Sample records for optimization codes modified

  1. Optimized scalar promotion with load and splat SIMD instructions

    DOEpatents

    Eichenberger, Alexander E; Gschwind, Michael K; Gunnels, John A

    2013-10-29

    Mechanisms for optimizing scalar code executed on a single instruction multiple data (SIMD) engine are provided. Placement of vector operation-splat operations may be determined based on an identification of scalar and SIMD operations in an original code representation. The original code representation may be modified to insert the vector operation-splat operations based on the determined placement of vector operation-splat operations to generate a first modified code representation. Placement of separate splat operations may be determined based on identification of scalar and SIMD operations in the first modified code representation. The first modified code representation may be modified to insert or delete separate splat operations based on the determined placement of the separate splat operations to generate a second modified code representation. SIMD code may be output based on the second modified code representation for execution by the SIMD engine.

  2. Optimized scalar promotion with load and splat SIMD instructions

    DOEpatents

    Eichenberger, Alexandre E [Chappaqua, NY; Gschwind, Michael K [Chappaqua, NY; Gunnels, John A [Yorktown Heights, NY

    2012-08-28

    Mechanisms for optimizing scalar code executed on a single instruction multiple data (SIMD) engine are provided. Placement of vector operation-splat operations may be determined based on an identification of scalar and SIMD operations in an original code representation. The original code representation may be modified to insert the vector operation-splat operations based on the determined placement of vector operation-splat operations to generate a first modified code representation. Placement of separate splat operations may be determined based on identification of scalar and SIMD operations in the first modified code representation. The first modified code representation may be modified to insert or delete separate splat operations based on the determined placement of the separate splat operations to generate a second modified code representation. SIMD code may be output based on the second modified code representation for execution by the SIMD engine.

  3. Designing stellarator coils by a modified Newton method using FOCUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao

    To find the optimal coils for stellarators, nonlinear optimization algorithms are applied in existing coil design codes. However, none of these codes have used the information from the second-order derivatives. In this paper, we present a modified Newton method in the recently developed code FOCUS. The Hessian matrix is calculated with analytically derived equations. Its inverse is approximated by a modified Cholesky factorization and applied in the iterative scheme of a classical Newton method. Using this method, FOCUS is able to recover the W7-X modular coils starting from a simple initial guess. Results demonstrate significant advantages.

  4. Designing stellarator coils by a modified Newton method using FOCUS

    NASA Astrophysics Data System (ADS)

    Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao; Wan, Yuanxi

    2018-06-01

    To find the optimal coils for stellarators, nonlinear optimization algorithms are applied in existing coil design codes. However, none of these codes have used the information from the second-order derivatives. In this paper, we present a modified Newton method in the recently developed code FOCUS. The Hessian matrix is calculated with analytically derived equations. Its inverse is approximated by a modified Cholesky factorization and applied in the iterative scheme of a classical Newton method. Using this method, FOCUS is able to recover the W7-X modular coils starting from a simple initial guess. Results demonstrate significant advantages.

  5. Designing stellarator coils by a modified Newton method using FOCUS

    DOE PAGES

    Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao; ...

    2018-03-22

    To find the optimal coils for stellarators, nonlinear optimization algorithms are applied in existing coil design codes. However, none of these codes have used the information from the second-order derivatives. In this paper, we present a modified Newton method in the recently developed code FOCUS. The Hessian matrix is calculated with analytically derived equations. Its inverse is approximated by a modified Cholesky factorization and applied in the iterative scheme of a classical Newton method. Using this method, FOCUS is able to recover the W7-X modular coils starting from a simple initial guess. Results demonstrate significant advantages.

  6. A grid generation system for multi-disciplinary design optimization

    NASA Technical Reports Server (NTRS)

    Jones, William T.; Samareh-Abolhassani, Jamshid

    1995-01-01

    A general multi-block three-dimensional volume grid generator is presented which is suitable for Multi-Disciplinary Design Optimization. The code is timely, robust, highly automated, and written in ANSI 'C' for platform independence. Algebraic techniques are used to generate and/or modify block face and volume grids to reflect geometric changes resulting from design optimization. Volume grids are generated/modified in a batch environment and controlled via an ASCII user input deck. This allows the code to be incorporated directly into the design loop. Generated volume grids are presented for a High Speed Civil Transport (HSCT) Wing/Body geometry as well a complex HSCT configuration including horizontal and vertical tails, engine nacelles and pylons, and canard surfaces.

  7. Adaptation and optimization of a line-by-line radiative transfer program for the STAR-100 (STARSMART)

    NASA Technical Reports Server (NTRS)

    Rarig, P. L.

    1980-01-01

    A program to calculate upwelling infrared radiation was modified to operate efficiently on the STAR-100. The modified software processes specific test cases significantly faster than the initial STAR-100 code. For example, a midlatitude summer atmospheric model is executed in less than 2% of the time originally required on the STAR-100. Furthermore, the optimized program performs extra operations to save the calculated absorption coefficients. Some of the advantages and pitfalls of virtual memory and vector processing are discussed along with strategies used to avoid loss of accuracy and computing power. Results from the vectorized code, in terms of speed, cost, and relative error with respect to serial code solutions are encouraging.

  8. Design optimization studies using COSMIC NASTRAN

    NASA Technical Reports Server (NTRS)

    Pitrof, Stephen M.; Bharatram, G.; Venkayya, Vipperla B.

    1993-01-01

    The purpose of this study is to create, test and document a procedure to integrate mathematical optimization algorithms with COSMIC NASTRAN. This procedure is very important to structural design engineers who wish to capitalize on optimization methods to ensure that their design is optimized for its intended application. The OPTNAST computer program was created to link NASTRAN and design optimization codes into one package. This implementation was tested using two truss structure models and optimizing their designs for minimum weight, subject to multiple loading conditions and displacement and stress constraints. However, the process is generalized so that an engineer could design other types of elements by adding to or modifying some parts of the code.

  9. Constellation labeling optimization for bit-interleaved coded APSK

    NASA Astrophysics Data System (ADS)

    Xiang, Xingyu; Mo, Zijian; Wang, Zhonghai; Pham, Khanh; Blasch, Erik; Chen, Genshe

    2016-05-01

    This paper investigates the constellation and mapping optimization for amplitude phase shift keying (APSK) modulation, which is deployed in Digital Video Broadcasting Satellite - Second Generation (DVB-S2) and Digital Video Broadcasting - Satellite services to Handhelds (DVB-SH) broadcasting standards due to its merits of power and spectral efficiency together with the robustness against nonlinear distortion. The mapping optimization is performed for 32-APSK according to combined cost functions related to Euclidean distance and mutual information. A Binary switching algorithm and its modified version are used to minimize the cost function and the estimated error between the original and received data. The optimized constellation mapping is tested by combining DVB-S2 standard Low-Density Parity-Check (LDPC) codes in both Bit-Interleaved Coded Modulation (BICM) and BICM with iterative decoding (BICM-ID) systems. The simulated results validate the proposed constellation labeling optimization scheme which yields better performance against conventional 32-APSK constellation defined in DVB-S2 standard.

  10. On the optimality of code options for a universal noiseless coder

    NASA Technical Reports Server (NTRS)

    Yeh, Pen-Shu; Rice, Robert F.; Miller, Warner

    1991-01-01

    A universal noiseless coding structure was developed that provides efficient performance over an extremely broad range of source entropy. This is accomplished by adaptively selecting the best of several easily implemented variable length coding algorithms. Custom VLSI coder and decoder modules capable of processing over 20 million samples per second are currently under development. The first of the code options used in this module development is shown to be equivalent to a class of Huffman code under the Humblet condition, other options are shown to be equivalent to the Huffman codes of a modified Laplacian symbol set, at specified symbol entropy values. Simulation results are obtained on actual aerial imagery, and they confirm the optimality of the scheme. On sources having Gaussian or Poisson distributions, coder performance is also projected through analysis and simulation.

  11. On the optimality of a universal noiseless coder

    NASA Technical Reports Server (NTRS)

    Yeh, Pen-Shu; Rice, Robert F.; Miller, Warner H.

    1993-01-01

    Rice developed a universal noiseless coding structure that provides efficient performance over an extremely broad range of source entropy. This is accomplished by adaptively selecting the best of several easily implemented variable length coding algorithms. Variations of such noiseless coders have been used in many NASA applications. Custom VLSI coder and decoder modules capable of processing over 50 million samples per second have been fabricated and tested. In this study, the first of the code options used in this module development is shown to be equivalent to a class of Huffman code under the Humblet condition, for source symbol sets having a Laplacian distribution. Except for the default option, other options are shown to be equivalent to the Huffman codes of a modified Laplacian symbol set, at specified symbol entropy values. Simulation results are obtained on actual aerial imagery over a wide entropy range, and they confirm the optimality of the scheme. Comparison with other known techniques are performed on several widely used images and the results further validate the coder's optimality.

  12. Optimal signal constellation design for ultra-high-speed optical transport in the presence of nonlinear phase noise.

    PubMed

    Liu, Tao; Djordjevic, Ivan B

    2014-12-29

    In this paper, we first describe an optimal signal constellation design algorithm suitable for the coherent optical channels dominated by the linear phase noise. Then, we modify this algorithm to be suitable for the nonlinear phase noise dominated channels. In optimization procedure, the proposed algorithm uses the cumulative log-likelihood function instead of the Euclidian distance. Further, an LDPC coded modulation scheme is proposed to be used in combination with signal constellations obtained by proposed algorithm. Monte Carlo simulations indicate that the LDPC-coded modulation schemes employing the new constellation sets, obtained by our new signal constellation design algorithm, outperform corresponding QAM constellations significantly in terms of transmission distance and have better nonlinearity tolerance.

  13. Multijunction Solar Cell Technology for Mars Surface Applications

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Mardesich, Nick; Ewell, Richard C.; Mueller, Robert L.; Endicter, Scott; Aiken, Daniel; Edmondson, Kenneth; Fetze, Chris

    2006-01-01

    Solar cells used for Mars surface applications have been commercial space qualified AM0 optimized devices. Due to the Martian atmosphere, these cells are not optimized for the Mars surface and as a result operate at a reduced efficiency. A multi-year program, MOST (Mars Optimized Solar Cell Technology), managed by JPL and funded by NASA Code S, was initiated in 2004, to develop tools to modify commercial AM0 cells for the Mars surface solar spectrum and to fabricate Mars optimized devices for verification. This effort required defining the surface incident spectrum, developing an appropriate laboratory solar simulator measurement capability, and to develop and test commercial cells modified for the Mars surface spectrum. This paper discusses the program, including results for the initial modified cells. Simulated Mars surface measurements of MER cells and Phoenix Lander cells (2007 launch) are provided to characterize the performance loss for those missions. In addition, the performance of the MER rover solar arrays is updated to reflect their more than two (2) year operation.

  14. Multi-point optimization of recirculation flow type casing treatment in centrifugal compressors

    NASA Astrophysics Data System (ADS)

    Tun, Min Thaw; Sakaguchi, Daisaku

    2016-06-01

    High-pressure ratio and wide operating range are highly required for a turbocharger in diesel engines. A recirculation flow type casing treatment is effective for flow range enhancement of centrifugal compressors. Two ring grooves on a suction pipe and a shroud casing wall are connected by means of an annular passage and stable recirculation flow is formed at small flow rates from the downstream groove toward the upstream groove through the annular bypass. The shape of baseline recirculation flow type casing is modified and optimized by using a multi-point optimization code with a metamodel assisted evolutionary algorithm embedding a commercial CFD code CFX from ANSYS. The numerical optimization results give the optimized design of casing with improving adiabatic efficiency in wide operating flow rate range. Sensitivity analysis of design parameters as a function of efficiency has been performed. It is found that the optimized casing design provides optimized recirculation flow rate, in which an increment of entropy rise is minimized at grooves and passages of the rotating impeller.

  15. Performance improvement of optical CDMA networks with stochastic artificial bee colony optimization technique

    NASA Astrophysics Data System (ADS)

    Panda, Satyasen

    2018-05-01

    This paper proposes a modified artificial bee colony optimization (ABC) algorithm based on levy flight swarm intelligence referred as artificial bee colony levy flight stochastic walk (ABC-LFSW) optimization for optical code division multiple access (OCDMA) network. The ABC-LFSW algorithm is used to solve asset assignment problem based on signal to noise ratio (SNR) optimization in OCDM networks with quality of service constraints. The proposed optimization using ABC-LFSW algorithm provides methods for minimizing various noises and interferences, regulating the transmitted power and optimizing the network design for improving the power efficiency of the optical code path (OCP) from source node to destination node. In this regard, an optical system model is proposed for improving the network performance with optimized input parameters. The detailed discussion and simulation results based on transmitted power allocation and power efficiency of OCPs are included. The experimental results prove the superiority of the proposed network in terms of power efficiency and spectral efficiency in comparison to networks without any power allocation approach.

  16. The effect of total noise on two-dimension OCDMA codes

    NASA Astrophysics Data System (ADS)

    Dulaimi, Layth A. Khalil Al; Badlishah Ahmed, R.; Yaakob, Naimah; Aljunid, Syed A.; Matem, Rima

    2017-11-01

    In this research, we evaluate the performance of total noise effect on two dimension (2-D) optical code-division multiple access (OCDMA) performance systems using 2-D Modified Double Weight MDW under various link parameters. The impact of the multi-access interference (MAI) and other noise effect on the system performance. The 2-D MDW is compared mathematically with other codes which use similar techniques. We analyzed and optimized the data rate and effective receive power. The performance and optimization of MDW code in OCDMA system are reported, the bit error rate (BER) can be significantly improved when the 2-D MDW code desired parameters are selected especially the cross correlation properties. It reduces the MAI in the system compensate BER and phase-induced intensity noise (PIIN) in incoherent OCDMA The analysis permits a thorough understanding of PIIN, shot and thermal noises impact on 2-D MDW OCDMA system performance. PIIN is the main noise factor in the OCDMA network.

  17. Multidisciplinary design optimization of aircraft wing structures with aeroelastic and aeroservoelastic constraints

    NASA Astrophysics Data System (ADS)

    Jung, Sang-Young

    Design procedures for aircraft wing structures with control surfaces are presented using multidisciplinary design optimization. Several disciplines such as stress analysis, structural vibration, aerodynamics, and controls are considered simultaneously and combined for design optimization. Vibration data and aerodynamic data including those in the transonic regime are calculated by existing codes. Flutter analyses are performed using those data. A flutter suppression method is studied using control laws in the closed-loop flutter equation. For the design optimization, optimization techniques such as approximation, design variable linking, temporary constraint deletion, and optimality criteria are used. Sensitivity derivatives of stresses and displacements for static loads, natural frequency, flutter characteristics, and control characteristics with respect to design variables are calculated for an approximate optimization. The objective function is the structural weight. The design variables are the section properties of the structural elements and the control gain factors. Existing multidisciplinary optimization codes (ASTROS* and MSC/NASTRAN) are used to perform single and multiple constraint optimizations of fully built up finite element wing structures. Three benchmark wing models are developed and/or modified for this purpose. The models are tested extensively.

  18. Optimal lightpath placement on a metropolitan-area network linked with optical CDMA local nets

    NASA Astrophysics Data System (ADS)

    Wang, Yih-Fuh; Huang, Jen-Fa

    2008-01-01

    A flexible optical metropolitan-area network (OMAN) [J.F. Huang, Y.F. Wang, C.Y. Yeh, Optimal configuration of OCDMA-based MAN with multimedia services, in: 23rd Biennial Symposium on Communications, Queen's University, Kingston, Canada, May 29-June 2, 2006, pp. 144-148] structured with OCDMA linkage is proposed to support multimedia services with multi-rate or various qualities of service. To prioritize transmissions in OCDMA, the orthogonal variable spreading factor (OVSF) codes widely used in wireless CDMA are adopted. In addition, for feasible multiplexing, unipolar OCDMA modulation [L. Nguyen, B. Aazhang, J.F. Young, All-optical CDMA with bipolar codes, IEEE Electron. Lett. 31 (6) (1995) 469-470] is used to generate the code selector of multi-rate OMAN, and a flexible fiber-grating-based system is used for the equipment on OCDMA-OVSF code. These enable an OMAN to assign suitable OVSF codes when creating different-rate lightpaths. How to optimally configure a multi-rate OMAN is a challenge because of displaced lightpaths. In this paper, a genetically modified genetic algorithm (GMGA) [L.R. Chen, Flexible fiber Bragg grating encoder/decoder for hybrid wavelength-time optical CDMA, IEEE Photon. Technol. Lett. 13 (11) (2001) 1233-1235] is used to preplan lightpaths in order to optimally configure an OMAN. To evaluate the performance of the GMGA, we compared it with different preplanning optimization algorithms. Simulation results revealed that the GMGA very efficiently solved the problem.

  19. SOL - SIZING AND OPTIMIZATION LANGUAGE COMPILER

    NASA Technical Reports Server (NTRS)

    Scotti, S. J.

    1994-01-01

    SOL is a computer language which is geared to solving design problems. SOL includes the mathematical modeling and logical capabilities of a computer language like FORTRAN but also includes the additional power of non-linear mathematical programming methods (i.e. numerical optimization) at the language level (as opposed to the subroutine level). The language-level use of optimization has several advantages over the traditional, subroutine-calling method of using an optimizer: first, the optimization problem is described in a concise and clear manner which closely parallels the mathematical description of optimization; second, a seamless interface is automatically established between the optimizer subroutines and the mathematical model of the system being optimized; third, the results of an optimization (objective, design variables, constraints, termination criteria, and some or all of the optimization history) are output in a form directly related to the optimization description; and finally, automatic error checking and recovery from an ill-defined system model or optimization description is facilitated by the language-level specification of the optimization problem. Thus, SOL enables rapid generation of models and solutions for optimum design problems with greater confidence that the problem is posed correctly. The SOL compiler takes SOL-language statements and generates the equivalent FORTRAN code and system calls. Because of this approach, the modeling capabilities of SOL are extended by the ability to incorporate existing FORTRAN code into a SOL program. In addition, SOL has a powerful MACRO capability. The MACRO capability of the SOL compiler effectively gives the user the ability to extend the SOL language and can be used to develop easy-to-use shorthand methods of generating complex models and solution strategies. The SOL compiler provides syntactic and semantic error-checking, error recovery, and detailed reports containing cross-references to show where each variable was used. The listings summarize all optimizations, listing the objective functions, design variables, and constraints. The compiler offers error-checking specific to optimization problems, so that simple mistakes will not cost hours of debugging time. The optimization engine used by and included with the SOL compiler is a version of Vanderplatt's ADS system (Version 1.1) modified specifically to work with the SOL compiler. SOL allows the use of the over 100 ADS optimization choices such as Sequential Quadratic Programming, Modified Feasible Directions, interior and exterior penalty function and variable metric methods. Default choices of the many control parameters of ADS are made for the user, however, the user can override any of the ADS control parameters desired for each individual optimization. The SOL language and compiler were developed with an advanced compiler-generation system to ensure correctness and simplify program maintenance. Thus, SOL's syntax was defined precisely by a LALR(1) grammar and the SOL compiler's parser was generated automatically from the LALR(1) grammar with a parser-generator. Hence unlike ad hoc, manually coded interfaces, the SOL compiler's lexical analysis insures that the SOL compiler recognizes all legal SOL programs, can recover from and correct for many errors and report the location of errors to the user. This version of the SOL compiler has been implemented on VAX/VMS computer systems and requires 204 KB of virtual memory to execute. Since the SOL compiler produces FORTRAN code, it requires the VAX FORTRAN compiler to produce an executable program. The SOL compiler consists of 13,000 lines of Pascal code. It was developed in 1986 and last updated in 1988. The ADS and other utility subroutines amount to 14,000 lines of FORTRAN code and were also updated in 1988.

  20. Adjusting process count on demand for petascale global optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sosonkina, Masha; Watson, Layne T.; Radcliffe, Nicholas R.

    2012-11-23

    There are many challenges that need to be met before efficient and reliable computation at the petascale is possible. Many scientific and engineering codes running at the petascale are likely to be memory intensive, which makes thrashing a serious problem for many petascale applications. One way to overcome this challenge is to use a dynamic number of processes, so that the total amount of memory available for the computation can be increased on demand. This paper describes modifications made to the massively parallel global optimization code pVTdirect in order to allow for a dynamic number of processes. In particular, themore » modified version of the code monitors memory use and spawns new processes if the amount of available memory is determined to be insufficient. The primary design challenges are discussed, and performance results are presented and analyzed.« less

  1. Gigaflop performance on a CRAY-2: Multitasking a computational fluid dynamics application

    NASA Technical Reports Server (NTRS)

    Tennille, Geoffrey M.; Overman, Andrea L.; Lambiotte, Jules J.; Streett, Craig L.

    1991-01-01

    The methodology is described for converting a large, long-running applications code that executed on a single processor of a CRAY-2 supercomputer to a version that executed efficiently on multiple processors. Although the conversion of every application is different, a discussion of the types of modification used to achieve gigaflop performance is included to assist others in the parallelization of applications for CRAY computers, especially those that were developed for other computers. An existing application, from the discipline of computational fluid dynamics, that had utilized over 2000 hrs of CPU time on CRAY-2 during the previous year was chosen as a test case to study the effectiveness of multitasking on a CRAY-2. The nature of dominant calculations within the application indicated that a sustained computational rate of 1 billion floating-point operations per second, or 1 gigaflop, might be achieved. The code was first analyzed and modified for optimal performance on a single processor in a batch environment. After optimal performance on a single CPU was achieved, the code was modified to use multiple processors in a dedicated environment. The results of these two efforts were merged into a single code that had a sustained computational rate of over 1 gigaflop on a CRAY-2. Timings and analysis of performance are given for both single- and multiple-processor runs.

  2. Auto-Regulatory RNA Editing Fine-Tunes mRNA Re-Coding and Complex Behaviour in Drosophila

    PubMed Central

    Savva, Yiannis A.; Jepson, James E.C; Sahin, Asli; Sugden, Arthur U.; Dorsky, Jacquelyn S.; Alpert, Lauren; Lawrence, Charles; Reenan, Robert A.

    2014-01-01

    Auto-regulatory feedback loops are a common molecular strategy used to optimize protein function. In Drosophila many mRNAs involved in neuro-transmission are re-coded at the RNA level by the RNA editing enzyme dADAR, leading to the incorporation of amino acids that are not directly encoded by the genome. dADAR also re-codes its own transcript, but the consequences of this auto-regulation in vivo are unclear. Here we show that hard-wiring or abolishing endogenous dADAR auto-regulation dramatically remodels the landscape of re-coding events in a site-specific manner. These molecular phenotypes correlate with altered localization of dADAR within the nuclear compartment. Furthermore, auto-editing exhibits sexually dimorphic patterns of spatial regulation and can be modified by abiotic environmental factors. Finally, we demonstrate that modifying dAdar auto-editing affects adaptive complex behaviors. Our results reveal the in vivo relevance of auto-regulatory control over post-transcriptional mRNA re-coding events in fine-tuning brain function and organismal behavior. PMID:22531175

  3. Efficient Multi-Stage Time Marching for Viscous Flows via Local Preconditioning

    NASA Technical Reports Server (NTRS)

    Kleb, William L.; Wood, William A.; vanLeer, Bram

    1999-01-01

    A new method has been developed to accelerate the convergence of explicit time-marching, laminar, Navier-Stokes codes through the combination of local preconditioning and multi-stage time marching optimization. Local preconditioning is a technique to modify the time-dependent equations so that all information moves or decays at nearly the same rate, thus relieving the stiffness for a system of equations. Multi-stage time marching can be optimized by modifying its coefficients to account for the presence of viscous terms, allowing larger time steps. We show it is possible to optimize the time marching scheme for a wide range of cell Reynolds numbers for the scalar advection-diffusion equation, and local preconditioning allows this optimization to be applied to the Navier-Stokes equations. Convergence acceleration of the new method is demonstrated through numerical experiments with circular advection and laminar boundary-layer flow over a flat plate.

  4. Heuristic rules embedded genetic algorithm for in-core fuel management optimization

    NASA Astrophysics Data System (ADS)

    Alim, Fatih

    The objective of this study was to develop a unique methodology and a practical tool for designing loading pattern (LP) and burnable poison (BP) pattern for a given Pressurized Water Reactor (PWR) core. Because of the large number of possible combinations for the fuel assembly (FA) loading in the core, the design of the core configuration is a complex optimization problem. It requires finding an optimal FA arrangement and BP placement in order to achieve maximum cycle length while satisfying the safety constraints. Genetic Algorithms (GA) have been already used to solve this problem for LP optimization for both PWR and Boiling Water Reactor (BWR). The GA, which is a stochastic method works with a group of solutions and uses random variables to make decisions. Based on the theories of evaluation, the GA involves natural selection and reproduction of the individuals in the population for the next generation. The GA works by creating an initial population, evaluating it, and then improving the population by using the evaluation operators. To solve this optimization problem, a LP optimization package, GARCO (Genetic Algorithm Reactor Code Optimization) code is developed in the framework of this thesis. This code is applicable for all types of PWR cores having different geometries and structures with an unlimited number of FA types in the inventory. To reach this goal, an innovative GA is developed by modifying the classical representation of the genotype. To obtain the best result in a shorter time, not only the representation is changed but also the algorithm is changed to use in-core fuel management heuristics rules. The improved GA code was tested to demonstrate and verify the advantages of the new enhancements. The developed methodology is explained in this thesis and preliminary results are shown for the VVER-1000 reactor hexagonal geometry core and the TMI-1 PWR. The improved GA code was tested to verify the advantages of new enhancements. The core physics code used for VVER in this research is Moby-Dick, which was developed to analyze the VVER by SKODA Inc. The SIMULATE-3 code, which is an advanced two-group nodal code, is used to analyze the TMI-1.

  5. Combining analysis with optimization at Langley Research Center. An evolutionary process

    NASA Technical Reports Server (NTRS)

    Rogers, J. L., Jr.

    1982-01-01

    The evolutionary process of combining analysis and optimization codes was traced with a view toward providing insight into the long term goal of developing the methodology for an integrated, multidisciplinary software system for the concurrent analysis and optimization of aerospace structures. It was traced along the lines of strength sizing, concurrent strength and flutter sizing, and general optimization to define a near-term goal for combining analysis and optimization codes. Development of a modular software system combining general-purpose, state-of-the-art, production-level analysis computer programs for structures, aerodynamics, and aeroelasticity with a state-of-the-art optimization program is required. Incorporation of a modular and flexible structural optimization software system into a state-of-the-art finite element analysis computer program will facilitate this effort. This effort results in the software system used that is controlled with a special-purpose language, communicates with a data management system, and is easily modified for adding new programs and capabilities. A 337 degree-of-freedom finite element model is used in verifying the accuracy of this system.

  6. Construction of cosmic string induced temperature anisotropy maps with CMBFAST and statistical analysis

    NASA Astrophysics Data System (ADS)

    Simatos, N.; Perivolaropoulos, L.

    2001-01-01

    We use the publicly available code CMBFAST, as modified by Pogosian and Vachaspati, to simulate the effects of wiggly cosmic strings on the cosmic microwave background (CMB). Using the modified CMBFAST code, which takes into account vector modes and models wiggly cosmic strings by the one-scale model, we go beyond the angular power spectrum to construct CMB temperature maps with a resolution of a few degrees. The statistics of these maps are then studied using conventional and recently proposed statistical tests optimized for the detection of hidden temperature discontinuities induced by the Gott-Kaiser-Stebbins effect. We show, however, that these realistic maps cannot be distinguished in a statistically significant way from purely Gaussian maps with an identical power spectrum.

  7. Validation of a computer code for analysis of subsonic aerodynamic performance of wings with flaps in combination with a canard or horizontal tail and an application to optimization

    NASA Technical Reports Server (NTRS)

    Carlson, Harry W.; Darden, Christine M.; Mann, Michael J.

    1990-01-01

    Extensive correlations of computer code results with experimental data are employed to illustrate the use of a linearized theory, attached flow method for the estimation and optimization of the longitudinal aerodynamic performance of wing-canard and wing-horizontal tail configurations which may employ simple hinged flap systems. Use of an attached flow method is based on the premise that high levels of aerodynamic efficiency require a flow that is as nearly attached as circumstances permit. The results indicate that linearized theory, attached flow, computer code methods (modified to include estimated attainable leading-edge thrust and an approximate representation of vortex forces) provide a rational basis for the estimation and optimization of aerodynamic performance at subsonic speeds below the drag rise Mach number. Generally, good prediction of aerodynamic performance, as measured by the suction parameter, can be expected for near optimum combinations of canard or horizontal tail incidence and leading- and trailing-edge flap deflections at a given lift coefficient (conditions which tend to produce a predominantly attached flow).

  8. Transonic rotor tip design using numerical optimization

    NASA Technical Reports Server (NTRS)

    Tauber, Michael E.; Langhi, Ronald G.

    1985-01-01

    The aerodynamic design procedure for a new blade tip suitable for operation at transonic speeds is illustrated. For the first time, 3 dimensional numerical optimization was applied to rotor tip design, using the recent derivative of the ROT22 code, program R22OPT. Program R22OPT utilized an efficient quasi-Newton optimization algorithm. Multiple design objectives were specified. The delocalization of the shock wave was to be eliminated in forward flight for an advance ratio of 0.41 and a tip Mach number of 0.92 at psi = 90 deg. Simultaneously, it was sought to reduce torque requirements while maintaining effective restoring pitching moments. Only the outer 10 percent of the blade span was modified; the blade area was not to be reduced by more than 3 percent. The goal was to combine the advantages of both sweptback and sweptforward blade tips. A planform that featured inboard sweepback was combined with a sweptforward tip and a taper ratio of 0.5. Initially, the ROT22 code was used to find by trial and error a planform geometry which met the design goals. This configuration had an inboard section with a leading edge sweep of 20 deg and a tip section swept forward at 25 deg; in addition, the airfoils were modified.

  9. Theoretical Investigation Leading to Energy Storage in Atomic and Molecular Systems

    DTIC Science & Technology

    1990-12-01

    can be calculated in a single run. 21 j) Non-gradient optimization of basis function exponents is possible. The source code can be modified to carry...basis. The 10s3p/5s3p basis consists of the 9s/4s contraction of Siegbahn and Liu (Reference 91) augmented by a diffuse s-type function ( exponent ...vibrational modes. Introduction of diffuse basis functions and optimization of the d-orbital exponents have a small but important effect on the

  10. Air breathing engine/rocket trajectory optimization

    NASA Technical Reports Server (NTRS)

    Smith, V. K., III

    1979-01-01

    This research has focused on improving the mathematical models of the air-breathing propulsion systems, which can be mated with the rocket engine model and incorporated in trajectory optimization codes. Improved engine simulations provided accurate representation of the complex cycles proposed for advanced launch vehicles, thereby increasing the confidence in propellant use and payload calculations. The versatile QNEP (Quick Navy Engine Program) was modified to allow treatment of advanced turboaccelerator cycles using hydrogen or hydrocarbon fuels and operating in the vehicle flow field.

  11. Ant Colony Optimization Analysis on Overall Stability of High Arch Dam Basis of Field Monitoring

    PubMed Central

    Liu, Xiaoli; Chen, Hong-Xin; Kim, Jinxie

    2014-01-01

    A dam ant colony optimization (D-ACO) analysis of the overall stability of high arch dams on complicated foundations is presented in this paper. A modified ant colony optimization (ACO) model is proposed for obtaining dam concrete and rock mechanical parameters. A typical dam parameter feedback problem is proposed for nonlinear back-analysis numerical model based on field monitoring deformation and ACO. The basic principle of the proposed model is the establishment of the objective function of optimizing real concrete and rock mechanical parameter. The feedback analysis is then implemented with a modified ant colony algorithm. The algorithm performance is satisfactory, and the accuracy is verified. The m groups of feedback parameters, used to run a nonlinear FEM code, and the displacement and stress distribution are discussed. A feedback analysis of the deformation of the Lijiaxia arch dam and based on the modified ant colony optimization method is also conducted. By considering various material parameters obtained using different analysis methods, comparative analyses were conducted on dam displacements, stress distribution characteristics, and overall dam stability. The comparison results show that the proposal model can effectively solve for feedback multiple parameters of dam concrete and rock material and basically satisfy assessment requirements for geotechnical structural engineering discipline. PMID:25025089

  12. Performance Trades Study for Robust Airfoil Shape Optimization

    NASA Technical Reports Server (NTRS)

    Li, Wu; Padula, Sharon

    2003-01-01

    From time to time, existing aircraft need to be redesigned for new missions with modified operating conditions such as required lift or cruise speed. This research is motivated by the needs of conceptual and preliminary design teams for smooth airfoil shapes that are similar to the baseline design but have improved drag performance over a range of flight conditions. The proposed modified profile optimization method (MPOM) modifies a large number of design variables to search for nonintuitive performance improvements, while avoiding off-design performance degradation. Given a good initial design, the MPOM generates fairly smooth airfoils that are better than the baseline without making drastic shape changes. Moreover, the MPOM allows users to gain valuable information by exploring performance trades over various design conditions. Four simulation cases of airfoil optimization in transonic viscous ow are included to demonstrate the usefulness of the MPOM as a performance trades study tool. Simulation results are obtained by solving fully turbulent Navier-Stokes equations and the corresponding discrete adjoint equations using an unstructured grid computational fluid dynamics code FUN2D.

  13. Coupling between a multi-physics workflow engine and an optimization framework

    NASA Astrophysics Data System (ADS)

    Di Gallo, L.; Reux, C.; Imbeaux, F.; Artaud, J.-F.; Owsiak, M.; Saoutic, B.; Aiello, G.; Bernardi, P.; Ciraolo, G.; Bucalossi, J.; Duchateau, J.-L.; Fausser, C.; Galassi, D.; Hertout, P.; Jaboulay, J.-C.; Li-Puma, A.; Zani, L.

    2016-03-01

    A generic coupling method between a multi-physics workflow engine and an optimization framework is presented in this paper. The coupling architecture has been developed in order to preserve the integrity of the two frameworks. The objective is to provide the possibility to replace a framework, a workflow or an optimizer by another one without changing the whole coupling procedure or modifying the main content in each framework. The coupling is achieved by using a socket-based communication library for exchanging data between the two frameworks. Among a number of algorithms provided by optimization frameworks, Genetic Algorithms (GAs) have demonstrated their efficiency on single and multiple criteria optimization. Additionally to their robustness, GAs can handle non-valid data which may appear during the optimization. Consequently GAs work on most general cases. A parallelized framework has been developed to reduce the time spent for optimizations and evaluation of large samples. A test has shown a good scaling efficiency of this parallelized framework. This coupling method has been applied to the case of SYCOMORE (SYstem COde for MOdeling tokamak REactor) which is a system code developed in form of a modular workflow for designing magnetic fusion reactors. The coupling of SYCOMORE with the optimization platform URANIE enables design optimization along various figures of merit and constraints.

  14. Nontangent, Developed Contour Bulkheads for a Single-Stage Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Lepsch, Roger A., Jr.

    2000-01-01

    Dry weights for single-stage launch vehicles that incorporate nontangent, developed contour bulkheads are estimated and compared to a baseline vehicle with 1.414 aspect ratio ellipsoidal bulkheads. Weights, volumes, and heights of optimized bulkhead designs are computed using a preliminary design bulkhead analysis code. The dry weights of vehicles that incorporate the optimized bulkheads are predicted using a vehicle weights and sizing code. Two optimization approaches are employed. A structural-level method, where the vehicle's three major bulkhead regions are optimized separately and then incorporated into a model for computation of the vehicle dry weight, predicts a reduction of4365 lb (2.2 %) from the 200,679-lb baseline vehicle dry weight. In the second, vehicle-level, approach, the vehicle dry weight is the objective function for the optimization. For the vehicle-level analysis, modified bulkhead designs are analyzed and incorporated into the weights model for computation of a dry weight. The optimizer simultaneously manipulates design variables for all three bulkheads to reduce the dry weight. The vehicle-level analysis predicts a dry weight reduction of 5129 lb, a 2.6% reduction from the baseline weight. Based on these results, nontangent, developed contour bulkheads may provide substantial weight savings for single stage vehicles.

  15. Three-dimensional polarization marked multiple-QR code encryption by optimizing a single vectorial beam

    NASA Astrophysics Data System (ADS)

    Lin, Chao; Shen, Xueju; Hua, Binbin; Wang, Zhisong

    2015-10-01

    We demonstrate the feasibility of three dimensional (3D) polarization multiplexing by optimizing a single vectorial beam using a multiple-signal window multiple-plane (MSW-MP) phase retrieval algorithm. Original messages represented with multiple quick response (QR) codes are first partitioned into a series of subblocks. Then, each subblock is marked with a specific polarization state and randomly distributed in 3D space with both longitudinal and transversal adjustable freedoms. A generalized 3D polarization mapping protocol is established to generate a 3D polarization key. Finally, multiple-QR code is encrypted into one phase only mask and one polarization only mask based on the modified Gerchberg-Saxton (GS) algorithm. We take the polarization mask as the cyphertext and the phase only mask as additional dimension of key. Only when both the phase key and 3D polarization key are correct, original messages can be recovered. We verify our proposal with both simulation and experiment evidences.

  16. Sequence Polishing Library (SPL) v10.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oberortner, Ernst

    The Sequence Polishing Library (SPL) is a suite of software tools in order to automate "Design for Synthesis and Assembly" workflows. Specifically: The SPL "Converter" tool converts files among the following sequence data exchange formats: CSV, FASTA, GenBank, and Synthetic Biology Open Language (SBOL); The SPL "Juggler" tool optimizes the codon usages of DNA coding sequences according to an optimization strategy, a user-specific codon usage table and genetic code. In addition, the SPL "Juggler" can translate amino acid sequences into DNA sequences.:The SPL "Polisher" verifies NA sequences against DNA synthesis constraints, such as GC content, repeating k-mers, and restriction sites.more » In case of violations, the "Polisher" reports the violations in a comprehensive manner. The "Polisher" tool can also modify the violating regions according to an optimization strategy, a user-specific codon usage table and genetic code;The SPL "Partitioner" decomposes large DNA sequences into smaller building blocks with partial overlaps that enable an efficient assembly. The "Partitioner" enables the user to configure the characteristics of the overlaps, which are mostly determined by the utilized assembly protocol, such as length, GC content, or melting temperature.« less

  17. QR images: optimized image embedding in QR codes.

    PubMed

    Garateguy, Gonzalo J; Arce, Gonzalo R; Lau, Daniel L; Villarreal, Ofelia P

    2014-07-01

    This paper introduces the concept of QR images, an automatic method to embed QR codes into color images with bounded probability of detection error. These embeddings are compatible with standard decoding applications and can be applied to any color image with full area coverage. The QR information bits are encoded into the luminance values of the image, taking advantage of the immunity of QR readers against local luminance disturbances. To mitigate the visual distortion of the QR image, the algorithm utilizes halftoning masks for the selection of modified pixels and nonlinear programming techniques to locally optimize luminance levels. A tractable model for the probability of error is developed and models of the human visual system are considered in the quality metric used to optimize the luminance levels of the QR image. To minimize the processing time, the optimization techniques proposed to consider the mechanics of a common binarization method and are designed to be amenable for parallel implementations. Experimental results show the graceful degradation of the decoding rate and the perceptual quality as a function the embedding parameters. A visual comparison between the proposed and existing methods is presented.

  18. Context-sensitive trace inlining for Java.

    PubMed

    Häubl, Christian; Wimmer, Christian; Mössenböck, Hanspeter

    2013-12-01

    Method inlining is one of the most important optimizations in method-based just-in-time (JIT) compilers. It widens the compilation scope and therefore allows optimizing multiple methods as a whole, which increases the performance. However, if method inlining is used too frequently, the compilation time increases and too much machine code is generated. This has negative effects on the performance. Trace-based JIT compilers only compile frequently executed paths, so-called traces, instead of whole methods. This may result in faster compilation, less generated machine code, and better optimized machine code. In the previous work, we implemented a trace recording infrastructure and a trace-based compiler for [Formula: see text], by modifying the Java HotSpot VM. Based on this work, we evaluate the effect of trace inlining on the performance and the amount of generated machine code. Trace inlining has several major advantages when compared to method inlining. First, trace inlining is more selective than method inlining, because only frequently executed paths are inlined. Second, the recorded traces may capture information about virtual calls, which simplify inlining. A third advantage is that trace information is context sensitive so that different method parts can be inlined depending on the specific call site. These advantages allow more aggressive inlining while the amount of generated machine code is still reasonable. We evaluate several inlining heuristics on the benchmark suites DaCapo 9.12 Bach, SPECjbb2005, and SPECjvm2008 and show that our trace-based compiler achieves an up to 51% higher peak performance than the method-based Java HotSpot client compiler. Furthermore, we show that the large compilation scope of our trace-based compiler has a positive effect on other compiler optimizations such as constant folding or null check elimination.

  19. Development of a Model and Computer Code to Describe Solar Grade Silicon Production Processes

    NASA Technical Reports Server (NTRS)

    Srivastava, R.; Gould, R. K.

    1979-01-01

    Mathematical models and computer codes based on these models, which allow prediction of the product distribution in chemical reactors for converting gaseous silicon compounds to condensed-phase silicon were developed. The following tasks were accomplished: (1) formulation of a model for silicon vapor separation/collection from the developing turbulent flow stream within reactors of the Westinghouse (2) modification of an available general parabolic code to achieve solutions to the governing partial differential equations (boundary layer type) which describe migration of the vapor to the reactor walls, (3) a parametric study using the boundary layer code to optimize the performance characteristics of the Westinghouse reactor, (4) calculations relating to the collection efficiency of the new AeroChem reactor, and (5) final testing of the modified LAPP code for use as a method of predicting Si(1) droplet sizes in these reactors.

  20. Semilinear programming: applications and implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohan, S.

    Semilinear programming is a method of solving optimization problems with linear constraints where the non-negativity restrictions on the variables are dropped and the objective function coefficients can take on different values depending on whether the variable is positive or negative. The simplex method for linear programming is modified in this thesis to solve general semilinear and piecewise linear programs efficiently without having to transform them into equivalent standard linear programs. Several models in widely different areas of optimization such as production smoothing, facility locations, goal programming and L/sub 1/ estimation are presented first to demonstrate the compact formulation that arisesmore » when such problems are formulated as semilinear programs. A code SLP is constructed using the semilinear programming techniques. Problems in aggregate planning and L/sub 1/ estimation are solved using SLP and equivalent linear programs using a linear programming simplex code. Comparisons of CPU times and number iterations indicate SLP to be far superior. The semilinear programming techniques are extended to piecewise linear programming in the implementation of the code PLP. Piecewise linear models in aggregate planning are solved using PLP and equivalent standard linear programs using a simple upper bounded linear programming code SUBLP.« less

  1. Sparse gammatone signal model optimized for English speech does not match the human auditory filters.

    PubMed

    Strahl, Stefan; Mertins, Alfred

    2008-07-18

    Evidence that neurosensory systems use sparse signal representations as well as improved performance of signal processing algorithms using sparse signal models raised interest in sparse signal coding in the last years. For natural audio signals like speech and environmental sounds, gammatone atoms have been derived as expansion functions that generate a nearly optimal sparse signal model (Smith, E., Lewicki, M., 2006. Efficient auditory coding. Nature 439, 978-982). Furthermore, gammatone functions are established models for the human auditory filters. Thus far, a practical application of a sparse gammatone signal model has been prevented by the fact that deriving the sparsest representation is, in general, computationally intractable. In this paper, we applied an accelerated version of the matching pursuit algorithm for gammatone dictionaries allowing real-time and large data set applications. We show that a sparse signal model in general has advantages in audio coding and that a sparse gammatone signal model encodes speech more efficiently in terms of sparseness than a sparse modified discrete cosine transform (MDCT) signal model. We also show that the optimal gammatone parameters derived for English speech do not match the human auditory filters, suggesting for signal processing applications to derive the parameters individually for each applied signal class instead of using psychometrically derived parameters. For brain research, it means that care should be taken with directly transferring findings of optimality for technical to biological systems.

  2. Deterministic Design Optimization of Structures in OpenMDAO Framework

    NASA Technical Reports Server (NTRS)

    Coroneos, Rula M.; Pai, Shantaram S.

    2012-01-01

    Nonlinear programming algorithms play an important role in structural design optimization. Several such algorithms have been implemented in OpenMDAO framework developed at NASA Glenn Research Center (GRC). OpenMDAO is an open source engineering analysis framework, written in Python, for analyzing and solving Multi-Disciplinary Analysis and Optimization (MDAO) problems. It provides a number of solvers and optimizers, referred to as components and drivers, which users can leverage to build new tools and processes quickly and efficiently. Users may download, use, modify, and distribute the OpenMDAO software at no cost. This paper summarizes the process involved in analyzing and optimizing structural components by utilizing the framework s structural solvers and several gradient based optimizers along with a multi-objective genetic algorithm. For comparison purposes, the same structural components were analyzed and optimized using CometBoards, a NASA GRC developed code. The reliability and efficiency of the OpenMDAO framework was compared and reported in this report.

  3. Structural tailoring of engine blades (STAEBL) user's manual

    NASA Technical Reports Server (NTRS)

    Brown, K. W.

    1985-01-01

    This User's Manual contains instructions and demonstration case to prepare input data, run, and modify the Structural Tailoring of Engine Blades (STAEBL) computer code. STAEBL was developed to perform engine fan and compressor blade numerical optimizations. This blade optimization seeks a minimum weight or cost design that satisfies realistic blade design constraints, by tuning one to twenty design variables. The STAEBL constraint analyses include blade stresses, vibratory response, flutter, and foreign object damage. Blade design variables include airfoil thickness at several locations, blade chord, and construction variables: hole size for hollow blades, and composite material layup for composite blades.

  4. Comparison of stochastic optimization methods for all-atom folding of the Trp-Cage protein.

    PubMed

    Schug, Alexander; Herges, Thomas; Verma, Abhinav; Lee, Kyu Hwan; Wenzel, Wolfgang

    2005-12-09

    The performances of three different stochastic optimization methods for all-atom protein structure prediction are investigated and compared. We use the recently developed all-atom free-energy force field (PFF01), which was demonstrated to correctly predict the native conformation of several proteins as the global optimum of the free energy surface. The trp-cage protein (PDB-code 1L2Y) is folded with the stochastic tunneling method, a modified parallel tempering method, and the basin-hopping technique. All the methods correctly identify the native conformation, and their relative efficiency is discussed.

  5. Biodegradation of paint stripper solvents in a modified gas lift loop bioreactor.

    PubMed

    Vanderberg-Twary, L; Steenhoudt, K; Travis, B J; Hanners, J L; Foreman, T M; Brainard, J R

    1997-07-05

    Paint stripping wastes generated during the decontamination and decommissioning of former nuclear facilities contain paint stripping organics (dichloromethane, 2-propanol, and methanol) and bulk materials containing paint pigments. It is desirable to degrade the organic residues as part of an integrated chemical-biological treatment system. We have developed a modified gas lift loop bioreactor employing a defined consortium of Rhodococcus rhodochrous strain OFS and Hyphomicrobium sp. DM-2 that degrades paint stripper organics. Mass transfer coefficients and kinetic constants for biodegradation in the system were determined. It was found that transfer of organic substrates from surrogate waste into the air and further into the liquid medium in the bioreactor were rapid processes, occurring within minutes. Monod kinetics was employed to model the biodegradation of paint stripping organics. Analysis of the bioreactor process was accomplished with BIOLAB, a mathematical code that simulates coupled mass transfer and biodegradation processes. This code was used to fit experimental data to Monod kinetics and to determine kinetic parameters. The BIOLAB code was also employed to compare activities in the bioreactor of individual microbial cultures to the activities of combined cultures in the bioreactor. This code is of benefit for further optimization and scale-up of the bioreactor for treatment of paint stripping and other volatile organic wastes in bulk materials.

  6. Simultaneous optimization of loading pattern and burnable poison placement for PWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alim, F.; Ivanov, K.; Yilmaz, S.

    2006-07-01

    To solve in-core fuel management optimization problem, GARCO-PSU (Genetic Algorithm Reactor Core Optimization - Pennsylvania State Univ.) is developed. This code is applicable for all types and geometry of PWR core structures with unlimited number of fuel assembly (FA) types in the inventory. For this reason an innovative genetic algorithm is developed with modifying the classical representation of the genotype. In-core fuel management heuristic rules are introduced into GARCO. The core re-load design optimization has two parts, loading pattern (LP) optimization and burnable poison (BP) placement optimization. These parts depend on each other, but it is difficult to solve themore » combined problem due to its large size. Separating the problem into two parts provides a practical way to solve the problem. However, the result of this method does not reflect the real optimal solution. GARCO-PSU achieves to solve LP optimization and BP placement optimization simultaneously in an efficient manner. (authors)« less

  7. ROCOPT: A user friendly interactive code to optimize rocket structural components

    NASA Technical Reports Server (NTRS)

    Rule, William K.

    1989-01-01

    ROCOPT is a user-friendly, graphically-interfaced, microcomputer-based computer program (IBM compatible) that optimizes rocket components by minimizing the structural weight. The rocket components considered are ring stiffened truncated cones and cylinders. The applied loading is static, and can consist of any combination of internal or external pressure, axial force, bending moment, and torque. Stress margins are calculated by means of simple closed form strength of material type equations. Stability margins are determined by approximate, orthotropic-shell, closed-form equations. A modified form of Powell's method, in conjunction with a modified form of the external penalty method, is used to determine the minimum weight of the structure subject to stress and stability margin constraints, as well as user input constraints on the structural dimensions. The graphical interface guides the user through the required data prompts, explains program options and graphically displays results for easy interpretation.

  8. Rotor cascade shape optimization with unsteady passing wakes using implicit dual time stepping method

    NASA Astrophysics Data System (ADS)

    Lee, Eun Seok

    2000-10-01

    An improved aerodynamics performance of a turbine cascade shape can be achieved by an understanding of the flow-field associated with the stator-rotor interaction. In this research, an axial gas turbine airfoil cascade shape is optimized for improved aerodynamic performance by using an unsteady Navier-Stokes solver and a parallel genetic algorithm. The objective of the research is twofold: (1) to develop a computational fluid dynamics code having faster convergence rate and unsteady flow simulation capabilities, and (2) to optimize a turbine airfoil cascade shape with unsteady passing wakes for improved aerodynamic performance. The computer code solves the Reynolds averaged Navier-Stokes equations. It is based on the explicit, finite difference, Runge-Kutta time marching scheme and the Diagonalized Alternating Direction Implicit (DADI) scheme, with the Baldwin-Lomax algebraic and k-epsilon turbulence modeling. Improvements in the code focused on the cascade shape design capability, convergence acceleration and unsteady formulation. First, the inverse shape design method was implemented in the code to provide the design capability, where a surface transpiration concept was employed as an inverse technique to modify the geometry satisfying the user specified pressure distribution on the airfoil surface. Second, an approximation storage multigrid method was implemented as an acceleration technique. Third, the preconditioning method was adopted to speed up the convergence rate in solving the low Mach number flows. Finally, the implicit dual time stepping method was incorporated in order to simulate the unsteady flow-fields. For the unsteady code validation, the Stokes's 2nd problem and the Poiseuille flow were chosen and compared with the computed results and analytic solutions. To test the code's ability to capture the natural unsteady flow phenomena, vortex shedding past a cylinder and the shock oscillation over a bicircular airfoil were simulated and compared with experiments and other research results. The rotor cascade shape optimization with unsteady passing wakes was performed to obtain an improved aerodynamic performance using the unsteady Navier-Stokes solver. Two objective functions were defined as minimization of total pressure loss and maximization of lift, while the mass flow rate was fixed. A parallel genetic algorithm was used as an optimizer and the penalty method was introduced. Each individual's objective function was computed simultaneously by using a 32 processor distributed memory computer. One optimization took about four days.

  9. Performing aggressive code optimization with an ability to rollback changes made by the aggressive optimizations

    DOEpatents

    Gschwind, Michael K

    2013-07-23

    Mechanisms for aggressively optimizing computer code are provided. With these mechanisms, a compiler determines an optimization to apply to a portion of source code and determines if the optimization as applied to the portion of source code will result in unsafe optimized code that introduces a new source of exceptions being generated by the optimized code. In response to a determination that the optimization is an unsafe optimization, the compiler generates an aggressively compiled code version, in which the unsafe optimization is applied, and a conservatively compiled code version in which the unsafe optimization is not applied. The compiler stores both versions and provides them for execution. Mechanisms are provided for switching between these versions during execution in the event of a failure of the aggressively compiled code version. Moreover, predictive mechanisms are provided for predicting whether such a failure is likely.

  10. Selection of Thermal Worst-Case Orbits via Modified Efficient Global Optimization

    NASA Technical Reports Server (NTRS)

    Moeller, Timothy M.; Wilhite, Alan W.; Liles, Kaitlin A.

    2014-01-01

    Efficient Global Optimization (EGO) was used to select orbits with worst-case hot and cold thermal environments for the Stratospheric Aerosol and Gas Experiment (SAGE) III. The SAGE III system thermal model changed substantially since the previous selection of worst-case orbits (which did not use the EGO method), so the selections were revised to ensure the worst cases are being captured. The EGO method consists of first conducting an initial set of parametric runs, generated with a space-filling Design of Experiments (DoE) method, then fitting a surrogate model to the data and searching for points of maximum Expected Improvement (EI) to conduct additional runs. The general EGO method was modified by using a multi-start optimizer to identify multiple new test points at each iteration. This modification facilitates parallel computing and decreases the burden of user interaction when the optimizer code is not integrated with the model. Thermal worst-case orbits for SAGE III were successfully identified and shown by direct comparison to be more severe than those identified in the previous selection. The EGO method is a useful tool for this application and can result in computational savings if the initial Design of Experiments (DoE) is selected appropriately.

  11. Optimizing latency in Xilinx FPGA implementations of the GBT

    NASA Astrophysics Data System (ADS)

    Muschter, S.; Baron, S.; Bohm, C.; Cachemiche, J.-P.; Soos, C.

    2010-12-01

    The GigaBit Transceiver (GBT) [1] system has been developed to replace the Timing, Trigger and Control (TTC) system [2], currently used by LHC, as well as to provide data transmission between on-detector and off-detector components in future sLHC detectors. A VHDL version of the GBT-SERDES, designed for FPGAs, was released in March 2010 as a GBT-FPGA Starter Kit for future GBT users and for off-detector GBT implementation [3]. This code was optimized for resource utilization [4], as the GBT protocol is very demanding. It was not, however, optimized for latency — which will be a critical parameter when used in the trigger path. The GBT-FPGA Starter Kit firmware was first analyzed in terms of latency by looking at the separate components of the VHDL version. Once the parts which contribute most to the latency were identified and modified, two possible optimizations were chosen, resulting in a latency reduced by a factor of three. The modifications were also analyzed in terms of logic utilization. The latency optimization results were compared with measurement results from a Virtex 6 ML605 development board [5] equipped with a XC6VLX240T with speedgrade-1 and the package FF1156. Bit error rate tests were also performed to ensure an error free operation. The two final optimizations were analyzed for utilization and compared with the original code, distributed in the Starter Kit.

  12. Kokkos GPU Compiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moss, Nicholas

    The Kokkos Clang compiler is a version of the Clang C++ compiler that has been modified to perform targeted code generation for Kokkos constructs in the goal of generating highly optimized code and to provide semantic (domain) awareness throughout the compilation toolchain of these constructs such as parallel for and parallel reduce. This approach is taken to explore the possibilities of exposing the developer’s intentions to the underlying compiler infrastructure (e.g. optimization and analysis passes within the middle stages of the compiler) instead of relying solely on the restricted capabilities of C++ template metaprogramming. To date our current activities havemore » focused on correct GPU code generation and thus we have not yet focused on improving overall performance. The compiler is implemented by recognizing specific (syntactic) Kokkos constructs in order to bypass normal template expansion mechanisms and instead use the semantic knowledge of Kokkos to directly generate code in the compiler’s intermediate representation (IR); which is then translated into an NVIDIA-centric GPU program and supporting runtime calls. In addition, by capturing and maintaining the higher-level semantics of Kokkos directly within the lower levels of the compiler has the potential for significantly improving the ability of the compiler to communicate with the developer in the terms of their original programming model/semantics.« less

  13. Build-Up Approach to Updating the Mock Quiet Spike Beam Model

    NASA Technical Reports Server (NTRS)

    Herrera, Claudia Y.; Pak, Chan-gi

    2007-01-01

    When a new aircraft is designed or a modification is done to an existing aircraft, the aeroelastic properties of the aircraft should be examined to ensure the aircraft is flight worthy. Evaluating the aeroelastic properties of a new or modified aircraft can include performing a variety of analyses, such as modal and flutter analyses. In order to produce accurate results from these analyses, it is imperative to work with finite element models (FEM) that have been validated by or correlated to ground vibration test (GVT) data, Updating an analytical model using measured data is a challenge in the area of structural dynamics. The analytical model update process encompasses a series of optimizations that match analytical frequencies and mode shapes to the measured modal characteristics of structure. In the past, the method used to update a model to test data was "trial and error." This is an inefficient method - running a modal analysis, comparing the analytical results to the GVT data, manually modifying one or more structural parameters (mass, CG, inertia, area, etc.), rerunning the analysis, and comparing the new analytical modal characteristics to the GVT modal data. If the match is close enough (close enough defined by analyst's updating requirements), then the updating process is completed. If the match does not meet updating-requirements, then the parameters are changed again and the process is repeated. Clearly, this manual optimization process is highly inefficient for large FEM's and/or a large number of structural parameters. NASA Dryden Flight Research Center (DFRC) has developed, in-house, a Mode Matching Code that automates the above-mentioned optimization process, DFRC's in-house Mode Matching Code reads mode shapes and frequencies acquired from GVT to create the target model. It also reads the current analytical model, as we11 as the design variables and their upper and lower limits. It performs a modal analysis on this model and modifies it to create an updated model that has similar mode shapes and frequencies as those of the target model. The Mode Matching Code output frequencies and modal assurance criteria (MAC) values that allow for the quantified comparison of the updated model versus the target model. A recent application of this code is the F453 supersonic flight testing platform, NASA DFRC possesses a modified F-15B that is used as a test bed aircraft for supersonic flight experiments. Traditionally, the finite element model of the test article is generated. A GVT is done on the test article ta validate and update its FEM. This FEM is then mated to the F-15B model, which was correlated to GVT data in fall of 2004, A GVT is conducted with the test article mated to the aircraft, and this mated F-15B/ test article FEM is correlated to this final GVT.

  14. A Parallel Decoding Algorithm for Short Polar Codes Based on Error Checking and Correcting

    PubMed Central

    Pan, Xiaofei; Pan, Kegang; Ye, Zhan; Gong, Chao

    2014-01-01

    We propose a parallel decoding algorithm based on error checking and correcting to improve the performance of the short polar codes. In order to enhance the error-correcting capacity of the decoding algorithm, we first derive the error-checking equations generated on the basis of the frozen nodes, and then we introduce the method to check the errors in the input nodes of the decoder by the solutions of these equations. In order to further correct those checked errors, we adopt the method of modifying the probability messages of the error nodes with constant values according to the maximization principle. Due to the existence of multiple solutions of the error-checking equations, we formulate a CRC-aided optimization problem of finding the optimal solution with three different target functions, so as to improve the accuracy of error checking. Besides, in order to increase the throughput of decoding, we use a parallel method based on the decoding tree to calculate probability messages of all the nodes in the decoder. Numerical results show that the proposed decoding algorithm achieves better performance than that of some existing decoding algorithms with the same code length. PMID:25540813

  15. Code-based Diagnostic Algorithms for Idiopathic Pulmonary Fibrosis. Case Validation and Improvement.

    PubMed

    Ley, Brett; Urbania, Thomas; Husson, Gail; Vittinghoff, Eric; Brush, David R; Eisner, Mark D; Iribarren, Carlos; Collard, Harold R

    2017-06-01

    Population-based studies of idiopathic pulmonary fibrosis (IPF) in the United States have been limited by reliance on diagnostic code-based algorithms that lack clinical validation. To validate a well-accepted International Classification of Diseases, Ninth Revision, code-based algorithm for IPF using patient-level information and to develop a modified algorithm for IPF with enhanced predictive value. The traditional IPF algorithm was used to identify potential cases of IPF in the Kaiser Permanente Northern California adult population from 2000 to 2014. Incidence and prevalence were determined overall and by age, sex, and race/ethnicity. A validation subset of cases (n = 150) underwent expert medical record and chest computed tomography review. A modified IPF algorithm was then derived and validated to optimize positive predictive value. From 2000 to 2014, the traditional IPF algorithm identified 2,608 cases among 5,389,627 at-risk adults in the Kaiser Permanente Northern California population. Annual incidence was 6.8/100,000 person-years (95% confidence interval [CI], 6.1-7.7) and was higher in patients with older age, male sex, and white race. The positive predictive value of the IPF algorithm was only 42.2% (95% CI, 30.6 to 54.6%); sensitivity was 55.6% (95% CI, 21.2 to 86.3%). The corrected incidence was estimated at 5.6/100,000 person-years (95% CI, 2.6-10.3). A modified IPF algorithm had improved positive predictive value but reduced sensitivity compared with the traditional algorithm. A well-accepted International Classification of Diseases, Ninth Revision, code-based IPF algorithm performs poorly, falsely classifying many non-IPF cases as IPF and missing a substantial proportion of IPF cases. A modification of the IPF algorithm may be useful for future population-based studies of IPF.

  16. Utilization of the Discrete Differential Evolution for Optimization in Multidimensional Point Clouds.

    PubMed

    Uher, Vojtěch; Gajdoš, Petr; Radecký, Michal; Snášel, Václav

    2016-01-01

    The Differential Evolution (DE) is a widely used bioinspired optimization algorithm developed by Storn and Price. It is popular for its simplicity and robustness. This algorithm was primarily designed for real-valued problems and continuous functions, but several modified versions optimizing both integer and discrete-valued problems have been developed. The discrete-coded DE has been mostly used for combinatorial problems in a set of enumerative variants. However, the DE has a great potential in the spatial data analysis and pattern recognition. This paper formulates the problem as a search of a combination of distinct vertices which meet the specified conditions. It proposes a novel approach called the Multidimensional Discrete Differential Evolution (MDDE) applying the principle of the discrete-coded DE in discrete point clouds (PCs). The paper examines the local searching abilities of the MDDE and its convergence to the global optimum in the PCs. The multidimensional discrete vertices cannot be simply ordered to get a convenient course of the discrete data, which is crucial for good convergence of a population. A novel mutation operator utilizing linear ordering of spatial data based on the space filling curves is introduced. The algorithm is tested on several spatial datasets and optimization problems. The experiments show that the MDDE is an efficient and fast method for discrete optimizations in the multidimensional point clouds.

  17. Utilization of the Discrete Differential Evolution for Optimization in Multidimensional Point Clouds

    PubMed Central

    Radecký, Michal; Snášel, Václav

    2016-01-01

    The Differential Evolution (DE) is a widely used bioinspired optimization algorithm developed by Storn and Price. It is popular for its simplicity and robustness. This algorithm was primarily designed for real-valued problems and continuous functions, but several modified versions optimizing both integer and discrete-valued problems have been developed. The discrete-coded DE has been mostly used for combinatorial problems in a set of enumerative variants. However, the DE has a great potential in the spatial data analysis and pattern recognition. This paper formulates the problem as a search of a combination of distinct vertices which meet the specified conditions. It proposes a novel approach called the Multidimensional Discrete Differential Evolution (MDDE) applying the principle of the discrete-coded DE in discrete point clouds (PCs). The paper examines the local searching abilities of the MDDE and its convergence to the global optimum in the PCs. The multidimensional discrete vertices cannot be simply ordered to get a convenient course of the discrete data, which is crucial for good convergence of a population. A novel mutation operator utilizing linear ordering of spatial data based on the space filling curves is introduced. The algorithm is tested on several spatial datasets and optimization problems. The experiments show that the MDDE is an efficient and fast method for discrete optimizations in the multidimensional point clouds. PMID:27974884

  18. An adjoint-based framework for maximizing mixing in binary fluids

    NASA Astrophysics Data System (ADS)

    Eggl, Maximilian; Schmid, Peter

    2017-11-01

    Mixing in the inertial, but laminar parameter regime is a common application in a wide range of industries. Enhancing the efficiency of mixing processes thus has a fundamental effect on product quality, material homogeneity and, last but not least, production costs. In this project, we address mixing efficiency in the above mentioned regime (Reynolds number Re = 1000 , Peclet number Pe = 1000) by developing and demonstrating an algorithm based on nonlinear adjoint looping that minimizes the variance of a passive scalar field which models our binary Newtonian fluids. The numerical method is based on the FLUSI code (Engels et al. 2016), a Fourier pseudo-spectral code, which we modified and augmented by scalar transport and adjoint equations. Mixing is accomplished by moving stirrers which are numerically modeled using a penalization approach. In our two-dimensional simulations we consider rotating circular and elliptic stirrers and extract optimal mixing strategies from the iterative scheme. The case of optimizing shape and rotational speed of the stirrers will be demonstrated.

  19. Stochastic Methods for Aircraft Design

    NASA Technical Reports Server (NTRS)

    Pelz, Richard B.; Ogot, Madara

    1998-01-01

    The global stochastic optimization method, simulated annealing (SA), was adapted and applied to various problems in aircraft design. The research was aimed at overcoming the problem of finding an optimal design in a space with multiple minima and roughness ubiquitous to numerically generated nonlinear objective functions. SA was modified to reduce the number of objective function evaluations for an optimal design, historically the main criticism of stochastic methods. SA was applied to many CFD/MDO problems including: low sonic-boom bodies, minimum drag on supersonic fore-bodies, minimum drag on supersonic aeroelastic fore-bodies, minimum drag on HSCT aeroelastic wings, FLOPS preliminary design code, another preliminary aircraft design study with vortex lattice aerodynamics, HSR complete aircraft aerodynamics. In every case, SA provided a simple, robust and reliable optimization method which found optimal designs in order 100 objective function evaluations. Perhaps most importantly, from this academic/industrial project, technology has been successfully transferred; this method is the method of choice for optimization problems at Northrop Grumman.

  20. Thermomechanical analysis of fast-burst reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, J.D.

    1994-08-01

    Fast-burst reactors are designed to provide intense, short-duration pulses of neutrons. The fission reaction also produces extreme time-dependent heating of the nuclear fuel. An existing transient-dynamic finite element code was modified specifically to compute the time-dependent stresses and displacements due to thermal shock loads of reactors. Thermomechanical analysis was then applied to determine structural feasibility of various concepts for an EDNA-type reactor and to optimize the mechanical design of the new SPR III-M reactor.

  1. Correlated variability modifies working memory fidelity in primate prefrontal neuronal ensembles

    PubMed Central

    Leavitt, Matthew L.; Pieper, Florian; Sachs, Adam J.; Martinez-Trujillo, Julio C.

    2017-01-01

    Neurons in the primate lateral prefrontal cortex (LPFC) encode working memory (WM) representations via sustained firing, a phenomenon hypothesized to arise from recurrent dynamics within ensembles of interconnected neurons. Here, we tested this hypothesis by using microelectrode arrays to examine spike count correlations (rsc) in LPFC neuronal ensembles during a spatial WM task. We found a pattern of pairwise rsc during WM maintenance indicative of stronger coupling between similarly tuned neurons and increased inhibition between dissimilarly tuned neurons. We then used a linear decoder to quantify the effects of the high-dimensional rsc structure on information coding in the neuronal ensembles. We found that the rsc structure could facilitate or impair coding, depending on the size of the ensemble and tuning properties of its constituent neurons. A simple optimization procedure demonstrated that near-maximum decoding performance could be achieved using a relatively small number of neurons. These WM-optimized subensembles were more signal correlation (rsignal)-diverse and anatomically dispersed than predicted by the statistics of the full recorded population of neurons, and they often contained neurons that were poorly WM-selective, yet enhanced coding fidelity by shaping the ensemble’s rsc structure. We observed a pattern of rsc between LPFC neurons indicative of recurrent dynamics as a mechanism for WM-related activity and that the rsc structure can increase the fidelity of WM representations. Thus, WM coding in LPFC neuronal ensembles arises from a complex synergy between single neuron coding properties and multidimensional, ensemble-level phenomena. PMID:28275096

  2. Medical Image Compression Based on Vector Quantization with Variable Block Sizes in Wavelet Domain

    PubMed Central

    Jiang, Huiyan; Ma, Zhiyuan; Hu, Yang; Yang, Benqiang; Zhang, Libo

    2012-01-01

    An optimized medical image compression algorithm based on wavelet transform and improved vector quantization is introduced. The goal of the proposed method is to maintain the diagnostic-related information of the medical image at a high compression ratio. Wavelet transformation was first applied to the image. For the lowest-frequency subband of wavelet coefficients, a lossless compression method was exploited; for each of the high-frequency subbands, an optimized vector quantization with variable block size was implemented. In the novel vector quantization method, local fractal dimension (LFD) was used to analyze the local complexity of each wavelet coefficients, subband. Then an optimal quadtree method was employed to partition each wavelet coefficients, subband into several sizes of subblocks. After that, a modified K-means approach which is based on energy function was used in the codebook training phase. At last, vector quantization coding was implemented in different types of sub-blocks. In order to verify the effectiveness of the proposed algorithm, JPEG, JPEG2000, and fractal coding approach were chosen as contrast algorithms. Experimental results show that the proposed method can improve the compression performance and can achieve a balance between the compression ratio and the image visual quality. PMID:23049544

  3. Medical image compression based on vector quantization with variable block sizes in wavelet domain.

    PubMed

    Jiang, Huiyan; Ma, Zhiyuan; Hu, Yang; Yang, Benqiang; Zhang, Libo

    2012-01-01

    An optimized medical image compression algorithm based on wavelet transform and improved vector quantization is introduced. The goal of the proposed method is to maintain the diagnostic-related information of the medical image at a high compression ratio. Wavelet transformation was first applied to the image. For the lowest-frequency subband of wavelet coefficients, a lossless compression method was exploited; for each of the high-frequency subbands, an optimized vector quantization with variable block size was implemented. In the novel vector quantization method, local fractal dimension (LFD) was used to analyze the local complexity of each wavelet coefficients, subband. Then an optimal quadtree method was employed to partition each wavelet coefficients, subband into several sizes of subblocks. After that, a modified K-means approach which is based on energy function was used in the codebook training phase. At last, vector quantization coding was implemented in different types of sub-blocks. In order to verify the effectiveness of the proposed algorithm, JPEG, JPEG2000, and fractal coding approach were chosen as contrast algorithms. Experimental results show that the proposed method can improve the compression performance and can achieve a balance between the compression ratio and the image visual quality.

  4. The modified scheme of optimized in simulations Cherenkov type high-power microwave oscillator without guiding magnetic field

    NASA Astrophysics Data System (ADS)

    Guo, Li M.; Shu, T.; Li, Zhi Q.; Ju, Jin C.

    2017-12-01

    The compactness and miniaturization of high-power-microwave (HPM) systems are drawing more and more attention. Based on this demand, HPM generators without a guiding magnetic field are being developed. This paper presents an X-band Cherenkov type HPM oscillator without the guiding magnetic field. By particle-in-cell codes, this oscillator achieves an efficiency of 40% in simulation. When the diode voltage and current are 620 kV and 9.0 kA, respectively, a TEM mode microwave is generated with a power of 2.2 GW and a frequency of 9.1 GHz. In this oscillator, electrons are modulated in both longitudinal and radial directions, and the radial modulation has a significant effect on the energy conversion efficiency. As analyzed in this paper, the different radial modulation effects depend on the phase matching differences of the microwave and electrons. The modified scheme of simulations achieves a structure with an efficient longitudinal beam-wave interaction and optimized radial modulation.

  5. Validation of the new diagnosis grouping system for pediatric emergency department visits using the International Classification of Diseases, 10th Revision.

    PubMed

    Lee, Jin Hee; Hong, Ki Jeong; Kim, Do Kyun; Kwak, Young Ho; Jang, Hye Young; Kim, Hahn Bom; Noh, Hyun; Park, Jungho; Song, Bongkyu; Jung, Jae Yun

    2013-12-01

    A clinically sensible diagnosis grouping system (DGS) is needed for describing pediatric emergency diagnoses for research, medical resource preparedness, and making national policy for pediatric emergency medical care. The Pediatric Emergency Care Applied Research Network (PECARN) developed the DGS successfully. We developed the modified PECARN DGS based on the different pediatric population of South Korea and validated the system to obtain the accurate and comparable epidemiologic data of pediatric emergent conditions of the selected population. The data source used to develop and validate the modified PECARN DGS was the National Emergency Department Information System of South Korea, which was coded by the International Classification of Diseases, 10th Revision (ICD-10) code system. To develop the modified DGS based on ICD-10 code, we matched the selected ICD-10 codes with those of the PECARN DGS by the General Equivalence Mappings (GEMs). After converting ICD-10 codes to ICD-9 codes by GEMs, we matched ICD-9 codes into PECARN DGS categories using the matrix developed by PECARN group. Lastly, we conducted the expert panel survey using Delphi method for the remaining diagnosis codes that were not matched. A total of 1879 ICD-10 codes were used in development of the modified DGS. After 1078 (57.4%) of 1879 ICD-10 codes were assigned to the modified DGS by GEM and PECARN conversion tools, investigators assigned each of the remaining 801 codes (42.6%) to DGS subgroups by 2 rounds of electronic Delphi surveys. And we assigned the remaining 29 codes (4%) into the modified DGS at the second expert consensus meeting. The modified DGS accounts for 98.7% and 95.2% of diagnoses of the 2008 and 2009 National Emergency Department Information System data set. This modified DGS also exhibited strong construct validity using the concepts of age, sex, site of care, and seasons. This also reflected the 2009 outbreak of H1N1 influenza in Korea. We developed and validated clinically feasible and sensible DGS system for describing pediatric emergent conditions in Korea. The modified PECARN DGS showed good comprehensiveness and demonstrated reliable construct validity. This modified DGS based on PECARN DGS framework may be effectively implemented for research, reporting, and resource planning in pediatric emergency system of South Korea.

  6. Research in Computational Astrobiology

    NASA Technical Reports Server (NTRS)

    Chaban, Galina; Colombano, Silvano; Scargle, Jeff; New, Michael H.; Pohorille, Andrew; Wilson, Michael A.

    2003-01-01

    We report on several projects in the field of computational astrobiology, which is devoted to advancing our understanding of the origin, evolution and distribution of life in the Universe using theoretical and computational tools. Research projects included modifying existing computer simulation codes to use efficient, multiple time step algorithms, statistical methods for analysis of astrophysical data via optimal partitioning methods, electronic structure calculations on water-nuclei acid complexes, incorporation of structural information into genomic sequence analysis methods and calculations of shock-induced formation of polycylic aromatic hydrocarbon compounds.

  7. Calculations of total electron-impact ionization cross sections for Fluoroketone C5F10O and Fluoronitrile C4F7N using modified Deutsch-Märk formula

    NASA Astrophysics Data System (ADS)

    Xiong, Jiayu; Li, Xingwen; Wu, Jian; Guo, Xiaoxue; Zhao, Hu

    2017-11-01

    Both fluoroketone C5F10O and fluoronitrile C4F7N are promising substitute gases for SF6. The electron-impact ionization cross sections for these two gases are calculated using the Deutsch-Märk (DM) formula and its modified method. The necessary molecular geometry optimization and electron population were determined by ab initio calculation, which was performed with quantum chemistry code. The level of calculation, including the theoretical method and basis-set, are carefully determined. To eliminate the drawbacks of the DM formula, a modified DM formula is set in this paper. The modified DM formula, of which the weighting factors are changed, has a better agreement with the experimental data on both the peak and shape of the cross-section curves. The results calculated by DM formula and modified DM formula are given as references to fill in gaps in further research into C5F10O and C4F7N.

  8. Modification and benchmarking of MCNP for low-energy tungsten spectra.

    PubMed

    Mercier, J R; Kopp, D T; McDavid, W D; Dove, S B; Lancaster, J L; Tucker, D M

    2000-12-01

    The MCNP Monte Carlo radiation transport code was modified for diagnostic medical physics applications. In particular, the modified code was thoroughly benchmarked for the production of polychromatic tungsten x-ray spectra in the 30-150 kV range. Validating the modified code for coupled electron-photon transport with benchmark spectra was supplemented with independent electron-only and photon-only transport benchmarks. Major revisions to the code included the proper treatment of characteristic K x-ray production and scoring, new impact ionization cross sections, and new bremsstrahlung cross sections. Minor revisions included updated photon cross sections, electron-electron bremsstrahlung production, and K x-ray yield. The modified MCNP code is benchmarked to electron backscatter factors, x-ray spectra production, and primary and scatter photon transport.

  9. The optimal code searching method with an improved criterion of coded exposure for remote sensing image restoration

    NASA Astrophysics Data System (ADS)

    He, Lirong; Cui, Guangmang; Feng, Huajun; Xu, Zhihai; Li, Qi; Chen, Yueting

    2015-03-01

    Coded exposure photography makes the motion de-blurring a well-posed problem. The integration pattern of light is modulated using the method of coded exposure by opening and closing the shutter within the exposure time, changing the traditional shutter frequency spectrum into a wider frequency band in order to preserve more image information in frequency domain. The searching method of optimal code is significant for coded exposure. In this paper, an improved criterion of the optimal code searching is proposed by analyzing relationship between code length and the number of ones in the code, considering the noise effect on code selection with the affine noise model. Then the optimal code is obtained utilizing the method of genetic searching algorithm based on the proposed selection criterion. Experimental results show that the time consuming of searching optimal code decreases with the presented method. The restoration image is obtained with better subjective experience and superior objective evaluation values.

  10. Mutual information-based analysis of JPEG2000 contexts.

    PubMed

    Liu, Zhen; Karam, Lina J

    2005-04-01

    Context-based arithmetic coding has been widely adopted in image and video compression and is a key component of the new JPEG2000 image compression standard. In this paper, the contexts used in JPEG2000 are analyzed using the mutual information, which is closely related to the compression performance. We first show that, when combining the contexts, the mutual information between the contexts and the encoded data will decrease unless the conditional probability distributions of the combined contexts are the same. Given I, the initial number of contexts, and F, the final desired number of contexts, there are S(I, F) possible context classification schemes where S(I, F) is called the Stirling number of the second kind. The optimal classification scheme is the one that gives the maximum mutual information. Instead of using an exhaustive search, the optimal classification scheme can be obtained through a modified generalized Lloyd algorithm with the relative entropy as the distortion metric. For binary arithmetic coding, the search complexity can be reduced by using dynamic programming. Our experimental results show that the JPEG2000 contexts capture the correlations among the wavelet coefficients very well. At the same time, the number of contexts used as part of the standard can be reduced without loss in the coding performance.

  11. Validation of a modified table to map the 1998 Abbreviated Injury Scale to the 2008 scale and the use of adjusted severities.

    PubMed

    Tohira, Hideo; Jacobs, Ian; Mountain, David; Gibson, Nick; Yeo, Allen; Ueno, Masato; Watanabe, Hiroaki

    2011-12-01

    The Abbreviated Injury Scale 2008 (AIS 2008) is the most recent injury coding system. A mapping table from a previous AIS 98 to AIS 2008 is available. However, AIS 98 codes that are unmappable to AIS 2008 codes exist in this table. Furthermore, some AIS 98 codes can be mapped to multiple candidate AIS 2008 codes with different severities. We aimed to modify the original table to adjust the severities and to validate these changes. We modified the original table by adding links from unmappable AIS 98 codes to AIS 2008 codes. We applied the original table and our modified table to AIS 98 codes for major trauma patients. We also assigned candidate codes with different severities the weighted averages of their severities as an adjusted severity. The proportion of cases whose injury severity scores (ISSs) were computable were compared. We also compared the agreement of the ISS and New ISS (NISS) between manually determined AIS 2008 codes (MAN) and mapped codes by using our table (MAP) with unadjusted or adjusted severities. All and 72.3% of cases had their ISSs computed by our modified table and the original table, respectively. The agreement between MAN and MAP with respect to the ISS and NISS was substantial (intraclass correlation coefficient = 0.939 for ISS and 0.943 for NISS). Using adjusted severities, the agreements of the ISS and NISS improved to 0.953 (p = 0.11) and 0.963 (p = 0.007), respectively. Our modified mapping table seems to allow more ISSs to be computed than the original table. Severity scores exhibited substantial agreement between MAN and MAP. The use of adjusted severities improved these agreements further.

  12. A Lossless Multichannel Bio-Signal Compression Based on Low-Complexity Joint Coding Scheme for Portable Medical Devices

    PubMed Central

    Kim, Dong-Sun; Kwon, Jin-San

    2014-01-01

    Research on real-time health systems have received great attention during recent years and the needs of high-quality personal multichannel medical signal compression for personal medical product applications are increasing. The international MPEG-4 audio lossless coding (ALS) standard supports a joint channel-coding scheme for improving compression performance of multichannel signals and it is very efficient compression method for multi-channel biosignals. However, the computational complexity of such a multichannel coding scheme is significantly greater than that of other lossless audio encoders. In this paper, we present a multichannel hardware encoder based on a low-complexity joint-coding technique and shared multiplier scheme for portable devices. A joint-coding decision method and a reference channel selection scheme are modified for a low-complexity joint coder. The proposed joint coding decision method determines the optimized joint-coding operation based on the relationship between the cross correlation of residual signals and the compression ratio. The reference channel selection is designed to select a channel for the entropy coding of the joint coding. The hardware encoder operates at a 40 MHz clock frequency and supports two-channel parallel encoding for the multichannel monitoring system. Experimental results show that the compression ratio increases by 0.06%, whereas the computational complexity decreases by 20.72% compared to the MPEG-4 ALS reference software encoder. In addition, the compression ratio increases by about 11.92%, compared to the single channel based bio-signal lossless data compressor. PMID:25237900

  13. Automatic translation of MPI source into a latency-tolerant, data-driven form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Tan; Cicotti, Pietro; Bylaska, Eric

    Hiding communication behind useful computation is an important performance programming technique but remains an inscrutable programming exercise even for the expert. We present Bamboo, a code transformation framework that can realize communication overlap in applications written in MPI without the need to intrusively modify the source code. We reformulate MPI source into a task dependency graph representation, which partially orders the tasks, enabling the program to execute in a data-driven fashion under the control of an external runtime system. Experimental results demonstrate that Bamboo significantly reduces communication delays while requiring only modest amounts of programmer annotation for a variety ofmore » applications and platforms, including those employing co-processors and accelerators. Moreover, Bamboo’s performance meets or exceeds that of labor-intensive hand coding. As a result, the translator is more than a means of hiding communication costs automatically; it demonstrates the utility of semantic level optimization against a well-known library.« less

  14. Automatic translation of MPI source into a latency-tolerant, data-driven form

    DOE PAGES

    Nguyen, Tan; Cicotti, Pietro; Bylaska, Eric; ...

    2017-03-06

    Hiding communication behind useful computation is an important performance programming technique but remains an inscrutable programming exercise even for the expert. We present Bamboo, a code transformation framework that can realize communication overlap in applications written in MPI without the need to intrusively modify the source code. We reformulate MPI source into a task dependency graph representation, which partially orders the tasks, enabling the program to execute in a data-driven fashion under the control of an external runtime system. Experimental results demonstrate that Bamboo significantly reduces communication delays while requiring only modest amounts of programmer annotation for a variety ofmore » applications and platforms, including those employing co-processors and accelerators. Moreover, Bamboo’s performance meets or exceeds that of labor-intensive hand coding. As a result, the translator is more than a means of hiding communication costs automatically; it demonstrates the utility of semantic level optimization against a well-known library.« less

  15. Automatic translation of MPI source into a latency-tolerant, data-driven form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Tan; Cicotti, Pietro; Bylaska, Eric

    Hiding communication behind useful computation is an important performance programming technique but remains an inscrutable programming exercise even for the expert. We present Bamboo, a code transformation framework that can realize communication overlap in applications written in MPI without the need to intrusively modify the source code. Bamboo reformulates MPI source into the form of a task dependency graph that expresses a partial ordering among tasks, enabling the program to execute in a data-driven fashion under the control of an external runtime system. Experimental results demonstrate that Bamboo significantly reduces communication delays while requiring only modest amounts of programmer annotationmore » for a variety of applications and platforms, including those employing co-processors and accelerators. Moreover, Bamboo's performance meets or exceeds that of labor-intensive hand coding. The translator is more than a means of hiding communication costs automatically; it demonstrates the utility of semantic level optimization against a wellknown library.« less

  16. Optimal power allocation and joint source-channel coding for wireless DS-CDMA visual sensor networks

    NASA Astrophysics Data System (ADS)

    Pandremmenou, Katerina; Kondi, Lisimachos P.; Parsopoulos, Konstantinos E.

    2011-01-01

    In this paper, we propose a scheme for the optimal allocation of power, source coding rate, and channel coding rate for each of the nodes of a wireless Direct Sequence Code Division Multiple Access (DS-CDMA) visual sensor network. The optimization is quality-driven, i.e. the received quality of the video that is transmitted by the nodes is optimized. The scheme takes into account the fact that the sensor nodes may be imaging scenes with varying levels of motion. Nodes that image low-motion scenes will require a lower source coding rate, so they will be able to allocate a greater portion of the total available bit rate to channel coding. Stronger channel coding will mean that such nodes will be able to transmit at lower power. This will both increase battery life and reduce interference to other nodes. Two optimization criteria are considered. One that minimizes the average video distortion of the nodes and one that minimizes the maximum distortion among the nodes. The transmission powers are allowed to take continuous values, whereas the source and channel coding rates can assume only discrete values. Thus, the resulting optimization problem lies in the field of mixed-integer optimization tasks and is solved using Particle Swarm Optimization. Our experimental results show the importance of considering the characteristics of the video sequences when determining the transmission power, source coding rate and channel coding rate for the nodes of the visual sensor network.

  17. The Italian experience on T/H best estimate codes: Achievements and perspectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alemberti, A.; D`Auria, F.; Fiorino, E.

    1997-07-01

    Themalhydraulic system codes are complex tools developed to simulate the power plants behavior during off-normal conditions. Among the objectives of the code calculations the evaluation of safety margins, the operator training, the optimization of the plant design and of the emergency operating procedures, are mostly considered in the field of the nuclear safety. The first generation of codes was developed in the United States at the end of `60s. Since that time, different research groups all over the world started the development of their own codes. At the beginning of the `80s, the second generation codes were proposed; these differmore » from the first generation codes owing to the number of balance equations solved (six instead of three), the sophistication of the constitutive models and of the adopted numerics. The capabilities of available computers have been fully exploited during the years. The authors then summarize some of the major steps in the process of developing, modifying, and advancing the capabilities of the codes. They touch on the fact that Italian, and for that matter non-American, researchers have not been intimately involved in much of this work. They then describe the application of these codes in Italy, even though there are no operating or under construction nuclear power plants at this time. Much of this effort is directed at the general question of plant safety in the face of transient type events.« less

  18. A novel neutron energy spectrum unfolding code using particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Shahabinejad, H.; Sohrabpour, M.

    2017-07-01

    A novel neutron Spectrum Deconvolution using Particle Swarm Optimization (SDPSO) code has been developed to unfold the neutron spectrum from a pulse height distribution and a response matrix. The Particle Swarm Optimization (PSO) imitates the bird flocks social behavior to solve complex optimization problems. The results of the SDPSO code have been compared with those of the standard spectra and recently published Two-steps Genetic Algorithm Spectrum Unfolding (TGASU) code. The TGASU code have been previously compared with the other codes such as MAXED, GRAVEL, FERDOR and GAMCD and shown to be more accurate than the previous codes. The results of the SDPSO code have been demonstrated to match well with those of the TGASU code for both under determined and over-determined problems. In addition the SDPSO has been shown to be nearly two times faster than the TGASU code.

  19. Observations Regarding Use of Advanced CFD Analysis, Sensitivity Analysis, and Design Codes in MDO

    NASA Technical Reports Server (NTRS)

    Newman, Perry A.; Hou, Gene J. W.; Taylor, Arthur C., III

    1996-01-01

    Observations regarding the use of advanced computational fluid dynamics (CFD) analysis, sensitivity analysis (SA), and design codes in gradient-based multidisciplinary design optimization (MDO) reflect our perception of the interactions required of CFD and our experience in recent aerodynamic design optimization studies using CFD. Sample results from these latter studies are summarized for conventional optimization (analysis - SA codes) and simultaneous analysis and design optimization (design code) using both Euler and Navier-Stokes flow approximations. The amount of computational resources required for aerodynamic design using CFD via analysis - SA codes is greater than that required for design codes. Thus, an MDO formulation that utilizes the more efficient design codes where possible is desired. However, in the aerovehicle MDO problem, the various disciplines that are involved have different design points in the flight envelope; therefore, CFD analysis - SA codes are required at the aerodynamic 'off design' points. The suggested MDO formulation is a hybrid multilevel optimization procedure that consists of both multipoint CFD analysis - SA codes and multipoint CFD design codes that perform suboptimizations.

  20. Resource allocation for error resilient video coding over AWGN using optimization approach.

    PubMed

    An, Cheolhong; Nguyen, Truong Q

    2008-12-01

    The number of slices for error resilient video coding is jointly optimized with 802.11a-like media access control and the physical layers with automatic repeat request and rate compatible punctured convolutional code over additive white gaussian noise channel as well as channel times allocation for time division multiple access. For error resilient video coding, the relation between the number of slices and coding efficiency is analyzed and formulated as a mathematical model. It is applied for the joint optimization problem, and the problem is solved by a convex optimization method such as the primal-dual decomposition method. We compare the performance of a video communication system which uses the optimal number of slices with one that codes a picture as one slice. From numerical examples, end-to-end distortion of utility functions can be significantly reduced with the optimal slices of a picture especially at low signal-to-noise ratio.

  1. Automating the generation of finite element dynamical cores with Firedrake

    NASA Astrophysics Data System (ADS)

    Ham, David; Mitchell, Lawrence; Homolya, Miklós; Luporini, Fabio; Gibson, Thomas; Kelly, Paul; Cotter, Colin; Lange, Michael; Kramer, Stephan; Shipton, Jemma; Yamazaki, Hiroe; Paganini, Alberto; Kärnä, Tuomas

    2017-04-01

    The development of a dynamical core is an increasingly complex software engineering undertaking. As the equations become more complete, the discretisations more sophisticated and the hardware acquires ever more fine-grained parallelism and deeper memory hierarchies, the problem of building, testing and modifying dynamical cores becomes increasingly complex. Here we present Firedrake, a code generation system for the finite element method with specialist features designed to support the creation of geoscientific models. Using Firedrake, the dynamical core developer writes the partial differential equations in weak form in a high level mathematical notation. Appropriate function spaces are chosen and time stepping loops written at the same high level. When the programme is run, Firedrake generates high performance C code for the resulting numerics which are executed in parallel. Models in Firedrake typically take a tiny fraction of the lines of code required by traditional hand-coding techniques. They support more sophisticated numerics than are easily achieved by hand, and the resulting code is frequently higher performance. Critically, debugging, modifying and extending a model written in Firedrake is vastly easier than by traditional methods due to the small, highly mathematical code base. Firedrake supports a wide range of key features for dynamical core creation: A vast range of discretisations, including both continuous and discontinuous spaces and mimetic (C-grid-like) elements which optimally represent force balances in geophysical flows. High aspect ratio layered meshes suitable for ocean and atmosphere domains. Curved elements for high accuracy representations of the sphere. Support for non-finite element operators, such as parametrisations. Access to PETSc, a world-leading library of programmable linear and nonlinear solvers. High performance adjoint models generated automatically by symbolically reasoning about the forward model. This poster will present the key features of the Firedrake system, as well as those of Gusto, an atmospheric dynamical core, and Thetis, a coastal ocean model, both of which are written in Firedrake.

  2. Measurements and calculations of air activation in the NuMI neutrino production facility at Fermilab with the 120-GeV proton beam on target

    NASA Astrophysics Data System (ADS)

    Rakhno, I. L.; Hylen, J.; Kasper, P.; Mokhov, N. V.; Quinn, M.; Striganov, S. I.; Vaziri, K.

    2018-01-01

    Measurements and calculations of the air activation at a high-energy proton accelerator are described. The quantity of radionuclides released outdoors depends on operation scenarios including details of the air exchange inside the facility. To improve the prediction of the air activation levels, the MARS15 Monte Carlo code radionuclide production model was modified to be used for these studies. Measurements were done to benchmark the new model and verify its use in optimization studies for the new DUNE experiment at the Long Baseline Neutrino Facility (LBNF) at Fermilab. The measured production rates for the most important radionuclides - 11C, 13N, 15O and 41Ar - are in a good agreement with those calculated with the improved MARS15 code.

  3. The Modified Cognitive Constructions Coding System: Reliability and Validity Assessments

    ERIC Educational Resources Information Center

    Moran, Galia S.; Diamond, Gary M.

    2006-01-01

    The cognitive constructions coding system (CCCS) was designed for coding client's expressed problem constructions on four dimensions: intrapersonal-interpersonal, internal-external, responsible-not responsible, and linear-circular. This study introduces, and examines the reliability and validity of, a modified version of the CCCS--a version that…

  4. Adaptation of SUBSTOR for controlled-environment potato production with elevated carbon dioxide

    NASA Technical Reports Server (NTRS)

    Fleisher, D. H.; Cavazzoni, J.; Giacomelli, G. A.; Ting, K. C.; Janes, H. W. (Principal Investigator)

    2003-01-01

    The SUBSTOR crop growth model was adapted for controlled-environment hydroponic production of potato (Solanum tuberosum L. cv. Norland) under elevated atmospheric carbon dioxide concentration. Adaptations included adjustment of input files to account for cultural differences between the field and controlled environments, calibration of genetic coefficients, and adjustment of crop parameters including radiation use efficiency. Source code modifications were also performed to account for the absorption of light reflected from the surface below the crop canopy, an increased leaf senescence rate, a carbon (mass) balance to the model, and to modify the response of crop growth rate to elevated atmospheric carbon dioxide concentration. Adaptations were primarily based on growth and phenological data obtained from growth chamber experiments at Rutgers University (New Brunswick, N.J.) and from the modeling literature. Modified-SUBSTOR predictions were compared with data from Kennedy Space Center's Biomass Production Chamber for verification. Results show that, with further development, modified-SUBSTOR will be a useful tool for analysis and optimization of potato growth in controlled environments.

  5. Program optimizations: The interplay between power, performance, and energy

    DOE PAGES

    Leon, Edgar A.; Karlin, Ian; Grant, Ryan E.; ...

    2016-05-16

    Practical considerations for future supercomputer designs will impose limits on both instantaneous power consumption and total energy consumption. Working within these constraints while providing the maximum possible performance, application developers will need to optimize their code for speed alongside power and energy concerns. This paper analyzes the effectiveness of several code optimizations including loop fusion, data structure transformations, and global allocations. A per component measurement and analysis of different architectures is performed, enabling the examination of code optimizations on different compute subsystems. Using an explicit hydrodynamics proxy application from the U.S. Department of Energy, LULESH, we show how code optimizationsmore » impact different computational phases of the simulation. This provides insight for simulation developers into the best optimizations to use during particular simulation compute phases when optimizing code for future supercomputing platforms. Here, we examine and contrast both x86 and Blue Gene architectures with respect to these optimizations.« less

  6. Phenotypic Graphs and Evolution Unfold the Standard Genetic Code as the Optimal

    NASA Astrophysics Data System (ADS)

    Zamudio, Gabriel S.; José, Marco V.

    2018-03-01

    In this work, we explicitly consider the evolution of the Standard Genetic Code (SGC) by assuming two evolutionary stages, to wit, the primeval RNY code and two intermediate codes in between. We used network theory and graph theory to measure the connectivity of each phenotypic graph. The connectivity values are compared to the values of the codes under different randomization scenarios. An error-correcting optimal code is one in which the algebraic connectivity is minimized. We show that the SGC is optimal in regard to its robustness and error-tolerance when compared to all random codes under different assumptions.

  7. A Modified Mean Gray Wolf Optimization Approach for Benchmark and Biomedical Problems.

    PubMed

    Singh, Narinder; Singh, S B

    2017-01-01

    A modified variant of gray wolf optimization algorithm, namely, mean gray wolf optimization algorithm has been developed by modifying the position update (encircling behavior) equations of gray wolf optimization algorithm. The proposed variant has been tested on 23 standard benchmark well-known test functions (unimodal, multimodal, and fixed-dimension multimodal), and the performance of modified variant has been compared with particle swarm optimization and gray wolf optimization. Proposed algorithm has also been applied to the classification of 5 data sets to check feasibility of the modified variant. The results obtained are compared with many other meta-heuristic approaches, ie, gray wolf optimization, particle swarm optimization, population-based incremental learning, ant colony optimization, etc. The results show that the performance of modified variant is able to find best solutions in terms of high level of accuracy in classification and improved local optima avoidance.

  8. Modified NASA-Lewis chemical equilibrium code for MHD applications

    NASA Technical Reports Server (NTRS)

    Sacks, R. A.; Geyer, H. K.; Grammel, S. J.; Doss, E. D.

    1979-01-01

    A substantially modified version of the NASA-Lewis Chemical Equilibrium Code was recently developed. The modifications were designed to extend the power and convenience of the Code as a tool for performing combustor analysis for MHD systems studies. The effect of the programming details is described from a user point of view.

  9. Mesh Deformation Based on Fully Stressed Design: The Method and Two-Dimensional Examples

    NASA Technical Reports Server (NTRS)

    Hsu, Su-Yuen; Chang, Chau-Lyan

    2007-01-01

    Mesh deformation in response to redefined boundary geometry is a frequently encountered task in shape optimization and analysis of fluid-structure interaction. We propose a simple and concise method for deforming meshes defined with three-node triangular or four-node tetrahedral elements. The mesh deformation method is suitable for large boundary movement. The approach requires two consecutive linear elastic finite-element analyses of an isotropic continuum using a prescribed displacement at the mesh boundaries. The first analysis is performed with homogeneous elastic property and the second with inhomogeneous elastic property. The fully stressed design is employed with a vanishing Poisson s ratio and a proposed form of equivalent strain (modified Tresca equivalent strain) to calculate, from the strain result of the first analysis, the element-specific Young s modulus for the second analysis. The theoretical aspect of the proposed method, its convenient numerical implementation using a typical linear elastic finite-element code in conjunction with very minor extra coding for data processing, and results for examples of large deformation of two-dimensional meshes are presented in this paper. KEY WORDS: Mesh deformation, shape optimization, fluid-structure interaction, fully stressed design, finite-element analysis, linear elasticity, strain failure, equivalent strain, Tresca failure criterion

  10. An improved computer program for calculating the theoretical performance parameters of a propeller type wind turbine. An appendix to the final report on feasibility of using wind power to pump irrigation water (Texas). [PROP Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barieau, R.E.

    1977-03-01

    The PROP Program of Wilson and Lissaman has been modified by adding the Newton-Raphson Method and a Step Wise Search Method, as options for the method of solution. In addition, an optimization method is included. Twist angles, tip speed ratio and the pitch angle may be varied to produce maximum power coefficient. The computer program listing is presented along with sample input and output data. Further improvements to the program are discussed.

  11. An optimization program based on the method of feasible directions: Theory and users guide

    NASA Technical Reports Server (NTRS)

    Belegundu, Ashok D.; Berke, Laszlo; Patnaik, Surya N.

    1994-01-01

    The theory and user instructions for an optimization code based on the method of feasible directions are presented. The code was written for wide distribution and ease of attachment to other simulation software. Although the theory of the method of feasible direction was developed in the 1960's, many considerations are involved in its actual implementation as a computer code. Included in the code are a number of features to improve robustness in optimization. The search direction is obtained by solving a quadratic program using an interior method based on Karmarkar's algorithm. The theory is discussed focusing on the important and often overlooked role played by the various parameters guiding the iterations within the program. Also discussed is a robust approach for handling infeasible starting points. The code was validated by solving a variety of structural optimization test problems that have known solutions obtained by other optimization codes. It has been observed that this code is robust: it has solved a variety of problems from different starting points. However, the code is inefficient in that it takes considerable CPU time as compared with certain other available codes. Further work is required to improve its efficiency while retaining its robustness.

  12. Micro PAVER, Version 1.0, User’s Guide, Airport Pavement Management System,

    DTIC Science & Technology

    1986-10-01

    repair data have been entered for the policy, the following prompts will appear on your screen. Policy Numbr:I Policy Description: PRIMA Y UNW AYS ND... Materia ’ Codes (those material codes entered by the Micro PAVER developers) can not be modified or deleted. New material codes can be added, modified, or

  13. The effect of code expanding optimizations on instruction cache design

    NASA Technical Reports Server (NTRS)

    Chen, William Y.; Chang, Pohua P.; Conte, Thomas M.; Hwu, Wen-Mei W.

    1991-01-01

    It is shown that code expanding optimizations have strong and non-intuitive implications on instruction cache design. Three types of code expanding optimizations are studied: instruction placement, function inline expansion, and superscalar optimizations. Overall, instruction placement reduces the miss ratio of small caches. Function inline expansion improves the performance for small cache sizes, but degrades the performance of medium caches. Superscalar optimizations increases the cache size required for a given miss ratio. On the other hand, they also increase the sequentiality of instruction access so that a simple load-forward scheme effectively cancels the negative effects. Overall, it is shown that with load forwarding, the three types of code expanding optimizations jointly improve the performance of small caches and have little effect on large caches.

  14. Human operator identification model and related computer programs

    NASA Technical Reports Server (NTRS)

    Kessler, K. M.; Mohr, J. N.

    1978-01-01

    Four computer programs which provide computational assistance in the analysis of man/machine systems are reported. The programs are: (1) Modified Transfer Function Program (TF); (2) Time Varying Response Program (TVSR); (3) Optimal Simulation Program (TVOPT); and (4) Linear Identification Program (SCIDNT). The TV program converts the time domain state variable system representative to frequency domain transfer function system representation. The TVSR program computes time histories of the input/output responses of the human operator model. The TVOPT program is an optimal simulation program and is similar to TVSR in that it produces time histories of system states associated with an operator in the loop system. The differences between the two programs are presented. The SCIDNT program is an open loop identification code which operates on the simulated data from TVOPT (or TVSR) or real operator data from motion simulators.

  15. Measurements and calculations of air activation in the NuMI neutrino production facility at Fermilab with the 120-GeV proton beam on target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakhno, I. L.; Hylen, J.; Kasper, P.

    Measurements and calculations of the air activation at a high-energy proton accelerator are described. The quantity of radionuclides released outdoors depends on operation scenarios including details of the air exchange inside the facility. To improve the prediction of the air activation levels, the MARS15 Monte Carlo code radionuclide production model was modified to be used for these studies. Measurements were done to benchmark the new model and verify its use in optimization studies for the new DUNE experiment at the Long Baseline Neutrino Facility (LBNF) at Fermilab. The measured production rates for the most important radionuclides – 11C, 13N, 15Omore » and 41Ar – are in a good agreement with those calculated with the improved MARS15 code.« less

  16. A high-throughput exploration of magnetic materials by using structure predicting methods

    NASA Astrophysics Data System (ADS)

    Arapan, S.; Nieves, P.; Cuesta-López, S.

    2018-02-01

    We study the capability of a structure predicting method based on genetic/evolutionary algorithm for a high-throughput exploration of magnetic materials. We use the USPEX and VASP codes to predict stable and generate low-energy meta-stable structures for a set of representative magnetic structures comprising intermetallic alloys, oxides, interstitial compounds, and systems containing rare-earths elements, and for both types of ferromagnetic and antiferromagnetic ordering. We have modified the interface between USPEX and VASP codes to improve the performance of structural optimization as well as to perform calculations in a high-throughput manner. We show that exploring the structure phase space with a structure predicting technique reveals large sets of low-energy metastable structures, which not only improve currently exiting databases, but also may provide understanding and solutions to stabilize and synthesize magnetic materials suitable for permanent magnet applications.

  17. Measurements and calculations of air activation in the NuMI neutrino production facility at Fermilab with the 120-GeV proton beam on target

    DOE PAGES

    Rakhno, I. L.; Hylen, J.; Kasper, P.; ...

    2017-10-04

    Measurements and calculations of the air activation at a high-energy proton accelerator are described. The quantity of radionuclides released outdoors depends on operation scenarios including details of the air exchange inside the facility. To improve the prediction of the air activation levels, the MARS15 Monte Carlo code radionuclide production model was modified to be used for these studies. Measurements were done to benchmark the new model and verify its use in optimization studies for the new DUNE experiment at the Long Baseline Neutrino Facility (LBNF) at Fermilab. The measured production rates for the most important radionuclides – 11C, 13N, 15Omore » and 41Ar – are in a good agreement with those calculated with the improved MARS15 code.« less

  18. A universal Model-R Coupler to facilitate the use of R functions for model calibration and analysis

    USGS Publications Warehouse

    Wu, Yiping; Liu, Shuguang; Yan, Wende

    2014-01-01

    Mathematical models are useful in various fields of science and engineering. However, it is a challenge to make a model utilize the open and growing functions (e.g., model inversion) on the R platform due to the requirement of accessing and revising the model's source code. To overcome this barrier, we developed a universal tool that aims to convert a model developed in any computer language to an R function using the template and instruction concept of the Parameter ESTimation program (PEST) and the operational structure of the R-Soil and Water Assessment Tool (R-SWAT). The developed tool (Model-R Coupler) is promising because users of any model can connect an external algorithm (written in R) with their model to implement various model behavior analyses (e.g., parameter optimization, sensitivity and uncertainty analysis, performance evaluation, and visualization) without accessing or modifying the model's source code.

  19. HERCULES: A Pattern Driven Code Transformation System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kartsaklis, Christos; Hernandez, Oscar R; Hsu, Chung-Hsing

    2012-01-01

    New parallel computers are emerging, but developing efficient scientific code for them remains difficult. A scientist must manage not only the science-domain complexity but also the performance-optimization complexity. HERCULES is a code transformation system designed to help the scientist to separate the two concerns, which improves code maintenance, and facilitates performance optimization. The system combines three technologies, code patterns, transformation scripts and compiler plugins, to provide the scientist with an environment to quickly implement code transformations that suit his needs. Unlike existing code optimization tools, HERCULES is unique in its focus on user-level accessibility. In this paper we discuss themore » design, implementation and an initial evaluation of HERCULES.« less

  20. Fundamental Limits of Delay and Security in Device-to-Device Communication

    DTIC Science & Technology

    2013-01-01

    systematic MDS (maximum distance separable) codes and random binning strategies that achieve a Pareto optimal delayreconstruction tradeoff. The erasure MD...file, and a coding scheme based on erasure compression and Slepian-Wolf binning is presented. The coding scheme is shown to provide a Pareto optimal...ble) codes and random binning strategies that achieve a Pareto optimal delay- reconstruction tradeoff. The erasure MD setup is then used to propose a

  1. Simulation and optimization study of a solar seasonal storage district heating system: the Fox River Valley case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michaels, A.I.; Sillman, S.; Baylin, F.

    1983-05-01

    A central solar-heating plant with seasonal heat storage in a deep underground aquifer is designed by means of a solar-seasonal-storage-system simulation code based on the Solar Energy Research Institute (SERI) code for Solar Annual Storage Simulation (SASS). This Solar Seasonal Storage Plant is designed to supply close to 100% of the annual heating and domestic-hot-water (DHW) load of a hypothetical new community, the Fox River Valley Project, for a location in Madison, Wisconsin. Some analyses are also carried out for Boston, Massachusetts and Copenhagen, Denmark, as an indication of weather and insolation effects. Analyses are conducted for five different typesmore » of solar collectors, and for an alternate system utilizing seasonal storage in a large water tank. Predicted seasonal performance and system and storage costs are calculated. To provide some validation of the SASS results, a simulation of the solar system with seasonal storage in a large water tank is also carried out with a modified version of the Swedish Solar Seasonal Storage Code MINSUN.« less

  2. A Degree Distribution Optimization Algorithm for Image Transmission

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Yang, Junjie

    2016-09-01

    Luby Transform (LT) code is the first practical implementation of digital fountain code. The coding behavior of LT code is mainly decided by the degree distribution which determines the relationship between source data and codewords. Two degree distributions are suggested by Luby. They work well in typical situations but not optimally in case of finite encoding symbols. In this work, the degree distribution optimization algorithm is proposed to explore the potential of LT code. Firstly selection scheme of sparse degrees for LT codes is introduced. Then probability distribution is optimized according to the selected degrees. In image transmission, bit stream is sensitive to the channel noise and even a single bit error may cause the loss of synchronization between the encoder and the decoder. Therefore the proposed algorithm is designed for image transmission situation. Moreover, optimal class partition is studied for image transmission with unequal error protection. The experimental results are quite promising. Compared with LT code with robust soliton distribution, the proposed algorithm improves the final quality of recovered images obviously with the same overhead.

  3. An Empirical Test of the Modified C Index and SII, O*NET, and DHOC Occupational Code Classifications

    ERIC Educational Resources Information Center

    Dik, Bryan J.; Hu, Ryan S. C.; Hansen, Jo-Ida C.

    2007-01-01

    The present study investigated new approaches for assessing Holland's congruence hypothesis by (a) developing and applying four sets of decision rules for assigning Holland codes of varying lengths for purposes of computing Eggerth and Andrew's modified C index; (b) testing the modified C index computed using these four approaches against Brown…

  4. A survey of compiler optimization techniques

    NASA Technical Reports Server (NTRS)

    Schneck, P. B.

    1972-01-01

    Major optimization techniques of compilers are described and grouped into three categories: machine dependent, architecture dependent, and architecture independent. Machine-dependent optimizations tend to be local and are performed upon short spans of generated code by using particular properties of an instruction set to reduce the time or space required by a program. Architecture-dependent optimizations are global and are performed while generating code. These optimizations consider the structure of a computer, but not its detailed instruction set. Architecture independent optimizations are also global but are based on analysis of the program flow graph and the dependencies among statements of source program. A conceptual review of a universal optimizer that performs architecture-independent optimizations at source-code level is also presented.

  5. Multi-Constraint Multi-Variable Optimization of Source-Driven Nuclear Systems

    NASA Astrophysics Data System (ADS)

    Watkins, Edward Francis

    1995-01-01

    A novel approach to the search for optimal designs of source-driven nuclear systems is investigated. Such systems include radiation shields, fusion reactor blankets and various neutron spectrum-shaping assemblies. The novel approach involves the replacement of the steepest-descents optimization algorithm incorporated in the code SWAN by a significantly more general and efficient sequential quadratic programming optimization algorithm provided by the code NPSOL. The resulting SWAN/NPSOL code system can be applied to more general, multi-variable, multi-constraint shield optimization problems. The constraints it accounts for may include simple bounds on variables, linear constraints, and smooth nonlinear constraints. It may also be applied to unconstrained, bound-constrained and linearly constrained optimization. The shield optimization capabilities of the SWAN/NPSOL code system is tested and verified in a variety of optimization problems: dose minimization at constant cost, cost minimization at constant dose, and multiple-nonlinear constraint optimization. The replacement of the optimization part of SWAN with NPSOL is found feasible and leads to a very substantial improvement in the complexity of optimization problems which can be efficiently handled.

  6. TU-AB-BRC-10: Modeling of Radiotherapy Linac Source Terms Using ARCHER Monte Carlo Code: Performance Comparison of GPU and MIC Computing Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, T; Lin, H; Xu, X

    Purpose: (1) To perform phase space (PS) based source modeling for Tomotherapy and Varian TrueBeam 6 MV Linacs, (2) to examine the accuracy and performance of the ARCHER Monte Carlo code on a heterogeneous computing platform with Many Integrated Core coprocessors (MIC, aka Xeon Phi) and GPUs, and (3) to explore the software micro-optimization methods. Methods: The patient-specific source of Tomotherapy and Varian TrueBeam Linacs was modeled using the PS approach. For the helical Tomotherapy case, the PS data were calculated in our previous study (Su et al. 2014 41(7) Medical Physics). For the single-view Varian TrueBeam case, we analyticallymore » derived them from the raw patient-independent PS data in IAEA’s database, partial geometry information of the jaw and MLC as well as the fluence map. The phantom was generated from DICOM images. The Monte Carlo simulation was performed by ARCHER-MIC and GPU codes, which were benchmarked against a modified parallel DPM code. Software micro-optimization was systematically conducted, and was focused on SIMD vectorization of tight for-loops and data prefetch, with the ultimate goal of increasing 512-bit register utilization and reducing memory access latency. Results: Dose calculation was performed for two clinical cases, a Tomotherapy-based prostate cancer treatment and a TrueBeam-based left breast treatment. ARCHER was verified against the DPM code. The statistical uncertainty of the dose to the PTV was less than 1%. Using double-precision, the total wall time of the multithreaded CPU code on a X5650 CPU was 339 seconds for the Tomotherapy case and 131 seconds for the TrueBeam, while on 3 5110P MICs it was reduced to 79 and 59 seconds, respectively. The single-precision GPU code on a K40 GPU took 45 seconds for the Tomotherapy dose calculation. Conclusion: We have extended ARCHER, the MIC and GPU-based Monte Carlo dose engine to Tomotherapy and Truebeam dose calculations.« less

  7. Optimized nonorthogonal transforms for image compression.

    PubMed

    Guleryuz, O G; Orchard, M T

    1997-01-01

    The transform coding of images is analyzed from a common standpoint in order to generate a framework for the design of optimal transforms. It is argued that all transform coders are alike in the way they manipulate the data structure formed by transform coefficients. A general energy compaction measure is proposed to generate optimized transforms with desirable characteristics particularly suited to the simple transform coding operation of scalar quantization and entropy coding. It is shown that the optimal linear decoder (inverse transform) must be an optimal linear estimator, independent of the structure of the transform generating the coefficients. A formulation that sequentially optimizes the transforms is presented, and design equations and algorithms for its computation provided. The properties of the resulting transform systems are investigated. In particular, it is shown that the resulting basis are nonorthogonal and complete, producing energy compaction optimized, decorrelated transform coefficients. Quantization issues related to nonorthogonal expansion coefficients are addressed with a simple, efficient algorithm. Two implementations are discussed, and image coding examples are given. It is shown that the proposed design framework results in systems with superior energy compaction properties and excellent coding results.

  8. PCR-free quantitative detection of genetically modified organism from raw materials. An electrochemiluminescence-based bio bar code method.

    PubMed

    Zhu, Debin; Tang, Yabing; Xing, Da; Chen, Wei R

    2008-05-15

    A bio bar code assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio bar code assay requires lengthy experimental procedures including the preparation and release of bar code DNA probes from the target-nanoparticle complex and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio bar code assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2,2'-bipyridyl) ruthenium (TBR)-labeled bar code DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products.

  9. Applications of New Surrogate Global Optimization Algorithms including Efficient Synchronous and Asynchronous Parallelism for Calibration of Expensive Nonlinear Geophysical Simulation Models.

    NASA Astrophysics Data System (ADS)

    Shoemaker, C. A.; Pang, M.; Akhtar, T.; Bindel, D.

    2016-12-01

    New parallel surrogate global optimization algorithms are developed and applied to objective functions that are expensive simulations (possibly with multiple local minima). The algorithms can be applied to most geophysical simulations, including those with nonlinear partial differential equations. The optimization does not require simulations be parallelized. Asynchronous (and synchronous) parallel execution is available in the optimization toolbox "pySOT". The parallel algorithms are modified from serial to eliminate fine grained parallelism. The optimization is computed with open source software pySOT, a Surrogate Global Optimization Toolbox that allows user to pick the type of surrogate (or ensembles), the search procedure on surrogate, and the type of parallelism (synchronous or asynchronous). pySOT also allows the user to develop new algorithms by modifying parts of the code. In the applications here, the objective function takes up to 30 minutes for one simulation, and serial optimization can take over 200 hours. Results from Yellowstone (NSF) and NCSS (Singapore) supercomputers are given for groundwater contaminant hydrology simulations with applications to model parameter estimation and decontamination management. All results are compared with alternatives. The first results are for optimization of pumping at many wells to reduce cost for decontamination of groundwater at a superfund site. The optimization runs with up to 128 processors. Superlinear speed up is obtained for up to 16 processors, and efficiency with 64 processors is over 80%. Each evaluation of the objective function requires the solution of nonlinear partial differential equations to describe the impact of spatially distributed pumping and model parameters on model predictions for the spatial and temporal distribution of groundwater contaminants. The second application uses an asynchronous parallel global optimization for groundwater quality model calibration. The time for a single objective function evaluation varies unpredictably, so efficiency is improved with asynchronous parallel calculations to improve load balancing. The third application (done at NCSS) incorporates new global surrogate multi-objective parallel search algorithms into pySOT and applies it to a large watershed calibration problem.

  10. User's manual for the BNW-I optimization code for dry-cooled power plants. Volume III. [PLCIRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braun, D.J.; Daniel, D.J.; De Mier, W.V.

    1977-01-01

    This appendix to User's Manual for the BNW-1 Optimization Code for Dry-Cooled Power Plants provides a listing of the BNW-I optimization code for determining, for a particular size power plant, the optimum dry cooling tower design using a plastic tube cooling surface and circular tower arrangement of the tube bundles. (LCL)

  11. Numerical optimization of perturbative coils for tokamaks

    NASA Astrophysics Data System (ADS)

    Lazerson, Samuel; Park, Jong-Kyu; Logan, Nikolas; Boozer, Allen; NSTX-U Research Team

    2014-10-01

    Numerical optimization of coils which apply three dimensional (3D) perturbative fields to tokamaks is presented. The application of perturbative 3D magnetic fields in tokamaks is now commonplace for control of error fields, resistive wall modes, resonant field drive, and neoclassical toroidal viscosity (NTV) torques. The design of such systems has focused on control of toroidal mode number, with coil shapes based on simple window-pane designs. In this work, a numerical optimization suite based on the STELLOPT 3D equilibrium optimization code is presented. The new code, IPECOPT, replaces the VMEC equilibrium code with the IPEC perturbed equilibrium code, and targets NTV torque by coupling to the PENT code. Fixed boundary optimizations of the 3D fields for the NSTX-U experiment are underway. Initial results suggest NTV torques can be driven by normal field spectrums which are not pitch-resonant with the magnetic field lines. Work has focused on driving core torque with n = 1 and edge torques with n = 3 fields. Optimizations of the coil currents for the planned NSTX-U NCC coils highlight the code's free boundary capability. This manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the U.S. Department of Energy.

  12. Anisotropic Resistivity Forward Modelling Using Automatic Generated Higher-order Finite Element Codes

    NASA Astrophysics Data System (ADS)

    Wang, W.; Liu, J.

    2016-12-01

    Forward modelling is the general way to obtain responses of geoelectrical structures. Field investigators might find it useful for planning surveys and choosing optimal electrode configurations with respect to their targets. During the past few decades much effort has been put into the development of numerical forward codes, such as integral equation method, finite difference method and finite element method. Nowadays, most researchers prefer the finite element method (FEM) for its flexible meshing scheme, which can handle models with complex geometry. Resistivity Modelling with commercial sofewares such as ANSYS and COMSOL is convenient, but like working with a black box. Modifying the existed codes or developing new codes is somehow a long period. We present a new way to obtain resistivity forward modelling codes quickly, which is based on the commercial sofeware FEPG (Finite element Program Generator). Just with several demanding scripts, FEPG could generate FORTRAN program framework which can easily be altered to adjust our targets. By supposing the electric potential is quadratic in each element of a two-layer model, we obtain quite accurate results with errors less than 1%, while more than 5% errors could appear by linear FE codes. The anisotropic half-space model is supposed to concern vertical distributed fractures. The measured apparent resistivities along the fractures are bigger than results from its orthogonal direction, which are opposite of the true resistivities. Interpretation could be misunderstood if this anisotropic paradox is ignored. The technique we used can obtain scientific codes in a short time. The generated powerful FORTRAN codes could reach accurate results by higher-order assumption and can handle anisotropy to make better interpretations. The method we used could be expand easily to other domain where FE codes are needed.

  13. Rocketdyne/Westinghouse nuclear thermal rocket engine modeling

    NASA Technical Reports Server (NTRS)

    Glass, James F.

    1993-01-01

    The topics are presented in viewgraph form and include the following: systems approach needed for nuclear thermal rocket (NTR) design optimization; generic NTR engine power balance codes; rocketdyne nuclear thermal system code; software capabilities; steady state model; NTR engine optimizer code-logic; reactor power calculation logic; sample multi-component configuration; NTR design code output; generic NTR code at Rocketdyne; Rocketdyne NTR model; and nuclear thermal rocket modeling directions.

  14. Fundamental differences between optimization code test problems in engineering applications

    NASA Technical Reports Server (NTRS)

    Eason, E. D.

    1984-01-01

    The purpose here is to suggest that there is at least one fundamental difference between the problems used for testing optimization codes and the problems that engineers often need to solve; in particular, the level of precision that can be practically achieved in the numerical evaluation of the objective function, derivatives, and constraints. This difference affects the performance of optimization codes, as illustrated by two examples. Two classes of optimization problem were defined. Class One functions and constraints can be evaluated to a high precision that depends primarily on the word length of the computer. Class Two functions and/or constraints can only be evaluated to a moderate or a low level of precision for economic or modeling reasons, regardless of the computer word length. Optimization codes have not been adequately tested on Class Two problems. There are very few Class Two test problems in the literature, while there are literally hundreds of Class One test problems. The relative performance of two codes may be markedly different for Class One and Class Two problems. Less sophisticated direct search type codes may be less likely to be confused or to waste many function evaluations on Class Two problems. The analysis accuracy and minimization performance are related in a complex way that probably varies from code to code. On a problem where the analysis precision was varied over a range, the simple Hooke and Jeeves code was more efficient at low precision while the Powell code was more efficient at high precision.

  15. Performance Analysis of a De-correlated Modified Code Tracking Loop for Synchronous DS-CDMA System under Multiuser Environment

    NASA Astrophysics Data System (ADS)

    Wu, Ya-Ting; Wong, Wai-Ki; Leung, Shu-Hung; Zhu, Yue-Sheng

    This paper presents the performance analysis of a De-correlated Modified Code Tracking Loop (D-MCTL) for synchronous direct-sequence code-division multiple-access (DS-CDMA) systems under multiuser environment. Previous studies have shown that the imbalance of multiple access interference (MAI) in the time lead and time lag portions of the signal causes tracking bias or instability problem in the traditional correlating tracking loop like delay lock loop (DLL) or modified code tracking loop (MCTL). In this paper, we exploit the de-correlating technique to combat the MAI at the on-time code position of the MCTL. Unlike applying the same technique to DLL which requires an extensive search algorithm to compensate the noise imbalance which may introduce small tracking bias under low signal-to-noise ratio (SNR), the proposed D-MCTL has much lower computational complexity and exhibits zero tracking bias for the whole range of SNR, regardless of the number of interfering users. Furthermore, performance analysis and simulations based on Gold codes show that the proposed scheme has better mean square tracking error, mean-time-to-lose-lock and near-far resistance than the other tracking schemes, including traditional DLL (T-DLL), traditional MCTL (T-MCTL) and modified de-correlated DLL (MD-DLL).

  16. Recursive optimal pruning with applications to tree structured vector quantizers

    NASA Technical Reports Server (NTRS)

    Kiang, Shei-Zein; Baker, Richard L.; Sullivan, Gary J.; Chiu, Chung-Yen

    1992-01-01

    A pruning algorithm of Chou et al. (1989) for designing optimal tree structures identifies only those codebooks which lie on the convex hull of the original codebook's operational distortion rate function. The authors introduce a modified version of the original algorithm, which identifies a large number of codebooks having minimum average distortion, under the constraint that, in each step, only modes having no descendents are removed from the tree. All codebooks generated by the original algorithm are also generated by this algorithm. The new algorithm generates a much larger number of codebooks in the middle- and low-rate regions. The additional codebooks permit operation near the codebook's operational distortion rate function without time sharing by choosing from the increased number of available bit rates. Despite the statistical mismatch which occurs when coding data outside the training sequence, these pruned codebooks retain their performance advantage over full search vector quantizers (VQs) for a large range of rates.

  17. Neural networks for vertical microcode compaction

    NASA Astrophysics Data System (ADS)

    Chu, Pong P.

    1992-09-01

    Neural networks provide an alternative way to solve complex optimization problems. Instead of performing a program of instructions sequentially as in a traditional computer, neural network model explores many competing hypotheses simultaneously using its massively parallel net. The paper shows how to use the neural network approach to perform vertical micro-code compaction for a micro-programmed control unit. The compaction procedure includes two basic steps. The first step determines the compatibility classes and the second step selects a minimal subset to cover the control signals. Since the selection process is an NP- complete problem, to find an optimal solution is impractical. In this study, we employ a customized neural network to obtain the minimal subset. We first formalize this problem, and then define an `energy function' and map it to a two-layer fully connected neural network. The modified network has two types of neurons and can always obtain a valid solution.

  18. Re-evaluation of an Optimized Second Order Backward Difference (BDF2OPT) Scheme for Unsteady Flow Applications

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Carpenter, Mark H.; Lockard, David P.

    2009-01-01

    Recent experience in the application of an optimized, second-order, backward-difference (BDF2OPT) temporal scheme is reported. The primary focus of the work is on obtaining accurate solutions of the unsteady Reynolds-averaged Navier-Stokes equations over long periods of time for aerodynamic problems of interest. The baseline flow solver under consideration uses a particular BDF2OPT temporal scheme with a dual-time-stepping algorithm for advancing the flow solutions in time. Numerical difficulties are encountered with this scheme when the flow code is run for a large number of time steps, a behavior not seen with the standard second-order, backward-difference, temporal scheme. Based on a stability analysis, slight modifications to the BDF2OPT scheme are suggested. The performance and accuracy of this modified scheme is assessed by comparing the computational results with other numerical schemes and experimental data.

  19. Developing and Modifying Behavioral Coding Schemes in Pediatric Psychology: A Practical Guide

    PubMed Central

    McMurtry, C. Meghan; Chambers, Christine T.; Bakeman, Roger

    2015-01-01

    Objectives To provide a concise and practical guide to the development, modification, and use of behavioral coding schemes for observational data in pediatric psychology. Methods This article provides a review of relevant literature and experience in developing and refining behavioral coding schemes. Results A step-by-step guide to developing and/or modifying behavioral coding schemes is provided. Major steps include refining a research question, developing or refining the coding manual, piloting and refining the coding manual, and implementing the coding scheme. Major tasks within each step are discussed, and pediatric psychology examples are provided throughout. Conclusions Behavioral coding can be a complex and time-intensive process, but the approach is invaluable in allowing researchers to address clinically relevant research questions in ways that would not otherwise be possible. PMID:25416837

  20. Optimization of Aerospace Structure Subject to Damage Tolerance Criteria

    NASA Technical Reports Server (NTRS)

    Akgun, Mehmet A.

    1999-01-01

    The objective of this cooperative agreement was to seek computationally efficient ways to optimize aerospace structures subject to damage tolerance criteria. Optimization was to involve sizing as well as topology optimization. The work was done in collaboration with Steve Scotti, Chauncey Wu and Joanne Walsh at the NASA Langley Research Center. Computation of constraint sensitivity is normally the most time-consuming step of an optimization procedure. The cooperative work first focused on this issue and implemented the adjoint method of sensitivity computation in an optimization code (runstream) written in Engineering Analysis Language (EAL). The method was implemented both for bar and plate elements including buckling sensitivity for the latter. Lumping of constraints was investigated as a means to reduce the computational cost. Adjoint sensitivity computation was developed and implemented for lumped stress and buckling constraints. Cost of the direct method and the adjoint method was compared for various structures with and without lumping. The results were reported in two papers. It is desirable to optimize topology of an aerospace structure subject to a large number of damage scenarios so that a damage tolerant structure is obtained. Including damage scenarios in the design procedure is critical in order to avoid large mass penalties at later stages. A common method for topology optimization is that of compliance minimization which has not been used for damage tolerant design. In the present work, topology optimization is treated as a conventional problem aiming to minimize the weight subject to stress constraints. Multiple damage configurations (scenarios) are considered. Each configuration has its own structural stiffness matrix and, normally, requires factoring of the matrix and solution of the system of equations. Damage that is expected to be tolerated is local and represents a small change in the stiffness matrix compared to the baseline (undamaged) structure. The exact solution to a slightly modified set of equations can be obtained from the baseline solution economically without actually solving the modified system. Sherrnan-Morrison-Woodbury (SMW) formulas are matrix update formulas that allow this. SMW formulas were therefore used here to compute adjoint displacements for sensitivity computation and structural displacements in damaged configurations.

  1. A Multi-Scale, Multi-Physics Optimization Framework for Additively Manufactured Structural Components

    NASA Astrophysics Data System (ADS)

    El-Wardany, Tahany; Lynch, Mathew; Gu, Wenjiong; Hsu, Arthur; Klecka, Michael; Nardi, Aaron; Viens, Daniel

    This paper proposes an optimization framework enabling the integration of multi-scale / multi-physics simulation codes to perform structural optimization design for additively manufactured components. Cold spray was selected as the additive manufacturing (AM) process and its constraints were identified and included in the optimization scheme. The developed framework first utilizes topology optimization to maximize stiffness for conceptual design. The subsequent step applies shape optimization to refine the design for stress-life fatigue. The component weight was reduced by 20% while stresses were reduced by 75% and the rigidity was improved by 37%. The framework and analysis codes were implemented using Altair software as well as an in-house loading code. The optimized design was subsequently produced by the cold spray process.

  2. Optimized atom position and coefficient coding for matching pursuit-based image compression.

    PubMed

    Shoa, Alireza; Shirani, Shahram

    2009-12-01

    In this paper, we propose a new encoding algorithm for matching pursuit image coding. We show that coding performance is improved when correlations between atom positions and atom coefficients are both used in encoding. We find the optimum tradeoff between efficient atom position coding and efficient atom coefficient coding and optimize the encoder parameters. Our proposed algorithm outperforms the existing coding algorithms designed for matching pursuit image coding. Additionally, we show that our algorithm results in better rate distortion performance than JPEG 2000 at low bit rates.

  3. Optimizing fusion PIC code performance at scale on Cori Phase 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koskela, T. S.; Deslippe, J.

    In this paper we present the results of optimizing the performance of the gyrokinetic full-f fusion PIC code XGC1 on the Cori Phase Two Knights Landing system. The code has undergone substantial development to enable the use of vector instructions in its most expensive kernels within the NERSC Exascale Science Applications Program. We study the single-node performance of the code on an absolute scale using the roofline methodology to guide optimization efforts. We have obtained 2x speedups in single node performance due to enabling vectorization and performing memory layout optimizations. On multiple nodes, the code is shown to scale wellmore » up to 4000 nodes, near half the size of the machine. We discuss some communication bottlenecks that were identified and resolved during the work.« less

  4. Joint-layer encoder optimization for HEVC scalable extensions

    NASA Astrophysics Data System (ADS)

    Tsai, Chia-Ming; He, Yuwen; Dong, Jie; Ye, Yan; Xiu, Xiaoyu; He, Yong

    2014-09-01

    Scalable video coding provides an efficient solution to support video playback on heterogeneous devices with various channel conditions in heterogeneous networks. SHVC is the latest scalable video coding standard based on the HEVC standard. To improve enhancement layer coding efficiency, inter-layer prediction including texture and motion information generated from the base layer is used for enhancement layer coding. However, the overall performance of the SHVC reference encoder is not fully optimized because rate-distortion optimization (RDO) processes in the base and enhancement layers are independently considered. It is difficult to directly extend the existing joint-layer optimization methods to SHVC due to the complicated coding tree block splitting decisions and in-loop filtering process (e.g., deblocking and sample adaptive offset (SAO) filtering) in HEVC. To solve those problems, a joint-layer optimization method is proposed by adjusting the quantization parameter (QP) to optimally allocate the bit resource between layers. Furthermore, to make more proper resource allocation, the proposed method also considers the viewing probability of base and enhancement layers according to packet loss rate. Based on the viewing probability, a novel joint-layer RD cost function is proposed for joint-layer RDO encoding. The QP values of those coding tree units (CTUs) belonging to lower layers referenced by higher layers are decreased accordingly, and the QP values of those remaining CTUs are increased to keep total bits unchanged. Finally the QP values with minimal joint-layer RD cost are selected to match the viewing probability. The proposed method was applied to the third temporal level (TL-3) pictures in the Random Access configuration. Simulation results demonstrate that the proposed joint-layer optimization method can improve coding performance by 1.3% for these TL-3 pictures compared to the SHVC reference encoder without joint-layer optimization.

  5. Optimization of Particle-in-Cell Codes on RISC Processors

    NASA Technical Reports Server (NTRS)

    Decyk, Viktor K.; Karmesin, Steve Roy; Boer, Aeint de; Liewer, Paulette C.

    1996-01-01

    General strategies are developed to optimize particle-cell-codes written in Fortran for RISC processors which are commonly used on massively parallel computers. These strategies include data reorganization to improve cache utilization and code reorganization to improve efficiency of arithmetic pipelines.

  6. Optimal modified tracking performance for MIMO networked control systems with communication constraints.

    PubMed

    Wu, Jie; Zhou, Zhu-Jun; Zhan, Xi-Sheng; Yan, Huai-Cheng; Ge, Ming-Feng

    2017-05-01

    This paper investigates the optimal modified tracking performance of multi-input multi-output (MIMO) networked control systems (NCSs) with packet dropouts and bandwidth constraints. Some explicit expressions are obtained by using co-prime factorization and the spectral decomposition technique. The obtained results show that the optimal modified tracking performance is related to the intrinsic properties of a given plant such as non-minimum phase (NMP) zeros, unstable poles, and their directions. Furthermore, the modified factor, packet dropouts probability and bandwidth also impact the optimal modified tracking performance of the NCSs. The optimal modified tracking performance with channel input power constraint is obtained by searching through all stabilizing two-parameter compensator. Finally, some typical examples are given to illustrate the effectiveness of the theoretical results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Performance enhancement of optical code-division multiple-access systems using transposed modified Walsh code

    NASA Astrophysics Data System (ADS)

    Sikder, Somali; Ghosh, Shila

    2018-02-01

    This paper presents the construction of unipolar transposed modified Walsh code (TMWC) and analysis of its performance in optical code-division multiple-access (OCDMA) systems. Specifically, the signal-to-noise ratio, bit error rate (BER), cardinality, and spectral efficiency were investigated. The theoretical analysis demonstrated that the wavelength-hopping time-spreading system using TMWC was robust against multiple-access interference and more spectrally efficient than systems using other existing OCDMA codes. In particular, the spectral efficiency was calculated to be 1.0370 when TMWC of weight 3 was employed. The BER and eye pattern for the designed TMWC were also successfully obtained using OptiSystem simulation software. The results indicate that the proposed code design is promising for enhancing network capacity.

  8. Optimal aggregation of binary classifiers for multiclass cancer diagnosis using gene expression profiles.

    PubMed

    Yukinawa, Naoto; Oba, Shigeyuki; Kato, Kikuya; Ishii, Shin

    2009-01-01

    Multiclass classification is one of the fundamental tasks in bioinformatics and typically arises in cancer diagnosis studies by gene expression profiling. There have been many studies of aggregating binary classifiers to construct a multiclass classifier based on one-versus-the-rest (1R), one-versus-one (11), or other coding strategies, as well as some comparison studies between them. However, the studies found that the best coding depends on each situation. Therefore, a new problem, which we call the "optimal coding problem," has arisen: how can we determine which coding is the optimal one in each situation? To approach this optimal coding problem, we propose a novel framework for constructing a multiclass classifier, in which each binary classifier to be aggregated has a weight value to be optimally tuned based on the observed data. Although there is no a priori answer to the optimal coding problem, our weight tuning method can be a consistent answer to the problem. We apply this method to various classification problems including a synthesized data set and some cancer diagnosis data sets from gene expression profiling. The results demonstrate that, in most situations, our method can improve classification accuracy over simple voting heuristics and is better than or comparable to state-of-the-art multiclass predictors.

  9. 10Gbps 2D MGC OCDMA Code over FSO Communication System

    NASA Astrophysics Data System (ADS)

    Professor Urmila Bhanja, Associate, Dr.; Khuntia, Arpita; Alamasety Swati, (Student

    2017-08-01

    Currently, wide bandwidth signal dissemination along with low latency is a leading requisite in various applications. Free space optical wireless communication has introduced as a realistic technology for bridging the gap in present high data transmission fiber connectivity and as a provisional backbone for rapidly deployable wireless communication infrastructure. The manuscript highlights on the implementation of 10Gbps SAC-OCDMA FSO communications using modified two dimensional Golomb code (2D MGC) that possesses better auto correlation, minimum cross correlation and high cardinality. A comparison based on pseudo orthogonal (PSO) matrix code and modified two dimensional Golomb code (2D MGC) is developed in the proposed SAC OCDMA-FSO communication module taking different parameters into account. The simulative outcome signifies that the communication radius is bounded by the multiple access interference (MAI). In this work, a comparison is made in terms of bit error rate (BER), and quality factor (Q) based on modified two dimensional Golomb code (2D MGC) and PSO matrix code. It is observed that the 2D MGC yields better results compared to the PSO matrix code. The simulation results are validated using optisystem version 14.

  10. Optimal patch code design via device characterization

    NASA Astrophysics Data System (ADS)

    Wu, Wencheng; Dalal, Edul N.

    2012-01-01

    In many color measurement applications, such as those for color calibration and profiling, "patch code" has been used successfully for job identification and automation to reduce operator errors. A patch code is similar to a barcode, but is intended primarily for use in measurement devices that cannot read barcodes due to limited spatial resolution, such as spectrophotometers. There is an inherent tradeoff between decoding robustness and the number of code levels available for encoding. Previous methods have attempted to address this tradeoff, but those solutions have been sub-optimal. In this paper, we propose a method to design optimal patch codes via device characterization. The tradeoff between decoding robustness and the number of available code levels is optimized in terms of printing and measurement efforts, and decoding robustness against noises from the printing and measurement devices. Effort is drastically reduced relative to previous methods because print-and-measure is minimized through modeling and the use of existing printer profiles. Decoding robustness is improved by distributing the code levels in CIE Lab space rather than in CMYK space.

  11. Optimal bit allocation for hybrid scalable/multiple-description video transmission over wireless channels

    NASA Astrophysics Data System (ADS)

    Jubran, Mohammad K.; Bansal, Manu; Kondi, Lisimachos P.

    2006-01-01

    In this paper, we consider the problem of optimal bit allocation for wireless video transmission over fading channels. We use a newly developed hybrid scalable/multiple-description codec that combines the functionality of both scalable and multiple-description codecs. It produces a base layer and multiple-description enhancement layers. Any of the enhancement layers can be decoded (in a non-hierarchical manner) with the base layer to improve the reconstructed video quality. Two different channel coding schemes (Rate-Compatible Punctured Convolutional (RCPC)/Cyclic Redundancy Check (CRC) coding and, product code Reed Solomon (RS)+RCPC/CRC coding) are used for unequal error protection of the layered bitstream. Optimal allocation of the bitrate between source and channel coding is performed for discrete sets of source coding rates and channel coding rates. Experimental results are presented for a wide range of channel conditions. Also, comparisons with classical scalable coding show the effectiveness of using hybrid scalable/multiple-description coding for wireless transmission.

  12. DSP code optimization based on cache

    NASA Astrophysics Data System (ADS)

    Xu, Chengfa; Li, Chengcheng; Tang, Bin

    2013-03-01

    DSP program's running efficiency on board is often lower than which via the software simulation during the program development, which is mainly resulted from the user's improper use and incomplete understanding of the cache-based memory. This paper took the TI TMS320C6455 DSP as an example, analyzed its two-level internal cache, and summarized the methods of code optimization. Processor can achieve its best performance when using these code optimization methods. At last, a specific algorithm application in radar signal processing is proposed. Experiment result shows that these optimization are efficient.

  13. Demonstration of Automatically-Generated Adjoint Code for Use in Aerodynamic Shape Optimization

    NASA Technical Reports Server (NTRS)

    Green, Lawrence; Carle, Alan; Fagan, Mike

    1999-01-01

    Gradient-based optimization requires accurate derivatives of the objective function and constraints. These gradients may have previously been obtained by manual differentiation of analysis codes, symbolic manipulators, finite-difference approximations, or existing automatic differentiation (AD) tools such as ADIFOR (Automatic Differentiation in FORTRAN). Each of these methods has certain deficiencies, particularly when applied to complex, coupled analyses with many design variables. Recently, a new AD tool called ADJIFOR (Automatic Adjoint Generation in FORTRAN), based upon ADIFOR, was developed and demonstrated. Whereas ADIFOR implements forward-mode (direct) differentiation throughout an analysis program to obtain exact derivatives via the chain rule of calculus, ADJIFOR implements the reverse-mode counterpart of the chain rule to obtain exact adjoint form derivatives from FORTRAN code. Automatically-generated adjoint versions of the widely-used CFL3D computational fluid dynamics (CFD) code and an algebraic wing grid generation code were obtained with just a few hours processing time using the ADJIFOR tool. The codes were verified for accuracy and were shown to compute the exact gradient of the wing lift-to-drag ratio, with respect to any number of shape parameters, in about the time required for 7 to 20 function evaluations. The codes have now been executed on various computers with typical memory and disk space for problems with up to 129 x 65 x 33 grid points, and for hundreds to thousands of independent variables. These adjoint codes are now used in a gradient-based aerodynamic shape optimization problem for a swept, tapered wing. For each design iteration, the optimization package constructs an approximate, linear optimization problem, based upon the current objective function, constraints, and gradient values. The optimizer subroutines are called within a design loop employing the approximate linear problem until an optimum shape is found, the design loop limit is reached, or no further design improvement is possible due to active design variable bounds and/or constraints. The resulting shape parameters are then used by the grid generation code to define a new wing surface and computational grid. The lift-to-drag ratio and its gradient are computed for the new design by the automatically-generated adjoint codes. Several optimization iterations may be required to find an optimum wing shape. Results from two sample cases will be discussed. The reader should note that this work primarily represents a demonstration of use of automatically- generated adjoint code within an aerodynamic shape optimization. As such, little significance is placed upon the actual optimization results, relative to the method for obtaining the results.

  14. Developing and modifying behavioral coding schemes in pediatric psychology: a practical guide.

    PubMed

    Chorney, Jill MacLaren; McMurtry, C Meghan; Chambers, Christine T; Bakeman, Roger

    2015-01-01

    To provide a concise and practical guide to the development, modification, and use of behavioral coding schemes for observational data in pediatric psychology. This article provides a review of relevant literature and experience in developing and refining behavioral coding schemes. A step-by-step guide to developing and/or modifying behavioral coding schemes is provided. Major steps include refining a research question, developing or refining the coding manual, piloting and refining the coding manual, and implementing the coding scheme. Major tasks within each step are discussed, and pediatric psychology examples are provided throughout. Behavioral coding can be a complex and time-intensive process, but the approach is invaluable in allowing researchers to address clinically relevant research questions in ways that would not otherwise be possible. © The Author 2014. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Learning to Estimate Dynamical State with Probabilistic Population Codes.

    PubMed

    Makin, Joseph G; Dichter, Benjamin K; Sabes, Philip N

    2015-11-01

    Tracking moving objects, including one's own body, is a fundamental ability of higher organisms, playing a central role in many perceptual and motor tasks. While it is unknown how the brain learns to follow and predict the dynamics of objects, it is known that this process of state estimation can be learned purely from the statistics of noisy observations. When the dynamics are simply linear with additive Gaussian noise, the optimal solution is the well known Kalman filter (KF), the parameters of which can be learned via latent-variable density estimation (the EM algorithm). The brain does not, however, directly manipulate matrices and vectors, but instead appears to represent probability distributions with the firing rates of population of neurons, "probabilistic population codes." We show that a recurrent neural network-a modified form of an exponential family harmonium (EFH)-that takes a linear probabilistic population code as input can learn, without supervision, to estimate the state of a linear dynamical system. After observing a series of population responses (spike counts) to the position of a moving object, the network learns to represent the velocity of the object and forms nearly optimal predictions about the position at the next time-step. This result builds on our previous work showing that a similar network can learn to perform multisensory integration and coordinate transformations for static stimuli. The receptive fields of the trained network also make qualitative predictions about the developing and learning brain: tuning gradually emerges for higher-order dynamical states not explicitly present in the inputs, appearing as delayed tuning for the lower-order states.

  16. Learning to Estimate Dynamical State with Probabilistic Population Codes

    PubMed Central

    Sabes, Philip N.

    2015-01-01

    Tracking moving objects, including one’s own body, is a fundamental ability of higher organisms, playing a central role in many perceptual and motor tasks. While it is unknown how the brain learns to follow and predict the dynamics of objects, it is known that this process of state estimation can be learned purely from the statistics of noisy observations. When the dynamics are simply linear with additive Gaussian noise, the optimal solution is the well known Kalman filter (KF), the parameters of which can be learned via latent-variable density estimation (the EM algorithm). The brain does not, however, directly manipulate matrices and vectors, but instead appears to represent probability distributions with the firing rates of population of neurons, “probabilistic population codes.” We show that a recurrent neural network—a modified form of an exponential family harmonium (EFH)—that takes a linear probabilistic population code as input can learn, without supervision, to estimate the state of a linear dynamical system. After observing a series of population responses (spike counts) to the position of a moving object, the network learns to represent the velocity of the object and forms nearly optimal predictions about the position at the next time-step. This result builds on our previous work showing that a similar network can learn to perform multisensory integration and coordinate transformations for static stimuli. The receptive fields of the trained network also make qualitative predictions about the developing and learning brain: tuning gradually emerges for higher-order dynamical states not explicitly present in the inputs, appearing as delayed tuning for the lower-order states. PMID:26540152

  17. Boltzmann Transport Code Update: Parallelization and Integrated Design Updates

    NASA Technical Reports Server (NTRS)

    Heinbockel, J. H.; Nealy, J. E.; DeAngelis, G.; Feldman, G. A.; Chokshi, S.

    2003-01-01

    The on going efforts at developing a web site for radiation analysis is expected to result in an increased usage of the High Charge and Energy Transport Code HZETRN. It would be nice to be able to do the requested calculations quickly and efficiently. Therefore the question arose, "Could the implementation of parallel processing speed up the calculations required?" To answer this question two modifications of the HZETRN computer code were created. The first modification selected the shield material of Al(2219) , then polyethylene and then Al(2219). The modified Fortran code was labeled 1SSTRN.F. The second modification considered the shield material of CO2 and Martian regolith. This modified Fortran code was labeled MARSTRN.F.

  18. User's manual for the BNW-II optimization code for dry/wet-cooled power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braun, D.J.; Bamberger, J.A.; Braun, D.J.

    1978-05-01

    This volume provides a listing of the BNW-II dry/wet ammonia heat rejection optimization code and is an appendix to Volume I which gives a narrative description of the code's algorithms as well as logic, input and output information.

  19. The "Wow! signal" of the terrestrial genetic code

    NASA Astrophysics Data System (ADS)

    shCherbak, Vladimir I.; Makukov, Maxim A.

    2013-05-01

    It has been repeatedly proposed to expand the scope for SETI, and one of the suggested alternatives to radio is the biological media. Genomic DNA is already used on Earth to store non-biological information. Though smaller in capacity, but stronger in noise immunity is the genetic code. The code is a flexible mapping between codons and amino acids, and this flexibility allows modifying the code artificially. But once fixed, the code might stay unchanged over cosmological timescales; in fact, it is the most durable construct known. Therefore it represents an exceptionally reliable storage for an intelligent signature, if that conforms to biological and thermodynamic requirements. As the actual scenario for the origin of terrestrial life is far from being settled, the proposal that it might have been seeded intentionally cannot be ruled out. A statistically strong intelligent-like "signal" in the genetic code is then a testable consequence of such scenario. Here we show that the terrestrial code displays a thorough precision-type orderliness matching the criteria to be considered an informational signal. Simple arrangements of the code reveal an ensemble of arithmetical and ideographical patterns of the same symbolic language. Accurate and systematic, these underlying patterns appear as a product of precision logic and nontrivial computing rather than of stochastic processes (the null hypothesis that they are due to chance coupled with presumable evolutionary pathways is rejected with P-value < 10-13). The patterns are profound to the extent that the code mapping itself is uniquely deduced from their algebraic representation. The signal displays readily recognizable hallmarks of artificiality, among which are the symbol of zero, the privileged decimal syntax and semantical symmetries. Besides, extraction of the signal involves logically straightforward but abstract operations, making the patterns essentially irreducible to any natural origin. Plausible ways of embedding the signal into the code and possible interpretation of its content are discussed. Overall, while the code is nearly optimized biologically, its limited capacity is used extremely efficiently to pass non-biological information.

  20. S-Genius, a universal software platform with versatile inverse problem resolution for scatterometry

    NASA Astrophysics Data System (ADS)

    Fuard, David; Troscompt, Nicolas; El Kalyoubi, Ismael; Soulan, Sébastien; Besacier, Maxime

    2013-05-01

    S-Genius is a new universal scatterometry platform, which gathers all the LTM-CNRS know-how regarding the rigorous electromagnetic computation and several inverse problem solver solutions. This software platform is built to be a userfriendly, light, swift, accurate, user-oriented scatterometry tool, compatible with any ellipsometric measurements to fit and any types of pattern. It aims to combine a set of inverse problem solver capabilities — via adapted Levenberg- Marquard optimization, Kriging, Neural Network solutions — that greatly improve the reliability and the velocity of the solution determination. Furthermore, as the model solution is mainly vulnerable to materials optical properties, S-Genius may be coupled with an innovative material refractive indices determination. This paper will a little bit more focuses on the modified Levenberg-Marquardt optimization, one of the indirect method solver built up in parallel with the total SGenius software coding by yours truly. This modified Levenberg-Marquardt optimization corresponds to a Newton algorithm with an adapted damping parameter regarding the definition domains of the optimized parameters. Currently, S-Genius is technically ready for scientific collaboration, python-powered, multi-platform (windows/linux/macOS), multi-core, ready for 2D- (infinite features along the direction perpendicular to the incident plane), conical, and 3D-features computation, compatible with all kinds of input data from any possible ellipsometers (angle or wavelength resolved) or reflectometers, and widely used in our laboratory for resist trimming studies, etching features characterization (such as complex stack) or nano-imprint lithography measurements for instance. The work about kriging solver, neural network solver and material refractive indices determination is done (or about to) by other LTM members and about to be integrated on S-Genius platform.

  1. Code Development in Coupled PARCS/RELAP5 for Supercritical Water Reactor

    DOE PAGES

    Hu, Po; Wilson, Paul

    2014-01-01

    The new capability is added to the existing coupled code package PARCS/RELAP5, in order to analyze SCWR design under supercritical pressure with the separated water coolant and moderator channels. This expansion is carried out on both codes. In PARCS, modification is focused on extending the water property tables to supercritical pressure, modifying the variable mapping input file and related code module for processing thermal-hydraulic information from separated coolant/moderator channels, and modifying neutronics feedback module to deal with the separated coolant/moderator channels. In RELAP5, modification is focused on incorporating more accurate water properties near SCWR operation/transient pressure and temperature in themore » code. Confirming tests of the modifications is presented and the major analyzing results from the extended codes package are summarized.« less

  2. The Use of a Code-generating System for the Derivation of the Equations for Wind Turbine Dynamics

    NASA Astrophysics Data System (ADS)

    Ganander, Hans

    2003-10-01

    For many reasons the size of wind turbines on the rapidly growing wind energy market is increasing. Relations between aeroelastic properties of these new large turbines change. Modifications of turbine designs and control concepts are also influenced by growing size. All these trends require development of computer codes for design and certification. Moreover, there is a strong desire for design optimization procedures, which require fast codes. General codes, e.g. finite element codes, normally allow such modifications and improvements of existing wind turbine models. This is done relatively easy. However, the calculation times of such codes are unfavourably long, certainly for optimization use. The use of an automatic code generating system is an alternative for relevance of the two key issues, the code and the design optimization. This technique can be used for rapid generation of codes of particular wind turbine simulation models. These ideas have been followed in the development of new versions of the wind turbine simulation code VIDYN. The equations of the simulation model were derived according to the Lagrange equation and using Mathematica®, which was directed to output the results in Fortran code format. In this way the simulation code is automatically adapted to an actual turbine model, in terms of subroutines containing the equations of motion, definitions of parameters and degrees of freedom. Since the start in 1997, these methods, constituting a systematic way of working, have been used to develop specific efficient calculation codes. The experience with this technique has been very encouraging, inspiring the continued development of new versions of the simulation code as the need has arisen, and the interest for design optimization is growing.

  3. Monte Carlo tests of the ELIPGRID-PC algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, J.R.

    1995-04-01

    The standard tool for calculating the probability of detecting pockets of contamination called hot spots has been the ELIPGRID computer code of Singer and Wickman. The ELIPGRID-PC program has recently made this algorithm available for an IBM{reg_sign} PC. However, no known independent validation of the ELIPGRID algorithm exists. This document describes a Monte Carlo simulation-based validation of a modified version of the ELIPGRID-PC code. The modified ELIPGRID-PC code is shown to match Monte Carlo-calculated hot-spot detection probabilities to within {plus_minus}0.5% for 319 out of 320 test cases. The one exception, a very thin elliptical hot spot located within a rectangularmore » sampling grid, differed from the Monte Carlo-calculated probability by about 1%. These results provide confidence in the ability of the modified ELIPGRID-PC code to accurately predict hot-spot detection probabilities within an acceptable range of error.« less

  4. Shared prefetching to reduce execution skew in multi-threaded systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichenberger, Alexandre E; Gunnels, John A

    Mechanisms are provided for optimizing code to perform prefetching of data into a shared memory of a computing device that is shared by a plurality of threads that execute on the computing device. A memory stream of a portion of code that is shared by the plurality of threads is identified. A set of prefetch instructions is distributed across the plurality of threads. Prefetch instructions are inserted into the instruction sequences of the plurality of threads such that each instruction sequence has a separate sub-portion of the set of prefetch instructions, thereby generating optimized code. Executable code is generated basedmore » on the optimized code and stored in a storage device. The executable code, when executed, performs the prefetches associated with the distributed set of prefetch instructions in a shared manner across the plurality of threads.« less

  5. Aeroelastic Tailoring Study of N+2 Low-Boom Supersonic Commercial Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi

    2015-01-01

    The Lockheed Martins N+2 Low-boom Supersonic Commercial Transport (LSCT) aircraft is optimized in this study through the use of a multidisciplinary design optimization tool developed at the NASA Armstrong Flight Research Center. A total of 111 design variables are used in the first optimization run. Total structural weight is the objective function in this optimization run. Design requirements for strength, buckling, and flutter are selected as constraint functions during the first optimization run. The MSC Nastran code is used to obtain the modal, strength, and buckling characteristics. Flutter and trim analyses are based on ZAERO code and landing and ground control loads are computed using an in-house code.

  6. The DOPEX code: An application of the method of steepest descent to laminated-shield-weight optimization with several constraints

    NASA Technical Reports Server (NTRS)

    Lahti, G. P.

    1972-01-01

    A two- or three-constraint, two-dimensional radiation shield weight optimization procedure and a computer program, DOPEX, is described. The DOPEX code uses the steepest descent method to alter a set of initial (input) thicknesses for a shield configuration to achieve a minimum weight while simultaneously satisfying dose constaints. The code assumes an exponential dose-shield thickness relation with parameters specified by the user. The code also assumes that dose rates in each principal direction are dependent only on thicknesses in that direction. Code input instructions, FORTRAN 4 listing, and a sample problem are given. Typical computer time required to optimize a seven-layer shield is about 0.1 minute on an IBM 7094-2.

  7. Gear optimization

    NASA Technical Reports Server (NTRS)

    Vanderplaats, G. N.; Chen, Xiang; Zhang, Ning-Tian

    1988-01-01

    The use of formal numerical optimization methods for the design of gears is investigated. To achieve this, computer codes were developed for the analysis of spur gears and spiral bevel gears. These codes calculate the life, dynamic load, bending strength, surface durability, gear weight and size, and various geometric parameters. It is necessary to calculate all such important responses because they all represent competing requirements in the design process. The codes developed here were written in subroutine form and coupled to the COPES/ADS general purpose optimization program. This code allows the user to define the optimization problem at the time of program execution. Typical design variables include face width, number of teeth and diametral pitch. The user is free to choose any calculated response as the design objective to minimize or maximize and may impose lower and upper bounds on any calculated responses. Typical examples include life maximization with limits on dynamic load, stress, weight, etc. or minimization of weight subject to limits on life, dynamic load, etc. The research codes were written in modular form for easy expansion and so that they could be combined to create a multiple reduction optimization capability in future.

  8. Dynamic state estimation based on Poisson spike trains—towards a theory of optimal encoding

    NASA Astrophysics Data System (ADS)

    Susemihl, Alex; Meir, Ron; Opper, Manfred

    2013-03-01

    Neurons in the nervous system convey information to higher brain regions by the generation of spike trains. An important question in the field of computational neuroscience is how these sensory neurons encode environmental information in a way which may be simply analyzed by subsequent systems. Many aspects of the form and function of the nervous system have been understood using the concepts of optimal population coding. Most studies, however, have neglected the aspect of temporal coding. Here we address this shortcoming through a filtering theory of inhomogeneous Poisson processes. We derive exact relations for the minimal mean squared error of the optimal Bayesian filter and, by optimizing the encoder, obtain optimal codes for populations of neurons. We also show that a class of non-Markovian, smooth stimuli are amenable to the same treatment, and provide results for the filtering and prediction error which hold for a general class of stochastic processes. This sets a sound mathematical framework for a population coding theory that takes temporal aspects into account. It also formalizes a number of studies which discussed temporal aspects of coding using time-window paradigms, by stating them in terms of correlation times and firing rates. We propose that this kind of analysis allows for a systematic study of temporal coding and will bring further insights into the nature of the neural code.

  9. Electromagnetic plasma simulation in realistic geometries

    NASA Astrophysics Data System (ADS)

    Brandon, S.; Ambrosiano, J. J.; Nielsen, D.

    1991-08-01

    Particle-in-Cell (PIC) calculations have become an indispensable tool to model the nonlinear collective behavior of charged particle species in electromagnetic fields. Traditional finite difference codes, such as CONDOR (2-D) and ARGUS (3-D), are used extensively to design experiments and develop new concepts. A wide variety of physical processes can be modeled simply and efficiently by these codes. However, experiments have become more complex. Geometrical shapes and length scales are becoming increasingly more difficult to model. Spatial resolution requirements for the electromagnetic calculation force large grids and small time steps. Many hours of CRAY YMP time may be required to complete 2-D calculation -- many more for 3-D calculations. In principle, the number of mesh points and particles need only to be increased until all relevant physical processes are resolved. In practice, the size of a calculation is limited by the computer budget. As a result, experimental design is being limited by the ability to calculate, not by the experimenters ingenuity or understanding of the physical processes involved. Several approaches to meet these computational demands are being pursued. Traditional PIC codes continue to be the major design tools. These codes are being actively maintained, optimized, and extended to handle large and more complex problems. Two new formulations are being explored to relax the geometrical constraints of the finite difference codes. A modified finite volume test code, TALUS, uses a data structure compatible with that of standard finite difference meshes. This allows a basic conformal boundary/variable grid capability to be retrofitted to CONDOR. We are also pursuing an unstructured grid finite element code, MadMax. The unstructured mesh approach provides maximum flexibility in the geometrical model while also allowing local mesh refinement.

  10. Mycobacterial RNA isolation optimized for non-coding RNA: high fidelity isolation of 5S rRNA from Mycobacterium bovis BCG reveals novel post-transcriptional processing and a complete spectrum of modified ribonucleosides.

    PubMed

    Hia, Fabian; Chionh, Yok Hian; Pang, Yan Ling Joy; DeMott, Michael S; McBee, Megan E; Dedon, Peter C

    2015-03-11

    A major challenge in the study of mycobacterial RNA biology is the lack of a comprehensive RNA isolation method that overcomes the unusual cell wall to faithfully yield the full spectrum of non-coding RNA (ncRNA) species. Here, we describe a simple and robust procedure optimized for the isolation of total ncRNA, including 5S, 16S and 23S ribosomal RNA (rRNA) and tRNA, from mycobacteria, using Mycobacterium bovis BCG to illustrate the method. Based on a combination of mechanical disruption and liquid and solid-phase technologies, the method produces all major species of ncRNA in high yield and with high integrity, enabling direct chemical and sequence analysis of the ncRNA species. The reproducibility of the method with BCG was evident in bioanalyzer electrophoretic analysis of isolated RNA, which revealed quantitatively significant differences in the ncRNA profiles of exponentially growing and non-replicating hypoxic bacilli. The method also overcame an historical inconsistency in 5S rRNA isolation, with direct sequencing revealing a novel post-transcriptional processing of 5S rRNA to its functional form and with chemical analysis revealing seven post-transcriptional ribonucleoside modifications in the 5S rRNA. This optimized RNA isolation procedure thus provides a means to more rigorously explore the biology of ncRNA species in mycobacteria. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Diversity-optimal power loading for intensity modulated MIMO optical wireless communications.

    PubMed

    Zhang, Yan-Yu; Yu, Hong-Yi; Zhang, Jian-Kang; Zhu, Yi-Jun

    2016-04-18

    In this paper, we consider the design of space code for an intensity modulated direct detection multi-input-multi-output optical wireless communication (IM/DD MIMO-OWC) system, in which channel coefficients are independent and non-identically log-normal distributed, with variances and means known at the transmitter and channel state information available at the receiver. Utilizing the existing space code design criterion for IM/DD MIMO-OWC with a maximum likelihood (ML) detector, we design a diversity-optimal space code (DOSC) that maximizes both large-scale diversity and small-scale diversity gains and prove that the spatial repetition code (RC) with a diversity-optimized power allocation is diversity-optimal among all the high dimensional nonnegative space code schemes under a commonly used optical power constraint. In addition, we show that one of significant advantages of the DOSC is to allow low-complexity ML detection. Simulation results indicate that in high signal-to-noise ratio (SNR) regimes, our proposed DOSC significantly outperforms RC, which is the best space code currently available for such system.

  12. SWB-A modified Thornthwaite-Mather Soil-Water-Balance code for estimating groundwater recharge

    USGS Publications Warehouse

    Westenbroek, S.M.; Kelson, V.A.; Dripps, W.R.; Hunt, R.J.; Bradbury, K.R.

    2010-01-01

    A Soil-Water-Balance (SWB) computer code has been developed to calculate spatial and temporal variations in groundwater recharge. The SWB model calculates recharge by use of commonly available geographic information system (GIS) data layers in combination with tabular climatological data. The code is based on a modified Thornthwaite-Mather soil-water-balance approach, with components of the soil-water balance calculated at a daily timestep. Recharge calculations are made on a rectangular grid of computational elements that may be easily imported into a regional groundwater-flow model. Recharge estimates calculated by the code may be output as daily, monthly, or annual values.

  13. Function-Space-Based Solution Scheme for the Size-Modified Poisson-Boltzmann Equation in Full-Potential DFT.

    PubMed

    Ringe, Stefan; Oberhofer, Harald; Hille, Christoph; Matera, Sebastian; Reuter, Karsten

    2016-08-09

    The size-modified Poisson-Boltzmann (MPB) equation is an efficient implicit solvation model which also captures electrolytic solvent effects. It combines an account of the dielectric solvent response with a mean-field description of solvated finite-sized ions. We present a general solution scheme for the MPB equation based on a fast function-space-oriented Newton method and a Green's function preconditioned iterative linear solver. In contrast to popular multigrid solvers, this approach allows us to fully exploit specialized integration grids and optimized integration schemes. We describe a corresponding numerically efficient implementation for the full-potential density-functional theory (DFT) code FHI-aims. We show that together with an additional Stern layer correction the DFT+MPB approach can describe the mean activity coefficient of a KCl aqueous solution over a wide range of concentrations. The high sensitivity of the calculated activity coefficient on the employed ionic parameters thereby suggests to use extensively tabulated experimental activity coefficients of salt solutions for a systematic parametrization protocol.

  14. Modified Mean-Pyramid Coding Scheme

    NASA Technical Reports Server (NTRS)

    Cheung, Kar-Ming; Romer, Richard

    1996-01-01

    Modified mean-pyramid coding scheme requires transmission of slightly fewer data. Data-expansion factor reduced from 1/3 to 1/12. Schemes for progressive transmission of image data transmitted in sequence of frames in such way coarse version of image reconstructed after receipt of first frame and increasingly refined version of image reconstructed after receipt of each subsequent frame.

  15. Modeling of boron species in the Falcon 17 and ISP-34 integral tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazaridis, M.; Capitao, J.A.; Drossinos, Y.

    1996-09-01

    The RAFT computer code for aerosol formation and transport was modified to include boron species in its chemical database. The modification was necessary to calculate fission product transport and deposition in the FAL-17 and ISP-34 Falcon tests, where boric acid was injected. The experimental results suggest that the transport of cesium is modified in the presence of boron. The results obtained with the modified RAFT code are presented; they show good agreement with experimental results for cesium and partial agreement for boron deposition in the Falcon silica tube. The new version of the RAFT code predicts the same behavior formore » iodine deposition as the previous version, where boron species were not included.« less

  16. The role of crossover operator in evolutionary-based approach to the problem of genetic code optimization.

    PubMed

    Błażej, Paweł; Wnȩtrzak, Małgorzata; Mackiewicz, Paweł

    2016-12-01

    One of theories explaining the present structure of canonical genetic code assumes that it was optimized to minimize harmful effects of amino acid replacements resulting from nucleotide substitutions and translational errors. A way to testify this concept is to find the optimal code under given criteria and compare it with the canonical genetic code. Unfortunately, the huge number of possible alternatives makes it impossible to find the optimal code using exhaustive methods in sensible time. Therefore, heuristic methods should be applied to search the space of possible solutions. Evolutionary algorithms (EA) seem to be ones of such promising approaches. This class of methods is founded both on mutation and crossover operators, which are responsible for creating and maintaining the diversity of candidate solutions. These operators possess dissimilar characteristics and consequently play different roles in the process of finding the best solutions under given criteria. Therefore, the effective searching for the potential solutions can be improved by applying both of them, especially when these operators are devised specifically for a given problem. To study this subject, we analyze the effectiveness of algorithms for various combinations of mutation and crossover probabilities under three models of the genetic code assuming different restrictions on its structure. To achieve that, we adapt the position based crossover operator for the most restricted model and develop a new type of crossover operator for the more general models. The applied fitness function describes costs of amino acid replacement regarding their polarity. Our results indicate that the usage of crossover operators can significantly improve the quality of the solutions. Moreover, the simulations with the crossover operator optimize the fitness function in the smaller number of generations than simulations without this operator. The optimal genetic codes without restrictions on their structure minimize the costs about 2.7 times better than the canonical genetic code. Interestingly, the optimal codes are dominated by amino acids characterized by polarity close to its average value for all amino acids. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Computer optimization of reactor-thermoelectric space power systems

    NASA Technical Reports Server (NTRS)

    Maag, W. L.; Finnegan, P. M.; Fishbach, L. H.

    1973-01-01

    A computer simulation and optimization code that has been developed for nuclear space power systems is described. The results of using this code to analyze two reactor-thermoelectric systems are presented.

  18. Computerized Dental Comparison: A Critical Review of Dental Coding and Ranking Algorithms Used in Victim Identification.

    PubMed

    Adams, Bradley J; Aschheim, Kenneth W

    2016-01-01

    Comparison of antemortem and postmortem dental records is a leading method of victim identification, especially for incidents involving a large number of decedents. This process may be expedited with computer software that provides a ranked list of best possible matches. This study provides a comparison of the most commonly used conventional coding and sorting algorithms used in the United States (WinID3) with a simplified coding format that utilizes an optimized sorting algorithm. The simplified system consists of seven basic codes and utilizes an optimized algorithm based largely on the percentage of matches. To perform this research, a large reference database of approximately 50,000 antemortem and postmortem records was created. For most disaster scenarios, the proposed simplified codes, paired with the optimized algorithm, performed better than WinID3 which uses more complex codes. The detailed coding system does show better performance with extremely large numbers of records and/or significant body fragmentation. © 2015 American Academy of Forensic Sciences.

  19. Modified hybrid subcarrier/amplitude/ phase/polarization LDPC-coded modulation for 400 Gb/s optical transmission and beyond.

    PubMed

    Batshon, Hussam G; Djordjevic, Ivan; Xu, Lei; Wang, Ting

    2010-06-21

    In this paper, we present a modified coded hybrid subcarrier/ amplitude/phase/polarization (H-SAPP) modulation scheme as a technique capable of achieving beyond 400 Gb/s single-channel transmission over optical channels. The modified H-SAPP scheme profits from the available resources in addition to geometry to increase the bandwidth efficiency of the transmission system, and so increases the aggregate rate of the system. In this report we present the modified H-SAPP scheme and focus on an example that allows 11 bits/Symbol that can achieve 440 Gb/s transmission using components of 50 Giga Symbol/s (GS/s).

  20. Product code optimization for determinate state LDPC decoding in robust image transmission.

    PubMed

    Thomos, Nikolaos; Boulgouris, Nikolaos V; Strintzis, Michael G

    2006-08-01

    We propose a novel scheme for error-resilient image transmission. The proposed scheme employs a product coder consisting of low-density parity check (LDPC) codes and Reed-Solomon codes in order to deal effectively with bit errors. The efficiency of the proposed scheme is based on the exploitation of determinate symbols in Tanner graph decoding of LDPC codes and a novel product code optimization technique based on error estimation. Experimental evaluation demonstrates the superiority of the proposed system in comparison to recent state-of-the-art techniques for image transmission.

  1. The 22-Modifier in Reimbursement for Orthopedic Procedures: Hip Arthroplasty and Obesity Are Worth the Effort.

    PubMed

    Smith, Eric L; Tybor, David J; Daniell, Hayley D; Naccarato, Laura A; Pevear, Mary E; Cassidy, Charles

    2018-02-21

    Orthopedic surgeons utilize the 22-modifier when billing for complex procedures under the American Medical Association's Current Procedural Terminology (CPT) for reasons such as excessive blood loss, anatomic abnormality, and morbid obesity, cases that would ideally be reimbursed at a higher rate to compensate for additional physician work and time. We investigated how the 22-modifier affects physician reimbursement in knee and hip arthroplasty. We queried hospital billing data from 2009 to 2016, identifying all cases performed at our urban tertiary care orthopedic center for knee arthroplasty (CPT codes 27438, 27447, 27487, and 27488) and hip arthroplasty (CPT codes 27130, 27132, 27134, 27236). We extracted patient insurance status and reimbursement data to compare the average reimbursement between cases with and without the 22-modifier. We analyzed data from 2605 procedures performed by 10 providers. There were 136 cases with 22-modifiers. For knee arthroplasty (n = 1323), the 22-modifier did not significantly increase reimbursement after adjusting for insurer, provider, and fiscal year (4.2% dollars higher on average, P = .159). For hip arthroplasty (n = 1282), cases with a 22-modifier had significantly higher reimbursement than those without the 22-modifier (6.2% dollars more, P = .049). For hip arthroplasty cases with a 22-modifier, those noting morbid obesity were reimbursed 29% higher than those cases with other etiology. The effect of the 22-modifier on reimbursement amount is differential between knee and hip arthroplasty. Hip arthroplasty procedures coded as 22-modifier are reimbursed more than those without the 22-modifier. Providers should consider these potential returns when considering submitting a 22-modifier. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. AQMAN; linear and quadratic programming matrix generator using two-dimensional ground-water flow simulation for aquifer management modeling

    USGS Publications Warehouse

    Lefkoff, L.J.; Gorelick, S.M.

    1987-01-01

    A FORTRAN-77 computer program code that helps solve a variety of aquifer management problems involving the control of groundwater hydraulics. It is intended for use with any standard mathematical programming package that uses Mathematical Programming System input format. The computer program creates the input files to be used by the optimization program. These files contain all the hydrologic information and management objectives needed to solve the management problem. Used in conjunction with a mathematical programming code, the computer program identifies the pumping or recharge strategy that achieves a user 's management objective while maintaining groundwater hydraulic conditions within desired limits. The objective may be linear or quadratic, and may involve the minimization of pumping and recharge rates or of variable pumping costs. The problem may contain constraints on groundwater heads, gradients, and velocities for a complex, transient hydrologic system. Linear superposition of solutions to the transient, two-dimensional groundwater flow equation is used by the computer program in conjunction with the response matrix optimization method. A unit stress is applied at each decision well and transient responses at all control locations are computed using a modified version of the U.S. Geological Survey two dimensional aquifer simulation model. The program also computes discounted cost coefficients for the objective function and accounts for transient aquifer conditions. (Author 's abstract)

  3. New technologies for advanced three-dimensional optimum shape design in aeronautics

    NASA Astrophysics Data System (ADS)

    Dervieux, Alain; Lanteri, Stéphane; Malé, Jean-Michel; Marco, Nathalie; Rostaing-Schmidt, Nicole; Stoufflet, Bruno

    1999-05-01

    The analysis of complex flows around realistic aircraft geometries is becoming more and more predictive. In order to obtain this result, the complexity of flow analysis codes has been constantly increasing, involving more refined fluid models and sophisticated numerical methods. These codes can only run on top computers, exhausting their memory and CPU capabilities. It is, therefore, difficult to introduce best analysis codes in a shape optimization loop: most previous works in the optimum shape design field used only simplified analysis codes. Moreover, as the most popular optimization methods are the gradient-based ones, the more complex the flow solver, the more difficult it is to compute the sensitivity code. However, emerging technologies are contributing to make such an ambitious project, of including a state-of-the-art flow analysis code into an optimisation loop, feasible. Among those technologies, there are three important issues that this paper wishes to address: shape parametrization, automated differentiation and parallel computing. Shape parametrization allows faster optimization by reducing the number of design variable; in this work, it relies on a hierarchical multilevel approach. The sensitivity code can be obtained using automated differentiation. The automated approach is based on software manipulation tools, which allow the differentiation to be quick and the resulting differentiated code to be rather fast and reliable. In addition, the parallel algorithms implemented in this work allow the resulting optimization software to run on increasingly larger geometries. Copyright

  4. The MCNP-DSP code for calculations of time and frequency analysis parameters for subcritical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valentine, T.E.; Mihalczo, J.T.

    1995-12-31

    This paper describes a modified version of the MCNP code, the MCNP-DSP. Variance reduction features were disabled to have strictly analog particle tracking in order to follow fluctuating processes more accurately. Some of the neutron and photon physics routines were modified to better represent the production of particles. Other modifications are discussed.

  5. Next-generation acceleration and code optimization for light transport in turbid media using GPUs

    PubMed Central

    Alerstam, Erik; Lo, William Chun Yip; Han, Tianyi David; Rose, Jonathan; Andersson-Engels, Stefan; Lilge, Lothar

    2010-01-01

    A highly optimized Monte Carlo (MC) code package for simulating light transport is developed on the latest graphics processing unit (GPU) built for general-purpose computing from NVIDIA - the Fermi GPU. In biomedical optics, the MC method is the gold standard approach for simulating light transport in biological tissue, both due to its accuracy and its flexibility in modelling realistic, heterogeneous tissue geometry in 3-D. However, the widespread use of MC simulations in inverse problems, such as treatment planning for PDT, is limited by their long computation time. Despite its parallel nature, optimizing MC code on the GPU has been shown to be a challenge, particularly when the sharing of simulation result matrices among many parallel threads demands the frequent use of atomic instructions to access the slow GPU global memory. This paper proposes an optimization scheme that utilizes the fast shared memory to resolve the performance bottleneck caused by atomic access, and discusses numerous other optimization techniques needed to harness the full potential of the GPU. Using these techniques, a widely accepted MC code package in biophotonics, called MCML, was successfully accelerated on a Fermi GPU by approximately 600x compared to a state-of-the-art Intel Core i7 CPU. A skin model consisting of 7 layers was used as the standard simulation geometry. To demonstrate the possibility of GPU cluster computing, the same GPU code was executed on four GPUs, showing a linear improvement in performance with an increasing number of GPUs. The GPU-based MCML code package, named GPU-MCML, is compatible with a wide range of graphics cards and is released as an open-source software in two versions: an optimized version tuned for high performance and a simplified version for beginners (http://code.google.com/p/gpumcml). PMID:21258498

  6. Multidisciplinary Analysis and Optimal Design: As Easy as it Sounds?

    NASA Technical Reports Server (NTRS)

    Moore, Greg; Chainyk, Mike; Schiermeier, John

    2004-01-01

    The viewgraph presentation examines optimal design for precision, large aperture structures. Discussion focuses on aspects of design optimization, code architecture and current capabilities, and planned activities and collaborative area suggestions. The discussion of design optimization examines design sensitivity analysis; practical considerations; and new analytical environments including finite element-based capability for high-fidelity multidisciplinary analysis, design sensitivity, and optimization. The discussion of code architecture and current capabilities includes basic thermal and structural elements, nonlinear heat transfer solutions and process, and optical modes generation.

  7. Trellis coding techniques for mobile communications

    NASA Technical Reports Server (NTRS)

    Divsalar, D.; Simon, M. K.; Jedrey, T.

    1988-01-01

    A criterion for designing optimum trellis codes to be used over fading channels is given. A technique is shown for reducing certain multiple trellis codes, optimally designed for the fading channel, to conventional (i.e., multiplicity one) trellis codes. The computational cutoff rate R0 is evaluated for MPSK transmitted over fading channels. Examples of trellis codes optimally designed for the Rayleigh fading channel are given and compared with respect to R0. Two types of modulation/demodulation techniques are considered, namely coherent (using pilot tone-aided carrier recovery) and differentially coherent with Doppler frequency correction. Simulation results are given for end-to-end performance of two trellis-coded systems.

  8. Adjoint Techniques for Topology Optimization of Structures Under Damage Conditions

    NASA Technical Reports Server (NTRS)

    Akgun, Mehmet A.; Haftka, Raphael T.

    2000-01-01

    The objective of this cooperative agreement was to seek computationally efficient ways to optimize aerospace structures subject to damage tolerance criteria. Optimization was to involve sizing as well as topology optimization. The work was done in collaboration with Steve Scotti, Chauncey Wu and Joanne Walsh at the NASA Langley Research Center. Computation of constraint sensitivity is normally the most time-consuming step of an optimization procedure. The cooperative work first focused on this issue and implemented the adjoint method of sensitivity computation (Haftka and Gurdal, 1992) in an optimization code (runstream) written in Engineering Analysis Language (EAL). The method was implemented both for bar and plate elements including buckling sensitivity for the latter. Lumping of constraints was investigated as a means to reduce the computational cost. Adjoint sensitivity computation was developed and implemented for lumped stress and buckling constraints. Cost of the direct method and the adjoint method was compared for various structures with and without lumping. The results were reported in two papers (Akgun et al., 1998a and 1999). It is desirable to optimize topology of an aerospace structure subject to a large number of damage scenarios so that a damage tolerant structure is obtained. Including damage scenarios in the design procedure is critical in order to avoid large mass penalties at later stages (Haftka et al., 1983). A common method for topology optimization is that of compliance minimization (Bendsoe, 1995) which has not been used for damage tolerant design. In the present work, topology optimization is treated as a conventional problem aiming to minimize the weight subject to stress constraints. Multiple damage configurations (scenarios) are considered. Each configuration has its own structural stiffness matrix and, normally, requires factoring of the matrix and solution of the system of equations. Damage that is expected to be tolerated is local and represents a small change in the stiffness matrix compared to the baseline (undamaged) structure. The exact solution to a slightly modified set of equations can be obtained from the baseline solution economically without actually solving the modified system.. Shennan-Morrison-Woodbury (SMW) formulas are matrix update formulas that allow this (Akgun et al., 1998b). SMW formulas were therefore used here to compute adjoint displacements for sensitivity computation and structural displacements in damaged configurations.

  9. Optimization of algorithm of coding of genetic information of Chlamydia

    NASA Astrophysics Data System (ADS)

    Feodorova, Valentina A.; Ulyanov, Sergey S.; Zaytsev, Sergey S.; Saltykov, Yury V.; Ulianova, Onega V.

    2018-04-01

    New method of coding of genetic information using coherent optical fields is developed. Universal technique of transformation of nucleotide sequences of bacterial gene into laser speckle pattern is suggested. Reference speckle patterns of the nucleotide sequences of omp1 gene of typical wild strains of Chlamydia trachomatis of genovars D, E, F, G, J and K and Chlamydia psittaci serovar I as well are generated. Algorithm of coding of gene information into speckle pattern is optimized. Fully developed speckles with Gaussian statistics for gene-based speckles have been used as criterion of optimization.

  10. Development of a turbomachinery design optimization procedure using a multiple-parameter nonlinear perturbation method

    NASA Technical Reports Server (NTRS)

    Stahara, S. S.

    1984-01-01

    An investigation was carried out to complete the preliminary development of a combined perturbation/optimization procedure and associated computational code for designing optimized blade-to-blade profiles of turbomachinery blades. The overall purpose of the procedures developed is to provide demonstration of a rapid nonlinear perturbation method for minimizing the computational requirements associated with parametric design studies of turbomachinery flows. The method combines the multiple parameter nonlinear perturbation method, successfully developed in previous phases of this study, with the NASA TSONIC blade-to-blade turbomachinery flow solver, and the COPES-CONMIN optimization procedure into a user's code for designing optimized blade-to-blade surface profiles of turbomachinery blades. Results of several design applications and a documented version of the code together with a user's manual are provided.

  11. A modified carrier-to-code leveling method for retrieving ionospheric observables and detecting short-term temporal variability of receiver differential code biases

    NASA Astrophysics Data System (ADS)

    Zhang, Baocheng; Teunissen, Peter J. G.; Yuan, Yunbin; Zhang, Xiao; Li, Min

    2018-03-01

    Sensing the ionosphere with the global positioning system involves two sequential tasks, namely the ionospheric observable retrieval and the ionospheric parameter estimation. A prominent source of error has long been identified as short-term variability in receiver differential code bias (rDCB). We modify the carrier-to-code leveling (CCL), a method commonly used to accomplish the first task, through assuming rDCB to be unlinked in time. Aside from the ionospheric observables, which are affected by, among others, the rDCB at one reference epoch, the Modified CCL (MCCL) can also provide the rDCB offsets with respect to the reference epoch as by-products. Two consequences arise. First, MCCL is capable of excluding the effects of time-varying rDCB from the ionospheric observables, which, in turn, improves the quality of ionospheric parameters of interest. Second, MCCL has significant potential as a means to detect between-epoch fluctuations experienced by rDCB of a single receiver.

  12. TRO-2D - A code for rational transonic aerodynamic optimization

    NASA Technical Reports Server (NTRS)

    Davis, W. H., Jr.

    1985-01-01

    Features and sample applications of the transonic rational optimization (TRO-2D) code are outlined. TRO-2D includes the airfoil analysis code FLO-36, the CONMIN optimization code and a rational approach to defining aero-function shapes for geometry modification. The program is part of an effort to develop an aerodynamically smart optimizer that will simplify and shorten the design process. The user has a selection of drag minimization and associated minimum lift, moment, and the pressure distribution, a choice among 14 resident aero-function shapes, and options on aerodynamic and geometric constraints. Design variables such as the angle of attack, leading edge radius and camber, shock strength and movement, supersonic pressure plateau control, etc., are discussed. The results of calculations of a reduced leading edge camber transonic airfoil and an airfoil with a natural laminar flow are provided, showing that only four design variables need be specified to obtain satisfactory results.

  13. Aerodynamic design applying automatic differentiation and using robust variable fidelity optimization

    NASA Astrophysics Data System (ADS)

    Takemiya, Tetsushi

    In modern aerospace engineering, the physics-based computational design method is becoming more important, as it is more efficient than experiments and because it is more suitable in designing new types of aircraft (e.g., unmanned aerial vehicles or supersonic business jets) than the conventional design method, which heavily relies on historical data. To enhance the reliability of the physics-based computational design method, researchers have made tremendous efforts to improve the fidelity of models. However, high-fidelity models require longer computational time, so the advantage of efficiency is partially lost. This problem has been overcome with the development of variable fidelity optimization (VFO). In VFO, different fidelity models are simultaneously employed in order to improve the speed and the accuracy of convergence in an optimization process. Among the various types of VFO methods, one of the most promising methods is the approximation management framework (AMF). In the AMF, objective and constraint functions of a low-fidelity model are scaled at a design point so that the scaled functions, which are referred to as "surrogate functions," match those of a high-fidelity model. Since scaling functions and the low-fidelity model constitutes surrogate functions, evaluating the surrogate functions is faster than evaluating the high-fidelity model. Therefore, in the optimization process, in which gradient-based optimization is implemented and thus many function calls are required, the surrogate functions are used instead of the high-fidelity model to obtain a new design point. The best feature of the AMF is that it may converge to a local optimum of the high-fidelity model in much less computational time than the high-fidelity model. However, through literature surveys and implementations of the AMF, the author xx found that (1) the AMF is very vulnerable when the computational analysis models have numerical noise, which is very common in high-fidelity models, and that (2) the AMF terminates optimization erroneously when the optimization problems have constraints. The first problem is due to inaccuracy in computing derivatives in the AMF, and the second problem is due to erroneous treatment of the trust region ratio, which sets the size of the domain for an optimization in the AMF. In order to solve the first problem of the AMF, automatic differentiation (AD) technique, which reads the codes of analysis models and automatically generates new derivative codes based on some mathematical rules, is applied. If derivatives are computed with the generated derivative code, they are analytical, and the required computational time is independent of the number of design variables, which is very advantageous for realistic aerospace engineering problems. However, if analysis models implement iterative computations such as computational fluid dynamics (CFD), which solves system partial differential equations iteratively, computing derivatives through the AD requires a massive memory size. The author solved this deficiency by modifying the AD approach and developing a more efficient implementation with CFD, and successfully applied the AD to general CFD software. In order to solve the second problem of the AMF, the governing equation of the trust region ratio, which is very strict against the violation of constraints, is modified so that it can accept the violation of constraints within some tolerance. By accepting violations of constraints during the optimization process, the AMF can continue optimization without terminating immaturely and eventually find the true optimum design point. With these modifications, the AMF is referred to as "Robust AMF," and it is applied to airfoil and wing aerodynamic design problems using Euler CFD software. The former problem has 21 design variables, and the latter 64. In both problems, derivatives computed with the proposed AD method are first compared with those computed with the finite differentiation (FD) method, and then, the Robust AMF is implemented along with the sequential quadratic programming (SQP) optimization method with only high-fidelity models. The proposed AD method computes derivatives more accurately and faster than the FD method, and the Robust AMF successfully optimizes shapes of the airfoil and the wing in a much shorter time than SQP with only high-fidelity models. These results clearly show the effectiveness of the Robust AMF. Finally, the feasibility of reducing computational time for calculating derivatives and the necessity of AMF with an optimum design point always in the feasible region are discussed as future work.

  14. Nuclear fuel management optimization using genetic algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeChaine, M.D.; Feltus, M.A.

    1995-07-01

    The code independent genetic algorithm reactor optimization (CIGARO) system has been developed to optimize nuclear reactor loading patterns. It uses genetic algorithms (GAs) and a code-independent interface, so any reactor physics code (e.g., CASMO-3/SIMULATE-3) can be used to evaluate the loading patterns. The system is compared to other GA-based loading pattern optimizers. Tests were carried out to maximize the beginning of cycle k{sub eff} for a pressurized water reactor core loading with a penalty function to limit power peaking. The CIGARO system performed well, increasing the k{sub eff} after lowering the peak power. Tests of a prototype parallel evaluation methodmore » showed the potential for a significant speedup.« less

  15. Ada Integrated Environment III Computer Program Development Specification. Volume III. Ada Optimizing Compiler.

    DTIC Science & Technology

    1981-12-01

    file.library-unit{.subunit).SYMAP Statement Map: library-file. library-unit.subunit).SMAP Type Map: 1 ibrary.fi le. 1 ibrary-unit{.subunit). TMAP The library...generator SYMAP Symbol Map code generator SMAP Updated Statement Map code generator TMAP Type Map code generator A.3.5 The PUNIT Command The P UNIT...Core.Stmtmap) NAME Tmap (Core.Typemap) END Example A-3 Compiler Command Stream for the Code Generator Texas Instruments A-5 Ada Optimizing Compiler

  16. Model-Based Speech Signal Coding Using Optimized Temporal Decomposition for Storage and Broadcasting Applications

    NASA Astrophysics Data System (ADS)

    Athaudage, Chandranath R. N.; Bradley, Alan B.; Lech, Margaret

    2003-12-01

    A dynamic programming-based optimization strategy for a temporal decomposition (TD) model of speech and its application to low-rate speech coding in storage and broadcasting is presented. In previous work with the spectral stability-based event localizing (SBEL) TD algorithm, the event localization was performed based on a spectral stability criterion. Although this approach gave reasonably good results, there was no assurance on the optimality of the event locations. In the present work, we have optimized the event localizing task using a dynamic programming-based optimization strategy. Simulation results show that an improved TD model accuracy can be achieved. A methodology of incorporating the optimized TD algorithm within the standard MELP speech coder for the efficient compression of speech spectral information is also presented. The performance evaluation results revealed that the proposed speech coding scheme achieves 50%-60% compression of speech spectral information with negligible degradation in the decoded speech quality.

  17. COLA with scale-dependent growth: applications to screened modified gravity models

    NASA Astrophysics Data System (ADS)

    Winther, Hans A.; Koyama, Kazuya; Manera, Marc; Wright, Bill S.; Zhao, Gong-Bo

    2017-08-01

    We present a general parallelized and easy-to-use code to perform numerical simulations of structure formation using the COLA (COmoving Lagrangian Acceleration) method for cosmological models that exhibit scale-dependent growth at the level of first and second order Lagrangian perturbation theory. For modified gravity theories we also include screening using a fast approximate method that covers all the main examples of screening mechanisms in the literature. We test the code by comparing it to full simulations of two popular modified gravity models, namely f(R) gravity and nDGP, and find good agreement in the modified gravity boost-factors relative to ΛCDM even when using a fairly small number of COLA time steps.

  18. Using Modified-ISS Model to Evaluate Medication Administration Safety During Bar Code Medication Administration Implementation in Taiwan Regional Teaching Hospital.

    PubMed

    Ma, Pei-Luen; Jheng, Yan-Wun; Jheng, Bi-Wei; Hou, I-Ching

    2017-01-01

    Bar code medication administration (BCMA) could reduce medical errors and promote patient safety. This research uses modified information systems success model (M-ISS model) to evaluate nurses' acceptance to BCMA. The result showed moderate correlation between medication administration safety (MAS) to system quality, information quality, service quality, user satisfaction, and limited satisfaction.

  19. Sonic Boom Prediction and Minimization of the Douglas Reference OPT5 Configuration

    NASA Technical Reports Server (NTRS)

    Siclari, Michael J.

    1999-01-01

    Conventional CFD methods and grids do not yield adequate resolution of the complex shock flow pattern generated by a real aircraft geometry. As a result, a unique grid topology and supersonic flow solver was developed at Northrop Grumman based on the characteristic behavior of supersonic wave patterns emanating from the aircraft. Using this approach, it was possible to compute flow fields with adequate resolution several body lengths below the aircraft. In this region, three-dimensional effects are diminished and conventional two-dimensional modified linear theory (MLT) can be applied to estimate ground pressure signatures or sonic booms. To accommodate real aircraft geometries and alleviate the burdensome grid generation task, an implicit marching multi-block, multi-grid finite-volume Euler code was developed as the basis for the sonic boom prediction methodology. The Thomas two-dimensional extrapolation method is built into the Euler code so that ground signatures can be obtained quickly and efficiently with minimum computational effort suitable to the aircraft design environment. The loudness levels of these signatures can then be determined using a NASA generated noise code. Since the Euler code is a three-dimensional flow field solver, the complete circumferential region below the aircraft is computed. The extrapolation of all this field data from a cylinder of constant radius leads to the definition of the entire boom corridor occurring directly below and off to the side of the aircraft's flight path yielding an estimate for the entire noise "annoyance" corridor in miles as well as its magnitude. An automated multidisciplinary sonic boom design optimization software system was developed during the latter part of HSR Phase 1. Using this system, it was found that sonic boom signatures could be reduced through optimization of a variety of geometric aircraft parameters. This system uses a gradient based nonlinear optimizer as the driver in conjunction with a computationally efficient Euler CFD solver (NIIM3DSB) for computing the three-dimensional near-field characteristics of the aircraft. The intent of the design system is to identify and optimize geometric design variables that have a beneficial impact on the ground sonic boom. The system uses a simple wave drag data format to specify the aircraft geometry. The geometry is internally enhanced and analytic methods are used to generate marching grids suitable for the multi-block Euler solver. The Thomas extrapolation method is integrated into this system, and hence, the aircraft's centerline ground sonic boom signature is also automatically computed for a specified cruise altitude and yields the parameters necessary to evaluate the design function. The entire design system has been automated since the gradient based optimization software requires many flow analyses in order to obtain the required sensitivity derivatives for each design variable in order to converge on an optimal solution. Hence, once the problem is defined which includes defining the objective function and geometric and aerodynamic constraints, the system will automatically regenerate the perturbed geometry, the necessary grids, the Euler solution, and finally the ground sonic boom signature at the request of the optimizer.

  20. Optimal block cosine transform image coding for noisy channels

    NASA Technical Reports Server (NTRS)

    Vaishampayan, V.; Farvardin, N.

    1986-01-01

    The two dimensional block transform coding scheme based on the discrete cosine transform was studied extensively for image coding applications. While this scheme has proven to be efficient in the absence of channel errors, its performance degrades rapidly over noisy channels. A method is presented for the joint source channel coding optimization of a scheme based on the 2-D block cosine transform when the output of the encoder is to be transmitted via a memoryless design of the quantizers used for encoding the transform coefficients. This algorithm produces a set of locally optimum quantizers and the corresponding binary code assignment for the assumed transform coefficient statistics. To determine the optimum bit assignment among the transform coefficients, an algorithm was used based on the steepest descent method, which under certain convexity conditions on the performance of the channel optimized quantizers, yields the optimal bit allocation. Comprehensive simulation results for the performance of this locally optimum system over noisy channels were obtained and appropriate comparisons against a reference system designed for no channel error were rendered.

  1. Numerical optimization of three-dimensional coils for NSTX-U

    DOE PAGES

    Lazerson, S. A.; Park, J. -K.; Logan, N.; ...

    2015-09-03

    A tool for the calculation of optimal three-dimensional (3D) perturbative magnetic fields in tokamaks has been developed. The IPECOPT code builds upon the stellarator optimization code STELLOPT to allow for optimization of linear ideal magnetohydrodynamic perturbed equilibrium (IPEC). This tool has been applied to NSTX-U equilibria, addressing which fields are the most effective at driving NTV torques. The NTV torque calculation is performed by the PENT code. Optimization of the normal field spectrum shows that fields with n = 1 character can drive a large core torque. It is also shown that fields with n = 3 features are capablemore » of driving edge torque and some core torque. Coil current optimization (using the planned in-vessel and existing RWM coils) on NSTX-U suggest the planned coils set is adequate for core and edge torque control. In conclusion, comparison between error field correction experiments on DIII-D and the optimizer show good agreement.« less

  2. Optimal periodic binary codes of lengths 28 to 64

    NASA Technical Reports Server (NTRS)

    Tyler, S.; Keston, R.

    1980-01-01

    Results from computer searches performed to find repeated binary phase coded waveforms with optimal periodic autocorrelation functions are discussed. The best results for lengths 28 to 64 are given. The code features of major concern are where (1) the peak sidelobe in the autocorrelation function is small and (2) the sum of the squares of the sidelobes in the autocorrelation function is small.

  3. Two Classes of New Optimal Asymmetric Quantum Codes

    NASA Astrophysics Data System (ADS)

    Chen, Xiaojing; Zhu, Shixin; Kai, Xiaoshan

    2018-03-01

    Let q be an even prime power and ω be a primitive element of F_{q2}. By analyzing the structure of cyclotomic cosets, we determine a sufficient condition for ω q- 1-constacyclic codes over F_{q2} to be Hermitian dual-containing codes. By the CSS construction, two classes of new optimal AQECCs are obtained according to the Singleton bound for AQECCs.

  4. User's manual for a material transport code on the Octopus Computer Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naymik, T.G.; Mendez, G.D.

    1978-09-15

    A code to simulate material transport through porous media was developed at Oak Ridge National Laboratory. This code has been modified and adapted for use at Lawrence Livermore Laboratory. This manual, in conjunction with report ORNL-4928, explains the input, output, and execution of the code on the Octopus Computer Network.

  5. Proposal to include the rank of phylum in the International Code of Nomenclature of Prokaryotes.

    PubMed

    Oren, Aharon; da Costa, Milton S; Garrity, George M; Rainey, Fred A; Rosselló-Móra, Ramon; Schink, Bernhard; Sutcliffe, Iain; Trujillo, Martha E; Whitman, William B

    2015-11-01

    The International Code of Nomenclature of Prokaryotes covers the nomenclature of prokaryotes up to the rank of class. We propose here modifying the Code to include the rank of phylum so that names of phyla that fulfil the rules of the Code will obtain standing in the nomenclature.

  6. A Subsonic Aircraft Design Optimization With Neural Network and Regression Approximators

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Guptill, James D.; Hopkins, Dale A.; Haller, William J.

    2004-01-01

    The Flight-Optimization-System (FLOPS) code encountered difficulty in analyzing a subsonic aircraft. The limitation made the design optimization problematic. The deficiencies have been alleviated through use of neural network and regression approximations. The insight gained from using the approximators is discussed in this paper. The FLOPS code is reviewed. Analysis models are developed and validated for each approximator. The regression method appears to hug the data points, while the neural network approximation follows a mean path. For an analysis cycle, the approximate model required milliseconds of central processing unit (CPU) time versus seconds by the FLOPS code. Performance of the approximators was satisfactory for aircraft analysis. A design optimization capability has been created by coupling the derived analyzers to the optimization test bed CometBoards. The approximators were efficient reanalysis tools in the aircraft design optimization. Instability encountered in the FLOPS analyzer was eliminated. The convergence characteristics were improved for the design optimization. The CPU time required to calculate the optimum solution, measured in hours with the FLOPS code was reduced to minutes with the neural network approximation and to seconds with the regression method. Generation of the approximators required the manipulation of a very large quantity of data. Design sensitivity with respect to the bounds of aircraft constraints is easily generated.

  7. Cascade Optimization for Aircraft Engines With Regression and Neural Network Analysis - Approximators

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Guptill, James D.; Hopkins, Dale A.; Lavelle, Thomas M.

    2000-01-01

    The NASA Engine Performance Program (NEPP) can configure and analyze almost any type of gas turbine engine that can be generated through the interconnection of a set of standard physical components. In addition, the code can optimize engine performance by changing adjustable variables under a set of constraints. However, for engine cycle problems at certain operating points, the NEPP code can encounter difficulties: nonconvergence in the currently implemented Powell's optimization algorithm and deficiencies in the Newton-Raphson solver during engine balancing. A project was undertaken to correct these deficiencies. Nonconvergence was avoided through a cascade optimization strategy, and deficiencies associated with engine balancing were eliminated through neural network and linear regression methods. An approximation-interspersed cascade strategy was used to optimize the engine's operation over its flight envelope. Replacement of Powell's algorithm by the cascade strategy improved the optimization segment of the NEPP code. The performance of the linear regression and neural network methods as alternative engine analyzers was found to be satisfactory. This report considers two examples-a supersonic mixed-flow turbofan engine and a subsonic waverotor-topped engine-to illustrate the results, and it discusses insights gained from the improved version of the NEPP code.

  8. Optimal design of structures with multiple design variables per group and multiple loading conditions on the personal computer

    NASA Technical Reports Server (NTRS)

    Nguyen, D. T.; Rogers, J. L., Jr.

    1986-01-01

    A finite element based programming system for minimum weight design of a truss-type structure subjected to displacement, stress, and lower and upper bounds on design variables is presented. The programming system consists of a number of independent processors, each performing a specific task. These processors, however, are interfaced through a well-organized data base, thus making the tasks of modifying, updating, or expanding the programming system much easier in a friendly environment provided by many inexpensive personal computers. The proposed software can be viewed as an important step in achieving a 'dummy' finite element for optimization. The programming system has been implemented on both large and small computers (such as VAX, CYBER, IBM-PC, and APPLE) although the focus is on the latter. Examples are presented to demonstrate the capabilities of the code. The present programming system can be used stand-alone or as part of the multilevel decomposition procedure to obtain optimum design for very large scale structural systems. Furthermore, other related research areas such as developing optimization algorithms (or in the larger level: a structural synthesis program) for future trends in using parallel computers may also benefit from this study.

  9. Novel Integration of Frame Rate Up Conversion and HEVC Coding Based on Rate-Distortion Optimization.

    PubMed

    Guo Lu; Xiaoyun Zhang; Li Chen; Zhiyong Gao

    2018-02-01

    Frame rate up conversion (FRUC) can improve the visual quality by interpolating new intermediate frames. However, high frame rate videos by FRUC are confronted with more bitrate consumption or annoying artifacts of interpolated frames. In this paper, a novel integration framework of FRUC and high efficiency video coding (HEVC) is proposed based on rate-distortion optimization, and the interpolated frames can be reconstructed at encoder side with low bitrate cost and high visual quality. First, joint motion estimation (JME) algorithm is proposed to obtain robust motion vectors, which are shared between FRUC and video coding. What's more, JME is embedded into the coding loop and employs the original motion search strategy in HEVC coding. Then, the frame interpolation is formulated as a rate-distortion optimization problem, where both the coding bitrate consumption and visual quality are taken into account. Due to the absence of original frames, the distortion model for interpolated frames is established according to the motion vector reliability and coding quantization error. Experimental results demonstrate that the proposed framework can achieve 21% ~ 42% reduction in BDBR, when compared with the traditional methods of FRUC cascaded with coding.

  10. Unified approach for incompressible flows

    NASA Astrophysics Data System (ADS)

    Chang, Tyne-Hsien

    1993-12-01

    An unified approach for solving both compressible and incompressible flows was investigated in this study. The difference in CFD code development between incompressible and compressible flows is due to the mathematical characteristics. However, if one can modify the continuity equation for incompressible flows by introducing pseudocompressibility, the governing equations for incompressible flows would have the same mathematical characters as compressible flows. The application of a compressible flow code to solve incompressible flows becomes feasible. Among numerical algorithms developed for compressible flows, the Centered Total Variation Diminishing (CTVD) schemes possess better mathematical properties to damp out the spurious oscillations while providing high-order accuracy for high speed flows. It leads us to believe that CTVD schemes can equally well solve incompressible flows. In this study, the governing equations for incompressible flows include the continuity equation and momentum equations. The continuity equation is modified by adding a time-derivative of the pressure term containing the artificial compressibility. The modified continuity equation together with the unsteady momentum equations forms a hyperbolic-parabolic type of time-dependent system of equations. The continuity equation is modified by adding a time-derivative of the pressure term containing the artificial compressibility. The modified continuity equation together with the unsteady momentum equations forms a hyperbolic-parabolic type of time-dependent system of equations. Thus, the CTVD schemes can be implemented. In addition, the boundary conditions including physical and numerical boundary conditions must be properly specified to obtain accurate solution. The CFD code for this research is currently in progress. Flow past a circular cylinder will be used for numerical experiments to determine the accuracy and efficiency of the code before applying this code to more specific applications.

  11. N-MODY: a code for collisionless N-body simulations in modified Newtonian dynamics.

    NASA Astrophysics Data System (ADS)

    Londrillo, P.; Nipoti, C.

    We describe the numerical code N-MODY, a parallel particle-mesh code for collisionless N-body simulations in modified Newtonian dynamics (MOND). N-MODY is based on a numerical potential solver in spherical coordinates that solves the non-linear MOND field equation, and is ideally suited to simulate isolated stellar systems. N-MODY can be used also to compute the MOND potential of arbitrary static density distributions. A few applications of N-MODY indicate that some astrophysically relevant dynamical processes are profoundly different in MOND and in Newtonian gravity with dark matter.

  12. Scheduling Operations for Massive Heterogeneous Clusters

    NASA Technical Reports Server (NTRS)

    Humphrey, John; Spagnoli, Kyle

    2013-01-01

    High-performance computing (HPC) programming has become increasingly difficult with the advent of hybrid supercomputers consisting of multicore CPUs and accelerator boards such as the GPU. Manual tuning of software to achieve high performance on this type of machine has been performed by programmers. This is needlessly difficult and prone to being invalidated by new hardware, new software, or changes in the underlying code. A system was developed for task-based representation of programs, which when coupled with a scheduler and runtime system, allows for many benefits, including higher performance and utilization of computational resources, easier programming and porting, and adaptations of code during runtime. The system consists of a method of representing computer algorithms as a series of data-dependent tasks. The series forms a graph, which can be scheduled for execution on many nodes of a supercomputer efficiently by a computer algorithm. The schedule is executed by a dispatch component, which is tailored to understand all of the hardware types that may be available within the system. The scheduler is informed by a cluster mapping tool, which generates a topology of available resources and their strengths and communication costs. Software is decoupled from its hardware, which aids in porting to future architectures. A computer algorithm schedules all operations, which for systems of high complexity (i.e., most NASA codes), cannot be performed optimally by a human. The system aids in reducing repetitive code, such as communication code, and aids in the reduction of redundant code across projects. It adds new features to code automatically, such as recovering from a lost node or the ability to modify the code while running. In this project, the innovators at the time of this reporting intend to develop two distinct technologies that build upon each other and both of which serve as building blocks for more efficient HPC usage. First is the scheduling and dynamic execution framework, and the second is scalable linear algebra libraries that are built directly on the former.

  13. Optimization of monitoring networks based on uncertainty quantification of model predictions of contaminant transport

    NASA Astrophysics Data System (ADS)

    Vesselinov, V. V.; Harp, D.

    2010-12-01

    The process of decision making to protect groundwater resources requires a detailed estimation of uncertainties in model predictions. Various uncertainties associated with modeling a natural system, such as: (1) measurement and computational errors; (2) uncertainties in the conceptual model and model-parameter estimates; (3) simplifications in model setup and numerical representation of governing processes, contribute to the uncertainties in the model predictions. Due to this combination of factors, the sources of predictive uncertainties are generally difficult to quantify individually. Decision support related to optimal design of monitoring networks requires (1) detailed analyses of existing uncertainties related to model predictions of groundwater flow and contaminant transport, (2) optimization of the proposed monitoring network locations in terms of their efficiency to detect contaminants and provide early warning. We apply existing and newly-proposed methods to quantify predictive uncertainties and to optimize well locations. An important aspect of the analysis is the application of newly-developed optimization technique based on coupling of Particle Swarm and Levenberg-Marquardt optimization methods which proved to be robust and computationally efficient. These techniques and algorithms are bundled in a software package called MADS. MADS (Model Analyses for Decision Support) is an object-oriented code that is capable of performing various types of model analyses and supporting model-based decision making. The code can be executed under different computational modes, which include (1) sensitivity analyses (global and local), (2) Monte Carlo analysis, (3) model calibration, (4) parameter estimation, (5) uncertainty quantification, and (6) model selection. The code can be externally coupled with any existing model simulator through integrated modules that read/write input and output files using a set of template and instruction files (consistent with the PEST I/O protocol). MADS can also be internally coupled with a series of built-in analytical simulators. MADS provides functionality to work directly with existing control files developed for the code PEST (Doherty 2009). To perform the computational modes mentioned above, the code utilizes (1) advanced Latin-Hypercube sampling techniques (including Improved Distributed Sampling), (2) various gradient-based Levenberg-Marquardt optimization methods, (3) advanced global optimization methods (including Particle Swarm Optimization), and (4) a selection of alternative objective functions. The code has been successfully applied to perform various model analyses related to environmental management of real contamination sites. Examples include source identification problems, quantification of uncertainty, model calibration, and optimization of monitoring networks. The methodology and software codes are demonstrated using synthetic and real case studies where monitoring networks are optimized taking into account the uncertainty in model predictions of contaminant transport.

  14. From Physics Model to Results: An Optimizing Framework for Cross-Architecture Code Generation

    DOE PAGES

    Blazewicz, Marek; Hinder, Ian; Koppelman, David M.; ...

    2013-01-01

    Starting from a high-level problem description in terms of partial differential equations using abstract tensor notation, the Chemora framework discretizes, optimizes, and generates complete high performance codes for a wide range of compute architectures. Chemora extends the capabilities of Cactus, facilitating the usage of large-scale CPU/GPU systems in an efficient manner for complex applications, without low-level code tuning. Chemora achieves parallelism through MPI and multi-threading, combining OpenMP and CUDA. Optimizations include high-level code transformations, efficient loop traversal strategies, dynamically selected data and instruction cache usage strategies, and JIT compilation of GPU code tailored to the problem characteristics. The discretization ismore » based on higher-order finite differences on multi-block domains. Chemora's capabilities are demonstrated by simulations of black hole collisions. This problem provides an acid test of the framework, as the Einstein equations contain hundreds of variables and thousands of terms.« less

  15. Wing Weight Optimization Under Aeroelastic Loads Subject to Stress Constraints

    NASA Technical Reports Server (NTRS)

    Kapania, Rakesh K.; Issac, J.; Macmurdy, D.; Guruswamy, Guru P.

    1997-01-01

    A minimum weight optimization of the wing under aeroelastic loads subject to stress constraints is carried out. The loads for the optimization are based on aeroelastic trim. The design variables are the thickness of the wing skins and planform variables. The composite plate structural model incorporates first-order shear deformation theory, the wing deflections are expressed using Chebyshev polynomials and a Rayleigh-Ritz procedure is adopted for the structural formulation. The aerodynamic pressures provided by the aerodynamic code at a discrete number of grid points is represented as a bilinear distribution on the composite plate code to solve for the deflections and stresses in the wing. The lifting-surface aerodynamic code FAST is presently being used to generate the pressure distribution over the wing. The envisioned ENSAERO/Plate is an aeroelastic analysis code which combines ENSAERO version 3.0 (for analysis of wing-body configurations) with the composite plate code.

  16. Modified Shuffled Frog Leaping Optimization Algorithm Based Distributed Generation Rescheduling for Loss Minimization

    NASA Astrophysics Data System (ADS)

    Arya, L. D.; Koshti, Atul

    2018-05-01

    This paper investigates the Distributed Generation (DG) capacity optimization at location based on the incremental voltage sensitivity criteria for sub-transmission network. The Modified Shuffled Frog Leaping optimization Algorithm (MSFLA) has been used to optimize the DG capacity. Induction generator model of DG (wind based generating units) has been considered for study. Standard test system IEEE-30 bus has been considered for the above study. The obtained results are also validated by shuffled frog leaping algorithm and modified version of bare bones particle swarm optimization (BBExp). The performance of MSFLA has been found more efficient than the other two algorithms for real power loss minimization problem.

  17. Modification process optimization, characterization and adsorption property of granular fir-based activated carbon

    NASA Astrophysics Data System (ADS)

    Chen, Congjin; Li, Xin; Tong, Zhangfa; Li, Yue; Li, Mingfei

    2014-10-01

    Granular fir-based activated carbon (GFAC) was modified with H2O2, and orthogonal array experimental design method was used to optimize the process. The properties of the original and modified GFAC were characterized by N2 adsorption-desorption isotherms, Brunauer-Emmett-Teller (BET) equation, Barett-Joyner-Halenda (BJH) equation, field emission scanning electron microscopy (FESEM), and Fourier transform infrared spectroscopy (FT-IR) analysis, etc. When 10.00 g of GFAC with particle size of 0.25-0.85 mm was modified by 150.0 ml of aqueous H2O2 solution, the optimized conditions were found to be as follows: aqueous H2O2 solution concentration 1.0 mol·l-1, modification temperature 30.0 °C, modification time 4.0 h. Modified under the optimized conditions, decolonization of caramel, methylene blue adsorption, phenol adsorption and iodine number of the modified GFAC increased by 500.0%, 59.7%, 32.5%, and 15.1%, respectively. The original and optimally modified GFAC exhibited adsorption isotherms of hybrid Type I-IV isotherms with H4 hysteresis. BET surface area, micropore area, total pore volume, micropore volume, and microporosity of the modified GFAC increased by 7.33%, 11.25%, 3.89%, 14.23%, 9.91%, respectively. Whereas the average pore width decreased by 3.16%. In addition, the amount of surface oxygen groups (such as carbonyl or carboxyl) increased in the modified GFAC.

  18. Optimized iterative decoding method for TPC coded CPM

    NASA Astrophysics Data System (ADS)

    Ma, Yanmin; Lai, Penghui; Wang, Shilian; Xie, Shunqin; Zhang, Wei

    2018-05-01

    Turbo Product Code (TPC) coded Continuous Phase Modulation (CPM) system (TPC-CPM) has been widely used in aeronautical telemetry and satellite communication. This paper mainly investigates the improvement and optimization on the TPC-CPM system. We first add the interleaver and deinterleaver to the TPC-CPM system, and then establish an iterative system to iteratively decode. However, the improved system has a poor convergence ability. To overcome this issue, we use the Extrinsic Information Transfer (EXIT) analysis to find the optimal factors for the system. The experiments show our method is efficient to improve the convergence performance.

  19. Using Intel Xeon Phi to accelerate the WRF TEMF planetary boundary layer scheme

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen

    2014-05-01

    The Weather Research and Forecasting (WRF) model is designed for numerical weather prediction and atmospheric research. The WRF software infrastructure consists of several components such as dynamic solvers and physics schemes. Numerical models are used to resolve the large-scale flow. However, subgrid-scale parameterizations are for an estimation of small-scale properties (e.g., boundary layer turbulence and convection, clouds, radiation). Those have a significant influence on the resolved scale due to the complex nonlinear nature of the atmosphere. For the cloudy planetary boundary layer (PBL), it is fundamental to parameterize vertical turbulent fluxes and subgrid-scale condensation in a realistic manner. A parameterization based on the Total Energy - Mass Flux (TEMF) that unifies turbulence and moist convection components produces a better result that the other PBL schemes. For that reason, the TEMF scheme is chosen as the PBL scheme we optimized for Intel Many Integrated Core (MIC), which ushers in a new era of supercomputing speed, performance, and compatibility. It allows the developers to run code at trillions of calculations per second using the familiar programming model. In this paper, we present our optimization results for TEMF planetary boundary layer scheme. The optimizations that were performed were quite generic in nature. Those optimizations included vectorization of the code to utilize vector units inside each CPU. Furthermore, memory access was improved by scalarizing some of the intermediate arrays. The results show that the optimization improved MIC performance by 14.8x. Furthermore, the optimizations increased CPU performance by 2.6x compared to the original multi-threaded code on quad core Intel Xeon E5-2603 running at 1.8 GHz. Compared to the optimized code running on a single CPU socket the optimized MIC code is 6.2x faster.

  20. Structured Set Intra Prediction With Discriminative Learning in a Max-Margin Markov Network for High Efficiency Video Coding

    PubMed Central

    Dai, Wenrui; Xiong, Hongkai; Jiang, Xiaoqian; Chen, Chang Wen

    2014-01-01

    This paper proposes a novel model on intra coding for High Efficiency Video Coding (HEVC), which simultaneously predicts blocks of pixels with optimal rate distortion. It utilizes the spatial statistical correlation for the optimal prediction based on 2-D contexts, in addition to formulating the data-driven structural interdependences to make the prediction error coherent with the probability distribution, which is desirable for successful transform and coding. The structured set prediction model incorporates a max-margin Markov network (M3N) to regulate and optimize multiple block predictions. The model parameters are learned by discriminating the actual pixel value from other possible estimates to maximize the margin (i.e., decision boundary bandwidth). Compared to existing methods that focus on minimizing prediction error, the M3N-based model adaptively maintains the coherence for a set of predictions. Specifically, the proposed model concurrently optimizes a set of predictions by associating the loss for individual blocks to the joint distribution of succeeding discrete cosine transform coefficients. When the sample size grows, the prediction error is asymptotically upper bounded by the training error under the decomposable loss function. As an internal step, we optimize the underlying Markov network structure to find states that achieve the maximal energy using expectation propagation. For validation, we integrate the proposed model into HEVC for optimal mode selection on rate-distortion optimization. The proposed prediction model obtains up to 2.85% bit rate reduction and achieves better visual quality in comparison to the HEVC intra coding. PMID:25505829

  1. Inclusion of the fitness sharing technique in an evolutionary algorithm to analyze the fitness landscape of the genetic code adaptability.

    PubMed

    Santos, José; Monteagudo, Ángel

    2017-03-27

    The canonical code, although prevailing in complex genomes, is not universal. It was shown the canonical genetic code superior robustness compared to random codes, but it is not clearly determined how it evolved towards its current form. The error minimization theory considers the minimization of point mutation adverse effect as the main selection factor in the evolution of the code. We have used simulated evolution in a computer to search for optimized codes, which helps to obtain information about the optimization level of the canonical code in its evolution. A genetic algorithm searches for efficient codes in a fitness landscape that corresponds with the adaptability of possible hypothetical genetic codes. The lower the effects of errors or mutations in the codon bases of a hypothetical code, the more efficient or optimal is that code. The inclusion of the fitness sharing technique in the evolutionary algorithm allows the extent to which the canonical genetic code is in an area corresponding to a deep local minimum to be easily determined, even in the high dimensional spaces considered. The analyses show that the canonical code is not in a deep local minimum and that the fitness landscape is not a multimodal fitness landscape with deep and separated peaks. Moreover, the canonical code is clearly far away from the areas of higher fitness in the landscape. Given the non-presence of deep local minima in the landscape, although the code could evolve and different forces could shape its structure, the fitness landscape nature considered in the error minimization theory does not explain why the canonical code ended its evolution in a location which is not an area of a localized deep minimum of the huge fitness landscape.

  2. Generation of a novel phase-space-based cylindrical dose kernel for IMRT optimization.

    PubMed

    Zhong, Hualiang; Chetty, Indrin J

    2012-05-01

    Improving dose calculation accuracy is crucial in intensity-modulated radiation therapy (IMRT). We have developed a method for generating a phase-space-based dose kernel for IMRT planning of lung cancer patients. Particle transport in the linear accelerator treatment head of a 21EX, 6 MV photon beam (Varian Medical Systems, Palo Alto, CA) was simulated using the EGSnrc/BEAMnrc code system. The phase space information was recorded under the secondary jaws. Each particle in the phase space file was associated with a beamlet whose index was calculated and saved in the particle's LATCH variable. The DOSXYZnrc code was modified to accumulate the energy deposited by each particle based on its beamlet index. Furthermore, the central axis of each beamlet was calculated from the orientation of all the particles in this beamlet. A cylinder was then defined around the central axis so that only the energy deposited within the cylinder was counted. A look-up table was established for each cylinder during the tallying process. The efficiency and accuracy of the cylindrical beamlet energy deposition approach was evaluated using a treatment plan developed on a simulated lung phantom. Profile and percentage depth doses computed in a water phantom for an open, square field size were within 1.5% of measurements. Dose optimized with the cylindrical dose kernel was found to be within 0.6% of that computed with the nontruncated 3D kernel. The cylindrical truncation reduced optimization time by approximately 80%. A method for generating a phase-space-based dose kernel, using a truncated cylinder for scoring dose, in beamlet-based optimization of lung treatment planning was developed and found to be in good agreement with the standard, nontruncated scoring approach. Compared to previous techniques, our method significantly reduces computational time and memory requirements, which may be useful for Monte-Carlo-based 4D IMRT or IMAT treatment planning.

  3. Optimal Design of a Planar Textile Antenna for Industrial Scientific Medical (ISM) 2.4 GHz Wireless Body Area Networks (WBAN) with the CRO-SL Algorithm.

    PubMed

    Sánchez-Montero, Rocío; Camacho-Gómez, Carlos; López-Espí, Pablo-Luís; Salcedo-Sanz, Sancho

    2018-06-21

    This paper proposes a low-profile textile-modified meander line Inverted-F Antenna (IFA) with variable width and spacing meanders, for Industrial Scientific Medical (ISM) 2.4-GHz Wireless Body Area Networks (WBAN), optimized with a novel metaheuristic algorithm. Specifically, a metaheuristic known as Coral Reefs Optimization with Substrate Layer (CRO-SL) is used to obtain an optimal antenna for sensor systems, which allows covering properly and resiliently the 2.4⁻2.45-GHz industrial scientific medical bandwidth. Flexible pad foam has been used to make the designed prototype with a 1.1-mm thickness. We have used a version of the algorithm that is able to combine different searching operators within a single population of solutions. This approach is ideal to deal with hard optimization problems, such as the design of the proposed meander line IFA. During the optimization phase with the CRO-SL, the proposed antenna has been simulated using CST Microwave Studio software, linked to the CRO-SL by means of MATLAB implementation and Visual Basic Applications (VBA) code. We fully describe the antenna design process, the adaptation of the CRO-SL approach to this problem and several practical aspects of the optimization and details on the algorithm’s performance. To validate the simulation results, we have constructed and measured two prototypes of the antenna, designed with the proposed algorithm. Several practical aspects such as sensitivity during the antenna manufacturing or the agreement between the simulated and constructed antenna are also detailed in the paper.

  4. Program user's manual for optimizing the design of a liquid or gaseous propellant rocket engine with the automated combustor design code AUTOCOM

    NASA Technical Reports Server (NTRS)

    Reichel, R. H.; Hague, D. S.; Jones, R. T.; Glatt, C. R.

    1973-01-01

    This computer program manual describes in two parts the automated combustor design optimization code AUTOCOM. The program code is written in the FORTRAN 4 language. The input data setup and the program outputs are described, and a sample engine case is discussed. The program structure and programming techniques are also described, along with AUTOCOM program analysis.

  5. Magnetically launched flyer plate technique for probing electrical conductivity of compressed copper

    NASA Astrophysics Data System (ADS)

    Cochrane, K. R.; Lemke, R. W.; Riford, Z.; Carpenter, J. H.

    2016-03-01

    The electrical conductivity of materials under extremes of temperature and pressure is of crucial importance for a wide variety of phenomena, including planetary modeling, inertial confinement fusion, and pulsed power based dynamic materials experiments. There is a dearth of experimental techniques and data for highly compressed materials, even at known states such as along the principal isentrope and Hugoniot, where many pulsed power experiments occur. We present a method for developing, calibrating, and validating material conductivity models as used in magnetohydrodynamic (MHD) simulations. The difficulty in calibrating a conductivity model is in knowing where the model should be modified. Our method isolates those regions that will have an impact. It also quantitatively prioritizes which regions will have the most beneficial impact. Finally, it tracks the quantitative improvements to the conductivity model during each incremental adjustment. In this paper, we use an experiment on Sandia National Laboratories Z-machine to isentropically launch multiple flyer plates and, with the MHD code ALEGRA and the optimization code DAKOTA, calibrated the conductivity such that we matched an experimental figure of merit to +/-1%.

  6. Magnetically launched flyer plate technique for probing electrical conductivity of compressed copper

    DOE PAGES

    Cochrane, Kyle R.; Lemke, Raymond W.; Riford, Z.; ...

    2016-03-11

    The electrical conductivity of materials under extremes of temperature and pressure is of crucial importance for a wide variety of phenomena, including planetary modeling, inertial confinement fusion, and pulsed power based dynamic materialsexperiments. There is a dearth of experimental techniques and data for highly compressed materials, even at known states such as along the principal isentrope and Hugoniot, where many pulsed power experiments occur. We present a method for developing, calibrating, and validating material conductivity models as used in magnetohydrodynamic(MHD) simulations. The difficulty in calibrating a conductivity model is in knowing where the model should be modified. Our method isolatesmore » those regions that will have an impact. It also quantitatively prioritizes which regions will have the most beneficial impact. Finally, it tracks the quantitative improvements to the conductivity model during each incremental adjustment. In this study, we use an experiment on Sandia National Laboratories Z-machine to isentropically launch multiple flyer plates and, with the MHD code ALEGRA and the optimization code DAKOTA, calibrated the conductivity such that we matched an experimental figure of merit to +/–1%.« less

  7. Growth of zinc selenide single crystals by physical vapor transport in microgravity

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1993-01-01

    The goals of this research were the optimization of growth parameters for large (20 mm diameter and length) zinc selenide single crystals with low structural defect density, and the development of a 3-D numerical model for the transport rates to be expected in physical vapor transport under a given set of thermal and geometrical boundary conditions, in order to provide guidance for an advantageous conduct of the growth experiments. In the crystal growth studies, it was decided to exclusively apply the Effusive Ampoule PVT technique (EAPVT) to the growth of ZnSe. In this technique, the accumulation of transport-limiting gaseous components at the growing crystal is suppressed by continuous effusion to vacuum of part of the vapor contents. This is achieved through calibrated leaks in one of the ground joints of the ampoule. Regarding the PVT transport rates, a 3-D spectral code was modified. After introduction of the proper boundary conditions and subroutines for the composition-dependent transport properties, the code reproduced the experimentally determined transport rates for the two cases with strongest convective flux contributions to within the experimental and numerical error.

  8. MATLAB-based algorithm to estimate depths of isolated thin dike-like sources using higher-order horizontal derivatives of magnetic anomalies.

    PubMed

    Ekinci, Yunus Levent

    2016-01-01

    This paper presents an easy-to-use open source computer algorithm (code) for estimating the depths of isolated single thin dike-like source bodies by using numerical second-, third-, and fourth-order horizontal derivatives computed from observed magnetic anomalies. The approach does not require a priori information and uses some filters of successive graticule spacings. The computed higher-order horizontal derivative datasets are used to solve nonlinear equations for depth determination. The solutions are independent from the magnetization and ambient field directions. The practical usability of the developed code, designed in MATLAB R2012b (MathWorks Inc.), was successfully examined using some synthetic simulations with and without noise. The algorithm was then used to estimate the depths of some ore bodies buried in different regions (USA, Sweden, and Canada). Real data tests clearly indicated that the obtained depths are in good agreement with those of previous studies and drilling information. Additionally, a state-of-the-art inversion scheme based on particle swarm optimization produced comparable results to those of the higher-order horizontal derivative analyses in both synthetic and real anomaly cases. Accordingly, the proposed code is verified to be useful in interpreting isolated single thin dike-like magnetized bodies and may be an alternative processing technique. The open source code can be easily modified and adapted to suit the benefits of other researchers.

  9. Self-adaptive multimethod optimization applied to a tailored heating forging process

    NASA Astrophysics Data System (ADS)

    Baldan, M.; Steinberg, T.; Baake, E.

    2018-05-01

    The presented paper describes an innovative self-adaptive multi-objective optimization code. Investigation goals concern proving the superiority of this code compared to NGSA-II and applying it to an inductor’s design case study addressed to a “tailored” heating forging application. The choice of the frequency and the heating time are followed by the determination of the turns number and their positions. Finally, a straightforward optimization is performed in order to minimize energy consumption using “optimal control”.

  10. Predicting the Performance of an Axial-Flow Compressor

    NASA Technical Reports Server (NTRS)

    Steinke, R. J.

    1986-01-01

    Stage-stacking computer code (STGSTK) developed for predicting off-design performance of multi-stage axial-flow compressors. Code uses meanline stagestacking method. Stage and cumulative compressor performance calculated from representative meanline velocity diagrams located at rotor inlet and outlet meanline radii. Numerous options available within code. Code developed so user modify correlations to suit their needs.

  11. System Design Description for the TMAD Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finfrock, S.H.

    This document serves as the System Design Description (SDD) for the TMAD Code System, which includes the TMAD code and the LIBMAKR code. The SDD provides a detailed description of the theory behind the code, and the implementation of that theory. It is essential for anyone who is attempting to review or modify the code or who otherwise needs to understand the internal workings of the code. In addition, this document includes, in Appendix A, the System Requirements Specification for the TMAD System.

  12. Analytical modeling of intumescent coating thermal protection system in a JP-5 fuel fire environment

    NASA Technical Reports Server (NTRS)

    Clark, K. J.; Shimizu, A. B.; Suchsland, K. E.; Moyer, C. B.

    1974-01-01

    The thermochemical response of Coating 313 when exposed to a fuel fire environment was studied to provide a tool for predicting the reaction time. The existing Aerotherm Charring Material Thermal Response and Ablation (CMA) computer program was modified to treat swelling materials. The modified code is now designated Aerotherm Transient Response of Intumescing Materials (TRIM) code. In addition, thermophysical property data for Coating 313 were analyzed and reduced for use in the TRIM code. An input data sensitivity study was performed, and performance tests of Coating 313/steel substrate models were carried out. The end product is a reliable computational model, the TRIM code, which was thoroughly validated for Coating 313. The tasks reported include: generation of input data, development of swell model and implementation in TRIM code, sensitivity study, acquisition of experimental data, comparisons of predictions with data, and predictions with intermediate insulation.

  13. A strong shock tube problem calculated by different numerical schemes

    NASA Astrophysics Data System (ADS)

    Lee, Wen Ho; Clancy, Sean P.

    1996-05-01

    Calculated results are presented for the solution of a very strong shock tube problem on a coarse mesh using (1) MESA code, (2) UNICORN code, (3) Schulz hydro, and (4) modified TVD scheme. The first two codes are written in Eulerian coordinates, whereas methods (3) and (4) are in Lagrangian coordinates. MESA and UNICORN codes are both of second order and use different monotonic advection method to avoid the Gibbs phenomena. Code (3) uses typical artificial viscosity for inviscid flow, whereas code (4) uses a modified TVD scheme. The test problem is a strong shock tube problem with a pressure ratio of 109 and density ratio of 103 in an ideal gas. For no mass-matching case, Schulz hydro is better than TVD scheme. In the case of mass-matching, there is no difference between them. MESA and UNICORN results are nearly the same. However, the computed positions such as the contact discontinuity (i.e. the material interface) are not as accurate as the Lagrangian methods.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, W.H.; Clancy, S.P.

    Calculated results are presented for the solution of a very strong shock tube problem on a coarse mesh using (1) MESA code, (2) UNICORN code, (3) Schulz hydro, and (4) modified TVD scheme. The first two codes are written in Eulerian coordinates, whereas methods (3) and (4) are in Lagrangian coordinates. MESA and UNICORN codes are both of second order and use different monotonic advection method to avoid the Gibbs phenomena. Code (3) uses typical artificial viscosity for inviscid flow, whereas code (4) uses a modified TVD scheme. The test problem is a strong shock tube problem with a pressuremore » ratio of 10{sup 9} and density ratio of 10{sup 3} in an ideal gas. For no mass-matching case, Schulz hydro is better than TVD scheme. In the case of mass-matching, there is no difference between them. MESA and UNICORN results are nearly the same. However, the computed positions such as the contact discontinuity (i.e. the material interface) are not as accurate as the Lagrangian methods. {copyright} {ital 1996 American Institute of Physics.}« less

  15. IESIP - AN IMPROVED EXPLORATORY SEARCH TECHNIQUE FOR PURE INTEGER LINEAR PROGRAMMING PROBLEMS

    NASA Technical Reports Server (NTRS)

    Fogle, F. R.

    1994-01-01

    IESIP, an Improved Exploratory Search Technique for Pure Integer Linear Programming Problems, addresses the problem of optimizing an objective function of one or more variables subject to a set of confining functions or constraints by a method called discrete optimization or integer programming. Integer programming is based on a specific form of the general linear programming problem in which all variables in the objective function and all variables in the constraints are integers. While more difficult, integer programming is required for accuracy when modeling systems with small numbers of components such as the distribution of goods, machine scheduling, and production scheduling. IESIP establishes a new methodology for solving pure integer programming problems by utilizing a modified version of the univariate exploratory move developed by Robert Hooke and T.A. Jeeves. IESIP also takes some of its technique from the greedy procedure and the idea of unit neighborhoods. A rounding scheme uses the continuous solution found by traditional methods (simplex or other suitable technique) and creates a feasible integer starting point. The Hook and Jeeves exploratory search is modified to accommodate integers and constraints and is then employed to determine an optimal integer solution from the feasible starting solution. The user-friendly IESIP allows for rapid solution of problems up to 10 variables in size (limited by DOS allocation). Sample problems compare IESIP solutions with the traditional branch-and-bound approach. IESIP is written in Borland's TURBO Pascal for IBM PC series computers and compatibles running DOS. Source code and an executable are provided. The main memory requirement for execution is 25K. This program is available on a 5.25 inch 360K MS DOS format diskette. IESIP was developed in 1990. IBM is a trademark of International Business Machines. TURBO Pascal is registered by Borland International.

  16. Parallel-vector computation for linear structural analysis and non-linear unconstrained optimization problems

    NASA Technical Reports Server (NTRS)

    Nguyen, D. T.; Al-Nasra, M.; Zhang, Y.; Baddourah, M. A.; Agarwal, T. K.; Storaasli, O. O.; Carmona, E. A.

    1991-01-01

    Several parallel-vector computational improvements to the unconstrained optimization procedure are described which speed up the structural analysis-synthesis process. A fast parallel-vector Choleski-based equation solver, pvsolve, is incorporated into the well-known SAP-4 general-purpose finite-element code. The new code, denoted PV-SAP, is tested for static structural analysis. Initial results on a four processor CRAY 2 show that using pvsolve reduces the equation solution time by a factor of 14-16 over the original SAP-4 code. In addition, parallel-vector procedures for the Golden Block Search technique and the BFGS method are developed and tested for nonlinear unconstrained optimization. A parallel version of an iterative solver and the pvsolve direct solver are incorporated into the BFGS method. Preliminary results on nonlinear unconstrained optimization test problems, using pvsolve in the analysis, show excellent parallel-vector performance indicating that these parallel-vector algorithms can be used in a new generation of finite-element based structural design/analysis-synthesis codes.

  17. Super-linear Precision in Simple Neural Population Codes

    NASA Astrophysics Data System (ADS)

    Schwab, David; Fiete, Ila

    2015-03-01

    A widely used tool for quantifying the precision with which a population of noisy sensory neurons encodes the value of an external stimulus is the Fisher Information (FI). Maximizing the FI is also a commonly used objective for constructing optimal neural codes. The primary utility and importance of the FI arises because it gives, through the Cramer-Rao bound, the smallest mean-squared error achievable by any unbiased stimulus estimator. However, it is well-known that when neural firing is sparse, optimizing the FI can result in codes that perform very poorly when considering the resulting mean-squared error, a measure with direct biological relevance. Here we construct optimal population codes by minimizing mean-squared error directly and study the scaling properties of the resulting network, focusing on the optimal tuning curve width. We then extend our results to continuous attractor networks that maintain short-term memory of external stimuli in their dynamics. Here we find similar scaling properties in the structure of the interactions that minimize diffusive information loss.

  18. Multidisciplinary Aerospace Systems Optimization: Computational AeroSciences (CAS) Project

    NASA Technical Reports Server (NTRS)

    Kodiyalam, S.; Sobieski, Jaroslaw S. (Technical Monitor)

    2001-01-01

    The report describes a method for performing optimization of a system whose analysis is so expensive that it is impractical to let the optimization code invoke it directly because excessive computational cost and elapsed time might result. In such situation it is imperative to have user control the number of times the analysis is invoked. The reported method achieves that by two techniques in the Design of Experiment category: a uniform dispersal of the trial design points over a n-dimensional hypersphere and a response surface fitting, and the technique of krigging. Analyses of all the trial designs whose number may be set by the user are performed before activation of the optimization code and the results are stored as a data base. That code is then executed and referred to the above data base. Two applications, one of the airborne laser system, and one of an aircraft optimization illustrate the method application.

  19. A Flexible and Non-instrusive Approach for Computing Complex Structural Coverage Metrics

    NASA Technical Reports Server (NTRS)

    Whalen, Michael W.; Person, Suzette J.; Rungta, Neha; Staats, Matt; Grijincu, Daniela

    2015-01-01

    Software analysis tools and techniques often leverage structural code coverage information to reason about the dynamic behavior of software. Existing techniques instrument the code with the required structural obligations and then monitor the execution of the compiled code to report coverage. Instrumentation based approaches often incur considerable runtime overhead for complex structural coverage metrics such as Modified Condition/Decision (MC/DC). Code instrumentation, in general, has to be approached with great care to ensure it does not modify the behavior of the original code. Furthermore, instrumented code cannot be used in conjunction with other analyses that reason about the structure and semantics of the code under test. In this work, we introduce a non-intrusive preprocessing approach for computing structural coverage information. It uses a static partial evaluation of the decisions in the source code and a source-to-bytecode mapping to generate the information necessary to efficiently track structural coverage metrics during execution. Our technique is flexible; the results of the preprocessing can be used by a variety of coverage-driven software analysis tasks, including automated analyses that are not possible for instrumented code. Experimental results in the context of symbolic execution show the efficiency and flexibility of our nonintrusive approach for computing code coverage information

  20. The impact of ICD-9 revascularization procedure codes on estimates of racial disparities in ischemic stroke.

    PubMed

    Boan, Andrea D; Voeks, Jenifer H; Feng, Wuwei Wayne; Bachman, David L; Jauch, Edward C; Adams, Robert J; Ovbiagele, Bruce; Lackland, Daniel T

    2014-01-01

    The use of International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9) diagnostic codes can identify racial disparities in ischemic stroke hospitalizations; however, inclusion of revascularization procedure codes as acute stroke events may affect the magnitude of the risk difference. This study assesses the impact of excluding revascularization procedure codes in the ICD-9 definition of ischemic stroke, compared with the traditional inclusive definition, on racial disparity estimates for stroke incidence and recurrence. Patients discharged with a diagnosis of ischemic stroke (ICD-9 codes 433.00-434.91 and 436) were identified from a statewide inpatient discharge database from 2010 to 2012. Race-age specific disparity estimates of stroke incidence and recurrence and 1-year cumulative recurrent stroke rates were compared between the routinely used traditional classification and a modified classification of stroke that excluded primary ICD-9 cerebral revascularization procedures codes (38.12, 00.61, and 00.63). The traditional classification identified 7878 stroke hospitalizations, whereas the modified classification resulted in 18% fewer hospitalizations (n = 6444). The age-specific black to white rate ratios were significantly higher in the modified than in the traditional classification for stroke incidence (rate ratio, 1.50; 95% confidence interval [CI], 1.43-1.58 vs. rate ratio, 1.24; 95% CI, 1.18-1.30, respectively). In whites, the 1-year cumulative recurrence rate was significantly reduced by 46% (45-64 years) and 49% (≥ 65 years) in the modified classification, largely explained by a higher rate of cerebral revascularization procedures among whites. There were nonsignificant reductions of 14% (45-64 years) and 19% (≥ 65 years) among blacks. Including cerebral revascularization procedure codes overestimates hospitalization rates for ischemic stroke and significantly underestimates the racial disparity estimates in stroke incidence and recurrence. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  1. Optimizing a liquid propellant rocket engine with an automated combustor design code (AUTOCOM)

    NASA Technical Reports Server (NTRS)

    Hague, D. S.; Reichel, R. H.; Jones, R. T.; Glatt, C. R.

    1972-01-01

    A procedure for automatically designing a liquid propellant rocket engine combustion chamber in an optimal fashion is outlined. The procedure is contained in a digital computer code, AUTOCOM. The code is applied to an existing engine, and design modifications are generated which provide a substantial potential payload improvement over the existing design. Computer time requirements for this payload improvement were small, approximately four minutes in the CDC 6600 computer.

  2. A stimulus-dependent spike threshold is an optimal neural coder

    PubMed Central

    Jones, Douglas L.; Johnson, Erik C.; Ratnam, Rama

    2015-01-01

    A neural code based on sequences of spikes can consume a significant portion of the brain's energy budget. Thus, energy considerations would dictate that spiking activity be kept as low as possible. However, a high spike-rate improves the coding and representation of signals in spike trains, particularly in sensory systems. These are competing demands, and selective pressure has presumably worked to optimize coding by apportioning a minimum number of spikes so as to maximize coding fidelity. The mechanisms by which a neuron generates spikes while maintaining a fidelity criterion are not known. Here, we show that a signal-dependent neural threshold, similar to a dynamic or adapting threshold, optimizes the trade-off between spike generation (encoding) and fidelity (decoding). The threshold mimics a post-synaptic membrane (a low-pass filter) and serves as an internal decoder. Further, it sets the average firing rate (the energy constraint). The decoding process provides an internal copy of the coding error to the spike-generator which emits a spike when the error equals or exceeds a spike threshold. When optimized, the trade-off leads to a deterministic spike firing-rule that generates optimally timed spikes so as to maximize fidelity. The optimal coder is derived in closed-form in the limit of high spike-rates, when the signal can be approximated as a piece-wise constant signal. The predicted spike-times are close to those obtained experimentally in the primary electrosensory afferent neurons of weakly electric fish (Apteronotus leptorhynchus) and pyramidal neurons from the somatosensory cortex of the rat. We suggest that KCNQ/Kv7 channels (underlying the M-current) are good candidates for the decoder. They are widely coupled to metabolic processes and do not inactivate. We conclude that the neural threshold is optimized to generate an energy-efficient and high-fidelity neural code. PMID:26082710

  3. Wind Farm Turbine Type and Placement Optimization

    NASA Astrophysics Data System (ADS)

    Graf, Peter; Dykes, Katherine; Scott, George; Fields, Jason; Lunacek, Monte; Quick, Julian; Rethore, Pierre-Elouan

    2016-09-01

    The layout of turbines in a wind farm is already a challenging nonlinear, nonconvex, nonlinearly constrained continuous global optimization problem. Here we begin to address the next generation of wind farm optimization problems by adding the complexity that there is more than one turbine type to choose from. The optimization becomes a nonlinear constrained mixed integer problem, which is a very difficult class of problems to solve. This document briefly summarizes the algorithm and code we have developed, the code validation steps we have performed, and the initial results for multi-turbine type and placement optimization (TTP_OPT) we have run.

  4. Wind farm turbine type and placement optimization

    DOE PAGES

    Graf, Peter; Dykes, Katherine; Scott, George; ...

    2016-10-03

    The layout of turbines in a wind farm is already a challenging nonlinear, nonconvex, nonlinearly constrained continuous global optimization problem. Here we begin to address the next generation of wind farm optimization problems by adding the complexity that there is more than one turbine type to choose from. The optimization becomes a nonlinear constrained mixed integer problem, which is a very difficult class of problems to solve. Furthermore, this document briefly summarizes the algorithm and code we have developed, the code validation steps we have performed, and the initial results for multi-turbine type and placement optimization (TTP_OPT) we have run.

  5. Optimal wavelets for biomedical signal compression.

    PubMed

    Nielsen, Mogens; Kamavuako, Ernest Nlandu; Andersen, Michael Midtgaard; Lucas, Marie-Françoise; Farina, Dario

    2006-07-01

    Signal compression is gaining importance in biomedical engineering due to the potential applications in telemedicine. In this work, we propose a novel scheme of signal compression based on signal-dependent wavelets. To adapt the mother wavelet to the signal for the purpose of compression, it is necessary to define (1) a family of wavelets that depend on a set of parameters and (2) a quality criterion for wavelet selection (i.e., wavelet parameter optimization). We propose the use of an unconstrained parameterization of the wavelet for wavelet optimization. A natural performance criterion for compression is the minimization of the signal distortion rate given the desired compression rate. For coding the wavelet coefficients, we adopted the embedded zerotree wavelet coding algorithm, although any coding scheme may be used with the proposed wavelet optimization. As a representative example of application, the coding/encoding scheme was applied to surface electromyographic signals recorded from ten subjects. The distortion rate strongly depended on the mother wavelet (for example, for 50% compression rate, optimal wavelet, mean+/-SD, 5.46+/-1.01%; worst wavelet 12.76+/-2.73%). Thus, optimization significantly improved performance with respect to previous approaches based on classic wavelets. The algorithm can be applied to any signal type since the optimal wavelet is selected on a signal-by-signal basis. Examples of application to ECG and EEG signals are also reported.

  6. RD Optimized, Adaptive, Error-Resilient Transmission of MJPEG2000-Coded Video over Multiple Time-Varying Channels

    NASA Astrophysics Data System (ADS)

    Bezan, Scott; Shirani, Shahram

    2006-12-01

    To reliably transmit video over error-prone channels, the data should be both source and channel coded. When multiple channels are available for transmission, the problem extends to that of partitioning the data across these channels. The condition of transmission channels, however, varies with time. Therefore, the error protection added to the data at one instant of time may not be optimal at the next. In this paper, we propose a method for adaptively adding error correction code in a rate-distortion (RD) optimized manner using rate-compatible punctured convolutional codes to an MJPEG2000 constant rate-coded frame of video. We perform an analysis on the rate-distortion tradeoff of each of the coding units (tiles and packets) in each frame and adapt the error correction code assigned to the unit taking into account the bandwidth and error characteristics of the channels. This method is applied to both single and multiple time-varying channel environments. We compare our method with a basic protection method in which data is either not transmitted, transmitted with no protection, or transmitted with a fixed amount of protection. Simulation results show promising performance for our proposed method.

  7. File compression and encryption based on LLS and arithmetic coding

    NASA Astrophysics Data System (ADS)

    Yu, Changzhi; Li, Hengjian; Wang, Xiyu

    2018-03-01

    e propose a file compression model based on arithmetic coding. Firstly, the original symbols, to be encoded, are input to the encoder one by one, we produce a set of chaotic sequences by using the Logistic and sine chaos system(LLS), and the values of this chaotic sequences are randomly modified the Upper and lower limits of current symbols probability. In order to achieve the purpose of encryption, we modify the upper and lower limits of all character probabilities when encoding each symbols. Experimental results show that the proposed model can achieve the purpose of data encryption while achieving almost the same compression efficiency as the arithmetic coding.

  8. Hybrid digital-analog coding with bandwidth expansion for correlated Gaussian sources under Rayleigh fading

    NASA Astrophysics Data System (ADS)

    Yahampath, Pradeepa

    2017-12-01

    Consider communicating a correlated Gaussian source over a Rayleigh fading channel with no knowledge of the channel signal-to-noise ratio (CSNR) at the transmitter. In this case, a digital system cannot be optimal for a range of CSNRs. Analog transmission however is optimal at all CSNRs, if the source and channel are memoryless and bandwidth matched. This paper presents new hybrid digital-analog (HDA) systems for sources with memory and channels with bandwidth expansion, which outperform both digital-only and analog-only systems over a wide range of CSNRs. The digital part is either a predictive quantizer or a transform code, used to achieve a coding gain. Analog part uses linear encoding to transmit the quantization error which improves the performance under CSNR variations. The hybrid encoder is optimized to achieve the minimum AMMSE (average minimum mean square error) over the CSNR distribution. To this end, analytical expressions are derived for the AMMSE of asymptotically optimal systems. It is shown that the outage CSNR of the channel code and the analog-digital power allocation must be jointly optimized to achieve the minimum AMMSE. In the case of HDA predictive quantization, a simple algorithm is presented to solve the optimization problem. Experimental results are presented for both Gauss-Markov sources and speech signals.

  9. Hard decoding algorithm for optimizing thresholds under general Markovian noise

    NASA Astrophysics Data System (ADS)

    Chamberland, Christopher; Wallman, Joel; Beale, Stefanie; Laflamme, Raymond

    2017-04-01

    Quantum error correction is instrumental in protecting quantum systems from noise in quantum computing and communication settings. Pauli channels can be efficiently simulated and threshold values for Pauli error rates under a variety of error-correcting codes have been obtained. However, realistic quantum systems can undergo noise processes that differ significantly from Pauli noise. In this paper, we present an efficient hard decoding algorithm for optimizing thresholds and lowering failure rates of an error-correcting code under general completely positive and trace-preserving (i.e., Markovian) noise. We use our hard decoding algorithm to study the performance of several error-correcting codes under various non-Pauli noise models by computing threshold values and failure rates for these codes. We compare the performance of our hard decoding algorithm to decoders optimized for depolarizing noise and show improvements in thresholds and reductions in failure rates by several orders of magnitude. Our hard decoding algorithm can also be adapted to take advantage of a code's non-Pauli transversal gates to further suppress noise. For example, we show that using the transversal gates of the 5-qubit code allows arbitrary rotations around certain axes to be perfectly corrected. Furthermore, we show that Pauli twirling can increase or decrease the threshold depending upon the code properties. Lastly, we show that even if the physical noise model differs slightly from the hypothesized noise model used to determine an optimized decoder, failure rates can still be reduced by applying our hard decoding algorithm.

  10. A Spherical Active Coded Aperture for 4π Gamma-ray Imaging

    DOE PAGES

    Hellfeld, Daniel; Barton, Paul; Gunter, Donald; ...

    2017-09-22

    Gamma-ray imaging facilitates the efficient detection, characterization, and localization of compact radioactive sources in cluttered environments. Fieldable detector systems employing active planar coded apertures have demonstrated broad energy sensitivity via both coded aperture and Compton imaging modalities. But, planar configurations suffer from a limited field-of-view, especially in the coded aperture mode. In order to improve upon this limitation, we introduce a novel design by rearranging the detectors into an active coded spherical configuration, resulting in a 4pi isotropic field-of-view for both coded aperture and Compton imaging. This work focuses on the low- energy coded aperture modality and the optimization techniquesmore » used to determine the optimal number and configuration of 1 cm 3 CdZnTe coplanar grid detectors on a 14 cm diameter sphere with 192 available detector locations.« less

  11. Legacy Code Modernization

    NASA Technical Reports Server (NTRS)

    Hribar, Michelle R.; Frumkin, Michael; Jin, Haoqiang; Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)

    1998-01-01

    Over the past decade, high performance computing has evolved rapidly; systems based on commodity microprocessors have been introduced in quick succession from at least seven vendors/families. Porting codes to every new architecture is a difficult problem; in particular, here at NASA, there are many large CFD applications that are very costly to port to new machines by hand. The LCM ("Legacy Code Modernization") Project is the development of an integrated parallelization environment (IPE) which performs the automated mapping of legacy CFD (Fortran) applications to state-of-the-art high performance computers. While most projects to port codes focus on the parallelization of the code, we consider porting to be an iterative process consisting of several steps: 1) code cleanup, 2) serial optimization,3) parallelization, 4) performance monitoring and visualization, 5) intelligent tools for automated tuning using performance prediction and 6) machine specific optimization. The approach for building this parallelization environment is to build the components for each of the steps simultaneously and then integrate them together. The demonstration will exhibit our latest research in building this environment: 1. Parallelizing tools and compiler evaluation. 2. Code cleanup and serial optimization using automated scripts 3. Development of a code generator for performance prediction 4. Automated partitioning 5. Automated insertion of directives. These demonstrations will exhibit the effectiveness of an automated approach for all the steps involved with porting and tuning a legacy code application for a new architecture.

  12. Bilayer Protograph Codes for Half-Duplex Relay Channels

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; VanNguyen, Thuy; Nosratinia, Aria

    2013-01-01

    Direct to Earth return links are limited by the size and power of lander devices. A standard alternative is provided by a two-hops return link: a proximity link (from lander to orbiter relay) and a deep-space link (from orbiter relay to Earth). Although direct to Earth return links are limited by the size and power of lander devices, using an additional link and a proposed coding for relay channels, one can obtain a more reliable signal. Although significant progress has been made in the relay coding problem, existing codes must be painstakingly optimized to match to a single set of channel conditions, many of them do not offer easy encoding, and most of them do not have structured design. A high-performing LDPC (low-density parity-check) code for the relay channel addresses simultaneously two important issues: a code structure that allows low encoding complexity, and a flexible rate-compatible code that allows matching to various channel conditions. Most of the previous high-performance LDPC codes for the relay channel are tightly optimized for a given channel quality, and are not easily adapted without extensive re-optimization for various channel conditions. This code for the relay channel combines structured design and easy encoding with rate compatibility to allow adaptation to the three links involved in the relay channel, and furthermore offers very good performance. The proposed code is constructed by synthesizing a bilayer structure with a pro to graph. In addition to the contribution to relay encoding, an improved family of protograph codes was produced for the point-to-point AWGN (additive white Gaussian noise) channel whose high-rate members enjoy thresholds that are within 0.07 dB of capacity. These LDPC relay codes address three important issues in an integrative manner: low encoding complexity, modular structure allowing for easy design, and rate compatibility so that the code can be easily matched to a variety of channel conditions without extensive re-optimization. The main problem of half-duplex relay coding can be reduced to the simultaneous design of two codes at two rates and two SNRs (signal-to-noise ratios), such that one is a subset of the other. This problem can be addressed by forceful optimization, but a clever method of addressing this problem is via the bilayer lengthened (BL) LDPC structure. This method uses a bilayer Tanner graph to make the two codes while using a concept of "parity forwarding" with subsequent successive decoding that removes the need to directly address the issue of uneven SNRs among the symbols of a given codeword. This method is attractive in that it addresses some of the main issues in the design of relay codes, but it does not by itself give rise to highly structured codes with simple encoding, nor does it give rate-compatible codes. The main contribution of this work is to construct a class of codes that simultaneously possess a bilayer parity- forwarding mechanism, while also benefiting from the properties of protograph codes having an easy encoding, a modular design, and being a rate-compatible code.

  13. Power optimization of wireless media systems with space-time block codes.

    PubMed

    Yousefi'zadeh, Homayoun; Jafarkhani, Hamid; Moshfeghi, Mehran

    2004-07-01

    We present analytical and numerical solutions to the problem of power control in wireless media systems with multiple antennas. We formulate a set of optimization problems aimed at minimizing total power consumption of wireless media systems subject to a given level of QoS and an available bit rate. Our formulation takes into consideration the power consumption related to source coding, channel coding, and transmission of multiple-transmit antennas. In our study, we consider Gauss-Markov and video source models, Rayleigh fading channels along with the Bernoulli/Gilbert-Elliott loss models, and space-time block codes.

  14. Multi-level of Fidelity Multi-Disciplinary Design Optimization of Small, Solid-Propellant Launch Vehicles

    NASA Astrophysics Data System (ADS)

    Roshanian, Jafar; Jodei, Jahangir; Mirshams, Mehran; Ebrahimi, Reza; Mirzaee, Masood

    A new automated multi-level of fidelity Multi-Disciplinary Design Optimization (MDO) methodology has been developed at the MDO Laboratory of K.N. Toosi University of Technology. This paper explains a new design approach by formulation of developed disciplinary modules. A conceptual design for a small, solid-propellant launch vehicle was considered at two levels of fidelity structure. Low and medium level of fidelity disciplinary codes were developed and linked. Appropriate design and analysis codes were defined according to their effect on the conceptual design process. Simultaneous optimization of the launch vehicle was performed at the discipline level and system level. Propulsion, aerodynamics, structure and trajectory disciplinary codes were used. To reach the minimum launch weight, the Low LoF code first searches the whole design space to achieve the mission requirements. Then the medium LoF code receives the output of the low LoF and gives a value near the optimum launch weight with more details and higher fidelity.

  15. Improving soft FEC performance for higher-order modulations via optimized bit channel mappings.

    PubMed

    Häger, Christian; Amat, Alexandre Graell I; Brännström, Fredrik; Alvarado, Alex; Agrell, Erik

    2014-06-16

    Soft forward error correction with higher-order modulations is often implemented in practice via the pragmatic bit-interleaved coded modulation paradigm, where a single binary code is mapped to a nonbinary modulation. In this paper, we study the optimization of the mapping of the coded bits to the modulation bits for a polarization-multiplexed fiber-optical system without optical inline dispersion compensation. Our focus is on protograph-based low-density parity-check (LDPC) codes which allow for an efficient hardware implementation, suitable for high-speed optical communications. The optimization is applied to the AR4JA protograph family, and further extended to protograph-based spatially coupled LDPC codes assuming a windowed decoder. Full field simulations via the split-step Fourier method are used to verify the analysis. The results show performance gains of up to 0.25 dB, which translate into a possible extension of the transmission reach by roughly up to 8%, without significantly increasing the system complexity.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellfeld, Daniel; Barton, Paul; Gunter, Donald

    Gamma-ray imaging facilitates the efficient detection, characterization, and localization of compact radioactive sources in cluttered environments. Fieldable detector systems employing active planar coded apertures have demonstrated broad energy sensitivity via both coded aperture and Compton imaging modalities. But, planar configurations suffer from a limited field-of-view, especially in the coded aperture mode. In order to improve upon this limitation, we introduce a novel design by rearranging the detectors into an active coded spherical configuration, resulting in a 4pi isotropic field-of-view for both coded aperture and Compton imaging. This work focuses on the low- energy coded aperture modality and the optimization techniquesmore » used to determine the optimal number and configuration of 1 cm 3 CdZnTe coplanar grid detectors on a 14 cm diameter sphere with 192 available detector locations.« less

  17. Vector processing efficiency of plasma MHD codes by use of the FACOM 230-75 APU

    NASA Astrophysics Data System (ADS)

    Matsuura, T.; Tanaka, Y.; Naraoka, K.; Takizuka, T.; Tsunematsu, T.; Tokuda, S.; Azumi, M.; Kurita, G.; Takeda, T.

    1982-06-01

    In the framework of pipelined vector architecture, the efficiency of vector processing is assessed with respect to plasma MHD codes in nuclear fusion research. By using a vector processor, the FACOM 230-75 APU, the limit of the enhancement factor due to parallelism of current vector machines is examined for three numerical codes based on a fluid model. Reasonable speed-up factors of approximately 6,6 and 4 times faster than the highly optimized scalar version are obtained for ERATO (linear stability code), AEOLUS-R1 (nonlinear stability code) and APOLLO (1-1/2D transport code), respectively. Problems of the pipelined vector processors are discussed from the viewpoint of restructuring, optimization and choice of algorithms. In conclusion, the important concept of "concurrency within pipelined parallelism" is emphasized.

  18. Modified cyanobacteria

    DOEpatents

    Vermaas, Willem F J.

    2014-06-17

    Disclosed is a modified photoautotrophic bacterium comprising genes of interest that are modified in terms of their expression and/or coding region sequence, wherein modification of the genes of interest increases production of a desired product in the bacterium relative to the amount of the desired product production in a photoautotrophic bacterium that is not modified with respect to the genes of interest.

  19. A numerical similarity approach for using retired Current Procedural Terminology (CPT) codes for electronic phenotyping in the Scalable Collaborative Infrastructure for a Learning Health System (SCILHS).

    PubMed

    Klann, Jeffrey G; Phillips, Lori C; Turchin, Alexander; Weiler, Sarah; Mandl, Kenneth D; Murphy, Shawn N

    2015-12-11

    Interoperable phenotyping algorithms, needed to identify patient cohorts meeting eligibility criteria for observational studies or clinical trials, require medical data in a consistent structured, coded format. Data heterogeneity limits such algorithms' applicability. Existing approaches are often: not widely interoperable; or, have low sensitivity due to reliance on the lowest common denominator (ICD-9 diagnoses). In the Scalable Collaborative Infrastructure for a Learning Healthcare System (SCILHS) we endeavor to use the widely-available Current Procedural Terminology (CPT) procedure codes with ICD-9. Unfortunately, CPT changes drastically year-to-year - codes are retired/replaced. Longitudinal analysis requires grouping retired and current codes. BioPortal provides a navigable CPT hierarchy, which we imported into the Informatics for Integrating Biology and the Bedside (i2b2) data warehouse and analytics platform. However, this hierarchy does not include retired codes. We compared BioPortal's 2014AA CPT hierarchy with Partners Healthcare's SCILHS datamart, comprising three-million patients' data over 15 years. 573 CPT codes were not present in 2014AA (6.5 million occurrences). No existing terminology provided hierarchical linkages for these missing codes, so we developed a method that automatically places missing codes in the most specific "grouper" category, using the numerical similarity of CPT codes. Two informaticians reviewed the results. We incorporated the final table into our i2b2 SCILHS/PCORnet ontology, deployed it at seven sites, and performed a gap analysis and an evaluation against several phenotyping algorithms. The reviewers found the method placed the code correctly with 97 % precision when considering only miscategorizations ("correctness precision") and 52 % precision using a gold-standard of optimal placement ("optimality precision"). High correctness precision meant that codes were placed in a reasonable hierarchal position that a reviewer can quickly validate. Lower optimality precision meant that codes were not often placed in the optimal hierarchical subfolder. The seven sites encountered few occurrences of codes outside our ontology, 93 % of which comprised just four codes. Our hierarchical approach correctly grouped retired and non-retired codes in most cases and extended the temporal reach of several important phenotyping algorithms. We developed a simple, easily-validated, automated method to place retired CPT codes into the BioPortal CPT hierarchy. This complements existing hierarchical terminologies, which do not include retired codes. The approach's utility is confirmed by the high correctness precision and successful grouping of retired with non-retired codes.

  20. Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes. Part 3; An Iterative Decoding Algorithm for Linear Block Codes Based on a Low-Weight Trellis Search

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Fossorier, Marc

    1998-01-01

    For long linear block codes, maximum likelihood decoding based on full code trellises would be very hard to implement if not impossible. In this case, we may wish to trade error performance for the reduction in decoding complexity. Sub-optimum soft-decision decoding of a linear block code based on a low-weight sub-trellis can be devised to provide an effective trade-off between error performance and decoding complexity. This chapter presents such a suboptimal decoding algorithm for linear block codes. This decoding algorithm is iterative in nature and based on an optimality test. It has the following important features: (1) a simple method to generate a sequence of candidate code-words, one at a time, for test; (2) a sufficient condition for testing a candidate code-word for optimality; and (3) a low-weight sub-trellis search for finding the most likely (ML) code-word.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graf, Peter; Dykes, Katherine; Scott, George

    The layout of turbines in a wind farm is already a challenging nonlinear, nonconvex, nonlinearly constrained continuous global optimization problem. Here we begin to address the next generation of wind farm optimization problems by adding the complexity that there is more than one turbine type to choose from. The optimization becomes a nonlinear constrained mixed integer problem, which is a very difficult class of problems to solve. Furthermore, this document briefly summarizes the algorithm and code we have developed, the code validation steps we have performed, and the initial results for multi-turbine type and placement optimization (TTP_OPT) we have run.

  2. Manual of phosphoric acid fuel cell power plant optimization model and computer program

    NASA Technical Reports Server (NTRS)

    Lu, C. Y.; Alkasab, K. A.

    1984-01-01

    An optimized cost and performance model for a phosphoric acid fuel cell power plant system was derived and developed into a modular FORTRAN computer code. Cost, energy, mass, and electrochemical analyses were combined to develop a mathematical model for optimizing the steam to methane ratio in the reformer, hydrogen utilization in the PAFC plates per stack. The nonlinear programming code, COMPUTE, was used to solve this model, in which the method of mixed penalty function combined with Hooke and Jeeves pattern search was chosen to evaluate this specific optimization problem.

  3. Branch-pipe-routing approach for ships using improved genetic algorithm

    NASA Astrophysics Data System (ADS)

    Sui, Haiteng; Niu, Wentie

    2016-09-01

    Branch-pipe routing plays fundamental and critical roles in ship-pipe design. The branch-pipe-routing problem is a complex combinatorial optimization problem and is thus difficult to solve when depending only on human experts. A modified genetic-algorithm-based approach is proposed in this paper to solve this problem. The simplified layout space is first divided into threedimensional (3D) grids to build its mathematical model. Branch pipes in layout space are regarded as a combination of several two-point pipes, and the pipe route between two connection points is generated using an improved maze algorithm. The coding of branch pipes is then defined, and the genetic operators are devised, especially the complete crossover strategy that greatly accelerates the convergence speed. Finally, simulation tests demonstrate the performance of proposed method.

  4. Designing manufacturable filters for a 16-band plenoptic camera using differential evolution

    NASA Astrophysics Data System (ADS)

    Doster, Timothy; Olson, Colin C.; Fleet, Erin; Yetzbacher, Michael; Kanaev, Andrey; Lebow, Paul; Leathers, Robert

    2017-05-01

    A 16-band plenoptic camera allows for the rapid exchange of filter sets via a 4x4 filter array on the lens's front aperture. This ability to change out filters allows for an operator to quickly adapt to different locales or threat intelligence. Typically, such a system incorporates a default set of 16 equally spaced at-topped filters. Knowing the operating theater or the likely targets of interest it becomes advantageous to tune the filters. We propose using a modified beta distribution to parameterize the different possible filters and differential evolution (DE) to search over the space of possible filter designs. The modified beta distribution allows us to jointly optimize the width, taper and wavelength center of each single- or multi-pass filter in the set over a number of evolutionary steps. Further, by constraining the function parameters we can develop solutions which are not just theoretical but manufacturable. We examine two independent tasks: general spectral sensing and target detection. In the general spectral sensing task we utilize the theory of compressive sensing (CS) and find filters that generate codings which minimize the CS reconstruction error based on a fixed spectral dictionary of endmembers. For the target detection task and a set of known targets, we train the filters to optimize the separation of the background and target signature. We compare our results to the default 16 at-topped non-overlapping filter set which comes with the plenoptic camera and full hyperspectral resolution data which was previously acquired.

  5. Targeting multiple heterogeneous hardware platforms with OpenCL

    NASA Astrophysics Data System (ADS)

    Fox, Paul A.; Kozacik, Stephen T.; Humphrey, John R.; Paolini, Aaron; Kuller, Aryeh; Kelmelis, Eric J.

    2014-06-01

    The OpenCL API allows for the abstract expression of parallel, heterogeneous computing, but hardware implementations have substantial implementation differences. The abstractions provided by the OpenCL API are often insufficiently high-level to conceal differences in hardware architecture. Additionally, implementations often do not take advantage of potential performance gains from certain features due to hardware limitations and other factors. These factors make it challenging to produce code that is portable in practice, resulting in much OpenCL code being duplicated for each hardware platform being targeted. This duplication of effort offsets the principal advantage of OpenCL: portability. The use of certain coding practices can mitigate this problem, allowing a common code base to be adapted to perform well across a wide range of hardware platforms. To this end, we explore some general practices for producing performant code that are effective across platforms. Additionally, we explore some ways of modularizing code to enable optional optimizations that take advantage of hardware-specific characteristics. The minimum requirement for portability implies avoiding the use of OpenCL features that are optional, not widely implemented, poorly implemented, or missing in major implementations. Exposing multiple levels of parallelism allows hardware to take advantage of the types of parallelism it supports, from the task level down to explicit vector operations. Static optimizations and branch elimination in device code help the platform compiler to effectively optimize programs. Modularization of some code is important to allow operations to be chosen for performance on target hardware. Optional subroutines exploiting explicit memory locality allow for different memory hierarchies to be exploited for maximum performance. The C preprocessor and JIT compilation using the OpenCL runtime can be used to enable some of these techniques, as well as to factor in hardware-specific optimizations as necessary.

  6. Rotorcraft Optimization Tools: Incorporating Rotorcraft Design Codes into Multi-Disciplinary Design, Analysis, and Optimization

    NASA Technical Reports Server (NTRS)

    Meyn, Larry A.

    2018-01-01

    One of the goals of NASA's Revolutionary Vertical Lift Technology Project (RVLT) is to provide validated tools for multidisciplinary design, analysis and optimization (MDAO) of vertical lift vehicles. As part of this effort, the software package, RotorCraft Optimization Tools (RCOTOOLS), is being developed to facilitate incorporating key rotorcraft conceptual design codes into optimizations using the OpenMDAO multi-disciplinary optimization framework written in Python. RCOTOOLS, also written in Python, currently supports the incorporation of the NASA Design and Analysis of RotorCraft (NDARC) vehicle sizing tool and the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics II (CAMRAD II) analysis tool into OpenMDAO-driven optimizations. Both of these tools use detailed, file-based inputs and outputs, so RCOTOOLS provides software wrappers to update input files with new design variable values, execute these codes and then extract specific response variable values from the file outputs. These wrappers are designed to be flexible and easy to use. RCOTOOLS also provides several utilities to aid in optimization model development, including Graphical User Interface (GUI) tools for browsing input and output files in order to identify text strings that are used to identify specific variables as optimization input and response variables. This paper provides an overview of RCOTOOLS and its use

  7. Systems for the Intermodal Routing of Spent Nuclear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Steven K; Liu, Cheng

    The safe and secure movement of spent nuclear fuel from shutdown and active reactor facilities to intermediate or long term storage sites may, in some instances, require the use of several modes of transportation to accomplish the move. To that end, a fully operable multi-modal routing system is being developed within Oak Ridge National Laboratory s (ORNL) WebTRAGIS (Transportation Routing Analysis Geographic Information System). This study aims to provide an overview of multi-modal routing, the existing state of the TRAGIS networks, the source data needs, and the requirements for developing structural relationships between various modes to create a suitable systemmore » for modeling the transport of spent nuclear fuel via a multimodal network. Modern transportation systems are comprised of interconnected, yet separate, modal networks. Efficient transportation networks rely upon the smooth transfer of cargoes at junction points that serve as connectors between modes. A key logistical impediment to the shipment of spent nuclear fuel is the absence of identified or designated transfer locations between transport modes. Understanding the potential network impacts on intermodal transportation of spent nuclear fuel is vital for planning transportation routes from origin to destination. By identifying key locations where modes intersect, routing decisions can be made to prioritize cost savings, optimize transport times and minimize potential risks to the population and environment. In order to facilitate such a process, ORNL began the development of a base intermodal network and associated routing code. The network was developed using previous intermodal networks and information from publicly available data sources to construct a database of potential intermodal transfer locations with likely capability to handle spent nuclear fuel casks. The coding development focused on modifying the existing WebTRAGIS routing code to accommodate intermodal transfers and the selection of prioritization constraints and modifiers to determine route selection. The limitations of the current model and future directions for development are discussed, including the current state of information on possible intermodal transfer locations for spent fuel.« less

  8. Computer modeling of the mineralogy of the Martian surface, as modified by aqueous alteration

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Bourcier, W. L.; Gooding, J. L.

    1988-01-01

    Mineralogical constraints can be placed on the Martian surface by assuming chemical equilibria among the surface rocks, atmosphere and hypothesized percolating groundwater. A study was made of possible Martian surface mineralogy, as modified by the action of aqueous alteration, using the EQ3/6 computer codes. These codes calculate gas fugacities, aqueous speciation, ionic strength, pH, Eh and concentration and degree of mineral saturation for complex aqueous systems. Thus, these codes are also able to consider mineralogical solid solutions. These codes are able to predict the likely alteration phases which will occur as the result of weathering on the Martian surface. Knowledge of the stability conditions of these phases will then assist in the definition of the specifications for the sample canister of the proposed Martian sample return mission. The model and its results are discussed.

  9. Optimal Codes for the Burst Erasure Channel

    NASA Technical Reports Server (NTRS)

    Hamkins, Jon

    2010-01-01

    Deep space communications over noisy channels lead to certain packets that are not decodable. These packets leave gaps, or bursts of erasures, in the data stream. Burst erasure correcting codes overcome this problem. These are forward erasure correcting codes that allow one to recover the missing gaps of data. Much of the recent work on this topic concentrated on Low-Density Parity-Check (LDPC) codes. These are more complicated to encode and decode than Single Parity Check (SPC) codes or Reed-Solomon (RS) codes, and so far have not been able to achieve the theoretical limit for burst erasure protection. A block interleaved maximum distance separable (MDS) code (e.g., an SPC or RS code) offers near-optimal burst erasure protection, in the sense that no other scheme of equal total transmission length and code rate could improve the guaranteed correctible burst erasure length by more than one symbol. The optimality does not depend on the length of the code, i.e., a short MDS code block interleaved to a given length would perform as well as a longer MDS code interleaved to the same overall length. As a result, this approach offers lower decoding complexity with better burst erasure protection compared to other recent designs for the burst erasure channel (e.g., LDPC codes). A limitation of the design is its lack of robustness to channels that have impairments other than burst erasures (e.g., additive white Gaussian noise), making its application best suited for correcting data erasures in layers above the physical layer. The efficiency of a burst erasure code is the length of its burst erasure correction capability divided by the theoretical upper limit on this length. The inefficiency is one minus the efficiency. The illustration compares the inefficiency of interleaved RS codes to Quasi-Cyclic (QC) LDPC codes, Euclidean Geometry (EG) LDPC codes, extended Irregular Repeat Accumulate (eIRA) codes, array codes, and random LDPC codes previously proposed for burst erasure protection. As can be seen, the simple interleaved RS codes have substantially lower inefficiency over a wide range of transmission lengths.

  10. A finite element code for electric motor design

    NASA Technical Reports Server (NTRS)

    Campbell, C. Warren

    1994-01-01

    FEMOT is a finite element program for solving the nonlinear magnetostatic problem. This version uses nonlinear, Newton first order elements. The code can be used for electric motor design and analysis. FEMOT can be embedded within an optimization code that will vary nodal coordinates to optimize the motor design. The output from FEMOT can be used to determine motor back EMF, torque, cogging, and magnet saturation. It will run on a PC and will be available to anyone who wants to use it.

  11. Electromagnetic Smart Valves for Cryogenic Applications

    NASA Astrophysics Data System (ADS)

    Traum, M. J.; Smith, J. L.; Brisson, J. G.; Gerstmann, J.; Hannon, C. L.

    2004-06-01

    Electromagnetic valves with smart control capability have been developed and demonstrated for use in the cold end of a Collins-style cryocooler. The toroidal geometry of the valves was developed utilizing a finite-element code and optimized for maximum opening force with minimum input current. Electromagnetic smart valves carry two primary benefits in cryogenic applications: 1) magnetic actuation eliminates the need for mechanical linkages and 2) valve timing can be modified during system cool down and in regular operation for cycle optimization. The smart feature of these electromagnetic valves resides in controlling the flow of current into the magnetic coil. Electronics have been designed to shape the valve actuation current, limiting the residence time of magnetic energy in the winding. This feature allows control of flow through the expander via an electrical signal while dissipating less than 0.0071 J/cycle as heat into the cold end. The electromagnetic smart valves have demonstrated reliable, controllable dynamic cycling. After 40 hours of operation, they suffered no perceptible mechanical degradation. These features enable the development of a miniaturized Collins-style cryocooler capable of removing 1 Watt of heat at 10 K.

  12. Charge breeding simulations for radioactive ion beam production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Variale, V.; Raino, A. C.; Clauser, T.

    2012-02-15

    The charge breeding technique is used for radioactive ion beam (RIB) production in order of optimizing the re-acceleration of the radioactive element ions produced by a primary beam in a thick target. Charge breeding is achieved by means of a device capable of increasing the ion charge state from 1+ to a desired value n+. In order to get high intensity RIB, experiments with charge breeding of very high efficiency could be required. To reach this goal, the charge breeding simulation could help to optimize the high charge state production efficiency by finding more proper parameters for the radioactive 1+more » ions. In this paper a device based on an electron beam ion source (EBIS) is considered. In order to study that problem, a code already developed for studying the ion selective containment in an EBIS with RF quadrupoles, BRICTEST, has been modified to simulate the ion charge state breeding rate for different 1+ ion injection conditions. Particularly, the charge breeding simulations for an EBIS with a hollow electron beam have been studied.« less

  13. Constructing a Pre-Emptive System Based on a Multidimentional Matrix and Autocompletion to Improve Diagnostic Coding in Acute Care Hospitals.

    PubMed

    Noussa-Yao, Joseph; Heudes, Didier; Escudie, Jean-Baptiste; Degoulet, Patrice

    2016-01-01

    Short-stay MSO (Medicine, Surgery, Obstetrics) hospitalization activities in public and private hospitals providing public services are funded through charges for the services provided (T2A in French). Coding must be well matched to the severity of the patient's condition, to ensure that appropriate funding is provided to the hospital. We propose the use of an autocompletion process and multidimensional matrix, to help physicians to improve the expression of information and to optimize clinical coding. With this approach, physicians without knowledge of the encoding rules begin from a rough concept, which is gradually refined through semantic proximity and uses information on the associated codes stemming of optimized knowledge bases of diagnosis code.

  14. Multidisciplinary High-Fidelity Analysis and Optimization of Aerospace Vehicles. Part 1; Formulation

    NASA Technical Reports Server (NTRS)

    Walsh, J. L.; Townsend, J. C.; Salas, A. O.; Samareh, J. A.; Mukhopadhyay, V.; Barthelemy, J.-F.

    2000-01-01

    An objective of the High Performance Computing and Communication Program at the NASA Langley Research Center is to demonstrate multidisciplinary shape and sizing optimization of a complete aerospace vehicle configuration by using high-fidelity, finite element structural analysis and computational fluid dynamics aerodynamic analysis in a distributed, heterogeneous computing environment that includes high performance parallel computing. A software system has been designed and implemented to integrate a set of existing discipline analysis codes, some of them computationally intensive, into a distributed computational environment for the design of a highspeed civil transport configuration. The paper describes the engineering aspects of formulating the optimization by integrating these analysis codes and associated interface codes into the system. The discipline codes are integrated by using the Java programming language and a Common Object Request Broker Architecture (CORBA) compliant software product. A companion paper presents currently available results.

  15. Acquisition of Inductive Biconditional Reasoning Skills: Training of Simultaneous and Sequential Processing.

    ERIC Educational Resources Information Center

    Lee, Seong-Soo

    1982-01-01

    Tenth-grade students (n=144) received training on one of three processing methods: coding-mapping (simultaneous), coding only, or decision tree (sequential). The induced simultaneous processing strategy worked optimally under rule learning, while the sequential strategy was difficult to induce and/or not optimal for rule-learning operations.…

  16. Effects of visual and verbal interference tasks on olfactory memory: the role of task complexity.

    PubMed

    Annett, J M; Leslie, J C

    1996-08-01

    Recent studies have demonstrated that visual and verbal suppression tasks interfere with olfactory memory in a manner which is partially consistent with a dual coding interpretation. However, it has been suggested that total task complexity rather than modality specificity of the suppression tasks might account for the observed pattern of results. This study addressed the issue of whether or not the level of difficulty and complexity of suppression tasks could explain the apparent modality effects noted in earlier experiments. A total of 608 participants were each allocated to one of 19 experimental conditions involving interference tasks which varied suppression type (visual or verbal), nature of complexity (single, double or mixed) and level of difficulty (easy, optimal or difficult) and presented with 13 target odours. Either recognition of the odours or free recall of the odour names was tested on one occasion, either within 15 minutes of presentation or one week later. Both recognition and recall performance showed an overall effect for suppression nature, suppression level and time of testing with no effect for suppression type. The results lend only limited support to Paivio's (1986) dual coding theory, but have a number of characteristics which suggest that an adequate account of olfactory memory may be broadly similar to current theories of face and object recognition. All of these phenomena might be dealt with by an appropriately modified version of dual coding theory.

  17. Sparse coded image super-resolution using K-SVD trained dictionary based on regularized orthogonal matching pursuit.

    PubMed

    Sajjad, Muhammad; Mehmood, Irfan; Baik, Sung Wook

    2015-01-01

    Image super-resolution (SR) plays a vital role in medical imaging that allows a more efficient and effective diagnosis process. Usually, diagnosing is difficult and inaccurate from low-resolution (LR) and noisy images. Resolution enhancement through conventional interpolation methods strongly affects the precision of consequent processing steps, such as segmentation and registration. Therefore, we propose an efficient sparse coded image SR reconstruction technique using a trained dictionary. We apply a simple and efficient regularized version of orthogonal matching pursuit (ROMP) to seek the coefficients of sparse representation. ROMP has the transparency and greediness of OMP and the robustness of the L1-minization that enhance the dictionary learning process to capture feature descriptors such as oriented edges and contours from complex images like brain MRIs. The sparse coding part of the K-SVD dictionary training procedure is modified by substituting OMP with ROMP. The dictionary update stage allows simultaneously updating an arbitrary number of atoms and vectors of sparse coefficients. In SR reconstruction, ROMP is used to determine the vector of sparse coefficients for the underlying patch. The recovered representations are then applied to the trained dictionary, and finally, an optimization leads to high-resolution output of high-quality. Experimental results demonstrate that the super-resolution reconstruction quality of the proposed scheme is comparatively better than other state-of-the-art schemes.

  18. Sequential Syndrome Decoding of Convolutional Codes

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.

    1984-01-01

    The algebraic structure of convolutional codes are reviewed and sequential syndrome decoding is applied to those codes. These concepts are then used to realize by example actual sequential decoding, using the stack algorithm. The Fano metric for use in sequential decoding is modified so that it can be utilized to sequentially find the minimum weight error sequence.

  19. The Attorney General's Proposed Voluntary Student Code of Conduct.

    ERIC Educational Resources Information Center

    Texas State Attorney General's Office, Austin.

    Intended as a guide for Texas school districts wishing to adopt or modify a student code of conduct, this proposed code describes a positive learning atmosphere, specifies conduct that disrupts such an environment, assures the rights and responsibilities of students, and standardizes procedures to be used in responding to disciplinary problems.…

  20. Analysis of internal flows relative to the space shuttle main engine

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Cooperative efforts between the Lockheed-Huntsville Computational Mechanics Group and the NASA-MSFC Computational Fluid Dynamics staff has resulted in improved capabilities for numerically simulating incompressible flows generic to the Space Shuttle Main Engine (SSME). A well established and documented CFD code was obtained, modified, and applied to laminar and turbulent flows of the type occurring in the SSME Hot Gas Manifold. The INS3D code was installed on the NASA-MSFC CRAY-XMP computer system and is currently being used by NASA engineers. Studies to perform a transient analysis of the FPB were conducted. The COBRA/TRAC code is recommended for simulating the transient flow of oxygen into the LOX manifold. Property data for modifying the code to represent LOX/GOX flow was collected. The ALFA code was developed and recommended for representing the transient combustion in the preburner. These two codes will couple through the transient boundary conditions to simulate the startup and/or shutdown of the fuel preburner. A study, NAS8-37461, is currently being conducted to implement this modeling effort.

  1. Memory-efficient decoding of LDPC codes

    NASA Technical Reports Server (NTRS)

    Kwok-San Lee, Jason; Thorpe, Jeremy; Hawkins, Jon

    2005-01-01

    We present a low-complexity quantization scheme for the implementation of regular (3,6) LDPC codes. The quantization parameters are optimized to maximize the mutual information between the source and the quantized messages. Using this non-uniform quantized belief propagation algorithm, we have simulated that an optimized 3-bit quantizer operates with 0.2dB implementation loss relative to a floating point decoder, and an optimized 4-bit quantizer operates less than 0.1dB quantization loss.

  2. PARLO: PArallel Run-Time Layout Optimization for Scientific Data Explorations with Heterogeneous Access Pattern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Zhenhuan; Boyuka, David; Zou, X

    Download Citation Email Print Request Permissions Save to Project The size and scope of cutting-edge scientific simulations are growing much faster than the I/O and storage capabilities of their run-time environments. The growing gap is exacerbated by exploratory, data-intensive analytics, such as querying simulation data with multivariate, spatio-temporal constraints, which induces heterogeneous access patterns that stress the performance of the underlying storage system. Previous work addresses data layout and indexing techniques to improve query performance for a single access pattern, which is not sufficient for complex analytics jobs. We present PARLO a parallel run-time layout optimization framework, to achieve multi-levelmore » data layout optimization for scientific applications at run-time before data is written to storage. The layout schemes optimize for heterogeneous access patterns with user-specified priorities. PARLO is integrated with ADIOS, a high-performance parallel I/O middleware for large-scale HPC applications, to achieve user-transparent, light-weight layout optimization for scientific datasets. It offers simple XML-based configuration for users to achieve flexible layout optimization without the need to modify or recompile application codes. Experiments show that PARLO improves performance by 2 to 26 times for queries with heterogeneous access patterns compared to state-of-the-art scientific database management systems. Compared to traditional post-processing approaches, its underlying run-time layout optimization achieves a 56% savings in processing time and a reduction in storage overhead of up to 50%. PARLO also exhibits a low run-time resource requirement, while also limiting the performance impact on running applications to a reasonable level.« less

  3. Shaping electromagnetic waves using software-automatically-designed metasurfaces.

    PubMed

    Zhang, Qian; Wan, Xiang; Liu, Shuo; Yuan Yin, Jia; Zhang, Lei; Jun Cui, Tie

    2017-06-15

    We present a fully digital procedure of designing reflective coding metasurfaces to shape reflected electromagnetic waves. The design procedure is completely automatic, controlled by a personal computer. In details, the macro coding units of metasurface are automatically divided into several types (e.g. two types for 1-bit coding, four types for 2-bit coding, etc.), and each type of the macro coding units is formed by discretely random arrangement of micro coding units. By combining an optimization algorithm and commercial electromagnetic software, the digital patterns of the macro coding units are optimized to possess constant phase difference for the reflected waves. The apertures of the designed reflective metasurfaces are formed by arranging the macro coding units with certain coding sequence. To experimentally verify the performance, a coding metasurface is fabricated by automatically designing two digital 1-bit unit cells, which are arranged in array to constitute a periodic coding metasurface to generate the required four-beam radiations with specific directions. Two complicated functional metasurfaces with circularly- and elliptically-shaped radiation beams are realized by automatically designing 4-bit macro coding units, showing excellent performance of the automatic designs by software. The proposed method provides a smart tool to realize various functional devices and systems automatically.

  4. Code division multiple access signaling for modulated reflector technology

    DOEpatents

    Briles, Scott D [Los Alamos, NM

    2012-05-01

    A method and apparatus for utilizing code division multiple access in modulated reflectance transmissions comprises the steps of generating a phase-modulated reflectance data bit stream; modifying the modulated reflectance data bit stream; providing the modified modulated reflectance data bit stream to a switch that connects an antenna to an infinite impedance in the event a "+1" is to be sent, or connects the antenna to ground in the event a "0" or a "-1" is to be sent.

  5. ASTROP2-LE: A Mistuned Aeroelastic Analysis System Based on a Two Dimensional Linearized Euler Solver

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Srivastava, R.; Mehmed, Oral

    2002-01-01

    An aeroelastic analysis system for flutter and forced response analysis of turbomachines based on a two-dimensional linearized unsteady Euler solver has been developed. The ASTROP2 code, an aeroelastic stability analysis program for turbomachinery, was used as a basis for this development. The ASTROP2 code uses strip theory to couple a two dimensional aerodynamic model with a three dimensional structural model. The code was modified to include forced response capability. The formulation was also modified to include aeroelastic analysis with mistuning. A linearized unsteady Euler solver, LINFLX2D is added to model the unsteady aerodynamics in ASTROP2. By calculating the unsteady aerodynamic loads using LINFLX2D, it is possible to include the effects of transonic flow on flutter and forced response in the analysis. The stability is inferred from an eigenvalue analysis. The revised code, ASTROP2-LE for ASTROP2 code using Linearized Euler aerodynamics, is validated by comparing the predictions with those obtained using linear unsteady aerodynamic solutions.

  6. Smooth Upgrade of Existing Passive Optical Networks With Spectral-Shaping Line-Coding Service Overlay

    NASA Astrophysics Data System (ADS)

    Hsueh, Yu-Li; Rogge, Matthew S.; Shaw, Wei-Tao; Kim, Jaedon; Yamamoto, Shu; Kazovsky, Leonid G.

    2005-09-01

    A simple and cost-effective upgrade of existing passive optical networks (PONs) is proposed, which realizes service overlay by novel spectral-shaping line codes. A hierarchical coding procedure allows processing simplicity and achieves desired long-term spectral properties. Different code rates are supported, and the spectral shape can be properly tailored to adapt to different systems. The computation can be simplified by quantization of trigonometric functions. DC balance is achieved by passing the dc residual between processing windows. The proposed line codes tend to introduce bit transitions to avoid long consecutive identical bits and facilitate receiver clock recovery. Experiments demonstrate and compare several different optimized line codes. For a specific tolerable interference level, the optimal line code can easily be determined, which maximizes the data throughput. The service overlay using the line-coding technique leaves existing services and field-deployed fibers untouched but fully functional, providing a very flexible and economic way to upgrade existing PONs.

  7. Performance optimization of spectral amplitude coding OCDMA system using new enhanced multi diagonal code

    NASA Astrophysics Data System (ADS)

    Imtiaz, Waqas A.; Ilyas, M.; Khan, Yousaf

    2016-11-01

    This paper propose a new code to optimize the performance of spectral amplitude coding-optical code division multiple access (SAC-OCDMA) system. The unique two-matrix structure of the proposed enhanced multi diagonal (EMD) code and effective correlation properties, between intended and interfering subscribers, significantly elevates the performance of SAC-OCDMA system by negating multiple access interference (MAI) and associated phase induce intensity noise (PIIN). Performance of SAC-OCDMA system based on the proposed code is thoroughly analyzed for two detection techniques through analytic and simulation analysis by referring to bit error rate (BER), signal to noise ratio (SNR) and eye patterns at the receiving end. It is shown that EMD code while using SDD technique provides high transmission capacity, reduces the receiver complexity, and provides better performance as compared to complementary subtraction detection (CSD) technique. Furthermore, analysis shows that, for a minimum acceptable BER of 10-9 , the proposed system supports 64 subscribers at data rates of up to 2 Gbps for both up-down link transmission.

  8. High-performance computational fluid dynamics: a custom-code approach

    NASA Astrophysics Data System (ADS)

    Fannon, James; Loiseau, Jean-Christophe; Valluri, Prashant; Bethune, Iain; Náraigh, Lennon Ó.

    2016-07-01

    We introduce a modified and simplified version of the pre-existing fully parallelized three-dimensional Navier-Stokes flow solver known as TPLS. We demonstrate how the simplified version can be used as a pedagogical tool for the study of computational fluid dynamics (CFDs) and parallel computing. TPLS is at its heart a two-phase flow solver, and uses calls to a range of external libraries to accelerate its performance. However, in the present context we narrow the focus of the study to basic hydrodynamics and parallel computing techniques, and the code is therefore simplified and modified to simulate pressure-driven single-phase flow in a channel, using only relatively simple Fortran 90 code with MPI parallelization, but no calls to any other external libraries. The modified code is analysed in order to both validate its accuracy and investigate its scalability up to 1000 CPU cores. Simulations are performed for several benchmark cases in pressure-driven channel flow, including a turbulent simulation, wherein the turbulence is incorporated via the large-eddy simulation technique. The work may be of use to advanced undergraduate and graduate students as an introductory study in CFDs, while also providing insight for those interested in more general aspects of high-performance computing.

  9. Aeroelastic Tailoring Study of N+2 Low Boom Supersonic Commerical Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi

    2015-01-01

    The Lockheed Martin N+2 Low - boom Supersonic Commercial Transport (LSCT) aircraft was optimized in this study through the use of a multidisciplinary design optimization tool developed at the National Aeronautics and S pace Administration Armstrong Flight Research Center. A total of 111 design variables we re used in the first optimization run. Total structural weight was the objective function in this optimization run. Design requirements for strength, buckling, and flutter we re selected as constraint functions during the first optimization run. The MSC Nastran code was used to obtain the modal, strength, and buckling characteristics. Flutter and trim analyses we re based on ZAERO code, and landing and ground control loads were computed using an in - house code. The w eight penalty to satisfy all the design requirement s during the first optimization run was 31,367 lb, a 9.4% increase from the baseline configuration. The second optimization run was prepared and based on the big-bang big-crunch algorithm. Six composite ply angles for the second and fourth composite layers were selected as discrete design variables for the second optimization run. Composite ply angle changes can't improve the weight configuration of the N+2 LSCT aircraft. However, this second optimization run can create more tolerance for the active and near active strength constraint values for future weight optimization runs.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winther, Hans A.; Koyama, Kazuya; Wright, Bill S.

    We present a general parallelized and easy-to-use code to perform numerical simulations of structure formation using the COLA (COmoving Lagrangian Acceleration) method for cosmological models that exhibit scale-dependent growth at the level of first and second order Lagrangian perturbation theory. For modified gravity theories we also include screening using a fast approximate method that covers all the main examples of screening mechanisms in the literature. We test the code by comparing it to full simulations of two popular modified gravity models, namely f ( R ) gravity and nDGP, and find good agreement in the modified gravity boost-factors relative tomore » ΛCDM even when using a fairly small number of COLA time steps.« less

  11. Optimization of monomethoxy polyethyleneglycol-modified oxalate decarboxylase by response surface methodology.

    PubMed

    Long, Han; Cai, XingHua; Yang, Hui; He, JunBin; Wu, Jia; Lin, RiHui

    2017-09-01

    In order to improve the stability of oxalate decarboxylase (Oxdc), response surface methodology (RSM), based on a four-factor three-level Box-Behnken central composite design was used to optimize the reaction conditions of oxalate decarboxylase (Oxdc) modified with monomethoxy polyethyleneglycol (mPEG5000). Four independent variables such as the ratio of mPEG-aldehyde to Oxdc, reaction time, temperature, and reaction pH were investigated in this work. The structure of modified Oxdc was identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Fourier transform infrared (FTIR) spectroscopy, the stability of the modified Oxdc was also investigated. The optimal conditions were as follows: the mole ratio of mPEG-aldehyde to Oxdc of 1:47.6, time of 13.1 h, temperature at 29.9 °C, and the reaction pH of 5.3. Under optimal conditions, experimental modified rate (MR = 73.69%) and recovery rate (RR = 67.58%) were matched well with the predicted value (MR = 75.11%) and (RR = 69.17%). SDS-PAGE and FTIR analysis showed that mPEG was covalently bound to the Oxdc. Compared with native Oxdc, the modified Oxdc (mPEG-Oxdc) showed higher thermal stability and better tolerance to trypsin or different pH treatment. This work will provide a further theoretical reference for enzyme modification and conditional optimization.

  12. MIFT: GIFT Combinatorial Geometry Input to VCS Code

    DTIC Science & Technology

    1977-03-01

    r-w w-^ H ^ß0318is CQ BRL °RCUMr REPORT NO. 1967 —-S: ... MIFT: GIFT COMBINATORIAL GEOMETRY INPUT TO VCS CODE Albert E...TITLE (and Subtitle) MIFT: GIFT Combinatorial Geometry Input to VCS Code S. TYPE OF REPORT & PERIOD COVERED FINAL 6. PERFORMING ORG. REPORT NUMBER...Vehicle Code System (VCS) called MORSE was modified to accept the GIFT combinatorial geometry package. GIFT , as opposed to the geometry package

  13. Optimizing the use of a sensor resource for opponent polarization coding

    PubMed Central

    Heras, Francisco J.H.

    2017-01-01

    Flies use specialized photoreceptors R7 and R8 in the dorsal rim area (DRA) to detect skylight polarization. R7 and R8 form a tiered waveguide (central rhabdomere pair, CRP) with R7 on top, filtering light delivered to R8. We examine how the division of a given resource, CRP length, between R7 and R8 affects their ability to code polarization angle. We model optical absorption to show how the length fractions allotted to R7 and R8 determine the rates at which they transduce photons, and correct these rates for transduction unit saturation. The rates give polarization signal and photon noise in R7, and in R8. Their signals are combined in an opponent unit, intrinsic noise added, and the unit’s output analysed to extract two measures of coding ability, number of discriminable polarization angles and mutual information. A very long R7 maximizes opponent signal amplitude, but codes inefficiently due to photon noise in the very short R8. Discriminability and mutual information are optimized by maximizing signal to noise ratio, SNR. At lower light levels approximately equal lengths of R7 and R8 are optimal because photon noise dominates. At higher light levels intrinsic noise comes to dominate and a shorter R8 is optimum. The optimum R8 length fractions falls to one third. This intensity dependent range of optimal length fractions corresponds to the range observed in different fly species and is not affected by transduction unit saturation. We conclude that a limited resource, rhabdom length, can be divided between two polarization sensors, R7 and R8, to optimize opponent coding. We also find that coding ability increases sub-linearly with total rhabdom length, according to the law of diminishing returns. Consequently, the specialized shorter central rhabdom in the DRA codes polarization twice as efficiently with respect to rhabdom length than the longer rhabdom used in the rest of the eye. PMID:28316880

  14. System, methods and apparatus for program optimization for multi-threaded processor architectures

    DOEpatents

    Bastoul, Cedric; Lethin, Richard A; Leung, Allen K; Meister, Benoit J; Szilagyi, Peter; Vasilache, Nicolas T; Wohlford, David E

    2015-01-06

    Methods, apparatus and computer software product for source code optimization are provided. In an exemplary embodiment, a first custom computing apparatus is used to optimize the execution of source code on a second computing apparatus. In this embodiment, the first custom computing apparatus contains a memory, a storage medium and at least one processor with at least one multi-stage execution unit. The second computing apparatus contains at least two multi-stage execution units that allow for parallel execution of tasks. The first custom computing apparatus optimizes the code for parallelism, locality of operations and contiguity of memory accesses on the second computing apparatus. This Abstract is provided for the sole purpose of complying with the Abstract requirement rules. This Abstract is submitted with the explicit understanding that it will not be used to interpret or to limit the scope or the meaning of the claims.

  15. Optimizing Excited-State Electronic-Structure Codes for Intel Knights Landing: A Case Study on the BerkeleyGW Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deslippe, Jack; da Jornada, Felipe H.; Vigil-Fowler, Derek

    2016-10-06

    We profile and optimize calculations performed with the BerkeleyGW code on the Xeon-Phi architecture. BerkeleyGW depends both on hand-tuned critical kernels as well as on BLAS and FFT libraries. We describe the optimization process and performance improvements achieved. We discuss a layered parallelization strategy to take advantage of vector, thread and node-level parallelism. We discuss locality changes (including the consequence of the lack of L3 cache) and effective use of the on-package high-bandwidth memory. We show preliminary results on Knights-Landing including a roofline study of code performance before and after a number of optimizations. We find that the GW methodmore » is particularly well-suited for many-core architectures due to the ability to exploit a large amount of parallelism over plane-wave components, band-pairs, and frequencies.« less

  16. Optimization of lightweight structure and supporting bipod flexure for a space mirror.

    PubMed

    Chen, Yi-Cheng; Huang, Bo-Kai; You, Zhen-Ting; Chan, Chia-Yen; Huang, Ting-Ming

    2016-12-20

    This article presents an optimization process for integrated optomechanical design. The proposed optimization process for integrated optomechanical design comprises computer-aided drafting, finite element analysis (FEA), optomechanical transfer codes, and an optimization solver. The FEA was conducted to determine mirror surface deformation; then, deformed surface nodal data were transferred into Zernike polynomials through MATLAB optomechanical transfer codes to calculate the resulting optical path difference (OPD) and optical aberrations. To achieve an optimum design, the optimization iterations of the FEA, optomechanical transfer codes, and optimization solver were automatically connected through a self-developed Tcl script. Two examples of optimization design were illustrated in this research, namely, an optimum lightweight design of a Zerodur primary mirror with an outer diameter of 566 mm that is used in a spaceborne telescope and an optimum bipod flexure design that supports the optimum lightweight primary mirror. Finally, optimum designs were successfully accomplished in both examples, achieving a minimum peak-to-valley (PV) value for the OPD of the deformed optical surface. The simulated optimization results showed that (1) the lightweight ratio of the primary mirror increased from 56% to 66%; and (2) the PV value of the mirror supported by optimum bipod flexures in the horizontal position effectively decreased from 228 to 61 nm.

  17. A Modified Particle Swarm Optimization Technique for Finding Optimal Designs for Mixture Models

    PubMed Central

    Wong, Weng Kee; Chen, Ray-Bing; Huang, Chien-Chih; Wang, Weichung

    2015-01-01

    Particle Swarm Optimization (PSO) is a meta-heuristic algorithm that has been shown to be successful in solving a wide variety of real and complicated optimization problems in engineering and computer science. This paper introduces a projection based PSO technique, named ProjPSO, to efficiently find different types of optimal designs, or nearly optimal designs, for mixture models with and without constraints on the components, and also for related models, like the log contrast models. We also compare the modified PSO performance with Fedorov's algorithm, a popular algorithm used to generate optimal designs, Cocktail algorithm, and the recent algorithm proposed by [1]. PMID:26091237

  18. Users manual and modeling improvements for axial turbine design and performance computer code TD2-2

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.

    1992-01-01

    Computer code TD2 computes design point velocity diagrams and performance for multistage, multishaft, cooled or uncooled, axial flow turbines. This streamline analysis code was recently modified to upgrade modeling related to turbine cooling and to the internal loss correlation. These modifications are presented in this report along with descriptions of the code's expanded input and output. This report serves as the users manual for the upgraded code, which is named TD2-2.

  19. Bounded-Angle Iterative Decoding of LDPC Codes

    NASA Technical Reports Server (NTRS)

    Dolinar, Samuel; Andrews, Kenneth; Pollara, Fabrizio; Divsalar, Dariush

    2009-01-01

    Bounded-angle iterative decoding is a modified version of conventional iterative decoding, conceived as a means of reducing undetected-error rates for short low-density parity-check (LDPC) codes. For a given code, bounded-angle iterative decoding can be implemented by means of a simple modification of the decoder algorithm, without redesigning the code. Bounded-angle iterative decoding is based on a representation of received words and code words as vectors in an n-dimensional Euclidean space (where n is an integer).

  20. Evolutionary Construction of Block-Based Neural Networks in Consideration of Failure

    NASA Astrophysics Data System (ADS)

    Takamori, Masahito; Koakutsu, Seiichi; Hamagami, Tomoki; Hirata, Hironori

    In this paper we propose a modified gene coding and an evolutionary construction in consideration of failure in evolutionary construction of Block-Based Neural Networks. In the modified gene coding, we arrange the genes of weights on a chromosome in consideration of the position relation of the genes of weight and structure. By the modified gene coding, the efficiency of search by crossover is increased. Thereby, it is thought that improvement of the convergence rate of construction and shortening of construction time can be performed. In the evolutionary construction in consideration of failure, the structure which is adapted for failure is built in the state where failure occured. Thereby, it is thought that BBNN can be reconstructed in a short time at the time of failure. To evaluate the proposed method, we apply it to pattern classification and autonomous mobile robot control problems. The computational experiments indicate that the proposed method can improve convergence rate of construction and shorten of construction and reconstruction time.

  1. Wireless Visual Sensor Network Resource Allocation using Cross-Layer Optimization

    DTIC Science & Technology

    2009-01-01

    Rate Compatible Punctured Convolutional (RCPC) codes for channel...vol. 44, pp. 2943–2959, November 1998. [22] J. Hagenauer, “ Rate - compatible punctured convolutional codes (RCPC codes ) and their applications,” IEEE... coding rate for H.264/AVC video compression is determined. At the data link layer, the Rate - Compatible Puctured Convolutional (RCPC) channel coding

  2. Computing the Partition Function for Kinetically Trapped RNA Secondary Structures

    PubMed Central

    Lorenz, William A.; Clote, Peter

    2011-01-01

    An RNA secondary structure is locally optimal if there is no lower energy structure that can be obtained by the addition or removal of a single base pair, where energy is defined according to the widely accepted Turner nearest neighbor model. Locally optimal structures form kinetic traps, since any evolution away from a locally optimal structure must involve energetically unfavorable folding steps. Here, we present a novel, efficient algorithm to compute the partition function over all locally optimal secondary structures of a given RNA sequence. Our software, RNAlocopt runs in time and space. Additionally, RNAlocopt samples a user-specified number of structures from the Boltzmann subensemble of all locally optimal structures. We apply RNAlocopt to show that (1) the number of locally optimal structures is far fewer than the total number of structures – indeed, the number of locally optimal structures approximately equal to the square root of the number of all structures, (2) the structural diversity of this subensemble may be either similar to or quite different from the structural diversity of the entire Boltzmann ensemble, a situation that depends on the type of input RNA, (3) the (modified) maximum expected accuracy structure, computed by taking into account base pairing frequencies of locally optimal structures, is a more accurate prediction of the native structure than other current thermodynamics-based methods. The software RNAlocopt constitutes a technical breakthrough in our study of the folding landscape for RNA secondary structures. For the first time, locally optimal structures (kinetic traps in the Turner energy model) can be rapidly generated for long RNA sequences, previously impossible with methods that involved exhaustive enumeration. Use of locally optimal structure leads to state-of-the-art secondary structure prediction, as benchmarked against methods involving the computation of minimum free energy and of maximum expected accuracy. Web server and source code available at http://bioinformatics.bc.edu/clotelab/RNAlocopt/. PMID:21297972

  3. Design of Linear Accelerator (LINAC) tanks for proton therapy via Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castellano, T.; De Palma, L.; Laneve, D.

    2015-07-01

    A homemade computer code for designing a Side- Coupled Linear Accelerator (SCL) is written. It integrates a simplified model of SCL tanks with the Particle Swarm Optimization (PSO) algorithm. The computer code main aim is to obtain useful guidelines for the design of Linear Accelerator (LINAC) resonant cavities. The design procedure, assisted via the aforesaid approach seems very promising, allowing future improvements towards the optimization of actual accelerating geometries. (authors)

  4. Trajectory optimization of spacecraft high-thrust orbit transfer using a modified evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Shirazi, Abolfazl

    2016-10-01

    This article introduces a new method to optimize finite-burn orbital manoeuvres based on a modified evolutionary algorithm. Optimization is carried out based on conversion of the orbital manoeuvre into a parameter optimization problem by assigning inverse tangential functions to the changes in direction angles of the thrust vector. The problem is analysed using boundary delimitation in a common optimization algorithm. A method is introduced to achieve acceptable values for optimization variables using nonlinear simulation, which results in an enlarged convergence domain. The presented algorithm benefits from high optimality and fast convergence time. A numerical example of a three-dimensional optimal orbital transfer is presented and the accuracy of the proposed algorithm is shown.

  5. FRANOPP: Framework for analysis and optimization problems user's guide

    NASA Technical Reports Server (NTRS)

    Riley, K. M.

    1981-01-01

    Framework for analysis and optimization problems (FRANOPP) is a software aid for the study and solution of design (optimization) problems which provides the driving program and plotting capability for a user generated programming system. In addition to FRANOPP, the programming system also contains the optimization code CONMIN, and two user supplied codes, one for analysis and one for output. With FRANOPP the user is provided with five options for studying a design problem. Three of the options utilize the plot capability and present an indepth study of the design problem. The study can be focused on a history of the optimization process or on the interaction of variables within the design problem.

  6. Relay selection in energy harvesting cooperative networks with rateless codes

    NASA Astrophysics Data System (ADS)

    Zhu, Kaiyan; Wang, Fei

    2018-04-01

    This paper investigates the relay selection in energy harvesting cooperative networks, where the relays harvests energy from the radio frequency (RF) signals transmitted by a source, and the optimal relay is selected and uses the harvested energy to assist the information transmission from the source to its destination. Both source and the selected relay transmit information using rateless code, which allows the destination recover original information after collecting codes bits marginally surpass the entropy of original information. In order to improve transmission performance and efficiently utilize the harvested power, the optimal relay is selected. The optimization problem are formulated to maximize the achievable information rates of the system. Simulation results demonstrate that our proposed relay selection scheme outperform other strategies.

  7. Coding for urologic office procedures.

    PubMed

    Dowling, Robert A; Painter, Mark

    2013-11-01

    This article summarizes current best practices for documenting, coding, and billing common office-based urologic procedures. Topics covered include general principles, basic and advanced urologic coding, creation of medical records that support compliant coding practices, bundled codes and unbundling, global periods, modifiers for procedure codes, when to bill for evaluation and management services during the same visit, coding for supplies, and laboratory and radiology procedures pertinent to urology practice. Detailed information is included for the most common urology office procedures, and suggested resources and references are provided. This information is of value to physicians, office managers, and their coding staff. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Channel modeling, signal processing and coding for perpendicular magnetic recording

    NASA Astrophysics Data System (ADS)

    Wu, Zheng

    With the increasing areal density in magnetic recording systems, perpendicular recording has replaced longitudinal recording to overcome the superparamagnetic limit. Studies on perpendicular recording channels including aspects of channel modeling, signal processing and coding techniques are presented in this dissertation. To optimize a high density perpendicular magnetic recording system, one needs to know the tradeoffs between various components of the system including the read/write transducers, the magnetic medium, and the read channel. We extend the work by Chaichanavong on the parameter optimization for systems via design curves. Different signal processing and coding techniques are studied. Information-theoretic tools are utilized to determine the acceptable region for the channel parameters when optimal detection and linear coding techniques are used. Our results show that a considerable gain can be achieved by the optimal detection and coding techniques. The read-write process in perpendicular magnetic recording channels includes a number of nonlinear effects. Nonlinear transition shift (NLTS) is one of them. The signal distortion induced by NLTS can be reduced by write precompensation during data recording. We numerically evaluate the effect of NLTS on the read-back signal and examine the effectiveness of several write precompensation schemes in combating NLTS in a channel characterized by both transition jitter noise and additive white Gaussian electronics noise. We also present an analytical method to estimate the bit-error-rate and use it to help determine the optimal write precompensation values in multi-level precompensation schemes. We propose a mean-adjusted pattern-dependent noise predictive (PDNP) detection algorithm for use on the channel with NLTS. We show that this detector can offer significant improvements in bit-error-rate (BER) compared to conventional Viterbi and PDNP detectors. Moreover, the system performance can be further improved by combining the new detector with a simple write precompensation scheme. Soft-decision decoding for algebraic codes can improve performance for magnetic recording systems. In this dissertation, we propose two soft-decision decoding methods for tensor-product parity codes. We also present a list decoding algorithm for generalized error locating codes.

  9. Maximum-likelihood soft-decision decoding of block codes using the A* algorithm

    NASA Technical Reports Server (NTRS)

    Ekroot, L.; Dolinar, S.

    1994-01-01

    The A* algorithm finds the path in a finite depth binary tree that optimizes a function. Here, it is applied to maximum-likelihood soft-decision decoding of block codes where the function optimized over the codewords is the likelihood function of the received sequence given each codeword. The algorithm considers codewords one bit at a time, making use of the most reliable received symbols first and pursuing only the partially expanded codewords that might be maximally likely. A version of the A* algorithm for maximum-likelihood decoding of block codes has been implemented for block codes up to 64 bits in length. The efficiency of this algorithm makes simulations of codes up to length 64 feasible. This article details the implementation currently in use, compares the decoding complexity with that of exhaustive search and Viterbi decoding algorithms, and presents performance curves obtained with this implementation of the A* algorithm for several codes.

  10. Visual information processing; Proceedings of the Meeting, Orlando, FL, Apr. 20-22, 1992

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O. (Editor); Juday, Richard D. (Editor)

    1992-01-01

    Topics discussed in these proceedings include nonlinear processing and communications; feature extraction and recognition; image gathering, interpolation, and restoration; image coding; and wavelet transform. Papers are presented on noise reduction for signals from nonlinear systems; driving nonlinear systems with chaotic signals; edge detection and image segmentation of space scenes using fractal analyses; a vision system for telerobotic operation; a fidelity analysis of image gathering, interpolation, and restoration; restoration of images degraded by motion; and information, entropy, and fidelity in visual communication. Attention is also given to image coding methods and their assessment, hybrid JPEG/recursive block coding of images, modified wavelets that accommodate causality, modified wavelet transform for unbiased frequency representation, and continuous wavelet transform of one-dimensional signals by Fourier filtering.

  11. An Advanced N -body Model for Interacting Multiple Stellar Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brož, Miroslav

    We construct an advanced model for interacting multiple stellar systems in which we compute all trajectories with a numerical N -body integrator, namely the Bulirsch–Stoer from the SWIFT package. We can then derive various observables: astrometric positions, radial velocities, minima timings (TTVs), eclipse durations, interferometric visibilities, closure phases, synthetic spectra, spectral energy distribution, and even complete light curves. We use a modified version of the Wilson–Devinney code for the latter, in which the instantaneous true phase and inclination of the eclipsing binary are governed by the N -body integration. If all of these types of observations are at one’s disposal,more » a joint χ {sup 2} metric and an optimization algorithm (a simplex or simulated annealing) allow one to search for a global minimum and construct very robust models of stellar systems. At the same time, our N -body model is free from artifacts that may arise if mutual gravitational interactions among all components are not self-consistently accounted for. Finally, we present a number of examples showing dynamical effects that can be studied with our code and we discuss how systematic errors may affect the results (and how to prevent this from happening).« less

  12. Research on preparation of phosphate-modified animal glue binder for foundry use

    NASA Astrophysics Data System (ADS)

    Wang, Tian-Shu; Liu, Wei-Hua; Li, Ying-Min

    2018-03-01

    In this paper, three phosphates were used as modifiers to modify animal glue binder. The structural characteristics and thermal properties of animal glue binder treated with phosphates were studied by Fourier transform-infrared spectroscopy, gel permeation chromatography and derivative thermogravimetric analysis. The results showed that the modified animal glue binder had better sand tensile strength and lower viscosity than untreated animal glue binder. The best modification process was as follows: the optimal amount of sodium carbonate was 4 wt% to animal glue; the optimal weight ratio of the modifiers was sodium pyrophosphate : sodium tripolyphosphate : sodium hexametaphosphate : animal glue = 3 : 3 : 4 : 100, and the optimal reaction should be performed at 80°C for a reaction time of 120 min. A final tensile strength of approximately 3.20 MPa was achieved and the viscosity value was approximately 880 mPa s.

  13. Durable warmth retention finishing of down using titanium dioxide optimized by RSM

    NASA Astrophysics Data System (ADS)

    Li, Huihao; Qi, Lu; Li, Jun

    2017-03-01

    A new product, referred to herein as modified down, was prepared by grafting down fiber with titanium dioxide. Grafting modification brings new functionalities to down Using response surface methodology (RSM); the effect of titanium dioxide concentration, KH550 concentration, and baking temperature on the warmth retention is studied using the response surface method (RSM) to obtain the optimal experimental formula and models. The optimal preparation conditions for modified down were 19.35% titanium dioxide, 15.81% KH550, 10min baking time, and 115 °C temperature. The warmth retention of the modified down was 79.98%, The structure and property of modified down were characterized and analyzed by using Flat Plate Warmth Retaining Tester, FT-IR, and TG. The CLO value increased by 27.28%, the thermal resistance increased by 27.34%. The ultimate residual quantities of the modified down fibers were 30.05%.

  14. Data Sciences Summer Institute Topology Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watts, Seth

    DSSI_TOPOPT is a 2D topology optimization code that designs stiff structures made of a single linear elastic material and void space. The code generates a finite element mesh of a rectangular design domain on which the user specifies displacement and load boundary conditions. The code iteratively designs a structure that minimizes the compliance (maximizes the stiffness) of the structure under the given loading, subject to an upper bound on the amount of material used. Depending on user options, the code can evaluate the performance of a user-designed structure, or create a design from scratch. Output includes the finite element mesh,more » design, and visualizations of the design.« less

  15. Cooperative optimization and their application in LDPC codes

    NASA Astrophysics Data System (ADS)

    Chen, Ke; Rong, Jian; Zhong, Xiaochun

    2008-10-01

    Cooperative optimization is a new way for finding global optima of complicated functions of many variables. The proposed algorithm is a class of message passing algorithms and has solid theory foundations. It can achieve good coding gains over the sum-product algorithm for LDPC codes. For (6561, 4096) LDPC codes, the proposed algorithm can achieve 2.0 dB gains over the sum-product algorithm at BER of 4×10-7. The decoding complexity of the proposed algorithm is lower than the sum-product algorithm can do; furthermore, the former can achieve much lower error floor than the latter can do after the Eb / No is higher than 1.8 dB.

  16. MILC Code Performance on High End CPU and GPU Supercomputer Clusters

    NASA Astrophysics Data System (ADS)

    DeTar, Carleton; Gottlieb, Steven; Li, Ruizi; Toussaint, Doug

    2018-03-01

    With recent developments in parallel supercomputing architecture, many core, multi-core, and GPU processors are now commonplace, resulting in more levels of parallelism, memory hierarchy, and programming complexity. It has been necessary to adapt the MILC code to these new processors starting with NVIDIA GPUs, and more recently, the Intel Xeon Phi processors. We report on our efforts to port and optimize our code for the Intel Knights Landing architecture. We consider performance of the MILC code with MPI and OpenMP, and optimizations with QOPQDP and QPhiX. For the latter approach, we concentrate on the staggered conjugate gradient and gauge force. We also consider performance on recent NVIDIA GPUs using the QUDA library.

  17. Fast H.264/AVC FRExt intra coding using belief propagation.

    PubMed

    Milani, Simone

    2011-01-01

    In the H.264/AVC FRExt coder, the coding performance of Intra coding significantly overcomes the previous still image coding standards, like JPEG2000, thanks to a massive use of spatial prediction. Unfortunately, the adoption of an extensive set of predictors induces a significant increase of the computational complexity required by the rate-distortion optimization routine. The paper presents a complexity reduction strategy that aims at reducing the computational load of the Intra coding with a small loss in the compression performance. The proposed algorithm relies on selecting a reduced set of prediction modes according to their probabilities, which are estimated adopting a belief-propagation procedure. Experimental results show that the proposed method permits saving up to 60 % of the coding time required by an exhaustive rate-distortion optimization method with a negligible loss in performance. Moreover, it permits an accurate control of the computational complexity unlike other methods where the computational complexity depends upon the coded sequence.

  18. Optimizing study design for interobserver reliability: IUGA-ICS classification of complications of prostheses and graft insertion.

    PubMed

    Haylen, Bernard T; Lee, Joseph; Maher, Chris; Deprest, Jan; Freeman, Robert

    2014-06-01

    Results of interobserver reliability studies for the International Urogynecological Association-International Continence Society (IUGA-ICS) Complication Classification coding can be greatly influenced by study design factors such as participant instruction, motivation, and test-question clarity. We attempted to optimize these factors. After a 15-min instructional lecture with eight clinical case examples (including images) and with classification/coding charts available, those clinicians attending an IUGA Surgical Complications workshop were presented with eight similar-style test cases over 10 min and asked to code them using the Category, Time and Site classification. Answers were compared to predetermined correct codes obtained by five instigators of the IUGA-ICS prostheses and grafts complications classification. Prelecture and postquiz participant confidence levels using a five-step Likert scale were assessed. Complete sets of answers to the questions (24 codings) were provided by 34 respondents, only three of whom reported prior use of the charts. Average score [n (%)] out of eight, as well as median score (range) for each coding category were: (i) Category: 7.3 (91 %); 7 (4-8); (ii) Time: 7.8 (98 %); 7 (6-8); (iii) Site: 7.2 (90 %); 7 (5-8). Overall, the equivalent calculations (out of 24) were 22.3 (93 %) and 22 (18-24). Mean prelecture confidence was 1.37 (out of 5), rising to 3.85 postquiz. Urogynecologists had the highest correlation with correct coding, followed closely by fellows and general gynecologists. Optimizing training and study design can lead to excellent results for interobserver reliability of the IUGA-ICS Complication Classification coding, with increased participant confidence in complication-coding ability.

  19. Qualitative evaluation of just-in-time simulation-based learning: the learners' perspective.

    PubMed

    Kamdar, Gunjan; Kessler, David O; Tilt, Lindsey; Srivastava, Geetanjali; Khanna, Kajal; Chang, Todd P; Balmer, Dorene; Auerbach, Marc

    2013-02-01

    Just-in-time training (JITT) is an educational strategy where training occurs in close temporal proximity to a clinical encounter. A multicenter study evaluated the impact of simulation-based JITT on interns' infant lumbar puncture (LP) success rates. Concurrent with this multicenter study, we conducted a qualitative evaluation to describe learner perceptions of this modality of skills training. Eleven interns from a single institution participated in a face-to-face semistructured interview exploring their JITT experience. Interviews were audio-recorded and transcribed. Two investigators reviewed the transcripts, assigned codes to the data, and categorized the codes. Categories were modified by 4 emergency physicians. As a means of data triangulation, we performed focus groups at a second institution. Benefits of JITT included review of anatomic landmarks, procedural rehearsal, and an opportunity to ask questions. These perceived benefits improved confidence with infant LP. Deficits of the training included lack of mannequin fidelity and unrealistic context when compared with an actual LP. An unexpected category, which emerged from our analysis, was that of barriers to JITT performance. Barriers included lack of time in a busy clinical setting and various instructor factors. The focus group findings confirmed and elaborated the benefits and deficits of JITT and the barriers to JITT performance. Just-in-time training improved procedural confidence with infant LP, but work place busyness and instructor lack of support or unawareness were barriers to JITT performance. Optimal LP JITT would occur with improved contextual fidelity. More research is needed to determine optimal training strategies that are effective for the learner and maximize clinical outcomes for the patient.

  20. MCTP system model based on linear programming optimization of apertures obtained from sequencing patient image data maps.

    PubMed

    Ureba, A; Salguero, F J; Barbeiro, A R; Jimenez-Ortega, E; Baeza, J A; Miras, H; Linares, R; Perucha, M; Leal, A

    2014-08-01

    The authors present a hybrid direct multileaf collimator (MLC) aperture optimization model exclusively based on sequencing of patient imaging data to be implemented on a Monte Carlo treatment planning system (MC-TPS) to allow the explicit radiation transport simulation of advanced radiotherapy treatments with optimal results in efficient times for clinical practice. The planning system (called CARMEN) is a full MC-TPS, controlled through aMATLAB interface, which is based on the sequencing of a novel map, called "biophysical" map, which is generated from enhanced image data of patients to achieve a set of segments actually deliverable. In order to reduce the required computation time, the conventional fluence map has been replaced by the biophysical map which is sequenced to provide direct apertures that will later be weighted by means of an optimization algorithm based on linear programming. A ray-casting algorithm throughout the patient CT assembles information about the found structures, the mass thickness crossed, as well as PET values. Data are recorded to generate a biophysical map for each gantry angle. These maps are the input files for a home-made sequencer developed to take into account the interactions of photons and electrons with the MLC. For each linac (Axesse of Elekta and Primus of Siemens) and energy beam studied (6, 9, 12, 15 MeV and 6 MV), phase space files were simulated with the EGSnrc/BEAMnrc code. The dose calculation in patient was carried out with the BEAMDOSE code. This code is a modified version of EGSnrc/DOSXYZnrc able to calculate the beamlet dose in order to combine them with different weights during the optimization process. Three complex radiotherapy treatments were selected to check the reliability of CARMEN in situations where the MC calculation can offer an added value: A head-and-neck case (Case I) with three targets delineated on PET/CT images and a demanding dose-escalation; a partial breast irradiation case (Case II) solved with photon and electron modulated beams (IMRT + MERT); and a prostatic bed case (Case III) with a pronounced concave-shaped PTV by using volumetric modulated arc therapy. In the three cases, the required target prescription doses and constraints on organs at risk were fulfilled in a short enough time to allow routine clinical implementation. The quality assurance protocol followed to check CARMEN system showed a high agreement with the experimental measurements. A Monte Carlo treatment planning model exclusively based on maps performed from patient imaging data has been presented. The sequencing of these maps allows obtaining deliverable apertures which are weighted for modulation under a linear programming formulation. The model is able to solve complex radiotherapy treatments with high accuracy in an efficient computation time.

  1. ODECS -- A computer code for the optimal design of S.I. engine control strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arsie, I.; Pianese, C.; Rizzo, G.

    1996-09-01

    The computer code ODECS (Optimal Design of Engine Control Strategies) for the design of Spark Ignition engine control strategies is presented. This code has been developed starting from the author`s activity in this field, availing of some original contributions about engine stochastic optimization and dynamical models. This code has a modular structure and is composed of a user interface for the definition, the execution and the analysis of different computations performed with 4 independent modules. These modules allow the following calculations: (1) definition of the engine mathematical model from steady-state experimental data; (2) engine cycle test trajectory corresponding to amore » vehicle transient simulation test such as ECE15 or FTP drive test schedule; (3) evaluation of the optimal engine control maps with a steady-state approach; (4) engine dynamic cycle simulation and optimization of static control maps and/or dynamic compensation strategies, taking into account dynamical effects due to the unsteady fluxes of air and fuel and the influences of combustion chamber wall thermal inertia on fuel consumption and emissions. Moreover, in the last two modules it is possible to account for errors generated by a non-deterministic behavior of sensors and actuators and the related influences on global engine performances, and compute robust strategies, less sensitive to stochastic effects. In the paper the four models are described together with significant results corresponding to the simulation and the calculation of optimal control strategies for dynamic transient tests.« less

  2. Using Rasch-models to compare the 30-, 20-, and 12-items version of the general health questionnaire taking four recoding schemes into account.

    PubMed

    Alexandrowicz, Rainer W; Friedrich, Fabian; Jahn, Rebecca; Soulier, Nathalie

    2015-01-01

    The present study compares the 30-, 20-, and 12-items versions of the General Health Questionnaire (GHQ) in the original coding and four different recoding schemes (Bimodal, Chronic, Modified Likert and a newly proposed Modified Chronic) with respect to their psychometric qualities. The dichotomized versions (i.e. Bimodal, Chronic and Modified Chronic) were evaluated with the Rasch-Model and the polytomous original version and the Modified Likert version were evaluated with the Partial Credit Model. In general, the versions under consideration showed agreement with the model assumption. However, the recoded versions exhibited some deficits with respect to the Outfit index. Because of the item deficits and for theoretical reasons we argue in favor of using the any of the three length versions with the original four-categorical coding scheme. Nevertheless, any of the versions appears apt for clinical use from a psychometric perspective.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unkelbach, Jan, E-mail: junkelbach@mgh.harvard.edu; Botas, Pablo; Faculty of Physics, Ruprecht-Karls-Universität Heidelberg, Heidelberg

    Purpose: We describe a treatment plan optimization method for intensity modulated proton therapy (IMPT) that avoids high values of linear energy transfer (LET) in critical structures located within or near the target volume while limiting degradation of the best possible physical dose distribution. Methods and Materials: To allow fast optimization based on dose and LET, a GPU-based Monte Carlo code was extended to provide dose-averaged LET in addition to dose for all pencil beams. After optimizing an initial IMPT plan based on physical dose, a prioritized optimization scheme is used to modify the LET distribution while constraining the physical dosemore » objectives to values close to the initial plan. The LET optimization step is performed based on objective functions evaluated for the product of LET and physical dose (LET×D). To first approximation, LET×D represents a measure of the additional biological dose that is caused by high LET. Results: The method is effective for treatments where serial critical structures with maximum dose constraints are located within or near the target. We report on 5 patients with intracranial tumors (high-grade meningiomas, base-of-skull chordomas, ependymomas) in whom the target volume overlaps with the brainstem and optic structures. In all cases, high LET×D in critical structures could be avoided while minimally compromising physical dose planning objectives. Conclusion: LET-based reoptimization of IMPT plans represents a pragmatic approach to bridge the gap between purely physical dose-based and relative biological effectiveness (RBE)-based planning. The method makes IMPT treatments safer by mitigating a potentially increased risk of side effects resulting from elevated RBE of proton beams near the end of range.« less

  4. Optimization technique of wavefront coding system based on ZEMAX externally compiled programs

    NASA Astrophysics Data System (ADS)

    Han, Libo; Dong, Liquan; Liu, Ming; Zhao, Yuejin; Liu, Xiaohua

    2016-10-01

    Wavefront coding technique as a means of athermalization applied to infrared imaging system, the design of phase plate is the key to system performance. This paper apply the externally compiled programs of ZEMAX to the optimization of phase mask in the normal optical design process, namely defining the evaluation function of wavefront coding system based on the consistency of modulation transfer function (MTF) and improving the speed of optimization by means of the introduction of the mathematical software. User write an external program which computes the evaluation function on account of the powerful computing feature of the mathematical software in order to find the optimal parameters of phase mask, and accelerate convergence through generic algorithm (GA), then use dynamic data exchange (DDE) interface between ZEMAX and mathematical software to realize high-speed data exchanging. The optimization of the rotational symmetric phase mask and the cubic phase mask have been completed by this method, the depth of focus increases nearly 3 times by inserting the rotational symmetric phase mask, while the other system with cubic phase mask can be increased to 10 times, the consistency of MTF decrease obviously, the maximum operating temperature of optimized system range between -40°-60°. Results show that this optimization method can be more convenient to define some unconventional optimization goals and fleetly to optimize optical system with special properties due to its externally compiled function and DDE, there will be greater significance for the optimization of unconventional optical system.

  5. Optimizing zonal advection of the Advanced Research WRF (ARW) dynamics for Intel MIC

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2014-10-01

    The Weather Research and Forecast (WRF) model is the most widely used community weather forecast and research model in the world. There are two distinct varieties of WRF. The Advanced Research WRF (ARW) is an experimental, advanced research version featuring very high resolution. The WRF Nonhydrostatic Mesoscale Model (WRF-NMM) has been designed for forecasting operations. WRF consists of dynamics code and several physics modules. The WRF-ARW core is based on an Eulerian solver for the fully compressible nonhydrostatic equations. In the paper, we will use Intel Intel Many Integrated Core (MIC) architecture to substantially increase the performance of a zonal advection subroutine for optimization. It is of the most time consuming routines in the ARW dynamics core. Advection advances the explicit perturbation horizontal momentum equations by adding in the large-timestep tendency along with the small timestep pressure gradient tendency. We will describe the challenges we met during the development of a high-speed dynamics code subroutine for MIC architecture. Furthermore, lessons learned from the code optimization process will be discussed. The results show that the optimizations improved performance of the original code on Xeon Phi 5110P by a factor of 2.4x.

  6. Optimizing meridional advection of the Advanced Research WRF (ARW) dynamics for Intel Xeon Phi coprocessor

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.-L.

    2015-05-01

    The most widely used community weather forecast and research model in the world is the Weather Research and Forecast (WRF) model. Two distinct varieties of WRF exist. The one we are interested is the Advanced Research WRF (ARW) is an experimental, advanced research version featuring very high resolution. The WRF Nonhydrostatic Mesoscale Model (WRF-NMM) has been designed for forecasting operations. WRF consists of dynamics code and several physics modules. The WRF-ARW core is based on an Eulerian solver for the fully compressible nonhydrostatic equations. In the paper, we optimize a meridional (north-south direction) advection subroutine for Intel Xeon Phi coprocessor. Advection is of the most time consuming routines in the ARW dynamics core. It advances the explicit perturbation horizontal momentum equations by adding in the large-timestep tendency along with the small timestep pressure gradient tendency. We will describe the challenges we met during the development of a high-speed dynamics code subroutine for MIC architecture. Furthermore, lessons learned from the code optimization process will be discussed. The results show that the optimizations improved performance of the original code on Xeon Phi 7120P by a factor of 1.2x.

  7. Software integration for automated stability analysis and design optimization of a bearingless rotor blade

    NASA Astrophysics Data System (ADS)

    Gunduz, Mustafa Emre

    Many government agencies and corporations around the world have found the unique capabilities of rotorcraft indispensable. Incorporating such capabilities into rotorcraft design poses extra challenges because it is a complicated multidisciplinary process. The concept of applying several disciplines to the design and optimization processes may not be new, but it does not currently seem to be widely accepted in industry. The reason for this might be the lack of well-known tools for realizing a complete multidisciplinary design and analysis of a product. This study aims to propose a method that enables engineers in some design disciplines to perform a fairly detailed analysis and optimization of a design using commercially available software as well as codes developed at Georgia Tech. The ultimate goal is when the system is set up properly, the CAD model of the design, including all subsystems, will be automatically updated as soon as a new part or assembly is added to the design; or it will be updated when an analysis and/or an optimization is performed and the geometry needs to be modified. Designers and engineers will be involved in only checking the latest design for errors or adding/removing features. Such a design process will take dramatically less time to complete; therefore, it should reduce development time and costs. The optimization method is demonstrated on an existing helicopter rotor originally designed in the 1960's. The rotor is already an effective design with novel features. However, application of the optimization principles together with high-speed computing resulted in an even better design. The objective function to be minimized is related to the vibrations of the rotor system under gusty wind conditions. The design parameters are all continuous variables. Optimization is performed in a number of steps. First, the most crucial design variables of the objective function are identified. With these variables, Latin Hypercube Sampling method is used to probe the design space of several local minima and maxima. After analysis of numerous samples, an optimum configuration of the design that is more stable than that of the initial design is reached. The above process requires several software tools: CATIA as the CAD tool, ANSYS as the FEA tool, VABS for obtaining the cross-sectional structural properties, and DYMORE for the frequency and dynamic analysis of the rotor. MATLAB codes are also employed to generate input files and read output files of DYMORE. All these tools are connected using ModelCenter.

  8. Improved Speech Coding Based on Open-Loop Parameter Estimation

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Chen, Ya-Chin; Longman, Richard W.

    2000-01-01

    A nonlinear optimization algorithm for linear predictive speech coding was developed early that not only optimizes the linear model coefficients for the open loop predictor, but does the optimization including the effects of quantization of the transmitted residual. It also simultaneously optimizes the quantization levels used for each speech segment. In this paper, we present an improved method for initialization of this nonlinear algorithm, and demonstrate substantial improvements in performance. In addition, the new procedure produces monotonically improving speech quality with increasing numbers of bits used in the transmitted error residual. Examples of speech encoding and decoding are given for 8 speech segments and signal to noise levels as high as 47 dB are produced. As in typical linear predictive coding, the optimization is done on the open loop speech analysis model. Here we demonstrate that minimizing the error of the closed loop speech reconstruction, instead of the simpler open loop optimization, is likely to produce negligible improvement in speech quality. The examples suggest that the algorithm here is close to giving the best performance obtainable from a linear model, for the chosen order with the chosen number of bits for the codebook.

  9. Blade design and analysis using a modified Euler solver

    NASA Technical Reports Server (NTRS)

    Leonard, O.; Vandenbraembussche, R. A.

    1991-01-01

    An iterative method for blade design based on Euler solver and described in an earlier paper is used to design compressor and turbine blades providing shock free transonic flows. The method shows a rapid convergence, and indicates how much the flow is sensitive to small modifications of the blade geometry, that the classical iterative use of analysis methods might not be able to define. The relationship between the required Mach number distribution and the resulting geometry is discussed. Examples show how geometrical constraints imposed upon the blade shape can be respected by using free geometrical parameters or by relaxing the required Mach number distribution. The same code is used both for the design of the required geometry and for the off-design calculations. Examples illustrate the difficulty of designing blade shapes with optimal performance also outside of the design point.

  10. Simulation study on ion extraction from electron cyclotron resonance ion sources

    NASA Astrophysics Data System (ADS)

    Fu, S.; Kitagawa, A.; Yamada, S.

    1994-04-01

    In order to study beam optics of NIRS-ECR ion source used in the HIMAC project, the EGUN code has been modified to make it capable of modeling ion extraction from a plasma. Two versions of the modified code are worked out with two different methods in which 1D and 2D sheath theories are used, respectively. Convergence problem of the strong nonlinear self-consistent equations is investigated. Simulations on NIRS-ECR ion source and HYPER-ECR ion source are presented in this paper, exhibiting an agreement with the experiment results.

  11. N-MODY: A Code for Collisionless N-body Simulations in Modified Newtonian Dynamics

    NASA Astrophysics Data System (ADS)

    Londrillo, Pasquale; Nipoti, Carlo

    2011-02-01

    N-MODY is a parallel particle-mesh code for collisionless N-body simulations in modified Newtonian dynamics (MOND). N-MODY is based on a numerical potential solver in spherical coordinates that solves the non-linear MOND field equation, and is ideally suited to simulate isolated stellar systems. N-MODY can be used also to compute the MOND potential of arbitrary static density distributions. A few applications of N-MODY indicate that some astrophysically relevant dynamical processes are profoundly different in MOND and in Newtonian gravity with dark matter.

  12. Large-area sheet task advanced dendritic web growth development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hopkins, R. H.; Meier, D.; Schruben, J.

    1982-01-01

    The computer code for calculating web temperature distribution was expanded to provide a graphics output in addition to numerical and punch card output. The new code was used to examine various modifications of the J419 configuration and, on the basis of the results, a new growth geometry was designed. Additionally, several mathematically defined temperature profiles were evaluated for the effects of the free boundary (growth front) on the thermal stress generation. Experimental growth runs were made with modified J419 configurations to complement the modeling work. A modified J435 configuration was evaluated.

  13. Circular codes revisited: a statistical approach.

    PubMed

    Gonzalez, D L; Giannerini, S; Rosa, R

    2011-04-21

    In 1996 Arquès and Michel [1996. A complementary circular code in the protein coding genes. J. Theor. Biol. 182, 45-58] discovered the existence of a common circular code in eukaryote and prokaryote genomes. Since then, circular code theory has provoked great interest and underwent a rapid development. In this paper we discuss some theoretical issues related to the synchronization properties of coding sequences and circular codes with particular emphasis on the problem of retrieval and maintenance of the reading frame. Motivated by the theoretical discussion, we adopt a rigorous statistical approach in order to try to answer different questions. First, we investigate the covering capability of the whole class of 216 self-complementary, C(3) maximal codes with respect to a large set of coding sequences. The results indicate that, on average, the code proposed by Arquès and Michel has the best covering capability but, still, there exists a great variability among sequences. Second, we focus on such code and explore the role played by the proportion of the bases by means of a hierarchy of permutation tests. The results show the existence of a sort of optimization mechanism such that coding sequences are tailored as to maximize or minimize the coverage of circular codes on specific reading frames. Such optimization clearly relates the function of circular codes with reading frame synchronization. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Optimal design of composite hip implants using NASA technology

    NASA Technical Reports Server (NTRS)

    Blake, T. A.; Saravanos, D. A.; Davy, D. T.; Waters, S. A.; Hopkins, D. A.

    1993-01-01

    Using an adaptation of NASA software, we have investigated the use of numerical optimization techniques for the shape and material optimization of fiber composite hip implants. The original NASA inhouse codes, were originally developed for the optimization of aerospace structures. The adapted code, which was called OPORIM, couples numerical optimization algorithms with finite element analysis and composite laminate theory to perform design optimization using both shape and material design variables. The external and internal geometry of the implant and the surrounding bone is described with quintic spline curves. This geometric representation is then used to create an equivalent 2-D finite element model of the structure. Using laminate theory and the 3-D geometric information, equivalent stiffnesses are generated for each element of the 2-D finite element model, so that the 3-D stiffness of the structure can be approximated. The geometric information to construct the model of the femur was obtained from a CT scan. A variety of test cases were examined, incorporating several implant constructions and design variable sets. Typically the code was able to produce optimized shape and/or material parameters which substantially reduced stress concentrations in the bone adjacent of the implant. The results indicate that this technology can provide meaningful insight into the design of fiber composite hip implants.

  15. 77 FR 66601 - Electronic Tariff Filings; Notice of Change to eTariff Type of Filing Codes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-06

    ... Tariff Filings; Notice of Change to eTariff Type of Filing Codes Take notice that, effective November 18, 2012, the list of available eTariff Type of Filing Codes (TOFC) will be modified to include a new TOFC... Energy's regulations. Tariff records included in such filings will be automatically accepted to be...

  16. On entanglement-assisted quantum codes achieving the entanglement-assisted Griesmer bound

    NASA Astrophysics Data System (ADS)

    Li, Ruihu; Li, Xueliang; Guo, Luobin

    2015-12-01

    The theory of entanglement-assisted quantum error-correcting codes (EAQECCs) is a generalization of the standard stabilizer formalism. Any quaternary (or binary) linear code can be used to construct EAQECCs under the entanglement-assisted (EA) formalism. We derive an EA-Griesmer bound for linear EAQECCs, which is a quantum analog of the Griesmer bound for classical codes. This EA-Griesmer bound is tighter than known bounds for EAQECCs in the literature. For a given quaternary linear code {C}, we show that the parameters of the EAQECC that EA-stabilized by the dual of {C} can be determined by a zero radical quaternary code induced from {C}, and a necessary condition under which a linear EAQECC may achieve the EA-Griesmer bound is also presented. We construct four families of optimal EAQECCs and then show the necessary condition for existence of EAQECCs is also sufficient for some low-dimensional linear EAQECCs. The four families of optimal EAQECCs are degenerate codes and go beyond earlier constructions. What is more, except four codes, our [[n,k,d_{ea};c

  17. Advanced GF(32) nonbinary LDPC coded modulation with non-uniform 9-QAM outperforming star 8-QAM.

    PubMed

    Liu, Tao; Lin, Changyu; Djordjevic, Ivan B

    2016-06-27

    In this paper, we first describe a 9-symbol non-uniform signaling scheme based on Huffman code, in which different symbols are transmitted with different probabilities. By using the Huffman procedure, prefix code is designed to approach the optimal performance. Then, we introduce an algorithm to determine the optimal signal constellation sets for our proposed non-uniform scheme with the criterion of maximizing constellation figure of merit (CFM). The proposed nonuniform polarization multiplexed signaling 9-QAM scheme has the same spectral efficiency as the conventional 8-QAM. Additionally, we propose a specially designed GF(32) nonbinary quasi-cyclic LDPC code for the coded modulation system based on the 9-QAM non-uniform scheme. Further, we study the efficiency of our proposed non-uniform 9-QAM, combined with nonbinary LDPC coding, and demonstrate by Monte Carlo simulation that the proposed GF(23) nonbinary LDPC coded 9-QAM scheme outperforms nonbinary LDPC coded uniform 8-QAM by at least 0.8dB.

  18. Automated encoding of clinical documents based on natural language processing.

    PubMed

    Friedman, Carol; Shagina, Lyudmila; Lussier, Yves; Hripcsak, George

    2004-01-01

    The aim of this study was to develop a method based on natural language processing (NLP) that automatically maps an entire clinical document to codes with modifiers and to quantitatively evaluate the method. An existing NLP system, MedLEE, was adapted to automatically generate codes. The method involves matching of structured output generated by MedLEE consisting of findings and modifiers to obtain the most specific code. Recall and precision applied to Unified Medical Language System (UMLS) coding were evaluated in two separate studies. Recall was measured using a test set of 150 randomly selected sentences, which were processed using MedLEE. Results were compared with a reference standard determined manually by seven experts. Precision was measured using a second test set of 150 randomly selected sentences from which UMLS codes were automatically generated by the method and then validated by experts. Recall of the system for UMLS coding of all terms was .77 (95% CI.72-.81), and for coding terms that had corresponding UMLS codes recall was .83 (.79-.87). Recall of the system for extracting all terms was .84 (.81-.88). Recall of the experts ranged from .69 to .91 for extracting terms. The precision of the system was .89 (.87-.91), and precision of the experts ranged from .61 to .91. Extraction of relevant clinical information and UMLS coding were accomplished using a method based on NLP. The method appeared to be comparable to or better than six experts. The advantage of the method is that it maps text to codes along with other related information, rendering the coded output suitable for effective retrieval.

  19. Tomographic image reconstruction using the cell broadband engine (CBE) general purpose hardware

    NASA Astrophysics Data System (ADS)

    Knaup, Michael; Steckmann, Sven; Bockenbach, Olivier; Kachelrieß, Marc

    2007-02-01

    Tomographic image reconstruction, such as the reconstruction of CT projection values, of tomosynthesis data, PET or SPECT events, is computational very demanding. In filtered backprojection as well as in iterative reconstruction schemes, the most time-consuming steps are forward- and backprojection which are often limited by the memory bandwidth. Recently, a novel general purpose architecture optimized for distributed computing became available: the Cell Broadband Engine (CBE). Its eight synergistic processing elements (SPEs) currently allow for a theoretical performance of 192 GFlops (3 GHz, 8 units, 4 floats per vector, 2 instructions, multiply and add, per clock). To maximize image reconstruction speed we modified our parallel-beam and perspective backprojection algorithms which are highly optimized for standard PCs, and optimized the code for the CBE processor. 1-3 In addition, we implemented an optimized perspective forwardprojection on the CBE which allows us to perform statistical image reconstructions like the ordered subset convex (OSC) algorithm. 4 Performance was measured using simulated data with 512 projections per rotation and 5122 detector elements. The data were backprojected into an image of 512 3 voxels using our PC-based approaches and the new CBE- based algorithms. Both the PC and the CBE timings were scaled to a 3 GHz clock frequency. On the CBE, we obtain total reconstruction times of 4.04 s for the parallel backprojection, 13.6 s for the perspective backprojection and 192 s for a complete OSC reconstruction, consisting of one initial Feldkamp reconstruction, followed by 4 OSC iterations.

  20. Language Recognition via Sparse Coding

    DTIC Science & Technology

    2016-09-08

    a posteriori (MAP) adaptation scheme that further optimizes the discriminative quality of sparse-coded speech fea - tures. We empirically validate the...significantly improve the discriminative quality of sparse-coded speech fea - tures. In Section 4, we evaluate the proposed approaches against an i-vector

  1. Evaluation of the selection methods used in the exIWO algorithm based on the optimization of multidimensional functions

    NASA Astrophysics Data System (ADS)

    Kostrzewa, Daniel; Josiński, Henryk

    2016-06-01

    The expanded Invasive Weed Optimization algorithm (exIWO) is an optimization metaheuristic modelled on the original IWO version inspired by dynamic growth of weeds colony. The authors of the present paper have modified the exIWO algorithm introducing a set of both deterministic and non-deterministic strategies of individuals' selection. The goal of the project was to evaluate the modified exIWO by testing its usefulness for multidimensional numerical functions optimization. The optimized functions: Griewank, Rastrigin, and Rosenbrock are frequently used as benchmarks because of their characteristics.

  2. A Framework for Robust Multivariable Optimization of Integrated Circuits in Space Applications

    NASA Technical Reports Server (NTRS)

    DuMonthier, Jeffrey; Suarez, George

    2013-01-01

    Application Specific Integrated Circuit (ASIC) design for space applications involves multiple challenges of maximizing performance, minimizing power and ensuring reliable operation in extreme environments. This is a complex multidimensional optimization problem which must be solved early in the development cycle of a system due to the time required for testing and qualification severely limiting opportunities to modify and iterate. Manual design techniques which generally involve simulation at one or a small number of corners with a very limited set of simultaneously variable parameters in order to make the problem tractable are inefficient and not guaranteed to achieve the best possible results within the performance envelope defined by the process and environmental requirements. What is required is a means to automate design parameter variation, allow the designer to specify operational constraints and performance goals, and to analyze the results in a way which facilitates identifying the tradeoffs defining the performance envelope over the full set of process and environmental corner cases. The system developed by the Mixed Signal ASIC Group (MSAG) at the Goddard Space Flight Center is implemented as framework of software modules, templates and function libraries. It integrates CAD tools and a mathematical computing environment, and can be customized for new circuit designs with only a modest amount of effort as most common tasks are already encapsulated. Customization is required for simulation test benches to determine performance metrics and for cost function computation. Templates provide a starting point for both while toolbox functions minimize the code required. Once a test bench has been coded to optimize a particular circuit, it is also used to verify the final design. The combination of test bench and cost function can then serve as a template for similar circuits or be re-used to migrate the design to different processes by re-running it with the new process specific device models. The system has been used in the design of time to digital converters for laser ranging and time-of-flight mass spectrometry to optimize analog, mixed signal and digital circuits such as charge sensitive amplifiers, comparators, delay elements, radiation tolerant dual interlocked (DICE) flip-flops and two of three voter gates.

  3. High Frequency Scattering Code in a Distributed Processing Environment

    DTIC Science & Technology

    1991-06-01

    Block 6. Author(s). Name(s) of person (s) Block 14. Subiect Terms. Keywords or phrases responsible for writing the report, performing identifying major...use of auttomated analysis tools is indicated. One tool developed by Pacific-Sierra Re- 22 search Corporation and marketed by Intel Corporation for...XQ: EXECUTE CODE EN : END CODE This input deck differs from that in the manual because the "PP" option is disabled in the modified code. 45 A.3

  4. Implementation issues in source coding

    NASA Technical Reports Server (NTRS)

    Sayood, Khalid; Chen, Yun-Chung; Hadenfeldt, A. C.

    1989-01-01

    An edge preserving image coding scheme which can be operated in both a lossy and a lossless manner was developed. The technique is an extension of the lossless encoding algorithm developed for the Mars observer spectral data. It can also be viewed as a modification of the DPCM algorithm. A packet video simulator was also developed from an existing modified packet network simulator. The coding scheme for this system is a modification of the mixture block coding (MBC) scheme described in the last report. Coding algorithms for packet video were also investigated.

  5. A single immunization with modified vaccinia virus Ankara-based influenza virus H7 vaccine affords protection in the influenza A(H7N9) pneumonia ferret model.

    PubMed

    Kreijtz, Joost H C M; Wiersma, Lidewij C M; De Gruyter, Heidi L M; Vogelzang-van Trierum, Stella E; van Amerongen, Geert; Stittelaar, Koert J; Fouchier, Ron A M; Osterhaus, Albert D M E; Sutter, Gerd; Rimmelzwaan, Guus F

    2015-03-01

    Since the first reports in early 2013, >440 human cases of infection with avian influenza A(H7N9) have been reported including 122 fatalities. After the isolation of the first A(H7N9) viruses, the nucleotide sequences became publically available. Based on the coding sequence of the influenza virus A/Shanghai/2/2013 hemagglutinin gene, a codon-optimized gene was synthesized and cloned into a recombinant modified vaccinia virus Ankara (MVA). This MVA-H7-Sh2 viral vector was used to immunize ferrets and proved to be immunogenic, even after a single immunization. Subsequently, ferrets were challenged with influenza virus A/Anhui/1/2013 via the intratracheal route. Unprotected animals that were mock vaccinated or received empty vector developed interstitial pneumonia characterized by a marked alveolitis, accompanied by loss of appetite, weight loss, and heavy breathing. In contrast, animals vaccinated with MVA-H7-Sh2 were protected from severe disease. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Evaluating and minimizing noise impact due to aircraft flyover

    NASA Technical Reports Server (NTRS)

    Jacobson, I. D.; Cook, G.

    1979-01-01

    Existing techniques were used to assess the noise impact on a community due to aircraft operation and to optimize the flight paths of an approaching aircraft with respect to the annoyance produced. Major achievements are: (1) the development of a population model suitable for determining the noise impact, (2) generation of a numerical computer code which uses this population model along with the steepest descent algorithm to optimize approach/landing trajectories, (3) implementation of this optimization code in several fictitious cases as well as for the community surrounding Patrick Henry International Airport, Virginia.

  7. Throughput Optimization Via Adaptive MIMO Communications

    DTIC Science & Technology

    2006-05-30

    End-to-end matlab packet simulation platform. * Low density parity check code (LDPCC). * Field trials with Silvus DSP MIMO testbed. * High mobility...incorporate advanced LDPC (low density parity check) codes . Realizing that the power of LDPC codes come at the price of decoder complexity, we also...Channel Coding Binary Convolution Code or LDPC Packet Length 0 - 216-1, bytes Coding Rate 1/2, 2/3, 3/4, 5/6 MIMO Channel Training Length 0 - 4, symbols

  8. NSDann2BS, a neutron spectrum unfolding code based on neural networks technology and two bonner spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz-Rodriguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.

    In this work a neutron spectrum unfolding code, based on artificial intelligence technology is presented. The code called ''Neutron Spectrometry and Dosimetry with Artificial Neural Networks and two Bonner spheres'', (NSDann2BS), was designed in a graphical user interface under the LabVIEW programming environment. The main features of this code are to use an embedded artificial neural network architecture optimized with the ''Robust design of artificial neural networks methodology'' and to use two Bonner spheres as the only piece of information. In order to build the code here presented, once the net topology was optimized and properly trained, knowledge stored atmore » synaptic weights was extracted and using a graphical framework build on the LabVIEW programming environment, the NSDann2BS code was designed. This code is friendly, intuitive and easy to use for the end user. The code is freely available upon request to authors. To demonstrate the use of the neural net embedded in the NSDann2BS code, the rate counts of {sup 252}Cf, {sup 241}AmBe and {sup 239}PuBe neutron sources measured with a Bonner spheres system.« less

  9. NSDann2BS, a neutron spectrum unfolding code based on neural networks technology and two bonner spheres

    NASA Astrophysics Data System (ADS)

    Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solís Sánches, L. O.; Miranda, R. Castañeda; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2013-07-01

    In this work a neutron spectrum unfolding code, based on artificial intelligence technology is presented. The code called "Neutron Spectrometry and Dosimetry with Artificial Neural Networks and two Bonner spheres", (NSDann2BS), was designed in a graphical user interface under the LabVIEW programming environment. The main features of this code are to use an embedded artificial neural network architecture optimized with the "Robust design of artificial neural networks methodology" and to use two Bonner spheres as the only piece of information. In order to build the code here presented, once the net topology was optimized and properly trained, knowledge stored at synaptic weights was extracted and using a graphical framework build on the LabVIEW programming environment, the NSDann2BS code was designed. This code is friendly, intuitive and easy to use for the end user. The code is freely available upon request to authors. To demonstrate the use of the neural net embedded in the NSDann2BS code, the rate counts of 252Cf, 241AmBe and 239PuBe neutron sources measured with a Bonner spheres system.

  10. PIPI: PTM-Invariant Peptide Identification Using Coding Method.

    PubMed

    Yu, Fengchao; Li, Ning; Yu, Weichuan

    2016-12-02

    In computational proteomics, the identification of peptides with an unlimited number of post-translational modification (PTM) types is a challenging task. The computational cost associated with database search increases exponentially with respect to the number of modified amino acids and linearly with respect to the number of potential PTM types at each amino acid. The problem becomes intractable very quickly if we want to enumerate all possible PTM patterns. To address this issue, one group of methods named restricted tools (including Mascot, Comet, and MS-GF+) only allow a small number of PTM types in database search process. Alternatively, the other group of methods named unrestricted tools (including MS-Alignment, ProteinProspector, and MODa) avoids enumerating PTM patterns with an alignment-based approach to localizing and characterizing modified amino acids. However, because of the large search space and PTM localization issue, the sensitivity of these unrestricted tools is low. This paper proposes a novel method named PIPI to achieve PTM-invariant peptide identification. PIPI belongs to the category of unrestricted tools. It first codes peptide sequences into Boolean vectors and codes experimental spectra into real-valued vectors. For each coded spectrum, it then searches the coded sequence database to find the top scored peptide sequences as candidates. After that, PIPI uses dynamic programming to localize and characterize modified amino acids in each candidate. We used simulation experiments and real data experiments to evaluate the performance in comparison with restricted tools (i.e., Mascot, Comet, and MS-GF+) and unrestricted tools (i.e., Mascot with error tolerant search, MS-Alignment, ProteinProspector, and MODa). Comparison with restricted tools shows that PIPI has a close sensitivity and running speed. Comparison with unrestricted tools shows that PIPI has the highest sensitivity except for Mascot with error tolerant search and ProteinProspector. These two tools simplify the task by only considering up to one modified amino acid in each peptide, which results in a higher sensitivity but has difficulty in dealing with multiple modified amino acids. The simulation experiments also show that PIPI has the lowest false discovery proportion, the highest PTM characterization accuracy, and the shortest running time among the unrestricted tools.

  11. Code Optimization Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MAGEE,GLEN I.

    Computers transfer data in a number of different ways. Whether through a serial port, a parallel port, over a modem, over an ethernet cable, or internally from a hard disk to memory, some data will be lost. To compensate for that loss, numerous error detection and correction algorithms have been developed. One of the most common error correction codes is the Reed-Solomon code, which is a special subset of BCH (Bose-Chaudhuri-Hocquenghem) linear cyclic block codes. In the AURA project, an unmanned aircraft sends the data it collects back to earth so it can be analyzed during flight and possible flightmore » modifications made. To counter possible data corruption during transmission, the data is encoded using a multi-block Reed-Solomon implementation with a possibly shortened final block. In order to maximize the amount of data transmitted, it was necessary to reduce the computation time of a Reed-Solomon encoding to three percent of the processor's time. To achieve such a reduction, many code optimization techniques were employed. This paper outlines the steps taken to reduce the processing time of a Reed-Solomon encoding and the insight into modern optimization techniques gained from the experience.« less

  12. Optimal sensor placement for spatial lattice structure based on genetic algorithms

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Gao, Wei-cheng; Sun, Yi; Xu, Min-jian

    2008-10-01

    Optimal sensor placement technique plays a key role in structural health monitoring of spatial lattice structures. This paper considers the problem of locating sensors on a spatial lattice structure with the aim of maximizing the data information so that structural dynamic behavior can be fully characterized. Based on the criterion of optimal sensor placement for modal test, an improved genetic algorithm is introduced to find the optimal placement of sensors. The modal strain energy (MSE) and the modal assurance criterion (MAC) have been taken as the fitness function, respectively, so that three placement designs were produced. The decimal two-dimension array coding method instead of binary coding method is proposed to code the solution. Forced mutation operator is introduced when the identical genes appear via the crossover procedure. A computational simulation of a 12-bay plain truss model has been implemented to demonstrate the feasibility of the three optimal algorithms above. The obtained optimal sensor placements using the improved genetic algorithm are compared with those gained by exiting genetic algorithm using the binary coding method. Further the comparison criterion based on the mean square error between the finite element method (FEM) mode shapes and the Guyan expansion mode shapes identified by data-driven stochastic subspace identification (SSI-DATA) method are employed to demonstrate the advantage of the different fitness function. The results showed that some innovations in genetic algorithm proposed in this paper can enlarge the genes storage and improve the convergence of the algorithm. More importantly, the three optimal sensor placement methods can all provide the reliable results and identify the vibration characteristics of the 12-bay plain truss model accurately.

  13. A method to optimize the shield compact and lightweight combining the structure with components together by genetic algorithm and MCNP code.

    PubMed

    Cai, Yao; Hu, Huasi; Pan, Ziheng; Hu, Guang; Zhang, Tao

    2018-05-17

    To optimize the shield for neutrons and gamma rays compact and lightweight, a method combining the structure and components together was established employing genetic algorithms and MCNP code. As a typical case, the fission energy spectrum of 235 U which mixed neutrons and gamma rays was adopted in this study. Six types of materials were presented and optimized by the method. Spherical geometry was adopted in the optimization after checking the geometry effect. Simulations have made to verify the reliability of the optimization method and the efficiency of the optimized materials. To compare the materials visually and conveniently, the volume and weight needed to build a shield are employed. The results showed that, the composite multilayer material has the best performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. MEAM interatomic force calculation subroutine for LAMMPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stukowski, A.

    2010-10-25

    Interatomic force and energy calculation subroutine tobe used with the molecular dynamics simulation code LAMMPS (Ref a.). The code evaluates the total energy and atomic forces (energy gradient) according to cubic spine-based variant (Ref b.) of the Modified Embedded Atom Method (MEAM).

  15. Village power options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lilienthal, P.

    1997-12-01

    This paper describes three different computer codes which have been written to model village power applications. The reasons which have driven the development of these codes include: the existance of limited field data; diverse applications can be modeled; models allow cost and performance comparisons; simulations generate insights into cost structures. The models which are discussed are: Hybrid2, a public code which provides detailed engineering simulations to analyze the performance of a particular configuration; HOMER - the hybrid optimization model for electric renewables - which provides economic screening for sensitivity analyses; and VIPOR the village power model - which is amore » network optimization model for comparing mini-grids to individual systems. Examples of the output of these codes are presented for specific applications.« less

  16. WOMBAT: A Scalable and High-performance Astrophysical Magnetohydrodynamics Code

    NASA Astrophysics Data System (ADS)

    Mendygral, P. J.; Radcliffe, N.; Kandalla, K.; Porter, D.; O'Neill, B. J.; Nolting, C.; Edmon, P.; Donnert, J. M. F.; Jones, T. W.

    2017-02-01

    We present a new code for astrophysical magnetohydrodynamics specifically designed and optimized for high performance and scaling on modern and future supercomputers. We describe a novel hybrid OpenMP/MPI programming model that emerged from a collaboration between Cray, Inc. and the University of Minnesota. This design utilizes MPI-RMA optimized for thread scaling, which allows the code to run extremely efficiently at very high thread counts ideal for the latest generation of multi-core and many-core architectures. Such performance characteristics are needed in the era of “exascale” computing. We describe and demonstrate our high-performance design in detail with the intent that it may be used as a model for other, future astrophysical codes intended for applications demanding exceptional performance.

  17. Performance and structure of single-mode bosonic codes

    NASA Astrophysics Data System (ADS)

    Albert, Victor V.; Noh, Kyungjoo; Duivenvoorden, Kasper; Young, Dylan J.; Brierley, R. T.; Reinhold, Philip; Vuillot, Christophe; Li, Linshu; Shen, Chao; Girvin, S. M.; Terhal, Barbara M.; Jiang, Liang

    2018-03-01

    The early Gottesman, Kitaev, and Preskill (GKP) proposal for encoding a qubit in an oscillator has recently been followed by cat- and binomial-code proposals. Numerically optimized codes have also been proposed, and we introduce codes of this type here. These codes have yet to be compared using the same error model; we provide such a comparison by determining the entanglement fidelity of all codes with respect to the bosonic pure-loss channel (i.e., photon loss) after the optimal recovery operation. We then compare achievable communication rates of the combined encoding-error-recovery channel by calculating the channel's hashing bound for each code. Cat and binomial codes perform similarly, with binomial codes outperforming cat codes at small loss rates. Despite not being designed to protect against the pure-loss channel, GKP codes significantly outperform all other codes for most values of the loss rate. We show that the performance of GKP and some binomial codes increases monotonically with increasing average photon number of the codes. In order to corroborate our numerical evidence of the cat-binomial-GKP order of performance occurring at small loss rates, we analytically evaluate the quantum error-correction conditions of those codes. For GKP codes, we find an essential singularity in the entanglement fidelity in the limit of vanishing loss rate. In addition to comparing the codes, we draw parallels between binomial codes and discrete-variable systems. First, we characterize one- and two-mode binomial as well as multiqubit permutation-invariant codes in terms of spin-coherent states. Such a characterization allows us to introduce check operators and error-correction procedures for binomial codes. Second, we introduce a generalization of spin-coherent states, extending our characterization to qudit binomial codes and yielding a multiqudit code.

  18. Water cycle algorithm: A detailed standard code

    NASA Astrophysics Data System (ADS)

    Sadollah, Ali; Eskandar, Hadi; Lee, Ho Min; Yoo, Do Guen; Kim, Joong Hoon

    Inspired by the observation of the water cycle process and movements of rivers and streams toward the sea, a population-based metaheuristic algorithm, the water cycle algorithm (WCA) has recently been proposed. Lately, an increasing number of WCA applications have appeared and the WCA has been utilized in different optimization fields. This paper provides detailed open source code for the WCA, of which the performance and efficiency has been demonstrated for solving optimization problems. The WCA has an interesting and simple concept and this paper aims to use its source code to provide a step-by-step explanation of the process it follows.

  19. Design of 28 GHz, 200 kW Gyrotron for ECRH Applications

    NASA Astrophysics Data System (ADS)

    Yadav, Vivek; Singh, Udaybir; Kumar, Nitin; Kumar, Anil; Deorani, S. C.; Sinha, A. K.

    2013-01-01

    This paper presents the design of 28 GHz, 200 kW gyrotron for Indian TOKAMAK system. The paper reports the designs of interaction cavity, magnetron injection gun and RF window. EGUN code is used for the optimization of electron gun parameters. TE03 mode is selected as the operating mode by using the in-house developed code GCOMS. The simulation and optimization of the cavity parameters are carried out by using the Particle-in-cell, three dimensional (3-D)-electromagnetic simulation code MAGIC. The output power more than 250 kW is achieved.

  20. Development of an LSI maximum-likelihood convolutional decoder for advanced forward error correction capability on the NASA 30/20 GHz program

    NASA Technical Reports Server (NTRS)

    Clark, R. T.; Mccallister, R. D.

    1982-01-01

    The particular coding option identified as providing the best level of coding gain performance in an LSI-efficient implementation was the optimal constraint length five, rate one-half convolutional code. To determine the specific set of design parameters which optimally matches this decoder to the LSI constraints, a breadboard MCD (maximum-likelihood convolutional decoder) was fabricated and used to generate detailed performance trade-off data. The extensive performance testing data gathered during this design tradeoff study are summarized, and the functional and physical MCD chip characteristics are presented.

  1. NASA Electronic Library System (NELS) optimization

    NASA Technical Reports Server (NTRS)

    Pribyl, William L.

    1993-01-01

    This is a compilation of NELS (NASA Electronic Library System) Optimization progress/problem, interim, and final reports for all phases. The NELS database was examined, particularly in the memory, disk contention, and CPU, to discover bottlenecks. Methods to increase the speed of NELS code were investigated. The tasks included restructuring the existing code to interact with others more effectively. An error reporting code to help detect and remove bugs in the NELS was added. Report writing tools were recommended to integrate with the ASV3 system. The Oracle database management system and tools were to be installed on a Sun workstation, intended for demonstration purposes.

  2. Comparative Evaluation of Different Optimization Algorithms for Structural Design Applications

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Guptill, James D.; Hopkins, Dale A.

    1996-01-01

    Non-linear programming algorithms play an important role in structural design optimization. Fortunately, several algorithms with computer codes are available. At NASA Lewis Research Centre, a project was initiated to assess the performance of eight different optimizers through the development of a computer code CometBoards. This paper summarizes the conclusions of that research. CometBoards was employed to solve sets of small, medium and large structural problems, using the eight different optimizers on a Cray-YMP8E/8128 computer. The reliability and efficiency of the optimizers were determined from the performance of these problems. For small problems, the performance of most of the optimizers could be considered adequate. For large problems, however, three optimizers (two sequential quadratic programming routines, DNCONG of IMSL and SQP of IDESIGN, along with Sequential Unconstrained Minimizations Technique SUMT) outperformed others. At optimum, most optimizers captured an identical number of active displacement and frequency constraints but the number of active stress constraints differed among the optimizers. This discrepancy can be attributed to singularity conditions in the optimization and the alleviation of this discrepancy can improve the efficiency of optimizers.

  3. Performance Trend of Different Algorithms for Structural Design Optimization

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Guptill, James D.; Hopkins, Dale A.

    1996-01-01

    Nonlinear programming algorithms play an important role in structural design optimization. Fortunately, several algorithms with computer codes are available. At NASA Lewis Research Center, a project was initiated to assess performance of different optimizers through the development of a computer code CometBoards. This paper summarizes the conclusions of that research. CometBoards was employed to solve sets of small, medium and large structural problems, using different optimizers on a Cray-YMP8E/8128 computer. The reliability and efficiency of the optimizers were determined from the performance of these problems. For small problems, the performance of most of the optimizers could be considered adequate. For large problems however, three optimizers (two sequential quadratic programming routines, DNCONG of IMSL and SQP of IDESIGN, along with the sequential unconstrained minimizations technique SUMT) outperformed others. At optimum, most optimizers captured an identical number of active displacement and frequency constraints but the number of active stress constraints differed among the optimizers. This discrepancy can be attributed to singularity conditions in the optimization and the alleviation of this discrepancy can improve the efficiency of optimizers.

  4. Overall Traveling-Wave-Tube Efficiency Improved By Optimized Multistage Depressed Collector Design

    NASA Technical Reports Server (NTRS)

    Vaden, Karl R.

    2002-01-01

    Depressed Collector Design The microwave traveling wave tube (TWT) is used widely for space communications and high-power airborne transmitting sources. One of the most important features in designing a TWT is overall efficiency. Yet, overall TWT efficiency is strongly dependent on the efficiency of the electron beam collector, particularly for high values of collector efficiency. For these reasons, the NASA Glenn Research Center developed an optimization algorithm based on simulated annealing to quickly design highly efficient multistage depressed collectors (MDC's). Simulated annealing is a strategy for solving highly nonlinear combinatorial optimization problems. Its major advantage over other methods is its ability to avoid becoming trapped in local minima. Simulated annealing is based on an analogy to statistical thermodynamics, specifically the physical process of annealing: heating a material to a temperature that permits many atomic rearrangements and then cooling it carefully and slowly, until it freezes into a strong, minimum-energy crystalline structure. This minimum energy crystal corresponds to the optimal solution of a mathematical optimization problem. The TWT used as a baseline for optimization was the 32-GHz, 10-W, helical TWT developed for the Cassini mission to Saturn. The method of collector analysis and design used was a 2-1/2-dimensional computational procedure that employs two types of codes, a large signal analysis code and an electron trajectory code. The large signal analysis code produces the spatial, energetic, and temporal distributions of the spent beam entering the MDC. An electron trajectory code uses the resultant data to perform the actual collector analysis. The MDC was optimized for maximum MDC efficiency and minimum final kinetic energy of all collected electrons (to reduce heat transfer). The preceding figure shows the geometric and electrical configuration of an optimized collector with an efficiency of 93.8 percent. The results show the improvement in collector efficiency from 89.7 to 93.8 percent, resulting in an increase of three overall efficiency points. In addition, the time to design a highly efficient MDC was reduced from a month to a few days. All work was done in-house at Glenn for the High Rate Data Delivery Program. Future plans include optimizing the MDC and TWT interaction circuit in tandem to further improve overall TWT efficiency.

  5. Making Homes Healthy: International Code Council Processes and Patterns.

    PubMed

    Coyle, Edward C; Isett, Kimberley R; Rondone, Joseph; Harris, Rebecca; Howell, M Claire Batten; Brandus, Katherine; Hughes, Gwendolyn; Kerfoot, Richard; Hicks, Diana

    2016-01-01

    Americans spend more than 90% of their time indoors, so it is important that homes are healthy environments. Yet many homes contribute to preventable illnesses via poor air quality, pests, safety hazards, and others. Efforts have been made to promote healthy housing through code changes, but results have been mixed. In support of such efforts, we analyzed International Code Council's (ICC) building code change process to uncover patterns of content and context that may contribute to successful adoptions of model codes. Discover patterns of facilitators and barriers to code amendments proposals. Mixed methods study of ICC records of past code change proposals. N = 2660. N/A. N/A. There were 4 possible outcomes for each code proposal studied: accepted as submitted, accepted as modified, accepted as modified by public comment, and denied. We found numerous correlates for final adoption of model codes proposed to the ICC. The number of proponents listed on a proposal was inversely correlated with success. Organizations that submitted more than 15 proposals had a higher chance of success than those that submitted fewer than 15. Proposals submitted by federal agencies correlated with a higher chance of success. Public comments in favor of a proposal correlated with an increased chance of success, while negative public comment had an even stronger negative correlation. To increase the chance of success, public health officials should submit their code changes through internal ICC committees or a federal agency, limit the number of cosponsors of the proposal, work with (or become) an active proposal submitter, and encourage public comment in favor of passage through their broader coalition.

  6. Groundwater flow with energy transport and water-ice phase change: Numerical simulations, benchmarks, and application to freezing in peat bogs

    USGS Publications Warehouse

    McKenzie, J.M.; Voss, C.I.; Siegel, D.I.

    2007-01-01

    In northern peatlands, subsurface ice formation is an important process that can control heat transport, groundwater flow, and biological activity. Temperature was measured over one and a half years in a vertical profile in the Red Lake Bog, Minnesota. To successfully simulate the transport of heat within the peat profile, the U.S. Geological Survey's SUTRA computer code was modified. The modified code simulates fully saturated, coupled porewater-energy transport, with freezing and melting porewater, and includes proportional heat capacity and thermal conductivity of water and ice, decreasing matrix permeability due to ice formation, and latent heat. The model is verified by correctly simulating the Lunardini analytical solution for ice formation in a porous medium with a mixed ice-water zone. The modified SUTRA model correctly simulates the temperature and ice distributions in the peat bog. Two possible benchmark problems for groundwater and energy transport with ice formation and melting are proposed that may be used by other researchers for code comparison. ?? 2006 Elsevier Ltd. All rights reserved.

  7. Soft-Decision Decoding of Binary Linear Block Codes Based on an Iterative Search Algorithm

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Kasami, Tadao; Moorthy, H. T.

    1997-01-01

    This correspondence presents a suboptimum soft-decision decoding scheme for binary linear block codes based on an iterative search algorithm. The scheme uses an algebraic decoder to iteratively generate a sequence of candidate codewords one at a time using a set of test error patterns that are constructed based on the reliability information of the received symbols. When a candidate codeword is generated, it is tested based on an optimality condition. If it satisfies the optimality condition, then it is the most likely (ML) codeword and the decoding stops. If it fails the optimality test, a search for the ML codeword is conducted in a region which contains the ML codeword. The search region is determined by the current candidate codeword and the reliability of the received symbols. The search is conducted through a purged trellis diagram for the given code using the Viterbi algorithm. If the search fails to find the ML codeword, a new candidate is generated using a new test error pattern, and the optimality test and search are renewed. The process of testing and search continues until either the MEL codeword is found or all the test error patterns are exhausted and the decoding process is terminated. Numerical results show that the proposed decoding scheme achieves either practically optimal performance or a performance only a fraction of a decibel away from the optimal maximum-likelihood decoding with a significant reduction in decoding complexity compared with the Viterbi decoding based on the full trellis diagram of the codes.

  8. A Fast Optimization Method for General Binary Code Learning.

    PubMed

    Shen, Fumin; Zhou, Xiang; Yang, Yang; Song, Jingkuan; Shen, Heng; Tao, Dacheng

    2016-09-22

    Hashing or binary code learning has been recognized to accomplish efficient near neighbor search, and has thus attracted broad interests in recent retrieval, vision and learning studies. One main challenge of learning to hash arises from the involvement of discrete variables in binary code optimization. While the widely-used continuous relaxation may achieve high learning efficiency, the pursued codes are typically less effective due to accumulated quantization error. In this work, we propose a novel binary code optimization method, dubbed Discrete Proximal Linearized Minimization (DPLM), which directly handles the discrete constraints during the learning process. Specifically, the discrete (thus nonsmooth nonconvex) problem is reformulated as minimizing the sum of a smooth loss term with a nonsmooth indicator function. The obtained problem is then efficiently solved by an iterative procedure with each iteration admitting an analytical discrete solution, which is thus shown to converge very fast. In addition, the proposed method supports a large family of empirical loss functions, which is particularly instantiated in this work by both a supervised and an unsupervised hashing losses, together with the bits uncorrelation and balance constraints. In particular, the proposed DPLM with a supervised `2 loss encodes the whole NUS-WIDE database into 64-bit binary codes within 10 seconds on a standard desktop computer. The proposed approach is extensively evaluated on several large-scale datasets and the generated binary codes are shown to achieve very promising results on both retrieval and classification tasks.

  9. CALCMIN - an EXCEL™ Visual Basic application for calculating mineral structural formulae from electron microprobe analyses

    NASA Astrophysics Data System (ADS)

    Brandelik, Andreas

    2009-07-01

    CALCMIN, an open source Visual Basic program, was implemented in EXCEL™. The program was primarily developed to support geoscientists in their routine task of calculating structural formulae of minerals on the basis of chemical analysis mainly obtained by electron microprobe (EMP) techniques. Calculation programs for various minerals are already included in the form of sub-routines. These routines are arranged in separate modules containing a minimum of code. The architecture of CALCMIN allows the user to easily develop new calculation routines or modify existing routines with little knowledge of programming techniques. By means of a simple mouse-click, the program automatically generates a rudimentary framework of code using the object model of the Visual Basic Editor (VBE). Within this framework simple commands and functions, which are provided by the program, can be used, for example, to perform various normalization procedures or to output the results of the computations. For the clarity of the code, element symbols are used as variables initialized by the program automatically. CALCMIN does not set any boundaries in complexity of the code used, resulting in a wide range of possible applications. Thus, matrix and optimization methods can be included, for instance, to determine end member contents for subsequent thermodynamic calculations. Diverse input procedures are provided, such as the automated read-in of output files created by the EMP. Furthermore, a subsequent filter routine enables the user to extract specific analyses in order to use them for a corresponding calculation routine. An event-driven, interactive operating mode was selected for easy application of the program. CALCMIN leads the user from the beginning to the end of the calculation process.

  10. Final Report A Multi-Language Environment For Programmable Code Optimization and Empirical Tuning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Qing; Whaley, Richard Clint; Qasem, Apan

    This report summarizes our effort and results of building an integrated optimization environment to effectively combine the programmable control and the empirical tuning of source-to-source compiler optimizations within the framework of multiple existing languages, specifically C, C++, and Fortran. The environment contains two main components: the ROSE analysis engine, which is based on the ROSE C/C++/Fortran2003 source-to-source compiler developed by Co-PI Dr.Quinlan et. al at DOE/LLNL, and the POET transformation engine, which is based on an interpreted program transformation language developed by Dr. Yi at University of Texas at San Antonio (UTSA). The ROSE analysis engine performs advanced compiler analysis,more » identifies profitable code transformations, and then produces output in POET, a language designed to provide programmable control of compiler optimizations to application developers and to support the parameterization of architecture-sensitive optimizations so that their configurations can be empirically tuned later. This POET output can then be ported to different machines together with the user application, where a POET-based search engine empirically reconfigures the parameterized optimizations until satisfactory performance is found. Computational specialists can write POET scripts to directly control the optimization of their code. Application developers can interact with ROSE to obtain optimization feedback as well as provide domain-specific knowledge and high-level optimization strategies. The optimization environment is expected to support different levels of automation and programmer intervention, from fully-automated tuning to semi-automated development and to manual programmable control.« less

  11. [Quality management and strategic consequences of assessing documentation and coding under the German Diagnostic Related Groups system].

    PubMed

    Schnabel, M; Mann, D; Efe, T; Schrappe, M; V Garrel, T; Gotzen, L; Schaeg, M

    2004-10-01

    The introduction of the German Diagnostic Related Groups (D-DRG) system requires redesigning administrative patient management strategies. Wrong coding leads to inaccurate grouping and endangers the reimbursement of treatment costs. This situation emphasizes the roles of documentation and coding as factors of economical success. The aims of this study were to assess the quantity and quality of initial documentation and coding (ICD-10 and OPS-301) and find operative strategies to improve efficiency and strategic means to ensure optimal documentation and coding quality. In a prospective study, documentation and coding quality were evaluated in a standardized way by weekly assessment. Clinical data from 1385 inpatients were processed for initial correctness and quality of documentation and coding. Principal diagnoses were found to be accurate in 82.7% of cases, inexact in 7.1%, and wrong in 10.1%. Effects on financial returns occurred in 16%. Based on these findings, an optimized, interdisciplinary, and multiprofessional workflow on medical documentation, coding, and data control was developed. Workflow incorporating regular assessment of documentation and coding quality is required by the DRG system to ensure efficient accounting of hospital services. Interdisciplinary and multiprofessional cooperation is recognized to be an important factor in establishing an efficient workflow in medical documentation and coding.

  12. Fabric wrinkle characterization and classification using modified wavelet coefficients and optimized support-vector-machine classifier

    USDA-ARS?s Scientific Manuscript database

    This paper presents a novel wrinkle evaluation method that uses modified wavelet coefficients and an optimized support-vector-machine (SVM) classification scheme to characterize and classify wrinkle appearance of fabric. Fabric images were decomposed with the wavelet transform (WT), and five parame...

  13. COMPUTATION OF GLOBAL PHOTOCHEMISTRY WITH SMVGEAR II (R823186)

    EPA Science Inventory

    A computer model was developed to simulate global gas-phase photochemistry. The model solves chemical equations with SMVGEAR II, a sparse-matrix, vectorized Gear-type code. To obtain SMVGEAR II, the original SMVGEAR code was modified to allow computation of different sets of chem...

  14. TU-AB-BRC-12: Optimized Parallel MonteCarlo Dose Calculations for Secondary MU Checks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, S; Nazareth, D; Bellor, M

    Purpose: Secondary MU checks are an important tool used during a physics review of a treatment plan. Commercial software packages offer varying degrees of theoretical dose calculation accuracy, depending on the modality involved. Dose calculations of VMAT plans are especially prone to error due to the large approximations involved. Monte Carlo (MC) methods are not commonly used due to their long run times. We investigated two methods to increase the computational efficiency of MC dose simulations with the BEAMnrc code. Distributed computing resources, along with optimized code compilation, will allow for accurate and efficient VMAT dose calculations. Methods: The BEAMnrcmore » package was installed on a high performance computing cluster accessible to our clinic. MATLAB and PYTHON scripts were developed to convert a clinical VMAT DICOM plan into BEAMnrc input files. The BEAMnrc installation was optimized by running the VMAT simulations through profiling tools which indicated the behavior of the constituent routines in the code, e.g. the bremsstrahlung splitting routine, and the specified random number generator. This information aided in determining the most efficient compiling parallel configuration for the specific CPU’s available on our cluster, resulting in the fastest VMAT simulation times. Our method was evaluated with calculations involving 10{sup 8} – 10{sup 9} particle histories which are sufficient to verify patient dose using VMAT. Results: Parallelization allowed the calculation of patient dose on the order of 10 – 15 hours with 100 parallel jobs. Due to the compiler optimization process, further speed increases of 23% were achieved when compared with the open-source compiler BEAMnrc packages. Conclusion: Analysis of the BEAMnrc code allowed us to optimize the compiler configuration for VMAT dose calculations. In future work, the optimized MC code, in conjunction with the parallel processing capabilities of BEAMnrc, will be applied to provide accurate and efficient secondary MU checks.« less

  15. Code of Ethics for Electrical Engineers

    NASA Astrophysics Data System (ADS)

    Matsuki, Junya

    The Institute of Electrical Engineers of Japan (IEEJ) has established the rules of practice for its members recently, based on its code of ethics enacted in 1998. In this paper, first, the characteristics of the IEEJ 1998 ethical code are explained in detail compared to the other ethical codes for other fields of engineering. Secondly, the contents which shall be included in the modern code of ethics for electrical engineers are discussed. Thirdly, the newly-established rules of practice and the modified code of ethics are presented. Finally, results of questionnaires on the new ethical code and rules which were answered on May 23, 2007, by 51 electrical and electronic students of the University of Fukui are shown.

  16. Enhancing Application Performance Using Mini-Apps: Comparison of Hybrid Parallel Programming Paradigms

    NASA Technical Reports Server (NTRS)

    Lawson, Gary; Sosonkina, Masha; Baurle, Robert; Hammond, Dana

    2017-01-01

    In many fields, real-world applications for High Performance Computing have already been developed. For these applications to stay up-to-date, new parallel strategies must be explored to yield the best performance; however, restructuring or modifying a real-world application may be daunting depending on the size of the code. In this case, a mini-app may be employed to quickly explore such options without modifying the entire code. In this work, several mini-apps have been created to enhance a real-world application performance, namely the VULCAN code for complex flow analysis developed at the NASA Langley Research Center. These mini-apps explore hybrid parallel programming paradigms with Message Passing Interface (MPI) for distributed memory access and either Shared MPI (SMPI) or OpenMP for shared memory accesses. Performance testing shows that MPI+SMPI yields the best execution performance, while requiring the largest number of code changes. A maximum speedup of 23 was measured for MPI+SMPI, but only 11 was measured for MPI+OpenMP.

  17. Medial Prefrontal Cortex Reduces Memory Interference by Modifying Hippocampal Encoding

    PubMed Central

    Guise, Kevin G.; Shapiro, Matthew L.

    2017-01-01

    Summary The prefrontal cortex (PFC) is crucial for accurate memory performance when prior knowledge interferes with new learning, but the mechanisms that minimize proactive interference are unknown. To investigate these, we assessed the influence of medial PFC (mPFC) activity on spatial learning and hippocampal coding in a plus maze task that requires both structures. mPFC inactivation did not impair spatial learning or retrieval per se, but impaired the ability to follow changing spatial rules. mPFC and CA1 ensembles recorded simultaneously predicted goal choices and tracked changing rules; inactivating mPFC attenuated CA1 prospective coding. mPFC activity modified CA1 codes during learning, which in turn predicted how quickly rats adapted to subsequent rule changes. The results suggest that task rules signaled by the mPFC become incorporated into hippocampal representations and support prospective coding. By this mechanism, mPFC activity prevents interference by “teaching” the hippocampus to retrieve distinct representations of similar circumstances. PMID:28343868

  18. TEMPEST code modifications and testing for erosion-resisting sludge simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onishi, Y.; Trent, D.S.

    The TEMPEST computer code has been used to address many waste retrieval operational and safety questions regarding waste mobilization, mixing, and gas retention. Because the amount of sludge retrieved from the tank is directly related to the sludge yield strength and the shear stress acting upon it, it is important to incorporate the sludge yield strength into simulations of erosion-resisting tank waste retrieval operations. This report describes current efforts to modify the TEMPEST code to simulate pump jet mixing of erosion-resisting tank wastes and the models used to test for erosion of waste sludge with yield strength. Test results formore » solid deposition and diluent/slurry jet injection into sludge layers in simplified tank conditions show that the modified TEMPEST code has a basic ability to simulate both the mobility and immobility of the sludges with yield strength. Further testing, modification, calibration, and verification of the sludge mobilization/immobilization model are planned using erosion data as they apply to waste tank sludges.« less

  19. Toward Optimal Manifold Hashing via Discrete Locally Linear Embedding.

    PubMed

    Rongrong Ji; Hong Liu; Liujuan Cao; Di Liu; Yongjian Wu; Feiyue Huang

    2017-11-01

    Binary code learning, also known as hashing, has received increasing attention in large-scale visual search. By transforming high-dimensional features to binary codes, the original Euclidean distance is approximated via Hamming distance. More recently, it is advocated that it is the manifold distance, rather than the Euclidean distance, that should be preserved in the Hamming space. However, it retains as an open problem to directly preserve the manifold structure by hashing. In particular, it first needs to build the local linear embedding in the original feature space, and then quantize such embedding to binary codes. Such a two-step coding is problematic and less optimized. Besides, the off-line learning is extremely time and memory consuming, which needs to calculate the similarity matrix of the original data. In this paper, we propose a novel hashing algorithm, termed discrete locality linear embedding hashing (DLLH), which well addresses the above challenges. The DLLH directly reconstructs the manifold structure in the Hamming space, which learns optimal hash codes to maintain the local linear relationship of data points. To learn discrete locally linear embeddingcodes, we further propose a discrete optimization algorithm with an iterative parameters updating scheme. Moreover, an anchor-based acceleration scheme, termed Anchor-DLLH, is further introduced, which approximates the large similarity matrix by the product of two low-rank matrices. Experimental results on three widely used benchmark data sets, i.e., CIFAR10, NUS-WIDE, and YouTube Face, have shown superior performance of the proposed DLLH over the state-of-the-art approaches.

  20. FBCOT: a fast block coding option for JPEG 2000

    NASA Astrophysics Data System (ADS)

    Taubman, David; Naman, Aous; Mathew, Reji

    2017-09-01

    Based on the EBCOT algorithm, JPEG 2000 finds application in many fields, including high performance scientific, geospatial and video coding applications. Beyond digital cinema, JPEG 2000 is also attractive for low-latency video communications. The main obstacle for some of these applications is the relatively high computational complexity of the block coder, especially at high bit-rates. This paper proposes a drop-in replacement for the JPEG 2000 block coding algorithm, achieving much higher encoding and decoding throughputs, with only modest loss in coding efficiency (typically < 0.5dB). The algorithm provides only limited quality/SNR scalability, but offers truly reversible transcoding to/from any standard JPEG 2000 block bit-stream. The proposed FAST block coder can be used with EBCOT's post-compression RD-optimization methodology, allowing a target compressed bit-rate to be achieved even at low latencies, leading to the name FBCOT (Fast Block Coding with Optimized Truncation).

  1. Coordinated design of coding and modulation systems

    NASA Technical Reports Server (NTRS)

    Massey, J. L.; Ancheta, T.; Johannesson, R.; Lauer, G.; Lee, L.

    1976-01-01

    The joint optimization of the coding and modulation systems employed in telemetry systems was investigated. Emphasis was placed on formulating inner and outer coding standards used by the Goddard Spaceflight Center. Convolutional codes were found that are nearly optimum for use with Viterbi decoding in the inner coding of concatenated coding systems. A convolutional code, the unit-memory code, was discovered and is ideal for inner system usage because of its byte-oriented structure. Simulations of sequential decoding on the deep-space channel were carried out to compare directly various convolutional codes that are proposed for use in deep-space systems.

  2. Progress in The Semantic Analysis of Scientific Code

    NASA Technical Reports Server (NTRS)

    Stewart, Mark

    2000-01-01

    This paper concerns a procedure that analyzes aspects of the meaning or semantics of scientific and engineering code. This procedure involves taking a user's existing code, adding semantic declarations for some primitive variables, and parsing this annotated code using multiple, independent expert parsers. These semantic parsers encode domain knowledge and recognize formulae in different disciplines including physics, numerical methods, mathematics, and geometry. The parsers will automatically recognize and document some static, semantic concepts and help locate some program semantic errors. These techniques may apply to a wider range of scientific codes. If so, the techniques could reduce the time, risk, and effort required to develop and modify scientific codes.

  3. Development of authentication code for multi-access optical code division multiplexing based quantum key distribution

    NASA Astrophysics Data System (ADS)

    Taiwo, Ambali; Alnassar, Ghusoon; Bakar, M. H. Abu; Khir, M. F. Abdul; Mahdi, Mohd Adzir; Mokhtar, M.

    2018-05-01

    One-weight authentication code for multi-user quantum key distribution (QKD) is proposed. The code is developed for Optical Code Division Multiplexing (OCDMA) based QKD network. A unique address assigned to individual user, coupled with degrading probability of predicting the source of the qubit transmitted in the channel offer excellent secure mechanism against any form of channel attack on OCDMA based QKD network. Flexibility in design as well as ease of modifying the number of users are equally exceptional quality presented by the code in contrast to Optical Orthogonal Code (OOC) earlier implemented for the same purpose. The code was successfully applied to eight simultaneous users at effective key rate of 32 bps over 27 km transmission distance.

  4. Modified harmony search

    NASA Astrophysics Data System (ADS)

    Mohamed, Najihah; Lutfi Amri Ramli, Ahmad; Majid, Ahmad Abd; Piah, Abd Rahni Mt

    2017-09-01

    A metaheuristic algorithm, called Harmony Search is quite highly applied in optimizing parameters in many areas. HS is a derivative-free real parameter optimization algorithm, and draws an inspiration from the musical improvisation process of searching for a perfect state of harmony. Propose in this paper Modified Harmony Search for solving optimization problems, which employs a concept from genetic algorithm method and particle swarm optimization for generating new solution vectors that enhances the performance of HS algorithm. The performances of MHS and HS are investigated on ten benchmark optimization problems in order to make a comparison to reflect the efficiency of the MHS in terms of final accuracy, convergence speed and robustness.

  5. Unscented Sampling Techniques For Evolutionary Computation With Applications To Astrodynamic Optimization

    DTIC Science & Technology

    2016-09-01

    to both genetic algorithms and evolution strategies to achieve these goals. The results of this research offer a promising new set of modified ...abs_all.jsp?arnumber=203904 [163] Z. Michalewicz, C. Z. Janikow, and J. B. Krawczyk, “A modified genetic algo- rithm for optimal control problems...Available: http://arc.aiaa.org/doi/abs/10.2514/ 2.7053 375 [166] N. Yokoyama and S. Suzuki, “ Modified genetic algorithm for constrained trajectory

  6. Validation of the WIMSD4M cross-section generation code with benchmark results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leal, L.C.; Deen, J.R.; Woodruff, W.L.

    1995-02-01

    The WIMSD4 code has been adopted for cross-section generation in support of the Reduced Enrichment for Research and Test (RERTR) program at Argonne National Laboratory (ANL). Subsequently, the code has undergone several updates, and significant improvements have been achieved. The capability of generating group-collapsed micro- or macroscopic cross sections from the ENDF/B-V library and the more recent evaluation, ENDF/B-VI, in the ISOTXS format makes the modified version of the WIMSD4 code, WIMSD4M, very attractive, not only for the RERTR program, but also for the reactor physics community. The intent of the present paper is to validate the procedure to generatemore » cross-section libraries for reactor analyses and calculations utilizing the WIMSD4M code. To do so, the results of calculations performed with group cross-section data generated with the WIMSD4M code will be compared against experimental results. These results correspond to calculations carried out with thermal reactor benchmarks of the Oak Ridge National Laboratory(ORNL) unreflected critical spheres, the TRX critical experiments, and calculations of a modified Los Alamos highly-enriched heavy-water moderated benchmark critical system. The benchmark calculations were performed with the discrete-ordinates transport code, TWODANT, using WIMSD4M cross-section data. Transport calculations using the XSDRNPM module of the SCALE code system are also included. In addition to transport calculations, diffusion calculations with the DIF3D code were also carried out, since the DIF3D code is used in the RERTR program for reactor analysis and design. For completeness, Monte Carlo results of calculations performed with the VIM and MCNP codes are also presented.« less

  7. Auto Code Generation for Simulink-Based Attitude Determination Control System

    NASA Technical Reports Server (NTRS)

    MolinaFraticelli, Jose Carlos

    2012-01-01

    This paper details the work done to auto generate C code from a Simulink-Based Attitude Determination Control System (ADCS) to be used in target platforms. NASA Marshall Engineers have developed an ADCS Simulink simulation to be used as a component for the flight software of a satellite. This generated code can be used for carrying out Hardware in the loop testing of components for a satellite in a convenient manner with easily tunable parameters. Due to the nature of the embedded hardware components such as microcontrollers, this simulation code cannot be used directly, as it is, on the target platform and must first be converted into C code; this process is known as auto code generation. In order to generate C code from this simulation; it must be modified to follow specific standards set in place by the auto code generation process. Some of these modifications include changing certain simulation models into their atomic representations which can bring new complications into the simulation. The execution order of these models can change based on these modifications. Great care must be taken in order to maintain a working simulation that can also be used for auto code generation. After modifying the ADCS simulation for the auto code generation process, it is shown that the difference between the output data of the former and that of the latter is between acceptable bounds. Thus, it can be said that the process is a success since all the output requirements are met. Based on these results, it can be argued that this generated C code can be effectively used by any desired platform as long as it follows the specific memory requirements established in the Simulink Model.

  8. An alternative approach for neural network evolution with a genetic algorithm: crossover by combinatorial optimization.

    PubMed

    García-Pedrajas, Nicolás; Ortiz-Boyer, Domingo; Hervás-Martínez, César

    2006-05-01

    In this work we present a new approach to crossover operator in the genetic evolution of neural networks. The most widely used evolutionary computation paradigm for neural network evolution is evolutionary programming. This paradigm is usually preferred due to the problems caused by the application of crossover to neural network evolution. However, crossover is the most innovative operator within the field of evolutionary computation. One of the most notorious problems with the application of crossover to neural networks is known as the permutation problem. This problem occurs due to the fact that the same network can be represented in a genetic coding by many different codifications. Our approach modifies the standard crossover operator taking into account the special features of the individuals to be mated. We present a new model for mating individuals that considers the structure of the hidden layer and redefines the crossover operator. As each hidden node represents a non-linear projection of the input variables, we approach the crossover as a problem on combinatorial optimization. We can formulate the problem as the extraction of a subset of near-optimal projections to create the hidden layer of the new network. This new approach is compared to a classical crossover in 25 real-world problems with an excellent performance. Moreover, the networks obtained are much smaller than those obtained with classical crossover operator.

  9. Numerical optimization of three-dimensional coils for NSTX-U

    NASA Astrophysics Data System (ADS)

    Lazerson, S. A.; Park, J.-K.; Logan, N.; Boozer, A.

    2015-10-01

    A tool for the calculation of optimal three-dimensional (3D) perturbative magnetic fields in tokamaks has been developed. The IPECOPT code builds upon the stellarator optimization code STELLOPT to allow for optimization of linear ideal magnetohydrodynamic perturbed equilibrium (IPEC). This tool has been applied to NSTX-U equilibria, addressing which fields are the most effective at driving NTV torques. The NTV torque calculation is performed by the PENT code. Optimization of the normal field spectrum shows that fields with n  =  1 character can drive a large core torque. It is also shown that fields with n  =  3 features are capable of driving edge torque and some core torque. Coil current optimization (using the planned in-vessel and existing RWM coils) on NSTX-U suggest the planned coils set is adequate for core and edge torque control. Comparison between error field correction experiments on DIII-D and the optimizer show good agreement. Notice: This manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the U.S. Department of Energy. The publisher, by accepting the article for publication acknowledges, that the United States Government retains a non-exclusive,paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  10. Applications of Coding in Network Communications

    ERIC Educational Resources Information Center

    Chang, Christopher SungWook

    2012-01-01

    This thesis uses the tool of network coding to investigate fast peer-to-peer file distribution, anonymous communication, robust network construction under uncertainty, and prioritized transmission. In a peer-to-peer file distribution system, we use a linear optimization approach to show that the network coding framework significantly simplifies…

  11. Efficient Network Coding-Based Loss Recovery for Reliable Multicast in Wireless Networks

    NASA Astrophysics Data System (ADS)

    Chi, Kaikai; Jiang, Xiaohong; Ye, Baoliu; Horiguchi, Susumu

    Recently, network coding has been applied to the loss recovery of reliable multicast in wireless networks [19], where multiple lost packets are XOR-ed together as one packet and forwarded via single retransmission, resulting in a significant reduction of bandwidth consumption. In this paper, we first prove that maximizing the number of lost packets for XOR-ing, which is the key part of the available network coding-based reliable multicast schemes, is actually a complex NP-complete problem. To address this limitation, we then propose an efficient heuristic algorithm for finding an approximately optimal solution of this optimization problem. Furthermore, we show that the packet coding principle of maximizing the number of lost packets for XOR-ing sometimes cannot fully exploit the potential coding opportunities, and we then further propose new heuristic-based schemes with a new coding principle. Simulation results demonstrate that the heuristic-based schemes have very low computational complexity and can achieve almost the same transmission efficiency as the current coding-based high-complexity schemes. Furthermore, the heuristic-based schemes with the new coding principle not only have very low complexity, but also slightly outperform the current high-complexity ones.

  12. How unrealistic optimism is maintained in the face of reality.

    PubMed

    Sharot, Tali; Korn, Christoph W; Dolan, Raymond J

    2011-10-09

    Unrealistic optimism is a pervasive human trait that influences domains ranging from personal relationships to politics and finance. How people maintain unrealistic optimism, despite frequently encountering information that challenges those biased beliefs, is unknown. We examined this question and found a marked asymmetry in belief updating. Participants updated their beliefs more in response to information that was better than expected than to information that was worse. This selectivity was mediated by a relative failure to code for errors that should reduce optimism. Distinct regions of the prefrontal cortex tracked estimation errors when those called for positive update, both in individuals who scored high and low on trait optimism. However, highly optimistic individuals exhibited reduced tracking of estimation errors that called for negative update in right inferior prefrontal gyrus. These findings indicate that optimism is tied to a selective update failure and diminished neural coding of undesirable information regarding the future.

  13. Efficient Transition State Optimization of Periodic Structures through Automated Relaxed Potential Energy Surface Scans.

    PubMed

    Plessow, Philipp N

    2018-02-13

    This work explores how constrained linear combinations of bond lengths can be used to optimize transition states in periodic structures. Scanning of constrained coordinates is a standard approach for molecular codes with localized basis functions, where a full set of internal coordinates is used for optimization. Common plane wave-codes for periodic boundary conditions almost exlusively rely on Cartesian coordinates. An implementation of constrained linear combinations of bond lengths with Cartesian coordinates is described. Along with an optimization of the value of the constrained coordinate toward the transition states, this allows transition optimization within a single calculation. The approach is suitable for transition states that can be well described in terms of broken and formed bonds. In particular, the implementation is shown to be effective and efficient in the optimization of transition states in zeolite-catalyzed reactions, which have high relevance in industrial processes.

  14. Integration of Rotor Aerodynamic Optimization with the Conceptual Design of a Large Civil Tiltrotor

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.

    2010-01-01

    Coupling of aeromechanics analysis with vehicle sizing is demonstrated with the CAMRAD II aeromechanics code and NDARC sizing code. The example is optimization of cruise tip speed with rotor/wing interference for the Large Civil Tiltrotor (LCTR2) concept design. Free-wake models were used for both rotors and the wing. This report is part of a NASA effort to develop an integrated analytical capability combining rotorcraft aeromechanics, structures, propulsion, mission analysis, and vehicle sizing. The present paper extends previous efforts by including rotor/wing interference explicitly in the rotor performance optimization and implicitly in the sizing.

  15. Electrode channel selection based on backtracking search optimization in motor imagery brain-computer interfaces.

    PubMed

    Dai, Shengfa; Wei, Qingguo

    2017-01-01

    Common spatial pattern algorithm is widely used to estimate spatial filters in motor imagery based brain-computer interfaces. However, use of a large number of channels will make common spatial pattern tend to over-fitting and the classification of electroencephalographic signals time-consuming. To overcome these problems, it is necessary to choose an optimal subset of the whole channels to save computational time and improve the classification accuracy. In this paper, a novel method named backtracking search optimization algorithm is proposed to automatically select the optimal channel set for common spatial pattern. Each individual in the population is a N-dimensional vector, with each component representing one channel. A population of binary codes generate randomly in the beginning, and then channels are selected according to the evolution of these codes. The number and positions of 1's in the code denote the number and positions of chosen channels. The objective function of backtracking search optimization algorithm is defined as the combination of classification error rate and relative number of channels. Experimental results suggest that higher classification accuracy can be achieved with much fewer channels compared to standard common spatial pattern with whole channels.

  16. Nanoparticle based bio-bar code technology for trace analysis of aflatoxin B1 in Chinese herbs.

    PubMed

    Yu, Yu-Yan; Chen, Yuan-Yuan; Gao, Xuan; Liu, Yuan-Yuan; Zhang, Hong-Yan; Wang, Tong-Ying

    2018-04-01

    A novel and sensitive assay for aflatoxin B1 (AFB1) detection has been developed by using bio-bar code assay (BCA). The method that relies on polyclonal antibodies encoded with DNA modified gold nanoparticle (NP) and monoclonal antibodies modified magnetic microparticle (MMP), and subsequent detection of amplified target in the form of bio-bar code using a fluorescent quantitative polymerase chain reaction (FQ-PCR) detection method. First, NP probes encoded with DNA that was unique to AFB1, MMP probes with monoclonal antibodies that bind AFB1 specifically were prepared. Then, the MMP-AFB1-NP sandwich compounds were acquired, dehybridization of the oligonucleotides on the nanoparticle surface allows the determination of the presence of AFB1 by identifying the oligonucleotide sequence released from the NP through FQ-PCR detection. The bio-bar code techniques system for detecting AFB1 was established, and the sensitivity limit was about 10 -8  ng/mL, comparable ELISA assays for detecting the same target, it showed that we can detect AFB1 at low attomolar levels with the bio-bar-code amplification approach. This is also the first demonstration of a bio-bar code type assay for the detection of AFB1 in Chinese herbs. Copyright © 2017. Published by Elsevier B.V.

  17. The Limits of Coding with Joint Constraints on Detected and Undetected Error Rates

    NASA Technical Reports Server (NTRS)

    Dolinar, Sam; Andrews, Kenneth; Pollara, Fabrizio; Divsalar, Dariush

    2008-01-01

    We develop a remarkably tight upper bound on the performance of a parameterized family of bounded angle maximum-likelihood (BA-ML) incomplete decoders. The new bound for this class of incomplete decoders is calculated from the code's weight enumerator, and is an extension of Poltyrev-type bounds developed for complete ML decoders. This bound can also be applied to bound the average performance of random code ensembles in terms of an ensemble average weight enumerator. We also formulate conditions defining a parameterized family of optimal incomplete decoders, defined to minimize both the total codeword error probability and the undetected error probability for any fixed capability of the decoder to detect errors. We illustrate the gap between optimal and BA-ML incomplete decoding via simulation of a small code.

  18. WOMBAT: A Scalable and High-performance Astrophysical Magnetohydrodynamics Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendygral, P. J.; Radcliffe, N.; Kandalla, K.

    2017-02-01

    We present a new code for astrophysical magnetohydrodynamics specifically designed and optimized for high performance and scaling on modern and future supercomputers. We describe a novel hybrid OpenMP/MPI programming model that emerged from a collaboration between Cray, Inc. and the University of Minnesota. This design utilizes MPI-RMA optimized for thread scaling, which allows the code to run extremely efficiently at very high thread counts ideal for the latest generation of multi-core and many-core architectures. Such performance characteristics are needed in the era of “exascale” computing. We describe and demonstrate our high-performance design in detail with the intent that it maymore » be used as a model for other, future astrophysical codes intended for applications demanding exceptional performance.« less

  19. Modified optimal control pilot model for computer-aided design and analysis

    NASA Technical Reports Server (NTRS)

    Davidson, John B.; Schmidt, David K.

    1992-01-01

    This paper presents the theoretical development of a modified optimal control pilot model based upon the optimal control model (OCM) of the human operator developed by Kleinman, Baron, and Levison. This model is input compatible with the OCM and retains other key aspects of the OCM, such as a linear quadratic solution for the pilot gains with inclusion of control rate in the cost function, a Kalman estimator, and the ability to account for attention allocation and perception threshold effects. An algorithm designed for each implementation in current dynamic systems analysis and design software is presented. Example results based upon the analysis of a tracking task using three basic dynamic systems are compared with measured results and with similar analyses performed with the OCM and two previously proposed simplified optimal pilot models. The pilot frequency responses and error statistics obtained with this modified optimal control model are shown to compare more favorably to the measured experimental results than the other previously proposed simplified models evaluated.

  20. WINCOF-I code for prediction of fan compressor unit with water ingestion

    NASA Technical Reports Server (NTRS)

    Murthy, S. N. B.; Mullican, A.

    1990-01-01

    The PURDUE-WINCOF code, which provides a numerical method of obtaining the performance of a fan-compressor unit of a jet engine with water ingestion into the inlet, was modified to take into account: (1) the scoop factor, (2) the time required for the setting-in of a quasi-steady distribution of water, and (3) the heat and mass transfer processes over the time calculated under 2. The modified code, named WINCOF-I was utilized to obtain the performance of a fan-compressor unit of a generic jet engine. The results illustrate the manner in which quasi-equilibrium conditions become established in the machine and the redistribution of ingested water in various stages in the form of a film out of the casing wall, droplets across the span, and vapor due to mass transfer.

  1. Sparse bursts optimize information transmission in a multiplexed neural code.

    PubMed

    Naud, Richard; Sprekeler, Henning

    2018-06-22

    Many cortical neurons combine the information ascending and descending the cortical hierarchy. In the classical view, this information is combined nonlinearly to give rise to a single firing-rate output, which collapses all input streams into one. We analyze the extent to which neurons can simultaneously represent multiple input streams by using a code that distinguishes spike timing patterns at the level of a neural ensemble. Using computational simulations constrained by experimental data, we show that cortical neurons are well suited to generate such multiplexing. Interestingly, this neural code maximizes information for short and sparse bursts, a regime consistent with in vivo recordings. Neurons can also demultiplex this information, using specific connectivity patterns. The anatomy of the adult mammalian cortex suggests that these connectivity patterns are used by the nervous system to maintain sparse bursting and optimal multiplexing. Contrary to firing-rate coding, our findings indicate that the physiology and anatomy of the cortex may be interpreted as optimizing the transmission of multiple independent signals to different targets. Copyright © 2018 the Author(s). Published by PNAS.

  2. Application of artificial neural networks to the design optimization of aerospace structural components

    NASA Technical Reports Server (NTRS)

    Berke, Laszlo; Patnaik, Surya N.; Murthy, Pappu L. N.

    1993-01-01

    The application of artificial neural networks to capture structural design expertise is demonstrated. The principal advantage of a trained neural network is that it requires trivial computational effort to produce an acceptable new design. For the class of problems addressed, the development of a conventional expert system would be extremely difficult. In the present effort, a structural optimization code with multiple nonlinear programming algorithms and an artificial neural network code NETS were used. A set of optimum designs for a ring and two aircraft wings for static and dynamic constraints were generated by using the optimization codes. The optimum design data were processed to obtain input and output pairs, which were used to develop a trained artificial neural network with the code NETS. Optimum designs for new design conditions were predicted by using the trained network. Neural net prediction of optimum designs was found to be satisfactory for most of the output design parameters. However, results from the present study indicate that caution must be exercised to ensure that all design variables are within selected error bounds.

  3. Size principle and information theory.

    PubMed

    Senn, W; Wyler, K; Clamann, H P; Kleinle, J; Lüscher, H R; Müller, L

    1997-01-01

    The motor units of a skeletal muscle may be recruited according to different strategies. From all possible recruitment strategies nature selected the simplest one: in most actions of vertebrate skeletal muscles the recruitment of its motor units is by increasing size. This so-called size principle permits a high precision in muscle force generation since small muscle forces are produced exclusively by small motor units. Larger motor units are activated only if the total muscle force has already reached certain critical levels. We show that this recruitment by size is not only optimal in precision but also optimal in an information theoretical sense. We consider the motoneuron pool as an encoder generating a parallel binary code from a common input to that pool. The generated motoneuron code is sent down through the motoneuron axons to the muscle. We establish that an optimization of this motoneuron code with respect to its information content is equivalent to the recruitment of motor units by size. Moreover, maximal information content of the motoneuron code is equivalent to a minimal expected error in muscle force generation.

  4. Lifting scheme-based method for joint coding 3D stereo digital cinema with luminace correction and optimized prediction

    NASA Astrophysics Data System (ADS)

    Darazi, R.; Gouze, A.; Macq, B.

    2009-01-01

    Reproducing a natural and real scene as we see in the real world everyday is becoming more and more popular. Stereoscopic and multi-view techniques are used for this end. However due to the fact that more information are displayed requires supporting technologies such as digital compression to ensure the storage and transmission of the sequences. In this paper, a new scheme for stereo image coding is proposed. The original left and right images are jointly coded. The main idea is to optimally exploit the existing correlation between the two images. This is done by the design of an efficient transform that reduces the existing redundancy in the stereo image pair. This approach was inspired by Lifting Scheme (LS). The novelty in our work is that the prediction step is been replaced by an hybrid step that consists in disparity compensation followed by luminance correction and an optimized prediction step. The proposed scheme can be used for lossless and for lossy coding. Experimental results show improvement in terms of performance and complexity compared to recently proposed methods.

  5. Programmer's reference manual for the VAX-Gerber link software package. Revision 1. 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isobe, G.W.

    1985-10-01

    This guide provides the information necessary to edit, modify, and run the VAX-Gerber software link. Since the project is in the testing stage and still being modified, this guide discussess the final desired stage along with the current stage. The current stage is to set up as to allow the programmer to easily modify and update codes as necessary.

  6. An integrated optimum design approach for high speed prop rotors

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Mccarthy, Thomas R.

    1995-01-01

    The objective is to develop an optimization procedure for high-speed and civil tilt-rotors by coupling all of the necessary disciplines within a closed-loop optimization procedure. Both simplified and comprehensive analysis codes are used for the aerodynamic analyses. The structural properties are calculated using in-house developed algorithms for both isotropic and composite box beam sections. There are four major objectives of this study. (1) Aerodynamic optimization: The effects of blade aerodynamic characteristics on cruise and hover performance of prop-rotor aircraft are investigated using the classical blade element momentum approach with corrections for the high lift capability of rotors/propellers. (2) Coupled aerodynamic/structures optimization: A multilevel hybrid optimization technique is developed for the design of prop-rotor aircraft. The design problem is decomposed into a level for improved aerodynamics with continuous design variables and a level with discrete variables to investigate composite tailoring. The aerodynamic analysis is based on that developed in objective 1 and the structural analysis is performed using an in-house code which models a composite box beam. The results are compared to both a reference rotor and the optimum rotor found in the purely aerodynamic formulation. (3) Multipoint optimization: The multilevel optimization procedure of objective 2 is extended to a multipoint design problem. Hover, cruise, and take-off are the three flight conditions simultaneously maximized. (4) Coupled rotor/wing optimization: Using the comprehensive rotary wing code CAMRAD, an optimization procedure is developed for the coupled rotor/wing performance in high speed tilt-rotor aircraft. The developed procedure contains design variables which define the rotor and wing planforms.

  7. Evaluation of fuel additives for reduction of material imcompatibilities in methanol-gasoline blends

    NASA Technical Reports Server (NTRS)

    Rodriguez, C. F.; Barbee, J. G.; Knutson, W. K.; Cuellar, J. P., Jr.

    1983-01-01

    Screening tests determined the efficacy of six commercially available additives as modifiers of methanol's corrosivity toward metals and its weakening of tensile properties of nonmetals in automotive fuel systems. From the screening phase, three additives which seemed to protect some of the metals were tested in higher concentrations and binary combinations in search of optimal application conditions. Results indicate that two of the additives have protective properties and combining them increases the protection of the metals corroded by methanol-gasoline blends. Half of the metals in the tests were not corroded. Testing at recommended concentrations and then at higher concentrations and in combinations shows that the additives would have no protective or harmful effects on the nonmetals. Two additives emerged as candidates for application to the protection of metals in automotive methanol-gasoline fuel systems. The additives tested were assigned letter codes to protect their proprietary nature.

  8. Melt damage simulation of W-macrobrush and divertor gaps after multiple transient events in ITER

    NASA Astrophysics Data System (ADS)

    Bazylev, B. N.; Janeschitz, G.; Landman, I. S.; Loarte, A.; Pestchanyi, S. E.

    2007-06-01

    Tungsten in the form of macrobrush structure is foreseen as one of two candidate materials for the ITER divertor and dome. In ITER, even for moderate and weak ELMs when a thin shielding layer does not protect the armour surface from the dumped plasma, the main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. The melt erosion of W-macrobrush targets with different geometry of brush surface under the heat loads caused by weak ELMs is numerically investigated using the modified code MEMOS. The optimal angle of brush surface inclination that provides a minimum of surface roughness is estimated for given inclination angles of impacting plasma stream and given parameters of the macrobrush target. For multiple disruptions the damage of the dome gaps and the gaps between divertor cassettes caused by the radiation impact is estimated.

  9. Development and application of a T7 RNA polymerase-dependent expression system for antibiotic production improvement in Streptomyces.

    PubMed

    Wei, Junhong; Tian, Jinjin; Pan, Guoqing; Xie, Jie; Bao, Jialing; Zhou, Zeyang

    2017-06-01

    To develop a reliable and easy to use expression system for antibiotic production improvement of Streptomyces. A two-compound T7 RNA polymerase-dependent gene expression system was developed to fulfill this demand. In this system, the T7 RNA polymerase coding sequence was optimized based on the codon usage of Streptomyces coelicolor. To evaluate the functionality of this system, we constructed an activator gene overexpression strain for enhancement of actinorhodin production. By overexpression of the positive regulator actII-ORF4 with this system, the maximum actinorhodin yield of engineered strain was 15-fold higher and the fermentation time was decreased by 48 h. The modified two-compound T7 expression system improves both antibiotic production and accelerates the fermentation process in Streptomyces. This provides a general and useful strategy for strain improvement of important antibiotic producing Streptomyces strains.

  10. Artificial neural networks in evaluation and optimization of modified release solid dosage forms.

    PubMed

    Ibrić, Svetlana; Djuriš, Jelena; Parojčić, Jelena; Djurić, Zorica

    2012-10-18

    Implementation of the Quality by Design (QbD) approach in pharmaceutical development has compelled researchers in the pharmaceutical industry to employ Design of Experiments (DoE) as a statistical tool, in product development. Among all DoE techniques, response surface methodology (RSM) is the one most frequently used. Progress of computer science has had an impact on pharmaceutical development as well. Simultaneous with the implementation of statistical methods, machine learning tools took an important place in drug formulation. Twenty years ago, the first papers describing application of artificial neural networks in optimization of modified release products appeared. Since then, a lot of work has been done towards implementation of new techniques, especially Artificial Neural Networks (ANN) in modeling of production, drug release and drug stability of modified release solid dosage forms. The aim of this paper is to review artificial neural networks in evaluation and optimization of modified release solid dosage forms.

  11. Artificial Neural Networks in Evaluation and Optimization of Modified Release Solid Dosage Forms

    PubMed Central

    Ibrić, Svetlana; Djuriš, Jelena; Parojčić, Jelena; Djurić, Zorica

    2012-01-01

    Implementation of the Quality by Design (QbD) approach in pharmaceutical development has compelled researchers in the pharmaceutical industry to employ Design of Experiments (DoE) as a statistical tool, in product development. Among all DoE techniques, response surface methodology (RSM) is the one most frequently used. Progress of computer science has had an impact on pharmaceutical development as well. Simultaneous with the implementation of statistical methods, machine learning tools took an important place in drug formulation. Twenty years ago, the first papers describing application of artificial neural networks in optimization of modified release products appeared. Since then, a lot of work has been done towards implementation of new techniques, especially Artificial Neural Networks (ANN) in modeling of production, drug release and drug stability of modified release solid dosage forms. The aim of this paper is to review artificial neural networks in evaluation and optimization of modified release solid dosage forms. PMID:24300369

  12. ISOT_Calc: A versatile tool for parameter estimation in sorption isotherms

    NASA Astrophysics Data System (ADS)

    Beltrán, José L.; Pignatello, Joseph J.; Teixidó, Marc

    2016-09-01

    Geochemists and soil chemists commonly use parametrized sorption data to assess transport and impact of pollutants in the environment. However, this evaluation is often hampered by a lack of detailed sorption data analysis, which implies further non-accurate transport modeling. To this end, we present a novel software tool to precisely analyze and interpret sorption isotherm data. Our developed tool, coded in Visual Basic for Applications (VBA), operates embedded within the Microsoft Excel™ environment. It consists of a user-defined function named ISOT_Calc, followed by a supplementary optimization Excel macro (Ref_GN_LM). The ISOT_Calc function estimates the solute equilibrium concentration in the aqueous and solid phases (Ce and q, respectively). Hence, it represents a very flexible way in the optimization of the sorption isotherm parameters, as it can be carried out over the residuals of q, Ce, or both simultaneously (i.e., orthogonal distance regression). The developed function includes the most usual sorption isotherm models, as predefined equations, as well as the possibility to easily introduce custom-defined ones. Regarding the Ref_GN_LM macro, it allows the parameter optimization by using a Levenberg-Marquardt modified Gauss-Newton iterative procedure. In order to evaluate the performance of the presented tool, both function and optimization macro have been applied to different sorption data examples described in the literature. Results showed that the optimization of the isotherm parameters was successfully achieved in all cases, indicating the robustness and reliability of the developed tool. Thus, the presented software tool, available to researchers and students for free, has proven to be a user-friendly and an interesting alternative to conventional fitting tools used in sorption data analysis.

  13. Generalized type II hybrid ARQ scheme using punctured convolutional coding

    NASA Astrophysics Data System (ADS)

    Kallel, Samir; Haccoun, David

    1990-11-01

    A method is presented to construct rate-compatible convolutional (RCC) codes from known high-rate punctured convolutional codes, obtained from best-rate 1/2 codes. The construction method is rather simple and straightforward, and still yields good codes. Moreover, low-rate codes can be obtained without any limit on the lowest achievable code rate. Based on the RCC codes, a generalized type-II hybrid ARQ scheme, which combines the benefits of the modified type-II hybrid ARQ strategy of Hagenauer (1988) with the code-combining ARQ strategy of Chase (1985), is proposed and analyzed. With the proposed generalized type-II hybrid ARQ strategy, the throughput increases as the starting coding rate increases, and as the channel degrades, it tends to merge with the throughput of rate 1/2 type-II hybrid ARQ schemes with code combining, thus allowing the system to be flexible and adaptive to channel conditions, even under wide noise variations and severe degradations.

  14. Development of the WRF-CO2 4D-Var assimilation system v1.0

    NASA Astrophysics Data System (ADS)

    Zheng, Tao; French, Nancy H. F.; Baxter, Martin

    2018-05-01

    Regional atmospheric CO2 inversions commonly use Lagrangian particle trajectory model simulations to calculate the required influence function, which quantifies the sensitivity of a receptor to flux sources. In this paper, an adjoint-based four-dimensional variational (4D-Var) assimilation system, WRF-CO2 4D-Var, is developed to provide an alternative approach. This system is developed based on the Weather Research and Forecasting (WRF) modeling system, including the system coupled to chemistry (WRF-Chem), with tangent linear and adjoint codes (WRFPLUS), and with data assimilation (WRFDA), all in version 3.6. In WRF-CO2 4D-Var, CO2 is modeled as a tracer and its feedback to meteorology is ignored. This configuration allows most WRF physical parameterizations to be used in the assimilation system without incurring a large amount of code development. WRF-CO2 4D-Var solves for the optimized CO2 flux scaling factors in a Bayesian framework. Two variational optimization schemes are implemented for the system: the first uses the limited memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) minimization algorithm (L-BFGS-B) and the second uses the Lanczos conjugate gradient (CG) in an incremental approach. WRFPLUS forward, tangent linear, and adjoint models are modified to include the physical and dynamical processes involved in the atmospheric transport of CO2. The system is tested by simulations over a domain covering the continental United States at 48 km × 48 km grid spacing. The accuracy of the tangent linear and adjoint models is assessed by comparing against finite difference sensitivity. The system's effectiveness for CO2 inverse modeling is tested using pseudo-observation data. The results of the sensitivity and inverse modeling tests demonstrate the potential usefulness of WRF-CO2 4D-Var for regional CO2 inversions.

  15. Optimizing Aspect-Oriented Mechanisms for Embedded Applications

    NASA Astrophysics Data System (ADS)

    Hundt, Christine; Stöhr, Daniel; Glesner, Sabine

    As applications for small embedded mobile devices are getting larger and more complex, it becomes inevitable to adopt more advanced software engineering methods from the field of desktop application development. Aspect-oriented programming (AOP) is a promising approach due to its advanced modularization capabilities. However, existing AOP languages tend to add a substantial overhead in both execution time and code size which restricts their practicality for small devices with limited resources. In this paper, we present optimizations for aspect-oriented mechanisms at the level of the virtual machine. Our experiments show that these optimizations yield a considerable performance gain along with a reduction of the code size. Thus, our optimizations establish the base for using advanced aspect-oriented modularization techniques for developing Java applications on small embedded devices.

  16. Optimizations of a Hardware Decoder for Deep-Space Optical Communications

    NASA Technical Reports Server (NTRS)

    Cheng, Michael K.; Nakashima, Michael A.; Moision, Bruce E.; Hamkins, Jon

    2007-01-01

    The National Aeronautics and Space Administration has developed a capacity approaching modulation and coding scheme that comprises a serial concatenation of an inner accumulate pulse-position modulation (PPM) and an outer convolutional code [or serially concatenated PPM (SCPPM)] for deep-space optical communications. Decoding of this code uses the turbo principle. However, due to the nonbinary property of SCPPM, a straightforward application of classical turbo decoding is very inefficient. Here, we present various optimizations applicable in hardware implementation of the SCPPM decoder. More specifically, we feature a Super Gamma computation to efficiently handle parallel trellis edges, a pipeline-friendly 'maxstar top-2' circuit that reduces the max-only approximation penalty, a low-latency cyclic redundancy check circuit for window-based decoders, and a high-speed algorithmic polynomial interleaver that leads to memory savings. Using the featured optimizations, we implement a 6.72 megabits-per-second (Mbps) SCPPM decoder on a single field-programmable gate array (FPGA). Compared to the current data rate of 256 kilobits per second from Mars, the SCPPM coded scheme represents a throughput increase of more than twenty-six fold. Extension to a 50-Mbps decoder on a board with multiple FPGAs follows naturally. We show through hardware simulations that the SCPPM coded system can operate within 1 dB of the Shannon capacity at nominal operating conditions.

  17. Surveying multidisciplinary aspects in real-time distributed coding for Wireless Sensor Networks.

    PubMed

    Braccini, Carlo; Davoli, Franco; Marchese, Mario; Mongelli, Maurizio

    2015-01-27

    Wireless Sensor Networks (WSNs), where a multiplicity of sensors observe a physical phenomenon and transmit their measurements to one or more sinks, pertain to the class of multi-terminal source and channel coding problems of Information Theory. In this category, "real-time" coding is often encountered for WSNs, referring to the problem of finding the minimum distortion (according to a given measure), under transmission power constraints, attainable by encoding and decoding functions, with stringent limits on delay and complexity. On the other hand, the Decision Theory approach seeks to determine the optimal coding/decoding strategies or some of their structural properties. Since encoder(s) and decoder(s) possess different information, though sharing a common goal, the setting here is that of Team Decision Theory. A more pragmatic vision rooted in Signal Processing consists of fixing the form of the coding strategies (e.g., to linear functions) and, consequently, finding the corresponding optimal decoding strategies and the achievable distortion, generally by applying parametric optimization techniques. All approaches have a long history of past investigations and recent results. The goal of the present paper is to provide the taxonomy of the various formulations, a survey of the vast related literature, examples from the authors' own research, and some highlights on the inter-play of the different theories.

  18. Keep It Simple. Teaching Tips for Special Olympic Athletes.

    ERIC Educational Resources Information Center

    Johnston, Judith E.; And Others

    1996-01-01

    Physical educators can help Special Olympics athletes learn cross-lateral delivery techniques for bowling or throwing softballs by color coding the throwing arm and opposing foot. The article explains color coding, presenting teaching tips for both sports. A series of workshops on modifying exercise principles for individuals with physical…

  19. Structured FORTRAN Preprocessor

    NASA Technical Reports Server (NTRS)

    Flynn, J. A.; Lawson, C. L.; Van Snyder, W.; Tsitsivas, H. N.

    1985-01-01

    SFTRAN3 supports structured programing in FORTRAN environment. Language intended particularly to support two aspects of structured programing -- nestable single-entry control structures and modularization and top-down organization of code. Code designed and written using these SFTRAN3 facilities have fewer initial errors, easier to understand and less expensive to maintain and modify.

  20. Tunable wavefront coded imaging system based on detachable phase mask: Mathematical analysis, optimization and underlying applications

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Wei, Jingxuan

    2014-09-01

    The key to the concept of tunable wavefront coding lies in detachable phase masks. Ojeda-Castaneda et al. (Progress in Electronics Research Symposium Proceedings, Cambridge, USA, July 5-8, 2010) described a typical design in which two components with cosinusoidal phase variation operate together to make defocus sensitivity tunable. The present study proposes an improved design and makes three contributions: (1) A mathematical derivation based on the stationary phase method explains why the detachable phase mask of Ojeda-Castaneda et al. tunes the defocus sensitivity. (2) The mathematical derivations show that the effective bandwidth wavefront coded imaging system is also tunable by making each component of the detachable phase mask move asymmetrically. An improved Fisher information-based optimization procedure was also designed to ascertain the optimal mask parameters corresponding to specific bandwidth. (3) Possible applications of the tunable bandwidth are demonstrated by simulated imaging.

  1. User's manual for the BNW-II optimization code for dry/wet-cooled power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braun, D.J.; Bamberger, J.A.; Braun, D.J.

    1978-05-01

    The User's Manual describes how to operate BNW-II, a computer code developed by the Pacific Northwest Laboratory (PNL) as a part of its activities under the Department of Energy (DOE) Dry Cooling Enhancement Program. The computer program offers a comprehensive method of evaluating the cost savings potential of dry/wet-cooled heat rejection systems. Going beyond simple ''figure-of-merit'' cooling tower optimization, this method includes such items as the cost of annual replacement capacity, and the optimum split between plant scale-up and replacement capacity, as well as the purchase and operating costs of all major heat rejection components. Hence the BNW-II code ismore » a useful tool for determining potential cost savings of new dry/wet surfaces, new piping, or other components as part of an optimized system for a dry/wet-cooled plant.« less

  2. Validation of the WIMSD4M cross-section generation code with benchmark results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deen, J.R.; Woodruff, W.L.; Leal, L.E.

    1995-01-01

    The WIMSD4 code has been adopted for cross-section generation in support of the Reduced Enrichment Research and Test Reactor (RERTR) program at Argonne National Laboratory (ANL). Subsequently, the code has undergone several updates, and significant improvements have been achieved. The capability of generating group-collapsed micro- or macroscopic cross sections from the ENDF/B-V library and the more recent evaluation, ENDF/B-VI, in the ISOTXS format makes the modified version of the WIMSD4 code, WIMSD4M, very attractive, not only for the RERTR program, but also for the reactor physics community. The intent of the present paper is to validate the WIMSD4M cross-section librariesmore » for reactor modeling of fresh water moderated cores. The results of calculations performed with multigroup cross-section data generated with the WIMSD4M code will be compared against experimental results. These results correspond to calculations carried out with thermal reactor benchmarks of the Oak Ridge National Laboratory (ORNL) unreflected HEU critical spheres, the TRX LEU critical experiments, and calculations of a modified Los Alamos HEU D{sub 2}O moderated benchmark critical system. The benchmark calculations were performed with the discrete-ordinates transport code, TWODANT, using WIMSD4M cross-section data. Transport calculations using the XSDRNPM module of the SCALE code system are also included. In addition to transport calculations, diffusion calculations with the DIF3D code were also carried out, since the DIF3D code is used in the RERTR program for reactor analysis and design. For completeness, Monte Carlo results of calculations performed with the VIM and MCNP codes are also presented.« less

  3. Long distance quantum communication with quantum Reed-Solomon codes

    NASA Astrophysics Data System (ADS)

    Muralidharan, Sreraman; Zou, Chang-Ling; Li, Linshu; Jiang, Liang; Jianggroup Team

    We study the construction of quantum Reed Solomon codes from classical Reed Solomon codes and show that they achieve the capacity of quantum erasure channel for multi-level quantum systems. We extend the application of quantum Reed Solomon codes to long distance quantum communication, investigate the local resource overhead needed for the functioning of one-way quantum repeaters with these codes, and numerically identify the parameter regime where these codes perform better than the known quantum polynomial codes and quantum parity codes . Finally, we discuss the implementation of these codes into time-bin photonic states of qubits and qudits respectively, and optimize the performance for one-way quantum repeaters.

  4. Identifying clinical features in primary care electronic health record studies: methods for codelist development.

    PubMed

    Watson, Jessica; Nicholson, Brian D; Hamilton, Willie; Price, Sarah

    2017-11-22

    Analysis of routinely collected electronic health record (EHR) data from primary care is reliant on the creation of codelists to define clinical features of interest. To improve scientific rigour, transparency and replicability, we describe and demonstrate a standardised reproducible methodology for clinical codelist development. We describe a three-stage process for developing clinical codelists. First, the clear definition a priori of the clinical feature of interest using reliable clinical resources. Second, development of a list of potential codes using statistical software to comprehensively search all available codes. Third, a modified Delphi process to reach consensus between primary care practitioners on the most relevant codes, including the generation of an 'uncertainty' variable to allow sensitivity analysis. These methods are illustrated by developing a codelist for shortness of breath in a primary care EHR sample, including modifiable syntax for commonly used statistical software. The codelist was used to estimate the frequency of shortness of breath in a cohort of 28 216 patients aged over 18 years who received an incident diagnosis of lung cancer between 1 January 2000 and 30 November 2016 in the Clinical Practice Research Datalink (CPRD). Of 78 candidate codes, 29 were excluded as inappropriate. Complete agreement was reached for 44 (90%) of the remaining codes, with partial disagreement over 5 (10%). 13 091 episodes of shortness of breath were identified in the cohort of 28 216 patients. Sensitivity analysis demonstrates that codes with the greatest uncertainty tend to be rarely used in clinical practice. Although initially time consuming, using a rigorous and reproducible method for codelist generation 'future-proofs' findings and an auditable, modifiable syntax for codelist generation enables sharing and replication of EHR studies. Published codelists should be badged by quality and report the methods of codelist generation including: definitions and justifications associated with each codelist; the syntax or search method; the number of candidate codes identified; and the categorisation of codes after Delphi review. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Entropy-Based Bounds On Redundancies Of Huffman Codes

    NASA Technical Reports Server (NTRS)

    Smyth, Padhraic J.

    1992-01-01

    Report presents extension of theory of redundancy of binary prefix code of Huffman type which includes derivation of variety of bounds expressed in terms of entropy of source and size of alphabet. Recent developments yielded bounds on redundancy of Huffman code in terms of probabilities of various components in source alphabet. In practice, redundancies of optimal prefix codes often closer to 0 than to 1.

  6. Liner Optimization Studies Using the Ducted Fan Noise Prediction Code TBIEM3D

    NASA Technical Reports Server (NTRS)

    Dunn, M. H.; Farassat, F.

    1998-01-01

    In this paper we demonstrate the usefulness of the ducted fan noise prediction code TBIEM3D as a liner optimization design tool. Boundary conditions on the interior duct wall allow for hard walls or a locally reacting liner with axially segmented, circumferentially uniform impedance. Two liner optimization studies are considered in which farfield noise attenuation due to the presence of a liner is maximized by adjusting the liner impedance. In the first example, the dependence of optimal liner impedance on frequency and liner length is examined. Results show that both the optimal impedance and attenuation levels are significantly influenced by liner length and frequency. In the second example, TBIEM3D is used to compare radiated sound pressure levels between optimal and non-optimal liner cases at conditions designed to simulate take-off. It is shown that significant noise reduction is achieved for most of the sound field by selecting the optimal or near optimal liner impedance. Our results also indicate that there is relatively large region of the impedance plane over which optimal or near optimal liner behavior is attainable. This is an important conclusion for the designer since there are variations in liner characteristics due to manufacturing imprecisions.

  7. Sensory and physicochemical evaluation of low-fat chicken mortadella with added native and modified starches.

    PubMed

    Prestes, R C; Silva, L B; Torri, A M P; Kubota, E H; Rosa, C S; Roman, S S; Kempka, A P; Demiate, I M

    2015-07-01

    The objective of this work was to evaluate the effect of adding different starches (native and modified) on the physicochemical, sensory, structural and microbiological characteristics of low-fat chicken mortadella. Two formulations containing native cassava and regular corn starch, coded CASS (5.0 % of cassava starch) and CORN (5.0 % of regular corn starch), and one formulation produced with physically treated starch coded as MOD1 (2.5 % of Novation 2300) and chemically modified starch coded as MOD2 (2.5 % of Thermtex) were studied. The following tests were performed: physicochemical characterization (moisture, ash, protein, starch and lipid contents, and water activity); cooling, freezing and reheating losses; texture (texture profile test); color coordinates (L*, a*, b*, C and h); microbiological evaluation; sensory evaluation (multiple comparison and preference test); and histological evaluation (light microscopy). There was no significant difference (p > 0.05) for ash, protein, cooling loss, cohesiveness or in the preference test for the tested samples. The other evaluated parameters showed significant differences (p < 0.05). Histological study allowed for a qualitative evaluation between the physical properties of the food and its microscopic structure. The best results were obtained for formulation MOD2 (2.5 % Thermtex). The addition of modified starch resulted in a better performance than the native starch in relation to the evaluated technological parameters, mainly in relation to reheating losses, which demonstrated the good interaction between the modified starch in the structure of the product and the possibility of the application of this type of starch in other types of functional meat products.

  8. A modified generalized extremal optimization algorithm for the quay crane scheduling problem with interference constraints

    NASA Astrophysics Data System (ADS)

    Guo, Peng; Cheng, Wenming; Wang, Yi

    2014-10-01

    The quay crane scheduling problem (QCSP) determines the handling sequence of tasks at ship bays by a set of cranes assigned to a container vessel such that the vessel's service time is minimized. A number of heuristics or meta-heuristics have been proposed to obtain the near-optimal solutions to overcome the NP-hardness of the problem. In this article, the idea of generalized extremal optimization (GEO) is adapted to solve the QCSP with respect to various interference constraints. The resulting GEO is termed the modified GEO. A randomized searching method for neighbouring task-to-QC assignments to an incumbent task-to-QC assignment is developed in executing the modified GEO. In addition, a unidirectional search decoding scheme is employed to transform a task-to-QC assignment to an active quay crane schedule. The effectiveness of the developed GEO is tested on a suite of benchmark problems introduced by K.H. Kim and Y.M. Park in 2004 (European Journal of Operational Research, Vol. 156, No. 3). Compared with other well-known existing approaches, the experiment results show that the proposed modified GEO is capable of obtaining the optimal or near-optimal solution in a reasonable time, especially for large-sized problems.

  9. Development of cubic Bezier curve and curve-plane intersection method for parametric submarine hull form design to optimize hull resistance using CFD

    NASA Astrophysics Data System (ADS)

    Chrismianto, Deddy; Zakki, Ahmad Fauzan; Arswendo, Berlian; Kim, Dong Joon

    2015-12-01

    Optimization analysis and computational fluid dynamics (CFDs) have been applied simultaneously, in which a parametric model plays an important role in finding the optimal solution. However, it is difficult to create a parametric model for a complex shape with irregular curves, such as a submarine hull form. In this study, the cubic Bezier curve and curve-plane intersection method are used to generate a solid model of a parametric submarine hull form taking three input parameters into account: nose radius, tail radius, and length-height hull ratio ( L/ H). Application program interface (API) scripting is also used to write code in the ANSYS design modeler. The results show that the submarine shape can be generated with some variation of the input parameters. An example is given that shows how the proposed method can be applied successfully to a hull resistance optimization case. The parametric design of the middle submarine type was chosen to be modified. First, the original submarine model was analyzed, in advance, using CFD. Then, using the response surface graph, some candidate optimal designs with a minimum hull resistance coefficient were obtained. Further, the optimization method in goal-driven optimization (GDO) was implemented to find the submarine hull form with the minimum hull resistance coefficient ( C t ). The minimum C t was obtained. The calculated difference in C t values between the initial submarine and the optimum submarine is around 0.26%, with the C t of the initial submarine and the optimum submarine being 0.001 508 26 and 0.001 504 29, respectively. The results show that the optimum submarine hull form shows a higher nose radius ( r n ) and higher L/ H than those of the initial submarine shape, while the radius of the tail ( r t ) is smaller than that of the initial shape.

  10. Operational manual for two-dimensional transonic code TSFOIL

    NASA Technical Reports Server (NTRS)

    Stahara, S. S.

    1978-01-01

    This code solves the two-dimensional, transonic, small-disturbance equations for flow past lifting airfoils in both free air and various wind-tunnel environments by using a variant of the finite-difference method. A description of the theoretical and numerical basis of the code is provided, together with complete operating instructions and sample cases for the general user. In addition, a programmer's manual is also presented to assist the user interested in modifying the code. Included in the programmer's manual are a dictionary of subroutine variables in common and a detailed description of each subroutine.

  11. Incorporation of coupled nonequilibrium chemistry into a two-dimensional nozzle code (SEAGULL)

    NASA Technical Reports Server (NTRS)

    Ratliff, A. W.

    1979-01-01

    A two-dimensional multiple shock nozzle code (SEAGULL) was extended to include the effects of finite rate chemistry. The basic code that treats multiple shocks and contact surfaces was fully coupled with a generalized finite rate chemistry and vibrational energy exchange package. The modified code retains all of the original SEAGULL features plus the capability to treat chemical and vibrational nonequilibrium reactions. Any chemical and/or vibrational energy exchange mechanism can be handled as long as thermodynamic data and rate constants are available for all participating species.

  12. Comparison of the LLNL ALE3D and AKTS Thermal Safety Computer Codes for Calculating Times to Explosion in ODTX and STEX Thermal Cookoff Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wemhoff, A P; Burnham, A K

    2006-04-05

    Cross-comparison of the results of two computer codes for the same problem provides a mutual validation of their computational methods. This cross-validation exercise was performed for LLNL's ALE3D code and AKTS's Thermal Safety code, using the thermal ignition of HMX in two standard LLNL cookoff experiments: the One-Dimensional Time to Explosion (ODTX) test and the Scaled Thermal Explosion (STEX) test. The chemical kinetics model used in both codes was the extended Prout-Tompkins model, a relatively new addition to ALE3D. This model was applied using ALE3D's new pseudospecies feature. In addition, an advanced isoconversional kinetic approach was used in the AKTSmore » code. The mathematical constants in the Prout-Tompkins code were calibrated using DSC data from hermetically sealed vessels and the LLNL optimization code Kinetics05. The isoconversional kinetic parameters were optimized using the AKTS Thermokinetics code. We found that the Prout-Tompkins model calculations agree fairly well between the two codes, and the isoconversional kinetic model gives very similar results as the Prout-Tompkins model. We also found that an autocatalytic approach in the beta-delta phase transition model does affect the times to explosion for some conditions, especially STEX-like simulations at ramp rates above 100 C/hr, and further exploration of that effect is warranted.« less

  13. Design optimization of beta- and photovoltaic conversion devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wichner, R.; Blum, A.; Fischer-Colbrie, E.

    1976-01-08

    This report presents the theoretical and experimental results of an LLL Electronics Engineering research program aimed at optimizing the design and electronic-material parameters of beta- and photovoltaic p-n junction conversion devices. To meet this objective, a comprehensive computer code has been developed that can handle a broad range of practical conditions. The physical model upon which the code is based is described first. Then, an example is given of a set of optimization calculations along with the resulting optimized efficiencies for silicon (Si) and gallium-arsenide (GaAs) devices. The model we have developed, however, is not limited to these materials. Itmore » can handle any appropriate material--single or polycrystalline-- provided energy absorption and electron-transport data are available. To check code validity, the performance of experimental silicon p-n junction devices (produced in-house) were measured under various light intensities and spectra as well as under tritium beta irradiation. The results of these tests were then compared with predicted results based on the known or best estimated device parameters. The comparison showed very good agreement between the calculated and the measured results.« less

  14. Optimizing legacy molecular dynamics software with directive-based offload

    NASA Astrophysics Data System (ADS)

    Michael Brown, W.; Carrillo, Jan-Michael Y.; Gavhane, Nitin; Thakkar, Foram M.; Plimpton, Steven J.

    2015-10-01

    Directive-based programming models are one solution for exploiting many-core coprocessors to increase simulation rates in molecular dynamics. They offer the potential to reduce code complexity with offload models that can selectively target computations to run on the CPU, the coprocessor, or both. In this paper, we describe modifications to the LAMMPS molecular dynamics code to enable concurrent calculations on a CPU and coprocessor. We demonstrate that standard molecular dynamics algorithms can run efficiently on both the CPU and an x86-based coprocessor using the same subroutines. As a consequence, we demonstrate that code optimizations for the coprocessor also result in speedups on the CPU; in extreme cases up to 4.7X. We provide results for LAMMPS benchmarks and for production molecular dynamics simulations using the Stampede hybrid supercomputer with both Intel® Xeon Phi™ coprocessors and NVIDIA GPUs. The optimizations presented have increased simulation rates by over 2X for organic molecules and over 7X for liquid crystals on Stampede. The optimizations are available as part of the "Intel package" supplied with LAMMPS.

  15. Development of Multiobjective Optimization Techniques for Sonic Boom Minimization

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Rajadas, John Narayan; Pagaldipti, Naryanan S.

    1996-01-01

    A discrete, semi-analytical sensitivity analysis procedure has been developed for calculating aerodynamic design sensitivities. The sensitivities of the flow variables and the grid coordinates are numerically calculated using direct differentiation of the respective discretized governing equations. The sensitivity analysis techniques are adapted within a parabolized Navier Stokes equations solver. Aerodynamic design sensitivities for high speed wing-body configurations are calculated using the semi-analytical sensitivity analysis procedures. Representative results obtained compare well with those obtained using the finite difference approach and establish the computational efficiency and accuracy of the semi-analytical procedures. Multidisciplinary design optimization procedures have been developed for aerospace applications namely, gas turbine blades and high speed wing-body configurations. In complex applications, the coupled optimization problems are decomposed into sublevels using multilevel decomposition techniques. In cases with multiple objective functions, formal multiobjective formulation such as the Kreisselmeier-Steinhauser function approach and the modified global criteria approach have been used. Nonlinear programming techniques for continuous design variables and a hybrid optimization technique, based on a simulated annealing algorithm, for discrete design variables have been used for solving the optimization problems. The optimization procedure for gas turbine blades improves the aerodynamic and heat transfer characteristics of the blades. The two-dimensional, blade-to-blade aerodynamic analysis is performed using a panel code. The blade heat transfer analysis is performed using an in-house developed finite element procedure. The optimization procedure yields blade shapes with significantly improved velocity and temperature distributions. The multidisciplinary design optimization procedures for high speed wing-body configurations simultaneously improve the aerodynamic, the sonic boom and the structural characteristics of the aircraft. The flow solution is obtained using a comprehensive parabolized Navier Stokes solver. Sonic boom analysis is performed using an extrapolation procedure. The aircraft wing load carrying member is modeled as either an isotropic or a composite box beam. The isotropic box beam is analyzed using thin wall theory. The composite box beam is analyzed using a finite element procedure. The developed optimization procedures yield significant improvements in all the performance criteria and provide interesting design trade-offs. The semi-analytical sensitivity analysis techniques offer significant computational savings and allow the use of comprehensive analysis procedures within design optimization studies.

  16. Simulation of profile evolution from ramp-up to ramp-down and optimization of tokamak plasma termination with the RAPTOR code

    NASA Astrophysics Data System (ADS)

    Teplukhina, A. A.; Sauter, O.; Felici, F.; Merle, A.; Kim, D.; the TCV Team; the ASDEX Upgrade Team; the EUROfusion MST1 Team

    2017-12-01

    The present work demonstrates the capabilities of the transport code RAPTOR as a fast and reliable simulator of plasma profiles for the entire plasma discharge, i.e. from ramp-up to ramp-down. This code focuses, at this stage, on the simulation of electron temperature and poloidal flux profiles using prescribed equilibrium and some kinetic profiles. In this work we extend the RAPTOR transport model to include a time-varying plasma equilibrium geometry and verify the changes via comparison with ATSRA code simulations. In addition a new ad hoc transport model based on constant gradients and suitable for simulations of L-H and H-L mode transitions has been incorporated into the RAPTOR code and validated with rapid simulations of the time evolution of the safety factor and the electron temperature over the entire AUG and TCV discharges. An optimization procedure for the plasma termination phase has also been developed during this work. We define the goal of the optimization as ramping down the plasma current as fast as possible while avoiding any disruptions caused by reaching physical or technical limits. Our numerical study of this problem shows that a fast decrease of plasma elongation during current ramp-down can help in reducing plasma internal inductance. An early transition from H- to L-mode allows us to reduce the drop in poloidal beta, which is also important for plasma MHD stability and control. This work shows how these complex nonlinear interactions can be optimized automatically using relevant cost functions and constraints. Preliminary experimental results for TCV are demonstrated.

  17. ASHMET: A computer code for estimating insolation incident on tilted surfaces

    NASA Technical Reports Server (NTRS)

    Elkin, R. F.; Toelle, R. G.

    1980-01-01

    A computer code, ASHMET, was developed by MSFC to estimate the amount of solar insolation incident on the surfaces of solar collectors. Both tracking and fixed-position collectors were included. Climatological data for 248 U. S. locations are built into the code. The basic methodology used by ASHMET is the ASHRAE clear-day insolation relationships modified by a clearness index derived from SOLMET-measured solar radiation data to a horizontal surface.

  18. Transmutation Fuel Performance Code Thermal Model Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory K. Miller; Pavel G. Medvedev

    2007-09-01

    FRAPCON fuel performance code is being modified to be able to model performance of the nuclear fuels of interest to the Global Nuclear Energy Partnership (GNEP). The present report documents the effort for verification of the FRAPCON thermal model. It was found that, with minor modifications, FRAPCON thermal model temperature calculation agrees with that of the commercial software ABAQUS (Version 6.4-4). This report outlines the methodology of the verification, code input, and calculation results.

  19. Possibilities for the evolution of the genetic code from a preceding form

    NASA Technical Reports Server (NTRS)

    Jukes, T. H.

    1973-01-01

    Analysis of the interaction between mRNA codons and tRNA anticodons suggests a model for the evolution of the genetic code. Modification of the nucleic acid following the anticodon is at present essential in both eukaryotes and prokaryotes to ensure fidelity of translation of codons starting with A, and the amino acids which could be coded for before the evolution of the modifying enzymes can be deduced.

  20. Application of modified Rosenbrock's method for optimization of nutrient media used in microorganism culturing.

    PubMed

    Votruba, J; Pilát, P; Prokop, A

    1975-12-01

    The Rosenbrock's procedure has been modified for optimization of nutrient medium composition and has been found to be less tedious than the Box-Wilson method, especially for larger numbers of optimized parameters. Its merits are particularly obvious with multiparameter optimization where the gradient method, so far the only one employed in microbiology from a variety of optimization methods (e.g., refs, 9 and 10), becomes impractical because of the excessive number of experiments required. The method suggested is also more stable during optimization than the gradient methods which are very sensitive to the selection of steps in the direction of the gradient and may thus easily shoot out of the optimized region. It is also anticipated that other direct search methods, particularly simplex design, may be easily adapted for optimization of medium composition. It is obvious that direct search methods may find an application in process improvement in antibiotic and related industries.

  1. Agrobacterium-transformed rice plants expressing synthetic cryIA(b) and cryIA(c) genes are highly toxic to striped stem borer and yellow stem borer.

    PubMed

    Cheng, X; Sardana, R; Kaplan, H; Altosaar, I

    1998-03-17

    Over 2,600 transgenic rice plants in nine strains were regenerated from >500 independently selected hygromycin-resistant calli after Agrobacterium-mediated transformation. The plants were transformed with fully modified (plant codon optimized) versions of two synthetic cryIA(b) and cryIA(c) coding sequences from Bacillus thuringiensis as well as the hph and gus genes, coding for hygromycin phosphotransferase and beta-glucuronidase, respectively. These sequences were placed under control of the maize ubiquitin promoter, the CaMV35S promoter, and the Brassica Bp10 gene promoter to achieve high and tissue-specific expression of the lepidopteran-specific delta-endotoxins. The integration, expression, and inheritance of these genes were demonstrated in R0 and R1 generations by Southern, Northern, and Western analyses and by other techniques. Accumulation of high levels (up to 3% of soluble proteins) of CryIA(b) and CryIA(c) proteins was detected in R0 plants. Bioassays with R1 transgenic plants indicated that the transgenic plants were highly toxic to two major rice insect pests, striped stem borer (Chilo suppressalis) and yellow stem borer (Scirpophaga incertulas), with mortalities of 97-100% within 5 days after infestation, thus offering a potential for effective insect resistance in transgenic rice plants.

  2. Peridigm summary report : lessons learned in development with agile components.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salinger, Andrew Gerhard; Mitchell, John Anthony; Littlewood, David John

    2011-09-01

    This report details efforts to deploy Agile Components for rapid development of a peridynamics code, Peridigm. The goal of Agile Components is to enable the efficient development of production-quality software by providing a well-defined, unifying interface to a powerful set of component-based software. Specifically, Agile Components facilitate interoperability among packages within the Trilinos Project, including data management, time integration, uncertainty quantification, and optimization. Development of the Peridigm code served as a testbed for Agile Components and resulted in a number of recommendations for future development. Agile Components successfully enabled rapid integration of Trilinos packages into Peridigm. A cost of thismore » approach, however, was a set of restrictions on Peridigm's architecture which impacted the ability to track history-dependent material data, dynamically modify the model discretization, and interject user-defined routines into the time integration algorithm. These restrictions resulted in modifications to the Agile Components approach, as implemented in Peridigm, and in a set of recommendations for future Agile Components development. Specific recommendations include improved handling of material states, a more flexible flow control model, and improved documentation. A demonstration mini-application, SimpleODE, was developed at the onset of this project and is offered as a potential supplement to Agile Components documentation.« less

  3. Optimal Near-Hitless Network Failure Recovery Using Diversity Coding

    ERIC Educational Resources Information Center

    Avci, Serhat Nazim

    2013-01-01

    Link failures in wide area networks are common and cause significant data losses. Mesh-based protection schemes offer high capacity efficiency but they are slow, require complex signaling, and instable. Diversity coding is a proactive coding-based recovery technique which offers near-hitless (sub-ms) restoration with a competitive spare capacity…

  4. SOC-DS computer code provides tool for design evaluation of homogeneous two-material nuclear shield

    NASA Technical Reports Server (NTRS)

    Disney, R. K.; Ricks, L. O.

    1967-01-01

    SOC-DS Code /Shield Optimization Code-Direc Search/, selects a nuclear shield material of optimum volume, weight, or cost to meet the requirments of a given radiation dose rate or energy transmission constraint. It is applicable to evaluating neutron and gamma ray shields for all nuclear reactors.

  5. Integration of Dakota into the NEAMS Workbench

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swiler, Laura Painton; Lefebvre, Robert A.; Langley, Brandon R.

    2017-07-01

    This report summarizes a NEAMS (Nuclear Energy Advanced Modeling and Simulation) project focused on integrating Dakota into the NEAMS Workbench. The NEAMS Workbench, developed at Oak Ridge National Laboratory, is a new software framework that provides a graphical user interface, input file creation, parsing, validation, job execution, workflow management, and output processing for a variety of nuclear codes. Dakota is a tool developed at Sandia National Laboratories that provides a suite of uncertainty quantification and optimization algorithms. Providing Dakota within the NEAMS Workbench allows users of nuclear simulation codes to perform uncertainty and optimization studies on their nuclear codes frommore » within a common, integrated environment. Details of the integration and parsing are provided, along with an example of Dakota running a sampling study on the fuels performance code, BISON, from within the NEAMS Workbench.« less

  6. Study of information transfer optimization for communication satellites

    NASA Technical Reports Server (NTRS)

    Odenwalder, J. P.; Viterbi, A. J.; Jacobs, I. M.; Heller, J. A.

    1973-01-01

    The results are presented of a study of source coding, modulation/channel coding, and systems techniques for application to teleconferencing over high data rate digital communication satellite links. Simultaneous transmission of video, voice, data, and/or graphics is possible in various teleconferencing modes and one-way, two-way, and broadcast modes are considered. A satellite channel model including filters, limiter, a TWT, detectors, and an optimized equalizer is treated in detail. A complete analysis is presented for one set of system assumptions which exclude nonlinear gain and phase distortion in the TWT. Modulation, demodulation, and channel coding are considered, based on an additive white Gaussian noise channel model which is an idealization of an equalized channel. Source coding with emphasis on video data compression is reviewed, and the experimental facility utilized to test promising techniques is fully described.

  7. Efficient transformation of an auditory population code in a small sensory system.

    PubMed

    Clemens, Jan; Kutzki, Olaf; Ronacher, Bernhard; Schreiber, Susanne; Wohlgemuth, Sandra

    2011-08-16

    Optimal coding principles are implemented in many large sensory systems. They include the systematic transformation of external stimuli into a sparse and decorrelated neuronal representation, enabling a flexible readout of stimulus properties. Are these principles also applicable to size-constrained systems, which have to rely on a limited number of neurons and may only have to fulfill specific and restricted tasks? We studied this question in an insect system--the early auditory pathway of grasshoppers. Grasshoppers use genetically fixed songs to recognize mates. The first steps of neural processing of songs take place in a small three-layer feed-forward network comprising only a few dozen neurons. We analyzed the transformation of the neural code within this network. Indeed, grasshoppers create a decorrelated and sparse representation, in accordance with optimal coding theory. Whereas the neuronal input layer is best read out as a summed population, a labeled-line population code for temporal features of the song is established after only two processing steps. At this stage, information about song identity is maximal for a population decoder that preserves neuronal identity. We conclude that optimal coding principles do apply to the early auditory system of the grasshopper, despite its size constraints. The inputs, however, are not encoded in a systematic, map-like fashion as in many larger sensory systems. Already at its periphery, part of the grasshopper auditory system seems to focus on behaviorally relevant features, and is in this property more reminiscent of higher sensory areas in vertebrates.

  8. Computer code for the optimization of performance parameters of mixed explosive formulations.

    PubMed

    Muthurajan, H; Sivabalan, R; Talawar, M B; Venugopalan, S; Gandhe, B R

    2006-08-25

    LOTUSES is a novel computer code, which has been developed for the prediction of various thermodynamic properties such as heat of formation, heat of explosion, volume of explosion gaseous products and other related performance parameters. In this paper, we report LOTUSES (Version 1.4) code which has been utilized for the optimization of various high explosives in different combinations to obtain maximum possible velocity of detonation. LOTUSES (Version 1.4) code will vary the composition of mixed explosives automatically in the range of 1-100% and computes the oxygen balance as well as the velocity of detonation for various compositions in preset steps. Further, the code suggests the compositions for which least oxygen balance and the higher velocity of detonation could be achieved. Presently, the code can be applied for two component explosive compositions. The code has been validated with well-known explosives like, TNT, HNS, HNF, TATB, RDX, HMX, AN, DNA, CL-20 and TNAZ in different combinations. The new algorithm incorporated in LOTUSES (Version 1.4) enhances the efficiency and makes it a more powerful tool for the scientists/researches working in the field of high energy materials/hazardous materials.

  9. Letter report on a straw-man modification of an ATC transponder for discrete address use

    DOT National Transportation Integrated Search

    1974-05-01

    An experimental evaluation has been made of an RCA AVQ-65 airtraffic control transponder modified, in Mode D, so as to reply if and only if interrogated with its own preset reply code. Successful operation of the modified transponder was verified, an...

  10. FLORIS 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2017-08-04

    This code is an enhancement to the existing FLORIS code, SWR 14-20. In particular, this enhancement computes overall thrust and turbulence intensity throughout a wind plant. This information is used to form a description of the fatigue loads experienced throughtout the wind plant. FLORIS has been updated to include an optimization routine that optimizes FLORIS to minimize thrust and turbulence intensity (and therefore loads) across the wind plant. Previously, FLORIS had been designed to optimize power out of a wind plant. However, as turbines age, more wind plant owner/operators are looking for ways to reduce their fatigue loads without sacrificingmore » too much power.« less

  11. High altitude chemically reacting gas particle mixtures. Volume 3: Computer code user's and applications manual. [rocket nozzle and orbital plume flow fields

    NASA Technical Reports Server (NTRS)

    Smith, S. D.

    1984-01-01

    A users manual for the RAMP2 computer code is provided. The RAMP2 code can be used to model the dominant phenomena which affect the prediction of liquid and solid rocket nozzle and orbital plume flow fields. The general structure and operation of RAMP2 are discussed. A user input/output guide for the modified TRAN72 computer code and the RAMP2F code is given. The application and use of the BLIMPJ module are considered. Sample problems involving the space shuttle main engine and motor are included.

  12. Computer Simulation of the VASIMR Engine

    NASA Technical Reports Server (NTRS)

    Garrison, David

    2005-01-01

    The goal of this project is to develop a magneto-hydrodynamic (MHD) computer code for simulation of the VASIMR engine. This code is designed be easy to modify and use. We achieve this using the Cactus framework, a system originally developed for research in numerical relativity. Since its release, Cactus has become an extremely powerful and flexible open source framework. The development of the code will be done in stages, starting with a basic fluid dynamic simulation and working towards a more complex MHD code. Once developed, this code can be used by students and researchers in order to further test and improve the VASIMR engine.

  13. Thermal-Structural Optimization of Integrated Cryogenic Propellant Tank Concepts for a Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Waters, W. Allen; Singer, Thomas N.; Haftka, Raphael T.

    2004-01-01

    A next generation reusable launch vehicle (RLV) will require thermally efficient and light-weight cryogenic propellant tank structures. Since these tanks will be weight-critical, analytical tools must be developed to aid in sizing the thickness of insulation layers and structural geometry for optimal performance. Finite element method (FEM) models of the tank and insulation layers were created to analyze the thermal performance of the cryogenic insulation layer and thermal protection system (TPS) of the tanks. The thermal conditions of ground-hold and re-entry/soak-through for a typical RLV mission were used in the thermal sizing study. A general-purpose nonlinear FEM analysis code, capable of using temperature and pressure dependent material properties, was used as the thermal analysis code. Mechanical loads from ground handling and proof-pressure testing were used to size the structural geometry of an aluminum cryogenic tank wall. Nonlinear deterministic optimization and reliability optimization techniques were the analytical tools used to size the geometry of the isogrid stiffeners and thickness of the skin. The results from the sizing study indicate that a commercial FEM code can be used for thermal analyses to size the insulation thicknesses where the temperature and pressure were varied. The results from the structural sizing study show that using combined deterministic and reliability optimization techniques can obtain alternate and lighter designs than the designs obtained from deterministic optimization methods alone.

  14. Scalable video transmission over Rayleigh fading channels using LDPC codes

    NASA Astrophysics Data System (ADS)

    Bansal, Manu; Kondi, Lisimachos P.

    2005-03-01

    In this paper, we investigate an important problem of efficiently utilizing the available resources for video transmission over wireless channels while maintaining a good decoded video quality and resilience to channel impairments. Our system consists of the video codec based on 3-D set partitioning in hierarchical trees (3-D SPIHT) algorithm and employs two different schemes using low-density parity check (LDPC) codes for channel error protection. The first method uses the serial concatenation of the constant-rate LDPC code and rate-compatible punctured convolutional (RCPC) codes. Cyclic redundancy check (CRC) is used to detect transmission errors. In the other scheme, we use the product code structure consisting of a constant rate LDPC/CRC code across the rows of the `blocks' of source data and an erasure-correction systematic Reed-Solomon (RS) code as the column code. In both the schemes introduced here, we use fixed-length source packets protected with unequal forward error correction coding ensuring a strictly decreasing protection across the bitstream. A Rayleigh flat-fading channel with additive white Gaussian noise (AWGN) is modeled for the transmission. The rate-distortion optimization algorithm is developed and carried out for the selection of source coding and channel coding rates using Lagrangian optimization. The experimental results demonstrate the effectiveness of this system under different wireless channel conditions and both the proposed methods (LDPC+RCPC/CRC and RS+LDPC/CRC) outperform the more conventional schemes such as those employing RCPC/CRC.

  15. A unified framework of unsupervised subjective optimized bit allocation for multiple video object coding

    NASA Astrophysics Data System (ADS)

    Chen, Zhenzhong; Han, Junwei; Ngan, King Ngi

    2005-10-01

    MPEG-4 treats a scene as a composition of several objects or so-called video object planes (VOPs) that are separately encoded and decoded. Such a flexible video coding framework makes it possible to code different video object with different distortion scale. It is necessary to analyze the priority of the video objects according to its semantic importance, intrinsic properties and psycho-visual characteristics such that the bit budget can be distributed properly to video objects to improve the perceptual quality of the compressed video. This paper aims to provide an automatic video object priority definition method based on object-level visual attention model and further propose an optimization framework for video object bit allocation. One significant contribution of this work is that the human visual system characteristics are incorporated into the video coding optimization process. Another advantage is that the priority of the video object can be obtained automatically instead of fixing weighting factors before encoding or relying on the user interactivity. To evaluate the performance of the proposed approach, we compare it with traditional verification model bit allocation and the optimal multiple video object bit allocation algorithms. Comparing with traditional bit allocation algorithms, the objective quality of the object with higher priority is significantly improved under this framework. These results demonstrate the usefulness of this unsupervised subjective quality lifting framework.

  16. Earthquake Early Warning ShakeAlert System: Testing and certification platform

    USGS Publications Warehouse

    Cochran, Elizabeth S.; Kohler, Monica D.; Given, Douglas; Guiwits, Stephen; Andrews, Jennifer; Meier, Men-Andrin; Ahmad, Mohammad; Henson, Ivan; Hartog, Renate; Smith, Deborah

    2017-01-01

    Earthquake early warning systems provide warnings to end users of incoming moderate to strong ground shaking from earthquakes. An earthquake early warning system, ShakeAlert, is providing alerts to beta end users in the western United States, specifically California, Oregon, and Washington. An essential aspect of the earthquake early warning system is the development of a framework to test modifications to code to ensure functionality and assess performance. In 2016, a Testing and Certification Platform (TCP) was included in the development of the Production Prototype version of ShakeAlert. The purpose of the TCP is to evaluate the robustness of candidate code that is proposed for deployment on ShakeAlert Production Prototype servers. TCP consists of two main components: a real‐time in situ test that replicates the real‐time production system and an offline playback system to replay test suites. The real‐time tests of system performance assess code optimization and stability. The offline tests comprise a stress test of candidate code to assess if the code is production ready. The test suite includes over 120 events including local, regional, and teleseismic historic earthquakes, recentering and calibration events, and other anomalous and potentially problematic signals. Two assessments of alert performance are conducted. First, point‐source assessments are undertaken to compare magnitude, epicentral location, and origin time with the Advanced National Seismic System Comprehensive Catalog, as well as to evaluate alert latency. Second, we describe assessment of the quality of ground‐motion predictions at end‐user sites by comparing predicted shaking intensities to ShakeMaps for historic events and implement a threshold‐based approach that assesses how often end users initiate the appropriate action, based on their ground‐shaking threshold. TCP has been developed to be a convenient streamlined procedure for objectively testing algorithms, and it has been designed with flexibility to accommodate significant changes in development of new or modified system code. It is expected that the TCP will continue to evolve along with the ShakeAlert system, and the framework we describe here provides one example of how earthquake early warning systems can be evaluated.

  17. SU-E-T-590: Optimizing Magnetic Field Strengths with Matlab for An Ion-Optic System in Particle Therapy Consisting of Two Quadrupole Magnets for Subsequent Simulations with the Monte-Carlo Code FLUKA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumann, K; Weber, U; Simeonov, Y

    Purpose: Aim of this study was to optimize the magnetic field strengths of two quadrupole magnets in a particle therapy facility in order to obtain a beam quality suitable for spot beam scanning. Methods: The particle transport through an ion-optic system of a particle therapy facility consisting of the beam tube, two quadrupole magnets and a beam monitor system was calculated with the help of Matlab by using matrices that solve the equation of motion of a charged particle in a magnetic field and field-free region, respectively. The magnetic field strengths were optimized in order to obtain a circular andmore » thin beam spot at the iso-center of the therapy facility. These optimized field strengths were subsequently transferred to the Monte-Carlo code FLUKA and the transport of 80 MeV/u C12-ions through this ion-optic system was calculated by using a user-routine to implement magnetic fields. The fluence along the beam-axis and at the iso-center was evaluated. Results: The magnetic field strengths could be optimized by using Matlab and transferred to the Monte-Carlo code FLUKA. The implementation via a user-routine was successful. Analyzing the fluence-pattern along the beam-axis the characteristic focusing and de-focusing effects of the quadrupole magnets could be reproduced. Furthermore the beam spot at the iso-center was circular and significantly thinner compared to an unfocused beam. Conclusion: In this study a Matlab tool was developed to optimize magnetic field strengths for an ion-optic system consisting of two quadrupole magnets as part of a particle therapy facility. These magnetic field strengths could subsequently be transferred to and implemented in the Monte-Carlo code FLUKA to simulate the particle transport through this optimized ion-optic system.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ureba, A.; Salguero, F. J.; Barbeiro, A. R.

    Purpose: The authors present a hybrid direct multileaf collimator (MLC) aperture optimization model exclusively based on sequencing of patient imaging data to be implemented on a Monte Carlo treatment planning system (MC-TPS) to allow the explicit radiation transport simulation of advanced radiotherapy treatments with optimal results in efficient times for clinical practice. Methods: The planning system (called CARMEN) is a full MC-TPS, controlled through aMATLAB interface, which is based on the sequencing of a novel map, called “biophysical” map, which is generated from enhanced image data of patients to achieve a set of segments actually deliverable. In order to reducemore » the required computation time, the conventional fluence map has been replaced by the biophysical map which is sequenced to provide direct apertures that will later be weighted by means of an optimization algorithm based on linear programming. A ray-casting algorithm throughout the patient CT assembles information about the found structures, the mass thickness crossed, as well as PET values. Data are recorded to generate a biophysical map for each gantry angle. These maps are the input files for a home-made sequencer developed to take into account the interactions of photons and electrons with the MLC. For each linac (Axesse of Elekta and Primus of Siemens) and energy beam studied (6, 9, 12, 15 MeV and 6 MV), phase space files were simulated with the EGSnrc/BEAMnrc code. The dose calculation in patient was carried out with the BEAMDOSE code. This code is a modified version of EGSnrc/DOSXYZnrc able to calculate the beamlet dose in order to combine them with different weights during the optimization process. Results: Three complex radiotherapy treatments were selected to check the reliability of CARMEN in situations where the MC calculation can offer an added value: A head-and-neck case (Case I) with three targets delineated on PET/CT images and a demanding dose-escalation; a partial breast irradiation case (Case II) solved with photon and electron modulated beams (IMRT + MERT); and a prostatic bed case (Case III) with a pronounced concave-shaped PTV by using volumetric modulated arc therapy. In the three cases, the required target prescription doses and constraints on organs at risk were fulfilled in a short enough time to allow routine clinical implementation. The quality assurance protocol followed to check CARMEN system showed a high agreement with the experimental measurements. Conclusions: A Monte Carlo treatment planning model exclusively based on maps performed from patient imaging data has been presented. The sequencing of these maps allows obtaining deliverable apertures which are weighted for modulation under a linear programming formulation. The model is able to solve complex radiotherapy treatments with high accuracy in an efficient computation time.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bose, Benjamin; Koyama, Kazuya, E-mail: benjamin.bose@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk

    We develop a code to produce the power spectrum in redshift space based on standard perturbation theory (SPT) at 1-loop order. The code can be applied to a wide range of modified gravity and dark energy models using a recently proposed numerical method by A.Taruya to find the SPT kernels. This includes Horndeski's theory with a general potential, which accommodates both chameleon and Vainshtein screening mechanisms and provides a non-linear extension of the effective theory of dark energy up to the third order. Focus is on a recent non-linear model of the redshift space power spectrum which has been shownmore » to model the anisotropy very well at relevant scales for the SPT framework, as well as capturing relevant non-linear effects typical of modified gravity theories. We provide consistency checks of the code against established results and elucidate its application within the light of upcoming high precision RSD data.« less

  20. LTCP 2D Graphical User Interface. Application Description and User's Guide

    NASA Technical Reports Server (NTRS)

    Ball, Robert; Navaz, Homayun K.

    1996-01-01

    A graphical user interface (GUI) written for NASA's LTCP (Liquid Thrust Chamber Performance) 2 dimensional computational fluid dynamic code is described. The GUI is written in C++ for a desktop personal computer running under a Microsoft Windows operating environment. Through the use of common and familiar dialog boxes, features, and tools, the user can easily and quickly create and modify input files for the LTCP code. In addition, old input files used with the LTCP code can be opened and modified using the GUI. The application is written in C++ for a desktop personal computer running under a Microsoft Windows operating environment. The program and its capabilities are presented, followed by a detailed description of each menu selection and the method of creating an input file for LTCP. A cross reference is included to help experienced users quickly find the variables which commonly need changes. Finally, the system requirements and installation instructions are provided.

  1. Lunar module voice recorder

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A feasibility unit suitable for use as a voice recorder on the space shuttle was developed. A modification, development, and test program is described. A LM-DSEA recorder was modified to achieve the following goals: (1) redesign case to allow in-flight cartridge change; (2) time code change from LM code to IRIG-B 100 pps code; (3) delete cold plate requirements (also requires deletion of long-term thermal vacuum operation at 0.00001 MMHg); (4) implement track sequence reset during cartridge change; (5) reduce record time per cartridge because of unavailability of LM thin-base tape; and (6) add an internal Vox key circuit to turn on/off transport and electronics with voice data input signal. The recorder was tested at both the LM and shuttle vibration levels. The modified recorder achieved the same level of flutter during vibration as the DSEA recorder prior to modification. Several improvements were made over the specification requirements. The high manufacturing cost is discussed.

  2. Semantic Interoperability of Health Risk Assessments

    PubMed Central

    Rajda, Jay; Vreeman, Daniel J.; Wei, Henry G.

    2011-01-01

    The health insurance and benefits industry has administered Health Risk Assessments (HRAs) at an increasing rate. These are used to collect data on modifiable health risk factors for wellness and disease management programs. However, there is significant variability in the semantics of these assessments, making it difficult to compare data sets from the output of 2 different HRAs. There is also an increasing need to exchange this data with Health Information Exchanges and Electronic Medical Records. To standardize the data and concepts from these tools, we outline a process to determine presence of certain common elements of modifiable health risk extracted from these surveys. This information is coded using concept identifiers, which allows cross-survey comparison and analysis. We propose that using LOINC codes or other universal coding schema may allow semantic interoperability of a variety of HRA tools across the industry, research, and clinical settings. PMID:22195174

  3. Optimal superdense coding over memory channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shadman, Z.; Kampermann, H.; Bruss, D.

    2011-10-15

    We study the superdense coding capacity in the presence of quantum channels with correlated noise. We investigate both the cases of unitary and nonunitary encoding. Pauli channels for arbitrary dimensions are treated explicitly. The superdense coding capacity for some special channels and resource states is derived for unitary encoding. We also provide an example of a memory channel where nonunitary encoding leads to an improvement in the superdense coding capacity.

  4. Design and optimization of a portable LQCD Monte Carlo code using OpenACC

    NASA Astrophysics Data System (ADS)

    Bonati, Claudio; Coscetti, Simone; D'Elia, Massimo; Mesiti, Michele; Negro, Francesco; Calore, Enrico; Schifano, Sebastiano Fabio; Silvi, Giorgio; Tripiccione, Raffaele

    The present panorama of HPC architectures is extremely heterogeneous, ranging from traditional multi-core CPU processors, supporting a wide class of applications but delivering moderate computing performance, to many-core Graphics Processor Units (GPUs), exploiting aggressive data-parallelism and delivering higher performances for streaming computing applications. In this scenario, code portability (and performance portability) become necessary for easy maintainability of applications; this is very relevant in scientific computing where code changes are very frequent, making it tedious and prone to error to keep different code versions aligned. In this work, we present the design and optimization of a state-of-the-art production-level LQCD Monte Carlo application, using the directive-based OpenACC programming model. OpenACC abstracts parallel programming to a descriptive level, relieving programmers from specifying how codes should be mapped onto the target architecture. We describe the implementation of a code fully written in OpenAcc, and show that we are able to target several different architectures, including state-of-the-art traditional CPUs and GPUs, with the same code. We also measure performance, evaluating the computing efficiency of our OpenACC code on several architectures, comparing with GPU-specific implementations and showing that a good level of performance-portability can be reached.

  5. Optimization of residual stresses in MMC's through the variation of interfacial layer architectures and processing parameters

    NASA Technical Reports Server (NTRS)

    Pindera, Marek-Jerzy; Salzar, Robert S.

    1996-01-01

    The objective of this work was the development of efficient, user-friendly computer codes for optimizing fabrication-induced residual stresses in metal matrix composites through the use of homogeneous and heterogeneous interfacial layer architectures and processing parameter variation. To satisfy this objective, three major computer codes have been developed and delivered to the NASA-Lewis Research Center, namely MCCM, OPTCOMP, and OPTCOMP2. MCCM is a general research-oriented code for investigating the effects of microstructural details, such as layered morphology of SCS-6 SiC fibers and multiple homogeneous interfacial layers, on the inelastic response of unidirectional metal matrix composites under axisymmetric thermomechanical loading. OPTCOMP and OPTCOMP2 combine the major analysis module resident in MCCM with a commercially-available optimization algorithm and are driven by user-friendly interfaces which facilitate input data construction and program execution. OPTCOMP enables the user to identify those dimensions, geometric arrangements and thermoelastoplastic properties of homogeneous interfacial layers that minimize thermal residual stresses for the specified set of constraints. OPTCOMP2 provides additional flexibility in the residual stress optimization through variation of the processing parameters (time, temperature, external pressure and axial load) as well as the microstructure of the interfacial region which is treated as a heterogeneous two-phase composite. Overviews of the capabilities of these codes are provided together with a summary of results that addresses the effects of various microstructural details of the fiber, interfacial layers and matrix region on the optimization of fabrication-induced residual stresses in metal matrix composites.

  6. GAME: GAlaxy Machine learning for Emission lines

    NASA Astrophysics Data System (ADS)

    Ucci, G.; Ferrara, A.; Pallottini, A.; Gallerani, S.

    2018-06-01

    We present an updated, optimized version of GAME (GAlaxy Machine learning for Emission lines), a code designed to infer key interstellar medium physical properties from emission line intensities of ultraviolet /optical/far-infrared galaxy spectra. The improvements concern (a) an enlarged spectral library including Pop III stars, (b) the inclusion of spectral noise in the training procedure, and (c) an accurate evaluation of uncertainties. We extensively validate the optimized code and compare its performance against empirical methods and other available emission line codes (PYQZ and HII-CHI-MISTRY) on a sample of 62 SDSS stacked galaxy spectra and 75 observed HII regions. Very good agreement is found for metallicity. However, ionization parameters derived by GAME tend to be higher. We show that this is due to the use of too limited libraries in the other codes. The main advantages of GAME are the simultaneous use of all the measured spectral lines and the extremely short computational times. We finally discuss the code potential and limitations.

  7. Iterative channel decoding of FEC-based multiple-description codes.

    PubMed

    Chang, Seok-Ho; Cosman, Pamela C; Milstein, Laurence B

    2012-03-01

    Multiple description coding has been receiving attention as a robust transmission framework for multimedia services. This paper studies the iterative decoding of FEC-based multiple description codes. The proposed decoding algorithms take advantage of the error detection capability of Reed-Solomon (RS) erasure codes. The information of correctly decoded RS codewords is exploited to enhance the error correction capability of the Viterbi algorithm at the next iteration of decoding. In the proposed algorithm, an intradescription interleaver is synergistically combined with the iterative decoder. The interleaver does not affect the performance of noniterative decoding but greatly enhances the performance when the system is iteratively decoded. We also address the optimal allocation of RS parity symbols for unequal error protection. For the optimal allocation in iterative decoding, we derive mathematical equations from which the probability distributions of description erasures can be generated in a simple way. The performance of the algorithm is evaluated over an orthogonal frequency-division multiplexing system. The results show that the performance of the multiple description codes is significantly enhanced.

  8. Label consistent K-SVD: learning a discriminative dictionary for recognition.

    PubMed

    Jiang, Zhuolin; Lin, Zhe; Davis, Larry S

    2013-11-01

    A label consistent K-SVD (LC-KSVD) algorithm to learn a discriminative dictionary for sparse coding is presented. In addition to using class labels of training data, we also associate label information with each dictionary item (columns of the dictionary matrix) to enforce discriminability in sparse codes during the dictionary learning process. More specifically, we introduce a new label consistency constraint called "discriminative sparse-code error" and combine it with the reconstruction error and the classification error to form a unified objective function. The optimal solution is efficiently obtained using the K-SVD algorithm. Our algorithm learns a single overcomplete dictionary and an optimal linear classifier jointly. The incremental dictionary learning algorithm is presented for the situation of limited memory resources. It yields dictionaries so that feature points with the same class labels have similar sparse codes. Experimental results demonstrate that our algorithm outperforms many recently proposed sparse-coding techniques for face, action, scene, and object category recognition under the same learning conditions.

  9. HITEMP Material and Structural Optimization Technology Transfer

    NASA Technical Reports Server (NTRS)

    Collier, Craig S.; Arnold, Steve (Technical Monitor)

    2001-01-01

    The feasibility of adding viscoelasticity and the Generalized Method of Cells (GMC) for micromechanical viscoelastic behavior into the commercial HyperSizer structural analysis and optimization code was investigated. The viscoelasticity methodology was developed in four steps. First, a simplified algorithm was devised to test the iterative time stepping method for simple one-dimensional multiple ply structures. Second, GMC code was made into a callable subroutine and incorporated into the one-dimensional code to test the accuracy and usability of the code. Third, the viscoelastic time-stepping and iterative scheme was incorporated into HyperSizer for homogeneous, isotropic viscoelastic materials. Finally, the GMC was included in a version of HyperSizer. MS Windows executable files implementing each of these steps is delivered with this report, as well as source code. The findings of this research are that both viscoelasticity and GMC are feasible and valuable additions to HyperSizer and that the door is open for more advanced nonlinear capability, such as viscoplasticity.

  10. Coded excitation with spectrum inversion (CEXSI) for ultrasound array imaging.

    PubMed

    Wang, Yao; Metzger, Kurt; Stephens, Douglas N; Williams, Gregory; Brownlie, Scott; O'Donnell, Matthew

    2003-07-01

    In this paper, a scheme called coded excitation with spectrum inversion (CEXSI) is presented. An established optimal binary code whose spectrum has no nulls and possesses the least variation is encoded as a burst for transmission. Using this optimal code, the decoding filter can be derived directly from its inverse spectrum. Various transmission techniques can be used to improve energy coupling within the system pass-band. We demonstrate its potential to achieve excellent decoding with very low (< 80 dB) side-lobes. For a 2.6 micros code, an array element with a center frequency of 10 MHz and fractional bandwidth of 38%, range side-lobes of about 40 dB have been achieved experimentally with little compromise in range resolution. The signal-to-noise ratio (SNR) improvement also has been characterized at about 14 dB. Along with simulations and experimental data, we present a formulation of the scheme, according to which CEXSI can be extended to improve SNR in sparse array imaging in general.

  11. Adaptive partially hidden Markov models with application to bilevel image coding.

    PubMed

    Forchhammer, S; Rasmussen, T S

    1999-01-01

    Partially hidden Markov models (PHMMs) have previously been introduced. The transition and emission/output probabilities from hidden states, as known from the HMMs, are conditioned on the past. This way, the HMM may be applied to images introducing the dependencies of the second dimension by conditioning. In this paper, the PHMM is extended to multiple sequences with a multiple token version and adaptive versions of PHMM coding are presented. The different versions of the PHMM are applied to lossless bilevel image coding. To reduce and optimize the model cost and size, the contexts are organized in trees and effective quantization of the parameters is introduced. The new coding methods achieve results that are better than the JBIG standard on selected test images, although at the cost of increased complexity. By the minimum description length principle, the methods presented for optimizing the code length may apply as guidance for training (P)HMMs for, e.g., segmentation or recognition purposes. Thereby, the PHMM models provide a new approach to image modeling.

  12. CARES/LIFE Software Commercialization

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The NASA Lewis Research Center has entered into a letter agreement with BIOSYM Technologies Inc. (now merged with Molecular Simulations Inc. (MSI)). Under this agreement, NASA will provide a developmental copy of the CARES/LIFE computer program to BIOSYM for evaluation. This computer code predicts the time-dependent reliability of a thermomechanically loaded component. BIOSYM will become familiar with CARES/LIFE, provide results of computations useful in validating the code, evaluate it for potential commercialization, and submit suggestions for improvements or extensions to the code or its documentation. If BIOSYM/Molecular Simulations reaches a favorable evaluation of CARES/LIFE, NASA will enter into negotiations for a cooperative agreement with BIOSYM/Molecular Simulations to further develop the code--adding features such as a user-friendly interface and other improvements. This agreement would give BIOSYM intellectual property rights in the modified codes, which they could protect and then commercialize. NASA would provide BIOSYM with the NASA-developed source codes and would agree to cooperate with BIOSYM in further developing the code. In return, NASA would receive certain use rights in the modified CARES/LIFE program. Presently BIOSYM Technologies Inc. has been involved with integration issues concerning its merger with Molecular Simulations Inc., since both companies used to compete in the computational chemistry market, and to some degree, in the materials market. Consequently, evaluation of the CARES/LIFE software is on hold for a month or two while the merger is finalized. Their interest in CARES continues, however, and they expect to get back to the evaluation by early November 1995.

  13. How a modified approach to dental coding can benefit personal and professional development with improved clinical outcomes.

    PubMed

    Lam, Raymond; Kruger, Estie; Tennant, Marc

    2014-12-01

    One disadvantage of the remarkable achievements in dentistry is that treatment options have never been more varied or confusing. This has made the concept of Evidenced Based Dentistry more applicable to modern dental practice. Despite merit in the concept whereby clinical decisions are guided by scientific evidence, there are problems with establishing a scientific base. This is no more challenging than in modern dentistry where the gap between rapidly developing products/procedures and its evidence base are widening. Furthermore, the burden of oral disease continues to remain high at the population level. These problems have prompted new approaches to enhancing research. The aim of this paper is to outline how a modified approach to dental coding may benefit clinical and population level research. Using publically assessable data obtained from the Australian Chronic Disease Dental Scheme and item codes contained within the Australian Schedule of Dental Services and Glossary, a suggested approach to dental informatics is illustrated. A selection of item codes have been selected and expanded with the addition of suffixes. These suffixes provided circumstantial information that will assist in assessing clinical outcomes such as success rates and prognosis. The use of item codes in administering the CDDS yielded a large database of item codes. These codes are amenable to dental informatics which has been shown to enhance research at both the clinical and population level. This is a cost effective method to supplement existing research methods. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Optimization of a Turboprop UAV for Maximum Loiter and Specific Power Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Dinc, Ali

    2016-09-01

    In this study, a genuine code was developed for optimization of selected parameters of a turboprop engine for an unmanned aerial vehicle (UAV) by employing elitist genetic algorithm. First, preliminary sizing of a UAV and its turboprop engine was done, by the code in a given mission profile. Secondly, single and multi-objective optimization were done for selected engine parameters to maximize loiter duration of UAV or specific power of engine or both. In single objective optimization, as first case, UAV loiter time was improved with an increase of 17.5% from baseline in given boundaries or constraints of compressor pressure ratio and burner exit temperature. In second case, specific power was enhanced by 12.3% from baseline. In multi-objective optimization case, where previous two objectives are considered together, loiter time and specific power were increased by 14.2% and 9.7% from baseline respectively, for the same constraints.

  15. A Framework for Identifying and Classifying Undergraduate Student Proof Errors

    ERIC Educational Resources Information Center

    Strickland, S.; Rand, B.

    2016-01-01

    This paper describes a framework for identifying, classifying, and coding student proofs, modified from existing proof-grading rubrics. The framework includes 20 common errors, as well as categories for interpreting the severity of the error. The coding scheme is intended for use in a classroom context, for providing effective student feedback. In…

  16. The Long Non-coding RNA HOTTIP Enhances Pancreatic Cancer Cell Proliferation, Survival and Migration

    EPA Science Inventory

    ABSTRACTHOTTIP is a long non-coding RNA (lncRNA) transcribed from the 5' tip of the HOXA locus and is associated with the polycomb repressor complex 2 (PRC2) and WD repeat containing protein 5 (WDR5)/mixed lineage leukemia 1 (MLL1) chromatin modifying complexes. HOTTIP is expres...

  17. Computer model of catalytic combustion/Stirling engine heater head

    NASA Technical Reports Server (NTRS)

    Chu, E. K.; Chang, R. L.; Tong, H.

    1981-01-01

    The basic Acurex HET code was modified to analyze specific problems for Stirling engine heater head applications. Specifically, the code can model: an adiabatic catalytic monolith reactor, an externally cooled catalytic cylindrical reactor/flat plate reactor, a coannular tube radiatively cooled reactor, and a monolithic reactor radiating to upstream and downstream heat exchangers.

  18. Allelic Expression of Deleterious Protein-Coding Variants across Human Tissues

    PubMed Central

    Kukurba, Kimberly R.; Zhang, Rui; Li, Xin; Smith, Kevin S.; Knowles, David A.; How Tan, Meng; Piskol, Robert; Lek, Monkol; Snyder, Michael; MacArthur, Daniel G.; Li, Jin Billy; Montgomery, Stephen B.

    2014-01-01

    Personal exome and genome sequencing provides access to loss-of-function and rare deleterious alleles whose interpretation is expected to provide insight into individual disease burden. However, for each allele, accurate interpretation of its effect will depend on both its penetrance and the trait's expressivity. In this regard, an important factor that can modify the effect of a pathogenic coding allele is its level of expression; a factor which itself characteristically changes across tissues. To better inform the degree to which pathogenic alleles can be modified by expression level across multiple tissues, we have conducted exome, RNA and deep, targeted allele-specific expression (ASE) sequencing in ten tissues obtained from a single individual. By combining such data, we report the impact of rare and common loss-of-function variants on allelic expression exposing stronger allelic bias for rare stop-gain variants and informing the extent to which rare deleterious coding alleles are consistently expressed across tissues. This study demonstrates the potential importance of transcriptome data to the interpretation of pathogenic protein-coding variants. PMID:24786518

  19. Optimization of cooling strategy and seeding by FBRM analysis of batch crystallization

    NASA Astrophysics Data System (ADS)

    Zhang, Dejiang; Liu, Lande; Xu, Shijie; Du, Shichao; Dong, Weibing; Gong, Junbo

    2018-03-01

    A method is presented for optimizing the cooling strategy and seed loading simultaneously. Focused beam reflectance measurement (FBRM) was used to determine the approximating optimal cooling profile. Using these results in conjunction with constant growth rate assumption, modified Mullin-Nyvlt trajectory could be calculated. This trajectory could suppress secondary nucleation and has the potential to control product's polymorph distribution. Comparing with linear and two step cooling, modified Mullin-Nyvlt trajectory have a larger size distribution and a better morphology. Based on the calculating results, the optimized seed loading policy was also developed. This policy could be useful for guiding the batch crystallization process.

  20. Development of free-piston Stirling engine performance and optimization codes based on Martini simulation technique

    NASA Technical Reports Server (NTRS)

    Martini, William R.

    1989-01-01

    A FORTRAN computer code is described that could be used to design and optimize a free-displacer, free-piston Stirling engine similar to the RE-1000 engine made by Sunpower. The code contains options for specifying displacer and power piston motion or for allowing these motions to be calculated by a force balance. The engine load may be a dashpot, inertial compressor, hydraulic pump or linear alternator. Cycle analysis may be done by isothermal analysis or adiabatic analysis. Adiabatic analysis may be done using the Martini moving gas node analysis or the Rios second-order Runge-Kutta analysis. Flow loss and heat loss equations are included. Graphical display of engine motions and pressures and temperatures are included. Programming for optimizing up to 15 independent dimensions is included. Sample performance results are shown for both specified and unconstrained piston motions; these results are shown as generated by each of the two Martini analyses. Two sample optimization searches are shown using specified piston motion isothermal analysis. One is for three adjustable input and one is for four. Also, two optimization searches for calculated piston motion are presented for three and for four adjustable inputs. The effect of leakage is evaluated. Suggestions for further work are given.

  1. Potential Projective Material on the Rorschach: Comparing Comprehensive System Protocols to Their Modeled R-Optimized Administration Counterparts.

    PubMed

    Pianowski, Giselle; Meyer, Gregory J; Villemor-Amaral, Anna Elisa de

    2016-01-01

    Exner ( 1989 ) and Weiner ( 2003 ) identified 3 types of Rorschach codes that are most likely to contain personally relevant projective material: Distortions, Movement, and Embellishments. We examine how often these types of codes occur in normative data and whether their frequency changes for the 1st, 2nd, 3rd, 4th, or last response to a card. We also examine the impact on these variables of the Rorschach Performance Assessment System's (R-PAS) statistical modeling procedures that convert the distribution of responses (R) from Comprehensive System (CS) administered protocols to match the distribution of R found in protocols obtained using R-optimized administration guidelines. In 2 normative reference databases, the results indicated that about 40% of responses (M = 39.25) have 1 type of code, 15% have 2 types, and 1.5% have all 3 types, with frequencies not changing by response number. In addition, there were no mean differences in the original CS and R-optimized modeled records (M Cohen's d = -0.04 in both databases). When considered alongside findings showing minimal differences between the protocols of people randomly assigned to CS or R-optimized administration, the data suggest R-optimized administration should not alter the extent to which potential projective material is present in a Rorschach protocol.

  2. Assessing Occupational Exposure to Chemicals in an International Epidemiological Study of Brain Tumours

    PubMed Central

    van Tongeren, Martie

    2013-01-01

    The INTEROCC project is a multi-centre case–control study investigating the risk of developing brain cancer due to occupational chemical and electromagnetic field exposures. To estimate chemical exposures, the Finnish Job Exposure Matrix (FINJEM) was modified to improve its performance in the INTEROCC study and to address some of its limitations, resulting in the development of the INTEROCC JEM. An international team of occupational hygienists developed a crosswalk between the Finnish occupational codes used in FINJEM and the International Standard Classification of Occupations 1968 (ISCO68). For ISCO68 codes linked to multiple Finnish codes, weighted means of the exposure estimates were calculated. Similarly, multiple ISCO68 codes linked to a single Finnish code with evidence of heterogeneous exposure were refined. One of the key time periods in FINJEM (1960–1984) was split into two periods (1960–1974 and 1975–1984). Benzene exposure estimates in early periods were modified upwards. The internal consistency of hydrocarbon exposures and exposures to engine exhaust fumes was improved. Finally, exposure to polycyclic aromatic hydrocarbon and benzo(a)pyrene was modified to include the contribution from second-hand smoke. The crosswalk ensured that the FINJEM exposure estimates could be applied to the INTEROCC study subjects. The modifications generally resulted in an increased prevalence of exposure to chemical agents. This increased prevalence of exposure was not restricted to the lowest categories of cumulative exposure, but was seen across all levels for some agents. Although this work has produced a JEM with important improvements compared to FINJEM, further improvements are possible with the expansion of agents and additional external data. PMID:23467593

  3. Enhanced capabilities and modified users manual for axial-flow compressor conceptual design code CSPAN

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.; Lavelle, Thomas M.

    1995-01-01

    Modifications made to the axial-flow compressor conceptual design code CSPAN are documented in this report. Endwall blockage and stall margin predictions were added. The loss-coefficient model was upgraded. Default correlations for rotor and stator solidity and aspect-ratio inputs and for stator-exit tangential velocity inputs were included in the code along with defaults for aerodynamic design limits. A complete description of input and output along with sample cases are included.

  4. Functional Requirements of a Target Description System for Vulnerability Analysis

    DTIC Science & Technology

    1979-11-01

    called GIFT .1,2 Together the COMGEOM description model and GIFT codes make up the BRL’s target description system. The significance of a target...and modifying target descriptions are described. 1 Lawrence W. Bain, Jr. and Mathew J. Reisinger, "The GIFT Code User Manual; Volume 1...34The GIFT Code User Manual; Volume II, The Output Options," unpublished draft of BRL report. II. UNDERLYING PHILOSOPHY The BRL has a computer

  5. Trellis Coding of Non-coherent Multiple Symbol Full Response M-ary CPFSK with Modulation Index 1/M

    NASA Technical Reports Server (NTRS)

    Lee, H.; Divsalar, D.; Weber, C.

    1994-01-01

    This paper introduces a trellis coded modulation (TCM) scheme for non-coherent multiple full response M-ary CPFSK with modulation index 1/M. A proper branch metric for the trellis decoder is obtained by employing a simple approximation of the modified Bessel function for large signal to noise ratio (SNR). Pairwise error probability of coded sequences is evaluated by applying a linear approximation to the Rician random variable.

  6. Mega-Scale Simulation of Multi-Layer Devices-- Formulation, Kinetics, and Visualization

    DTIC Science & Technology

    1994-07-28

    prototype code STRIDE, also initially developed under ARO support. The focus of the ARO supported research activities has been in the areas of multi ... FORTRAN -77. During its fifteen-year life- span several generations of researchers have modified the code . Due to this continual develop- ment, the...behavior. The replacement of the linear solver had no effect on the remainder of the code . We replaced the existing solver with a distributed multi -frontal

  7. Predictions of GPS X-Set Performance during the Places Experiment

    DTIC Science & Technology

    1979-07-01

    previously existing GPS X-set receiver simulation was modified to include the received signal spectrum and the receiver code correlation operation... CORRELATION OPERATION The X-set receiver simulation documented in Reference 3-1 is a direct sampled -data digital implementation of the GPS X-set...ul(t) -sin w2t From Carrier and Code Loops (wit +0 1 (t)) Figure 3-6. Simplified block diagram of code correlator operation and I-Q sampling . 6 I

  8. An Experiment in Scientific Program Understanding

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E. M.; Owen, Karl (Technical Monitor)

    2000-01-01

    This paper concerns a procedure that analyzes aspects of the meaning or semantics of scientific and engineering code. This procedure involves taking a user's existing code, adding semantic declarations for some primitive variables, and parsing this annotated code using multiple, independent expert parsers. These semantic parsers encode domain knowledge and recognize formulae in different disciplines including physics, numerical methods, mathematics, and geometry. The parsers will automatically recognize and document some static, semantic concepts and help locate some program semantic errors. Results are shown for three intensively studied codes and seven blind test cases; all test cases are state of the art scientific codes. These techniques may apply to a wider range of scientific codes. If so, the techniques could reduce the time, risk, and effort required to develop and modify scientific codes.

  9. The Proteus Navier-Stokes code

    NASA Technical Reports Server (NTRS)

    Towne, Charles E.; Bui, Trong T.; Cavicchi, Richard H.; Conley, Julianne M.; Molls, Frank B.; Schwab, John R.

    1992-01-01

    An effort is currently underway at NASA Lewis to develop two- and three-dimensional Navier-Stokes codes, called Proteus, for aerospace propulsion applications. The emphasis in the development of Proteus is not algorithm development or research on numerical methods, but rather the development of the code itself. The objective is to develop codes that are user-oriented, easily-modified, and well-documented. Well-proven, state-of-the-art solution algorithms are being used. Code readability, documentation (both internal and external), and validation are being emphasized. This paper is a status report on the Proteus development effort. The analysis and solution procedure are described briefly, and the various features in the code are summarized. The results from some of the validation cases that have been run are presented for both the two- and three-dimensional codes.

  10. A Review on Spectral Amplitude Coding Optical Code Division Multiple Access

    NASA Astrophysics Data System (ADS)

    Kaur, Navpreet; Goyal, Rakesh; Rani, Monika

    2017-06-01

    This manuscript deals with analysis of Spectral Amplitude Coding Optical Code Division Multiple Access (SACOCDMA) system. The major noise source in optical CDMA is co-channel interference from other users known as multiple access interference (MAI). The system performance in terms of bit error rate (BER) degrades as a result of increased MAI. It is perceived that number of users and type of codes used for optical system directly decide the performance of system. MAI can be restricted by efficient designing of optical codes and implementing them with unique architecture to accommodate more number of users. Hence, it is a necessity to design a technique like spectral direct detection (SDD) technique with modified double weight code, which can provide better cardinality and good correlation property.

  11. Users manual for updated computer code for axial-flow compressor conceptual design

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.

    1992-01-01

    An existing computer code that determines the flow path for an axial-flow compressor either for a given number of stages or for a given overall pressure ratio was modified for use in air-breathing engine conceptual design studies. This code uses a rapid approximate design methodology that is based on isentropic simple radial equilibrium. Calculations are performed at constant-span-fraction locations from tip to hub. Energy addition per stage is controlled by specifying the maximum allowable values for several aerodynamic design parameters. New modeling was introduced to the code to overcome perceived limitations. Specific changes included variable rather than constant tip radius, flow path inclination added to the continuity equation, input of mass flow rate directly rather than indirectly as inlet axial velocity, solution for the exact value of overall pressure ratio rather than for any value that met or exceeded it, and internal computation of efficiency rather than the use of input values. The modified code was shown to be capable of computing efficiencies that are compatible with those of five multistage compressors and one fan that were tested experimentally. This report serves as a users manual for the revised code, Compressor Spanline Analysis (CSPAN). The modeling modifications, including two internal loss correlations, are presented. Program input and output are described. A sample case for a multistage compressor is included.

  12. Fundamental modeling of pulverized coal and coal-water slurry combustion in a gas turbine combustor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatwani, A.; Turan, A.; Hals, F.

    1988-01-01

    This work describes the essential features of a coal combustion model which is incorporated into a three-dimensional, steady-state, two-phase, turbulent, reactive flow code. The code is a modified and advanced version of INTERN code originally developed at Imperial College which has gone through many stages of development and validation. Swithenbank et al have reported spray combustion model results for an experimental can combustor. The code has since then been modified by and made public under a US Army program. A number of code modifications and improvements have been made at ARL. The earlier version of code was written for amore » small CDC machine which relied on frequent disk/memory transfer and overlay features to carry the computations resulting in loss of computational speed. These limitations have now been removed. For spray applications, the fuel droplet vaporization generates gaseous fuel of uniform composition; hence the earlier formulation relied upon the use of conserved scalar approximation to reduce the number of species equations to be solved. In applications related to coal fuel, coal pyrolysis leads to the formation of at least two different gaseous fuels and a solid fuel of different composition. The authors have therefore removed the conserved scalar formulation for the sake of generality and easy adaptability to complex fuel situations.« less

  13. Nonisentropic unsteady three dimensional small disturbance potential theory

    NASA Technical Reports Server (NTRS)

    Gibbons, M. D.; Whitlow, W., Jr.; Williams, M. H.

    1986-01-01

    Modifications that allow for more accurate modeling of flow fields when strong shocks are present were made into three dimensional transonic small disturbance (TSD) potential theory. The Engquist-Osher type-dependent differencing was incorporated into the solution algorithm. The modified theory was implemented in the XTRAN3S computer code. Steady flows over a rectangular wing with a constant NACA 0012 airfoil section and an aspect ratio of 12 were calculated for freestream Mach numbers (M) of 0.82, 0.84, and 0.86. The obtained results are compared using the modified and unmodified TSD theories and the results from a three dimensional Euler code are presented. Nonunique solutions in three dimensions are shown to appear for the rectangular wing as aspect ratio increases. Steady and unsteady results are shown for the RAE tailplane model at M = 0.90. Calculations using unmodified theory, modified theory and experimental data are compared.

  14. An inverse method for the aerodynamic design of three-dimensional aircraft engine nacelles

    NASA Technical Reports Server (NTRS)

    Bell, R. A.; Cedar, R. D.

    1991-01-01

    A fast, efficient and user friendly inverse design system for 3-D nacelles was developed. The system is a product of a 2-D inverse design method originally developed at NASA-Langley and the CFL3D analysis code which was also developed at NASA-Langley and modified for nacelle analysis. The design system uses a predictor/corrector design approach in which an analysis code is used to calculate the flow field for an initial geometry, the geometry is then modified based on the difference between the calculated and target pressures. A detailed discussion of the design method, the process of linking it to the modified CFL3D solver and its extension to 3-D is presented. This is followed by a number of examples of the use of the design system for the design of both axisymmetric and 3-D nacelles.

  15. A computer program for performance prediction of tripropellant rocket engines with tangential slot injection

    NASA Technical Reports Server (NTRS)

    Dang, Anthony; Nickerson, Gary R.

    1987-01-01

    For the development of a Heavy Lift Launch Vehicle (HLLV) several engines with different operating cycles and using LOX/Hydrocarbon propellants are presently being examined. Some concepts utilize hydrogen for thrust chamber wall cooling followed by a gas generator turbine drive cycle with subsequent dumping of H2/O2 combustion products into the nozzle downstream of the throat. In the Space Transportation Booster Engine (STBE) selection process the specific impulse will be one of the optimization criteria; however, the current performance prediction programs do not have the capability to include a third propellant in this process, nor to account for the effect of dumping the gas-generator product tangentially inside the nozzle. The purpose is to describe a computer program for accurately predicting the performance of such an engine. The code consists of two modules; one for the inviscid performance, and the other for the viscous loss. For the first module, the two-dimensional kinetics program (TDK) was modified to account for tripropellant chemistry, and for the effect of tangential slot injection. For the viscous loss, the Mass Addition Boundary Layer program (MABL) was modified to include the effects of the boundary layer-shear layer interaction, and tripropellant chemistry. Calculations were made for a real engine and compared with available data.

  16. Control and System Theory, Optimization, Inverse and Ill-Posed Problems

    DTIC Science & Technology

    1988-09-14

    Justlfleatlen Distribut ion/ Availability Codes # AFOSR-87-0350 Avat’ and/or1987-1988 Dist Special *CONTROL AND SYSTEM THEORY , ~ * OPTIMIZATION, * INVERSE...considerable va- riety of research investigations within the grant areas (Control and system theory , Optimization, and Ill-posed problems]. The

  17. Accelerating execution of the integrated TIGER series Monte Carlo radiation transport codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, L.M.; Hochstedler, R.D.

    1997-02-01

    Execution of the integrated TIGER series (ITS) of coupled electron/photon Monte Carlo radiation transport codes has been accelerated by modifying the FORTRAN source code for more efficient computation. Each member code of ITS was benchmarked and profiled with a specific test case that directed the acceleration effort toward the most computationally intensive subroutines. Techniques for accelerating these subroutines included replacing linear search algorithms with binary versions, replacing the pseudo-random number generator, reducing program memory allocation, and proofing the input files for geometrical redundancies. All techniques produced identical or statistically similar results to the original code. Final benchmark timing of themore » accelerated code resulted in speed-up factors of 2.00 for TIGER (the one-dimensional slab geometry code), 1.74 for CYLTRAN (the two-dimensional cylindrical geometry code), and 1.90 for ACCEPT (the arbitrary three-dimensional geometry code).« less

  18. SPIN: An Inversion Code for the Photospheric Spectral Line

    NASA Astrophysics Data System (ADS)

    Yadav, Rahul; Mathew, Shibu K.; Tiwary, Alok Ranjan

    2017-08-01

    Inversion codes are the most useful tools to infer the physical properties of the solar atmosphere from the interpretation of Stokes profiles. In this paper, we present the details of a new Stokes Profile INversion code (SPIN) developed specifically to invert the spectro-polarimetric data of the Multi-Application Solar Telescope (MAST) at Udaipur Solar Observatory. The SPIN code has adopted Milne-Eddington approximations to solve the polarized radiative transfer equation (RTE) and for the purpose of fitting a modified Levenberg-Marquardt algorithm has been employed. We describe the details and utilization of the SPIN code to invert the spectro-polarimetric data. We also present the details of tests performed to validate the inversion code by comparing the results from the other widely used inversion codes (VFISV and SIR). The inverted results of the SPIN code after its application to Hinode/SP data have been compared with the inverted results from other inversion codes.

  19. SYMTRAN - A Time-dependent Symmetric Tandem Mirror Transport Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua, D; Fowler, T

    2004-06-15

    A time-dependent version of the steady-state radial transport model in symmetric tandem mirrors in Ref. [1] has been coded up and first tests performed. Our code, named SYMTRAN, is an adaptation of the earlier SPHERE code for spheromaks, now modified for tandem mirror physics. Motivated by Post's new concept of kinetic stabilization of symmetric mirrors, it is an extension of the earlier TAMRAC rate-equation code omitting radial transport [2], which successfully accounted for experimental results in TMX. The SYMTRAN code differs from the earlier tandem mirror radial transport code TMT in that our code is focused on axisymmetric tandem mirrorsmore » and classical diffusion, whereas TMT emphasized non-ambipolar transport in TMX and MFTF-B due to yin-yang plugs and non-symmetric transitions between the plugs and axisymmetric center cell. Both codes exhibit interesting but different non-linear behavior.« less

  20. Identification of Swallowing Tasks from a Modified Barium Swallow Study That Optimize the Detection of Physiological Impairment

    ERIC Educational Resources Information Center

    Hazelwood, R. Jordan; Armeson, Kent E.; Hill, Elizabeth G.; Bonilha, Heather Shaw; Martin-Harris, Bonnie

    2017-01-01

    Purpose: The purpose of this study was to identify which swallowing task(s) yielded the worst performance during a standardized modified barium swallow study (MBSS) in order to optimize the detection of swallowing impairment. Method: This secondary data analysis of adult MBSSs estimated the probability of each swallowing task yielding the derived…

  1. Does the Numeric Rating Scale (NRS) represent the optimal tool for evaluating pain in the triage process of patients presenting to the ED? Results of a muticenter study.

    PubMed

    Capponi, Rebecca; Loguercio, Valentina; Guerrini, Stefania; Beltrami, Giampietro; Vesprini, Andrea; Giostra, Fabrizio

    2017-01-16

    Pain evaluation at triage in Emergency Department (ED) is fundamental, as it influences significantly patients color code determination. Different scales have been proposed to quantify pain but they are not always reliable. This study aims to determine a) how important is for triage nurses pain measurement b) reliability of Numeric Rating Scale (NRS), the most used instrument to evaluate pain in Italian EDs, because it frequently shows higher pain scores than others scales. End point 1: a questionnaire was administered to triage nurses in some hospitals of northern Italy. End point 2: 250 patients arriving at the ED referring pain have been evaluated using, randomly, either the NRS or a fake "30-50" scale. End point 1: Triage nurses acknowledge to modify frequently the referred pain intensity. This for several reasons: nurses think that patients may exaggerate to obtain a higher priority color code; they may be influenced by specific patients categories (non EU citizens, drugs-addicted, elderly); the pain score referred by patients is not correspondent to nurse perception. End point 2: Data show that the mean value obtained with NRS is significantly (p<0.05) higher that the mean obtained with the "30-50" scale. Manipulation on pain evaluation performed by nurses might result in a dangerous underestimation of this symptom. At the same time, the use of NRS seems to allow patients to exaggerate pain perception with consequent altered attribution of color code at triage.

  2. A Comprehensive Structural Dynamic Analysis Approach for Multi Mission Earth Entry Vehicle (MMEEV) Development

    NASA Technical Reports Server (NTRS)

    Perino, Scott; Bayandor, Javid; Siddens, Aaron

    2012-01-01

    The anticipated NASA Mars Sample Return Mission (MSR) requires a simple and reliable method in which to return collected Martian samples back to earth for scientific analysis. The Multi-Mission Earth Entry Vehicle (MMEEV) is NASA's proposed solution to this MSR requirement. Key aspects of the MMEEV are its reliable and passive operation, energy absorbing foam-composite structure, and modular impact sphere (IS) design. To aid in the development of an EEV design that can be modified for various missions requirements, two fully parametric finite element models were developed. The first model was developed in an explicit finite element code and was designed to evaluate the impact response of the vehicle and payload during the final stage of the vehicle's return to earth. The second model was developed in an explicit code and was designed to evaluate the static and dynamic structural response of the vehicle during launch and reentry. In contrast to most other FE models, built through a Graphical User Interface (GUI) pre-processor, the current model was developed using a coding technique that allows the analyst to quickly change nearly all aspects of the model including: geometric dimensions, material properties, load and boundary conditions, mesh properties, and analysis controls. Using the developed design tool, a full range of proposed designs can quickly be analyzed numerically and thus the design trade space for the EEV can be fully understood. An engineer can then quickly reach the best design for a specific mission and also adapt and optimize the general design for different missions.

  3. Kalai-Smorodinsky bargaining solution for optimal resource allocation over wireless DS-CDMA visual sensor networks

    NASA Astrophysics Data System (ADS)

    Pandremmenou, Katerina; Kondi, Lisimachos P.; Parsopoulos, Konstantinos E.

    2012-01-01

    Surveillance applications usually require high levels of video quality, resulting in high power consumption. The existence of a well-behaved scheme to balance video quality and power consumption is crucial for the system's performance. In the present work, we adopt the game-theoretic approach of Kalai-Smorodinsky Bargaining Solution (KSBS) to deal with the problem of optimal resource allocation in a multi-node wireless visual sensor network (VSN). In our setting, the Direct Sequence Code Division Multiple Access (DS-CDMA) method is used for channel access, while a cross-layer optimization design, which employs a central processing server, accounts for the overall system efficacy through all network layers. The task assigned to the central server is the communication with the nodes and the joint determination of their transmission parameters. The KSBS is applied to non-convex utility spaces, efficiently distributing the source coding rate, channel coding rate and transmission powers among the nodes. In the underlying model, the transmission powers assume continuous values, whereas the source and channel coding rates can take only discrete values. Experimental results are reported and discussed to demonstrate the merits of KSBS over competing policies.

  4. Experimental study of an optimized PSP-OSTBC scheme with m-PPM in ultraviolet scattering channel for optical MIMO system.

    PubMed

    Han, Dahai; Gu, Yanjie; Zhang, Min

    2017-08-10

    An optimized scheme of pulse symmetrical position-orthogonal space-time block codes (PSP-OSTBC) is proposed and applied with m-pulse positions modulation (m-PPM) without the use of a complex decoding algorithm in an optical multi-input multi-output (MIMO) ultraviolet (UV) communication system. The proposed scheme breaks through the limitation of the traditional Alamouti code and is suitable for high-order m-PPM in a UV scattering channel, verified by both simulation experiments and field tests with specific parameters. The performances of 1×1, 2×1, and 2×2 PSP-OSTBC systems with 4-PPM are compared experimentally as the optimal tradeoff between modification and coding in practical application. Meanwhile, the feasibility of the proposed scheme for 8-PPM is examined by a simulation experiment as well. The results suggest that the proposed scheme makes the system insensitive to the influence of path loss with a larger channel capacity, and a higher diversity gain and coding gain with a simple decoding algorithm will be achieved by employing the orthogonality of m-PPM in an optical-MIMO-based ultraviolet scattering channel.

  5. Particle-gas dynamics in the protoplanetary nebula

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.; Champney, Joelle M.; Dobrovolskis, Anthony R.

    1991-01-01

    In the past year we made significant progress in improving our fundamental understanding of the physics of particle-gas dynamics in the protoplanetary nebula. Having brought our code to a state of fairly robust functionality, we devoted significant effort to optimizing it for running long cases. We optimized the code for vectorization to the extent that it now runs eight times faster than before. The following subject areas are covered: physical improvements to the model; numerical results; Reynolds averaging of fluid equations; and modeling of turbulence and viscosity.

  6. Performance optimization of Qbox and WEST on Intel Knights Landing

    NASA Astrophysics Data System (ADS)

    Zheng, Huihuo; Knight, Christopher; Galli, Giulia; Govoni, Marco; Gygi, Francois

    We present the optimization of electronic structure codes Qbox and WEST targeting the Intel®Xeon Phi™processor, codenamed Knights Landing (KNL). Qbox is an ab-initio molecular dynamics code based on plane wave density functional theory (DFT) and WEST is a post-DFT code for excited state calculations within many-body perturbation theory. Both Qbox and WEST employ highly scalable algorithms which enable accurate large-scale electronic structure calculations on leadership class supercomputer platforms beyond 100,000 cores, such as Mira and Theta at the Argonne Leadership Computing Facility. In this work, features of the KNL architecture (e.g. hierarchical memory) are explored to achieve higher performance in key algorithms of the Qbox and WEST codes and to develop a road-map for further development targeting next-generation computing architectures. In particular, the optimizations of the Qbox and WEST codes on the KNL platform will target efficient large-scale electronic structure calculations of nanostructured materials exhibiting complex structures and prediction of their electronic and thermal properties for use in solar and thermal energy conversion device. This work was supported by MICCoM, as part of Comp. Mats. Sci. Program funded by the U.S. DOE, Office of Sci., BES, MSE Division. This research used resources of the ALCF, which is a DOE Office of Sci. User Facility under Contract DE-AC02-06CH11357.

  7. Robust information propagation through noisy neural circuits

    PubMed Central

    Pouget, Alexandre

    2017-01-01

    Sensory neurons give highly variable responses to stimulation, which can limit the amount of stimulus information available to downstream circuits. Much work has investigated the factors that affect the amount of information encoded in these population responses, leading to insights about the role of covariability among neurons, tuning curve shape, etc. However, the informativeness of neural responses is not the only relevant feature of population codes; of potentially equal importance is how robustly that information propagates to downstream structures. For instance, to quantify the retina’s performance, one must consider not only the informativeness of the optic nerve responses, but also the amount of information that survives the spike-generating nonlinearity and noise corruption in the next stage of processing, the lateral geniculate nucleus. Our study identifies the set of covariance structures for the upstream cells that optimize the ability of information to propagate through noisy, nonlinear circuits. Within this optimal family are covariances with “differential correlations”, which are known to reduce the information encoded in neural population activities. Thus, covariance structures that maximize information in neural population codes, and those that maximize the ability of this information to propagate, can be very different. Moreover, redundancy is neither necessary nor sufficient to make population codes robust against corruption by noise: redundant codes can be very fragile, and synergistic codes can—in some cases—optimize robustness against noise. PMID:28419098

  8. Connectivity Restoration in Wireless Sensor Networks via Space Network Coding.

    PubMed

    Uwitonze, Alfred; Huang, Jiaqing; Ye, Yuanqing; Cheng, Wenqing

    2017-04-20

    The problem of finding the number and optimal positions of relay nodes for restoring the network connectivity in partitioned Wireless Sensor Networks (WSNs) is Non-deterministic Polynomial-time hard (NP-hard) and thus heuristic methods are preferred to solve it. This paper proposes a novel polynomial time heuristic algorithm, namely, Relay Placement using Space Network Coding (RPSNC), to solve this problem, where Space Network Coding, also called Space Information Flow (SIF), is a new research paradigm that studies network coding in Euclidean space, in which extra relay nodes can be introduced to reduce the cost of communication. Unlike contemporary schemes that are often based on Minimum Spanning Tree (MST), Euclidean Steiner Minimal Tree (ESMT) or a combination of MST with ESMT, RPSNC is a new min-cost multicast space network coding approach that combines Delaunay triangulation and non-uniform partitioning techniques for generating a number of candidate relay nodes, and then linear programming is applied for choosing the optimal relay nodes and computing their connection links with terminals. Subsequently, an equilibrium method is used to refine the locations of the optimal relay nodes, by moving them to balanced positions. RPSNC can adapt to any density distribution of relay nodes and terminals, as well as any density distribution of terminals. The performance and complexity of RPSNC are analyzed and its performance is validated through simulation experiments.

  9. A new smoothing modified three-term conjugate gradient method for [Formula: see text]-norm minimization problem.

    PubMed

    Du, Shouqiang; Chen, Miao

    2018-01-01

    We consider a kind of nonsmooth optimization problems with [Formula: see text]-norm minimization, which has many applications in compressed sensing, signal reconstruction, and the related engineering problems. Using smoothing approximate techniques, this kind of nonsmooth optimization problem can be transformed into a general unconstrained optimization problem, which can be solved by the proposed smoothing modified three-term conjugate gradient method. The smoothing modified three-term conjugate gradient method is based on Polak-Ribière-Polyak conjugate gradient method. For the Polak-Ribière-Polyak conjugate gradient method has good numerical properties, the proposed method possesses the sufficient descent property without any line searches, and it is also proved to be globally convergent. Finally, the numerical experiments show the efficiency of the proposed method.

  10. Preliminary Results from the Application of Automated Adjoint Code Generation to CFL3D

    NASA Technical Reports Server (NTRS)

    Carle, Alan; Fagan, Mike; Green, Lawrence L.

    1998-01-01

    This report describes preliminary results obtained using an automated adjoint code generator for Fortran to augment a widely-used computational fluid dynamics flow solver to compute derivatives. These preliminary results with this augmented code suggest that, even in its infancy, the automated adjoint code generator can accurately and efficiently deliver derivatives for use in transonic Euler-based aerodynamic shape optimization problems with hundreds to thousands of independent design variables.

  11. Optimization of the intravenous glucose tolerance test in T2DM patients using optimal experimental design.

    PubMed

    Silber, Hanna E; Nyberg, Joakim; Hooker, Andrew C; Karlsson, Mats O

    2009-06-01

    Intravenous glucose tolerance test (IVGTT) provocations are informative, but complex and laborious, for studying the glucose-insulin system. The objective of this study was to evaluate, through optimal design methodology, the possibilities of more informative and/or less laborious study design of the insulin modified IVGTT in type 2 diabetic patients. A previously developed model for glucose and insulin regulation was implemented in the optimal design software PopED 2.0. The following aspects of the study design of the insulin modified IVGTT were evaluated; (1) glucose dose, (2) insulin infusion, (3) combination of (1) and (2), (4) sampling times, (5) exclusion of labeled glucose. Constraints were incorporated to avoid prolonged hyper- and/or hypoglycemia and a reduced design was used to decrease run times. Design efficiency was calculated as a measure of the improvement with an optimal design compared to the basic design. The results showed that the design of the insulin modified IVGTT could be substantially improved by the use of an optimized design compared to the standard design and that it was possible to use a reduced number of samples. Optimization of sample times gave the largest improvement followed by insulin dose. The results further showed that it was possible to reduce the total sample time with only a minor loss in efficiency. Simulations confirmed the predictions from PopED. The predicted uncertainty of parameter estimates (CV) was low in all tested cases, despite the reduction in the number of samples/subject. The best design had a predicted average CV of parameter estimates of 19.5%. We conclude that improvement can be made to the design of the insulin modified IVGTT and that the most important design factor was the placement of sample times followed by the use of an optimal insulin dose. This paper illustrates how complex provocation experiments can be improved by sequential modeling and optimal design.

  12. Extension of applicable neutron energy of DARWIN up to 1 GeV.

    PubMed

    Satoh, D; Sato, T; Endo, A; Matsufuji, N; Takada, M

    2007-01-01

    The radiation-dose monitor, DARWIN, needs a set of response functions of the liquid organic scintillator to assess a neutron dose. SCINFUL-QMD is a Monte Carlo based computer code to evaluate the response functions. In order to improve the accuracy of the code, a new light-output function based on the experimental data was developed for the production and transport of protons deuterons, tritons, (3)He nuclei and alpha particles, and incorporated into the code. The applicable energy of DARWIN was extended to 1 GeV using the response functions calculated by the modified SCINFUL-QMD code.

  13. Analysis and optimization of preliminary aircraft configurations in relationship to emerging agility metrics

    NASA Technical Reports Server (NTRS)

    Sandlin, Doral R.; Bauer, Brent Alan

    1993-01-01

    This paper discusses the development of a FORTRAN computer code to perform agility analysis on aircraft configurations. This code is to be part of the NASA-Ames ACSYNT (AirCraft SYNThesis) design code. This paper begins with a discussion of contemporary agility research in the aircraft industry and a survey of a few agility metrics. The methodology, techniques and models developed for the code are then presented. Finally, example trade studies using the agility module along with ACSYNT are illustrated. These trade studies were conducted using a Northrop F-20 Tigershark aircraft model. The studies show that the agility module is effective in analyzing the influence of common parameters such as thrust-to-weight ratio and wing loading on agility criteria. The module can compare the agility potential between different configurations. In addition one study illustrates the module's ability to optimize a configuration's agility performance.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janjusic, Tommy; Kartsaklis, Christos

    Memory scalability is an enduring problem and bottleneck that plagues many parallel codes. Parallel codes designed for High Performance Systems are typically designed over the span of several, and in some instances 10+, years. As a result, optimization practices which were appropriate for earlier systems may no longer be valid and thus require careful optimization consideration. Specifically, parallel codes whose memory footprint is a function of their scalability must be carefully considered for future exa-scale systems. In this paper we present a methodology and tool to study the memory scalability of parallel codes. Using our methodology we evaluate an applicationmore » s memory footprint as a function of scalability, which we coined memory efficiency, and describe our results. In particular, using our in-house tools we can pinpoint the specific application components which contribute to the application s overall memory foot-print (application data- structures, libraries, etc.).« less

  15. Introduction of the ASGARD code (Automated Selection and Grouping of events in AIA Regional Data)

    NASA Astrophysics Data System (ADS)

    Bethge, Christian; Winebarger, Amy; Tiwari, Sanjiv K.; Fayock, Brian

    2017-08-01

    We have developed the ASGARD code to automatically detect and group brightenings ("events") in AIA data. The event selection and grouping can be optimized to the respective dataset with a multitude of control parameters. The code was initially written for IRIS data, but has since been optimized for AIA. However, the underlying algorithm is not limited to either and could be used for other data as well.Results from datasets in various AIA channels show that brightenings are reliably detected and that coherent coronal structures can be isolated by using the obtained information about the start, peak, and end times of events. We are presently working on a follow-up algorithm to automatically determine the heating and cooling timescales of coronal structures. This will be done by correlating the information from different AIA channels with different temperature responses. We will present the code and preliminary results.

  16. Improvements on non-equilibrium and transport Green function techniques: The next-generation TRANSIESTA

    NASA Astrophysics Data System (ADS)

    Papior, Nick; Lorente, Nicolás; Frederiksen, Thomas; García, Alberto; Brandbyge, Mads

    2017-03-01

    We present novel methods implemented within the non-equilibrium Green function code (NEGF) TRANSIESTA based on density functional theory (DFT). Our flexible, next-generation DFT-NEGF code handles devices with one or multiple electrodes (Ne ≥ 1) with individual chemical potentials and electronic temperatures. We describe its novel methods for electrostatic gating, contour optimizations, and assertion of charge conservation, as well as the newly implemented algorithms for optimized and scalable matrix inversion, performance-critical pivoting, and hybrid parallelization. Additionally, a generic NEGF "post-processing" code (TBTRANS/PHTRANS) for electron and phonon transport is presented with several novelties such as Hamiltonian interpolations, Ne ≥ 1 electrode capability, bond-currents, generalized interface for user-defined tight-binding transport, transmission projection using eigenstates of a projected Hamiltonian, and fast inversion algorithms for large-scale simulations easily exceeding 106 atoms on workstation computers. The new features of both codes are demonstrated and bench-marked for relevant test systems.

  17. Fusion PIC code performance analysis on the Cori KNL system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koskela, Tuomas S.; Deslippe, Jack; Friesen, Brian

    We study the attainable performance of Particle-In-Cell codes on the Cori KNL system by analyzing a miniature particle push application based on the fusion PIC code XGC1. We start from the most basic building blocks of a PIC code and build up the complexity to identify the kernels that cost the most in performance and focus optimization efforts there. Particle push kernels operate at high AI and are not likely to be memory bandwidth or even cache bandwidth bound on KNL. Therefore, we see only minor benefits from the high bandwidth memory available on KNL, and achieving good vectorization ismore » shown to be the most beneficial optimization path with theoretical yield of up to 8x speedup on KNL. In practice we are able to obtain up to a 4x gain from vectorization due to limitations set by the data layout and memory latency.« less

  18. Deep Learning Methods for Improved Decoding of Linear Codes

    NASA Astrophysics Data System (ADS)

    Nachmani, Eliya; Marciano, Elad; Lugosch, Loren; Gross, Warren J.; Burshtein, David; Be'ery, Yair

    2018-02-01

    The problem of low complexity, close to optimal, channel decoding of linear codes with short to moderate block length is considered. It is shown that deep learning methods can be used to improve a standard belief propagation decoder, despite the large example space. Similar improvements are obtained for the min-sum algorithm. It is also shown that tying the parameters of the decoders across iterations, so as to form a recurrent neural network architecture, can be implemented with comparable results. The advantage is that significantly less parameters are required. We also introduce a recurrent neural decoder architecture based on the method of successive relaxation. Improvements over standard belief propagation are also observed on sparser Tanner graph representations of the codes. Furthermore, we demonstrate that the neural belief propagation decoder can be used to improve the performance, or alternatively reduce the computational complexity, of a close to optimal decoder of short BCH codes.

  19. Revisiting Molecular Dynamics on a CPU/GPU system: Water Kernel and SHAKE Parallelization.

    PubMed

    Ruymgaart, A Peter; Elber, Ron

    2012-11-13

    We report Graphics Processing Unit (GPU) and Open-MP parallel implementations of water-specific force calculations and of bond constraints for use in Molecular Dynamics simulations. We focus on a typical laboratory computing-environment in which a CPU with a few cores is attached to a GPU. We discuss in detail the design of the code and we illustrate performance comparable to highly optimized codes such as GROMACS. Beside speed our code shows excellent energy conservation. Utilization of water-specific lists allows the efficient calculations of non-bonded interactions that include water molecules and results in a speed-up factor of more than 40 on the GPU compared to code optimized on a single CPU core for systems larger than 20,000 atoms. This is up four-fold from a factor of 10 reported in our initial GPU implementation that did not include a water-specific code. Another optimization is the implementation of constrained dynamics entirely on the GPU. The routine, which enforces constraints of all bonds, runs in parallel on multiple Open-MP cores or entirely on the GPU. It is based on Conjugate Gradient solution of the Lagrange multipliers (CG SHAKE). The GPU implementation is partially in double precision and requires no communication with the CPU during the execution of the SHAKE algorithm. The (parallel) implementation of SHAKE allows an increase of the time step to 2.0fs while maintaining excellent energy conservation. Interestingly, CG SHAKE is faster than the usual bond relaxation algorithm even on a single core if high accuracy is expected. The significant speedup of the optimized components transfers the computational bottleneck of the MD calculation to the reciprocal part of Particle Mesh Ewald (PME).

  20. 77 FR 71030 - Petition To Modify an Exemption of a Previously Approved Antitheft Device; Mitsubishi Motors R&D...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-28

    ... encrypted start-code signal to the engine ECU to allow the driver to start the vehicle. The power train only... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration Petition To Modify an... Highway Traffic Safety Administration (NHTSA), Department of Transportation (DOT). ACTION: Grant of...

Top