains the sensitivity to misalignment. Physical insight is provided by simulation of the fields on the detector surface. The required detector calibration is also discussed.

  1. Coherency of seismic noise, Green functions and site effects

    NASA Astrophysics Data System (ADS)

    Prieto, G. A.; Beroza, G. C.

    2007-12-01

    The newly rediscovered methodology of cross correlating seismic noise (or seismic coda) to retrieve the Green function takes advantage of the coherency of the signals across a set of stations. Only coherent signals are expected to emerge after stacking over a long enough time. Cross-correlation has a significant disadvantage for this purpose, in that the Green function recovered is convolved with the source-time function of the noise source. For seismic waves, this can mean that the microseism peak dominates the signal. We show how the use of the transfer function between sensors provides a better resolved Green function (after inverse Fourier transform), because the deconvolution process removes the effect of the noise source-time function. In addition, we compute the coherence of the seismic noise as a function of frequency and distance, providing information about the effective frequency band over which Green function retrieval is possible. The coherence may also be used in resolution analysis for time reversal as a constraint on the de-coherence length (the distance between sensors over which the signals become uncorrelated). We use the information from the transfer function and the coherence to examine wave propagation effects (attenuation and site effects) for closely spaced stations compared to a reference station.

  2. Optical coherence tomography angiography in age-related macular degeneration: The game changer.

    PubMed

    Lupidi, Marco; Cerquaglia, Alessio; Chhablani, Jay; Fiore, Tito; Singh, Sumit Randhir; Cardillo Piccolino, Felice; Corbucci, Roberta; Coscas, Florence; Coscas, Gabriel; Cagini, Carlo

    2018-04-01

    Optical coherence tomography angiography is one of the biggest advances in ophthalmic imaging. It enables a depth-resolved assessment of the retinal and choroidal blood flow, far exceeding the levels of detail commonly obtained with dye angiographies. One of the first applications of optical coherence tomography angiography was in detecting the presence of choroidal neovascularization in age-related macular degeneration and establishing its position in relation to the retinal pigmented epithelium and Bruch's membrane, and thereby classifying the CNV as type 1, type 2, type 3, or mixed lesions. Optical coherence tomography angiograms, due to the longer wavelength used by optical coherence tomography, showed a more distinct choroidal neovascularization vascular pattern than fluorescein angiography, since there is less suffering from light scattering or is less obscured by overlying subretinal hemorrhages or exudation. Qualitative and quantitative assessments of optical coherence tomography angiography findings in exudative and nonexudative age-related macular degeneration have been largely investigated within the past 3 years both in clinical and experimental settings. This review constitutes an up-to-date of all the potential applications of optical coherence tomography angiography in age-related macular degeneration in order to better understand how to translate its theoretical usefulness into the current clinical practice.

  3. Esophageal-guided biopsy with volumetric laser endomicroscopy and laser cautery marking: a pilot clinical study

    PubMed Central

    Suter, Melissa J.; Gora, Michalina J.; Lauwers, Gregory Y.; Arnason, Thomas; Sauk, Jenny; Gallagher, Kevin A.; Kava, Lauren; Tan, Khay M.; Soomro, Amna R.; Gallagher, Timothy P.; Gardecki, Joseph A.; Bouma, Brett E.; Rosenberg, Mireille; Nishioka, Norman S.; Tearney, Guillermo J.

    2018-01-01

    Background Biopsy surveillance protocols for the assessment of Barrett’s esophagus can be subject to sampling errors, resulting in diagnostic uncertainty. Optical coherence tomography is a cross-sectional imaging technique that can be used to conduct volumetric laser endomicroscopy (VLE) of the entire distal esophagus. We have developed a biopsy guidance platform that places endoscopically visible marks at VLE-determined biopsy sites. Objective The objective of this study was to demonstrate in human participants the safety and feasibility of VLE-guided biopsy in vivo. Design A pilot feasibility study. Setting Massachusetts General Hospital. Patients A total of 22 participants were enrolled from January 2011 to June 2012 with a prior diagnosis of Barrett’s esophagus. Twelve participants were used to optimize the laser marking parameters and the system platform. A total of 30 target sites were selected and marked in real-time by using the VLE-guided biopsy platform in the remaining 10 participants. Intervention Volumetric laser endomicroscopy. Main Outcome Measurements Endoscopic and VLE visibility, and accuracy of VLE diagnosis of the tissue between the laser cautery marks. Results There were no adverse events of VLE and laser marking. The optimal laser marking parameters were determined to be 2 seconds at 410 mW, with a mark separation of 6 mm. All marks made with these parameters were visible on endoscopy and VLE. The accuracies for diagnosing tissue in between the laser cautery marks by independent blinded readers for endoscopy were 67% (95% confidence interval [CI], 47%–83%), for VLE intent-to-biopsy images 93% (95% CI, 78%–99%), and for corrected VLE post-marking images 100% when compared with histopathology interpretations. Limitations This is a single-center feasibility study with a limited number of patients. Conclusion Our results demonstrate that VLE-guided biopsy of the esophagus is safe and can be used to guide biopsy site selection based on the acquired volumetric optical coherence tomography imaging data. (Clinical trial registration number: NCT01439633.) PMID:24462171

  4. Probe-pulse optimization for nonresonant suppression in hybrid fs/ps coherent anti-Stokes Raman scattering at high temperature.

    PubMed

    Miller, Joseph D; Slipchenko, Mikhail N; Meyer, Terrence R

    2011-07-04

    Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) offers accurate thermometry at kHz rates for combustion diagnostics. In high-temperature flames, selection of probe-pulse characteristics is key to simultaneously optimizing signal-to-nonresonant-background ratio, signal strength, and spectral resolution. We demonstrate a simple method for enhancing signal-to-nonresonant-background ratio by using a narrowband Lorentzian filter to generate a time-asymmetric probe pulse with full-width-half-maximum (FWHM) pulse width of only 240 fs. This allows detection within just 310 fs after the Raman excitation for eliminating nonresonant background while retaining 45% of the resonant signal at 2000 K. The narrow linewidth is comparable to that of a time-symmetric sinc2 probe pulse with a pulse width of ~2.4 ps generated with a conventional 4-f pulse shaper. This allows nonresonant-background-free, frequency-domain vibrational spectroscopy at high temperature, as verified using comparisons to a time-dependent theoretical fs/ps CARS model.

  5. Optical storage with electromagnetically induced transparency in cold atoms at a high optical depth

    NASA Astrophysics Data System (ADS)

    Zhang, Shanchao; Zhou, Shuyu; Liu, Chang; Chen, J. F.; Wen, Jianming; Loy, M. M. T.; Wong, G. K. L.; Du, Shengwang

    2012-06-01

    We report experimental demonstration of efficient optical storage with electromagnetically induced transparency (EIT) in a dense cold ^85Rb atomic ensemble trapped in a two-dimensional magneto-optical trap. By varying the optical depth (OD) from 0 to 140, we observe that the optimal storage efficiency for coherent optical pulses has a saturation value of 50% as OD > 50. Our result is consistent with that obtained from hot vapor cell experiments which suggest that a four-wave mixing nonlinear process degrades the EIT storage coherence and efficiency. We apply this EIT quantum memory for narrow-band single photons with controllable waveforms, and obtain an optimal storage efficiency of 49±3% for single-photon wave packets. This is the highest single-photon storage efficiency reported up to today and brings the EIT atomic quantum memory close to practical application because an efficiency of above 50% is necessary to operate the memory within non-cloning regime and beat the classical limit.

  6. Scale-Resolving simulations (SRS): How much resolution do we really need?

    NASA Astrophysics Data System (ADS)

    Pereira, Filipe M. S.; Girimaji, Sharath

    2017-11-01

    Scale-resolving simulations (SRS) are emerging as the computational approach of choice for many engineering flows with coherent structures. The SRS methods seek to resolve only the most important features of the coherent structures and model the remainder of the flow field with canonical closures. With reference to a typical Large-Eddy Simulation (LES), practical SRS methods aim to resolve a considerably narrower range of scales (reduced physical resolution) to achieve an adequate degree of accuracy at reasonable computational effort. While the objective of SRS is well-founded, the criteria for establishing the optimal degree of resolution required to achieve an acceptable level of accuracy are not clear. This study considers the canonical case of the flow around a circular cylinder to address the issue of `optimal' resolution. Two important criteria are developed. The first condition addresses the issue of adequate resolution of the flow field. The second guideline provides an assessment of whether the modeled field is canonical (stochastic) turbulence amenable to closure-based computations.

  7. Addressing Data Analysis Challenges in Gravitational Wave Searches Using the Particle Swarm Optimization Algorithm

    NASA Astrophysics Data System (ADS)

    Weerathunga, Thilina Shihan

    2017-08-01

    Gravitational waves are a fundamental prediction of Einstein's General Theory of Relativity. The first experimental proof of their existence was provided by the Nobel Prize winning discovery by Taylor and Hulse of orbital decay in a binary pulsar system. The first detection of gravitational waves incident on earth from an astrophysical source was announced in 2016 by the LIGO Scientific Collaboration, launching the new era of gravitational wave (GW) astronomy. The signal detected was from the merger of two black holes, which is an example of sources called Compact Binary Coalescences (CBCs). Data analysis strategies used in the search for CBC signals are derivatives of the Maximum-Likelihood (ML) method. The ML method applied to data from a network of geographically distributed GW detectors--called fully coherent network analysis--is currently the best approach for estimating source location and GW polarization waveforms. However, in the case of CBCs, especially for lower mass systems (O(1M solar masses)) such as double neutron star binaries, fully coherent network analysis is computationally expensive. The ML method requires locating the global maximum of the likelihood function over a nine dimensional parameter space, where the computation of the likelihood at each point requires correlations involving O(104) to O(106) samples between the data and the corresponding candidate signal waveform template. Approximations, such as semi-coherent coincidence searches, are currently used to circumvent the computational barrier but incur a concomitant loss in sensitivity. We explored the effectiveness of Particle Swarm Optimization (PSO), a well-known algorithm in the field of swarm intelligence, in addressing the fully coherent network analysis problem. As an example, we used a four-detector network consisting of the two LIGO detectors at Hanford and Livingston, Virgo and Kagra, all having initial LIGO noise power spectral densities, and show that PSO can locate the global maximum with less than 240,000 likelihood evaluations for a component mass range of 1.0 to 10.0 solar masses at a realistic coherent network signal to noise ratio of 9.0. Our results show that PSO can successfully deliver a fully-coherent all-sky search with < (1/10 ) the number of likelihood evaluations needed for a grid-based search. Used as a follow-up step, the savings in the number of likelihood evaluations may also reduce latency in obtaining ML estimates of source parameters in semi-coherent searches.

  8. An Enhanced Non-Coherent Pre-Filter Design for Tracking Error Estimation in GNSS Receivers.

    PubMed

    Luo, Zhibin; Ding, Jicheng; Zhao, Lin; Wu, Mouyan

    2017-11-18

    Tracking error estimation is of great importance in global navigation satellite system (GNSS) receivers. Any inaccurate estimation for tracking error will decrease the signal tracking ability of signal tracking loops and the accuracies of position fixing, velocity determination, and timing. Tracking error estimation can be done by traditional discriminator, or Kalman filter-based pre-filter. The pre-filter can be divided into two categories: coherent and non-coherent. This paper focuses on the performance improvements of non-coherent pre-filter. Firstly, the signal characteristics of coherent and non-coherent integration-which are the basis of tracking error estimation-are analyzed in detail. After that, the probability distribution of estimation noise of four-quadrant arctangent (ATAN2) discriminator is derived according to the mathematical model of coherent integration. Secondly, the statistical property of observation noise of non-coherent pre-filter is studied through Monte Carlo simulation to set the observation noise variance matrix correctly. Thirdly, a simple fault detection and exclusion (FDE) structure is introduced to the non-coherent pre-filter design, and thus its effective working range for carrier phase error estimation extends from (-0.25 cycle, 0.25 cycle) to (-0.5 cycle, 0.5 cycle). Finally, the estimation accuracies of discriminator, coherent pre-filter, and the enhanced non-coherent pre-filter are evaluated comprehensively through the carefully designed experiment scenario. The pre-filter outperforms traditional discriminator in estimation accuracy. In a highly dynamic scenario, the enhanced non-coherent pre-filter provides accuracy improvements of 41.6%, 46.4%, and 50.36% for carrier phase error, carrier frequency error, and code phase error estimation, respectively, when compared with coherent pre-filter. The enhanced non-coherent pre-filter outperforms the coherent pre-filter in code phase error estimation when carrier-to-noise density ratio is less than 28.8 dB-Hz, in carrier frequency error estimation when carrier-to-noise density ratio is less than 20 dB-Hz, and in carrier phase error estimation when carrier-to-noise density belongs to (15, 23) dB-Hz ∪ (26, 50) dB-Hz.

  9. An Enhanced Non-Coherent Pre-Filter Design for Tracking Error Estimation in GNSS Receivers

    PubMed Central

    Luo, Zhibin; Ding, Jicheng; Zhao, Lin; Wu, Mouyan

    2017-01-01

    Tracking error estimation is of great importance in global navigation satellite system (GNSS) receivers. Any inaccurate estimation for tracking error will decrease the signal tracking ability of signal tracking loops and the accuracies of position fixing, velocity determination, and timing. Tracking error estimation can be done by traditional discriminator, or Kalman filter-based pre-filter. The pre-filter can be divided into two categories: coherent and non-coherent. This paper focuses on the performance improvements of non-coherent pre-filter. Firstly, the signal characteristics of coherent and non-coherent integration—which are the basis of tracking error estimation—are analyzed in detail. After that, the probability distribution of estimation noise of four-quadrant arctangent (ATAN2) discriminator is derived according to the mathematical model of coherent integration. Secondly, the statistical property of observation noise of non-coherent pre-filter is studied through Monte Carlo simulation to set the observation noise variance matrix correctly. Thirdly, a simple fault detection and exclusion (FDE) structure is introduced to the non-coherent pre-filter design, and thus its effective working range for carrier phase error estimation extends from (−0.25 cycle, 0.25 cycle) to (−0.5 cycle, 0.5 cycle). Finally, the estimation accuracies of discriminator, coherent pre-filter, and the enhanced non-coherent pre-filter are evaluated comprehensively through the carefully designed experiment scenario. The pre-filter outperforms traditional discriminator in estimation accuracy. In a highly dynamic scenario, the enhanced non-coherent pre-filter provides accuracy improvements of 41.6%, 46.4%, and 50.36% for carrier phase error, carrier frequency error, and code phase error estimation, respectively, when compared with coherent pre-filter. The enhanced non-coherent pre-filter outperforms the coherent pre-filter in code phase error estimation when carrier-to-noise density ratio is less than 28.8 dB-Hz, in carrier frequency error estimation when carrier-to-noise density ratio is less than 20 dB-Hz, and in carrier phase error estimation when carrier-to-noise density belongs to (15, 23) dB-Hz ∪ (26, 50) dB-Hz. PMID:29156581

  10. Consciousness Indexing and Outcome Prediction with Resting-State EEG in Severe Disorders of Consciousness.

    PubMed

    Stefan, Sabina; Schorr, Barbara; Lopez-Rolon, Alex; Kolassa, Iris-Tatjana; Shock, Jonathan P; Rosenfelder, Martin; Heck, Suzette; Bender, Andreas

    2018-04-17

    We applied the following methods to resting-state EEG data from patients with disorders of consciousness (DOC) for consciousness indexing and outcome prediction: microstates, entropy (i.e. approximate, permutation), power in alpha and delta frequency bands, and connectivity (i.e. weighted symbolic mutual information, symbolic transfer entropy, complex network analysis). Patients with unresponsive wakefulness syndrome (UWS) and patients in a minimally conscious state (MCS) were classified into these two categories by fitting and testing a generalised linear model. We aimed subsequently to develop an automated system for outcome prediction in severe DOC by selecting an optimal subset of features using sequential floating forward selection (SFFS). The two outcome categories were defined as UWS or dead, and MCS or emerged from MCS. Percentage of time spent in microstate D in the alpha frequency band performed best at distinguishing MCS from UWS patients. The average clustering coefficient obtained from thresholding beta coherence performed best at predicting outcome. The optimal subset of features selected with SFFS consisted of the frequency of microstate A in the 2-20 Hz frequency band, path length obtained from thresholding alpha coherence, and average path length obtained from thresholding alpha coherence. Combining these features seemed to afford high prediction power. Python and MATLAB toolboxes for the above calculations are freely available under the GNU public license for non-commercial use ( https://qeeg.wordpress.com ).

  11. Finite-size effect on optimal efficiency of heat engines.

    PubMed

    Tajima, Hiroyasu; Hayashi, Masahito

    2017-07-01

    The optimal efficiency of quantum (or classical) heat engines whose heat baths are n-particle systems is given by the strong large deviation. We give the optimal work extraction process as a concrete energy-preserving unitary time evolution among the heat baths and the work storage. We show that our optimal work extraction turns the disordered energy of the heat baths to the ordered energy of the work storage, by evaluating the ratio of the entropy difference to the energy difference in the heat baths and the work storage, respectively. By comparing the statistical mechanical optimal efficiency with the macroscopic thermodynamic bound, we evaluate the accuracy of the macroscopic thermodynamics with finite-size heat baths from the statistical mechanical viewpoint. We also evaluate the quantum coherence effect on the optimal efficiency of the cycle processes without restricting their cycle time by comparing the classical and quantum optimal efficiencies.

  12. An information-theoretic approach to the gravitational-wave burst detection problem

    NASA Astrophysics Data System (ADS)

    Katsavounidis, E.; Lynch, R.; Vitale, S.; Essick, R.; Robinet, F.

    2016-03-01

    The advanced era of gravitational-wave astronomy, with data collected in part by the LIGO gravitational-wave interferometers, has begun as of fall 2015. One potential type of detectable gravitational waves is short-duration gravitational-wave bursts, whose waveforms can be difficult to predict. We present the framework for a new detection algorithm - called oLIB - that can be used in relatively low-latency to turn calibrated strain data into a detection significance statement. This pipeline consists of 1) a sine-Gaussian matched-filter trigger generator based on the Q-transform - known as Omicron -, 2) incoherent down-selection of these triggers to the most signal-like set, and 3) a fully coherent analysis of this signal-like set using the Markov chain Monte Carlo (MCMC) Bayesian evidence calculator LALInferenceBurst (LIB). We optimally extract this information by using a likelihood-ratio test (LRT) to map these search statistics into a significance statement. Using representative archival LIGO data, we show that the algorithm can detect gravitational-wave burst events of realistic strength in realistic instrumental noise with good detection efficiencies across different burst waveform morphologies. With support from the National Science Foundation under Grant PHY-0757058.

  13. Microscopy illumination engineering using a low-cost liquid crystal display.

    PubMed

    Guo, Kaikai; Bian, Zichao; Dong, Siyuan; Nanda, Pariksheet; Wang, Ying Min; Zheng, Guoan

    2015-02-01

    Illumination engineering is critical for obtaining high-resolution, high-quality images in microscope settings. In a typical microscope, the condenser lens provides sample illumination that is uniform and free from glare. The associated condenser diaphragm can be manually adjusted to obtain the optimal illumination numerical aperture. In this paper, we report a programmable condenser lens for active illumination control. In our prototype setup, we used a $15 liquid crystal display as a transparent spatial light modulator and placed it at the back focal plane of the condenser lens. By setting different binary patterns on the display, we can actively control the illumination and the spatial coherence of the microscope platform. We demonstrated the use of such a simple scheme for multimodal imaging, including bright-field microscopy, darkfield microscopy, phase-contrast microscopy, polarization microscopy, 3D tomographic imaging, and super-resolution Fourier ptychographic imaging. The reported illumination engineering scheme is cost-effective and compatible with most existing platforms. It enables a turnkey solution with high flexibility for researchers in various communities. From the engineering point-of-view, the reported illumination scheme may also provide new insights for the development of multimodal microscopy and Fourier ptychographic imaging.

  14. Invariant polarimetric contrast parameters of coherent light.

    PubMed

    Réfrégier, Philippe; Goudail, François

    2002-06-01

    Many applications use an active coherent illumination and analyze the variation of the polarization state of optical signals. However, as a result of the use of coherent light, these signals are generally strongly perturbed with speckle noise. This is the case, for example, for active polarimetric imaging systems that are useful for enhancing contrast between different elements in a scene. We propose a rigorous definition of the minimal set of parameters that characterize the difference between two coherent and partially polarized states. Indeed, two states of partially polarized light are a priori defined by eight parameters, for example, their two Stokes vectors. We demonstrate that the processing performance for such signal processing tasks as detection, localization, or segmentation of spatial or temporal polarization variations is uniquely determined by two scalar functions of these eight parameters. These two scalar functions are the invariant parameters that define the polarimetric contrast between two polarized states of coherent light. Different polarization configurations with the same invariant contrast parameters will necessarily lead to the same performance for a given task, which is a desirable quality for a rigorous contrast measure. The definition of these polarimetric contrast parameters simplifies the analysis and the specification of processing techniques for coherent polarimetric signals.

  15. Revisiting the Al/Al 2O 3 Interface: Coherent Interfaces and Misfit Accommodation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilania, Ghanshyam; Thijsse, Barend J.; Hoagland, Richard G.

    We report the coherent and semi-coherent Al/α-Al 2O 3 interfaces using molecular dynamics simulations with a mixed, metallic-ionic atomistic model. For the coherent interfaces, both Al-terminated and O-terminated nonstoichiometric interfaces have been studied and their relative stability has been established. To understand the misfit accommodation at the semi-coherent interface, a 1-dimensional (1D) misfit dislocation model and a 2-dimensional (2D) dislocation network model have been studied. For the latter case, our analysis reveals an interface dislocation structure with a network of three sets of parallel dislocations, each with pure-edge character, giving rise to a pattern of coherent and stacking-fault-like regions atmore » the interface. Structural relaxation at elevated temperatures leads to a further change of the dislocation pattern, which can be understood in terms of a competition between the stacking fault energy and the dislocation interaction energy at the interface. In conclusion, our results are expected to serve as an input for the subsequent dislocation dynamics models to understand and predict the macroscopic mechanical behavior of Al/α-Al 2O 3 composite heterostructures.« less

  16. Revisiting the Al/Al 2O 3 Interface: Coherent Interfaces and Misfit Accommodation

    DOE PAGES

    Pilania, Ghanshyam; Thijsse, Barend J.; Hoagland, Richard G.; ...

    2014-03-27

    We report the coherent and semi-coherent Al/α-Al 2O 3 interfaces using molecular dynamics simulations with a mixed, metallic-ionic atomistic model. For the coherent interfaces, both Al-terminated and O-terminated nonstoichiometric interfaces have been studied and their relative stability has been established. To understand the misfit accommodation at the semi-coherent interface, a 1-dimensional (1D) misfit dislocation model and a 2-dimensional (2D) dislocation network model have been studied. For the latter case, our analysis reveals an interface dislocation structure with a network of three sets of parallel dislocations, each with pure-edge character, giving rise to a pattern of coherent and stacking-fault-like regions atmore » the interface. Structural relaxation at elevated temperatures leads to a further change of the dislocation pattern, which can be understood in terms of a competition between the stacking fault energy and the dislocation interaction energy at the interface. In conclusion, our results are expected to serve as an input for the subsequent dislocation dynamics models to understand and predict the macroscopic mechanical behavior of Al/α-Al 2O 3 composite heterostructures.« less

  17. Spatial smoothing coherence factor for ultrasound computed tomography

    NASA Astrophysics Data System (ADS)

    Lou, Cuijuan; Xu, Mengling; Ding, Mingyue; Yuchi, Ming

    2016-04-01

    In recent years, many research studies have been carried out on ultrasound computed tomography (USCT) for its application prospect in early diagnosis of breast cancer. This paper applies four kinds of coherence-factor-like beamforming methods to improve the image quality of synthetic aperture focusing method for USCT, including the coherence-factor (CF), the phase coherence factor (PCF), the sign coherence factor (SCF) and the spatial smoothing coherence factor (SSCF) (proposed in our previous work). The performance of these methods was tested with simulated raw data which were generated by the ultrasound simulation software PZFlex 2014. The simulated phantom was set to be water of 4cm diameter with three nylon objects of different diameters inside. The ring-type transducer had 72 elements with a center frequency of 1MHz. The results show that all the methods can reveal the biggest nylon circle with the radius of 2.5mm. SSCF gets the highest SNR among the proposed methods and provides a more homogenous background. None of these methods can reveal the two smaller nylon circles with the radius of 0.75mm and 0.25mm. This may be due to the small number of elements.

  18. Coherence of Physics and Chemistry Curricula in Terms of the Electron Concept

    NASA Astrophysics Data System (ADS)

    Elena, Ivanova

    2016-08-01

    One of the major contradictions in subject teaching is the contradiction between the unity of the world and the discrete separated generalized content of natural sciences that study natural phenomena. These are physics, chemistry, biology and more. One can eliminate the conflict if opens the content's interdisciplinary links set by the events that are studied by different disciplines. The corresponding contexts of the phenomenon content arise depending on the discipline, and they are not enough coordinated. Obviously, we need a mechanism that allows establishing interdisciplinary links in the content quickly and without losing the logic of the material and assess their coherence in academic disciplines. This article uses a quantitative method of coherence assessment elaborated by T.N. Gnitetskaya. The definition of the concept of the semantic state introduced by the authors is given in this article. The method is applied to coherence assessment of physics and chemistry textbooks. The coherence of two pairs of chemistry and physics textbooks by different authors in different combinations was calculated. The most cohered pairs of textbooks (chemistry-physics) were identified. One can recommend using the pair of textbooks for eighth grade that we offered that favors the development of holistic understandings of the world around us.

  19. Comparison of fMRI analysis methods for heterogeneous BOLD responses in block design studies.

    PubMed

    Liu, Jia; Duffy, Ben A; Bernal-Casas, David; Fang, Zhongnan; Lee, Jin Hyung

    2017-02-15

    A large number of fMRI studies have shown that the temporal dynamics of evoked BOLD responses can be highly heterogeneous. Failing to model heterogeneous responses in statistical analysis can lead to significant errors in signal detection and characterization and alter the neurobiological interpretation. However, to date it is not clear that, out of a large number of options, which methods are robust against variability in the temporal dynamics of BOLD responses in block-design studies. Here, we used rodent optogenetic fMRI data with heterogeneous BOLD responses and simulations guided by experimental data as a means to investigate different analysis methods' performance against heterogeneous BOLD responses. Evaluations are carried out within the general linear model (GLM) framework and consist of standard basis sets as well as independent component analysis (ICA). Analyses show that, in the presence of heterogeneous BOLD responses, conventionally used GLM with a canonical basis set leads to considerable errors in the detection and characterization of BOLD responses. Our results suggest that the 3rd and 4th order gamma basis sets, the 7th to 9th order finite impulse response (FIR) basis sets, the 5th to 9th order B-spline basis sets, and the 2nd to 5th order Fourier basis sets are optimal for good balance between detection and characterization, while the 1st order Fourier basis set (coherence analysis) used in our earlier studies show good detection capability. ICA has mostly good detection and characterization capabilities, but detects a large volume of spurious activation with the control fMRI data. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Sparse recovery of undersampled intensity patterns for coherent diffraction imaging at high X-ray energies

    DOE PAGES

    Maddali, S.; Calvo-Almazan, I.; Almer, J.; ...

    2018-03-21

    Coherent X-ray photons with energies higher than 50 keV offer new possibilities for imaging nanoscale lattice distortions in bulk crystalline materials using Bragg peak phase retrieval methods. However, the compression of reciprocal space at high energies typically results in poorly resolved fringes on an area detector, rendering the diffraction data unsuitable for the three-dimensional reconstruction of compact crystals. To address this problem, we propose a method by which to recover fine fringe detail in the scattered intensity. This recovery is achieved in two steps: multiple undersampled measurements are made by in-plane sub-pixel motion of the area detector, then this datamore » set is passed to a sparsity-based numerical solver that recovers fringe detail suitable for standard Bragg coherent diffraction imaging (BCDI) reconstruction methods of compact single crystals. The key insight of this paper is that sparsity in a BCDI data set can be enforced by recognising that the signal in the detector, though poorly resolved, is band-limited. This requires fewer in-plane detector translations for complete signal recovery, while adhering to information theory limits. Lastly, we use simulated BCDI data sets to demonstrate the approach, outline our sparse recovery strategy, and comment on future opportunities.« less

  1. Sparse recovery of undersampled intensity patterns for coherent diffraction imaging at high X-ray energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddali, S.; Calvo-Almazan, I.; Almer, J.

    Coherent X-ray photons with energies higher than 50 keV offer new possibilities for imaging nanoscale lattice distortions in bulk crystalline materials using Bragg peak phase retrieval methods. However, the compression of reciprocal space at high energies typically results in poorly resolved fringes on an area detector, rendering the diffraction data unsuitable for the three-dimensional reconstruction of compact crystals. To address this problem, we propose a method by which to recover fine fringe detail in the scattered intensity. This recovery is achieved in two steps: multiple undersampled measurements are made by in-plane sub-pixel motion of the area detector, then this datamore » set is passed to a sparsity-based numerical solver that recovers fringe detail suitable for standard Bragg coherent diffraction imaging (BCDI) reconstruction methods of compact single crystals. The key insight of this paper is that sparsity in a BCDI data set can be enforced by recognising that the signal in the detector, though poorly resolved, is band-limited. This requires fewer in-plane detector translations for complete signal recovery, while adhering to information theory limits. Lastly, we use simulated BCDI data sets to demonstrate the approach, outline our sparse recovery strategy, and comment on future opportunities.« less

  2. Sparse recovery of undersampled intensity patterns for coherent diffraction imaging at high X-ray energies.

    PubMed

    Maddali, S; Calvo-Almazan, I; Almer, J; Kenesei, P; Park, J-S; Harder, R; Nashed, Y; Hruszkewycz, S O

    2018-03-21

    Coherent X-ray photons with energies higher than 50 keV offer new possibilities for imaging nanoscale lattice distortions in bulk crystalline materials using Bragg peak phase retrieval methods. However, the compression of reciprocal space at high energies typically results in poorly resolved fringes on an area detector, rendering the diffraction data unsuitable for the three-dimensional reconstruction of compact crystals. To address this problem, we propose a method by which to recover fine fringe detail in the scattered intensity. This recovery is achieved in two steps: multiple undersampled measurements are made by in-plane sub-pixel motion of the area detector, then this data set is passed to a sparsity-based numerical solver that recovers fringe detail suitable for standard Bragg coherent diffraction imaging (BCDI) reconstruction methods of compact single crystals. The key insight of this paper is that sparsity in a BCDI data set can be enforced by recognising that the signal in the detector, though poorly resolved, is band-limited. This requires fewer in-plane detector translations for complete signal recovery, while adhering to information theory limits. We use simulated BCDI data sets to demonstrate the approach, outline our sparse recovery strategy, and comment on future opportunities.

  3. Motion interference analysis and optimal control of an electronic controlled bamboo-dance mechanism

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohong; Xu, Liang; Hu, Xiaobin

    2017-08-01

    An electric bamboo-dance mechanism was designed and developed to realize mechanism of automation and mechanization. For coherent and fluent motion, ANSYS finite element analysis was applied on movement interference. Static structural method was used for analyzing dynamic deflection and deformation of the slender rod, while modal analysis was applied on frequency analysis to avoid second deformation caused by resonance. Therefore, the deformation in vertical and horizontal direction was explored and reasonable optimization was taken to avoid interference.

  4. Interpreting CARS images of tissue within the C-H-stretching region

    NASA Astrophysics Data System (ADS)

    Dietzek, Benjamin; Meyer, Tobias; Medyukhina, Anna; Bergner, Norbert; Krafft, Christoph; Romeike, Bernd F. M.; Reichart, Rupert; Kalff, Rolf; Schmitt, Michael; Popp, Jürgen

    2014-03-01

    Single band coherent anti-Stokes Raman scattering (CARS) microscopy within the CH-stretching region is applied to detect individual cells and nuclei of human brain tissue and brain tumors - an information which allows for histopathologic grading of the tissue. The CARS image contrast within the C-H-stretching region correlated to the tissue composition. Based on the specific application example of identifying nuclei within (coherent) Raman images of neurotissue sections, we shall derive general design parameters for lasers optimally suited to serve in a clinical environment and discuss the potential of recently developed methods to analyze spectrally resolved CARS images and image segmentation algorithms.

  5. Non-adiabatic dynamics around a conical intersection with surface-hopping coupled coherent states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humeniuk, Alexander; Mitrić, Roland, E-mail: roland.mitric@uni-wuerzburg.de

    A surface-hopping extension of the coupled coherent states-method [D. Shalashilin and M. Child, Chem. Phys. 304, 103-120 (2004)] for simulating non-adiabatic dynamics with quantum effects of the nuclei is put forward. The time-dependent Schrödinger equation for the motion of the nuclei is solved in a moving basis set. The basis set is guided by classical trajectories, which can hop stochastically between different electronic potential energy surfaces. The non-adiabatic transitions are modelled by a modified version of Tully’s fewest switches algorithm. The trajectories consist of Gaussians in the phase space of the nuclei (coherent states) combined with amplitudes for an electronicmore » wave function. The time-dependent matrix elements between different coherent states determine the amplitude of each trajectory in the total multistate wave function; the diagonal matrix elements determine the hopping probabilities and gradients. In this way, both interference effects and non-adiabatic transitions can be described in a very compact fashion, leading to the exact solution if convergence with respect to the number of trajectories is achieved and the potential energy surfaces are known globally. The method is tested on a 2D model for a conical intersection [A. Ferretti, J. Chem. Phys. 104, 5517 (1996)], where a nuclear wavepacket encircles the point of degeneracy between two potential energy surfaces and interferes with itself. These interference effects are absent in classical trajectory-based molecular dynamics but can be fully incorpo rated if trajectories are replaced by surface hopping coupled coherent states.« less

  6. Investigating the Effects of Peripheral Electrical Stimulation on Corticomuscular Functional Connectivity Stroke Survivors.

    PubMed

    Lai, Meei-I; Pan, Li-Ling; Tsai, Mei-Wun; Shih, Yi-Fen; Wei, Shun-Hwa; Chou, Li-Wei

    2016-06-01

    Electrical stimulation (ES) in the periphery can induce brain plasticity and has been used clinically to promote motor recovery in patients with central nervous system lesion. Electroencephalogram (EEG) and electromyogram (EMG) are readily applicable in clinical settings and can detect real-time functional connectivity between motor cortex and muscles with EEG-EMG (corticomuscular) coherence. The purpose of this study was to determine whether EEG-EMG coherence can detect changes in corticomuscular control induced by peripheral ES. Fifteen healthy young adults and 15 stroke survivors received 40-min electrical stimulation session on median nerve. The stimulation (1-ms rectangular pulse, 100 Hz) was delivered with a 20-s on-20-s off cycle, and the intensity was set at the subjects' highest tolerable level without muscle contraction or pain. Both before and after the stimulation session, subjects performed a 20-s steady-hold thumb flexion at 50% maximal voluntary contraction (MVC) while EEG and EMG were collected. Our results demonstrated that after ES, EEG-EMG coherence in gamma band increased significantly for 22.1 and 48.6% in healthy adults and stroke survivors, respectively. In addition, after ES, force steadiness was also improved in both groups, as indicated by the decrease in force fluctuation during steady-hold contraction (-1.7% MVC and -3.9%MVC for healthy and stroke individuals, respectively). Our results demonstrated that EEG-EMG coherence can detect ES-induced changes in the neuromuscular system. Also, because gamma coherence is linked to afferent inputs encoding, improvement in motor performance is likely related to ES-elicited strong sensory input and enhanced sensorimotor integration.

  7. Distributed resource allocation under communication constraints

    NASA Astrophysics Data System (ADS)

    Dodin, Pierre; Nimier, Vincent

    2001-03-01

    This paper deals with a study of the multi-sensor management problem for multi-target tracking. The collaboration between many sensors observing the same target means that they are able to fuse their data during the information process. Then one must take into account this possibility to compute the optimal association sensors-target at each step of time. In order to solve this problem for real large scale system, one must both consider the information aspect and the control aspect of the problem. To unify these problems, one possibility is to use a decentralized filtering algorithm locally driven by an assignment algorithm. The decentralized filtering algorithm we use in our model is the filtering algorithm of Grime, which relaxes the usual full-connected hypothesis. By full-connected, one means that the information in a full-connected system is totally distributed everywhere at the same moment, which is unacceptable for a real large scale system. We modelize the distributed assignment decision with the help of a greedy algorithm. Each sensor performs a global optimization, in order to estimate other information sets. A consequence of the relaxation of the full- connected hypothesis is that the sensors' information set are not the same at each step of time, producing an information dis- symmetry in the system. The assignment algorithm uses a local knowledge of this dis-symmetry. By testing the reactions and the coherence of the local assignment decisions of our system, against maneuvering targets, we show that it is still possible to manage with decentralized assignment control even though the system is not full-connected.

  8. A Direct Comparison of Local-Global Integration in Autism and other Developmental Disorders: Implications for the Central Coherence Hypothesis

    PubMed Central

    Bernardino, Inês; Mouga, Susana; Almeida, Joana; van Asselen, Marieke; Oliveira, Guiomar; Castelo-Branco, Miguel

    2012-01-01

    The weak central coherence hypothesis represents one of the current explanatory models in Autism Spectrum Disorders (ASD). Several experimental paradigms based on hierarchical figures have been used to test this controversial account. We addressed this hypothesis by testing central coherence in ASD (n = 19 with intellectual disability and n = 20 without intellectual disability), Williams syndrome (WS, n = 18), matched controls with intellectual disability (n = 20) and chronological age-matched controls (n = 20). We predicted that central coherence should be most impaired in ASD for the weak central coherence account to hold true. An alternative account includes dorsal stream dysfunction which dominates in WS. Central coherence was first measured by requiring subjects to perform local/global preference judgments using hierarchical figures under 6 different experimental settings (memory and perception tasks with 3 distinct geometries with and without local/global manipulations). We replicated these experiments under 4 additional conditions (memory/perception*local/global) in which subjects reported the correct local or global configurations. Finally, we used a visuoconstructive task to measure local/global perceptual interference. WS participants were the most impaired in central coherence whereas ASD participants showed a pattern of coherence loss found in other studies only in four task conditions favoring local analysis but it tended to disappear when matching for intellectual disability. We conclude that abnormal central coherence does not provide a comprehensive explanation of ASD deficits and is more prominent in populations, namely WS, characterized by strongly impaired dorsal stream functioning and other phenotypic traits that contrast with the autistic phenotype. Taken together these findings suggest that other mechanisms such as dorsal stream deficits (largest in WS) may underlie impaired central coherence. PMID:22724001

  9. A direct comparison of local-global integration in autism and other developmental disorders: implications for the central coherence hypothesis.

    PubMed

    Bernardino, Inês; Mouga, Susana; Almeida, Joana; van Asselen, Marieke; Oliveira, Guiomar; Castelo-Branco, Miguel

    2012-01-01

    The weak central coherence hypothesis represents one of the current explanatory models in Autism Spectrum Disorders (ASD). Several experimental paradigms based on hierarchical figures have been used to test this controversial account. We addressed this hypothesis by testing central coherence in ASD (n = 19 with intellectual disability and n = 20 without intellectual disability), Williams syndrome (WS, n = 18), matched controls with intellectual disability (n = 20) and chronological age-matched controls (n = 20). We predicted that central coherence should be most impaired in ASD for the weak central coherence account to hold true. An alternative account includes dorsal stream dysfunction which dominates in WS. Central coherence was first measured by requiring subjects to perform local/global preference judgments using hierarchical figures under 6 different experimental settings (memory and perception tasks with 3 distinct geometries with and without local/global manipulations). We replicated these experiments under 4 additional conditions (memory/perception*local/global) in which subjects reported the correct local or global configurations. Finally, we used a visuoconstructive task to measure local/global perceptual interference. WS participants were the most impaired in central coherence whereas ASD participants showed a pattern of coherence loss found in other studies only in four task conditions favoring local analysis but it tended to disappear when matching for intellectual disability. We conclude that abnormal central coherence does not provide a comprehensive explanation of ASD deficits and is more prominent in populations, namely WS, characterized by strongly impaired dorsal stream functioning and other phenotypic traits that contrast with the autistic phenotype. Taken together these findings suggest that other mechanisms such as dorsal stream deficits (largest in WS) may underlie impaired central coherence.

  10. Qubit Architecture with High Coherence and Fast Tunable Coupling.

    PubMed

    Chen, Yu; Neill, C; Roushan, P; Leung, N; Fang, M; Barends, R; Kelly, J; Campbell, B; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Megrant, A; Mutus, J Y; O'Malley, P J J; Quintana, C M; Sank, D; Vainsencher, A; Wenner, J; White, T C; Geller, Michael R; Cleland, A N; Martinis, John M

    2014-11-28

    We introduce a superconducting qubit architecture that combines high-coherence qubits and tunable qubit-qubit coupling. With the ability to set the coupling to zero, we demonstrate that this architecture is protected from the frequency crowding problems that arise from fixed coupling. More importantly, the coupling can be tuned dynamically with nanosecond resolution, making this architecture a versatile platform with applications ranging from quantum logic gates to quantum simulation. We illustrate the advantages of dynamical coupling by implementing a novel adiabatic controlled-z gate, with a speed approaching that of single-qubit gates. Integrating coherence and scalable control, the introduced qubit architecture provides a promising path towards large-scale quantum computation and simulation.

  11. Quantum entropy and uncertainty for two-mode squeezed, coherent and intelligent spin states

    NASA Technical Reports Server (NTRS)

    Aragone, C.; Mundarain, D.

    1993-01-01

    We compute the quantum entropy for monomode and two-mode systems set in squeezed states. Thereafter, the quantum entropy is also calculated for angular momentum algebra when the system is either in a coherent or in an intelligent spin state. These values are compared with the corresponding values of the respective uncertainties. In general, quantum entropies and uncertainties have the same minimum and maximum points. However, for coherent and intelligent spin states, it is found that some minima for the quantum entropy turn out to be uncertainty maxima. We feel that the quantum entropy we use provides the right answer, since it is given in an essentially unique way.

  12. Fingerprint imaging from the inside of a finger with full-field optical coherence tomography

    PubMed Central

    Auksorius, Egidijus; Boccara, A. Claude

    2015-01-01

    Imaging below fingertip surface might be a useful alternative to the traditional fingerprint sensing since the internal finger features are more reliable than the external ones. One of the most promising subsurface imaging technique is optical coherence tomography (OCT), which, however, has to acquire 3-D data even when a single en face image is required. This makes OCT inherently slow for en face imaging and produce unnecessary large data sets. Here we demonstrate that full-field optical coherence tomography (FF-OCT) can be used to produce en face images of sweat pores and internal fingerprints, which can be used for the identification purposes. PMID:26601009

  13. Prototype of a coherent tracking and detection receiver with wideband vibration compensation for free-space laser communications

    NASA Astrophysics Data System (ADS)

    Giggenbach, Dirk; Schex, Anton; Wandernoth, Bernhard

    1996-04-01

    The Optical Communications Group of the German Aerospace Research Establishment (DLR) has investigated the feasibility of a fiberless receiver telescope for high sensitive coherent optical space communication, resulting in an elegant pointing, acquisition and tracking (PAT) concept. To demonstrate the feasibility of this new concept, an optical receiver terminal that coherently obtains both the spatial error signal for tracking and the data signal with only one set of detectors has been built. The result is a very simple and compact setup with few optical surfaces. It does not require fibers for superpositioning and is capable to compensate for microaccelerations up to about one kilohertz.

  14. Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source

    PubMed Central

    Reddy, Hemanth K.N.; Yoon, Chun Hong; Aquila, Andrew; Awel, Salah; Ayyer, Kartik; Barty, Anton; Berntsen, Peter; Bielecki, Johan; Bobkov, Sergey; Bucher, Maximilian; Carini, Gabriella A.; Carron, Sebastian; Chapman, Henry; Daurer, Benedikt; DeMirci, Hasan; Ekeberg, Tomas; Fromme, Petra; Hajdu, Janos; Hanke, Max Felix; Hart, Philip; Hogue, Brenda G.; Hosseinizadeh, Ahmad; Kim, Yoonhee; Kirian, Richard A.; Kurta, Ruslan P.; Larsson, Daniel S.D.; Duane Loh, N.; Maia, Filipe R.N.C.; Mancuso, Adrian P.; Mühlig, Kerstin; Munke, Anna; Nam, Daewoong; Nettelblad, Carl; Ourmazd, Abbas; Rose, Max; Schwander, Peter; Seibert, Marvin; Sellberg, Jonas A.; Song, Changyong; Spence, John C.H.; Svenda, Martin; Van der Schot, Gijs; Vartanyants, Ivan A.; Williams, Garth J.; Xavier, P. Lourdu

    2017-01-01

    Single-particle diffraction from X-ray Free Electron Lasers offers the potential for molecular structure determination without the need for crystallization. In an effort to further develop the technique, we present a dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source. The diameter of PR772 ranges from 65–70 nm, which is considerably smaller than the previously reported ~600 nm diameter Mimivirus. This reflects continued progress in XFEL-based single-particle imaging towards the single molecular imaging regime. The data set contains significantly more single particle hits than collected in previous experiments, enabling the development of improved statistical analysis, reconstruction algorithms, and quantitative metrics to determine resolution and self-consistency. PMID:28654088

  15. Multiple coherent light scattering in ultracold rubidium

    NASA Astrophysics Data System (ADS)

    Kulatunga, P.; Sukenik, C. I.; Havey, M. D.; Kupriyanov, D. V.; Sokolov, I. M.

    2001-11-01

    We report investigation of multiple coherent light scattering from ^85Rb atoms confined in a magneto-optic trap. In a theoretical study of intensity enhancement of near-resonant backscattered light from cold ^85,87Rb atoms, we consider the dominant mode of double scattering only. Enhancement factors are calculated for all D1 and D2 hyperfine components and for both isotopes. In experimental studies, measurements are made of coherent backscattering of a low-intensity probe beam tuned near the F = 3 - F' = 4 transition in ^85Rb atoms. Polarization of backscattered light is determined by a backscattering polarimeter; the spatial distribution of light intensity is measured by a liquid-nitrogen cooled CCD camera set in the focal plane of the analyzing optics. The instrument has angular resolution of about 100 micro-radians, and a polarization analyzing power of roughly 1000. In this paper we describe the instrument details, including calibration procedures, and progress towards observation of atomic coherent backscattering.

  16. Multiple coherent light scattering in ultracold rubidium

    NASA Astrophysics Data System (ADS)

    Havey, M. D.; Sukenik, C. I.; Kulatunga, P.; Kupriyanov, D. V.; Sokolov, I. M.

    2001-05-01

    We report investigation of multiple coherent light scattering from ^85Rb atoms confined in a magneto-optic trap. In a theoretical study of intensity enhancement of near-resonant backscattered light from cold ^85,87Rb atoms, we consider the dominant mode of double scattering only. Enhancement factors are calculated for all D1 and D2 hyperfine components and for both isotopes. In experimental studies, measurements are made of coherent backscattering of a low-intensity probe beam tuned near the F = 3 - F' = 4 transition in ^85Rb atoms. Polarization of backscattered light is determined by a backscattering polarimeter; the spatial distribution of light intensity is measured by a liquid-nitrogen cooled CCD camera set in the focal plane of the analyzing optics. The instrument has angular resolution of about 100 micro-radians, and a polarization analyzing power of roughly 1000. In this paper we describe the instrument details, including calibration procedures, and progress towards observation of atomic coherent backscattering.

  17. Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source

    DOE PAGES

    Reddy, Hemanth K. N.; Yoon, Chun Hong; Aquila, Andrew; ...

    2017-06-27

    Single-particle diffraction from X-ray Free Electron Lasers offers the potential for molecular structure determination without the need for crystallization. In an effort to further develop the technique, we present a dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source. The diameter of PR772 ranges from 65–70 nm, which is considerably smaller than the previously reported ~600 nm diameter Mimivirus. This reflects continued progress in XFEL-based single-particle imaging towards the single molecular imaging regime. As a result, themore » data set contains significantly more single particle hits than collected in previous experiments, enabling the development of improved statistical analysis, reconstruction algorithms, and quantitative metrics to determine resolution and self-consistency.« less

  18. Coherent all-optical control of ultracold atoms arrays in permanent magnetic traps.

    PubMed

    Abdelrahman, Ahmed; Mukai, Tetsuya; Häffner, Hartmut; Byrnes, Tim

    2014-02-10

    We propose a hybrid architecture for quantum information processing based on magnetically trapped ultracold atoms coupled via optical fields. The ultracold atoms, which can be either Bose-Einstein condensates or ensembles, are trapped in permanent magnetic traps and are placed in microcavities, connected by silica based waveguides on an atom chip structure. At each trapping center, the ultracold atoms form spin coherent states, serving as a quantum memory. An all-optical scheme is used to initialize, measure and perform a universal set of quantum gates on the single and two spin-coherent states where entanglement can be generated addressably between spatially separated trapped ultracold atoms. This allows for universal quantum operations on the spin coherent state quantum memories. We give detailed derivations of the composite cavity system mediated by a silica waveguide as well as the control scheme. Estimates for the necessary experimental conditions for a working hybrid device are given.

  19. Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source.

    PubMed

    Reddy, Hemanth K N; Yoon, Chun Hong; Aquila, Andrew; Awel, Salah; Ayyer, Kartik; Barty, Anton; Berntsen, Peter; Bielecki, Johan; Bobkov, Sergey; Bucher, Maximilian; Carini, Gabriella A; Carron, Sebastian; Chapman, Henry; Daurer, Benedikt; DeMirci, Hasan; Ekeberg, Tomas; Fromme, Petra; Hajdu, Janos; Hanke, Max Felix; Hart, Philip; Hogue, Brenda G; Hosseinizadeh, Ahmad; Kim, Yoonhee; Kirian, Richard A; Kurta, Ruslan P; Larsson, Daniel S D; Duane Loh, N; Maia, Filipe R N C; Mancuso, Adrian P; Mühlig, Kerstin; Munke, Anna; Nam, Daewoong; Nettelblad, Carl; Ourmazd, Abbas; Rose, Max; Schwander, Peter; Seibert, Marvin; Sellberg, Jonas A; Song, Changyong; Spence, John C H; Svenda, Martin; Van der Schot, Gijs; Vartanyants, Ivan A; Williams, Garth J; Xavier, P Lourdu

    2017-06-27

    Single-particle diffraction from X-ray Free Electron Lasers offers the potential for molecular structure determination without the need for crystallization. In an effort to further develop the technique, we present a dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source. The diameter of PR772 ranges from 65-70 nm, which is considerably smaller than the previously reported ~600 nm diameter Mimivirus. This reflects continued progress in XFEL-based single-particle imaging towards the single molecular imaging regime. The data set contains significantly more single particle hits than collected in previous experiments, enabling the development of improved statistical analysis, reconstruction algorithms, and quantitative metrics to determine resolution and self-consistency.

  20. Harmonic Quantum Coherence of Multiple Excitons in PbS/CdS Core-Shell Nanocrystals

    NASA Astrophysics Data System (ADS)

    Tahara, Hirokazu; Sakamoto, Masanori; Teranishi, Toshiharu; Kanemitsu, Yoshihiko

    2017-12-01

    The generation and recombination dynamics of multiple excitons in nanocrystals (NCs) have attracted much attention from the viewpoints of fundamental physics and device applications. However, the quantum coherence of multiple exciton states in NCs still remains unclear due to a lack of experimental support. Here, we report the first observation of harmonic dipole oscillations in PbS/CdS core-shell NCs using a phase-locked interference detection method for transient absorption. From the ultrafast coherent dynamics and excitation-photon-fluence dependence of the oscillations, we found that multiple excitons cause the harmonic dipole oscillations with ω , 2 ω , and 3 ω oscillations, even though the excitation pulse energy is set to the exciton resonance frequency, ω . This observation is closely related to the quantum coherence of multiple exciton states in NCs, providing important insights into multiple exciton generation mechanisms.

  1. Level set formulation of two-dimensional Lagrangian vortex detection methods

    NASA Astrophysics Data System (ADS)

    Hadjighasem, Alireza; Haller, George

    2016-10-01

    We propose here the use of the variational level set methodology to capture Lagrangian vortex boundaries in 2D unsteady velocity fields. This method reformulates earlier approaches that seek material vortex boundaries as extremum solutions of variational problems. We demonstrate the performance of this technique for two different variational formulations built upon different notions of coherence. The first formulation uses an energy functional that penalizes the deviation of a closed material line from piecewise uniform stretching [Haller and Beron-Vera, J. Fluid Mech. 731, R4 (2013)]. The second energy function is derived for a graph-based approach to vortex boundary detection [Hadjighasem et al., Phys. Rev. E 93, 063107 (2016)]. Our level-set formulation captures an a priori unknown number of vortices simultaneously at relatively low computational cost. We illustrate the approach by identifying vortices from different coherence principles in several examples.

  2. Quantum fuel with multilevel atomic coherence for ultrahigh specific work in a photonic Carnot engine.

    PubMed

    Türkpençe, Deniz; Müstecaplıoğlu, Özgür E

    2016-01-01

    We investigate scaling of work and efficiency of a photonic Carnot engine with a number of quantum coherent resources. Specifically, we consider a generalization of the "phaseonium fuel" for the photonic Carnot engine, which was first introduced as a three-level atom with two lower states in a quantum coherent superposition by M. O. Scully, M. Suhail Zubairy, G. S. Agarwal, and H. Walther [Science 299, 862 (2003)SCIEAS0036-807510.1126/science.1078955], to the case of N+1 level atoms with N coherent lower levels. We take into account atomic relaxation and dephasing as well as the cavity loss and derive a coarse-grained master equation to evaluate the work and efficiency analytically. Analytical results are verified by microscopic numerical examination of the thermalization dynamics. We find that efficiency and work scale quadratically with the number of quantum coherent levels. Quantum coherence boost to the specific energy (work output per unit mass of the resource) is a profound fundamental difference of quantum fuel from classical resources. We consider typical modern resonator set ups and conclude that multilevel phaseonium fuel can be utilized to overcome the decoherence in available systems. Preparation of the atomic coherences and the associated cost of coherence are analyzed and the engine operation within the bounds of the second law is verified. Our results bring the photonic Carnot engines much closer to the capabilities of current resonator technologies.

  3. Parametric optimization of optical signal detectors employing the direct photodetection scheme

    NASA Astrophysics Data System (ADS)

    Kirakosiants, V. E.; Loginov, V. A.

    1984-08-01

    The problem of optimization of the optical signal detection scheme parameters is addressed using the concept of a receiver with direct photodetection. An expression is derived which accurately approximates the field of view (FOV) values obtained by a direct computer minimization of the probability of missing a signal; optimum values of the receiver FOV were found for different atmospheric conditions characterized by the number of coherence spots and the intensity fluctuations of a plane wave. It is further pointed out that the criterion presented can be possibly used for parametric optimization of detectors operating in accordance with the Neumann-Pearson criterion.

  4. Intracavity adaptive optics. 1: Astigmatism correction performance.

    PubMed

    Spinhirne, J M; Anafi, D; Freeman, R H; Garcia, H R

    1981-03-15

    A detailed experimental study has been conducted on adaptive optical control methodologies inside a laser resonator. A comparison is presented of several optimization techniques using a multidither zonal coherent optical adaptive technique system within a laser resonator for the correction of astigmatism. A dramatic performance difference is observed when optimizing on beam quality compared with optimizing on power-in-the-bucket. Experimental data are also presented on proper selection criteria for dither frequencies when controlling phase front errors. The effects of hardware limitations and design considerations on the performance of the system are presented, and general conclusions and physical interpretations on the results are made when possible.

  5. True logarithmic amplification of frequency clock in SS-OCT for calibration

    PubMed Central

    Liu, Bin; Azimi, Ehsan; Brezinski, Mark E.

    2011-01-01

    With swept source optical coherence tomography (SS-OCT), imprecise signal calibration prevents optimal imaging of biological tissues such as coronary artery. This work demonstrates an approach using a true logarithmic amplifier to precondition the clock signal, with the effort to minimize the noises and phase errors for optimal calibration. This method was validated and tested with a high-speed SS-OCT. The experimental results manifest its superior ability on optimization of the calibration and improvement of the imaging performance. Particularly, this hardware-based approach is suitable for real-time calibration in a high-speed system where computation time is constrained. PMID:21698036

  6. Fully automatic three-dimensional visualization of intravascular optical coherence tomography images: methods and feasibility in vivo

    PubMed Central

    Ughi, Giovanni J; Adriaenssens, Tom; Desmet, Walter; D’hooge, Jan

    2012-01-01

    Intravascular optical coherence tomography (IV-OCT) is an imaging modality that can be used for the assessment of intracoronary stents. Recent publications pointed to the fact that 3D visualizations have potential advantages compared to conventional 2D representations. However, 3D imaging still requires a time consuming manual procedure not suitable for on-line application during coronary interventions. We propose an algorithm for a rapid and fully automatic 3D visualization of IV-OCT pullbacks. IV-OCT images are first processed for the segmentation of the different structures. This also allows for automatic pullback calibration. Then, according to the segmentation results, different structures are depicted with different colors to visualize the vessel wall, the stent and the guide-wire in details. Final 3D rendering results are obtained through the use of a commercial 3D DICOM viewer. Manual analysis was used as ground-truth for the validation of the segmentation algorithms. A correlation value of 0.99 and good limits of agreement (Bland Altman statistics) were found over 250 images randomly extracted from 25 in vivo pullbacks. Moreover, 3D rendering was compared to angiography, pictures of deployed stents made available by the manufacturers and to conventional 2D imaging corroborating visualization results. Computational time for the visualization of an entire data sets resulted to be ~74 sec. The proposed method allows for the on-line use of 3D IV-OCT during percutaneous coronary interventions, potentially allowing treatments optimization. PMID:23243578

  7. Evaluation of segmentation algorithms for optical coherence tomography images of ovarian tissue

    NASA Astrophysics Data System (ADS)

    Sawyer, Travis W.; Rice, Photini F. S.; Sawyer, David M.; Koevary, Jennifer W.; Barton, Jennifer K.

    2018-02-01

    Ovarian cancer has the lowest survival rate among all gynecologic cancers due to predominantly late diagnosis. Early detection of ovarian cancer can increase 5-year survival rates from 40% up to 92%, yet no reliable early detection techniques exist. Optical coherence tomography (OCT) is an emerging technique that provides depthresolved, high-resolution images of biological tissue in real time and demonstrates great potential for imaging of ovarian tissue. Mouse models are crucial to quantitatively assess the diagnostic potential of OCT for ovarian cancer imaging; however, due to small organ size, the ovaries must rst be separated from the image background using the process of segmentation. Manual segmentation is time-intensive, as OCT yields three-dimensional data. Furthermore, speckle noise complicates OCT images, frustrating many processing techniques. While much work has investigated noise-reduction and automated segmentation for retinal OCT imaging, little has considered the application to the ovaries, which exhibit higher variance and inhomogeneity than the retina. To address these challenges, we evaluated a set of algorithms to segment OCT images of mouse ovaries. We examined ve preprocessing techniques and six segmentation algorithms. While all pre-processing methods improve segmentation, Gaussian filtering is most effective, showing an improvement of 32% +/- 1.2%. Of the segmentation algorithms, active contours performs best, segmenting with an accuracy of 0.948 +/- 0.012 compared with manual segmentation (1.0 being identical). Nonetheless, further optimization could lead to maximizing the performance for segmenting OCT images of the ovaries.

  8. Sterile Neutrinos in Cold Climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Benjamin J.P.

    Measurements of neutrino oscillations at short baselines contain an intriguing set of experimental anomalies that may be suggestive of new physics such as the existence of sterile neutrinos. This three-part thesis presents research directed towards understanding these anomalies and searching for sterile neutrino oscillations. Part I contains a theoretical discussion of neutrino coherence properties. The open-quantum-system picture of neutrino beams, which allows a rigorous prediction of coherence distances for accelerator neutrinos, is presented. Validity of the standard treatment of active and sterile neutrino oscillations at short baselines is verified, and non-standard coherence loss effects at longer baselines are predicted. Partmore » II concerns liquid argon detector development for the MicroBooNE experiment, which will search for short-baseline oscillations in the Booster Neutrino Beam at Fermilab. Topics include characterization and installation of the MicroBooNE optical system; test-stand measurements of liquid argon optical properties with dissolved impurities; optimization of wavelength-shifting coatings for liquid argon scintillation light detection; testing and deployment of high-voltage surge arrestors to protect TPC field cages; and software development for optical and TPC simulation and reconstruction. Part III presents a search for sterile neutrinos using the IceCube neutrino telescope, which has collected a large sample of atmospheric-neutrino-induced events in the 1-10 TeV energy range. Sterile neutrinos would modify the detected neutrino flux shape via MSW-resonant oscillations. Following a careful treatment of systematic uncertainties in the sample, no evidence for MSW-resonant oscillations is observed, and exclusion limits on 3+1 model parameter space are derived. Under the mixing assumptions made, the 90% confidence level exclusion limit extends to sin 22θ 24 ≤ 0.02 at m 2 ~ 0.3 eV 2, and the LSND and MiniBooNE allowed regions are excluded at >99% confidence level.« less

  9. Detecting Dewatering of Peatland Pastures Using Sentinel-1 Satellite Radar Interferometry.

    NASA Astrophysics Data System (ADS)

    Heuff, F.; Samiei-Esfahany, S.; van Leijen, F. J.; Hanssen, R. F.

    2017-12-01

    The Netherlands are famous for their polders and the draining of soils to be used as pastures. Around 30% of the pastures are situated on peat soils, mostly in the western part of the Netherlands. Peat is composed of organic materials that oxidize and emit greenhouse gases when exposed to air. Oxidation of peat soils results in volume reduction and subsequent subsidence. As a result, the groundwater level rises relative to the surface. Consequently, the soil needs to be dewatered to keep it sufficiently dry for farming, resulting in more oxidation, and therefore more subsidence. This process is bound to continue until the peat soils have disappeared completely. The societal cost of land subsidence due to peat soils are estimated to be 5200 million euro for urban areas and 200 million euro for peatland pastures, for a period until 2050. Measuring the subsidence is not straightforward, if not impossible, with conventional geodetic means as soft soils make it impossible to install fixed benchmarks for repeated surveying. Also, due to the very fast temporal decorrelation over pastures, conventional InSAR approaches cannot measure a signal due to loss of coherence. Here we deploy a complete set of available SAR data from Sentinel-1, Radarsat-2 and TerraSAR-X to estimate the spatio-temporally varying subsidence signal due to the dewatering of peatland pastures over the western part of the Netherlands. We compute the InSAR coherence matrix for all possible interferometric combination, and compute an equivalent single-master stack to estimate the subsidence. Using terrain and land-use defined coherence estimation areas we optimize the phase estimation over areas severely affected by temporal decorrelation. This leads to a first estimate of deformation signals correlated with ancient shallow soil structures due to fluviatile structures. We use the methodology to investigate the effect of advanced local drainage schemes to slow down the subsidence phenomena.

  10. Three-beam coherent combination experiments based on segmented mirrors and measure of phase characteristics of beams passing through Yb-doped fiber amplifier

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Yang, Ruo fu; Shen, Feng; Ao, Mingwu; Jiang, Wenhan

    2009-05-01

    Coherent combination is one of the most promising ways to realize high power laser output. A three- laser-beam coherent combination system based on adaptive optics (AO) technique has been set up in our laboratory. In this system, three 1064nm laser beams are placed side-by-side and compressed by two reflective mirrors. An active segmented deformable mirror (DM) is used to compensate the optical path difference (OPD) among three laser beams. The beams are overlapped onto a 2900Hz CCD camera to form an interference pattern while the peak intensity of the interference pattern is taken as the cost function to optimize by a stochastic parallel gradient descent (SPGD) algorithm. SPGD algorithm is realized on a RT-Linux dual-core industrial computer. A series of experiments have been accomplished and experimental results show that both static distorted aberrations in the beams and active distorted aberrations (which are brought in by a hot iron and the frequency is about 5Hz) can be compensated successfully when the gain coefficients and the perturbation amplitude of SPGD are chosed appropriately, thereby three beams can be well combined. For controlling the phase of fiber lasers, the phase characteristics of beams passing through Yb-doped dual-clad fiber amplifier are measured by means of investigating the interference pattern under different output power through experiments. The frequency of phase fluctuation is evaluated through analyzing the fluctuation of power within a 90um aperture of far-field focal spot. Experimental results show that the phase fluctuation frequencies of laser beam transmitted through fiber amplifier are mainly in the range of 100~1500Hz. As a result, to control the phase fluctuation of beams passing through fiber amplifier, the bandwidth of any potential phase control scheme must be greater than 1.5 kilohertz.

  11. Interplay between consensus and coherence in a model of interacting opinions

    NASA Astrophysics Data System (ADS)

    Battiston, Federico; Cairoli, Andrea; Nicosia, Vincenzo; Baule, Adrian; Latora, Vito

    2016-06-01

    The formation of agents' opinions in a social system is the result of an intricate equilibrium among several driving forces. On the one hand, the social pressure exerted by peers favors the emergence of local consensus. On the other hand, the concurrent participation of agents to discussions on different topics induces each agent to develop a coherent set of opinions across all the topics in which he/she is active. Moreover, the pervasive action of external stimuli, such as mass media, pulls the entire population towards a specific configuration of opinions on different topics. Here we propose a model in which agents with interrelated opinions, interacting on several layers representing different topics, tend to spread their own ideas to their neighborhood, strive to maintain internal coherence, due to the fact that each agent identifies meaningful relationships among its opinions on the different topics, and are at the same time subject to external fields, resembling the pressure of mass media. We show that the presence of heterogeneity in the internal coupling assigned by agents to their different opinions allows to obtain states with mixed levels of consensus, still ensuring that all the agents attain a coherent set of opinions. Furthermore, we show that all the observed features of the model are preserved in the presence of thermal noise up to a critical temperature, after which global consensus is no longer attainable. This suggests the relevance of our results for real social systems, where noise is inevitably present in the form of information uncertainty and misunderstandings. The model also demonstrates how mass media can be effectively used to favor the propagation of a chosen set of opinions, thus polarizing the consensus of an entire population.

  12. Optimization of Passive Coherent Receiver System Placement

    DTIC Science & Technology

    2013-09-01

    spheroid object with a constant radar cross section (RCS). Additionally, the receiver and transmitters are assumed to be notional isotropic antennae...software- defined radio for equatorial plasma instability studies,” Radio Science, vol. 48, pp. 1–11. Aug. 2013. [2] P. C. Zhang and B. Y. Li, “Passive

  13. The quantum mitochondrion and optimal health.

    PubMed

    Nunn, Alistair V W; Guy, Geoffrey W; Bell, Jimmy D

    2016-08-15

    A sufficiently complex set of molecules, if subject to perturbation, will self-organize and show emergent behaviour. If such a system can take on information it will become subject to natural selection. This could explain how self-replicating molecules evolved into life and how intelligence arose. A pivotal step in this evolutionary process was of course the emergence of the eukaryote and the advent of the mitochondrion, which both enhanced energy production per cell and increased the ability to process, store and utilize information. Recent research suggest that from its inception life embraced quantum effects such as 'tunnelling' and 'coherence' while competition and stressful conditions provided a constant driver for natural selection. We believe that the biphasic adaptive response to stress described by hormesis-a process that captures information to enable adaptability, is central to this whole process. Critically, hormesis could improve mitochondrial quantum efficiency, improving the ATP/ROS ratio, whereas inflammation, which is tightly associated with the aging process, might do the opposite. This all suggests that to achieve optimal health and healthy aging, one has to sufficiently stress the system to ensure peak mitochondrial function, which itself could reflect selection of optimum efficiency at the quantum level. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  14. STUDIES OF A FREE ELECTRON LASER DRIVEN BY A LASER-PLASMA ACCELERATOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, A.; Schroeder, C.; Fawley, W.

    A free electron laser (FEL) uses an undulator, a set of alternating magnets producing a periodic magnetic fi eld, to stimulate emission of coherent radiation from a relativistic electron beam. The Lasers, Optical Accelerator Systems Integrated Studies (LOASIS) group at Lawrence Berkeley National Laboratory (LBNL) will use an innovative laserplasma wakefi eld accelerator to produce an electron beam to drive a proposed FEL. In order to optimize the FEL performance, the dependence on electron beam and undulator parameters must be understood. Numerical modeling of the FEL using the simulation code GINGER predicts the experimental results for given input parameters. Amongmore » the parameters studied were electron beam energy spread, emittance, and mismatch with the undulator focusing. Vacuum-chamber wakefi elds were also simulated to study their effect on FEL performance. Energy spread was found to be the most infl uential factor, with output FEL radiation power sharply decreasing for relative energy spreads greater than 0.33%. Vacuum chamber wakefi elds and beam mismatch had little effect on the simulated LOASIS FEL at the currents considered. This study concludes that continued improvement of the laser-plasma wakefi eld accelerator electron beam will allow the LOASIS FEL to operate in an optimal regime, producing high-quality XUV and x-ray pulses.« less

  15. Real-time optical coherence tomography observation of retinal tissue damage during laser photocoagulation therapy on ex-vivo porcine samples

    NASA Astrophysics Data System (ADS)

    Steiner, P.; Považay, B.; Stoller, M.; Morgenthaler, P.; Inniger, D.; Arnold, P.; Sznitman, R.; Meier, Ch.

    2015-07-01

    Retinal laser photocoagulation represents a widely used treatment for retinal pathologies such as diabetic chorioretinopathy or diabetic edema. For effective treatment, an appropriate choice of the treatment energy dose is crucial to prevent excessive tissue damage caused by over-irradiation of the retina. In this manuscript we investigate simultaneous and time-resolved optical coherence tomography for its applicability to provide feedback to the ophthalmologist about the introduced retinal damage during laser photocoagulation. Time-resolved and volumetric optical coherence tomography data of 96 lesions on ex-vivo porcine samples, set with a 577 nm laser prototype and irradiance of between 300 and 8800 W=cm2 were analyzed. Time-resolved scans were compared to volumetric scans of the lesion and correlated with ophthalmoscopic visibility. Lastly, image parameters extracted from optical coherence tomography Mscans, suitable for lesion classification were identified. Results presented in this work support the hypothesis that simultaneous optical coherence tomography provides valuable information about the extent of retinal tissue damage and may be used to guide retinal laser photocoagulation in the future.

  16. Control of ultrafast pulses in a hydrogen-filled hollow-core photonic-crystal fiber by Raman coherence

    NASA Astrophysics Data System (ADS)

    Belli, F.; Abdolvand, A.; Travers, J. C.; Russell, P. St. J.

    2018-01-01

    We present the results of an experimental and numerical investigation into temporally nonlocal coherent interactions between ultrashort pulses, mediated by Raman coherence, in a gas-filled kagome-style hollow-core photonic-crystal fiber. A pump pulse first sets up the Raman coherence, creating a refractive index spatiotemporal grating in the gas that travels at the group velocity of the pump pulse. Varying the arrival time of a second, probe, pulse allows a high degree of control over its evolution as it propagates along the fiber through the grating. Of particular interest are soliton-driven effects such as self-compression and dispersive wave (DW) emission. In the experiments reported, a DW is emitted at ˜300 nm and exhibits a wiggling effect, with its central frequency oscillating periodically with pump-probe delay. The results demonstrate that a strong Raman coherence, created in a broadband guiding gas-filled kagome photonic-crystal fiber, can be used to control the nonlinear dynamics of ultrashort probe pulses, even in difficult-to-access spectral regions such as the deep and vacuum ultraviolet.

  17. Designs of Empirical Evaluations of Nonexperimental Methods in Field Settings.

    PubMed

    Wong, Vivian C; Steiner, Peter M

    2018-01-01

    Over the last three decades, a research design has emerged to evaluate the performance of nonexperimental (NE) designs and design features in field settings. It is called the within-study comparison (WSC) approach or the design replication study. In the traditional WSC design, treatment effects from a randomized experiment are compared to those produced by an NE approach that shares the same target population. The nonexperiment may be a quasi-experimental design, such as a regression-discontinuity or an interrupted time-series design, or an observational study approach that includes matching methods, standard regression adjustments, and difference-in-differences methods. The goals of the WSC are to determine whether the nonexperiment can replicate results from a randomized experiment (which provides the causal benchmark estimate), and the contexts and conditions under which these methods work in practice. This article presents a coherent theory of the design and implementation of WSCs for evaluating NE methods. It introduces and identifies the multiple purposes of WSCs, required design components, common threats to validity, design variants, and causal estimands of interest in WSCs. It highlights two general approaches for empirical evaluations of methods in field settings, WSC designs with independent and dependent benchmark and NE arms. This article highlights advantages and disadvantages for each approach, and conditions and contexts under which each approach is optimal for addressing methodological questions.

  18. Design of a triple-bend isochronous achromat with minimum coherent-synchrotron-radiation-induced emittance growth

    NASA Astrophysics Data System (ADS)

    Venturini, M.

    2016-06-01

    Using a 1D steady-state free-space coherent synchrotron radiation (CSR) model, we identify a special design setting for a triple-bend isochronous achromat that yields vanishing emittance growth from CSR. When a more refined CSR model with transient effects is included in the analysis, numerical simulations show that the main effect of the transients is to shift the emittance growth minimum slightly, with the minimum changing only modestly.

  19. Design of a triple-bend isochronous achromat with minimum coherent-synchrotron-radiation-induced emittance growth

    DOE PAGES

    Venturini, M.

    2016-06-09

    Using a 1D steady-state free-space coherent synchrotron radiation (CSR) model, we identify a special design setting for a triple-bend isochronous achromat that yields vanishing emittance growth from CSR. When a more refined CSR model with transient effects is included in the analysis, numerical simulations show that the main effect of the transients is to shift the emittance growth minimum slightly, with the minimum changing only modestly.

  20. Design of coherent receiver optical front end for unamplified applications.

    PubMed

    Zhang, Bo; Malouin, Christian; Schmidt, Theodore J

    2012-01-30

    Advanced modulation schemes together with coherent detection and digital signal processing has enabled the next generation high-bandwidth optical communication systems. One of the key advantages of coherent detection is its superior receiver sensitivity compared to direct detection receivers due to the gain provided by the local oscillator (LO). In unamplified applications, such as metro and edge networks, the ultimate receiver sensitivity is dictated by the amount of shot noise, thermal noise, and the residual beating of the local oscillator with relative intensity noise (LO-RIN). We show that the best sensitivity is achieved when the thermal noise is balanced with the residual LO-RIN beat noise, which results in an optimum LO power. The impact of thermal noise from the transimpedance amplifier (TIA), the RIN from the LO, and the common mode rejection ratio (CMRR) from a balanced photodiode are individually analyzed via analytical models and compared to numerical simulations. The analytical model results match well with those of the numerical simulations, providing a simplified method to quantify the impact of receiver design tradeoffs. For a practical 100 Gb/s integrated coherent receiver with 7% FEC overhead, we show that an optimum receiver sensitivity of -33 dBm can be achieved at GFEC cliff of 8.55E-5 if the LO power is optimized at 11 dBm. We also discuss a potential method to monitor the imperfections of a balanced and integrated coherent receiver.

  1. Coherence Conversion for Optimized Resolution in Optical Measurements - Example of Femtosecond Time Resolution Using the Transverse Coherence of 100-Picosecond X-Rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Bernhard W.

    2015-01-01

    A way is proposed to obtain a femtosecond time resolution over a picosecond range in x-ray spectroscopic measurements where the light source and the detector are much slower than that. It is based on the invariance of the modulus of the Fourier transform to object translations. The method geometrically correlates time in the sample with x-ray amplitudes over a spatial coordinate, and then takes the optical Fourier transform through far-field diffraction. Thus, explicitly time-invariant intensities that encode the time evolution of the sample can be measured with a slow detector. This corresponds to a phase-space transformation that converts the transversemore » coherence to become effective in the longitudinal direction. Because synchrotron-radiation sources have highly anisotropic coherence properties with about $10^5$ longitudinal electromagnetic-field modes at 1 eV bandwidth, but only tens to hundreds transverse modes, coherence conversion can drastically improve the time resolution. Reconstruction of the femtosecond time evolution in the sample from the Fourier intensities is subject to a phase ambiguity that is well-known in crystallography. However, a way is presented to resolve it that is not available in that discipline. Finally, data from a demonstration experiment are presented. The same concept can be used to obtain attosecond time resolution with an x-ray free-electron laser.« less

  2. Setting Proficiency Standards for School Leadership Assessment: An Examination of Cut Score Decision Making

    ERIC Educational Resources Information Center

    Cravens, Xiu Chen; Goldring, Ellen B.; Porter, Andrew C.; Polikoff, Morgan S.; Murphy, Joseph; Elliott, Stephen N.

    2013-01-01

    Purpose: Performance evaluation informs professional development and helps school personnel improve student learning. Although psychometric literature indicates that a rational, sound, and coherent standard-setting process adds to the credibility of an assessment, few studies have empirically examined the decision-making process. This article…

  3. Coherence, Contradiction, and the Development of School Science Identities

    ERIC Educational Resources Information Center

    Olitsky, Stacy; Flohr, Linda Loman; Gardner, Jessica; Billups, Markita

    2010-01-01

    This study demonstrates the potential for collaborative research among participants in local settings to effect positive change in urban settings characterized by diversity. It describes an interpretive case study of a racially, ethnically, and socioeconomically diverse eighth grade science classroom in an urban magnet school in order to explore…

  4. Experimental and numerical investigation of a phase-only control mechanism in the linear intensity regime.

    PubMed

    Brühl, Elisabeth; Buckup, Tiago; Motzkus, Marcus

    2018-06-07

    Mechanisms and optimal experimental conditions in coherent control still intensely stimulate debates. In this work, a phase-only control mechanism in an open quantum system is investigated experimentally and numerically. Several parameterizations for femtosecond pulse shaping (combination of chirp and multipulses) are exploited in transient absorption of a prototype organic molecule to control population and vibrational coherence in ground and excited states. Experimental results are further numerically simulated and corroborated with a four-level density-matrix model, which reveals a phase-only control mechanism based on the interaction between the tailored phase of the excitation pulse and the induced transient absorption. In spite of performing experiment and numerical simulations in the linear regime of excitation, the control effect amplitude depends non-linearly on the excitation energy and is explained as a pump-dump control mechanism. No evidence of single-photon control is observed with the model. Moreover, our results also show that the control effect on the population and vibrational coherence is highly dependent on the spectral detuning of the excitation spectrum. Contrary to the popular belief in coherent control experiments, spectrally resonant tailored excitation will lead to the control of the excited state only for very specific conditions.

  5. Characterization of Two Ton NaI Scintillator

    NASA Astrophysics Data System (ADS)

    Maier, Alleta; Coherent Collaboration

    2017-09-01

    The COHERENT collaboration is dedicated to measuring Coherent Elastic Neutrino-Nucleus Scattering (CE νNS), an interaction predicted by the standard model that ultimately serves as a background floor for dark matter detection. In the pursuit of observing the N2 scaling predicted, COHERENT is deploying two tons of NaI[Tl] detector to observe CE νNS recoils of sodium nuclei. Before the two tons of this NaI[Tl] scintillator are deployed, however, all crystals and PMTs must be characterized to understand the individual properties vital to precision in the measurement of CE νNS. This detector is also expected to allow COHERENT to observe charged current and CE νNS interactions with 127I. A standard operating procedure is developed to characterize each detector based on seven properties relevant to precision in the measurement of CE νNS: energy scale, energy resolution, low-energy light yield non-linearity, decay time energy dependence, position variance, time variance, and background levels. Crystals will be tested and characterized for these properties in the context of a ton-scale NaI[Tl] detector. Preliminary development of the SOP has allowed for greater understanding of optimization methods needed for characterization for the ton scale detector. TUNL, NSF, Duke University.

  6. Task-related functional connectivity in autism spectrum conditions: an EEG study using wavelet transform coherence

    PubMed Central

    2013-01-01

    Background Autism Spectrum Conditions (ASC) are a set of pervasive neurodevelopmental conditions characterized by a wide range of lifelong signs and symptoms. Recent explanatory models of autism propose abnormal neural connectivity and are supported by studies showing decreased interhemispheric coherence in individuals with ASC. The first aim of this study was to test the hypothesis of reduced interhemispheric coherence in ASC, and secondly to investigate specific effects of task performance on interhemispheric coherence in ASC. Methods We analyzed electroencephalography (EEG) data from 15 participants with ASC and 15 typical controls, using Wavelet Transform Coherence (WTC) to calculate interhemispheric coherence during face and chair matching tasks, for EEG frequencies from 5 to 40 Hz and during the first 400 ms post-stimulus onset. Results Results demonstrate a reduction of interhemispheric coherence in the ASC group, relative to the control group, in both tasks and for all electrode pairs studied. For both tasks, group differences were generally observed after around 150 ms and at frequencies lower than 13 Hz. Regarding within-group task comparisons, while the control group presented differences in interhemispheric coherence between faces and chairs tasks at various electrode pairs (FT7-FT8, TP7-TP8, P7-P8), such differences were only seen for one electrode pair in the ASC group (T7-T8). No significant differences in EEG power spectra were observed between groups. Conclusions Interhemispheric coherence is reduced in people with ASC, in a time and frequency specific manner, during visual perception and categorization of both social and inanimate stimuli and this reduction in coherence is widely dispersed across the brain. Results of within-group task comparisons may reflect an impairment in task differentiation in people with ASC relative to typically developing individuals. Overall, the results of this research support the value of WTC in examining the time-frequency microstructure of task-related interhemispheric EEG coherence in people with ASC. PMID:23311570

  7. Improved Persistent Scatterer analysis using Amplitude Dispersion Index optimization of dual polarimetry data

    NASA Astrophysics Data System (ADS)

    Esmaeili, Mostafa; Motagh, Mahdi

    2016-07-01

    Time-series analysis of Synthetic Aperture Radar (SAR) data using the two techniques of Small BAseline Subset (SBAS) and Persistent Scatterer Interferometric SAR (PSInSAR) extends the capability of conventional interferometry technique for deformation monitoring and mitigating many of its limitations. Using dual/quad polarized data provides us with an additional source of information to improve further the capability of InSAR time-series analysis. In this paper we use dual-polarized data and combine the Amplitude Dispersion Index (ADI) optimization of pixels with phase stability criterion for PSInSAR analysis. ADI optimization is performed by using Simulated Annealing algorithm to increase the number of Persistent Scatterer Candidate (PSC). The phase stability of PSCs is then measured using their temporal coherence to select the final sets of pixels for deformation analysis. We evaluate the method for a dataset comprising of 17 dual polarization SAR data (HH/VV) acquired by TerraSAR-X data from July 2013 to January 2014 over a subsidence area in Iran and compare the effectiveness of the method for both agricultural and urban regions. The results reveal that using optimum scattering mechanism decreases the ADI values in urban and non-urban regions. As compared to single-pol data the use of optimized polarization increases initially the number of PSCs by about three times and improves the final PS density by about 50%, in particular in regions with high rate of deformation which suffer from losing phase stability over the time. The classification of PS pixels based on their optimum scattering mechanism revealed that the dominant scattering mechanism of the PS pixels in the urban area is double-bounce while for the non-urban regions (ground surfaces and farmlands) it is mostly single-bounce mechanism.

  8. Coherent structure in solar wind C{sup 6+}/C{sup 4+} ionic composition data during the quiet-sun conditions of 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edmondson, J. K.; Lepri, S. T.; Zurbuchen, T. H.

    2013-11-20

    This analysis offers evidence of characteristic scale sizes in solar wind charge state data measured in situ for 13 quiet-Sun Carrington rotations in 2008. Using a previously established novel methodology, we analyze the wavelet power spectrum of the charge state ratio C{sup 6+}/C{sup 4+} measured in situ by ACE/SWICS for 2 hr and 12 minute cadence. We construct a statistical significance level in the wavelet power spectrum to quantify the interference effects arising from filling missing data in the time series, allowing extraction of significant power from the measured data to a resolution of 24 minutes. We analyze each waveletmore » power spectrum for transient coherency and global periodicities resulting from the superposition of repeating coherent structures. From the significant wavelet power spectra, we find evidence for a general upper limit on individual transient coherency of ∼10 days. We find evidence for a set of global periodicities between 4-5 hr and 35-45 days. We find evidence for the distribution of individual transient coherency scales consisting of two distinct populations. Below the ∼2 day timescale, the distribution is reasonably approximated by an inverse power law, whereas for scales ≳2 days, the distribution levels off, showing discrete peaks at common coherency scales. In addition, by organizing the transient coherency scale distributions by wind type, we find that these larger, common coherency scales are more prevalent and well defined in coronal hole wind. Finally, we discuss the implications of our results for current theories of solar wind generation and describe future work for determining the relationship between the coherent structures in our ionic composition data and the structure of the coronal magnetic field.« less

  9. Promoting good policy for leadership and governance of health related rehabilitation: a realist synthesis.

    PubMed

    McVeigh, Joanne; MacLachlan, Malcolm; Gilmore, Brynne; McClean, Chiedza; Eide, Arne H; Mannan, Hasheem; Geiser, Priscille; Duttine, Antony; Mji, Gubela; McAuliffe, Eilish; Sprunt, Beth; Amin, Mutamad; Normand, Charles

    2016-08-24

    Good governance may result in strengthened performance of a health system. Coherent policies are essential for good health system governance. The overall aim of this research is to provide the best available scientific evidence on principles of good policy related leadership and governance of health related rehabilitation services in less resourced settings. This research was also conducted to support development of the World Health Organization's (WHO) Guidelines on health related rehabilitation. An innovative study design was used, comprising two methods: a systematic search and realist synthesis of literature, and a Delphi survey of expert stakeholders to refine and triangulate findings from the realist synthesis. In accordance with Pawson and Tilley's approach to realist synthesis, we identified context mechanism outcome pattern configurations (CMOCs) from the literature. Subsequently, these CMOCs were developed into statements for the Delphi survey, whereby 18 expert stakeholders refined these statements to achieve consensus on recommendations for policy related governance of health related rehabilitation. Several broad principles emerged throughout formulation of recommendations: participation of persons with disabilities in policy processes to improve programme responsiveness, efficiency, effectiveness, and sustainability, and to strengthen service-user self-determination and satisfaction; collection of disaggregated disability statistics to support political momentum, decision-making of policymakers, evaluation, accountability, and equitable allocation of resources; explicit promotion in policies of access to services for all subgroups of persons with disabilities and service-users to support equitable and accessible services; robust inter-sectoral coordination to cultivate coherent mandates across governmental departments regarding service provision; and 'institutionalizing' programmes by aligning them with preexisting Ministerial models of healthcare to support programme sustainability. Alongside national policymakers, our policy recommendations are relevant for several stakeholders, including service providers and service-users. This research aims to provide broad policy recommendations, rather than a strict formula, in acknowledgement of contextual diversity and complexity. Accordingly, our study proposes general principles regarding optimal policy related governance of health related rehabilitation in less resourced settings, which may be valuable across diverse health systems and contexts.

  10. Detection and display of acoustic window for guiding and training cardiac ultrasound users

    NASA Astrophysics Data System (ADS)

    Huang, Sheng-Wen; Radulescu, Emil; Wang, Shougang; Thiele, Karl; Prater, David; Maxwell, Douglas; Rafter, Patrick; Dupuy, Clement; Drysdale, Jeremy; Erkamp, Ramon

    2014-03-01

    Successful ultrasound data collection strongly relies on the skills of the operator. Among different scans, echocardiography is especially challenging as the heart is surrounded by ribs and lung tissue. Less experienced users might acquire compromised images because of suboptimal hand-eye coordination and less awareness of artifacts. Clearly, there is a need for a tool that can guide and train less experienced users to position the probe optimally. We propose to help users with hand-eye coordination by displaying lines overlaid on B-mode images. The lines indicate the edges of blockages (e.g., ribs) and are updated in real time according to movement of the probe relative to the blockages. They provide information about how probe positioning can be improved. To distinguish between blockage and acoustic window, we use coherence, an indicator of channel data similarity after applying focusing delays. Specialized beamforming was developed to estimate coherence. Image processing is applied to coherence maps to detect unblocked beams and the angle of the lines for display. We built a demonstrator based on a Philips iE33 scanner, from which beamsummed RF data and video output are transferred to a workstation for processing. The detected lines are overlaid on B-mode images and fed back to the scanner display to provide users real-time guidance. Using such information in addition to B-mode images, users will be able to quickly find a suitable acoustic window for optimal image quality, and improve their skill.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Haixia; Zhang, Jing

    We propose a scheme for continuous-variable quantum cloning of coherent states with phase-conjugate input modes using linear optics. The quantum cloning machine yields M identical optimal clones from N replicas of a coherent state and N replicas of its phase conjugate. This scheme can be straightforwardly implemented with the setups accessible at present since its optical implementation only employs simple linear optical elements and homodyne detection. Compared with the original scheme for continuous-variable quantum cloning with phase-conjugate input modes proposed by Cerf and Iblisdir [Phys. Rev. Lett. 87, 247903 (2001)], which utilized a nondegenerate optical parametric amplifier, our scheme losesmore » the output of phase-conjugate clones and is regarded as irreversible quantum cloning.« less

  12. Analytical transmission cross-coefficients for pink beam X-ray microscopy based on compound refractive lenses.

    PubMed

    Falch, Ken Vidar; Detlefs, Carsten; Snigirev, Anatoly; Mathiesen, Ragnvald H

    2018-01-01

    Analytical expressions for the transmission cross-coefficients for x-ray microscopes based on compound refractive lenses are derived based on Gaussian approximations of the source shape and energy spectrum. The effects of partial coherence, defocus, beam convergence, as well as lateral and longitudinal chromatic aberrations are accounted for and discussed. Taking the incoherent limit of the transmission cross-coefficients, a compact analytical expression for the modulation transfer function of the system is obtained, and the resulting point, line and edge spread functions are presented. Finally, analytical expressions for optimal numerical aperture, coherence ratio, and bandwidth are given. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Coherent population trapping with a controlled dissipation: applications in optical metrology

    NASA Astrophysics Data System (ADS)

    Nicolas, L.; Delord, T.; Jamonneau, P.; Coto, R.; Maze, J.; Jacques, V.; Hétet, G.

    2018-03-01

    We analyze the properties of a pulsed coherent population trapping protocol that uses a controlled decay from the excited state in a Λ-level scheme. We study this problem analytically and numerically and find regimes where narrow transmission, absorption, or fluorescence spectral lines occur. We then look for optimal frequency measurements using these spectral features by computing the Allan deviation in the presence of ground state decoherence and show that the protocol is on a par with Ramsey-CPT. We discuss possible implementations with ensembles of alkali atoms and single ions and demonstrate that typical pulsed-CPT experiments that are realized on femto-second timescales can be implemented on micro-seconds timescales using this scheme.

  14. Compact beam splitters with deep gratings for miniature photonic integrated circuits: design and implementation aspects.

    PubMed

    Chen, Chin-Hui; Klamkin, Jonathan; Nicholes, Steven C; Johansson, Leif A; Bowers, John E; Coldren, Larry A

    2009-09-01

    We present an extensive study of an ultracompact grating-based beam splitter suitable for photonic integrated circuits (PICs) that have stringent density requirements. The 10 microm long beam splitter exhibits equal splitting, low insertion loss, and also provides a high extinction ratio in an integrated coherent balanced receiver. We further present the design strategies for avoiding mode distortion in the beam splitter and discuss optimization of the widths of the detectors to improve insertion loss and extinction ratio of the coherent receiver circuit. In our study, we show that the grating-based beam splitter is a competitive technology having low fabrication complexity for ultracompact PICs.

  15. SRS in the single molecule limit (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Potma, Eric O.; Crampton, Kevin T.; Fast, Alexander; Apkarian, Vartkess A.

    2017-02-01

    We present combined surface-enhanced stimulated Raman scattering (SE-SRS) and surface-enhanced coherent anti-Stokes Raman scattering (SE-CARS) measurements on individual plasmonic antennas dressed with bipyridyl-ethylene molecules. By carefully optimizing the conditions for performing SE-SRS experiments, we have obtained stable and reproducible molecular surface-enhanced SRS spectra from single nano-antennas. Using surface-enhanced Raman scattering (SERS) and transmission electron microscopy of the same antennas, we confirm that the observed SE-SRS signals originate from only one or a few molecules. We highlight the physics of surface enhancement in the context of coherent Raman scattering and derive sensitivity parameters under the relevant conditions. The implications of single molecule SRS measurements are discussed.

  16. Coherent quantum control of internal conversion: {S}_{2}\\;\\leftrightarrow \\;{S}_{1} in pyrazine via {S}_{0}\\;\\to \\;{S}_{2}/{S}_{1} weak field excitation

    NASA Astrophysics Data System (ADS)

    Grinev, Timur; Shapiro, Moshe; Brumer, Paul

    2015-09-01

    Coherent control of internal conversion (IC) between the first (S1) and second (S2) singlet excited electronic states in pyrazine, where the S2 state is populated from the ground singlet electronic state S0 by weak field excitation, is examined. Control is implemented by shaping the laser which excites S2. Excitation and IC are considered simultaneously, using the recently introduced resonance-based control approach. Highly successful control is achieved by optimizing both the amplitude and phase profiles of the laser spectrum. The dependence of control on the properties of resonances in S2 is demonstrated.

  17. A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: I. Robust Linear Optimization and Robust Mixed Integer Linear Optimization

    PubMed Central

    Li, Zukui; Ding, Ran; Floudas, Christodoulos A.

    2011-01-01

    Robust counterpart optimization techniques for linear optimization and mixed integer linear optimization problems are studied in this paper. Different uncertainty sets, including those studied in literature (i.e., interval set; combined interval and ellipsoidal set; combined interval and polyhedral set) and new ones (i.e., adjustable box; pure ellipsoidal; pure polyhedral; combined interval, ellipsoidal, and polyhedral set) are studied in this work and their geometric relationship is discussed. For uncertainty in the left hand side, right hand side, and objective function of the optimization problems, robust counterpart optimization formulations induced by those different uncertainty sets are derived. Numerical studies are performed to compare the solutions of the robust counterpart optimization models and applications in refinery production planning and batch process scheduling problem are presented. PMID:21935263

  18. Coherent structures in the Es layer and neutral middle atmosphere

    NASA Astrophysics Data System (ADS)

    Mošna, Zbyšek; Knížová, Petra Koucká; Potužníková, Kateřina

    2015-12-01

    The present paper shows results from the summer campaign performed during geomagnetically quiet period from June 1 to August 31, 2009. Within time-series of stratospheric and mesospheric temperatures at pressure levels 10-0.1 hPa, mesospheric winds measured in Collm, Germany, and the sporadic E-layer parameters foEs and hEs measured at the Pruhonice station we detected specific coherent wave-bursts in planetary wave domain. Permanent wave-like activity is observed in all analyzed data sets. However, the number of wave-like structures persistent in large range of height from the stratosphere to lower ionosphere is limited. The only coherent modes that are detected on consequent levels of the atmosphere are those corresponding to eigenmodes of planetary waves.

  19. Biological elements carry out optical tasks in coherent imaging systems

    NASA Astrophysics Data System (ADS)

    Ferraro, P.; Bianco, V.; Paturzo, M.; Miccio, L.; Memmolo, P.; Merola, F.; Marchesano, V.

    2016-03-01

    We show how biological elements, like live bacteria species and Red Blood Cells (RBCs) can accomplish optical functionalities in DH systems. Turbid media allow coherent microscopy despite the strong light scattering these provoke, acting on light just as moving diffusers. Furthermore, a turbid medium can have positive effects on a coherent imaging system, providing resolution enhancement and mimicking the action of noise decorrelation devices, thus yielding an image quality significantly higher than the quality achievable through a transparent medium in similar recording conditions. Besides, suspended RBCs are demonstrated to behave as controllable liquid micro-lenses, opening new possibilities in biophotonics for endoscopy imaging purposes, as well as telemedicine for point-of-care diagnostics in developing countries and low-resource settings.

  20. Deep turbulence effects mitigation with coherent combining of 21 laser beams over 7 km.

    PubMed

    Weyrauch, Thomas; Vorontsov, Mikhail; Mangano, Joseph; Ovchinnikov, Vladimir; Bricker, David; Polnau, Ernst; Rostov, Andrey

    2016-02-15

    We demonstrate coherent beam combining and adaptive mitigation of atmospheric turbulence effects over 7 km under strong scintillation conditions using a coherent fiber array laser transmitter operating in a target-in-the-loop setting. The transmitter system is composed of a densely packed array of 21 fiber collimators with integrated capabilities for piston, tip, and tilt control of the outgoing beams wavefront phases. A small cat's-eye retro reflector was used for evaluation of beam combining and turbulence compensation performance at the target plane, and to provide the feedback signal for control of piston and tip/tilt phases of the transmitted beams using the stochastic parallel gradient descent maximization of the power-in-the-bucket metric.

Top