Sample records for optimization model developed

  1. Ensemble of surrogates-based optimization for identifying an optimal surfactant-enhanced aquifer remediation strategy at heterogeneous DNAPL-contaminated sites

    NASA Astrophysics Data System (ADS)

    Jiang, Xue; Lu, Wenxi; Hou, Zeyu; Zhao, Haiqing; Na, Jin

    2015-11-01

    The purpose of this study was to identify an optimal surfactant-enhanced aquifer remediation (SEAR) strategy for aquifers contaminated by dense non-aqueous phase liquid (DNAPL) based on an ensemble of surrogates-based optimization technique. A saturated heterogeneous medium contaminated by nitrobenzene was selected as case study. A new kind of surrogate-based SEAR optimization employing an ensemble surrogate (ES) model together with a genetic algorithm (GA) is presented. Four methods, namely radial basis function artificial neural network (RBFANN), kriging (KRG), support vector regression (SVR), and kernel extreme learning machines (KELM), were used to create four individual surrogate models, which were then compared. The comparison enabled us to select the two most accurate models (KELM and KRG) to establish an ES model of the SEAR simulation model, and the developed ES model as well as these four stand-alone surrogate models was compared. The results showed that the average relative error of the average nitrobenzene removal rates between the ES model and the simulation model for 20 test samples was 0.8%, which is a high approximation accuracy, and which indicates that the ES model provides more accurate predictions than the stand-alone surrogate models. Then, a nonlinear optimization model was formulated for the minimum cost, and the developed ES model was embedded into this optimization model as a constrained condition. Besides, GA was used to solve the optimization model to provide the optimal SEAR strategy. The developed ensemble surrogate-optimization approach was effective in seeking a cost-effective SEAR strategy for heterogeneous DNAPL-contaminated sites. This research is expected to enrich and develop the theoretical and technical implications for the analysis of remediation strategy optimization of DNAPL-contaminated aquifers.

  2. Ensemble of Surrogates-based Optimization for Identifying an Optimal Surfactant-enhanced Aquifer Remediation Strategy at Heterogeneous DNAPL-contaminated Sites

    NASA Astrophysics Data System (ADS)

    Lu, W., Sr.; Xin, X.; Luo, J.; Jiang, X.; Zhang, Y.; Zhao, Y.; Chen, M.; Hou, Z.; Ouyang, Q.

    2015-12-01

    The purpose of this study was to identify an optimal surfactant-enhanced aquifer remediation (SEAR) strategy for aquifers contaminated by dense non-aqueous phase liquid (DNAPL) based on an ensemble of surrogates-based optimization technique. A saturated heterogeneous medium contaminated by nitrobenzene was selected as case study. A new kind of surrogate-based SEAR optimization employing an ensemble surrogate (ES) model together with a genetic algorithm (GA) is presented. Four methods, namely radial basis function artificial neural network (RBFANN), kriging (KRG), support vector regression (SVR), and kernel extreme learning machines (KELM), were used to create four individual surrogate models, which were then compared. The comparison enabled us to select the two most accurate models (KELM and KRG) to establish an ES model of the SEAR simulation model, and the developed ES model as well as these four stand-alone surrogate models was compared. The results showed that the average relative error of the average nitrobenzene removal rates between the ES model and the simulation model for 20 test samples was 0.8%, which is a high approximation accuracy, and which indicates that the ES model provides more accurate predictions than the stand-alone surrogate models. Then, a nonlinear optimization model was formulated for the minimum cost, and the developed ES model was embedded into this optimization model as a constrained condition. Besides, GA was used to solve the optimization model to provide the optimal SEAR strategy. The developed ensemble surrogate-optimization approach was effective in seeking a cost-effective SEAR strategy for heterogeneous DNAPL-contaminated sites. This research is expected to enrich and develop the theoretical and technical implications for the analysis of remediation strategy optimization of DNAPL-contaminated aquifers.

  3. Combining Simulation and Optimization Models for Hardwood Lumber Production

    Treesearch

    G.A. Mendoza; R.J. Meimban; W.G. Luppold; Philip A. Araman

    1991-01-01

    Published literature contains a number of optimization and simulation models dealing with the primary processing of hardwood and softwood logs. Simulation models have been developed primarily as descriptive models for characterizing the general operations and performance of a sawmill. Optimization models, on the other hand, were developed mainly as analytical tools for...

  4. All-in-one model for designing optimal water distribution pipe networks

    NASA Astrophysics Data System (ADS)

    Aklog, Dagnachew; Hosoi, Yoshihiko

    2017-05-01

    This paper discusses the development of an easy-to-use, all-in-one model for designing optimal water distribution networks. The model combines different optimization techniques into a single package in which a user can easily choose what optimizer to use and compare the results of different optimizers to gain confidence in the performances of the models. At present, three optimization techniques are included in the model: linear programming (LP), genetic algorithm (GA) and a heuristic one-by-one reduction method (OBORM) that was previously developed by the authors. The optimizers were tested on a number of benchmark problems and performed very well in terms of finding optimal or near-optimal solutions with a reasonable computation effort. The results indicate that the model effectively addresses the issues of complexity and limited performance trust associated with previous models and can thus be used for practical purposes.

  5. Operations research investigations of satellite power stations

    NASA Technical Reports Server (NTRS)

    Cole, J. W.; Ballard, J. L.

    1976-01-01

    A systems model reflecting the design concepts of Satellite Power Stations (SPS) was developed. The model is of sufficient scope to include the interrelationships of the following major design parameters: the transportation to and between orbits; assembly of the SPS; and maintenance of the SPS. The systems model is composed of a set of equations that are nonlinear with respect to the system parameters and decision variables. The model determines a figure of merit from which alternative concepts concerning transportation, assembly, and maintenance of satellite power stations are studied. A hybrid optimization model was developed to optimize the system's decision variables. The optimization model consists of a random search procedure and the optimal-steepest descent method. A FORTRAN computer program was developed to enable the user to optimize nonlinear functions using the model. Specifically, the computer program was used to optimize Satellite Power Station system components.

  6. Multiobjective optimization of low impact development stormwater controls

    NASA Astrophysics Data System (ADS)

    Eckart, Kyle; McPhee, Zach; Bolisetti, Tirupati

    2018-07-01

    Green infrastructure such as Low Impact Development (LID) controls are being employed to manage the urban stormwater and restore the predevelopment hydrological conditions besides improving the stormwater runoff water quality. Since runoff generation and infiltration processes are nonlinear, there is a need for identifying optimal combination of LID controls. A coupled optimization-simulation model was developed by linking the U.S. EPA Stormwater Management Model (SWMM) to the Borg Multiobjective Evolutionary Algorithm (Borg MOEA). The coupled model is capable of performing multiobjective optimization which uses SWMM simulations as a tool to evaluate potential solutions to the optimization problem. The optimization-simulation tool was used to evaluate low impact development (LID) stormwater controls. A SWMM model was developed, calibrated, and validated for a sewershed in Windsor, Ontario and LID stormwater controls were tested for three different return periods. LID implementation strategies were optimized using the optimization-simulation model for five different implementation scenarios for each of the three storm events with the objectives of minimizing peak flow in the stormsewers, reducing total runoff, and minimizing cost. For the sewershed in Windsor, Ontario, the peak run off and total volume of the runoff were found to reduce by 13% and 29%, respectively.

  7. Topography-based Flood Planning and Optimization Capability Development Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judi, David R.; Tasseff, Byron A.; Bent, Russell W.

    2014-02-26

    Globally, water-related disasters are among the most frequent and costly natural hazards. Flooding inflicts catastrophic damage on critical infrastructure and population, resulting in substantial economic and social costs. NISAC is developing LeveeSim, a suite of nonlinear and network optimization models, to predict optimal barrier placement to protect critical regions and infrastructure during flood events. LeveeSim currently includes a high-performance flood model to simulate overland flow, as well as a network optimization model to predict optimal barrier placement during a flood event. The LeveeSim suite models the effects of flooding in predefined regions. By manipulating a domain’s underlying topography, developers alteredmore » flood propagation to reduce detrimental effects in areas of interest. This numerical altering of a domain’s topography is analogous to building levees, placing sandbags, etc. To induce optimal changes in topography, NISAC used a novel application of an optimization algorithm to minimize flooding effects in regions of interest. To develop LeveeSim, NISAC constructed and coupled hydrodynamic and optimization algorithms. NISAC first implemented its existing flood modeling software to use massively parallel graphics processing units (GPUs), which allowed for the simulation of larger domains and longer timescales. NISAC then implemented a network optimization model to predict optimal barrier placement based on output from flood simulations. As proof of concept, NISAC developed five simple test scenarios, and optimized topographic solutions were compared with intuitive solutions. Finally, as an early validation example, barrier placement was optimized to protect an arbitrary region in a simulation of the historic Taum Sauk dam breach.« less

  8. The efficacy of using inventory data to develop optimal diameter increment models

    Treesearch

    Don C. Bragg

    2002-01-01

    Most optimal tree diameter growth models have arisen through either the conceptualization of physiological processes or the adaptation of empirical increment models. However, surprisingly little effort has been invested in the melding of these approaches even though it is possible to develop theoretically sound, computationally efficient optimal tree growth models...

  9. Pavement maintenance optimization model using Markov Decision Processes

    NASA Astrophysics Data System (ADS)

    Mandiartha, P.; Duffield, C. F.; Razelan, I. S. b. M.; Ismail, A. b. H.

    2017-09-01

    This paper presents an optimization model for selection of pavement maintenance intervention using a theory of Markov Decision Processes (MDP). There are some particular characteristics of the MDP developed in this paper which distinguish it from other similar studies or optimization models intended for pavement maintenance policy development. These unique characteristics include a direct inclusion of constraints into the formulation of MDP, the use of an average cost method of MDP, and the policy development process based on the dual linear programming solution. The limited information or discussions that are available on these matters in terms of stochastic based optimization model in road network management motivates this study. This paper uses a data set acquired from road authorities of state of Victoria, Australia, to test the model and recommends steps in the computation of MDP based stochastic optimization model, leading to the development of optimum pavement maintenance policy.

  10. Optimal Spatial Design of Capacity and Quantity of Rainwater Catchment Systems for Urban Flood Mitigation

    NASA Astrophysics Data System (ADS)

    Huang, C.; Hsu, N.

    2013-12-01

    This study imports Low-Impact Development (LID) technology of rainwater catchment systems into a Storm-Water runoff Management Model (SWMM) to design the spatial capacity and quantity of rain barrel for urban flood mitigation. This study proposes a simulation-optimization model for effectively searching the optimal design. In simulation method, we design a series of regular spatial distributions of capacity and quantity of rainwater catchment facilities, and thus the reduced flooding circumstances using a variety of design forms could be simulated by SWMM. Moreover, we further calculate the net benefit that is equal to subtract facility cost from decreasing inundation loss and the best solution of simulation method would be the initial searching solution of the optimization model. In optimizing method, first we apply the outcome of simulation method and Back-Propagation Neural Network (BPNN) for developing a water level simulation model of urban drainage system in order to replace SWMM which the operating is based on a graphical user interface and is hard to combine with optimization model and method. After that we embed the BPNN-based simulation model into the developed optimization model which the objective function is minimizing the negative net benefit. Finally, we establish a tabu search-based algorithm to optimize the planning solution. This study applies the developed method in Zhonghe Dist., Taiwan. Results showed that application of tabu search and BPNN-based simulation model into the optimization model not only can find better solutions than simulation method in 12.75%, but also can resolve the limitations of previous studies. Furthermore, the optimized spatial rain barrel design can reduce 72% of inundation loss according to historical flood events.

  11. Steady-state global optimization of metabolic non-linear dynamic models through recasting into power-law canonical models

    PubMed Central

    2011-01-01

    Background Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA) models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Results Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC) models that extend the power-law formalism to deal with saturation and cooperativity. Conclusions Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task. PMID:21867520

  12. A framework for optimization and quantification of uncertainty and sensitivity for developing carbon capture systems

    DOE PAGES

    Eslick, John C.; Ng, Brenda; Gao, Qianwen; ...

    2014-12-31

    Under the auspices of the U.S. Department of Energy’s Carbon Capture Simulation Initiative (CCSI), a Framework for Optimization and Quantification of Uncertainty and Sensitivity (FOQUS) has been developed. This tool enables carbon capture systems to be rapidly synthesized and rigorously optimized, in an environment that accounts for and propagates uncertainties in parameters and models. FOQUS currently enables (1) the development of surrogate algebraic models utilizing the ALAMO algorithm, which can be used for superstructure optimization to identify optimal process configurations, (2) simulation-based optimization utilizing derivative free optimization (DFO) algorithms with detailed black-box process models, and (3) rigorous uncertainty quantification throughmore » PSUADE. FOQUS utilizes another CCSI technology, the Turbine Science Gateway, to manage the thousands of simulated runs necessary for optimization and UQ. Thus, this computational framework has been demonstrated for the design and analysis of a solid sorbent based carbon capture system.« less

  13. Existence and characterization of optimal control in mathematics model of diabetics population

    NASA Astrophysics Data System (ADS)

    Permatasari, A. H.; Tjahjana, R. H.; Udjiani, T.

    2018-03-01

    Diabetes is a chronic disease with a huge burden affecting individuals and the whole society. In this paper, we constructed the optimal control mathematical model by applying a strategy to control the development of diabetic population. The constructed mathematical model considers the dynamics of disabled people due to diabetes. Moreover, an optimal control approach is proposed in order to reduce the burden of pre-diabetes. Implementation of control is done by preventing the pre-diabetes develop into diabetics with and without complications. The existence of optimal control and characterization of optimal control is discussed in this paper. Optimal control is characterized by applying the Pontryagin minimum principle. The results indicate that there is an optimal control in optimization problem in mathematics model of diabetic population. The effect of the optimal control variable (prevention) is strongly affected by the number of healthy people.

  14. Manual of phosphoric acid fuel cell power plant optimization model and computer program

    NASA Technical Reports Server (NTRS)

    Lu, C. Y.; Alkasab, K. A.

    1984-01-01

    An optimized cost and performance model for a phosphoric acid fuel cell power plant system was derived and developed into a modular FORTRAN computer code. Cost, energy, mass, and electrochemical analyses were combined to develop a mathematical model for optimizing the steam to methane ratio in the reformer, hydrogen utilization in the PAFC plates per stack. The nonlinear programming code, COMPUTE, was used to solve this model, in which the method of mixed penalty function combined with Hooke and Jeeves pattern search was chosen to evaluate this specific optimization problem.

  15. Optimization of end-pumped, actively Q-switched quasi-III-level lasers.

    PubMed

    Jabczynski, Jan K; Gorajek, Lukasz; Kwiatkowski, Jacek; Kaskow, Mateusz; Zendzian, Waldemar

    2011-08-15

    The new model of end-pumped quasi-III-level laser considering transient pumping processes, ground-state-depletion and up-conversion effects was developed. The model consists of two parts: pumping stage and Q-switched part, which can be separated in a case of active Q-switching regime. For pumping stage the semi-analytical model was developed, enabling the calculations for final occupation of upper laser level for given pump power and duration, spatial profile of pump beam, length and dopant level of gain medium. For quasi-stationary inversion, the optimization procedure of Q-switching regime based on Lagrange multiplier technique was developed. The new approach for optimization of CW regime of quasi-three-level lasers was developed to optimize the Q-switched lasers operating with high repetition rates. Both methods of optimizations enable calculation of optimal absorbance of gain medium and output losses for given pump rate. © 2011 Optical Society of America

  16. Development of a 3D log sawing optimization system for small sawmills in central Appalachia, US

    Treesearch

    Wenshu Lin; Jingxin Wang; Edward Thomas

    2011-01-01

    A 3D log sawing optimization system was developed to perform log generation, opening face determination, sawing simulation, and lumber grading using 3D modeling techniques. Heuristic and dynamic programming algorithms were used to determine opening face and grade sawing optimization. Positions and shapes of internal log defects were predicted using a model developed by...

  17. The optimization problems of CP operation

    NASA Astrophysics Data System (ADS)

    Kler, A. M.; Stepanova, E. L.; Maximov, A. S.

    2017-11-01

    The problem of enhancing energy and economic efficiency of CP is urgent indeed. One of the main methods for solving it is optimization of CP operation. To solve the optimization problems of CP operation, Energy Systems Institute, SB of RAS, has developed a software. The software makes it possible to make optimization calculations of CP operation. The software is based on the techniques and software tools of mathematical modeling and optimization of heat and power installations. Detailed mathematical models of new equipment have been developed in the work. They describe sufficiently accurately the processes that occur in the installations. The developed models include steam turbine models (based on the checking calculation) which take account of all steam turbine compartments and regeneration system. They also enable one to make calculations with regenerative heaters disconnected. The software for mathematical modeling of equipment and optimization of CP operation has been developed. It is based on the technique for optimization of CP operating conditions in the form of software tools and integrates them in the common user interface. The optimization of CP operation often generates the need to determine the minimum and maximum possible total useful electricity capacity of the plant at set heat loads of consumers, i.e. it is necessary to determine the interval on which the CP capacity may vary. The software has been applied to optimize the operating conditions of the Novo-Irkutskaya CP of JSC “Irkutskenergo”. The efficiency of operating condition optimization and the possibility for determination of CP energy characteristics that are necessary for optimization of power system operation are shown.

  18. Optimization of gas condensate Field A development on the basis of "reservoir - gathering facilities system" integrated model

    NASA Astrophysics Data System (ADS)

    Demidova, E. A.; Maksyutina, O. V.

    2015-02-01

    It is known that many gas condensate fields are challenged with liquid loading and condensate banking problems. Therefore, gas production is declining with time. In this paper hydraulic fracturing treatment was considered as a method to improve the productivity of wells and consequently to exclude the factors that lead to production decline. This paper presents the analysis of gas condensate Field A development optimization with the purpose of maintaining constant gas production at the 2013 level for 8 years taking into account mentioned factors . To optimize the development of the filed, an integrated model was created. The integrated model of the field implies constructing the uniform model of the field consisting of the coupling models of the reservoir, wells and surface facilities. This model allowed optimizing each of the elements of the model separately and also taking into account the mutual influence of these elements. Using the integrated model, five development scenarios were analyzed and an optimal scenario was chosen. The NPV of this scenario equals 7,277 mln RUR, cumulative gas production - 12,160.6 mln m3, cumulative condensate production - 1.8 mln tons.

  19. Co-Optimization of Electricity Transmission and Generation Resources for Planning and Policy Analysis: Review of Concepts and Modeling Approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, Venkat; Ho, Jonathan; Hobbs, Benjamin F.

    2016-05-01

    The recognition of transmission's interaction with other resources has motivated the development of co-optimization methods to optimize transmission investment while simultaneously considering tradeoffs with investments in electricity supply, demand, and storage resources. For a given set of constraints, co-optimized planning models provide solutions that have lower costs than solutions obtained from decoupled optimization (transmission-only, generation-only, or iterations between them). This paper describes co-optimization and provides an overview of approaches to co-optimizing transmission options, supply-side resources, demand-side resources, and natural gas pipelines. In particular, the paper provides an up-to-date assessment of the present and potential capabilities of existing co-optimization tools, andmore » it discusses needs and challenges for developing advanced co-optimization models.« less

  20. Development of optimization model for sputtering process parameter based on gravitational search algorithm

    NASA Astrophysics Data System (ADS)

    Norlina, M. S.; Diyana, M. S. Nor; Mazidah, P.; Rusop, M.

    2016-07-01

    In the RF magnetron sputtering process, the desirable layer properties are largely influenced by the process parameters and conditions. If the quality of the thin film has not reached up to its intended level, the experiments have to be repeated until the desirable quality has been met. This research is proposing Gravitational Search Algorithm (GSA) as the optimization model to reduce the time and cost to be spent in the thin film fabrication. The optimization model's engine has been developed using Java. The model is developed based on GSA concept, which is inspired by the Newtonian laws of gravity and motion. In this research, the model is expected to optimize four deposition parameters which are RF power, deposition time, oxygen flow rate and substrate temperature. The results have turned out to be promising and it could be concluded that the performance of the model is satisfying in this parameter optimization problem. Future work could compare GSA with other nature based algorithms and test them with various set of data.

  1. Analysis of EnergyPlus for use in residential building energy optimization

    NASA Astrophysics Data System (ADS)

    Spencer, Justin S.

    This work explored the utility of EnergyPlus as a simulation engine for doing residential building energy optimization, with the objective of finding the modeling areas that require further development in EnergyPlus for residential optimization applications. This work was conducted primarily during 2006-2007, with publication occurring later in 2010. The assessments and recommendations apply to the simulation tool versions available in 2007. During this work, an EnergyPlus v2.0 (2007) input file generator was developed for use in BEopt 0.8.0.4 (2007). BEopt 0.8.0.4 is a residential Building Energy optimization program developed at the National Renewable Energy Laboratory in Golden, Colorado. Residential modeling capabilities of EnergyPlus v2.0 were scrutinized and tested. Modeling deficiencies were identified in a number of areas. These deficiencies were compared to deficiencies in the DOE2.2 V44E4(2007)/TRNSYS simulation engines. The highest priority gaps in EnergyPlus v2.0's residential modeling capability are in infiltration, duct leakage, and foundation modeling. Optimization results from DOE2.2 V44E4 and EnergyPlus v2.0 were analyzed to search for modeling differences that have a significant impact on optimization results. Optimal buildings at different energy savings levels were compared to look for biases. It was discovered that the EnergyPlus v2.0 optimizations consistently chose higher wall insulation levels than the DOE2.2 V44E4 optimizations. The points composing the optimal paths chosen by DOE2.2 V44E4 and EnergyPlus v2.0 were compared to look for points chosen by one optimization that were significantly different from the other optimal path. These outliers were compared to consensus optimal points to determine the simulation differences that cause disparities in the optimization results. The differences were primarily caused by modeling of window radiation exchange and HVAC autosizing.

  2. Surrogate Model Application to the Identification of Optimal Groundwater Exploitation Scheme Based on Regression Kriging Method—A Case Study of Western Jilin Province

    PubMed Central

    An, Yongkai; Lu, Wenxi; Cheng, Weiguo

    2015-01-01

    This paper introduces a surrogate model to identify an optimal exploitation scheme, while the western Jilin province was selected as the study area. A numerical simulation model of groundwater flow was established first, and four exploitation wells were set in the Tongyu county and Qian Gorlos county respectively so as to supply water to Daan county. Second, the Latin Hypercube Sampling (LHS) method was used to collect data in the feasible region for input variables. A surrogate model of the numerical simulation model of groundwater flow was developed using the regression kriging method. An optimization model was established to search an optimal groundwater exploitation scheme using the minimum average drawdown of groundwater table and the minimum cost of groundwater exploitation as multi-objective functions. Finally, the surrogate model was invoked by the optimization model in the process of solving the optimization problem. Results show that the relative error and root mean square error of the groundwater table drawdown between the simulation model and the surrogate model for 10 validation samples are both lower than 5%, which is a high approximation accuracy. The contrast between the surrogate-based simulation optimization model and the conventional simulation optimization model for solving the same optimization problem, shows the former only needs 5.5 hours, and the latter needs 25 days. The above results indicate that the surrogate model developed in this study could not only considerably reduce the computational burden of the simulation optimization process, but also maintain high computational accuracy. This can thus provide an effective method for identifying an optimal groundwater exploitation scheme quickly and accurately. PMID:26264008

  3. An optimization model to agroindustrial sector in antioquia (Colombia, South America)

    NASA Astrophysics Data System (ADS)

    Fernandez, J.

    2015-06-01

    This paper develops a proposal of a general optimization model for the flower industry, which is defined by using discrete simulation and nonlinear optimization, whose mathematical models have been solved by using ProModel simulation tools and Gams optimization. It defines the operations that constitute the production and marketing of the sector, statistically validated data taken directly from each operation through field work, the discrete simulation model of the operations and the linear optimization model of the entire industry chain are raised. The model is solved with the tools described above and presents the results validated in a case study.

  4. Research on Operation Strategy for Bundled Wind-thermal Generation Power Systems Based on Two-Stage Optimization Model

    NASA Astrophysics Data System (ADS)

    Sun, Congcong; Wang, Zhijie; Liu, Sanming; Jiang, Xiuchen; Sheng, Gehao; Liu, Tianyu

    2017-05-01

    Wind power has the advantages of being clean and non-polluting and the development of bundled wind-thermal generation power systems (BWTGSs) is one of the important means to improve wind power accommodation rate and implement “clean alternative” on generation side. A two-stage optimization strategy for BWTGSs considering wind speed forecasting results and load characteristics is proposed. By taking short-term wind speed forecasting results of generation side and load characteristics of demand side into account, a two-stage optimization model for BWTGSs is formulated. By using the environmental benefit index of BWTGSs as the objective function, supply-demand balance and generator operation as the constraints, the first-stage optimization model is developed with the chance-constrained programming theory. By using the operation cost for BWTGSs as the objective function, the second-stage optimization model is developed with the greedy algorithm. The improved PSO algorithm is employed to solve the model and numerical test verifies the effectiveness of the proposed strategy.

  5. Multi-level optimization of a beam-like space truss utilizing a continuum model

    NASA Technical Reports Server (NTRS)

    Yates, K.; Gurdal, Z.; Thangjitham, S.

    1992-01-01

    A continuous beam model is developed for approximate analysis of a large, slender, beam-like truss. The model is incorporated in a multi-level optimization scheme for the weight minimization of such trusses. This scheme is tested against traditional optimization procedures for savings in computational cost. Results from both optimization methods are presented for comparison.

  6. Numerical optimization of Ignition and Growth reactive flow modeling for PAX2A

    NASA Astrophysics Data System (ADS)

    Baker, E. L.; Schimel, B.; Grantham, W. J.

    1996-05-01

    Variable metric nonlinear optimization has been successfully applied to the parameterization of unreacted and reacted products thermodynamic equations of state and reactive flow modeling of the HMX based high explosive PAX2A. The NLQPEB nonlinear optimization program has been recently coupled to the LLNL developed two-dimensional high rate continuum modeling programs DYNA2D and CALE. The resulting program has the ability to optimize initial modeling parameters. This new optimization capability was used to optimally parameterize the Ignition and Growth reactive flow model to experimental manganin gauge records. The optimization varied the Ignition and Growth reaction rate model parameters in order to minimize the difference between the calculated pressure histories and the experimental pressure histories.

  7. Research and development activities in unified control-structure modeling and design

    NASA Technical Reports Server (NTRS)

    Nayak, A. P.

    1985-01-01

    Results of work to develop a unified control/structures modeling and design capability for large space structures modeling are presented. Recent analytical results are presented to demonstrate the significant interdependence between structural and control properties. A new design methodology is suggested in which the structure, material properties, dynamic model and control design are all optimized simultaneously. Parallel research done by other researchers is reviewed. The development of a methodology for global design optimization is recommended as a long-term goal. It is suggested that this methodology should be incorporated into computer aided engineering programs, which eventually will be supplemented by an expert system to aid design optimization.

  8. A risk explicit interval linear programming model for uncertainty-based environmental economic optimization in the Lake Fuxian watershed, China.

    PubMed

    Zhang, Xiaoling; Huang, Kai; Zou, Rui; Liu, Yong; Yu, Yajuan

    2013-01-01

    The conflict of water environment protection and economic development has brought severe water pollution and restricted the sustainable development in the watershed. A risk explicit interval linear programming (REILP) method was used to solve integrated watershed environmental-economic optimization problem. Interval linear programming (ILP) and REILP models for uncertainty-based environmental economic optimization at the watershed scale were developed for the management of Lake Fuxian watershed, China. Scenario analysis was introduced into model solution process to ensure the practicality and operability of optimization schemes. Decision makers' preferences for risk levels can be expressed through inputting different discrete aspiration level values into the REILP model in three periods under two scenarios. Through balancing the optimal system returns and corresponding system risks, decision makers can develop an efficient industrial restructuring scheme based directly on the window of "low risk and high return efficiency" in the trade-off curve. The representative schemes at the turning points of two scenarios were interpreted and compared to identify a preferable planning alternative, which has the relatively low risks and nearly maximum benefits. This study provides new insights and proposes a tool, which was REILP, for decision makers to develop an effectively environmental economic optimization scheme in integrated watershed management.

  9. A Risk Explicit Interval Linear Programming Model for Uncertainty-Based Environmental Economic Optimization in the Lake Fuxian Watershed, China

    PubMed Central

    Zou, Rui; Liu, Yong; Yu, Yajuan

    2013-01-01

    The conflict of water environment protection and economic development has brought severe water pollution and restricted the sustainable development in the watershed. A risk explicit interval linear programming (REILP) method was used to solve integrated watershed environmental-economic optimization problem. Interval linear programming (ILP) and REILP models for uncertainty-based environmental economic optimization at the watershed scale were developed for the management of Lake Fuxian watershed, China. Scenario analysis was introduced into model solution process to ensure the practicality and operability of optimization schemes. Decision makers' preferences for risk levels can be expressed through inputting different discrete aspiration level values into the REILP model in three periods under two scenarios. Through balancing the optimal system returns and corresponding system risks, decision makers can develop an efficient industrial restructuring scheme based directly on the window of “low risk and high return efficiency” in the trade-off curve. The representative schemes at the turning points of two scenarios were interpreted and compared to identify a preferable planning alternative, which has the relatively low risks and nearly maximum benefits. This study provides new insights and proposes a tool, which was REILP, for decision makers to develop an effectively environmental economic optimization scheme in integrated watershed management. PMID:24191144

  10. A mathematical model for maximizing the value of phase 3 drug development portfolios incorporating budget constraints and risk.

    PubMed

    Patel, Nitin R; Ankolekar, Suresh; Antonijevic, Zoran; Rajicic, Natasa

    2013-05-10

    We describe a value-driven approach to optimizing pharmaceutical portfolios. Our approach incorporates inputs from research and development and commercial functions by simultaneously addressing internal and external factors. This approach differentiates itself from current practices in that it recognizes the impact of study design parameters, sample size in particular, on the portfolio value. We develop an integer programming (IP) model as the basis for Bayesian decision analysis to optimize phase 3 development portfolios using expected net present value as the criterion. We show how this framework can be used to determine optimal sample sizes and trial schedules to maximize the value of a portfolio under budget constraints. We then illustrate the remarkable flexibility of the IP model to answer a variety of 'what-if' questions that reflect situations that arise in practice. We extend the IP model to a stochastic IP model to incorporate uncertainty in the availability of drugs from earlier development phases for phase 3 development in the future. We show how to use stochastic IP to re-optimize the portfolio development strategy over time as new information accumulates and budget changes occur. Copyright © 2013 John Wiley & Sons, Ltd.

  11. A stochastic optimization model under modeling uncertainty and parameter certainty for groundwater remediation design--part I. Model development.

    PubMed

    He, L; Huang, G H; Lu, H W

    2010-04-15

    Solving groundwater remediation optimization problems based on proxy simulators can usually yield optimal solutions differing from the "true" ones of the problem. This study presents a new stochastic optimization model under modeling uncertainty and parameter certainty (SOMUM) and the associated solution method for simultaneously addressing modeling uncertainty associated with simulator residuals and optimizing groundwater remediation processes. This is a new attempt different from the previous modeling efforts. The previous ones focused on addressing uncertainty in physical parameters (i.e. soil porosity) while this one aims to deal with uncertainty in mathematical simulator (arising from model residuals). Compared to the existing modeling approaches (i.e. only parameter uncertainty is considered), the model has the advantages of providing mean-variance analysis for contaminant concentrations, mitigating the effects of modeling uncertainties on optimal remediation strategies, offering confidence level of optimal remediation strategies to system designers, and reducing computational cost in optimization processes. 2009 Elsevier B.V. All rights reserved.

  12. Advanced Structural Optimization Under Consideration of Cost Tracking

    NASA Astrophysics Data System (ADS)

    Zell, D.; Link, T.; Bickelmaier, S.; Albinger, J.; Weikert, S.; Cremaschi, F.; Wiegand, A.

    2014-06-01

    In order to improve the design process of launcher configurations in the early development phase, the software Multidisciplinary Optimization (MDO) was developed. The tool combines different efficient software tools such as Optimal Design Investigations (ODIN) for structural optimizations, Aerospace Trajectory Optimization Software (ASTOS) for trajectory and vehicle design optimization for a defined payload and mission.The present paper focuses to the integration and validation of ODIN. ODIN enables the user to optimize typical axis-symmetric structures by means of sizing the stiffening designs concerning strength and stability while minimizing the structural mass. In addition a fully automatic finite element model (FEM) generator module creates ready-to-run FEM models of a complete stage or launcher assembly.Cost tracking respectively future improvements concerning cost optimization are indicated.

  13. Modified optimal control pilot model for computer-aided design and analysis

    NASA Technical Reports Server (NTRS)

    Davidson, John B.; Schmidt, David K.

    1992-01-01

    This paper presents the theoretical development of a modified optimal control pilot model based upon the optimal control model (OCM) of the human operator developed by Kleinman, Baron, and Levison. This model is input compatible with the OCM and retains other key aspects of the OCM, such as a linear quadratic solution for the pilot gains with inclusion of control rate in the cost function, a Kalman estimator, and the ability to account for attention allocation and perception threshold effects. An algorithm designed for each implementation in current dynamic systems analysis and design software is presented. Example results based upon the analysis of a tracking task using three basic dynamic systems are compared with measured results and with similar analyses performed with the OCM and two previously proposed simplified optimal pilot models. The pilot frequency responses and error statistics obtained with this modified optimal control model are shown to compare more favorably to the measured experimental results than the other previously proposed simplified models evaluated.

  14. Idealized Experiments for Optimizing Model Parameters Using a 4D-Variational Method in an Intermediate Coupled Model of ENSO

    NASA Astrophysics Data System (ADS)

    Gao, Chuan; Zhang, Rong-Hua; Wu, Xinrong; Sun, Jichang

    2018-04-01

    Large biases exist in real-time ENSO prediction, which can be attributed to uncertainties in initial conditions and model parameters. Previously, a 4D variational (4D-Var) data assimilation system was developed for an intermediate coupled model (ICM) and used to improve ENSO modeling through optimized initial conditions. In this paper, this system is further applied to optimize model parameters. In the ICM used, one important process for ENSO is related to the anomalous temperature of subsurface water entrained into the mixed layer ( T e), which is empirically and explicitly related to sea level (SL) variation. The strength of the thermocline effect on SST (referred to simply as "the thermocline effect") is represented by an introduced parameter, α Te. A numerical procedure is developed to optimize this model parameter through the 4D-Var assimilation of SST data in a twin experiment context with an idealized setting. Experiments having their initial condition optimized only, and having their initial condition plus this additional model parameter optimized, are compared. It is shown that ENSO evolution can be more effectively recovered by including the additional optimization of this parameter in ENSO modeling. The demonstrated feasibility of optimizing model parameters and initial conditions together through the 4D-Var method provides a modeling platform for ENSO studies. Further applications of the 4D-Var data assimilation system implemented in the ICM are also discussed.

  15. Using a 4D-Variational Method to Optimize Model Parameters in an Intermediate Coupled Model of ENSO

    NASA Astrophysics Data System (ADS)

    Gao, C.; Zhang, R. H.

    2017-12-01

    Large biases exist in real-time ENSO prediction, which is attributed to uncertainties in initial conditions and model parameters. Previously, a four dimentional variational (4D-Var) data assimilation system was developed for an intermediate coupled model (ICM) and used to improve ENSO modeling through optimized initial conditions. In this paper, this system is further applied to optimize model parameters. In the ICM used, one important process for ENSO is related to the anomalous temperature of subsurface water entrained into the mixed layer (Te), which is empirically and explicitly related to sea level (SL) variation, written as Te=αTe×FTe (SL). The introduced parameter, αTe, represents the strength of the thermocline effect on sea surface temperature (SST; referred as the thermocline effect). A numerical procedure is developed to optimize this model parameter through the 4D-Var assimilation of SST data in a twin experiment context with an idealized setting. Experiments having initial condition optimized only and having initial condition plus this additional model parameter optimized both are compared. It is shown that ENSO evolution can be more effectively recovered by including the additional optimization of this parameter in ENSO modeling. The demonstrated feasibility of optimizing model parameter and initial condition together through the 4D-Var method provides a modeling platform for ENSO studies. Further applications of the 4D-Var data assimilation system implemented in the ICM are also discussed.

  16. Simulation-Optimization Model for Seawater Intrusion Management at Pingtung Coastal Area, Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, P. S.; Chiu, Y.

    2015-12-01

    In 1970's, the agriculture and aquaculture were rapidly developed at Pingtung coastal area in southern Taiwan. The groundwater aquifers were over-pumped and caused the seawater intrusion. In order to remedy the contaminated groundwater and find the best strategies of groundwater usage, a management model to search the optimal groundwater operational strategies is developed in this study. The objective function is to minimize the total amount of injection water and a set of constraints are applied to ensure the groundwater levels and concentrations are satisfied. A three-dimension density-dependent flow and transport simulation model, called SEAWAT developed by U.S. Geological Survey, is selected to simulate the phenomenon of seawater intrusion. The simulation model is well calibrated by the field measurements and replaced by the surrogate model of trained artificial neural networks (ANNs) to reduce the computational time. The ANNs are embedded in the management model to link the simulation and optimization models, and the global optimizer of differential evolution (DE) is applied for solving the management model. The optimal results show that the fully trained ANNs could substitute the original simulation model and reduce much computational time. Under appropriate setting of objective function and constraints, DE can find the optimal injection rates at predefined barriers. The concentrations at the target locations could decrease more than 50 percent within the planning horizon of 20 years. Keywords : Seawater intrusion, groundwater management, numerical model, artificial neural networks, differential evolution

  17. Optimal design of the rotor geometry of line-start permanent magnet synchronous motor using the bat algorithm

    NASA Astrophysics Data System (ADS)

    Knypiński, Łukasz

    2017-12-01

    In this paper an algorithm for the optimization of excitation system of line-start permanent magnet synchronous motors will be presented. For the basis of this algorithm, software was developed in the Borland Delphi environment. The software consists of two independent modules: an optimization solver, and a module including the mathematical model of a synchronous motor with a self-start ability. The optimization module contains the bat algorithm procedure. The mathematical model of the motor has been developed in an Ansys Maxwell environment. In order to determine the functional parameters of the motor, additional scripts in Visual Basic language were developed. Selected results of the optimization calculation are presented and compared with results for the particle swarm optimization algorithm.

  18. Research and development activities in unified control-structure modeling and design

    NASA Technical Reports Server (NTRS)

    Nayak, A. P.

    1985-01-01

    Results of work sponsored by JPL and other organizations to develop a unified control/structures modeling and design capability for large space structures is presented. Recent analytical results are presented to demonstrate the significant interdependence between structural and control properties. A new design methodology is suggested in which the structure, material properties, dynamic model and control design are all optimized simultaneously. The development of a methodology for global design optimization is recommended as a long term goal. It is suggested that this methodology should be incorporated into computer aided engineering programs, which eventually will be supplemented by an expert system to aid design optimization. Recommendations are also presented for near term research activities at JPL. The key recommendation is to continue the development of integrated dynamic modeling/control design techniques, with special attention given to the development of structural models specially tailored to support design.

  19. Multi-Objective Aerodynamic Optimization of the Streamlined Shape of High-Speed Trains Based on the Kriging Model.

    PubMed

    Xu, Gang; Liang, Xifeng; Yao, Shuanbao; Chen, Dawei; Li, Zhiwei

    2017-01-01

    Minimizing the aerodynamic drag and the lift of the train coach remains a key issue for high-speed trains. With the development of computing technology and computational fluid dynamics (CFD) in the engineering field, CFD has been successfully applied to the design process of high-speed trains. However, developing a new streamlined shape for high-speed trains with excellent aerodynamic performance requires huge computational costs. Furthermore, relationships between multiple design variables and the aerodynamic loads are seldom obtained. In the present study, the Kriging surrogate model is used to perform a multi-objective optimization of the streamlined shape of high-speed trains, where the drag and the lift of the train coach are the optimization objectives. To improve the prediction accuracy of the Kriging model, the cross-validation method is used to construct the optimal Kriging model. The optimization results show that the two objectives are efficiently optimized, indicating that the optimization strategy used in the present study can greatly improve the optimization efficiency and meet the engineering requirements.

  20. Optimally managing water resources in large river basins for an uncertain future

    USGS Publications Warehouse

    Roehl, Edwin A.; Conrads, Paul

    2014-01-01

    One of the challenges of basin management is the optimization of water use through ongoing regional economic development, droughts, and climate change. This paper describes a model of the Savannah River Basin designed to continuously optimize regulated flow to meet prioritized objectives set by resource managers and stakeholders. The model was developed from historical data by using machine learning, making it more accurate and adaptable to changing conditions than traditional models. The model is coupled to an optimization routine that computes the daily flow needed to most efficiently meet the water-resource management objectives. The model and optimization routine are packaged in a decision support system that makes it easy for managers and stakeholders to use. Simulation results show that flow can be regulated to substantially reduce salinity intrusions in the Savannah National Wildlife Refuge while conserving more water in the reservoirs. A method for using the model to assess the effectiveness of the flow-alteration features after the deepening also is demonstrated.

  1. Vectorial mask optimization methods for robust optical lithography

    NASA Astrophysics Data System (ADS)

    Ma, Xu; Li, Yanqiu; Guo, Xuejia; Dong, Lisong; Arce, Gonzalo R.

    2012-10-01

    Continuous shrinkage of critical dimension in an integrated circuit impels the development of resolution enhancement techniques for low k1 lithography. Recently, several pixelated optical proximity correction (OPC) and phase-shifting mask (PSM) approaches were developed under scalar imaging models to account for the process variations. However, the lithography systems with larger-NA (NA>0.6) are predominant for current technology nodes, rendering the scalar models inadequate to describe the vector nature of the electromagnetic field that propagates through the optical lithography system. In addition, OPC and PSM algorithms based on scalar models can compensate for wavefront aberrations, but are incapable of mitigating polarization aberrations in practical lithography systems, which can only be dealt with under the vector model. To this end, we focus on developing robust pixelated gradient-based OPC and PSM optimization algorithms aimed at canceling defocus, dose variation, wavefront and polarization aberrations under a vector model. First, an integrative and analytic vector imaging model is applied to formulate the optimization problem, where the effects of process variations are explicitly incorporated in the optimization framework. A steepest descent algorithm is then used to iteratively optimize the mask patterns. Simulations show that the proposed algorithms can effectively improve the process windows of the optical lithography systems.

  2. How to mathematically optimize drug regimens using optimal control.

    PubMed

    Moore, Helen

    2018-02-01

    This article gives an overview of a technique called optimal control, which is used to optimize real-world quantities represented by mathematical models. I include background information about the historical development of the technique and applications in a variety of fields. The main focus here is the application to diseases and therapies, particularly the optimization of combination therapies, and I highlight several such examples. I also describe the basic theory of optimal control, and illustrate each of the steps with an example that optimizes the doses in a combination regimen for leukemia. References are provided for more complex cases. The article is aimed at modelers working in drug development, who have not used optimal control previously. My goal is to make this technique more accessible in the biopharma community.

  3. Optimal pricing and replenishment policies for instantaneous deteriorating items with backlogging and trade credit under inflation

    NASA Astrophysics Data System (ADS)

    Sundara Rajan, R.; Uthayakumar, R.

    2017-12-01

    In this paper we develop an economic order quantity model to investigate the optimal replenishment policies for instantaneous deteriorating items under inflation and trade credit. Demand rate is a linear function of selling price and decreases negative exponentially with time over a finite planning horizon. Shortages are allowed and partially backlogged. Under these conditions, we model the retailer's inventory system as a profit maximization problem to determine the optimal selling price, optimal order quantity and optimal replenishment time. An easy-to-use algorithm is developed to determine the optimal replenishment policies for the retailer. We also provide optimal present value of profit when shortages are completely backlogged as a special case. Numerical examples are presented to illustrate the algorithm provided to obtain optimal profit. And we also obtain managerial implications from numerical examples to substantiate our model. The results show that there is an improvement in total profit from complete backlogging rather than the items being partially backlogged.

  4. Optimizing Biorefinery Design and Operations via Linear Programming Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talmadge, Michael; Batan, Liaw; Lamers, Patrick

    The ability to assess and optimize economics of biomass resource utilization for the production of fuels, chemicals and power is essential for the ultimate success of a bioenergy industry. The team of authors, consisting of members from the National Renewable Energy Laboratory (NREL) and the Idaho National Laboratory (INL), has developed simple biorefinery linear programming (LP) models to enable the optimization of theoretical or existing biorefineries. The goal of this analysis is to demonstrate how such models can benefit the developing biorefining industry. It focuses on a theoretical multi-pathway, thermochemical biorefinery configuration and demonstrates how the biorefinery can use LPmore » models for operations planning and optimization in comparable ways to the petroleum refining industry. Using LP modeling tools developed under U.S. Department of Energy's Bioenergy Technologies Office (DOE-BETO) funded efforts, the authors investigate optimization challenges for the theoretical biorefineries such as (1) optimal feedstock slate based on available biomass and prices, (2) breakeven price analysis for available feedstocks, (3) impact analysis for changes in feedstock costs and product prices, (4) optimal biorefinery operations during unit shutdowns / turnarounds, and (5) incentives for increased processing capacity. These biorefinery examples are comparable to crude oil purchasing and operational optimization studies that petroleum refiners perform routinely using LPs and other optimization models. It is important to note that the analyses presented in this article are strictly theoretical and they are not based on current energy market prices. The pricing structure assigned for this demonstrative analysis is consistent with $4 per gallon gasoline, which clearly assumes an economic environment that would favor the construction and operation of biorefineries. The analysis approach and examples provide valuable insights into the usefulness of analysis tools for maximizing the potential benefits of biomass utilization for production of fuels, chemicals and power.« less

  5. Optimal control of HIV/AIDS dynamic: Education and treatment

    NASA Astrophysics Data System (ADS)

    Sule, Amiru; Abdullah, Farah Aini

    2014-07-01

    A mathematical model which describes the transmission dynamics of HIV/AIDS is developed. The optimal control representing education and treatment for this model is explored. The existence of optimal Control is established analytically by the use of optimal control theory. Numerical simulations suggest that education and treatment for the infected has a positive impact on HIV/AIDS control.

  6. Improved Modeling of Intelligent Tutoring Systems Using Ant Colony Optimization

    ERIC Educational Resources Information Center

    Rastegarmoghadam, Mahin; Ziarati, Koorush

    2017-01-01

    Swarm intelligence approaches, such as ant colony optimization (ACO), are used in adaptive e-learning systems and provide an effective method for finding optimal learning paths based on self-organization. The aim of this paper is to develop an improved modeling of adaptive tutoring systems using ACO. In this model, the learning object is…

  7. DESIGN AND OPTIMIZATION OF A REFRIGERATION SYSTEM

    EPA Science Inventory

    The paper discusses the design and optimization of a refrigeration system, using a mathematical model of a refrigeration system modified to allow its use with the optimization program. he model was developed using only algebraic equations so that it could be used with the optimiz...

  8. Electron Beam Melting and Refining of Metals: Computational Modeling and Optimization

    PubMed Central

    Vutova, Katia; Donchev, Veliko

    2013-01-01

    Computational modeling offers an opportunity for a better understanding and investigation of thermal transfer mechanisms. It can be used for the optimization of the electron beam melting process and for obtaining new materials with improved characteristics that have many applications in the power industry, medicine, instrument engineering, electronics, etc. A time-dependent 3D axis-symmetrical heat model for simulation of thermal transfer in metal ingots solidified in a water-cooled crucible at electron beam melting and refining (EBMR) is developed. The model predicts the change in the temperature field in the casting ingot during the interaction of the beam with the material. A modified Pismen-Rekford numerical scheme to discretize the analytical model is developed. These equation systems, describing the thermal processes and main characteristics of the developed numerical method, are presented. In order to optimize the technological regimes, different criteria for better refinement and obtaining dendrite crystal structures are proposed. Analytical problems of mathematical optimization are formulated, discretized and heuristically solved by cluster methods. Using important for the practice simulation results, suggestions can be made for EBMR technology optimization. The proposed tool is important and useful for studying, control, optimization of EBMR process parameters and improving of the quality of the newly produced materials. PMID:28788351

  9. Using ILOG OPL-CPLEX and ILOG Optimization Decision Manager (ODM) to Develop Better Models

    NASA Astrophysics Data System (ADS)

    2008-10-01

    This session will provide an in-depth overview on building state-of-the-art decision support applications and models. You will learn how to harness the full power of the ILOG OPL-CPLEX-ODM Development System (ODMS) to develop optimization models and decision support applications that solve complex problems ranging from near real-time scheduling to long-term strategic planning. We will demonstrate how to use ILOG's Open Programming Language (OPL) to quickly model problems solved by ILOG CPLEX, and how to use ILOG ODM to gain further insight about the model. By the end of the session, attendees will understand how to take advantage of the powerful combination of ILOG OPL (to describe an optimization model) and ILOG ODM (to understand the relationships between data, decision variables and constraints).

  10. Optimization methods and silicon solar cell numerical models

    NASA Technical Reports Server (NTRS)

    Girardini, K.; Jacobsen, S. E.

    1986-01-01

    An optimization algorithm for use with numerical silicon solar cell models was developed. By coupling an optimization algorithm with a solar cell model, it is possible to simultaneously vary design variables such as impurity concentrations, front junction depth, back junction depth, and cell thickness to maximize the predicted cell efficiency. An optimization algorithm was developed and interfaced with the Solar Cell Analysis Program in 1 Dimension (SCAP1D). SCAP1D uses finite difference methods to solve the differential equations which, along with several relations from the physics of semiconductors, describe mathematically the performance of a solar cell. A major obstacle is that the numerical methods used in SCAP1D require a significant amount of computer time, and during an optimization the model is called iteratively until the design variables converge to the values associated with the maximum efficiency. This problem was alleviated by designing an optimization code specifically for use with numerically intensive simulations, to reduce the number of times the efficiency has to be calculated to achieve convergence to the optimal solution.

  11. Surrogate-Based Optimization of Biogeochemical Transport Models

    NASA Astrophysics Data System (ADS)

    Prieß, Malte; Slawig, Thomas

    2010-09-01

    First approaches towards a surrogate-based optimization method for a one-dimensional marine biogeochemical model of NPZD type are presented. The model, developed by Oschlies and Garcon [1], simulates the distribution of nitrogen, phytoplankton, zooplankton and detritus in a water column and is driven by ocean circulation data. A key issue is to minimize the misfit between the model output and given observational data. Our aim is to reduce the overall optimization cost avoiding expensive function and derivative evaluations by using a surrogate model replacing the high-fidelity model in focus. This in particular becomes important for more complex three-dimensional models. We analyse a coarsening in the discretization of the model equations as one way to create such a surrogate. Here the numerical stability crucially depends upon the discrete stepsize in time and space and the biochemical terms. We show that for given model parameters the level of grid coarsening can be choosen accordingly yielding a stable and satisfactory surrogate. As one example of a surrogate-based optimization method we present results of the Aggressive Space Mapping technique (developed by John W. Bandler [2, 3]) applied to the optimization of this one-dimensional biogeochemical transport model.

  12. Physiologically Based Absorption Modeling to Design Extended-Release Clinical Products for an Ester Prodrug.

    PubMed

    Ding, Xuan; Day, Jeffrey S; Sperry, David C

    2016-11-01

    Absorption modeling has demonstrated its great value in modern drug product development due to its utility in understanding and predicting in vivo performance. In this case, we integrated physiologically based modeling in the development processes to effectively design extended-release (ER) clinical products for an ester prodrug LY545694. By simulating the trial results of immediate-release products, we delineated complex pharmacokinetics due to prodrug conversion and established an absorption model to describe the clinical observations. This model suggested the prodrug has optimal biopharmaceutical properties to warrant developing an ER product. Subsequently, we incorporated release profiles of prototype ER tablets into the absorption model to simulate the in vivo performance of these products observed in an exploratory trial. The models suggested that the absorption of these ER tablets was lower than the IR products because the extended release from the formulations prevented the drug from taking advantage of the optimal absorption window. Using these models, we formed a strategy to optimize the ER product to minimize the impact of the absorption window limitation. Accurate prediction of the performance of these optimized products by modeling was confirmed in a third clinical trial.

  13. HOMER® Micropower Optimization Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lilienthal, P.

    2005-01-01

    NREL has developed the HOMER micropower optimization model. The model can analyze all of the available small power technologies individually and in hybrid configurations to identify least-cost solutions to energy requirements. This capability is valuable to a diverse set of energy professionals and applications. NREL has actively supported its growing user base and developed training programs around the model. These activities are helping to grow the global market for solar technologies.

  14. Mixed integer simulation optimization for optimal hydraulic fracturing and production of shale gas fields

    NASA Astrophysics Data System (ADS)

    Li, J. C.; Gong, B.; Wang, H. G.

    2016-08-01

    Optimal development of shale gas fields involves designing a most productive fracturing network for hydraulic stimulation processes and operating wells appropriately throughout the production time. A hydraulic fracturing network design-determining well placement, number of fracturing stages, and fracture lengths-is defined by specifying a set of integer ordered blocks to drill wells and create fractures in a discrete shale gas reservoir model. The well control variables such as bottom hole pressures or production rates for well operations are real valued. Shale gas development problems, therefore, can be mathematically formulated with mixed-integer optimization models. A shale gas reservoir simulator is used to evaluate the production performance for a hydraulic fracturing and well control plan. To find the optimal fracturing design and well operation is challenging because the problem is a mixed integer optimization problem and entails computationally expensive reservoir simulation. A dynamic simplex interpolation-based alternate subspace (DSIAS) search method is applied for mixed integer optimization problems associated with shale gas development projects. The optimization performance is demonstrated with the example case of the development of the Barnett Shale field. The optimization results of DSIAS are compared with those of a pattern search algorithm.

  15. Optimal design of green and grey stormwater infrastructure for small urban catchment based on life-cycle cost-effectiveness analysis

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Chui, T. F. M.

    2016-12-01

    Green infrastructure (GI) is identified as sustainable and environmentally friendly alternatives to the conventional grey stormwater infrastructure. Commonly used GI (e.g. green roof, bioretention, porous pavement) can provide multifunctional benefits, e.g. mitigation of urban heat island effects, improvements in air quality. Therefore, to optimize the design of GI and grey drainage infrastructure, it is essential to account for their benefits together with the costs. In this study, a comprehensive simulation-optimization modelling framework that considers the economic and hydro-environmental aspects of GI and grey infrastructure for small urban catchment applications is developed. Several modelling tools (i.e., EPA SWMM model, the WERF BMP and LID Whole Life Cycle Cost Modelling Tools) and optimization solvers are coupled together to assess the life-cycle cost-effectiveness of GI and grey infrastructure, and to further develop optimal stormwater drainage solutions. A typical residential lot in New York City is examined as a case study. The life-cycle cost-effectiveness of various GI and grey infrastructure are first examined at different investment levels. The results together with the catchment parameters are then provided to the optimization solvers, to derive the optimal investment and contributing area of each type of the stormwater controls. The relationship between the investment and optimized environmental benefit is found to be nonlinear. The optimized drainage solutions demonstrate that grey infrastructure is preferred at low total investments while more GI should be adopted at high investments. The sensitivity of the optimized solutions to the prices the stormwater controls is evaluated and is found to be highly associated with their utilizations in the base optimization case. The overall simulation-optimization framework can be easily applied to other sites world-wide, and to be further developed into powerful decision support systems.

  16. Optimal short-range trajectories for helicopters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slater, G.L.; Erzberger, H.

    1982-12-01

    An optimal flight path algorithm using a simplified altitude state model and a priori climb cruise descent flight profile was developed and applied to determine minimum fuel and minimum cost trajectories for a helicopter flying a fixed range trajectory. In addition, a method was developed for obtaining a performance model in simplified form which is based on standard flight manual data and which is applicable to the computation of optimal trajectories. The entire performance optimization algorithm is simple enough that on line trajectory optimization is feasible with a relatively small computer. The helicopter model used is the Silorsky S-61N. Themore » results show that for this vehicle the optimal flight path and optimal cruise altitude can represent a 10% fuel saving on a minimum fuel trajectory. The optimal trajectories show considerable variability because of helicopter weight, ambient winds, and the relative cost trade off between time and fuel. In general, reasonable variations from the optimal velocities and cruise altitudes do not significantly degrade the optimal cost. For fuel optimal trajectories, the optimum cruise altitude varies from the maximum (12,000 ft) to the minimum (0 ft) depending on helicopter weight.« less

  17. Surrogate Based Uni/Multi-Objective Optimization and Distribution Estimation Methods

    NASA Astrophysics Data System (ADS)

    Gong, W.; Duan, Q.; Huo, X.

    2017-12-01

    Parameter calibration has been demonstrated as an effective way to improve the performance of dynamic models, such as hydrological models, land surface models, weather and climate models etc. Traditional optimization algorithms usually cost a huge number of model evaluations, making dynamic model calibration very difficult, or even computationally prohibitive. With the help of a serious of recently developed adaptive surrogate-modelling based optimization methods: uni-objective optimization method ASMO, multi-objective optimization method MO-ASMO, and probability distribution estimation method ASMO-PODE, the number of model evaluations can be significantly reduced to several hundreds, making it possible to calibrate very expensive dynamic models, such as regional high resolution land surface models, weather forecast models such as WRF, and intermediate complexity earth system models such as LOVECLIM. This presentation provides a brief introduction to the common framework of adaptive surrogate-based optimization algorithms of ASMO, MO-ASMO and ASMO-PODE, a case study of Common Land Model (CoLM) calibration in Heihe river basin in Northwest China, and an outlook of the potential applications of the surrogate-based optimization methods.

  18. Fuzzy multiobjective models for optimal operation of a hydropower system

    NASA Astrophysics Data System (ADS)

    Teegavarapu, Ramesh S. V.; Ferreira, André R.; Simonovic, Slobodan P.

    2013-06-01

    Optimal operation models for a hydropower system using new fuzzy multiobjective mathematical programming models are developed and evaluated in this study. The models use (i) mixed integer nonlinear programming (MINLP) with binary variables and (ii) integrate a new turbine unit commitment formulation along with water quality constraints used for evaluation of reservoir downstream impairment. Reardon method used in solution of genetic algorithm optimization problems forms the basis for development of a new fuzzy multiobjective hydropower system optimization model with creation of Reardon type fuzzy membership functions. The models are applied to a real-life hydropower reservoir system in Brazil. Genetic Algorithms (GAs) are used to (i) solve the optimization formulations to avoid computational intractability and combinatorial problems associated with binary variables in unit commitment, (ii) efficiently address Reardon method formulations, and (iii) deal with local optimal solutions obtained from the use of traditional gradient-based solvers. Decision maker's preferences are incorporated within fuzzy mathematical programming formulations to obtain compromise operating rules for a multiobjective reservoir operation problem dominated by conflicting goals of energy production, water quality and conservation releases. Results provide insight into compromise operation rules obtained using the new Reardon fuzzy multiobjective optimization framework and confirm its applicability to a variety of multiobjective water resources problems.

  19. Adaptive surrogate model based multiobjective optimization for coastal aquifer management

    NASA Astrophysics Data System (ADS)

    Song, Jian; Yang, Yun; Wu, Jianfeng; Wu, Jichun; Sun, Xiaomin; Lin, Jin

    2018-06-01

    In this study, a novel surrogate model assisted multiobjective memetic algorithm (SMOMA) is developed for optimal pumping strategies of large-scale coastal groundwater problems. The proposed SMOMA integrates an efficient data-driven surrogate model with an improved non-dominated sorted genetic algorithm-II (NSGAII) that employs a local search operator to accelerate its convergence in optimization. The surrogate model based on Kernel Extreme Learning Machine (KELM) is developed and evaluated as an approximate simulator to generate the patterns of regional groundwater flow and salinity levels in coastal aquifers for reducing huge computational burden. The KELM model is adaptively trained during evolutionary search to satisfy desired fidelity level of surrogate so that it inhibits error accumulation of forecasting and results in correctly converging to true Pareto-optimal front. The proposed methodology is then applied to a large-scale coastal aquifer management in Baldwin County, Alabama. Objectives of minimizing the saltwater mass increase and maximizing the total pumping rate in the coastal aquifers are considered. The optimal solutions achieved by the proposed adaptive surrogate model are compared against those solutions obtained from one-shot surrogate model and original simulation model. The adaptive surrogate model does not only improve the prediction accuracy of Pareto-optimal solutions compared with those by the one-shot surrogate model, but also maintains the equivalent quality of Pareto-optimal solutions compared with those by NSGAII coupled with original simulation model, while retaining the advantage of surrogate models in reducing computational burden up to 94% of time-saving. This study shows that the proposed methodology is a computationally efficient and promising tool for multiobjective optimizations of coastal aquifer managements.

  20. Derivative Free Optimization of Complex Systems with the Use of Statistical Machine Learning Models

    DTIC Science & Technology

    2015-09-12

    AFRL-AFOSR-VA-TR-2015-0278 DERIVATIVE FREE OPTIMIZATION OF COMPLEX SYSTEMS WITH THE USE OF STATISTICAL MACHINE LEARNING MODELS Katya Scheinberg...COMPLEX SYSTEMS WITH THE USE OF STATISTICAL MACHINE LEARNING MODELS 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-11-1-0239 5c.  PROGRAM ELEMENT...developed, which has been the focus of our research. 15. SUBJECT TERMS optimization, Derivative-Free Optimization, Statistical Machine Learning 16. SECURITY

  1. Improving the FLORIS wind plant model for compatibility with gradient-based optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Jared J.; Gebraad, Pieter MO; Ning, Andrew

    The FLORIS (FLOw Redirection and Induction in Steady-state) model, a parametric wind turbine wake model that predicts steady-state wake characteristics based on wind turbine position and yaw angle, was developed for optimization of control settings and turbine locations. This article provides details on changes made to the FLORIS model to make the model more suitable for gradient-based optimization. Changes to the FLORIS model were made to remove discontinuities and add curvature to regions of non-physical zero gradient. Exact gradients for the FLORIS model were obtained using algorithmic differentiation. A set of three case studies demonstrate that using exact gradients withmore » gradient-based optimization reduces the number of function calls by several orders of magnitude. The case studies also show that adding curvature improves convergence behavior, allowing gradient-based optimization algorithms used with the FLORIS model to more reliably find better solutions to wind farm optimization problems.« less

  2. Variable-Complexity Multidisciplinary Optimization on Parallel Computers

    NASA Technical Reports Server (NTRS)

    Grossman, Bernard; Mason, William H.; Watson, Layne T.; Haftka, Raphael T.

    1998-01-01

    This report covers work conducted under grant NAG1-1562 for the NASA High Performance Computing and Communications Program (HPCCP) from December 7, 1993, to December 31, 1997. The objective of the research was to develop new multidisciplinary design optimization (MDO) techniques which exploit parallel computing to reduce the computational burden of aircraft MDO. The design of the High-Speed Civil Transport (HSCT) air-craft was selected as a test case to demonstrate the utility of our MDO methods. The three major tasks of this research grant included: development of parallel multipoint approximation methods for the aerodynamic design of the HSCT, use of parallel multipoint approximation methods for structural optimization of the HSCT, mathematical and algorithmic development including support in the integration of parallel computation for items (1) and (2). These tasks have been accomplished with the development of a response surface methodology that incorporates multi-fidelity models. For the aerodynamic design we were able to optimize with up to 20 design variables using hundreds of expensive Euler analyses together with thousands of inexpensive linear theory simulations. We have thereby demonstrated the application of CFD to a large aerodynamic design problem. For the predicting structural weight we were able to combine hundreds of structural optimizations of refined finite element models with thousands of optimizations based on coarse models. Computations have been carried out on the Intel Paragon with up to 128 nodes. The parallel computation allowed us to perform combined aerodynamic-structural optimization using state of the art models of a complex aircraft configurations.

  3. TH-E-BRF-06: Kinetic Modeling of Tumor Response to Fractionated Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, H; Gordon, J; Chetty, I

    2014-06-15

    Purpose: Accurate calibration of radiobiological parameters is crucial to predicting radiation treatment response. Modeling differences may have a significant impact on calibrated parameters. In this study, we have integrated two existing models with kinetic differential equations to formulate a new tumor regression model for calibrating radiobiological parameters for individual patients. Methods: A system of differential equations that characterizes the birth-and-death process of tumor cells in radiation treatment was analytically solved. The solution of this system was used to construct an iterative model (Z-model). The model consists of three parameters: tumor doubling time Td, half-life of dying cells Tr and cellmore » survival fraction SFD under dose D. The Jacobian determinant of this model was proposed as a constraint to optimize the three parameters for six head and neck cancer patients. The derived parameters were compared with those generated from the two existing models, Chvetsov model (C-model) and Lim model (L-model). The C-model and L-model were optimized with the parameter Td fixed. Results: With the Jacobian-constrained Z-model, the mean of the optimized cell survival fractions is 0.43±0.08, and the half-life of dying cells averaged over the six patients is 17.5±3.2 days. The parameters Tr and SFD optimized with the Z-model differ by 1.2% and 20.3% from those optimized with the Td-fixed C-model, and by 32.1% and 112.3% from those optimized with the Td-fixed L-model, respectively. Conclusion: The Z-model was analytically constructed from the cellpopulation differential equations to describe changes in the number of different tumor cells during the course of fractionated radiation treatment. The Jacobian constraints were proposed to optimize the three radiobiological parameters. The developed modeling and optimization methods may help develop high-quality treatment regimens for individual patients.« less

  4. Construction schedules slack time minimizing

    NASA Astrophysics Data System (ADS)

    Krzemiński, Michał

    2017-07-01

    The article presents two copyright models for minimizing downtime working brigades. Models have been developed for construction schedules performed using the method of work uniform. Application of flow shop models is possible and useful for the implementation of large objects, which can be divided into plots. The article also presents a condition describing gives which model should be used, as well as a brief example of optimization schedule. The optimization results confirm the legitimacy of the work on the newly-developed models.

  5. Multiobjective Optimization Combining BMP Technology and Land Preservation for Watershed-based Stormwater Management

    NASA Astrophysics Data System (ADS)

    McGarity, A. E.

    2009-12-01

    Recent progress has been made developing decision-support models for optimal deployment of best management practices (BMP’s) in an urban watershed to achieve water quality goals. One example is the high-level screening model StormWISE, developed by the author (McGarity, 2006) that uses linear and nonlinear programming to narrow the search for optimal solutions to certain land use categories and drainage zones. Another example is the model SUSTAIN developed by USEPA and Tetra Tech (Lai, et al., 2006), which builds on the work of Yu, et al., 2002), that uses a detailed, computationally intensive simulation model driven by a genetic solver to select optimal BMP sites. However, a model that deals only with best management practice (BMP) site selections may fail to consider solutions that avoid future nonpoint pollutant loadings by preserving undeveloped land. This paper presents results of a recently completed research project in which water resource engineers partnered with experienced professionals at a land conservation trust to develop a multiobjective model for watershed management. The result is a revised version of StormWISE that can be used to identify optimal, cost-effective combinations of easements and similar land preservation tools for undeveloped sites along with low impact development (LID) and BMP technologies for developed sites. The goal is to achieve the watershed-wide limits on runoff volume and pollutant loads that are necessary to meet water quality goals as well as ecological benefits associated with habitat preservation and enhancement. A nonlinear programming formulation is presented for the extended StormWISE model that achieves desired levels of environmental benefits at minimum cost. Tradeoffs between different environmental benefits are generated by multiple runs of the model while varying the levels of each environmental benefit obtained. The model is solved using piecewise linearization of environmental benefit functions where each linear segment of represents a different option for reducing stormwater runoff volumes and pollutant loadings. The solutions space is comprised of optimal levels of expenditure for categories of BMP's by land use category and optimal land preservation expenditures by drainage zone. To demonstrate the usefulness of the model, results from its application to the Little Crum Creek watershed in suburban Philadelphia are presented. The model has been used to assist a watershed association and four municipalities to develop an action plan for restoration of water quality on this impaired stream. References Lai, F., J. Zhen, J. Riverson, and L. Shoemaker (2006). "SUSTAIN - An Evaluation and Cost-Optimization Tool for Placement of BMPs," ASCE World Environmental and Water Resource Congress 2006. McGarity, A.E. (2006). A Cost Minimization Model to Priortize Urban Catchments for Stormwater BMP Implementation Projects. American Water Resources Association National Meeting, Baltimore, MD, November, 2006. Yu, S., J. X. Zhen, and S.Y. Zhai, (2002). Development of Stormwater Best Management Practice Placement Strategy for the Virginia Department of Transportation. Final Contract Report, VTRC 04-CR9, Virginia Transportation Research Council.

  6. Inverse optimal design of the radiant heating in materials processing and manufacturing

    NASA Astrophysics Data System (ADS)

    Fedorov, A. G.; Lee, K. H.; Viskanta, R.

    1998-12-01

    Combined convective, conductive, and radiative heat transfer is analyzed during heating of a continuously moving load in the industrial radiant oven. A transient, quasi-three-dimensional model of heat transfer between a continuous load of parts moving inside an oven on a conveyor belt at a constant speed and an array of radiant heaters/burners placed inside the furnace enclosure is developed. The model accounts for radiative exchange between the heaters and the load, heat conduction in the load, and convective heat transfer between the moving load and oven environment. The thermal model developed has been used to construct a general framework for an inverse optimal design of an industrial oven as an example. In particular, the procedure based on the Levenberg-Marquardt nonlinear least squares optimization algorithm has been developed to obtain the optimal temperatures of the heaters/burners that need to be specified to achieve a prescribed temperature distribution of the surface of a load. The results of calculations for several sample cases are reported to illustrate the capabilities of the procedure developed for the optimal inverse design of an industrial radiant oven.

  7. Spatial optimization of watershed management practices for nitrogen load reduction using a modeling-optimization framework

    EPA Science Inventory

    Best management practices (BMPs) are perceived as being effective in reducing nutrient loads transported from non-point sources (NPS) to receiving water bodies. The objective of this study was to develop a modeling-optimization framework that can be used by watershed management p...

  8. Improved alignment evaluation and optimization : final report.

    DOT National Transportation Integrated Search

    2007-09-11

    This report outlines the development of an enhanced highway alignment evaluation and optimization : model. A GIS-based software tool is prepared for alignment optimization that uses genetic algorithms for : optimal search. The software is capable of ...

  9. Optimizing separate phase light hydrocarbon recovery from contaminated unconfined aquifers

    NASA Astrophysics Data System (ADS)

    Cooper, Grant S.; Peralta, Richard C.; Kaluarachchi, Jagath J.

    A modeling approach is presented that optimizes separate phase recovery of light non-aqueous phase liquids (LNAPL) for a single dual-extraction well in a homogeneous, isotropic unconfined aquifer. A simulation/regression/optimization (S/R/O) model is developed to predict, analyze, and optimize the oil recovery process. The approach combines detailed simulation, nonlinear regression, and optimization. The S/R/O model utilizes nonlinear regression equations describing system response to time-varying water pumping and oil skimming. Regression equations are developed for residual oil volume and free oil volume. The S/R/O model determines optimized time-varying (stepwise) pumping rates which minimize residual oil volume and maximize free oil recovery while causing free oil volume to decrease a specified amount. This S/R/O modeling approach implicitly immobilizes the free product plume by reversing the water table gradient while achieving containment. Application to a simple representative problem illustrates the S/R/O model utility for problem analysis and remediation design. When compared with the best steady pumping strategies, the optimal stepwise pumping strategy improves free oil recovery by 11.5% and reduces the amount of residual oil left in the system due to pumping by 15%. The S/R/O model approach offers promise for enhancing the design of free phase LNAPL recovery systems and to help in making cost-effective operation and management decisions for hydrogeologists, engineers, and regulators.

  10. HyPEP FY06 Report: Models and Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DOE report

    2006-09-01

    The Department of Energy envisions the next generation very high-temperature gas-cooled reactor (VHTR) as a single-purpose or dual-purpose facility that produces hydrogen and electricity. The Ministry of Science and Technology (MOST) of the Republic of Korea also selected VHTR for the Nuclear Hydrogen Development and Demonstration (NHDD) Project. This research project aims at developing a user-friendly program for evaluating and optimizing cycle efficiencies of producing hydrogen and electricity in a Very-High-Temperature Reactor (VHTR). Systems for producing electricity and hydrogen are complex and the calculations associated with optimizing these systems are intensive, involving a large number of operating parameter variations andmore » many different system configurations. This research project will produce the HyPEP computer model, which is specifically designed to be an easy-to-use and fast running tool for evaluating nuclear hydrogen and electricity production facilities. The model accommodates flexible system layouts and its cost models will enable HyPEP to be well-suited for system optimization. Specific activities of this research are designed to develop the HyPEP model into a working tool, including (a) identifying major systems and components for modeling, (b) establishing system operating parameters and calculation scope, (c) establishing the overall calculation scheme, (d) developing component models, (e) developing cost and optimization models, and (f) verifying and validating the program. Once the HyPEP model is fully developed and validated, it will be used to execute calculations on candidate system configurations. FY-06 report includes a description of reference designs, methods used in this study, models and computational strategies developed for the first year effort. Results from computer codes such as HYSYS and GASS/PASS-H used by Idaho National Laboratory and Argonne National Laboratory, respectively will be benchmarked with HyPEP results in the following years.« less

  11. Stochastic optimization algorithms for barrier dividend strategies

    NASA Astrophysics Data System (ADS)

    Yin, G.; Song, Q. S.; Yang, H.

    2009-01-01

    This work focuses on finding optimal barrier policy for an insurance risk model when the dividends are paid to the share holders according to a barrier strategy. A new approach based on stochastic optimization methods is developed. Compared with the existing results in the literature, more general surplus processes are considered. Precise models of the surplus need not be known; only noise-corrupted observations of the dividends are used. Using barrier-type strategies, a class of stochastic optimization algorithms are developed. Convergence of the algorithm is analyzed; rate of convergence is also provided. Numerical results are reported to demonstrate the performance of the algorithm.

  12. Use of multilevel modeling for determining optimal parameters of heat supply systems

    NASA Astrophysics Data System (ADS)

    Stennikov, V. A.; Barakhtenko, E. A.; Sokolov, D. V.

    2017-07-01

    The problem of finding optimal parameters of a heat-supply system (HSS) is in ensuring the required throughput capacity of a heat network by determining pipeline diameters and characteristics and location of pumping stations. Effective methods for solving this problem, i.e., the method of stepwise optimization based on the concept of dynamic programming and the method of multicircuit optimization, were proposed in the context of the hydraulic circuit theory developed at Melentiev Energy Systems Institute (Siberian Branch, Russian Academy of Sciences). These methods enable us to determine optimal parameters of various types of piping systems due to flexible adaptability of the calculation procedure to intricate nonlinear mathematical models describing features of used equipment items and methods of their construction and operation. The new and most significant results achieved in developing methodological support and software for finding optimal parameters of complex heat supply systems are presented: a new procedure for solving the problem based on multilevel decomposition of a heat network model that makes it possible to proceed from the initial problem to a set of interrelated, less cumbersome subproblems with reduced dimensionality; a new algorithm implementing the method of multicircuit optimization and focused on the calculation of a hierarchical model of a heat supply system; the SOSNA software system for determining optimum parameters of intricate heat-supply systems and implementing the developed methodological foundation. The proposed procedure and algorithm enable us to solve engineering problems of finding the optimal parameters of multicircuit heat supply systems having large (real) dimensionality, and are applied in solving urgent problems related to the optimal development and reconstruction of these systems. The developed methodological foundation and software can be used for designing heat supply systems in the Central and the Admiralty regions in St. Petersburg, the city of Bratsk, and the Magistral'nyi settlement.

  13. Status on the Development of a Modeling and Simulation Framework for the Economic Assessment of Nuclear Hybrid Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Epiney, Aaron Simon; Chen, Jun; Rabiti, Cristian

    Continued effort to design and build a modeling and simulation framework to assess the economic viability of Nuclear Hybrid Energy Systems (NHES) was undertaken in fiscal year (FY) 2016. The purpose of this report is to document the various tasks associated with the development of such a framework and to provide a status of their progress. Several tasks have been accomplished. First, a synthetic time history generator has been developed in RAVEN, which consists of Fourier series and autoregressive moving average model. The former is used to capture the seasonal trend in historical data, while the latter is to characterizemore » the autocorrelation in residue time series (e.g., measurements with seasonal trends subtracted). As demonstration, both synthetic wind speed and grid demand are generated, showing matching statistics with database. In order to build a design and operations optimizer in RAVEN, a new type of sampler has been developed with highly object-oriented design. In particular, simultaneous perturbation stochastic approximation algorithm is implemented. The optimizer is capable to drive the model to optimize a scalar objective function without constraint in the input space, while the constraints handling is a work in progress and will be implemented to improve the optimization capability. Furthermore, a simplified cash flow model of the performance of an NHES in the electric market has been developed in Python and used as external model in RAVEN to confirm expectations on the analysis capability of RAVEN to provide insight into system economics and to test the capability of RAVEN to identify limit surfaces. Finally, an example calculation is performed that shows the integration and proper data passing in RAVEN of the synthetic time history generator, the cash flow model and the optimizer. It has been shown that the developed Python models external to RAVEN are able to communicate with RAVEN and each other through the newly developed RAVEN capability called “EnsembleModel”.« less

  14. Methods for Maximizing the Learning Process: A Theoretical and Experimental Analysis.

    ERIC Educational Resources Information Center

    Atkinson, Richard C.

    This research deals with optimizing the instructional process. The approach adopted was to limit consideration to simple learning tasks for which adequate mathematical models could be developed. Optimal or suitable suboptimal instructional strategies were developed for the models. The basic idea was to solve for strategies that either maximize the…

  15. Development of a biorefinery optimized biofuel supply curve for the western United States

    Treesearch

    Nathan Parker; Peter Tittmann; Quinn Hart; Richard Nelson; Ken Skog; Anneliese Schmidt; Edward Gray; Bryan Jenkins

    2010-01-01

    A resource assessment and biorefinery siting optimization model was developed and implemented to assess potential biofuel supply across the Western United States from agricultural, forest, urban, and energy crop biomass. Spatial information including feedstock resources, existing and potential refinery locations and a transportation network model is provided to a mixed...

  16. A spatial multi-objective optimization model for sustainable urban wastewater system layout planning.

    PubMed

    Dong, X; Zeng, S; Chen, J

    2012-01-01

    Design of a sustainable city has changed the traditional centralized urban wastewater system towards a decentralized or clustering one. Note that there is considerable spatial variability of the factors that affect urban drainage performance including urban catchment characteristics. The potential options are numerous for planning the layout of an urban wastewater system, which are associated with different costs and local environmental impacts. There is thus a need to develop an approach to find the optimal spatial layout for collecting, treating, reusing and discharging the municipal wastewater of a city. In this study, a spatial multi-objective optimization model, called Urban wastewateR system Layout model (URL), was developed. It is solved by a genetic algorithm embedding Monte Carlo sampling and a series of graph algorithms. This model was illustrated by a case study in a newly developing urban area in Beijing, China. Five optimized system layouts were recommended to the local municipality for further detailed design.

  17. Multiobjective optimization model of intersection signal timing considering emissions based on field data: A case study of Beijing.

    PubMed

    Kou, Weibin; Chen, Xumei; Yu, Lei; Gong, Huibo

    2018-04-18

    Most existing signal timing models are aimed to minimize the total delay and stops at intersections, without considering environmental factors. This paper analyzes the trade-off between vehicle emissions and traffic efficiencies on the basis of field data. First, considering the different operating modes of cruising, acceleration, deceleration, and idling, field data of emissions and Global Positioning System (GPS) are collected to estimate emission rates for heavy-duty and light-duty vehicles. Second, multiobjective signal timing optimization model is established based on a genetic algorithm to minimize delay, stops, and emissions. Finally, a case study is conducted in Beijing. Nine scenarios are designed considering different weights of emission and traffic efficiency. The results compared with those using Highway Capacity Manual (HCM) 2010 show that signal timing optimized by the model proposed in this paper can decrease vehicles delay and emissions more significantly. The optimization model can be applied in different cities, which provides supports for eco-signal design and development. Vehicle emissions are heavily at signal intersections in urban area. The multiobjective signal timing optimization model is proposed considering the trade-off between vehicle emissions and traffic efficiencies on the basis of field data. The results indicate that signal timing optimized by the model proposed in this paper can decrease vehicle emissions and delays more significantly. The optimization model can be applied in different cities, which provides supports for eco-signal design and development.

  18. Bidirectional optimization of the melting spinning process.

    PubMed

    Liang, Xiao; Ding, Yongsheng; Wang, Zidong; Hao, Kuangrong; Hone, Kate; Wang, Huaping

    2014-02-01

    A bidirectional optimizing approach for the melting spinning process based on an immune-enhanced neural network is proposed. The proposed bidirectional model can not only reveal the internal nonlinear relationship between the process configuration and the quality indices of the fibers as final product, but also provide a tool for engineers to develop new fiber products with expected quality specifications. A neural network is taken as the basis for the bidirectional model, and an immune component is introduced to enlarge the searching scope of the solution field so that the neural network has a larger possibility to find the appropriate and reasonable solution, and the error of prediction can therefore be eliminated. The proposed intelligent model can also help to determine what kind of process configuration should be made in order to produce satisfactory fiber products. To make the proposed model practical to the manufacturing, a software platform is developed. Simulation results show that the proposed model can eliminate the approximation error raised by the neural network-based optimizing model, which is due to the extension of focusing scope by the artificial immune mechanism. Meanwhile, the proposed model with the corresponding software can conduct optimization in two directions, namely, the process optimization and category development, and the corresponding results outperform those with an ordinary neural network-based intelligent model. It is also proved that the proposed model has the potential to act as a valuable tool from which the engineers and decision makers of the spinning process could benefit.

  19. Development of the hard and soft constraints based optimisation model for unit sizing of the hybrid renewable energy system designed for microgrid applications

    NASA Astrophysics Data System (ADS)

    Sundaramoorthy, Kumaravel

    2017-02-01

    The hybrid energy systems (HESs) based electricity generation system has become a more attractive solution for rural electrification nowadays. Economically feasible and technically reliable HESs are solidly based on an optimisation stage. This article discusses about the optimal unit sizing model with the objective function to minimise the total cost of the HES. Three typical rural sites from southern part of India have been selected for the application of the developed optimisation methodology. Feasibility studies and sensitivity analysis on the optimal HES are discussed elaborately in this article. A comparison has been carried out with the Hybrid Optimization Model for Electric Renewable optimisation model for three sites. The optimal HES is found with less total net present rate and rate of energy compared with the existing method

  20. Multi-objective trajectory optimization for the space exploration vehicle

    NASA Astrophysics Data System (ADS)

    Qin, Xiaoli; Xiao, Zhen

    2016-07-01

    The research determines temperature-constrained optimal trajectory for the space exploration vehicle by developing an optimal control formulation and solving it using a variable order quadrature collocation method with a Non-linear Programming(NLP) solver. The vehicle is assumed to be the space reconnaissance aircraft that has specified takeoff/landing locations, specified no-fly zones, and specified targets for sensor data collections. A three degree of freedom aircraft model is adapted from previous work and includes flight dynamics, and thermal constraints.Vehicle control is accomplished by controlling angle of attack, roll angle, and propellant mass flow rate. This model is incorporated into an optimal control formulation that includes constraints on both the vehicle and mission parameters, such as avoidance of no-fly zones and exploration of space targets. In addition, the vehicle models include the environmental models(gravity and atmosphere). How these models are appropriately employed is key to gaining confidence in the results and conclusions of the research. Optimal trajectories are developed using several performance costs in the optimal control formation,minimum time,minimum time with control penalties,and maximum distance.The resulting analysis demonstrates that optimal trajectories that meet specified mission parameters and constraints can be quickly determined and used for large-scale space exloration.

  1. Flexible Approximation Model Approach for Bi-Level Integrated System Synthesis

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Kim, Hongman; Ragon, Scott; Soremekun, Grant; Malone, Brett

    2004-01-01

    Bi-Level Integrated System Synthesis (BLISS) is an approach that allows design problems to be naturally decomposed into a set of subsystem optimizations and a single system optimization. In the BLISS approach, approximate mathematical models are used to transfer information from the subsystem optimizations to the system optimization. Accurate approximation models are therefore critical to the success of the BLISS procedure. In this paper, new capabilities that are being developed to generate accurate approximation models for BLISS procedure will be described. The benefits of using flexible approximation models such as Kriging will be demonstrated in terms of convergence characteristics and computational cost. An approach of dealing with cases where subsystem optimization cannot find a feasible design will be investigated by using the new flexible approximation models for the violated local constraints.

  2. Dissolved oxygen content prediction in crab culture using a hybrid intelligent method

    PubMed Central

    Yu, Huihui; Chen, Yingyi; Hassan, ShahbazGul; Li, Daoliang

    2016-01-01

    A precise predictive model is needed to obtain a clear understanding of the changing dissolved oxygen content in outdoor crab ponds, to assess how to reduce risk and to optimize water quality management. The uncertainties in the data from multiple sensors are a significant factor when building a dissolved oxygen content prediction model. To increase prediction accuracy, a new hybrid dissolved oxygen content forecasting model based on the radial basis function neural networks (RBFNN) data fusion method and a least squares support vector machine (LSSVM) with an optimal improved particle swarm optimization(IPSO) is developed. In the modelling process, the RBFNN data fusion method is used to improve information accuracy and provide more trustworthy training samples for the IPSO-LSSVM prediction model. The LSSVM is a powerful tool for achieving nonlinear dissolved oxygen content forecasting. In addition, an improved particle swarm optimization algorithm is developed to determine the optimal parameters for the LSSVM with high accuracy and generalizability. In this study, the comparison of the prediction results of different traditional models validates the effectiveness and accuracy of the proposed hybrid RBFNN-IPSO-LSSVM model for dissolved oxygen content prediction in outdoor crab ponds. PMID:27270206

  3. Dissolved oxygen content prediction in crab culture using a hybrid intelligent method.

    PubMed

    Yu, Huihui; Chen, Yingyi; Hassan, ShahbazGul; Li, Daoliang

    2016-06-08

    A precise predictive model is needed to obtain a clear understanding of the changing dissolved oxygen content in outdoor crab ponds, to assess how to reduce risk and to optimize water quality management. The uncertainties in the data from multiple sensors are a significant factor when building a dissolved oxygen content prediction model. To increase prediction accuracy, a new hybrid dissolved oxygen content forecasting model based on the radial basis function neural networks (RBFNN) data fusion method and a least squares support vector machine (LSSVM) with an optimal improved particle swarm optimization(IPSO) is developed. In the modelling process, the RBFNN data fusion method is used to improve information accuracy and provide more trustworthy training samples for the IPSO-LSSVM prediction model. The LSSVM is a powerful tool for achieving nonlinear dissolved oxygen content forecasting. In addition, an improved particle swarm optimization algorithm is developed to determine the optimal parameters for the LSSVM with high accuracy and generalizability. In this study, the comparison of the prediction results of different traditional models validates the effectiveness and accuracy of the proposed hybrid RBFNN-IPSO-LSSVM model for dissolved oxygen content prediction in outdoor crab ponds.

  4. Conceptual design and multidisciplinary optimization of in-plane morphing wing structures

    NASA Astrophysics Data System (ADS)

    Inoyama, Daisaku; Sanders, Brian P.; Joo, James J.

    2006-03-01

    In this paper, the topology optimization methodology for the synthesis of distributed actuation system with specific applications to the morphing air vehicle is discussed. The main emphasis is placed on the topology optimization problem formulations and the development of computational modeling concepts. For demonstration purposes, the inplane morphing wing model is presented. The analysis model is developed to meet several important criteria: It must allow large rigid-body displacements, as well as variation in planform area, with minimum strain on structural members while retaining acceptable numerical stability for finite element analysis. Preliminary work has indicated that addressed modeling concept meets the criteria and may be suitable for the purpose. Topology optimization is performed on the ground structure based on this modeling concept with design variables that control the system configuration. In other words, states of each element in the model are design variables and they are to be determined through optimization process. In effect, the optimization process assigns morphing members as 'soft' elements, non-morphing load-bearing members as 'stiff' elements, and non-existent members as 'voids.' In addition, the optimization process determines the location and relative force intensities of distributed actuators, which is represented computationally as equal and opposite nodal forces with soft axial stiffness. Several different optimization problem formulations are investigated to understand their potential benefits in solution quality, as well as meaningfulness of formulation itself. Sample in-plane morphing problems are solved to demonstrate the potential capability of the methodology introduced in this paper.

  5. A modeling framework for optimal long-term care insurance purchase decisions in retirement planning.

    PubMed

    Gupta, Aparna; Li, Lepeng

    2004-05-01

    The level of need and costs of obtaining long-term care (LTC) during retired life require that planning for it is an integral part of retirement planning. In this paper, we divide retirement planning into two phases, pre-retirement and post-retirement. On the basis of four interrelated models for health evolution, wealth evolution, LTC insurance premium and coverage, and LTC cost structure, a framework for optimal LTC insurance purchase decisions in the pre-retirement phase is developed. Optimal decisions are obtained by developing a trade-off between post-retirement LTC costs and LTC insurance premiums and coverage. Two-way branching models are used to model stochastic health events and asset returns. The resulting optimization problem is formulated as a dynamic programming problem. We compare the optimal decision under two insurance purchase scenarios: one assumes that insurance is purchased for good and other assumes it may be purchased, relinquished and re-purchased. Sensitivity analysis is performed for the retirement age.

  6. Nonlinear system modeling based on bilinear Laguerre orthonormal bases.

    PubMed

    Garna, Tarek; Bouzrara, Kais; Ragot, José; Messaoud, Hassani

    2013-05-01

    This paper proposes a new representation of discrete bilinear model by developing its coefficients associated to the input, to the output and to the crossed product on three independent Laguerre orthonormal bases. Compared to classical bilinear model, the resulting model entitled bilinear-Laguerre model ensures a significant parameter number reduction as well as simple recursive representation. However, such reduction still constrained by an optimal choice of Laguerre pole characterizing each basis. To do so, we develop a pole optimization algorithm which constitutes an extension of that proposed by Tanguy et al.. The bilinear-Laguerre model as well as the proposed pole optimization algorithm are illustrated and tested on a numerical simulations and validated on the Continuous Stirred Tank Reactor (CSTR) System. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  7. The Model Optimization, Uncertainty, and SEnsitivity analysis (MOUSE) toolbox: overview and application

    USDA-ARS?s Scientific Manuscript database

    For several decades, optimization and sensitivity/uncertainty analysis of environmental models has been the subject of extensive research. Although much progress has been made and sophisticated methods developed, the growing complexity of environmental models to represent real-world systems makes it...

  8. Optimization of Land Use Suitability for Agriculture Using Integrated Geospatial Model and Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Mansor, S. B.; Pormanafi, S.; Mahmud, A. R. B.; Pirasteh, S.

    2012-08-01

    In this study, a geospatial model for land use allocation was developed from the view of simulating the biological autonomous adaptability to environment and the infrastructural preference. The model was developed based on multi-agent genetic algorithm. The model was customized to accommodate the constraint set for the study area, namely the resource saving and environmental-friendly. The model was then applied to solve the practical multi-objective spatial optimization allocation problems of land use in the core region of Menderjan Basin in Iran. The first task was to study the dominant crops and economic suitability evaluation of land. Second task was to determine the fitness function for the genetic algorithms. The third objective was to optimize the land use map using economical benefits. The results has indicated that the proposed model has much better performance for solving complex multi-objective spatial optimization allocation problems and it is a promising method for generating land use alternatives for further consideration in spatial decision-making.

  9. Dynamic, stochastic models for congestion pricing and congestion securities.

    DOT National Transportation Integrated Search

    2010-12-01

    This research considers congestion pricing under demand uncertainty. In particular, a robust optimization (RO) approach is applied to optimal congestion pricing problems under user equilibrium. A mathematical model is developed and an analysis perfor...

  10. An Optimized Combined Wave and Current Bottom Boundary Layer Model for Arbitrary Bed Roughness

    DTIC Science & Technology

    2017-06-30

    Engineer Research and Development Center (ERDC), Coastal and Hydraulics Laboratory (CHL), Flood and Storm Protection Division (HF), Coastal ...ER D C/ CH L TR -1 7- 11 Coastal Inlets Research Program An Optimized Combined Wave and Current Bottom Boundary Layer Model for...client/default. Coastal Inlets Research Program ERDC/CHL TR-17-11 June 2017 An Optimized Combined Wave and Current Bottom Boundary Layer Model

  11. The combination of simulation and response methodology and its application in an aggregate production plan

    NASA Astrophysics Data System (ADS)

    Chen, Zhiming; Feng, Yuncheng

    1988-08-01

    This paper describes an algorithmic structure for combining simulation and optimization techniques both in theory and practice. Response surface methodology is used to optimize the decision variables in the simulation environment. A simulation-optimization software has been developed and successfully implemented, and its application to an aggregate production planning simulation-optimization model is reported. The model's objective is to minimize the production cost and to generate an optimal production plan and inventory control strategy for an aircraft factory.

  12. Development of an Optimal Water Allocation Decision Tool for the Major Crops During the Water Deficit Period in the Southeast U.S.

    NASA Technical Reports Server (NTRS)

    Paudel, Krishna P.; Limaye, Ashutosh; Hatch, Upton; Cruise, James; Musleh, Fuad

    2005-01-01

    We developed a dynamic model to optimize irrigation application in three major crops (corn, cotton and peanuts) grown in the Southeast USA. Water supply amount is generated from an engineering model which is then combined with economic models to find the optimal amount of irrigation water to apply on each crop field during the six critical water deficit weeks in summer. Results indicate that water is applied on the crop with the highest marginal value product of irrigation. Decision making tool such as the one developed here would help farmers and policy makers to find the maximum profitable solution when water shortage is a serious concern.

  13. An Interactive Design Space Supporting Development of Vehicle Architecture Concept Models

    DTIC Science & Technology

    2011-01-01

    Denver, Colorado, USA IMECE2011-64510 AN INTERACTIVE DESIGN SPACE SUPPORTING DEVELOPMENT OF VEHICLE ARCHITECTURE CONCEPT MODELS Gary Osborne...early in the development cycle. Optimization taking place later in the cycle usually occurs at the detail design level, and tends to result in...architecture changes may be imposed, but such modifications are equivalent to a huge optimization cycle covering almost the entire design process, and

  14. A novel model of motor learning capable of developing an optimal movement control law online from scratch.

    PubMed

    Shimansky, Yury P; Kang, Tao; He, Jiping

    2004-02-01

    A computational model of a learning system (LS) is described that acquires knowledge and skill necessary for optimal control of a multisegmental limb dynamics (controlled object or CO), starting from "knowing" only the dimensionality of the object's state space. It is based on an optimal control problem setup different from that of reinforcement learning. The LS solves the optimal control problem online while practicing the manipulation of CO. The system's functional architecture comprises several adaptive components, each of which incorporates a number of mapping functions approximated based on artificial neural nets. Besides the internal model of the CO's dynamics and adaptive controller that computes the control law, the LS includes a new type of internal model, the minimal cost (IM(mc)) of moving the controlled object between a pair of states. That internal model appears critical for the LS's capacity to develop an optimal movement trajectory. The IM(mc) interacts with the adaptive controller in a cooperative manner. The controller provides an initial approximation of an optimal control action, which is further optimized in real time based on the IM(mc). The IM(mc) in turn provides information for updating the controller. The LS's performance was tested on the task of center-out reaching to eight randomly selected targets with a 2DOF limb model. The LS reached an optimal level of performance in a few tens of trials. It also quickly adapted to movement perturbations produced by two different types of external force field. The results suggest that the proposed design of a self-optimized control system can serve as a basis for the modeling of motor learning that includes the formation and adaptive modification of the plan of a goal-directed movement.

  15. Launch Vehicle Propulsion Parameter Design Multiple Selection Criteria

    NASA Technical Reports Server (NTRS)

    Shelton, Joey Dewayne

    2004-01-01

    The optimization tool described herein addresses and emphasizes the use of computer tools to model a system and focuses on a concept development approach for a liquid hydrogen/liquid oxygen single-stage-to-orbit system, but more particularly the development of the optimized system using new techniques. This methodology uses new and innovative tools to run Monte Carlo simulations, genetic algorithm solvers, and statistical models in order to optimize a design concept. The concept launch vehicle and propulsion system were modeled and optimized to determine the best design for weight and cost by varying design and technology parameters. Uncertainty levels were applied using Monte Carlo Simulations and the model output was compared to the National Aeronautics and Space Administration Space Shuttle Main Engine. Several key conclusions are summarized here for the model results. First, the Gross Liftoff Weight and Dry Weight were 67% higher for the design case for minimization of Design, Development, Test and Evaluation cost when compared to the weights determined by the minimization of Gross Liftoff Weight case. In turn, the Design, Development, Test and Evaluation cost was 53% higher for optimized Gross Liftoff Weight case when compared to the cost determined by case for minimization of Design, Development, Test and Evaluation cost. Therefore, a 53% increase in Design, Development, Test and Evaluation cost results in a 67% reduction in Gross Liftoff Weight. Secondly, the tool outputs define the sensitivity of propulsion parameters, technology and cost factors and how these parameters differ when cost and weight are optimized separately. A key finding was that for a Space Shuttle Main Engine thrust level the oxidizer/fuel ratio of 6.6 resulted in the lowest Gross Liftoff Weight rather than at 5.2 for the maximum specific impulse, demonstrating the relationships between specific impulse, engine weight, tank volume and tank weight. Lastly, the optimum chamber pressure for Gross Liftoff Weight minimization was 2713 pounds per square inch as compared to 3162 for the Design, Development, Test and Evaluation cost optimization case. This chamber pressure range is close to 3000 pounds per square inch for the Space Shuttle Main Engine.

  16. Finite burn maneuver modeling for a generalized spacecraft trajectory design and optimization system.

    PubMed

    Ocampo, Cesar

    2004-05-01

    The modeling, design, and optimization of finite burn maneuvers for a generalized trajectory design and optimization system is presented. A generalized trajectory design and optimization system is a system that uses a single unified framework that facilitates the modeling and optimization of complex spacecraft trajectories that may operate in complex gravitational force fields, use multiple propulsion systems, and involve multiple spacecraft. The modeling and optimization issues associated with the use of controlled engine burn maneuvers of finite thrust magnitude and duration are presented in the context of designing and optimizing a wide class of finite thrust trajectories. Optimal control theory is used examine the optimization of these maneuvers in arbitrary force fields that are generally position, velocity, mass, and are time dependent. The associated numerical methods used to obtain these solutions involve either, the solution to a system of nonlinear equations, an explicit parameter optimization method, or a hybrid parameter optimization that combines certain aspects of both. The theoretical and numerical methods presented here have been implemented in copernicus, a prototype trajectory design and optimization system under development at the University of Texas at Austin.

  17. Mathematical model for dynamic cell formation in fast fashion apparel manufacturing stage

    NASA Astrophysics Data System (ADS)

    Perera, Gayathri; Ratnayake, Vijitha

    2018-05-01

    This paper presents a mathematical programming model for dynamic cell formation to minimize changeover-related costs (i.e., machine relocation costs and machine setup cost) and inter-cell material handling cost to cope with the volatile production environments in apparel manufacturing industry. The model is formulated through findings of a comprehensive literature review. Developed model is validated based on data collected from three different factories in apparel industry, manufacturing fast fashion products. A program code is developed using Lingo 16.0 software package to generate optimal cells for developed model and to determine the possible cost-saving percentage when the existing layouts used in three factories are replaced by generated optimal cells. The optimal cells generated by developed mathematical model result in significant cost saving when compared with existing product layouts used in production/assembly department of selected factories in apparel industry. The developed model can be considered as effective in minimizing the considered cost terms in dynamic production environment of fast fashion apparel manufacturing industry. Findings of this paper can be used for further researches on minimizing the changeover-related costs in fast fashion apparel production stage.

  18. Towards a personalized and dynamic CRT-D. A computational cardiovascular model dedicated to therapy optimization.

    PubMed

    Di Molfetta, A; Santini, L; Forleo, G B; Minni, V; Mafhouz, K; Della Rocca, D G; Fresiello, L; Romeo, F; Ferrari, G

    2012-01-01

    In spite of cardiac resynchronization therapy (CRT) benefits, 25-30% of patients are still non responders. One of the possible reasons could be the non optimal atrioventricular (AV) and interventricular (VV) intervals settings. Our aim was to exploit a numerical model of cardiovascular system for AV and VV intervals optimization in CRT. A numerical model of the cardiovascular system CRT-dedicated was previously developed. Echocardiographic parameters, Systemic aortic pressure and ECG were collected in 20 consecutive patients before and after CRT. Patient data were simulated by the model that was used to optimize and set into the device the intervals at the baseline and at the follow up. The optimal AV and VV intervals were chosen to optimize the simulated selected variable/s on the base of both echocardiographic and electrocardiographic parameters. Intervals were different for each patient and in most cases, they changed at follow up. The model can well reproduce clinical data as verified with Bland Altman analysis and T-test (p > 0.05). Left ventricular remodeling was 38.7% and left ventricular ejection fraction increasing was 11% against the 15% and 6% reported in literature, respectively. The developed numerical model could reproduce patients conditions at the baseline and at the follow up including the CRT effects. The model could be used to optimize AV and VV intervals at the baseline and at the follow up realizing a personalized and dynamic CRT. A patient tailored CRT could improve patients outcome in comparison to literature data.

  19. Artificial Intelligence-Based Models for the Optimal and Sustainable Use of Groundwater in Coastal Aquifers

    NASA Astrophysics Data System (ADS)

    Sreekanth, J.; Datta, Bithin

    2011-07-01

    Overexploitation of the coastal aquifers results in saltwater intrusion. Once saltwater intrusion occurs, it involves huge cost and long-term remediation measures to remediate these contaminated aquifers. Hence, it is important to have strategies for the sustainable use of coastal aquifers. This study develops a methodology for the optimal management of saltwater intrusion prone aquifers. A linked simulation-optimization-based management strategy is developed. The methodology uses genetic-programming-based models for simulating the aquifer processes, which is then linked to a multi-objective genetic algorithm to obtain optimal management strategies in terms of groundwater extraction from potential well locations in the aquifer.

  20. Integration of fuzzy analytic hierarchy process and probabilistic dynamic programming in formulating an optimal fleet management model

    NASA Astrophysics Data System (ADS)

    Teoh, Lay Eng; Khoo, Hooi Ling

    2013-09-01

    This study deals with two major aspects of airlines, i.e. supply and demand management. The aspect of supply focuses on the mathematical formulation of an optimal fleet management model to maximize operational profit of the airlines while the aspect of demand focuses on the incorporation of mode choice modeling as parts of the developed model. The proposed methodology is outlined in two-stage, i.e. Fuzzy Analytic Hierarchy Process is first adopted to capture mode choice modeling in order to quantify the probability of probable phenomena (for aircraft acquisition/leasing decision). Then, an optimization model is developed as a probabilistic dynamic programming model to determine the optimal number and types of aircraft to be acquired and/or leased in order to meet stochastic demand during the planning horizon. The findings of an illustrative case study show that the proposed methodology is viable. The results demonstrate that the incorporation of mode choice modeling could affect the operational profit and fleet management decision of the airlines at varying degrees.

  1. Surface Roughness Optimization of Polyamide-6/Nanoclay Nanocomposites Using Artificial Neural Network: Genetic Algorithm Approach

    PubMed Central

    Moghri, Mehdi; Omidi, Mostafa; Farahnakian, Masoud

    2014-01-01

    During the past decade, polymer nanocomposites attracted considerable investment in research and development worldwide. One of the key factors that affect the quality of polymer nanocomposite products in machining is surface roughness. To obtain high quality products and reduce machining costs it is very important to determine the optimal machining conditions so as to achieve enhanced machining performance. The objective of this paper is to develop a predictive model using a combined design of experiments and artificial intelligence approach for optimization of surface roughness in milling of polyamide-6 (PA-6) nanocomposites. A surface roughness predictive model was developed in terms of milling parameters (spindle speed and feed rate) and nanoclay (NC) content using artificial neural network (ANN). As the present study deals with relatively small number of data obtained from full factorial design, application of genetic algorithm (GA) for ANN training is thought to be an appropriate approach for the purpose of developing accurate and robust ANN model. In the optimization phase, a GA is considered in conjunction with the explicit nonlinear function derived from the ANN to determine the optimal milling parameters for minimization of surface roughness for each PA-6 nanocomposite. PMID:24578636

  2. Optimizing groundwater development strategies by genetic algorithm: a case study for balancing the needs for agricultural irrigation and environmental protection in northern China

    NASA Astrophysics Data System (ADS)

    Wu, Jianfeng; Zheng, Li; Liu, Depeng

    2007-11-01

    Gaoqing Plain is a major agriculture center of Shandong Province in northern China. Over the last 30 years, the diversion of Yellow River water for intensive irrigation in Gaoqing Plain has led to elevation of the water table and increased evaporation, and subsequently, a dramatic increase in salt content in soil and rapid degradation of crop productivity. Optimal strategies have been explored, that will balance the need to extract sufficient groundwater for irrigation (to ease the pressure on diverting Yellow River water) with the need to improve the local environment by appropriately lowering the water table. Two simulation-optimization models have been formulated and a genetic algorithm (GA) is applied to search for the optimal groundwater development strategies in Gaoqing Plain, while keeping the adverse environmental impacts in check. Compared with the trial-and-error approach of previous studies, the optimization results demonstrate that using an optimization model coupled with a GA search is both effective and efficient. The optimal solutions identified by the GA will provide Gaoqing Plain with the blueprints for developing sustainable groundwater abstraction plans to support local economic development and improve its environmental quality.

  3. Overview and application of the Model Optimization, Uncertainty, and SEnsitivity Analysis (MOUSE) toolbox

    USDA-ARS?s Scientific Manuscript database

    For several decades, optimization and sensitivity/uncertainty analysis of environmental models has been the subject of extensive research. Although much progress has been made and sophisticated methods developed, the growing complexity of environmental models to represent real-world systems makes it...

  4. Propeller performance analysis and multidisciplinary optimization using a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Burger, Christoph

    A propeller performance analysis program has been developed and integrated into a Genetic Algorithm for design optimization. The design tool will produce optimal propeller geometries for a given goal, which includes performance and/or acoustic signature. A vortex lattice model is used for the propeller performance analysis and a subsonic compact source model is used for the acoustic signature determination. Compressibility effects are taken into account with the implementation of Prandtl-Glauert domain stretching. Viscous effects are considered with a simple Reynolds number based model to account for the effects of viscosity in the spanwise direction. An empirical flow separation model developed from experimental lift and drag coefficient data of a NACA 0012 airfoil is included. The propeller geometry is generated using a recently introduced Class/Shape function methodology to allow for efficient use of a wide design space. Optimizing the angle of attack, the chord, the sweep and the local airfoil sections, produced blades with favorable tradeoffs between single and multiple point optimizations of propeller performance and acoustic noise signatures. Optimizations using a binary encoded IMPROVE(c) Genetic Algorithm (GA) and a real encoded GA were obtained after optimization runs with some premature convergence. The newly developed real encoded GA was used to obtain the majority of the results which produced generally better convergence characteristics when compared to the binary encoded GA. The optimization trade-offs show that single point optimized propellers have favorable performance, but circulation distributions were less smooth when compared to dual point or multiobjective optimizations. Some of the single point optimizations generated propellers with proplets which show a loading shift to the blade tip region. When noise is included into the objective functions some propellers indicate a circulation shift to the inboard sections of the propeller as well as a reduction in propeller diameter. In addition the propeller number was increased in some optimizations to reduce the acoustic blade signature.

  5. Design and Analysis of Optimal Ascent Trajectories for Stratospheric Airships

    NASA Astrophysics Data System (ADS)

    Mueller, Joseph Bernard

    Stratospheric airships are lighter-than-air vehicles that have the potential to provide a long-duration airborne presence at altitudes of 18-22 km. Designed to operate on solar power in the calm portion of the lower stratosphere and above all regulated air traffic and cloud cover, these vehicles represent an emerging platform that resides between conventional aircraft and satellites. A particular challenge for airship operation is the planning of ascent trajectories, as the slow moving vehicle must traverse the high wind region of the jet stream. Due to large changes in wind speed and direction across altitude and the susceptibility of airship motion to wind, the trajectory must be carefully planned, preferably optimized, in order to ensure that the desired station be reached within acceptable performance bounds of flight time and energy consumption. This thesis develops optimal ascent trajectories for stratospheric airships, examines the structure and sensitivity of these solutions, and presents a strategy for onboard guidance. Optimal ascent trajectories are developed that utilize wind energy to achieve minimum-time and minimum-energy flights. The airship is represented by a three-dimensional point mass model, and the equations of motion include aerodynamic lift and drag, vectored thrust, added mass effects, and accelerations due to mass flow rate, wind rates, and Earth rotation. A representative wind profile is developed based on historical meteorological data and measurements. Trajectory optimization is performed by first defining an optimal control problem with both terminal and path constraints, then using direct transcription to develop an approximate nonlinear parameter optimization problem of finite dimension. Optimal ascent trajectories are determined using SNOPT for a variety of upwind, downwind, and crosswind launch locations. Results of extensive optimization solutions illustrate definitive patterns in the ascent path for minimum time flights across varying launch locations, and show that significant energy savings can be realized with minimum-energy flights, compared to minimum-time time flights, given small increases in flight time. The performance of the optimal trajectories are then studied with respect to solar energy production during ascent, as well as sensitivity of the solutions to small changes in drag coefficient and wind model parameters. Results of solar power model simulations indicate that solar energy is sufficient to power ascent flights, but that significant energy loss can occur for certain types of trajectories. Sensitivity to the drag and wind model is approximated through numerical simulations, showing that optimal solutions change gradually with respect to changing wind and drag parameters and providing deeper insight into the characteristics of optimal airship flights. Finally, alternative methods are developed to generate near-optimal ascent trajectories in a manner suitable for onboard implementation. The structures and characteristics of previously developed minimum-time and minimum-energy ascent trajectories are used to construct simplified trajectory models, which are efficiently solved in a smaller numerical optimization problem. Comparison of these alternative solutions to the original SNOPT solutions show excellent agreement, suggesting the alternate formulations are an effective means to develop near-optimal solutions in an onboard setting.

  6. Forecasting the Amount of Waste-Sewage Water Discharged into the Yangtze River Basin Based on the Optimal Fractional Order Grey Model

    PubMed Central

    Li, Shuliang; Meng, Wei; Xie, Yufeng

    2017-01-01

    With the rapid development of the Yangtze River economic belt, the amount of waste-sewage water discharged into the Yangtze River basin increases sharply year by year, which has impeded the sustainable development of the Yangtze River basin. The water security along the Yangtze River basin is very important for China, It is something about water security of roughly one-third of China’s population and the sustainable development of the 19 provinces, municipalities and autonomous regions among the Yangtze River basin. Therefore, a scientific prediction of the amount of waste-sewage water discharged into Yangtze River basin has a positive significance on sustainable development of industry belt along with Yangtze River basin. This paper builds the fractional DWSGM (1,1) (DWSGM (1,1) model is short for Discharge amount of Waste Sewage Grey Model for one order equation and one variable) model based on the fractional accumulating generation operator and fractional reducing operator, and calculates the optimal order of “r” by using particle swarm optimization (PSO) algorithm for solving the minimum average relative simulation error. Meanwhile, the simulation performance of DWSGM (1,1) model with the optimal fractional order is tested by comparing the simulation results of grey prediction models with different orders. Finally, the optimal fractional order DWSGM (1,1) grey model is applied to predict the amount of waste-sewage water discharged into the Yangtze River basin, and corresponding countermeasures and suggestions are put forward through analyzing and comparing the prediction results. This paper has positive significance on enriching the fractional order modeling method of the grey system. PMID:29295517

  7. Forecasting the Amount of Waste-Sewage Water Discharged into the Yangtze River Basin Based on the Optimal Fractional Order Grey Model.

    PubMed

    Li, Shuliang; Meng, Wei; Xie, Yufeng

    2017-12-23

    With the rapid development of the Yangtze River economic belt, the amount of waste-sewage water discharged into the Yangtze River basin increases sharply year by year, which has impeded the sustainable development of the Yangtze River basin. The water security along the Yangtze River basin is very important for China, It is something aboutwater security of roughly one-third of China's population and the sustainable development of the 19 provinces, municipalities and autonomous regions among the Yangtze River basin. Therefore, a scientific prediction of the amount of waste-sewage water discharged into Yangtze River basin has a positive significance on sustainable development of industry belt along with Yangtze River basin. This paper builds the fractional DWSGM(1,1)(DWSGM(1,1) model is short for Discharge amount of Waste Sewage Grey Model for one order equation and one variable) model based on the fractional accumulating generation operator and fractional reducing operator, and calculates the optimal order of "r" by using particle swarm optimization(PSO)algorithm for solving the minimum average relative simulation error. Meanwhile, the simulation performance of DWSGM(1,1)model with the optimal fractional order is tested by comparing the simulation results of grey prediction models with different orders. Finally, the optimal fractional order DWSGM(1,1)grey model is applied to predict the amount of waste-sewage water discharged into the Yangtze River basin, and corresponding countermeasures and suggestions are put forward through analyzing and comparing the prediction results. This paper has positive significance on enriching the fractional order modeling method of the grey system.

  8. Retrospective Cost Adaptive Control with Concurrent Closed-Loop Identification

    NASA Astrophysics Data System (ADS)

    Sobolic, Frantisek M.

    Retrospective cost adaptive control (RCAC) is a discrete-time direct adaptive control algorithm for stabilization, command following, and disturbance rejection. RCAC is known to work on systems given minimal modeling information which is the leading numerator coefficient and any nonminimum-phase (NMP) zeros of the plant transfer function. This information is normally needed a priori and is key in the development of the filter, also known as the target model, within the retrospective performance variable. A novel approach to alleviate the need for prior modeling of both the leading coefficient of the plant transfer function as well as any NMP zeros is developed. The extension to the RCAC algorithm is the use of concurrent optimization of both the target model and the controller coefficients. Concurrent optimization of the target model and controller coefficients is a quadratic optimization problem in the target model and controller coefficients separately. However, this optimization problem is not convex as a joint function of both variables, and therefore nonconvex optimization methods are needed. Finally, insights within RCAC that include intercalated injection between the controller numerator and the denominator, unveil the workings of RCAC fitting a specific closed-loop transfer function to the target model. We exploit this interpretation by investigating several closed-loop identification architectures in order to extract this information for use in the target model.

  9. Artificial bee colony algorithm for constrained possibilistic portfolio optimization problem

    NASA Astrophysics Data System (ADS)

    Chen, Wei

    2015-07-01

    In this paper, we discuss the portfolio optimization problem with real-world constraints under the assumption that the returns of risky assets are fuzzy numbers. A new possibilistic mean-semiabsolute deviation model is proposed, in which transaction costs, cardinality and quantity constraints are considered. Due to such constraints the proposed model becomes a mixed integer nonlinear programming problem and traditional optimization methods fail to find the optimal solution efficiently. Thus, a modified artificial bee colony (MABC) algorithm is developed to solve the corresponding optimization problem. Finally, a numerical example is given to illustrate the effectiveness of the proposed model and the corresponding algorithm.

  10. Superstructure-based Design and Optimization of Batch Biodiesel Production Using Heterogeneous Catalysts

    NASA Astrophysics Data System (ADS)

    Nuh, M. Z.; Nasir, N. F.

    2017-08-01

    Biodiesel as a fuel comprised of mono alkyl esters of long chain fatty acids derived from renewable lipid feedstock, such as vegetable oil and animal fat. Biodiesel production is complex process which need systematic design and optimization. However, no case study using the process system engineering (PSE) elements which are superstructure optimization of batch process, it involves complex problems and uses mixed-integer nonlinear programming (MINLP). The PSE offers a solution to complex engineering system by enabling the use of viable tools and techniques to better manage and comprehend the complexity of the system. This study is aimed to apply the PSE tools for the simulation of biodiesel process and optimization and to develop mathematical models for component of the plant for case A, B, C by using published kinetic data. Secondly, to determine economic analysis for biodiesel production, focusing on heterogeneous catalyst. Finally, the objective of this study is to develop the superstructure for biodiesel production by using heterogeneous catalyst. The mathematical models are developed by the superstructure and solving the resulting mixed integer non-linear model and estimation economic analysis by using MATLAB software. The results of the optimization process with the objective function of minimizing the annual production cost by batch process from case C is 23.2587 million USD. Overall, the implementation a study of process system engineering (PSE) has optimized the process of modelling, design and cost estimation. By optimizing the process, it results in solving the complex production and processing of biodiesel by batch.

  11. Optimization of Geothermal Well Placement under Geological Uncertainty

    NASA Astrophysics Data System (ADS)

    Schulte, Daniel O.; Arnold, Dan; Demyanov, Vasily; Sass, Ingo; Geiger, Sebastian

    2017-04-01

    Well placement optimization is critical to commercial success of geothermal projects. However, uncertainties of geological parameters prohibit optimization based on a single scenario of the subsurface, particularly when few expensive wells are to be drilled. The optimization of borehole locations is usually based on numerical reservoir models to predict reservoir performance and entails the choice of objectives to optimize (total enthalpy, minimum enthalpy rate, production temperature) and the development options to adjust (well location, pump rate, difference in production and injection temperature). Optimization traditionally requires trying different development options on a single geological realization yet there are many possible different interpretations possible. Therefore, we aim to optimize across a range of representative geological models to account for geological uncertainty in geothermal optimization. We present an approach that uses a response surface methodology based on a large number of geological realizations selected by experimental design to optimize the placement of geothermal wells in a realistic field example. A large number of geological scenarios and design options were simulated and the response surfaces were constructed using polynomial proxy models, which consider both geological uncertainties and design parameters. The polynomial proxies were validated against additional simulation runs and shown to provide an adequate representation of the model response for the cases tested. The resulting proxy models allow for the identification of the optimal borehole locations given the mean response of the geological scenarios from the proxy (i.e. maximizing or minimizing the mean response). The approach is demonstrated on the realistic Watt field example by optimizing the borehole locations to maximize the mean heat extraction from the reservoir under geological uncertainty. The training simulations are based on a comprehensive semi-synthetic data set of a hierarchical benchmark case study for a hydrocarbon reservoir, which specifically considers the interpretational uncertainty in the modeling work flow. The optimal choice of boreholes prolongs the time to cold water breakthrough and allows for higher pump rates and increased water production temperatures.

  12. Computational Difficulties in the Identification and Optimization of Control Systems.

    DTIC Science & Technology

    1980-01-01

    necessary and Identify by block number) - -. 3. iABSTRACT (Continue on revers, side It necessary and Identify by block number) As more realistic models ...Island 02912 ABSTRACT As more realistic models for resource management are developed, the need for efficient computational techniques for parameter...optimization (optimal control) in "state" models which This research was supported in part by ttfe National Science Foundation under grant NSF-MCS 79-05774

  13. Green Pea and Garlic Puree Model Food Development for Thermal Pasteurization Process Quality Evaluation.

    PubMed

    Bornhorst, Ellen R; Tang, Juming; Sablani, Shyam S; Barbosa-Cánovas, Gustavo V; Liu, Fang

    2017-07-01

    Development and selection of model foods is a critical part of microwave thermal process development, simulation validation, and optimization. Previously developed model foods for pasteurization process evaluation utilized Maillard reaction products as the time-temperature integrators, which resulted in similar temperature sensitivity among the models. The aim of this research was to develop additional model foods based on different time-temperature integrators, determine their dielectric properties and color change kinetics, and validate the optimal model food in hot water and microwave-assisted pasteurization processes. Color, quantified using a * value, was selected as the time-temperature indicator for green pea and garlic puree model foods. Results showed 915 MHz microwaves had a greater penetration depth into the green pea model food than the garlic. a * value reaction rates for the green pea model were approximately 4 times slower than in the garlic model food; slower reaction rates were preferred for the application of model food in this study, that is quality evaluation for a target process of 90 °C for 10 min at the cold spot. Pasteurization validation used the green pea model food and results showed that there were quantifiable differences between the color of the unheated control, hot water pasteurization, and microwave-assisted thermal pasteurization system. Both model foods developed in this research could be utilized for quality assessment and optimization of various thermal pasteurization processes. © 2017 Institute of Food Technologists®.

  14. Optimal control, investment and utilization schemes for energy storage under uncertainty

    NASA Astrophysics Data System (ADS)

    Mirhosseini, Niloufar Sadat

    Energy storage has the potential to offer new means for added flexibility on the electricity systems. This flexibility can be used in a number of ways, including adding value towards asset management, power quality and reliability, integration of renewable resources and energy bill savings for the end users. However, uncertainty about system states and volatility in system dynamics can complicate the question of when to invest in energy storage and how best to manage and utilize it. This work proposes models to address different problems associated with energy storage within a microgrid, including optimal control, investment, and utilization. Electric load, renewable resources output, storage technology cost and electricity day-ahead and spot prices are the factors that bring uncertainty to the problem. A number of analytical methodologies have been adopted to develop the aforementioned models. Model Predictive Control and discretized dynamic programming, along with a new decomposition algorithm are used to develop optimal control schemes for energy storage for two different levels of renewable penetration. Real option theory and Monte Carlo simulation, coupled with an optimal control approach, are used to obtain optimal incremental investment decisions, considering multiple sources of uncertainty. Two stage stochastic programming is used to develop a novel and holistic methodology, including utilization of energy storage within a microgrid, in order to optimally interact with energy market. Energy storage can contribute in terms of value generation and risk reduction for the microgrid. The integration of the models developed here are the basis for a framework which extends from long term investments in storage capacity to short term operational control (charge/discharge) of storage within a microgrid. In particular, the following practical goals are achieved: (i) optimal investment on storage capacity over time to maximize savings during normal and emergency operations; (ii) optimal market strategy of buy and sell over 24-hour periods; (iii) optimal storage charge and discharge in much shorter time intervals.

  15. Postaudit of optimal conjunctive use policies

    USGS Publications Warehouse

    Nishikawa, Tracy; Martin, Peter; ,

    1998-01-01

    A simulation-optimization model was developed for the optimal management of the city of Santa Barbara's water resources during a drought; however, this model addressed only groundwater flow and not the advective-dispersive, density-dependent transport of seawater. Zero-m freshwater head constraints at the coastal boundary were used as surrogates for the control of seawater intrusion. In this study, the strategies derived from the simulation-optimization model using two surface water supply scenarios are evaluated using a two-dimensional, density-dependent groundwater flow and transport model. Comparisons of simulated chloride mass fractions are made between maintaining the actual pumping policies of the 1987-91 drought and implementing the optimal pumping strategies for each scenario. The results indicate that using 0-m freshwater head constraints allowed no more seawater intrusion than under actual 1987-91 drought conditions and that the simulation-optimization model yields least-cost strategies that deliver more water than under actual drought conditions while controlling seawater intrusion.

  16. Using thermal balance model to determine optimal reactor volume and insulation material needed in a laboratory-scale composting reactor.

    PubMed

    Wang, Yongjiang; Pang, Li; Liu, Xinyu; Wang, Yuansheng; Zhou, Kexun; Luo, Fei

    2016-04-01

    A comprehensive model of thermal balance and degradation kinetics was developed to determine the optimal reactor volume and insulation material. Biological heat production and five channels of heat loss were considered in the thermal balance model for a representative reactor. Degradation kinetics was developed to make the model applicable to different types of substrates. Simulation of the model showed that the internal energy accumulation of compost was the significant heat loss channel, following by heat loss through reactor wall, and latent heat of water evaporation. Lower proportion of heat loss occurred through the reactor wall when the reactor volume was larger. Insulating materials with low densities and low conductive coefficients were more desirable for building small reactor systems. Model developed could be used to determine the optimal reactor volume and insulation material needed before the fabrication of a lab-scale composting system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Optimization of a Thermodynamic Model Using a Dakota Toolbox Interface

    NASA Astrophysics Data System (ADS)

    Cyrus, J.; Jafarov, E. E.; Schaefer, K. M.; Wang, K.; Clow, G. D.; Piper, M.; Overeem, I.

    2016-12-01

    Scientific modeling of the Earth physical processes is an important driver of modern science. The behavior of these scientific models is governed by a set of input parameters. It is crucial to choose accurate input parameters that will also preserve the corresponding physics being simulated in the model. In order to effectively simulate real world processes the models output data must be close to the observed measurements. To achieve this optimal simulation, input parameters are tuned until we have minimized the objective function, which is the error between the simulation model outputs and the observed measurements. We developed an auxiliary package, which serves as a python interface between the user and DAKOTA. The package makes it easy for the user to conduct parameter space explorations, parameter optimizations, as well as sensitivity analysis while tracking and storing results in a database. The ability to perform these analyses via a Python library also allows the users to combine analysis techniques, for example finding an approximate equilibrium with optimization then immediately explore the space around it. We used the interface to calibrate input parameters for the heat flow model, which is commonly used in permafrost science. We performed optimization on the first three layers of the permafrost model, each with two thermal conductivity coefficients input parameters. Results of parameter space explorations indicate that the objective function not always has a unique minimal value. We found that gradient-based optimization works the best for the objective functions with one minimum. Otherwise, we employ more advanced Dakota methods such as genetic optimization and mesh based convergence in order to find the optimal input parameters. We were able to recover 6 initially unknown thermal conductivity parameters within 2% accuracy of their known values. Our initial tests indicate that the developed interface for the Dakota toolbox could be used to perform analysis and optimization on a `black box' scientific model more efficiently than using just Dakota.

  18. Multifidelity Analysis and Optimization for Supersonic Design

    NASA Technical Reports Server (NTRS)

    Kroo, Ilan; Willcox, Karen; March, Andrew; Haas, Alex; Rajnarayan, Dev; Kays, Cory

    2010-01-01

    Supersonic aircraft design is a computationally expensive optimization problem and multifidelity approaches over a significant opportunity to reduce design time and computational cost. This report presents tools developed to improve supersonic aircraft design capabilities including: aerodynamic tools for supersonic aircraft configurations; a systematic way to manage model uncertainty; and multifidelity model management concepts that incorporate uncertainty. The aerodynamic analysis tools developed are appropriate for use in a multifidelity optimization framework, and include four analysis routines to estimate the lift and drag of a supersonic airfoil, a multifidelity supersonic drag code that estimates the drag of aircraft configurations with three different methods: an area rule method, a panel method, and an Euler solver. In addition, five multifidelity optimization methods are developed, which include local and global methods as well as gradient-based and gradient-free techniques.

  19. Nonlinear Programming Models to Optimize Uneven-Aged Shortleaf Pine Management

    Treesearch

    Benedict J. Schulte; Joseph Buongiorno

    2002-01-01

    Nonlinear programming models of uneven-aged shortleaf pine (Pinus echinata Mill.) management were developed to identify sustainable management regimes that optimize soil expectation value (SEV) or annual sawtimber yields. The models recognize three species groups (shortleaf pine and other softwoods, soft hardwoods and hard hardwoods) and 13 2-inch...

  20. Constrained optimization via simulation models for new product innovation

    NASA Astrophysics Data System (ADS)

    Pujowidianto, Nugroho A.

    2017-11-01

    We consider the problem of constrained optimization where the decision makers aim to optimize the primary performance measure while constraining the secondary performance measures. This paper provides a brief overview of stochastically constrained optimization via discrete event simulation. Most review papers tend to be methodology-based. This review attempts to be problem-based as decision makers may have already decided on the problem formulation. We consider constrained optimization models as there are usually constraints on secondary performance measures as trade-off in new product development. It starts by laying out different possible methods and the reasons using constrained optimization via simulation models. It is then followed by the review of different simulation optimization approach to address constrained optimization depending on the number of decision variables, the type of constraints, and the risk preferences of the decision makers in handling uncertainties.

  1. The forest and agricultural sector optimization model (FASOM): model structure and policy applications.

    Treesearch

    Darius M. Adams; Ralph J. Alig; J.M. Callaway; Bruce A. McCarl; Steven M. Winnett

    1996-01-01

    The Forest and Agricultural Sector Optimization Model (FASOM) is a dynamic, nonlinear programming model of the forest and agricultural sectors in the United States. The FASOM model initially was developed to evaluate welfare and market impacts of alternative policies for sequestering carbon in trees but also has been applied to a wider range of forest and agricultural...

  2. Time optimal control of a jet engine using a quasi-Hermite interpolation model. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Comiskey, J. G.

    1979-01-01

    This work made preliminary efforts to generate nonlinear numerical models of a two-spooled turbofan jet engine, and subject these models to a known method of generating global, nonlinear, time optimal control laws. The models were derived numerically, directly from empirical data, as a first step in developing an automatic modelling procedure.

  3. Multiobjective optimization and multivariable control of the beer fermentation process with the use of evolutionary algorithms.

    PubMed

    Andrés-Toro, B; Girón-Sierra, J M; Fernández-Blanco, P; López-Orozco, J A; Besada-Portas, E

    2004-04-01

    This paper describes empirical research on the model, optimization and supervisory control of beer fermentation. Conditions in the laboratory were made as similar as possible to brewery industry conditions. Since mathematical models that consider realistic industrial conditions were not available, a new mathematical model design involving industrial conditions was first developed. Batch fermentations are multiobjective dynamic processes that must be guided along optimal paths to obtain good results. The paper describes a direct way to apply a Pareto set approach with multiobjective evolutionary algorithms (MOEAs). Successful finding of optimal ways to drive these processes were reported. Once obtained, the mathematical fermentation model was used to optimize the fermentation process by using an intelligent control based on certain rules.

  4. Advanced Nuclear Fuel Cycle Transitions: Optimization, Modeling Choices, and Disruptions

    NASA Astrophysics Data System (ADS)

    Carlsen, Robert W.

    Many nuclear fuel cycle simulators have evolved over time to help understan the nuclear industry/ecosystem at a macroscopic level. Cyclus is one of th first fuel cycle simulators to accommodate larger-scale analysis with it liberal open-source licensing and first-class Linux support. Cyclus also ha features that uniquely enable investigating the effects of modeling choices o fuel cycle simulators and scenarios. This work is divided into thre experiments focusing on optimization, effects of modeling choices, and fue cycle uncertainty. Effective optimization techniques are developed for automatically determinin desirable facility deployment schedules with Cyclus. A novel method fo mapping optimization variables to deployment schedules is developed. Thi allows relationships between reactor types and scenario constraints to b represented implicitly in the variable definitions enabling the usage o optimizers lacking constraint support. It also prevents wasting computationa resources evaluating infeasible deployment schedules. Deployed power capacit over time and deployment of non-reactor facilities are also included a optimization variables There are many fuel cycle simulators built with different combinations o modeling choices. Comparing results between them is often difficult. Cyclus flexibility allows comparing effects of many such modeling choices. Reacto refueling cycle synchronization and inter-facility competition among othe effects are compared in four cases each using combinations of fleet of individually modeled reactors with 1-month or 3-month time steps. There are noticeable differences in results for the different cases. The larges differences occur during periods of constrained reactor fuel availability This and similar work can help improve the quality of fuel cycle analysi generally There is significant uncertainty associated deploying new nuclear technologie such as time-frames for technology availability and the cost of buildin advanced reactors. Historically, fuel cycle analysis has focused on answerin questions of fuel cycle feasibility and optimality. However, there has no been much work done to address uncertainty in fuel cycle analysis helpin answer questions of fuel cycle robustness. This work develops an demonstrates a methodology for evaluating deployment strategies whil accounting for uncertainty. Techniques are developed for measuring th hedging properties of deployment strategies under uncertainty. Additionally methods for using optimization to automatically find good hedging strategie are demonstrated.

  5. Optimal moment determination in POME-copula based hydrometeorological dependence modelling

    NASA Astrophysics Data System (ADS)

    Liu, Dengfeng; Wang, Dong; Singh, Vijay P.; Wang, Yuankun; Wu, Jichun; Wang, Lachun; Zou, Xinqing; Chen, Yuanfang; Chen, Xi

    2017-07-01

    Copula has been commonly applied in multivariate modelling in various fields where marginal distribution inference is a key element. To develop a flexible, unbiased mathematical inference framework in hydrometeorological multivariate applications, the principle of maximum entropy (POME) is being increasingly coupled with copula. However, in previous POME-based studies, determination of optimal moment constraints has generally not been considered. The main contribution of this study is the determination of optimal moments for POME for developing a coupled optimal moment-POME-copula framework to model hydrometeorological multivariate events. In this framework, margins (marginals, or marginal distributions) are derived with the use of POME, subject to optimal moment constraints. Then, various candidate copulas are constructed according to the derived margins, and finally the most probable one is determined, based on goodness-of-fit statistics. This optimal moment-POME-copula framework is applied to model the dependence patterns of three types of hydrometeorological events: (i) single-site streamflow-water level; (ii) multi-site streamflow; and (iii) multi-site precipitation, with data collected from Yichang and Hankou in the Yangtze River basin, China. Results indicate that the optimal-moment POME is more accurate in margin fitting and the corresponding copulas reflect a good statistical performance in correlation simulation. Also, the derived copulas, capturing more patterns which traditional correlation coefficients cannot reflect, provide an efficient way in other applied scenarios concerning hydrometeorological multivariate modelling.

  6. Modeling urban air pollution with optimized hierarchical fuzzy inference system.

    PubMed

    Tashayo, Behnam; Alimohammadi, Abbas

    2016-10-01

    Environmental exposure assessments (EEA) and epidemiological studies require urban air pollution models with appropriate spatial and temporal resolutions. Uncertain available data and inflexible models can limit air pollution modeling techniques, particularly in under developing countries. This paper develops a hierarchical fuzzy inference system (HFIS) to model air pollution under different land use, transportation, and meteorological conditions. To improve performance, the system treats the issue as a large-scale and high-dimensional problem and develops the proposed model using a three-step approach. In the first step, a geospatial information system (GIS) and probabilistic methods are used to preprocess the data. In the second step, a hierarchical structure is generated based on the problem. In the third step, the accuracy and complexity of the model are simultaneously optimized with a multiple objective particle swarm optimization (MOPSO) algorithm. We examine the capabilities of the proposed model for predicting daily and annual mean PM2.5 and NO2 and compare the accuracy of the results with representative models from existing literature. The benefits provided by the model features, including probabilistic preprocessing, multi-objective optimization, and hierarchical structure, are precisely evaluated by comparing five different consecutive models in terms of accuracy and complexity criteria. Fivefold cross validation is used to assess the performance of the generated models. The respective average RMSEs and coefficients of determination (R (2)) for the test datasets using proposed model are as follows: daily PM2.5 = (8.13, 0.78), annual mean PM2.5 = (4.96, 0.80), daily NO2 = (5.63, 0.79), and annual mean NO2 = (2.89, 0.83). The obtained results demonstrate that the developed hierarchical fuzzy inference system can be utilized for modeling air pollution in EEA and epidemiological studies.

  7. Improving Environmental Model Calibration and Prediction

    DTIC Science & Technology

    2011-01-18

    REPORT Final Report - Improving Environmental Model Calibration and Prediction 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: First, we have continued to...develop tools for efficient global optimization of environmental models. Our algorithms are hybrid algorithms that combine evolutionary strategies...toward practical hybrid optimization tools for environmental models. 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 18-01-2011 13

  8. Nonlinear programming models to optimize uneven-aged loblolly pine management

    Treesearch

    Benedict J. Schulte; Joseph. Buongiorno; Kenneth Skog

    1999-01-01

    Nonlinear programming models of uneven-aged loblolly pine (Pinus taeda L.) management were developed to identify sustainable management regimes which optimize: 1) soil expectation value (SEV), 2) tree diversity, or 3) annual sawtimber yields. The models use the equations of SouthPro, a site- and density-dependent, multi-species matrix growth and yield model that...

  9. A new predictive model for continuous positive airway pressure in the treatment of obstructive sleep apnea.

    PubMed

    Ebben, Matthew R; Narizhnaya, Mariya; Krieger, Ana C

    2017-05-01

    Numerous mathematical formulas have been developed to determine continuous positive airway pressure (CPAP) without an in-laboratory titration study. Recent studies have shown that style of CPAP mask can affect the optimal pressure requirement. However, none of the current models take mask style into account. Therefore, the goal of this study was to develop new predictive models of CPAP that take into account the style of mask interface. Data from 200 subjects with attended CPAP titrations during overnight polysomnograms using nasal masks and 132 subjects using oronasal masks were randomized and split into either a model development or validation group. Predictive models were then created in each model development group and the accuracy of the models was then tested in the model validation groups. The correlation between our new oronasal model and laboratory determined optimal CPAP was significant, r = 0.61, p < 0.001. Our nasal formula was also significantly related to laboratory determined optimal CPAP, r = 0.35, p < 0.001. The oronasal model created in our study significantly outperformed the original CPAP predictive model developed by Miljeteig and Hoffstein, z = 1.99, p < 0.05. The predictive performance of our new nasal model did not differ significantly from Miljeteig and Hoffstein's original model, z = -0.16, p < 0.90. The best predictors for the nasal mask group were AHI, lowest SaO2, and neck size, whereas the top predictors in the oronasal group were AHI and lowest SaO2. Our data show that predictive models of CPAP that take into account mask style can significantly improve the formula's accuracy. Most of the past models likely focused on model development with nasal masks (mask style used for model development was not typically reported in previous investigations) and are not well suited for patients using an oronasal interface. Our new oronasal CPAP prediction equation produced significantly improved performance compared to the well-known Miljeteig and Hoffstein formula in patients titrated on CPAP with an oronasal mask and was also significantly related to laboratory determined optimal CPAP.

  10. Optimization of monitoring networks based on uncertainty quantification of model predictions of contaminant transport

    NASA Astrophysics Data System (ADS)

    Vesselinov, V. V.; Harp, D.

    2010-12-01

    The process of decision making to protect groundwater resources requires a detailed estimation of uncertainties in model predictions. Various uncertainties associated with modeling a natural system, such as: (1) measurement and computational errors; (2) uncertainties in the conceptual model and model-parameter estimates; (3) simplifications in model setup and numerical representation of governing processes, contribute to the uncertainties in the model predictions. Due to this combination of factors, the sources of predictive uncertainties are generally difficult to quantify individually. Decision support related to optimal design of monitoring networks requires (1) detailed analyses of existing uncertainties related to model predictions of groundwater flow and contaminant transport, (2) optimization of the proposed monitoring network locations in terms of their efficiency to detect contaminants and provide early warning. We apply existing and newly-proposed methods to quantify predictive uncertainties and to optimize well locations. An important aspect of the analysis is the application of newly-developed optimization technique based on coupling of Particle Swarm and Levenberg-Marquardt optimization methods which proved to be robust and computationally efficient. These techniques and algorithms are bundled in a software package called MADS. MADS (Model Analyses for Decision Support) is an object-oriented code that is capable of performing various types of model analyses and supporting model-based decision making. The code can be executed under different computational modes, which include (1) sensitivity analyses (global and local), (2) Monte Carlo analysis, (3) model calibration, (4) parameter estimation, (5) uncertainty quantification, and (6) model selection. The code can be externally coupled with any existing model simulator through integrated modules that read/write input and output files using a set of template and instruction files (consistent with the PEST I/O protocol). MADS can also be internally coupled with a series of built-in analytical simulators. MADS provides functionality to work directly with existing control files developed for the code PEST (Doherty 2009). To perform the computational modes mentioned above, the code utilizes (1) advanced Latin-Hypercube sampling techniques (including Improved Distributed Sampling), (2) various gradient-based Levenberg-Marquardt optimization methods, (3) advanced global optimization methods (including Particle Swarm Optimization), and (4) a selection of alternative objective functions. The code has been successfully applied to perform various model analyses related to environmental management of real contamination sites. Examples include source identification problems, quantification of uncertainty, model calibration, and optimization of monitoring networks. The methodology and software codes are demonstrated using synthetic and real case studies where monitoring networks are optimized taking into account the uncertainty in model predictions of contaminant transport.

  11. Runway exit designs for capacity improvement demonstrations. Phase 2: Computer model development

    NASA Technical Reports Server (NTRS)

    Trani, A. A.; Hobeika, A. G.; Kim, B. J.; Nunna, V.; Zhong, C.

    1992-01-01

    The development is described of a computer simulation/optimization model to: (1) estimate the optimal locations of existing and proposed runway turnoffs; and (2) estimate the geometric design requirements associated with newly developed high speed turnoffs. The model described, named REDIM 2.0, represents a stand alone application to be used by airport planners, designers, and researchers alike to estimate optimal turnoff locations. The main procedures are described in detail which are implemented in the software package and possible applications are illustrated when using 6 major runway scenarios. The main output of the computer program is the estimation of the weighted average runway occupancy time for a user defined aircraft population. Also, the location and geometric characteristics of each turnoff are provided to the user.

  12. Closed loop models for analyzing the effects of simulator characteristics. [digital simulation of human operators

    NASA Technical Reports Server (NTRS)

    Baron, S.; Muralidharan, R.; Kleinman, D. L.

    1978-01-01

    The optimal control model of the human operator is used to develop closed loop models for analyzing the effects of (digital) simulator characteristics on predicted performance and/or workload. Two approaches are considered: the first utilizes a continuous approximation to the discrete simulation in conjunction with the standard optimal control model; the second involves a more exact discrete description of the simulator in a closed loop multirate simulation in which the optimal control model simulates the pilot. Both models predict that simulator characteristics can have significant effects on performance and workload.

  13. Aircraft Trajectory Optimization and Contrails Avoidance in the Presence of Winds

    NASA Technical Reports Server (NTRS)

    Ng, Hok K.; Chen, Neil Y.

    2010-01-01

    There are indications that persistent contrails can lead to adverse climate change, although the complete effect on climate forcing is still uncertain. A flight trajectory optimization algorithm with fuel and contrails models, which develops alternative flight paths, provides policy makers the necessary data to make tradeoffs between persistent contrails mitigation and aircraft fuel consumption. This study develops an algorithm that calculates wind-optimal trajectories for cruising aircraft while avoiding the regions of airspace prone to persistent contrails formation. The optimal trajectories are developed by solving a non-linear optimal control problem with path constraints. The regions of airspace favorable to persistent contrails formation are modeled as penalty areas that aircraft should avoid and are adjustable. The tradeoff between persistent contrails formation and additional fuel consumption is investigated, with and without altitude optimization, for 12 city-pairs in the continental United States. Without altitude optimization, the reduction in contrail travel times is gradual with increase in total fuel consumption. When altitude is optimized, a two percent increase in total fuel consumption can reduce the total travel times through contrail regions by more than six times. Allowing further increase in fuel consumption does not seem to result in proportionate decrease in contrail travel times.

  14. Optical systems integrated modeling

    NASA Technical Reports Server (NTRS)

    Shannon, Robert R.; Laskin, Robert A.; Brewer, SI; Burrows, Chris; Epps, Harlan; Illingworth, Garth; Korsch, Dietrich; Levine, B. Martin; Mahajan, Vini; Rimmer, Chuck

    1992-01-01

    An integrated modeling capability that provides the tools by which entire optical systems and instruments can be simulated and optimized is a key technology development, applicable to all mission classes, especially astrophysics. Many of the future missions require optical systems that are physically much larger than anything flown before and yet must retain the characteristic sub-micron diffraction limited wavefront accuracy of their smaller precursors. It is no longer feasible to follow the path of 'cut and test' development; the sheer scale of these systems precludes many of the older techniques that rely upon ground evaluation of full size engineering units. The ability to accurately model (by computer) and optimize the entire flight system's integrated structural, thermal, and dynamic characteristics is essential. Two distinct integrated modeling capabilities are required. These are an initial design capability and a detailed design and optimization system. The content of an initial design package is shown. It would be a modular, workstation based code which allows preliminary integrated system analysis and trade studies to be carried out quickly by a single engineer or a small design team. A simple concept for a detailed design and optimization system is shown. This is a linkage of interface architecture that allows efficient interchange of information between existing large specialized optical, control, thermal, and structural design codes. The computing environment would be a network of large mainframe machines and its users would be project level design teams. More advanced concepts for detailed design systems would support interaction between modules and automated optimization of the entire system. Technology assessment and development plans for integrated package for initial design, interface development for detailed optimization, validation, and modeling research are presented.

  15. Who to Blame: Irrational Decision-Makers or Stupid Modelers? (Arne Richter Award for Outstanding Young Scientists Lecture)

    NASA Astrophysics Data System (ADS)

    Madani, Kaveh

    2016-04-01

    Water management benefits from a suite of modelling tools and techniques that help simplifying and understanding the complexities involved in managing water resource systems. Early water management models were mainly concerned with optimizing a single objective, related to the design, operations or management of water resource systems (e.g. economic cost, hydroelectricity production, reliability of water deliveries). Significant improvements in methodologies, computational capacity, and data availability over the last decades have resulted in developing more complex water management models that can now incorporate multiple objectives, various uncertainties, and big data. These models provide an improved understanding of complex water resource systems and provide opportunities for making positive impacts. Nevertheless, there remains an alarming mismatch between the optimal solutions developed by these models and the decisions made by managers and stakeholders of water resource systems. Modelers continue to consider decision makers as irrational agents who fail to implement the optimal solutions developed by sophisticated and mathematically rigours water management models. On the other hand, decision makers and stakeholders accuse modelers of being idealist, lacking a perfect understanding of reality, and developing 'smart' solutions that are not practical (stable). In this talk I will have a closer look at the mismatch between the optimality and stability of solutions and argue that conventional water resources management models suffer inherently from a full-cooperation assumption. According to this assumption, water resources management decisions are based on group rationality where in practice decisions are often based on individual rationality, making the group's optimal solution unstable for individually rational decision makers. I discuss how game theory can be used as an appropriate framework for addressing the irrational "rationality assumption" of water resources management models and for better capturing the social aspects of decision making in water management systems with multiple stakeholders.

  16. Optimization of Shipboard Manning Levels Using Imprint Pro Forces Module

    DTIC Science & Technology

    2015-09-01

    NPS-OR-15-008 NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA OPTIMIZATION OF SHIPBOARD MANNING LEVELS USING IMPRINT PRO...Optimization of Shipboard Manning Levels Using IMPRINT Pro Forces Module 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...ABSTRACT The Improved Performance Research Integration Tool ( IMPRINT ) is a dynamic, stochastic, discrete-event modeling tool used to develop a model

  17. Decision Support Model for Optimal Management of Coastal Gate

    NASA Astrophysics Data System (ADS)

    Ditthakit, Pakorn; Chittaladakorn, Suwatana

    2010-05-01

    The coastal areas are intensely settled by human beings owing to their fertility of natural resources. However, at present those areas are facing with water scarcity problems: inadequate water and poor water quality as a result of saltwater intrusion and inappropriate land-use management. To solve these problems, several measures have been exploited. The coastal gate construction is a structural measure widely performed in several countries. This manner requires the plan for suitably operating coastal gates. Coastal gate operation is a complicated task and usually concerns with the management of multiple purposes, which are generally conflicted one another. This paper delineates the methodology and used theories for developing decision support modeling for coastal gate operation scheduling. The developed model was based on coupling simulation and optimization model. The weighting optimization technique based on Differential Evolution (DE) was selected herein for solving multiple objective problems. The hydrodynamic and water quality models were repeatedly invoked during searching the optimal gate operations. In addition, two forecasting models:- Auto Regressive model (AR model) and Harmonic Analysis model (HA model) were applied for forecasting water levels and tide levels, respectively. To demonstrate the applicability of the developed model, it was applied to plan the operations for hypothetical system of Pak Phanang coastal gate system, located in Nakhon Si Thammarat province, southern part of Thailand. It was found that the proposed model could satisfyingly assist decision-makers for operating coastal gates under various environmental, ecological and hydraulic conditions.

  18. Topology Optimization of Lightweight Lattice Structural Composites Inspired by Cuttlefish Bone

    NASA Astrophysics Data System (ADS)

    Hu, Zhong; Gadipudi, Varun Kumar; Salem, David R.

    2018-03-01

    Lattice structural composites are of great interest to various industries where lightweight multifunctionality is important, especially aerospace. However, strong coupling among the composition, microstructure, porous topology, and fabrication of such materials impedes conventional trial-and-error experimental development. In this work, a discontinuous carbon fiber reinforced polymer matrix composite was adopted for structural design. A reliable and robust design approach for developing lightweight multifunctional lattice structural composites was proposed, inspired by biomimetics and based on topology optimization. Three-dimensional periodic lattice blocks were initially designed, inspired by the cuttlefish bone microstructure. The topologies of the three-dimensional periodic blocks were further optimized by computer modeling, and the mechanical properties of the topology optimized lightweight lattice structures were characterized by computer modeling. The lattice structures with optimal performance were identified.

  19. A staggered-grid finite-difference scheme optimized in the time–space domain for modeling scalar-wave propagation in geophysical problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Sirui, E-mail: siruitan@hotmail.com; Huang, Lianjie, E-mail: ljh@lanl.gov

    For modeling scalar-wave propagation in geophysical problems using finite-difference schemes, optimizing the coefficients of the finite-difference operators can reduce numerical dispersion. Most optimized finite-difference schemes for modeling seismic-wave propagation suppress only spatial but not temporal dispersion errors. We develop a novel optimized finite-difference scheme for numerical scalar-wave modeling to control dispersion errors not only in space but also in time. Our optimized scheme is based on a new stencil that contains a few more grid points than the standard stencil. We design an objective function for minimizing relative errors of phase velocities of waves propagating in all directions within amore » given range of wavenumbers. Dispersion analysis and numerical examples demonstrate that our optimized finite-difference scheme is computationally up to 2.5 times faster than the optimized schemes using the standard stencil to achieve the similar modeling accuracy for a given 2D or 3D problem. Compared with the high-order finite-difference scheme using the same new stencil, our optimized scheme reduces 50 percent of the computational cost to achieve the similar modeling accuracy. This new optimized finite-difference scheme is particularly useful for large-scale 3D scalar-wave modeling and inversion.« less

  20. Development of cost-effective surfactant flooding technology, Quarterly report, October 1995--December 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, G.A.; Sepehrnoori, K.

    1995-12-31

    The objective of this research is to develop cost-effective surfactant flooding technology by using simulation studies to evaluate and optimize alternative design strategies taking into account reservoir characteristics process chemistry, and process design options such as horizontal wells. Task 1 is the development of an improved numerical method for our simulator that will enable us to solve a wider class of these difficult simulation problems accurately and affordably. Task 2 is the application of this simulator to the optimization of surfactant flooding to reduce its risk and cost. In this quarter, we have continued working on Task 2 to optimizemore » surfactant flooding design and have included economic analysis to the optimization process. An economic model was developed using a spreadsheet and the discounted cash flow (DCF) method of economic analysis. The model was designed specifically for a domestic onshore surfactant flood and has been used to economically evaluate previous work that used a technical approach to optimization. The DCF model outputs common economic decision making criteria, such as net present value (NPV), internal rate of return (IRR), and payback period.« less

  1. 3D highway alignment optimization for Brookeville Bypass : final report.

    DOT National Transportation Integrated Search

    2005-06-01

    This study applies the previously developed Highway Alignment Optimization (HAO) : model to the MD 97 Bypass project in Brookeville, Maryland. The objective of this study is to : demonstrate the applicability of the HAO model to a real highway projec...

  2. Info-gap robust-satisficing model of foraging behavior: do foragers optimize or satisfice?

    PubMed

    Carmel, Yohay; Ben-Haim, Yakov

    2005-11-01

    In this note we compare two mathematical models of foraging that reflect two competing theories of animal behavior: optimizing and robust satisficing. The optimal-foraging model is based on the marginal value theorem (MVT). The robust-satisficing model developed here is an application of info-gap decision theory. The info-gap robust-satisficing model relates to the same circumstances described by the MVT. We show how these two alternatives translate into specific predictions that at some points are quite disparate. We test these alternative predictions against available data collected in numerous field studies with a large number of species from diverse taxonomic groups. We show that a large majority of studies appear to support the robust-satisficing model and reject the optimal-foraging model.

  3. An Optimization Framework for Dynamic, Distributed Real-Time Systems

    NASA Technical Reports Server (NTRS)

    Eckert, Klaus; Juedes, David; Welch, Lonnie; Chelberg, David; Bruggerman, Carl; Drews, Frank; Fleeman, David; Parrott, David; Pfarr, Barbara

    2003-01-01

    Abstract. This paper presents a model that is useful for developing resource allocation algorithms for distributed real-time systems .that operate in dynamic environments. Interesting aspects of the model include dynamic environments, utility and service levels, which provide a means for graceful degradation in resource-constrained situations and support optimization of the allocation of resources. The paper also provides an allocation algorithm that illustrates how to use the model for producing feasible, optimal resource allocations.

  4. H∞ memory feedback control with input limitation minimization for offshore jacket platform stabilization

    NASA Astrophysics Data System (ADS)

    Yang, Jia Sheng

    2018-06-01

    In this paper, we investigate a H∞ memory controller with input limitation minimization (HMCIM) for offshore jacket platforms stabilization. The main objective of this study is to reduce the control consumption as well as protect the actuator when satisfying the requirement of the system performance. First, we introduce a dynamic model of offshore platform with low order main modes based on mode reduction method in numerical analysis. Then, based on H∞ control theory and matrix inequality techniques, we develop a novel H∞ memory controller with input limitation. Furthermore, a non-convex optimization model to minimize input energy consumption is proposed. Since it is difficult to solve this non-convex optimization model by optimization algorithm, we use a relaxation method with matrix operations to transform this non-convex optimization model to be a convex optimization model. Thus, it could be solved by a standard convex optimization solver in MATLAB or CPLEX. Finally, several numerical examples are given to validate the proposed models and methods.

  5. The integrated manual and automatic control of complex flight systems

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.

    1991-01-01

    Research dealt with the general area of optimal flight control synthesis for manned flight vehicles. The work was generic; no specific vehicle was the focus of study. However, the class of vehicles generally considered were those for which high authority, multivariable control systems might be considered, for the purpose of stabilization and the achievement of optimal handling characteristics. Within this scope, the topics of study included several optimal control synthesis techniques, control-theoretic modeling of the human operator in flight control tasks, and the development of possible handling qualities metrics and/or measures of merit. Basic contributions were made in all these topics, including human operator (pilot) models for multi-loop tasks, optimal output feedback flight control synthesis techniques; experimental validations of the methods developed, and fundamental modeling studies of the air-to-air tracking and flared landing tasks.

  6. Heat transfer optimization for air-mist cooling between a stack of parallel plates

    NASA Astrophysics Data System (ADS)

    Issa, Roy J.

    2010-06-01

    A theoretical model is developed to predict the upper limit heat transfer between a stack of parallel plates subject to multiphase cooling by air-mist flow. The model predicts the optimal separation distance between the plates based on the development of the boundary layers for small and large separation distances, and for dilute mist conditions. Simulation results show the optimal separation distance to be strongly dependent on the liquid-to-air mass flow rate loading ratio, and reach a limit for a critical loading. For these dilute spray conditions, complete evaporation of the droplets takes place. Simulation results also show the optimal separation distance decreases with the increase in the mist flow rate. The proposed theoretical model shall lead to a better understanding of the design of fins spacing in heat exchangers where multiphase spray cooling is used.

  7. A Hierarchical Modeling for Reactive Power Optimization With Joint Transmission and Distribution Networks by Curve Fitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Tao; Li, Cheng; Huang, Can

    Here, in order to solve the reactive power optimization with joint transmission and distribution networks, a hierarchical modeling method is proposed in this paper. It allows the reactive power optimization of transmission and distribution networks to be performed separately, leading to a master–slave structure and improves traditional centralized modeling methods by alleviating the big data problem in a control center. Specifically, the transmission-distribution-network coordination issue of the hierarchical modeling method is investigated. First, a curve-fitting approach is developed to provide a cost function of the slave model for the master model, which reflects the impacts of each slave model. Second,more » the transmission and distribution networks are decoupled at feeder buses, and all the distribution networks are coordinated by the master reactive power optimization model to achieve the global optimality. Finally, numerical results on two test systems verify the effectiveness of the proposed hierarchical modeling and curve-fitting methods.« less

  8. A Hierarchical Modeling for Reactive Power Optimization With Joint Transmission and Distribution Networks by Curve Fitting

    DOE PAGES

    Ding, Tao; Li, Cheng; Huang, Can; ...

    2017-01-09

    Here, in order to solve the reactive power optimization with joint transmission and distribution networks, a hierarchical modeling method is proposed in this paper. It allows the reactive power optimization of transmission and distribution networks to be performed separately, leading to a master–slave structure and improves traditional centralized modeling methods by alleviating the big data problem in a control center. Specifically, the transmission-distribution-network coordination issue of the hierarchical modeling method is investigated. First, a curve-fitting approach is developed to provide a cost function of the slave model for the master model, which reflects the impacts of each slave model. Second,more » the transmission and distribution networks are decoupled at feeder buses, and all the distribution networks are coordinated by the master reactive power optimization model to achieve the global optimality. Finally, numerical results on two test systems verify the effectiveness of the proposed hierarchical modeling and curve-fitting methods.« less

  9. Genetic programming assisted stochastic optimization strategies for optimization of glucose to gluconic acid fermentation.

    PubMed

    Cheema, Jitender Jit Singh; Sankpal, Narendra V; Tambe, Sanjeev S; Kulkarni, Bhaskar D

    2002-01-01

    This article presents two hybrid strategies for the modeling and optimization of the glucose to gluconic acid batch bioprocess. In the hybrid approaches, first a novel artificial intelligence formalism, namely, genetic programming (GP), is used to develop a process model solely from the historic process input-output data. In the next step, the input space of the GP-based model, representing process operating conditions, is optimized using two stochastic optimization (SO) formalisms, viz., genetic algorithms (GAs) and simultaneous perturbation stochastic approximation (SPSA). These SO formalisms possess certain unique advantages over the commonly used gradient-based optimization techniques. The principal advantage of the GP-GA and GP-SPSA hybrid techniques is that process modeling and optimization can be performed exclusively from the process input-output data without invoking the detailed knowledge of the process phenomenology. The GP-GA and GP-SPSA techniques have been employed for modeling and optimization of the glucose to gluconic acid bioprocess, and the optimized process operating conditions obtained thereby have been compared with those obtained using two other hybrid modeling-optimization paradigms integrating artificial neural networks (ANNs) and GA/SPSA formalisms. Finally, the overall optimized operating conditions given by the GP-GA method, when verified experimentally resulted in a significant improvement in the gluconic acid yield. The hybrid strategies presented here are generic in nature and can be employed for modeling and optimization of a wide variety of batch and continuous bioprocesses.

  10. An integrated radar model solution for mission level performance and cost trades

    NASA Astrophysics Data System (ADS)

    Hodge, John; Duncan, Kerron; Zimmerman, Madeline; Drupp, Rob; Manno, Mike; Barrett, Donald; Smith, Amelia

    2017-05-01

    A fully integrated Mission-Level Radar model is in development as part of a multi-year effort under the Northrop Grumman Mission Systems (NGMS) sector's Model Based Engineering (MBE) initiative to digitally interconnect and unify previously separate performance and cost models. In 2016, an NGMS internal research and development (IR and D) funded multidisciplinary team integrated radio frequency (RF), power, control, size, weight, thermal, and cost models together using a commercial-off-the-shelf software, ModelCenter, for an Active Electronically Scanned Array (AESA) radar system. Each represented model was digitally connected with standard interfaces and unified to allow end-to-end mission system optimization and trade studies. The radar model was then linked to the Air Force's own mission modeling framework (AFSIM). The team first had to identify the necessary models, and with the aid of subject matter experts (SMEs) understand and document the inputs, outputs, and behaviors of the component models. This agile development process and collaboration enabled rapid integration of disparate models and the validation of their combined system performance. This MBE framework will allow NGMS to design systems more efficiently and affordably, optimize architectures, and provide increased value to the customer. The model integrates detailed component models that validate cost and performance at the physics level with high-level models that provide visualization of a platform mission. This connectivity of component to mission models allows hardware and software design solutions to be better optimized to meet mission needs, creating cost-optimal solutions for the customer, while reducing design cycle time through risk mitigation and early validation of design decisions.

  11. An efficient surrogate-based simulation-optimization method for calibrating a regional MODFLOW model

    NASA Astrophysics Data System (ADS)

    Chen, Mingjie; Izady, Azizallah; Abdalla, Osman A.

    2017-01-01

    Simulation-optimization method entails a large number of model simulations, which is computationally intensive or even prohibitive if the model simulation is extremely time-consuming. Statistical models have been examined as a surrogate of the high-fidelity physical model during simulation-optimization process to tackle this problem. Among them, Multivariate Adaptive Regression Splines (MARS), a non-parametric adaptive regression method, is superior in overcoming problems of high-dimensions and discontinuities of the data. Furthermore, the stability and accuracy of MARS model can be improved by bootstrap aggregating methods, namely, bagging. In this paper, Bagging MARS (BMARS) method is integrated to a surrogate-based simulation-optimization framework to calibrate a three-dimensional MODFLOW model, which is developed to simulate the groundwater flow in an arid hardrock-alluvium region in northwestern Oman. The physical MODFLOW model is surrogated by the statistical model developed using BMARS algorithm. The surrogate model, which is fitted and validated using training dataset generated by the physical model, can approximate solutions rapidly. An efficient Sobol' method is employed to calculate global sensitivities of head outputs to input parameters, which are used to analyze their importance for the model outputs spatiotemporally. Only sensitive parameters are included in the calibration process to further improve the computational efficiency. Normalized root mean square error (NRMSE) between measured and simulated heads at observation wells is used as the objective function to be minimized during optimization. The reasonable history match between the simulated and observed heads demonstrated feasibility of this high-efficient calibration framework.

  12. Aeroelastic Optimization Study Based on X-56A Model

    NASA Technical Reports Server (NTRS)

    Li, Wesley; Pak, Chan-Gi

    2014-01-01

    A design process which incorporates the object-oriented multidisciplinary design, analysis, and optimization (MDAO) tool and the aeroelastic effects of high fidelity finite element models to characterize the design space was successfully developed and established. Two multidisciplinary design optimization studies using an object-oriented MDAO tool developed at NASA Armstrong Flight Research Center were presented. The first study demonstrates the use of aeroelastic tailoring concepts to minimize the structural weight while meeting the design requirements including strength, buckling, and flutter. A hybrid and discretization optimization approach was implemented to improve accuracy and computational efficiency of a global optimization algorithm. The second study presents a flutter mass balancing optimization study. The results provide guidance to modify the fabricated flexible wing design and move the design flutter speeds back into the flight envelope so that the original objective of X-56A flight test can be accomplished.

  13. From leaf longevity to canopy seasonality: a carbon optimality phenology model for tropical evergreen forests

    NASA Astrophysics Data System (ADS)

    Xu, X.; Medvigy, D.; Wu, J.; Wright, S. J.; Kitajima, K.; Pacala, S. W.

    2016-12-01

    Tropical evergreen forests play a key role in the global carbon, water and energy cycles. Despite apparent evergreenness, this biome shows strong seasonality in leaf litter and photosynthesis. Recent studies have suggested that this seasonality is not directly related to environmental variability but is dominated by seasonal changes of leaf development and senescence. Meanwhile, current terrestrial biosphere models (TBMs) can not capture this pattern because leaf life cycle is highly underrepresented. One challenge to model this leaf life cycle is the remarkable diversity in leaf longevity, ranging from several weeks to multiple years. Ecologists have proposed models where leaf longevity is regarded as a strategy to optimize carbon gain. However previous optimality models can not be readily integrated into TBMs because (i) there are still large biases in predicted leaf longevity and (ii) it is never tested whether the carbon optimality model can capture the observed seasonality in leaf demography and canopy photosynthesis. In this study, we develop a new carbon optimality model for leaf demography. The novelty of our approach is two-fold. First, we incorporate a mechanistic photosynthesis model that can better estimate leaf carbon gain. Second, we consider the interspecific variations in leaf senescence rate, which strongly influence the modelled optimal carbon gain. We test our model with a leaf trait database for Panamanian evergreen forests. Then, we apply the model at seasonal scale and compare simulated seasonality of leaf litter and canopy photosynthesis with in-situ observations from several Amazonian forest sites. We find that (i) compared with original optimality model, the regression slope between observed and predicted leaf longevity increases from 0.15 to 1.04 in our new model and (ii) that our new model can capture the observed seasonal variations of leaf demography and canopy photosynthesis. Our results suggest that the phenology in tropical evergreen forests might result from plant adaptation to optimize canopy carbon gain. Finally, this proposed trait-driven prognostic phenology model could potentially be incorporated into next generation TBMs to improve simulation of carbon and water fluxes in the tropics.

  14. ConvAn: a convergence analyzing tool for optimization of biochemical networks.

    PubMed

    Kostromins, Andrejs; Mozga, Ivars; Stalidzans, Egils

    2012-01-01

    Dynamic models of biochemical networks usually are described as a system of nonlinear differential equations. In case of optimization of models for purpose of parameter estimation or design of new properties mainly numerical methods are used. That causes problems of optimization predictability as most of numerical optimization methods have stochastic properties and the convergence of the objective function to the global optimum is hardly predictable. Determination of suitable optimization method and necessary duration of optimization becomes critical in case of evaluation of high number of combinations of adjustable parameters or in case of large dynamic models. This task is complex due to variety of optimization methods, software tools and nonlinearity features of models in different parameter spaces. A software tool ConvAn is developed to analyze statistical properties of convergence dynamics for optimization runs with particular optimization method, model, software tool, set of optimization method parameters and number of adjustable parameters of the model. The convergence curves can be normalized automatically to enable comparison of different methods and models in the same scale. By the help of the biochemistry adapted graphical user interface of ConvAn it is possible to compare different optimization methods in terms of ability to find the global optima or values close to that as well as the necessary computational time to reach them. It is possible to estimate the optimization performance for different number of adjustable parameters. The functionality of ConvAn enables statistical assessment of necessary optimization time depending on the necessary optimization accuracy. Optimization methods, which are not suitable for a particular optimization task, can be rejected if they have poor repeatability or convergence properties. The software ConvAn is freely available on www.biosystems.lv/convan. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Design Optimization of Microalloyed Steels Using Thermodynamics Principles and Neural-Network-Based Modeling

    NASA Astrophysics Data System (ADS)

    Mohanty, Itishree; Chintha, Appa Rao; Kundu, Saurabh

    2018-06-01

    The optimization of process parameters and composition is essential to achieve the desired properties with minimal additions of alloying elements in microalloyed steels. In some cases, it may be possible to substitute such steels for those which are more richly alloyed. However, process control involves a larger number of parameters, making the relationship between structure and properties difficult to assess. In this work, neural network models have been developed to estimate the mechanical properties of steels containing Nb + V or Nb + Ti. The outcomes have been validated by thermodynamic calculations and plant data. It has been shown that subtle thermodynamic trends can be captured by the neural network model. Some experimental rolling data have also been used to support the model, which in addition has been applied to calculate the costs of optimizing microalloyed steel. The generated pareto fronts identify many combinations of strength and elongation, making it possible to select composition and process parameters for a range of applications. The ANN model and the optimization model are being used for prediction of properties in a running plant and for development of new alloys, respectively.

  16. Modelling and multi objective optimization of WEDM of commercially Monel super alloy using evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Varun, Sajja; Reddy, Kalakada Bhargav Bal; Vardhan Reddy, R. R. Vishnu

    2016-09-01

    In this research work, development of a multi response optimization technique has been undertaken, using traditional desirability analysis and non-traditional particle swarm optimization techniques (for different customer's priorities) in wire electrical discharge machining (WEDM). Monel 400 has been selected as work material for experimentation. The effect of key process parameters such as pulse on time (TON), pulse off time (TOFF), peak current (IP), wire feed (WF) were on material removal rate (MRR) and surface roughness(SR) in WEDM operation were investigated. Further, the responses such as MRR and SR were modelled empirically through regression analysis. The developed models can be used by the machinists to predict the MRR and SR over a wide range of input parameters. The optimization of multiple responses has been done for satisfying the priorities of multiple users by using Taguchi-desirability function method and particle swarm optimization technique. The analysis of variance (ANOVA) is also applied to investigate the effect of influential parameters. Finally, the confirmation experiments were conducted for the optimal set of machining parameters, and the betterment has been proved.

  17. Optimizing low impact development (LID) for stormwater runoff treatment in urban area, Korea: Experimental and modeling approach.

    PubMed

    Baek, Sang-Soo; Choi, Dong-Ho; Jung, Jae-Woon; Lee, Hyung-Jin; Lee, Hyuk; Yoon, Kwang-Sik; Cho, Kyung Hwa

    2015-12-01

    Currently, continued urbanization and development result in an increase of impervious areas and surface runoff including pollutants. Also one of the greatest issues in pollutant emissions is the first flush effect (FFE), which implies a greater discharge rate of pollutant mass in the early part in the storm. Low impact development (LID) practices have been mentioned as a promising strategy to control urban stormwater runoff and pollution in the urban ecosystem. However, this requires many experimental and modeling efforts to test LID characteristics and propose an adequate guideline for optimizing LID management. In this study, we propose a novel methodology to optimize the sizes of different types of LID by conducting intensive stormwater monitoring and numerical modeling in a commercial site in Korea. The methodology proposed optimizes LID size in an attempt to moderate FFE on a receiving waterbody. Thereby, the main objective of the optimization is to minimize mass first flush (MFF), which is an indicator for quantifying FFE. The optimal sizes of 6 different LIDs ranged from 1.2 mm to 3.0 mm in terms of runoff depths, which significantly moderate the FFE. We hope that the new proposed methodology can be instructive for establishing LID strategies to mitigate FFE. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Comparative study of surrogate models for groundwater contamination source identification at DNAPL-contaminated sites

    NASA Astrophysics Data System (ADS)

    Hou, Zeyu; Lu, Wenxi

    2018-05-01

    Knowledge of groundwater contamination sources is critical for effectively protecting groundwater resources, estimating risks, mitigating disaster, and designing remediation strategies. Many methods for groundwater contamination source identification (GCSI) have been developed in recent years, including the simulation-optimization technique. This study proposes utilizing a support vector regression (SVR) model and a kernel extreme learning machine (KELM) model to enrich the content of the surrogate model. The surrogate model was itself key in replacing the simulation model, reducing the huge computational burden of iterations in the simulation-optimization technique to solve GCSI problems, especially in GCSI problems of aquifers contaminated by dense nonaqueous phase liquids (DNAPLs). A comparative study between the Kriging, SVR, and KELM models is reported. Additionally, there is analysis of the influence of parameter optimization and the structure of the training sample dataset on the approximation accuracy of the surrogate model. It was found that the KELM model was the most accurate surrogate model, and its performance was significantly improved after parameter optimization. The approximation accuracy of the surrogate model to the simulation model did not always improve with increasing numbers of training samples. Using the appropriate number of training samples was critical for improving the performance of the surrogate model and avoiding unnecessary computational workload. It was concluded that the KELM model developed in this work could reasonably predict system responses in given operation conditions. Replacing the simulation model with a KELM model considerably reduced the computational burden of the simulation-optimization process and also maintained high computation accuracy.

  19. A musculoskeletal foot model for clinical gait analysis.

    PubMed

    Saraswat, Prabhav; Andersen, Michael S; Macwilliams, Bruce A

    2010-06-18

    Several full body musculoskeletal models have been developed for research applications and these models may potentially be developed into useful clinical tools to assess gait pathologies. Existing full-body musculoskeletal models treat the foot as a single segment and ignore the motions of the intrinsic joints of the foot. This assumption limits the use of such models in clinical cases with significant foot deformities. Therefore, a three-segment musculoskeletal model of the foot was developed to match the segmentation of a recently developed multi-segment kinematic foot model. All the muscles and ligaments of the foot spanning the modeled joints were included. Muscle pathways were adjusted with an optimization routine to minimize the difference between the muscle flexion-extension moment arms from the model and moment arms reported in literature. The model was driven by walking data from five normal pediatric subjects (aged 10.6+/-1.57 years) and muscle forces and activation levels required to produce joint motions were calculated using an inverse dynamic analysis approach. Due to the close proximity of markers on the foot, small marker placement error during motion data collection may lead to significant differences in musculoskeletal model outcomes. Therefore, an optimization routine was developed to enforce joint constraints, optimally scale each segment length and adjust marker positions. To evaluate the model outcomes, the muscle activation patterns during walking were compared with electromyography (EMG) activation patterns reported in the literature. Model-generated muscle activation patterns were observed to be similar to the EMG activation patterns. Published by Elsevier Ltd.

  20. An optimal sample data usage strategy to minimize overfitting and underfitting effects in regression tree models based on remotely-sensed data

    USGS Publications Warehouse

    Gu, Yingxin; Wylie, Bruce K.; Boyte, Stephen; Picotte, Joshua J.; Howard, Danny; Smith, Kelcy; Nelson, Kurtis

    2016-01-01

    Regression tree models have been widely used for remote sensing-based ecosystem mapping. Improper use of the sample data (model training and testing data) may cause overfitting and underfitting effects in the model. The goal of this study is to develop an optimal sampling data usage strategy for any dataset and identify an appropriate number of rules in the regression tree model that will improve its accuracy and robustness. Landsat 8 data and Moderate-Resolution Imaging Spectroradiometer-scaled Normalized Difference Vegetation Index (NDVI) were used to develop regression tree models. A Python procedure was designed to generate random replications of model parameter options across a range of model development data sizes and rule number constraints. The mean absolute difference (MAD) between the predicted and actual NDVI (scaled NDVI, value from 0–200) and its variability across the different randomized replications were calculated to assess the accuracy and stability of the models. In our case study, a six-rule regression tree model developed from 80% of the sample data had the lowest MAD (MADtraining = 2.5 and MADtesting = 2.4), which was suggested as the optimal model. This study demonstrates how the training data and rule number selections impact model accuracy and provides important guidance for future remote-sensing-based ecosystem modeling.

  1. An empirical model for optimal highway durability in cold regions.

    DOT National Transportation Integrated Search

    2016-03-10

    We develop an empirical tool to estimate optimal highway durability in cold regions. To test the model, we assemble a data set : containing all highway construction and maintenance projects in Arizona and Washington State from 1990 to 2014. The data ...

  2. Stochastic modelling of turbulent combustion for design optimization of gas turbine combustors

    NASA Astrophysics Data System (ADS)

    Mehanna Ismail, Mohammed Ali

    The present work covers the development and the implementation of an efficient algorithm for the design optimization of gas turbine combustors. The purpose is to explore the possibilities and indicate constructive suggestions for optimization techniques as alternative methods for designing gas turbine combustors. The algorithm is general to the extent that no constraints are imposed on the combustion phenomena or on the combustor configuration. The optimization problem is broken down into two elementary problems: the first is the optimum search algorithm, and the second is the turbulent combustion model used to determine the combustor performance parameters. These performance parameters constitute the objective and physical constraints in the optimization problem formulation. The examination of both turbulent combustion phenomena and the gas turbine design process suggests that the turbulent combustion model represents a crucial part of the optimization algorithm. The basic requirements needed for a turbulent combustion model to be successfully used in a practical optimization algorithm are discussed. In principle, the combustion model should comply with the conflicting requirements of high fidelity, robustness and computational efficiency. To that end, the problem of turbulent combustion is discussed and the current state of the art of turbulent combustion modelling is reviewed. According to this review, turbulent combustion models based on the composition PDF transport equation are found to be good candidates for application in the present context. However, these models are computationally expensive. To overcome this difficulty, two different models based on the composition PDF transport equation were developed: an improved Lagrangian Monte Carlo composition PDF algorithm and the generalized stochastic reactor model. Improvements in the Lagrangian Monte Carlo composition PDF model performance and its computational efficiency were achieved through the implementation of time splitting, variable stochastic fluid particle mass control, and a second order time accurate (predictor-corrector) scheme used for solving the stochastic differential equations governing the particles evolution. The model compared well against experimental data found in the literature for two different configurations: bluff body and swirl stabilized combustors. The generalized stochastic reactor is a newly developed model. This model relies on the generalization of the concept of the classical stochastic reactor theory in the sense that it accounts for both finite micro- and macro-mixing processes. (Abstract shortened by UMI.)

  3. Automated optimization of water-water interaction parameters for a coarse-grained model.

    PubMed

    Fogarty, Joseph C; Chiu, See-Wing; Kirby, Peter; Jakobsson, Eric; Pandit, Sagar A

    2014-02-13

    We have developed an automated parameter optimization software framework (ParOpt) that implements the Nelder-Mead simplex algorithm and applied it to a coarse-grained polarizable water model. The model employs a tabulated, modified Morse potential with decoupled short- and long-range interactions incorporating four water molecules per interaction site. Polarizability is introduced by the addition of a harmonic angle term defined among three charged points within each bead. The target function for parameter optimization was based on the experimental density, surface tension, electric field permittivity, and diffusion coefficient. The model was validated by comparison of statistical quantities with experimental observation. We found very good performance of the optimization procedure and good agreement of the model with experiment.

  4. Fast machine-learning online optimization of ultra-cold-atom experiments.

    PubMed

    Wigley, P B; Everitt, P J; van den Hengel, A; Bastian, J W; Sooriyabandara, M A; McDonald, G D; Hardman, K S; Quinlivan, C D; Manju, P; Kuhn, C C N; Petersen, I R; Luiten, A N; Hope, J J; Robins, N P; Hush, M R

    2016-05-16

    We apply an online optimization process based on machine learning to the production of Bose-Einstein condensates (BEC). BEC is typically created with an exponential evaporation ramp that is optimal for ergodic dynamics with two-body s-wave interactions and no other loss rates, but likely sub-optimal for real experiments. Through repeated machine-controlled scientific experimentation and observations our 'learner' discovers an optimal evaporation ramp for BEC production. In contrast to previous work, our learner uses a Gaussian process to develop a statistical model of the relationship between the parameters it controls and the quality of the BEC produced. We demonstrate that the Gaussian process machine learner is able to discover a ramp that produces high quality BECs in 10 times fewer iterations than a previously used online optimization technique. Furthermore, we show the internal model developed can be used to determine which parameters are essential in BEC creation and which are unimportant, providing insight into the optimization process of the system.

  5. Fast machine-learning online optimization of ultra-cold-atom experiments

    PubMed Central

    Wigley, P. B.; Everitt, P. J.; van den Hengel, A.; Bastian, J. W.; Sooriyabandara, M. A.; McDonald, G. D.; Hardman, K. S.; Quinlivan, C. D.; Manju, P.; Kuhn, C. C. N.; Petersen, I. R.; Luiten, A. N.; Hope, J. J.; Robins, N. P.; Hush, M. R.

    2016-01-01

    We apply an online optimization process based on machine learning to the production of Bose-Einstein condensates (BEC). BEC is typically created with an exponential evaporation ramp that is optimal for ergodic dynamics with two-body s-wave interactions and no other loss rates, but likely sub-optimal for real experiments. Through repeated machine-controlled scientific experimentation and observations our ‘learner’ discovers an optimal evaporation ramp for BEC production. In contrast to previous work, our learner uses a Gaussian process to develop a statistical model of the relationship between the parameters it controls and the quality of the BEC produced. We demonstrate that the Gaussian process machine learner is able to discover a ramp that produces high quality BECs in 10 times fewer iterations than a previously used online optimization technique. Furthermore, we show the internal model developed can be used to determine which parameters are essential in BEC creation and which are unimportant, providing insight into the optimization process of the system. PMID:27180805

  6. Optimal symmetric flight studies

    NASA Technical Reports Server (NTRS)

    Weston, A. R.; Menon, P. K. A.; Bilimoria, K. D.; Cliff, E. M.; Kelley, H. J.

    1985-01-01

    Several topics in optimal symmetric flight of airbreathing vehicles are examined. In one study, an approximation scheme designed for onboard real-time energy management of climb-dash is developed and calculations for a high-performance aircraft presented. In another, a vehicle model intermediate in complexity between energy and point-mass models is explored and some quirks in optimal flight characteristics peculiar to the model uncovered. In yet another study, energy-modelling procedures are re-examined with a view to stretching the range of validity of zeroth-order approximation by special choice of state variables. In a final study, time-fuel tradeoffs in cruise-dash are examined for the consequences of nonconvexities appearing in the classical steady cruise-dash model. Two appendices provide retrospective looks at two early publications on energy modelling and related optimal control theory.

  7. Multidisciplinary Optimization Approach for Design and Operation of Constrained and Complex-shaped Space Systems

    NASA Astrophysics Data System (ADS)

    Lee, Dae Young

    The design of a small satellite is challenging since they are constrained by mass, volume, and power. To mitigate these constraint effects, designers adopt deployable configurations on the spacecraft that result in an interesting and difficult optimization problem. The resulting optimization problem is challenging due to the computational complexity caused by the large number of design variables and the model complexity created by the deployables. Adding to these complexities, there is a lack of integration of the design optimization systems into operational optimization, and the utility maximization of spacecraft in orbit. The developed methodology enables satellite Multidisciplinary Design Optimization (MDO) that is extendable to on-orbit operation. Optimization of on-orbit operations is possible with MDO since the model predictive controller developed in this dissertation guarantees the achievement of the on-ground design behavior in orbit. To enable the design optimization of highly constrained and complex-shaped space systems, the spherical coordinate analysis technique, called the "Attitude Sphere", is extended and merged with an additional engineering tools like OpenGL. OpenGL's graphic acceleration facilitates the accurate estimation of the shadow-degraded photovoltaic cell area. This technique is applied to the design optimization of the satellite Electric Power System (EPS) and the design result shows that the amount of photovoltaic power generation can be increased more than 9%. Based on this initial methodology, the goal of this effort is extended from Single Discipline Optimization to Multidisciplinary Optimization, which includes the design and also operation of the EPS, Attitude Determination and Control System (ADCS), and communication system. The geometry optimization satisfies the conditions of the ground development phase; however, the operation optimization may not be as successful as expected in orbit due to disturbances. To address this issue, for the ADCS operations, controllers based on Model Predictive Control that are effective for constraint handling were developed and implemented. All the suggested design and operation methodologies are applied to a mission "CADRE", which is space weather mission scheduled for operation in 2016. This application demonstrates the usefulness and capability of the methodology to enhance CADRE's capabilities, and its ability to be applied to a variety of missions.

  8. Review on applications of artificial intelligence methods for dam and reservoir-hydro-environment models.

    PubMed

    Allawi, Mohammed Falah; Jaafar, Othman; Mohamad Hamzah, Firdaus; Abdullah, Sharifah Mastura Syed; El-Shafie, Ahmed

    2018-05-01

    Efficacious operation for dam and reservoir system could guarantee not only a defenselessness policy against natural hazard but also identify rule to meet the water demand. Successful operation of dam and reservoir systems to ensure optimal use of water resources could be unattainable without accurate and reliable simulation models. According to the highly stochastic nature of hydrologic parameters, developing accurate predictive model that efficiently mimic such a complex pattern is an increasing domain of research. During the last two decades, artificial intelligence (AI) techniques have been significantly utilized for attaining a robust modeling to handle different stochastic hydrological parameters. AI techniques have also shown considerable progress in finding optimal rules for reservoir operation. This review research explores the history of developing AI in reservoir inflow forecasting and prediction of evaporation from a reservoir as the major components of the reservoir simulation. In addition, critical assessment of the advantages and disadvantages of integrated AI simulation methods with optimization methods has been reported. Future research on the potential of utilizing new innovative methods based AI techniques for reservoir simulation and optimization models have also been discussed. Finally, proposal for the new mathematical procedure to accomplish the realistic evaluation of the whole optimization model performance (reliability, resilience, and vulnerability indices) has been recommended.

  9. Urine sampling and collection system optimization and testing

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.; Geating, J. A.; Koesterer, M. G.

    1975-01-01

    A Urine Sampling and Collection System (USCS) engineering model was developed to provide for the automatic collection, volume sensing and sampling of urine from each micturition. The purpose of the engineering model was to demonstrate verification of the system concept. The objective of the optimization and testing program was to update the engineering model, to provide additional performance features and to conduct system testing to determine operational problems. Optimization tasks were defined as modifications to minimize system fluid residual and addition of thermoelectric cooling.

  10. The Preventive Control of a Dengue Disease Using Pontryagin Minimum Principal

    NASA Astrophysics Data System (ADS)

    Ratna Sari, Eminugroho; Insani, Nur; Lestari, Dwi

    2017-06-01

    Behaviour analysis for host-vector model without control of dengue disease is based on the value of basic reproduction number obtained using next generation matrices. Furthermore, the model is further developed involving a preventive control to minimize the contact between host and vector. The purpose is to obtain an optimal preventive strategy with minimal cost. The Pontryagin Minimum Principal is used to find the optimal control analytically. The derived optimality model is then solved numerically to investigate control effort to reduce infected class.

  11. Optimization Control of the Color-Coating Production Process for Model Uncertainty

    PubMed Central

    He, Dakuo; Wang, Zhengsong; Yang, Le; Mao, Zhizhong

    2016-01-01

    Optimized control of the color-coating production process (CCPP) aims at reducing production costs and improving economic efficiency while meeting quality requirements. However, because optimization control of the CCPP is hampered by model uncertainty, a strategy that considers model uncertainty is proposed. Previous work has introduced a mechanistic model of CCPP based on process analysis to simulate the actual production process and generate process data. The partial least squares method is then applied to develop predictive models of film thickness and economic efficiency. To manage the model uncertainty, the robust optimization approach is introduced to improve the feasibility of the optimized solution. Iterative learning control is then utilized to further refine the model uncertainty. The constrained film thickness is transformed into one of the tracked targets to overcome the drawback that traditional iterative learning control cannot address constraints. The goal setting of economic efficiency is updated continuously according to the film thickness setting until this reaches its desired value. Finally, fuzzy parameter adjustment is adopted to ensure that the economic efficiency and film thickness converge rapidly to their optimized values under the constraint conditions. The effectiveness of the proposed optimization control strategy is validated by simulation results. PMID:27247563

  12. Optimization Control of the Color-Coating Production Process for Model Uncertainty.

    PubMed

    He, Dakuo; Wang, Zhengsong; Yang, Le; Mao, Zhizhong

    2016-01-01

    Optimized control of the color-coating production process (CCPP) aims at reducing production costs and improving economic efficiency while meeting quality requirements. However, because optimization control of the CCPP is hampered by model uncertainty, a strategy that considers model uncertainty is proposed. Previous work has introduced a mechanistic model of CCPP based on process analysis to simulate the actual production process and generate process data. The partial least squares method is then applied to develop predictive models of film thickness and economic efficiency. To manage the model uncertainty, the robust optimization approach is introduced to improve the feasibility of the optimized solution. Iterative learning control is then utilized to further refine the model uncertainty. The constrained film thickness is transformed into one of the tracked targets to overcome the drawback that traditional iterative learning control cannot address constraints. The goal setting of economic efficiency is updated continuously according to the film thickness setting until this reaches its desired value. Finally, fuzzy parameter adjustment is adopted to ensure that the economic efficiency and film thickness converge rapidly to their optimized values under the constraint conditions. The effectiveness of the proposed optimization control strategy is validated by simulation results.

  13. SU-F-R-10: Selecting the Optimal Solution for Multi-Objective Radiomics Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Z; Folkert, M; Wang, J

    2016-06-15

    Purpose: To develop an evidential reasoning approach for selecting the optimal solution from a Pareto solution set obtained by a multi-objective radiomics model for predicting distant failure in lung SBRT. Methods: In the multi-objective radiomics model, both sensitivity and specificity are considered as the objective functions simultaneously. A Pareto solution set with many feasible solutions will be resulted from the multi-objective optimization. In this work, an optimal solution Selection methodology for Multi-Objective radiomics Learning model using the Evidential Reasoning approach (SMOLER) was proposed to select the optimal solution from the Pareto solution set. The proposed SMOLER method used the evidentialmore » reasoning approach to calculate the utility of each solution based on pre-set optimal solution selection rules. The solution with the highest utility was chosen as the optimal solution. In SMOLER, an optimal learning model coupled with clonal selection algorithm was used to optimize model parameters. In this study, PET, CT image features and clinical parameters were utilized for predicting distant failure in lung SBRT. Results: Total 126 solution sets were generated by adjusting predictive model parameters. Each Pareto set contains 100 feasible solutions. The solution selected by SMOLER within each Pareto set was compared to the manually selected optimal solution. Five-cross-validation was used to evaluate the optimal solution selection accuracy of SMOLER. The selection accuracies for five folds were 80.00%, 69.23%, 84.00%, 84.00%, 80.00%, respectively. Conclusion: An optimal solution selection methodology for multi-objective radiomics learning model using the evidential reasoning approach (SMOLER) was proposed. Experimental results show that the optimal solution can be found in approximately 80% cases.« less

  14. Revisiting Intel Xeon Phi optimization of Thompson cloud microphysics scheme in Weather Research and Forecasting (WRF) model

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen

    2015-10-01

    The Thompson cloud microphysics scheme is a sophisticated cloud microphysics scheme in the Weather Research and Forecasting (WRF) model. The scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. Compared to the earlier microphysics schemes, the Thompson scheme incorporates a large number of improvements. Thus, we have optimized the speed of this important part of WRF. Intel Many Integrated Core (MIC) ushers in a new era of supercomputing speed, performance, and compatibility. It allows the developers to run code at trillions of calculations per second using the familiar programming model. In this paper, we present our results of optimizing the Thompson microphysics scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The coprocessor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. New optimizations for an updated Thompson scheme are discusses in this paper. The optimizations improved the performance of the original Thompson code on Xeon Phi 7120P by a factor of 1.8x. Furthermore, the same optimizations improved the performance of the Thompson on a dual socket configuration of eight core Intel Xeon E5-2670 CPUs by a factor of 1.8x compared to the original Thompson code.

  15. Optimal Wastewater Loading under Conflicting Goals and Technology Limitations in a Riverine System.

    PubMed

    Rafiee, Mojtaba; Lyon, Steve W; Zahraie, Banafsheh; Destouni, Georgia; Jaafarzadeh, Nemat

    2017-03-01

      This paper investigates a novel simulation-optimization (S-O) framework for identifying optimal treatment levels and treatment processes for multiple wastewater dischargers to rivers. A commonly used water quality simulation model, Qual2K, was linked to a Genetic Algorithm optimization model for exploration of relevant fuzzy objective-function formulations for addressing imprecision and conflicting goals of pollution control agencies and various dischargers. Results showed a dynamic flow dependence of optimal wastewater loading with good convergence to near global optimum. Explicit considerations of real-world technological limitations, which were developed here in a new S-O framework, led to better compromise solutions between conflicting goals than those identified within traditional S-O frameworks. The newly developed framework, in addition to being more technologically realistic, is also less complicated and converges on solutions more rapidly than traditional frameworks. This technique marks a significant step forward for development of holistic, riverscape-based approaches that balance the conflicting needs of the stakeholders.

  16. A tool for efficient, model-independent management optimization under uncertainty

    USGS Publications Warehouse

    White, Jeremy; Fienen, Michael N.; Barlow, Paul M.; Welter, Dave E.

    2018-01-01

    To fill a need for risk-based environmental management optimization, we have developed PESTPP-OPT, a model-independent tool for resource management optimization under uncertainty. PESTPP-OPT solves a sequential linear programming (SLP) problem and also implements (optional) efficient, “on-the-fly” (without user intervention) first-order, second-moment (FOSM) uncertainty techniques to estimate model-derived constraint uncertainty. Combined with a user-specified risk value, the constraint uncertainty estimates are used to form chance-constraints for the SLP solution process, so that any optimal solution includes contributions from model input and observation uncertainty. In this way, a “single answer” that includes uncertainty is yielded from the modeling analysis. PESTPP-OPT uses the familiar PEST/PEST++ model interface protocols, which makes it widely applicable to many modeling analyses. The use of PESTPP-OPT is demonstrated with a synthetic, integrated surface-water/groundwater model. The function and implications of chance constraints for this synthetic model are discussed.

  17. Analytical models integrated with satellite images for optimized pest management

    USDA-ARS?s Scientific Manuscript database

    The global field protection (GFP) was developed to protect and optimize pest management resources integrating satellite images for precise field demarcation with physical models of controlled release devices of pesticides to protect large fields. The GFP was implemented using a graphical user interf...

  18. Optimal ordering quantities for substitutable deteriorating items under joint replenishment with cost of substitution

    NASA Astrophysics Data System (ADS)

    Mishra, Vinod Kumar

    2017-09-01

    In this paper we develop an inventory model, to determine the optimal ordering quantities, for a set of two substitutable deteriorating items. In this inventory model the inventory level of both items depleted due to demands and deterioration and when an item is out of stock, its demands are partially fulfilled by the other item and all unsatisfied demand is lost. Each substituted item incurs a cost of substitution and the demands and deterioration is considered to be deterministic and constant. Items are order jointly in each ordering cycle, to take the advantages of joint replenishment. The problem is formulated and a solution procedure is developed to determine the optimal ordering quantities that minimize the total inventory cost. We provide an extensive numerical and sensitivity analysis to illustrate the effect of different parameter on the model. The key observation on the basis of numerical analysis, there is substantial improvement in the optimal total cost of the inventory model with substitution over without substitution.

  19. A lexicographic weighted Tchebycheff approach for multi-constrained multi-objective optimization of the surface grinding process

    NASA Astrophysics Data System (ADS)

    Khalilpourazari, Soheyl; Khalilpourazary, Saman

    2017-05-01

    In this article a multi-objective mathematical model is developed to minimize total time and cost while maximizing the production rate and surface finish quality in the grinding process. The model aims to determine optimal values of the decision variables considering process constraints. A lexicographic weighted Tchebycheff approach is developed to obtain efficient Pareto-optimal solutions of the problem in both rough and finished conditions. Utilizing a polyhedral branch-and-cut algorithm, the lexicographic weighted Tchebycheff model of the proposed multi-objective model is solved using GAMS software. The Pareto-optimal solutions provide a proper trade-off between conflicting objective functions which helps the decision maker to select the best values for the decision variables. Sensitivity analyses are performed to determine the effect of change in the grain size, grinding ratio, feed rate, labour cost per hour, length of workpiece, wheel diameter and downfeed of grinding parameters on each value of the objective function.

  20. Multiple model analysis with discriminatory data collection (MMA-DDC): A new method for improving measurement selection

    NASA Astrophysics Data System (ADS)

    Kikuchi, C.; Ferre, P. A.; Vrugt, J. A.

    2011-12-01

    Hydrologic models are developed, tested, and refined based on the ability of those models to explain available hydrologic data. The optimization of model performance based upon mismatch between model outputs and real world observations has been extensively studied. However, identification of plausible models is sensitive not only to the models themselves - including model structure and model parameters - but also to the location, timing, type, and number of observations used in model calibration. Therefore, careful selection of hydrologic observations has the potential to significantly improve the performance of hydrologic models. In this research, we seek to reduce prediction uncertainty through optimization of the data collection process. A new tool - multiple model analysis with discriminatory data collection (MMA-DDC) - was developed to address this challenge. In this approach, multiple hydrologic models are developed and treated as competing hypotheses. Potential new data are then evaluated on their ability to discriminate between competing hypotheses. MMA-DDC is well-suited for use in recursive mode, in which new observations are continuously used in the optimization of subsequent observations. This new approach was applied to a synthetic solute transport experiment, in which ranges of parameter values constitute the multiple hydrologic models, and model predictions are calculated using likelihood-weighted model averaging. MMA-DDC was used to determine the optimal location, timing, number, and type of new observations. From comparison with an exhaustive search of all possible observation sequences, we find that MMA-DDC consistently selects observations which lead to the highest reduction in model prediction uncertainty. We conclude that using MMA-DDC to evaluate potential observations may significantly improve the performance of hydrologic models while reducing the cost associated with collecting new data.

  1. A Decision-making Model for a Two-stage Production-delivery System in SCM Environment

    NASA Astrophysics Data System (ADS)

    Feng, Ding-Zhong; Yamashiro, Mitsuo

    A decision-making model is developed for an optimal production policy in a two-stage production-delivery system that incorporates a fixed quantity supply of finished goods to a buyer at a fixed interval of time. First, a general cost model is formulated considering both supplier (of raw materials) and buyer (of finished products) sides. Then an optimal solution to the problem is derived on basis of the cost model. Using the proposed model and its optimal solution, one can determine optimal production lot size for each stage, optimal number of transportation for semi-finished goods, and optimal quantity of semi-finished goods transported each time to meet the lumpy demand of consumers. Also, we examine the sensitivity of raw materials ordering and production lot size to changes in ordering cost, transportation cost and manufacturing setup cost. A pragmatic computation approach for operational situations is proposed to solve integer approximation solution. Finally, we give some numerical examples.

  2. A nonlinear bi-level programming approach for product portfolio management.

    PubMed

    Ma, Shuang

    2016-01-01

    Product portfolio management (PPM) is a critical decision-making for companies across various industries in today's competitive environment. Traditional studies on PPM problem have been motivated toward engineering feasibilities and marketing which relatively pay less attention to other competitors' actions and the competitive relations, especially in mathematical optimization domain. The key challenge lies in that how to construct a mathematical optimization model to describe this Stackelberg game-based leader-follower PPM problem and the competitive relations between them. The primary work of this paper is the representation of a decision framework and the optimization model to leverage the PPM problem of leader and follower. A nonlinear, integer bi-level programming model is developed based on the decision framework. Furthermore, a bi-level nested genetic algorithm is put forward to solve this nonlinear bi-level programming model for leader-follower PPM problem. A case study of notebook computer product portfolio optimization is reported. Results and analyses reveal that the leader-follower bi-level optimization model is robust and can empower product portfolio optimization.

  3. Stochastic Models of Plant Diversity: Application to White Sands Missile Range

    DTIC Science & Technology

    2000-02-01

    decades and its models have been well developed. These models fall in the categories: dynamic models and stochastic models. In their book , Modeling...Gelb 1974), and dendro- climatology (Visser and Molenaar 1988). Optimal Estimation An optimal estimator is a computational algorithm that...Evaluation, M.B. Usher, ed., Chapman and Hall, London. Visser, H., and J. Molenaar . 1990. "Estimating Trends in Tree-ring Data." For. Sei. 36(1): 87

  4. Optimal design of piezoelectric transformers: a rational approach based on an analytical model and a deterministic global optimization.

    PubMed

    Pigache, Francois; Messine, Frédéric; Nogarede, Bertrand

    2007-07-01

    This paper deals with a deterministic and rational way to design piezoelectric transformers in radial mode. The proposed approach is based on the study of the inverse problem of design and on its reformulation as a mixed constrained global optimization problem. The methodology relies on the association of the analytical models for describing the corresponding optimization problem and on an exact global optimization software, named IBBA and developed by the second author to solve it. Numerical experiments are presented and compared in order to validate the proposed approach.

  5. Water-resources optimization model for Santa Barbara, California

    USGS Publications Warehouse

    Nishikawa, Tracy

    1998-01-01

    A simulation-optimization model has been developed for the optimal management of the city of Santa Barbara's water resources during a drought. The model, which links groundwater simulation with linear programming, has a planning horizon of 5 years. The objective is to minimize the cost of water supply subject to: water demand constraints, hydraulic head constraints to control seawater intrusion, and water capacity constraints. The decision variables are montly water deliveries from surface water and groundwater. The state variables are hydraulic heads. The drought of 1947-51 is the city's worst drought on record, and simulated surface-water supplies for this period were used as a basis for testing optimal management of current water resources under drought conditions. The simulation-optimization model was applied using three reservoir operation rules. In addition, the model's sensitivity to demand, carry over [the storage of water in one year for use in the later year(s)], head constraints, and capacity constraints was tested.

  6. [Optimization of the parameters of microcirculatory structural adaptation model based on improved quantum-behaved particle swarm optimization algorithm].

    PubMed

    Pan, Qing; Yao, Jialiang; Wang, Ruofan; Cao, Ping; Ning, Gangmin; Fang, Luping

    2017-08-01

    The vessels in the microcirculation keep adjusting their structure to meet the functional requirements of the different tissues. A previously developed theoretical model can reproduce the process of vascular structural adaptation to help the study of the microcirculatory physiology. However, until now, such model lacks the appropriate methods for its parameter settings with subsequent limitation of further applications. This study proposed an improved quantum-behaved particle swarm optimization (QPSO) algorithm for setting the parameter values in this model. The optimization was performed on a real mesenteric microvascular network of rat. The results showed that the improved QPSO was superior to the standard particle swarm optimization, the standard QPSO and the previously reported Downhill algorithm. We conclude that the improved QPSO leads to a better agreement between mathematical simulation and animal experiment, rendering the model more reliable in future physiological studies.

  7. OPTIMIZATION OF INTEGRATED URBAN WET-WEATHER CONTROL STRATEGIES

    EPA Science Inventory

    An optimization method for urban wet weather control (WWC) strategies is presented. The developed optimization model can be used to determine the most cost-effective strategies for the combination of centralized storage-release systems and distributed on-site WWC alternatives. T...

  8. Simulation and optimization of pressure swing adsorption systmes using reduced-order modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, A.; Biegler, L.; Zitney, S.

    2009-01-01

    Over the past three decades, pressure swing adsorption (PSA) processes have been widely used as energyefficient gas separation techniques, especially for high purity hydrogen purification from refinery gases. Models for PSA processes are multiple instances of partial differential equations (PDEs) in time and space with periodic boundary conditions that link the processing steps together. The solution of this coupled stiff PDE system is governed by steep fronts moving with time. As a result, the optimization of such systems represents a significant computational challenge to current differential algebraic equation (DAE) optimization techniques and nonlinear programming algorithms. Model reduction is one approachmore » to generate cost-efficient low-order models which can be used as surrogate models in the optimization problems. This study develops a reducedorder model (ROM) based on proper orthogonal decomposition (POD), which is a low-dimensional approximation to a dynamic PDE-based model. The proposed method leads to a DAE system of significantly lower order, thus replacing the one obtained from spatial discretization and making the optimization problem computationally efficient. The method has been applied to the dynamic coupled PDE-based model of a twobed four-step PSA process for separation of hydrogen from methane. Separate ROMs have been developed for each operating step with different POD modes for each of them. A significant reduction in the order of the number of states has been achieved. The reduced-order model has been successfully used to maximize hydrogen recovery by manipulating operating pressures, step times and feed and regeneration velocities, while meeting product purity and tight bounds on these parameters. Current results indicate the proposed ROM methodology as a promising surrogate modeling technique for cost-effective optimization purposes.« less

  9. Modeling joint restoration strategies for interdependent infrastructure systems.

    PubMed

    Zhang, Chao; Kong, Jingjing; Simonovic, Slobodan P

    2018-01-01

    Life in the modern world depends on multiple critical services provided by infrastructure systems which are interdependent at multiple levels. To effectively respond to infrastructure failures, this paper proposes a model for developing optimal joint restoration strategy for interdependent infrastructure systems following a disruptive event. First, models for (i) describing structure of interdependent infrastructure system and (ii) their interaction process, are presented. Both models are considering the failure types, infrastructure operating rules and interdependencies among systems. Second, an optimization model for determining an optimal joint restoration strategy at infrastructure component level by minimizing the economic loss from the infrastructure failures, is proposed. The utility of the model is illustrated using a case study of electric-water systems. Results show that a small number of failed infrastructure components can trigger high level failures in interdependent systems; the optimal joint restoration strategy varies with failure occurrence time. The proposed models can help decision makers to understand the mechanisms of infrastructure interactions and search for optimal joint restoration strategy, which can significantly enhance safety of infrastructure systems.

  10. Optimization of the Bridgman crystal growth process

    NASA Astrophysics Data System (ADS)

    Margulies, M.; Witomski, P.; Duffar, T.

    2004-05-01

    A numerical optimization method of the vertical Bridgman growth configuration is presented and developed. It permits to optimize the furnace temperature field and the pulling rate versus time in order to decrease the radial thermal gradients in the sample. Some constraints are also included in order to insure physically realistic results. The model includes the two classical non-linearities associated to crystal growth processes, the radiative thermal exchange and the release of latent heat at the solid-liquid interface. The mathematical analysis and development of the problem is shortly described. On some examples, it is shown that the method works in a satisfactory way; however the results are dependent on the numerical parameters. Improvements of the optimization model, on the physical and numerical point of view, are suggested.

  11. Robust resolution enhancement optimization methods to process variations based on vector imaging model

    NASA Astrophysics Data System (ADS)

    Ma, Xu; Li, Yanqiu; Guo, Xuejia; Dong, Lisong

    2012-03-01

    Optical proximity correction (OPC) and phase shifting mask (PSM) are the most widely used resolution enhancement techniques (RET) in the semiconductor industry. Recently, a set of OPC and PSM optimization algorithms have been developed to solve for the inverse lithography problem, which are only designed for the nominal imaging parameters without giving sufficient attention to the process variations due to the aberrations, defocus and dose variation. However, the effects of process variations existing in the practical optical lithography systems become more pronounced as the critical dimension (CD) continuously shrinks. On the other hand, the lithography systems with larger NA (NA>0.6) are now extensively used, rendering the scalar imaging models inadequate to describe the vector nature of the electromagnetic field in the current optical lithography systems. In order to tackle the above problems, this paper focuses on developing robust gradient-based OPC and PSM optimization algorithms to the process variations under a vector imaging model. To achieve this goal, an integrative and analytic vector imaging model is applied to formulate the optimization problem, where the effects of process variations are explicitly incorporated in the optimization framework. The steepest descent algorithm is used to optimize the mask iteratively. In order to improve the efficiency of the proposed algorithms, a set of algorithm acceleration techniques (AAT) are exploited during the optimization procedure.

  12. Prepositioning emergency supplies under uncertainty: a parametric optimization method

    NASA Astrophysics Data System (ADS)

    Bai, Xuejie; Gao, Jinwu; Liu, Yankui

    2018-07-01

    Prepositioning of emergency supplies is an effective method for increasing preparedness for disasters and has received much attention in recent years. In this article, the prepositioning problem is studied by a robust parametric optimization method. The transportation cost, supply, demand and capacity are unknown prior to the extraordinary event, which are represented as fuzzy parameters with variable possibility distributions. The variable possibility distributions are obtained through the credibility critical value reduction method for type-2 fuzzy variables. The prepositioning problem is formulated as a fuzzy value-at-risk model to achieve a minimum total cost incurred in the whole process. The key difficulty in solving the proposed optimization model is to evaluate the quantile of the fuzzy function in the objective and the credibility in the constraints. The objective function and constraints can be turned into their equivalent parametric forms through chance constrained programming under the different confidence levels. Taking advantage of the structural characteristics of the equivalent optimization model, a parameter-based domain decomposition method is developed to divide the original optimization problem into six mixed-integer parametric submodels, which can be solved by standard optimization solvers. Finally, to explore the viability of the developed model and the solution approach, some computational experiments are performed on realistic scale case problems. The computational results reported in the numerical example show the credibility and superiority of the proposed parametric optimization method.

  13. Developing a Hydrologic Assessment Tool for Designing Bioretention in a watershed

    NASA Astrophysics Data System (ADS)

    Baek, Sangsoo; Ligaray, Mayzonee; Park, Jeong-Pyo; Kwon, Yongsung; Cho, Kyung Hwa

    2017-04-01

    Continuous urbanization has negatively impacted the ecological and hydrological environments at the global, regional, and local scales. This issue was addressed by developing Low Impact Development (LID) practices to deliver better hydrologic function and improve the environmental, economic, social and cultural outcomes. This study developed a modeling software to simulate and optimize bioretentions among LID in a given watershed. The model calculated a detailed soil infiltration process in bioretention with hydrological conditions and hydraulic facilities (e.g. riser and underdrain) and also generated an optimized plan using Flow Duration Curve (FDC). The optimization result from the simulation demonstrated that the location and size of bioretention, as well as the soil texture, are important elements for an efficient bioretention. We hope that the developed software in this study could be useful for establishing an appropriate scheme of LID installment

  14. Towards resiliency with micro-grids: Portfolio optimization and investment under uncertainty

    NASA Astrophysics Data System (ADS)

    Gharieh, Kaveh

    Energy security and sustained supply of power are critical for community welfare and economic growth. In the face of the increased frequency and intensity of extreme weather conditions which can result in power grid outage, the value of micro-grids to improve the communities' power reliability and resiliency is becoming more important. Micro-grids capability to operate in islanded mode in stressed-out conditions, dramatically decreases the economic loss of critical infrastructure in power shortage occasions. More wide-spread participation of micro-grids in the wholesale energy market in near future, makes the development of new investment models necessary. However, market and price risks in short term and long term along with risk factors' impacts shall be taken into consideration in development of new investment models. This work proposes a set of models and tools to address different problems associated with micro-grid assets including optimal portfolio selection, investment and financing in both community and a sample critical infrastructure (i.e. wastewater treatment plant) levels. The models account for short-term operational volatilities and long-term market uncertainties. A number of analytical methodologies and financial concepts have been adopted to develop the aforementioned models as follows. (1) Capital budgeting planning and portfolio optimization models with Monte Carlo stochastic scenario generation are applied to derive the optimal investment decision for a portfolio of micro-grid assets considering risk factors and multiple sources of uncertainties. (2) Real Option theory, Monte Carlo simulation and stochastic optimization techniques are applied to obtain optimal modularized investment decisions for hydrogen tri-generation systems in wastewater treatment facilities, considering multiple sources of uncertainty. (3) Public Private Partnership (PPP) financing concept coupled with investment horizon approach are applied to estimate public and private parties' revenue shares from a community-level micro-grid project over the course of assets' lifetime considering their optimal operation under uncertainty.

  15. Design Optimization Tool for Synthetic Jet Actuators Using Lumped Element Modeling

    NASA Technical Reports Server (NTRS)

    Gallas, Quentin; Sheplak, Mark; Cattafesta, Louis N., III; Gorton, Susan A. (Technical Monitor)

    2005-01-01

    The performance specifications of any actuator are quantified in terms of an exhaustive list of parameters such as bandwidth, output control authority, etc. Flow-control applications benefit from a known actuator frequency response function that relates the input voltage to the output property of interest (e.g., maximum velocity, volumetric flow rate, momentum flux, etc.). Clearly, the required performance metrics are application specific, and methods are needed to achieve the optimal design of these devices. Design and optimization studies have been conducted for piezoelectric cantilever-type flow control actuators, but the modeling issues are simpler compared to synthetic jets. Here, lumped element modeling (LEM) is combined with equivalent circuit representations to estimate the nonlinear dynamic response of a synthetic jet as a function of device dimensions, material properties, and external flow conditions. These models provide reasonable agreement between predicted and measured frequency response functions and thus are suitable for use as design tools. In this work, we have developed a Matlab-based design optimization tool for piezoelectric synthetic jet actuators based on the lumped element models mentioned above. Significant improvements were achieved by optimizing the piezoceramic diaphragm dimensions. Synthetic-jet actuators were fabricated and benchtop tested to fully document their behavior and validate a companion optimization effort. It is hoped that the tool developed from this investigation will assist in the design and deployment of these actuators.

  16. A new multi-objective optimization model for preventive maintenance and replacement scheduling of multi-component systems

    NASA Astrophysics Data System (ADS)

    Moghaddam, Kamran S.; Usher, John S.

    2011-07-01

    In this article, a new multi-objective optimization model is developed to determine the optimal preventive maintenance and replacement schedules in a repairable and maintainable multi-component system. In this model, the planning horizon is divided into discrete and equally-sized periods in which three possible actions must be planned for each component, namely maintenance, replacement, or do nothing. The objective is to determine a plan of actions for each component in the system while minimizing the total cost and maximizing overall system reliability simultaneously over the planning horizon. Because of the complexity, combinatorial and highly nonlinear structure of the mathematical model, two metaheuristic solution methods, generational genetic algorithm, and a simulated annealing are applied to tackle the problem. The Pareto optimal solutions that provide good tradeoffs between the total cost and the overall reliability of the system can be obtained by the solution approach. Such a modeling approach should be useful for maintenance planners and engineers tasked with the problem of developing recommended maintenance plans for complex systems of components.

  17. An evolutionary firefly algorithm for the estimation of nonlinear biological model parameters.

    PubMed

    Abdullah, Afnizanfaizal; Deris, Safaai; Anwar, Sohail; Arjunan, Satya N V

    2013-01-01

    The development of accurate computational models of biological processes is fundamental to computational systems biology. These models are usually represented by mathematical expressions that rely heavily on the system parameters. The measurement of these parameters is often difficult. Therefore, they are commonly estimated by fitting the predicted model to the experimental data using optimization methods. The complexity and nonlinearity of the biological processes pose a significant challenge, however, to the development of accurate and fast optimization methods. We introduce a new hybrid optimization method incorporating the Firefly Algorithm and the evolutionary operation of the Differential Evolution method. The proposed method improves solutions by neighbourhood search using evolutionary procedures. Testing our method on models for the arginine catabolism and the negative feedback loop of the p53 signalling pathway, we found that it estimated the parameters with high accuracy and within a reasonable computation time compared to well-known approaches, including Particle Swarm Optimization, Nelder-Mead, and Firefly Algorithm. We have also verified the reliability of the parameters estimated by the method using an a posteriori practical identifiability test.

  18. An Evolutionary Firefly Algorithm for the Estimation of Nonlinear Biological Model Parameters

    PubMed Central

    Abdullah, Afnizanfaizal; Deris, Safaai; Anwar, Sohail; Arjunan, Satya N. V.

    2013-01-01

    The development of accurate computational models of biological processes is fundamental to computational systems biology. These models are usually represented by mathematical expressions that rely heavily on the system parameters. The measurement of these parameters is often difficult. Therefore, they are commonly estimated by fitting the predicted model to the experimental data using optimization methods. The complexity and nonlinearity of the biological processes pose a significant challenge, however, to the development of accurate and fast optimization methods. We introduce a new hybrid optimization method incorporating the Firefly Algorithm and the evolutionary operation of the Differential Evolution method. The proposed method improves solutions by neighbourhood search using evolutionary procedures. Testing our method on models for the arginine catabolism and the negative feedback loop of the p53 signalling pathway, we found that it estimated the parameters with high accuracy and within a reasonable computation time compared to well-known approaches, including Particle Swarm Optimization, Nelder-Mead, and Firefly Algorithm. We have also verified the reliability of the parameters estimated by the method using an a posteriori practical identifiability test. PMID:23469172

  19. Piezoresistive Cantilever Performance—Part II: Optimization

    PubMed Central

    Park, Sung-Jin; Doll, Joseph C.; Rastegar, Ali J.; Pruitt, Beth L.

    2010-01-01

    Piezoresistive silicon cantilevers fabricated by ion implantation are frequently used for force, displacement, and chemical sensors due to their low cost and electronic readout. However, the design of piezoresistive cantilevers is not a straightforward problem due to coupling between the design parameters, constraints, process conditions, and performance. We systematically analyzed the effect of design and process parameters on force resolution and then developed an optimization approach to improve force resolution while satisfying various design constraints using simulation results. The combined simulation and optimization approach is extensible to other doping methods beyond ion implantation in principle. The optimization results were validated by fabricating cantilevers with the optimized conditions and characterizing their performance. The measurement results demonstrate that the analytical model accurately predicts force and displacement resolution, and sensitivity and noise tradeoff in optimal cantilever performance. We also performed a comparison between our optimization technique and existing models and demonstrated eight times improvement in force resolution over simplified models. PMID:20333323

  20. Aircraft Engine Thrust Estimator Design Based on GSA-LSSVM

    NASA Astrophysics Data System (ADS)

    Sheng, Hanlin; Zhang, Tianhong

    2017-08-01

    In view of the necessity of highly precise and reliable thrust estimator to achieve direct thrust control of aircraft engine, based on support vector regression (SVR), as well as least square support vector machine (LSSVM) and a new optimization algorithm - gravitational search algorithm (GSA), by performing integrated modelling and parameter optimization, a GSA-LSSVM-based thrust estimator design solution is proposed. The results show that compared to particle swarm optimization (PSO) algorithm, GSA can find unknown optimization parameter better and enables the model developed with better prediction and generalization ability. The model can better predict aircraft engine thrust and thus fulfills the need of direct thrust control of aircraft engine.

  1. Modeling human decision making behavior in supervisory control

    NASA Technical Reports Server (NTRS)

    Tulga, M. K.; Sheridan, T. B.

    1977-01-01

    An optimal decision control model was developed, which is based primarily on a dynamic programming algorithm which looks at all the available task possibilities, charts an optimal trajectory, and commits itself to do the first step (i.e., follow the optimal trajectory during the next time period), and then iterates the calculation. A Bayesian estimator was included which estimates the tasks which might occur in the immediate future and provides this information to the dynamic programming routine. Preliminary trials comparing the human subject's performance to that of the optimal model show a great similarity, but indicate that the human skips certain movements which require quick change in strategy.

  2. Adaptive surrogate model based multi-objective transfer trajectory optimization between different libration points

    NASA Astrophysics Data System (ADS)

    Peng, Haijun; Wang, Wei

    2016-10-01

    An adaptive surrogate model-based multi-objective optimization strategy that combines the benefits of invariant manifolds and low-thrust control toward developing a low-computational-cost transfer trajectory between libration orbits around the L1 and L2 libration points in the Sun-Earth system has been proposed in this paper. A new structure for a multi-objective transfer trajectory optimization model that divides the transfer trajectory into several segments and gives the dominations for invariant manifolds and low-thrust control in different segments has been established. To reduce the computational cost of multi-objective transfer trajectory optimization, a mixed sampling strategy-based adaptive surrogate model has been proposed. Numerical simulations show that the results obtained from the adaptive surrogate-based multi-objective optimization are in agreement with the results obtained using direct multi-objective optimization methods, and the computational workload of the adaptive surrogate-based multi-objective optimization is only approximately 10% of that of direct multi-objective optimization. Furthermore, the generating efficiency of the Pareto points of the adaptive surrogate-based multi-objective optimization is approximately 8 times that of the direct multi-objective optimization. Therefore, the proposed adaptive surrogate-based multi-objective optimization provides obvious advantages over direct multi-objective optimization methods.

  3. Hybrid algorithms for fuzzy reverse supply chain network design.

    PubMed

    Che, Z H; Chiang, Tzu-An; Kuo, Y C; Cui, Zhihua

    2014-01-01

    In consideration of capacity constraints, fuzzy defect ratio, and fuzzy transport loss ratio, this paper attempted to establish an optimized decision model for production planning and distribution of a multiphase, multiproduct reverse supply chain, which addresses defects returned to original manufacturers, and in addition, develops hybrid algorithms such as Particle Swarm Optimization-Genetic Algorithm (PSO-GA), Genetic Algorithm-Simulated Annealing (GA-SA), and Particle Swarm Optimization-Simulated Annealing (PSO-SA) for solving the optimized model. During a case study of a multi-phase, multi-product reverse supply chain network, this paper explained the suitability of the optimized decision model and the applicability of the algorithms. Finally, the hybrid algorithms showed excellent solving capability when compared with original GA and PSO methods.

  4. Hybrid Algorithms for Fuzzy Reverse Supply Chain Network Design

    PubMed Central

    Che, Z. H.; Chiang, Tzu-An; Kuo, Y. C.

    2014-01-01

    In consideration of capacity constraints, fuzzy defect ratio, and fuzzy transport loss ratio, this paper attempted to establish an optimized decision model for production planning and distribution of a multiphase, multiproduct reverse supply chain, which addresses defects returned to original manufacturers, and in addition, develops hybrid algorithms such as Particle Swarm Optimization-Genetic Algorithm (PSO-GA), Genetic Algorithm-Simulated Annealing (GA-SA), and Particle Swarm Optimization-Simulated Annealing (PSO-SA) for solving the optimized model. During a case study of a multi-phase, multi-product reverse supply chain network, this paper explained the suitability of the optimized decision model and the applicability of the algorithms. Finally, the hybrid algorithms showed excellent solving capability when compared with original GA and PSO methods. PMID:24892057

  5. HOMER: The hybrid optimization model for electric renewable

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lilienthal, P.; Flowers, L.; Rossmann, C.

    1995-12-31

    Hybrid renewable systems are often more cost-effective than grid extensions or isolated diesel generators for providing power to remote villages. There are a wide variety of hybrid systems being developed for village applications that have differing combinations of wind, photovoltaics, batteries, and diesel generators. Due to variations in loads and resources determining the most appropriate combination of these components for a particular village is a difficult modelling task. To address this design problem the National Renewable Energy Laboratory has developed the Hybrid Optimization Model for Electric Renewables (HOMER). Existing models are either too detailed for screening analysis or too simplemore » for reliable estimation of performance. HOMER is a design optimization model that determines the configuration, dispatch, and load management strategy that minimizes life-cycle costs for a particular site and application. This paper describes the HOMER methodology and presents representative results.« less

  6. Reserve design to maximize species persistence

    Treesearch

    Robert G. Haight; Laurel E. Travis

    2008-01-01

    We develop a reserve design strategy to maximize the probability of species persistence predicted by a stochastic, individual-based, metapopulation model. Because the population model does not fit exact optimization procedures, our strategy involves deriving promising solutions from theory, obtaining promising solutions from a simulation optimization heuristic, and...

  7. Strategies of experiment standardization and response optimization in a rat model of hemorrhagic shock and chronic hypertension.

    PubMed

    Reynolds, Penny S; Tamariz, Francisco J; Barbee, Robert Wayne

    2010-04-01

    Exploratory pilot studies are crucial to best practice in research but are frequently conducted without a systematic method for maximizing the amount and quality of information obtained. We describe the use of response surface regression models and simultaneous optimization methods to develop a rat model of hemorrhagic shock in the context of chronic hypertension, a clinically relevant comorbidity. Response surface regression model was applied to determine optimal levels of two inputs--dietary NaCl concentration (0.49%, 4%, and 8%) and time on the diet (4, 6, 8 weeks)--to achieve clinically realistic and stable target measures of systolic blood pressure while simultaneously maximizing critical oxygen delivery (a measure of vulnerability to hemorrhagic shock) and body mass M. Simultaneous optimization of the three response variables was performed though a dimensionality reduction strategy involving calculation of a single aggregate measure, the "desirability" function. Optimal conditions for inducing systolic blood pressure of 208 mmHg, critical oxygen delivery of 4.03 mL/min, and M of 290 g were determined to be 4% [NaCl] for 5 weeks. Rats on the 8% diet did not survive past 7 weeks. Response surface regression model and simultaneous optimization method techniques are commonly used in process engineering but have found little application to date in animal pilot studies. These methods will ensure both the scientific and ethical integrity of experimental trials involving animals and provide powerful tools for the development of novel models of clinically interacting comorbidities with shock.

  8. Generalized DSS shell for developing simulation and optimization hydro-economic models of complex water resources systems

    NASA Astrophysics Data System (ADS)

    Pulido-Velazquez, Manuel; Lopez-Nicolas, Antonio; Harou, Julien J.; Andreu, Joaquin

    2013-04-01

    Hydrologic-economic models allow integrated analysis of water supply, demand and infrastructure management at the river basin scale. These models simultaneously analyze engineering, hydrology and economic aspects of water resources management. Two new tools have been designed to develop models within this approach: a simulation tool (SIM_GAMS), for models in which water is allocated each month based on supply priorities to competing uses and system operating rules, and an optimization tool (OPT_GAMS), in which water resources are allocated optimally following economic criteria. The characterization of the water resource network system requires a connectivity matrix representing the topology of the elements, generated using HydroPlatform. HydroPlatform, an open-source software platform for network (node-link) models, allows to store, display and export all information needed to characterize the system. Two generic non-linear models have been programmed in GAMS to use the inputs from HydroPlatform in simulation and optimization models. The simulation model allocates water resources on a monthly basis, according to different targets (demands, storage, environmental flows, hydropower production, etc.), priorities and other system operating rules (such as reservoir operating rules). The optimization model's objective function is designed so that the system meets operational targets (ranked according to priorities) each month while following system operating rules. This function is analogous to the one used in the simulation module of the DSS AQUATOOL. Each element of the system has its own contribution to the objective function through unit cost coefficients that preserve the relative priority rank and the system operating rules. The model incorporates groundwater and stream-aquifer interaction (allowing conjunctive use simulation) with a wide range of modeling options, from lumped and analytical approaches to parameter-distributed models (eigenvalue approach). Such functionality is not typically included in other water DSS. Based on the resulting water resources allocation, the model calculates operating and water scarcity costs caused by supply deficits based on economic demand functions for each demand node. The optimization model allocates the available resource over time based on economic criteria (net benefits from demand curves and cost functions), minimizing the total water scarcity and operating cost of water use. This approach provides solutions that optimize the economic efficiency (as total net benefit) in water resources management over the optimization period. Both models must be used together in water resource planning and management. The optimization model provides an initial insight on economically efficient solutions, from which different operating rules can be further developed and tested using the simulation model. The hydro-economic simulation model allows assessing economic impacts of alternative policies or operating criteria, avoiding the perfect foresight issues associated with the optimization. The tools have been applied to the Jucar river basin (Spain) in order to assess the economic results corresponding to the current modus operandi of the system and compare them with the solution from the optimization that maximizes economic efficiency. Acknowledgments: The study has been partially supported by the European Community 7th Framework Project (GENESIS project, n. 226536) and the Plan Nacional I+D+I 2008-2011 of the Spanish Ministry of Science and Innovation (CGL2009-13238-C02-01 and CGL2009-13238-C02-02).

  9. Machine Learning Methods for Analysis of Metabolic Data and Metabolic Pathway Modeling

    PubMed Central

    Cuperlovic-Culf, Miroslava

    2018-01-01

    Machine learning uses experimental data to optimize clustering or classification of samples or features, or to develop, augment or verify models that can be used to predict behavior or properties of systems. It is expected that machine learning will help provide actionable knowledge from a variety of big data including metabolomics data, as well as results of metabolism models. A variety of machine learning methods has been applied in bioinformatics and metabolism analyses including self-organizing maps, support vector machines, the kernel machine, Bayesian networks or fuzzy logic. To a lesser extent, machine learning has also been utilized to take advantage of the increasing availability of genomics and metabolomics data for the optimization of metabolic network models and their analysis. In this context, machine learning has aided the development of metabolic networks, the calculation of parameters for stoichiometric and kinetic models, as well as the analysis of major features in the model for the optimal application of bioreactors. Examples of this very interesting, albeit highly complex, application of machine learning for metabolism modeling will be the primary focus of this review presenting several different types of applications for model optimization, parameter determination or system analysis using models, as well as the utilization of several different types of machine learning technologies. PMID:29324649

  10. Machine Learning Methods for Analysis of Metabolic Data and Metabolic Pathway Modeling.

    PubMed

    Cuperlovic-Culf, Miroslava

    2018-01-11

    Machine learning uses experimental data to optimize clustering or classification of samples or features, or to develop, augment or verify models that can be used to predict behavior or properties of systems. It is expected that machine learning will help provide actionable knowledge from a variety of big data including metabolomics data, as well as results of metabolism models. A variety of machine learning methods has been applied in bioinformatics and metabolism analyses including self-organizing maps, support vector machines, the kernel machine, Bayesian networks or fuzzy logic. To a lesser extent, machine learning has also been utilized to take advantage of the increasing availability of genomics and metabolomics data for the optimization of metabolic network models and their analysis. In this context, machine learning has aided the development of metabolic networks, the calculation of parameters for stoichiometric and kinetic models, as well as the analysis of major features in the model for the optimal application of bioreactors. Examples of this very interesting, albeit highly complex, application of machine learning for metabolism modeling will be the primary focus of this review presenting several different types of applications for model optimization, parameter determination or system analysis using models, as well as the utilization of several different types of machine learning technologies.

  11. Techniques for shuttle trajectory optimization

    NASA Technical Reports Server (NTRS)

    Edge, E. R.; Shieh, C. J.; Powers, W. F.

    1973-01-01

    The application of recently developed function-space Davidon-type techniques to the shuttle ascent trajectory optimization problem is discussed along with an investigation of the recently developed PRAXIS algorithm for parameter optimization. At the outset of this analysis, the major deficiency of the function-space algorithms was their potential storage problems. Since most previous analyses of the methods were with relatively low-dimension problems, no storage problems were encountered. However, in shuttle trajectory optimization, storage is a problem, and this problem was handled efficiently. Topics discussed include: the shuttle ascent model and the development of the particular optimization equations; the function-space algorithms; the operation of the algorithm and typical simulations; variable final-time problem considerations; and a modification of Powell's algorithm.

  12. Robust Design Optimization via Failure Domain Bounding

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.

    2007-01-01

    This paper extends and applies the strategies recently developed by the authors for handling constraints under uncertainty to robust design optimization. For the scope of this paper, robust optimization is a methodology aimed at problems for which some parameters are uncertain and are only known to belong to some uncertainty set. This set can be described by either a deterministic or a probabilistic model. In the methodology developed herein, optimization-based strategies are used to bound the constraint violation region using hyper-spheres and hyper-rectangles. By comparing the resulting bounding sets with any given uncertainty model, it can be determined whether the constraints are satisfied for all members of the uncertainty model (i.e., constraints are feasible) or not (i.e., constraints are infeasible). If constraints are infeasible and a probabilistic uncertainty model is available, upper bounds to the probability of constraint violation can be efficiently calculated. The tools developed enable approximating not only the set of designs that make the constraints feasible but also, when required, the set of designs for which the probability of constraint violation is below a prescribed admissible value. When constraint feasibility is possible, several design criteria can be used to shape the uncertainty model of performance metrics of interest. Worst-case, least-second-moment, and reliability-based design criteria are considered herein. Since the problem formulation is generic and the tools derived only require standard optimization algorithms for their implementation, these strategies are easily applicable to a broad range of engineering problems.

  13. A comparative research of different ensemble surrogate models based on set pair analysis for the DNAPL-contaminated aquifer remediation strategy optimization.

    PubMed

    Hou, Zeyu; Lu, Wenxi; Xue, Haibo; Lin, Jin

    2017-08-01

    Surrogate-based simulation-optimization technique is an effective approach for optimizing the surfactant enhanced aquifer remediation (SEAR) strategy for clearing DNAPLs. The performance of the surrogate model, which is used to replace the simulation model for the aim of reducing computation burden, is the key of corresponding researches. However, previous researches are generally based on a stand-alone surrogate model, and rarely make efforts to improve the approximation accuracy of the surrogate model to the simulation model sufficiently by combining various methods. In this regard, we present set pair analysis (SPA) as a new method to build ensemble surrogate (ES) model, and conducted a comparative research to select a better ES modeling pattern for the SEAR strategy optimization problems. Surrogate models were developed using radial basis function artificial neural network (RBFANN), support vector regression (SVR), and Kriging. One ES model is assembling RBFANN model, SVR model, and Kriging model using set pair weights according their performance, and the other is assembling several Kriging (the best surrogate modeling method of three) models built with different training sample datasets. Finally, an optimization model, in which the ES model was embedded, was established to obtain the optimal remediation strategy. The results showed the residuals of the outputs between the best ES model and simulation model for 100 testing samples were lower than 1.5%. Using an ES model instead of the simulation model was critical for considerably reducing the computation time of simulation-optimization process and maintaining high computation accuracy simultaneously. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Evaluation of the chondral modeling theory using fe-simulation and numeric shape optimization

    PubMed Central

    Plochocki, Jeffrey H; Ward, Carol V; Smith, Douglas E

    2009-01-01

    The chondral modeling theory proposes that hydrostatic pressure within articular cartilage regulates joint size, shape, and congruence through regional variations in rates of tissue proliferation.The purpose of this study is to develop a computational model using a nonlinear two-dimensional finite element analysis in conjunction with numeric shape optimization to evaluate the chondral modeling theory. The model employed in this analysis is generated from an MR image of the medial portion of the tibiofemoral joint in a subadult male. Stress-regulated morphological changes are simulated until skeletal maturity and evaluated against the chondral modeling theory. The computed results are found to support the chondral modeling theory. The shape-optimized model exhibits increased joint congruence, broader stress distributions in articular cartilage, and a relative decrease in joint diameter. The results for the computational model correspond well with experimental data and provide valuable insights into the mechanical determinants of joint growth. The model also provides a crucial first step toward developing a comprehensive model that can be employed to test the influence of mechanical variables on joint conformation. PMID:19438771

  15. Multi objective optimization model for minimizing production cost and environmental impact in CNC turning process

    NASA Astrophysics Data System (ADS)

    Widhiarso, Wahyu; Rosyidi, Cucuk Nur

    2018-02-01

    Minimizing production cost in a manufacturing company will increase the profit of the company. The cutting parameters will affect total processing time which then will affect the production cost of machining process. Besides affecting the production cost and processing time, the cutting parameters will also affect the environment. An optimization model is needed to determine the optimum cutting parameters. In this paper, we develop an optimization model to minimize the production cost and the environmental impact in CNC turning process. The model is used a multi objective optimization. Cutting speed and feed rate are served as the decision variables. Constraints considered are cutting speed, feed rate, cutting force, output power, and surface roughness. The environmental impact is converted from the environmental burden by using eco-indicator 99. Numerical example is given to show the implementation of the model and solved using OptQuest of Oracle Crystal Ball software. The results of optimization indicate that the model can be used to optimize the cutting parameters to minimize the production cost and the environmental impact.

  16. Development of optimal models of porous media by combining static and dynamic data: the permeability and porosity distributions.

    PubMed

    Hamzehpour, Hossein; Rasaei, M Reza; Sahimi, Muhammad

    2007-05-01

    We describe a method for the development of the optimal spatial distributions of the porosity phi and permeability k of a large-scale porous medium. The optimal distributions are constrained by static and dynamic data. The static data that we utilize are limited data for phi and k, which the method honors in the optimal model and utilizes their correlation functions in the optimization process. The dynamic data include the first-arrival (FA) times, at a number of receivers, of seismic waves that have propagated in the porous medium, and the time-dependent production rates of a fluid that flows in the medium. The method combines the simulated-annealing method with a simulator that solves numerically the three-dimensional (3D) acoustic wave equation and computes the FA times, and a second simulator that solves the 3D governing equation for the fluid's pressure as a function of time. To our knowledge, this is the first time that an optimization method has been developed to determine simultaneously the global minima of two distinct total energy functions. As a stringent test of the method's accuracy, we solve for flow of two immiscible fluids in the same porous medium, without using any data for the two-phase flow problem in the optimization process. We show that the optimal model, in addition to honoring the data, also yields accurate spatial distributions of phi and k, as well as providing accurate quantitative predictions for the single- and two-phase flow problems. The efficiency of the computations is discussed in detail.

  17. A thermal vacuum test optimization procedure

    NASA Technical Reports Server (NTRS)

    Kruger, R.; Norris, H. P.

    1979-01-01

    An analytical model was developed that can be used to establish certain parameters of a thermal vacuum environmental test program based on an optimization of program costs. This model is in the form of a computer program that interacts with a user insofar as the input of certain parameters. The program provides the user a list of pertinent information regarding an optimized test program and graphs of some of the parameters. The model is a first attempt in this area and includes numerous simplifications. The model appears useful as a general guide and provides a way for extrapolating past performance to future missions.

  18. Optimal decision making modeling for copper-matte Peirce-Smith converting process by means of data mining

    NASA Astrophysics Data System (ADS)

    Song, Yanpo; Peng, Xiaoqi; Tang, Ying; Hu, Zhikun

    2013-07-01

    To improve the operation level of copper converter, the approach to optimal decision making modeling for coppermatte converting process based on data mining is studied: in view of the characteristics of the process data, such as containing noise, small sample size and so on, a new robust improved ANN (artificial neural network) modeling method is proposed; taking into account the application purpose of decision making model, three new evaluation indexes named support, confidence and relative confidence are proposed; using real production data and the methods mentioned above, optimal decision making model for blowing time of S1 period (the 1st slag producing period) are developed. Simulation results show that this model can significantly improve the converting quality of S1 period, increase the optimal probability from about 70% to about 85%.

  19. Model-Free Optimal Tracking Control via Critic-Only Q-Learning.

    PubMed

    Luo, Biao; Liu, Derong; Huang, Tingwen; Wang, Ding

    2016-10-01

    Model-free control is an important and promising topic in control fields, which has attracted extensive attention in the past few years. In this paper, we aim to solve the model-free optimal tracking control problem of nonaffine nonlinear discrete-time systems. A critic-only Q-learning (CoQL) method is developed, which learns the optimal tracking control from real system data, and thus avoids solving the tracking Hamilton-Jacobi-Bellman equation. First, the Q-learning algorithm is proposed based on the augmented system, and its convergence is established. Using only one neural network for approximating the Q-function, the CoQL method is developed to implement the Q-learning algorithm. Furthermore, the convergence of the CoQL method is proved with the consideration of neural network approximation error. With the convergent Q-function obtained from the CoQL method, the adaptive optimal tracking control is designed based on the gradient descent scheme. Finally, the effectiveness of the developed CoQL method is demonstrated through simulation studies. The developed CoQL method learns with off-policy data and implements with a critic-only structure, thus it is easy to realize and overcome the inadequate exploration problem.

  20. Eric Wilson | NREL

    Science.gov Websites

    , developing an analysis framework and data visualization for national residential building stock models, and include developing multifamily modeling capabilities for the BEopt building energy optimization software

  1. Belief Propagation Algorithm for Portfolio Optimization Problems

    PubMed Central

    2015-01-01

    The typical behavior of optimal solutions to portfolio optimization problems with absolute deviation and expected shortfall models using replica analysis was pioneeringly estimated by S. Ciliberti et al. [Eur. Phys. B. 57, 175 (2007)]; however, they have not yet developed an approximate derivation method for finding the optimal portfolio with respect to a given return set. In this study, an approximation algorithm based on belief propagation for the portfolio optimization problem is presented using the Bethe free energy formalism, and the consistency of the numerical experimental results of the proposed algorithm with those of replica analysis is confirmed. Furthermore, the conjecture of H. Konno and H. Yamazaki, that the optimal solutions with the absolute deviation model and with the mean-variance model have the same typical behavior, is verified using replica analysis and the belief propagation algorithm. PMID:26305462

  2. Belief Propagation Algorithm for Portfolio Optimization Problems.

    PubMed

    Shinzato, Takashi; Yasuda, Muneki

    2015-01-01

    The typical behavior of optimal solutions to portfolio optimization problems with absolute deviation and expected shortfall models using replica analysis was pioneeringly estimated by S. Ciliberti et al. [Eur. Phys. B. 57, 175 (2007)]; however, they have not yet developed an approximate derivation method for finding the optimal portfolio with respect to a given return set. In this study, an approximation algorithm based on belief propagation for the portfolio optimization problem is presented using the Bethe free energy formalism, and the consistency of the numerical experimental results of the proposed algorithm with those of replica analysis is confirmed. Furthermore, the conjecture of H. Konno and H. Yamazaki, that the optimal solutions with the absolute deviation model and with the mean-variance model have the same typical behavior, is verified using replica analysis and the belief propagation algorithm.

  3. Joint Optimization of Vertical Component Gravity and Seismic P-wave First Arrivals by Simulated Annealing

    NASA Astrophysics Data System (ADS)

    Louie, J. N.; Basler-Reeder, K.; Kent, G. M.; Pullammanappallil, S. K.

    2015-12-01

    Simultaneous joint seismic-gravity optimization improves P-wave velocity models in areas with sharp lateral velocity contrasts. Optimization is achieved using simulated annealing, a metaheuristic global optimization algorithm that does not require an accurate initial model. Balancing the seismic-gravity objective function is accomplished by a novel approach based on analysis of Pareto charts. Gravity modeling uses a newly developed convolution algorithm, while seismic modeling utilizes the highly efficient Vidale eikonal equation traveltime generation technique. Synthetic tests show that joint optimization improves velocity model accuracy and provides velocity control below the deepest headwave raypath. Detailed first arrival picking followed by trial velocity modeling remediates inconsistent data. We use a set of highly refined first arrival picks to compare results of a convergent joint seismic-gravity optimization to the Plotrefa™ and SeisOpt® Pro™ velocity modeling packages. Plotrefa™ uses a nonlinear least squares approach that is initial model dependent and produces shallow velocity artifacts. SeisOpt® Pro™ utilizes the simulated annealing algorithm and is limited to depths above the deepest raypath. Joint optimization increases the depth of constrained velocities, improving reflector coherency at depth. Kirchoff prestack depth migrations reveal that joint optimization ameliorates shallow velocity artifacts caused by limitations in refraction ray coverage. Seismic and gravity data from the San Emidio Geothermal field of the northwest Basin and Range province demonstrate that joint optimization changes interpretation outcomes. The prior shallow-valley interpretation gives way to a deep valley model, while shallow antiformal reflectors that could have been interpreted as antiformal folds are flattened. Furthermore, joint optimization provides a clearer image of the rangefront fault. This technique can readily be applied to existing datasets and could replace the existing strategy of forward modeling to match gravity data.

  4. Efficient search, mapping, and optimization of multi-protein genetic systems in diverse bacteria

    PubMed Central

    Farasat, Iman; Kushwaha, Manish; Collens, Jason; Easterbrook, Michael; Guido, Matthew; Salis, Howard M

    2014-01-01

    Developing predictive models of multi-protein genetic systems to understand and optimize their behavior remains a combinatorial challenge, particularly when measurement throughput is limited. We developed a computational approach to build predictive models and identify optimal sequences and expression levels, while circumventing combinatorial explosion. Maximally informative genetic system variants were first designed by the RBS Library Calculator, an algorithm to design sequences for efficiently searching a multi-protein expression space across a > 10,000-fold range with tailored search parameters and well-predicted translation rates. We validated the algorithm's predictions by characterizing 646 genetic system variants, encoded in plasmids and genomes, expressed in six gram-positive and gram-negative bacterial hosts. We then combined the search algorithm with system-level kinetic modeling, requiring the construction and characterization of 73 variants to build a sequence-expression-activity map (SEAMAP) for a biosynthesis pathway. Using model predictions, we designed and characterized 47 additional pathway variants to navigate its activity space, find optimal expression regions with desired activity response curves, and relieve rate-limiting steps in metabolism. Creating sequence-expression-activity maps accelerates the optimization of many protein systems and allows previous measurements to quantitatively inform future designs. PMID:24952589

  5. Optimization of MLS receivers for multipath environments

    NASA Technical Reports Server (NTRS)

    Mcalpine, G. A.; Highfill, J. H., III

    1979-01-01

    The angle tracking problems in microwave landing system receivers along with a receiver design capable of optimal performance in the multipath environments found in air terminal areas were studied. Included were various theoretical and evaluative studies like: (1) signal model development; (2) derivation of optimal receiver structures; and (3) development and use of computer simulations for receiver algorithm evaluation. The development of an experimental receiver for flight testing is presented. An overview of the work and summary of principal results and conclusions are reported.

  6. Optimizing oil spill cleanup efforts: A tactical approach and evaluation framework.

    PubMed

    Grubesic, Tony H; Wei, Ran; Nelson, Jake

    2017-12-15

    Although anthropogenic oil spills vary in size, duration and severity, their broad impacts on complex social, economic and ecological systems can be significant. Questions pertaining to the operational challenges associated with the tactical allocation of human resources, cleanup equipment and supplies to areas impacted by a large spill are particularly salient when developing mitigation strategies for extreme oiling events. The purpose of this paper is to illustrate the application of advanced oil spill modeling techniques in combination with a developed mathematical model to spatially optimize the allocation of response crews and equipment for cleaning up an offshore oil spill. The results suggest that the detailed simulations and optimization model are a good first step in allowing both communities and emergency responders to proactively plan for extreme oiling events and develop response strategies that minimize the impacts of spills. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A new methodology for surcharge risk management in urban areas (case study: Gonbad-e-Kavus city).

    PubMed

    Hooshyaripor, Farhad; Yazdi, Jafar

    2017-02-01

    This research presents a simulation-optimization model for urban flood mitigation integrating Non-dominated Sorting Genetic Algorithm (NSGA-II) with Storm Water Management Model (SWMM) hydraulic model under a curve number-based hydrologic model of low impact development technologies in Gonbad-e-Kavus, a small city in the north of Iran. In the developed model, the best performance of the system relies on the optimal layout and capacity of retention ponds over the study area in order to reduce surcharge from the manholes underlying a set of storm event loads, while the available investment plays a restricting role. Thus, there is a multi-objective optimization problem with two conflicting objectives solved successfully by NSGA-II to find a set of optimal solutions known as the Pareto front. In order to analyze the results, a new factor, investment priority index (IPI), is defined which shows the risk of surcharging over the network and priority of the mitigation actions. The IPI is calculated using the probability of pond selection for candidate locations and average depth of the ponds in all Pareto front solutions. The IPI can help the decision makers to arrange a long-term progressive plan with the priority of high-risk areas when an optimal solution has been selected.

  8. Parallel algorithms for islanded microgrid with photovoltaic and energy storage systems planning optimization problem: Material selection and quantity demand optimization

    NASA Astrophysics Data System (ADS)

    Cao, Yang; Liu, Chun; Huang, Yuehui; Wang, Tieqiang; Sun, Chenjun; Yuan, Yue; Zhang, Xinsong; Wu, Shuyun

    2017-02-01

    With the development of roof photovoltaic power (PV) generation technology and the increasingly urgent need to improve supply reliability levels in remote areas, islanded microgrid with photovoltaic and energy storage systems (IMPE) is developing rapidly. The high costs of photovoltaic panel material and energy storage battery material have become the primary factors that hinder the development of IMPE. The advantages and disadvantages of different types of photovoltaic panel materials and energy storage battery materials are analyzed in this paper, and guidance is provided on material selection for IMPE planners. The time sequential simulation method is applied to optimize material demands of the IMPE. The model is solved by parallel algorithms that are provided by a commercial solver named CPLEX. Finally, to verify the model, an actual IMPE is selected as a case system. Simulation results on the case system indicate that the optimization model and corresponding algorithm is feasible. Guidance for material selection and quantity demand for IMPEs in remote areas is provided by this method.

  9. A parallel optimization method for product configuration and supplier selection based on interval

    NASA Astrophysics Data System (ADS)

    Zheng, Jian; Zhang, Meng; Li, Guoxi

    2017-06-01

    In the process of design and manufacturing, product configuration is an important way of product development, and supplier selection is an essential component of supply chain management. To reduce the risk of procurement and maximize the profits of enterprises, this study proposes to combine the product configuration and supplier selection, and express the multiple uncertainties as interval numbers. An integrated optimization model of interval product configuration and supplier selection was established, and NSGA-II was put forward to locate the Pareto-optimal solutions to the interval multiobjective optimization model.

  10. A hybrid optimization approach in non-isothermal glass molding

    NASA Astrophysics Data System (ADS)

    Vu, Anh-Tuan; Kreilkamp, Holger; Krishnamoorthi, Bharathwaj Janaki; Dambon, Olaf; Klocke, Fritz

    2016-10-01

    Intensively growing demands on complex yet low-cost precision glass optics from the today's photonic market motivate the development of an efficient and economically viable manufacturing technology for complex shaped optics. Against the state-of-the-art replication-based methods, Non-isothermal Glass Molding turns out to be a promising innovative technology for cost-efficient manufacturing because of increased mold lifetime, less energy consumption and high throughput from a fast process chain. However, the selection of parameters for the molding process usually requires a huge effort to satisfy precious requirements of the molded optics and to avoid negative effects on the expensive tool molds. Therefore, to reduce experimental work at the beginning, a coupling CFD/FEM numerical modeling was developed to study the molding process. This research focuses on the development of a hybrid optimization approach in Non-isothermal glass molding. To this end, an optimal configuration with two optimization stages for multiple quality characteristics of the glass optics is addressed. The hybrid Back-Propagation Neural Network (BPNN)-Genetic Algorithm (GA) is first carried out to realize the optimal process parameters and the stability of the process. The second stage continues with the optimization of glass preform using those optimal parameters to guarantee the accuracy of the molded optics. Experiments are performed to evaluate the effectiveness and feasibility of the model for the process development in Non-isothermal glass molding.

  11. Variable Complexity Optimization of Composite Structures

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.

    2002-01-01

    The use of several levels of modeling in design has been dubbed variable complexity modeling. The work under the grant focused on developing variable complexity modeling strategies with emphasis on response surface techniques. Applications included design of stiffened composite plates for improved damage tolerance, the use of response surfaces for fitting weights obtained by structural optimization, and design against uncertainty using response surface techniques.

  12. Performance optimization of helicopter rotor blades

    NASA Technical Reports Server (NTRS)

    Walsh, Joanne L.

    1991-01-01

    As part of a center-wide activity at NASA Langley Research Center to develop multidisciplinary design procedures by accounting for discipline interactions, a performance design optimization procedure is developed. The procedure optimizes the aerodynamic performance of rotor blades by selecting the point of taper initiation, root chord, taper ratio, and maximum twist which minimize hover horsepower while not degrading forward flight performance. The procedure uses HOVT (a strip theory momentum analysis) to compute the horse power required for hover and the comprehensive helicopter analysis program CAMRAD to compute the horsepower required for forward flight and maneuver. The optimization algorithm consists of the general purpose optimization program CONMIN and approximate analyses. Sensitivity analyses consisting of derivatives of the objective function and constraints are carried out by forward finite differences. The procedure is applied to a test problem which is an analytical model of a wind tunnel model of a utility rotor blade.

  13. The importance of functional form in optimal control solutions of problems in population dynamics

    USGS Publications Warehouse

    Runge, M.C.; Johnson, F.A.

    2002-01-01

    Optimal control theory is finding increased application in both theoretical and applied ecology, and it is a central element of adaptive resource management. One of the steps in an adaptive management process is to develop alternative models of system dynamics, models that are all reasonable in light of available data, but that differ substantially in their implications for optimal control of the resource. We explored how the form of the recruitment and survival functions in a general population model for ducks affected the patterns in the optimal harvest strategy, using a combination of analytical, numerical, and simulation techniques. We compared three relationships between recruitment and population density (linear, exponential, and hyperbolic) and three relationships between survival during the nonharvest season and population density (constant, logistic, and one related to the compensatory harvest mortality hypothesis). We found that the form of the component functions had a dramatic influence on the optimal harvest strategy and the ultimate equilibrium state of the system. For instance, while it is commonly assumed that a compensatory hypothesis leads to higher optimal harvest rates than an additive hypothesis, we found this to depend on the form of the recruitment function, in part because of differences in the optimal steady-state population density. This work has strong direct consequences for those developing alternative models to describe harvested systems, but it is relevant to a larger class of problems applying optimal control at the population level. Often, different functional forms will not be statistically distinguishable in the range of the data. Nevertheless, differences between the functions outside the range of the data can have an important impact on the optimal harvest strategy. Thus, development of alternative models by identifying a single functional form, then choosing different parameter combinations from extremes on the likelihood profile may end up producing alternatives that do not differ as importantly as if different functional forms had been used. We recommend that biological knowledge be used to bracket a range of possible functional forms, and robustness of conclusions be checked over this range.

  14. Development of the IBSAL-SimMOpt Method for the Optimization of Quality in a Corn Stover Supply Chain

    DOE PAGES

    Chavez, Hernan; Castillo-Villar, Krystel; Webb, Erin

    2017-08-01

    Variability on the physical characteristics of feedstock has a relevant effect on the reactor’s reliability and operating cost. Most of the models developed to optimize biomass supply chains have failed to quantify the effect of biomass quality and preprocessing operations required to meet biomass specifications on overall cost and performance. The Integrated Biomass Supply Analysis and Logistics (IBSAL) model estimates the harvesting, collection, transportation, and storage cost while considering the stochastic behavior of the field-to-biorefinery supply chain. This paper proposes an IBSAL-SimMOpt (Simulation-based Multi-Objective Optimization) method for optimizing the biomass quality and costs associated with the efforts needed to meetmore » conversion technology specifications. The method is developed in two phases. For the first phase, a SimMOpt tool that interacts with the extended IBSAL is developed. For the second phase, the baseline IBSAL model is extended so that the cost for meeting and/or penalization for failing in meeting specifications are considered. The IBSAL-SimMOpt method is designed to optimize quality characteristics of biomass, cost related to activities intended to improve the quality of feedstock, and the penalization cost. A case study based on 1916 farms in Ontario, Canada is considered for testing the proposed method. Analysis of the results demonstrates that this method is able to find a high-quality set of non-dominated solutions.« less

  15. Development of the IBSAL-SimMOpt Method for the Optimization of Quality in a Corn Stover Supply Chain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavez, Hernan; Castillo-Villar, Krystel; Webb, Erin

    Variability on the physical characteristics of feedstock has a relevant effect on the reactor’s reliability and operating cost. Most of the models developed to optimize biomass supply chains have failed to quantify the effect of biomass quality and preprocessing operations required to meet biomass specifications on overall cost and performance. The Integrated Biomass Supply Analysis and Logistics (IBSAL) model estimates the harvesting, collection, transportation, and storage cost while considering the stochastic behavior of the field-to-biorefinery supply chain. This paper proposes an IBSAL-SimMOpt (Simulation-based Multi-Objective Optimization) method for optimizing the biomass quality and costs associated with the efforts needed to meetmore » conversion technology specifications. The method is developed in two phases. For the first phase, a SimMOpt tool that interacts with the extended IBSAL is developed. For the second phase, the baseline IBSAL model is extended so that the cost for meeting and/or penalization for failing in meeting specifications are considered. The IBSAL-SimMOpt method is designed to optimize quality characteristics of biomass, cost related to activities intended to improve the quality of feedstock, and the penalization cost. A case study based on 1916 farms in Ontario, Canada is considered for testing the proposed method. Analysis of the results demonstrates that this method is able to find a high-quality set of non-dominated solutions.« less

  16. Development of a multiobjective optimization tool for the selection and placement of best management practices for nonpoint source pollution control

    NASA Astrophysics Data System (ADS)

    Maringanti, Chetan; Chaubey, Indrajeet; Popp, Jennie

    2009-06-01

    Best management practices (BMPs) are effective in reducing the transport of agricultural nonpoint source pollutants to receiving water bodies. However, selection of BMPs for placement in a watershed requires optimization of the available resources to obtain maximum possible pollution reduction. In this study, an optimization methodology is developed to select and place BMPs in a watershed to provide solutions that are both economically and ecologically effective. This novel approach develops and utilizes a BMP tool, a database that stores the pollution reduction and cost information of different BMPs under consideration. The BMP tool replaces the dynamic linkage of the distributed parameter watershed model during optimization and therefore reduces the computation time considerably. Total pollutant load from the watershed, and net cost increase from the baseline, were the two objective functions minimized during the optimization process. The optimization model, consisting of a multiobjective genetic algorithm (NSGA-II) in combination with a watershed simulation tool (Soil Water and Assessment Tool (SWAT)), was developed and tested for nonpoint source pollution control in the L'Anguille River watershed located in eastern Arkansas. The optimized solutions provided a trade-off between the two objective functions for sediment, phosphorus, and nitrogen reduction. The results indicated that buffer strips were very effective in controlling the nonpoint source pollutants from leaving the croplands. The optimized BMP plans resulted in potential reductions of 33%, 32%, and 13% in sediment, phosphorus, and nitrogen loads, respectively, from the watershed.

  17. A Goal Programming Optimization Model for The Allocation of Liquid Steel Production

    NASA Astrophysics Data System (ADS)

    Hapsari, S. N.; Rosyidi, C. N.

    2018-03-01

    This research was conducted in one of the largest steel companies in Indonesia which has several production units and produces a wide range of steel products. One of the important products in the company is billet steel. The company has four Electric Arc Furnace (EAF) which produces liquid steel which must be procesed further to be billet steel. The billet steel plant needs to make their production process more efficient to increase the productvity. The management has four goals to be achieved and hence the optimal allocation of the liquid steel production is needed to achieve those goals. In this paper, a goal programming optimization model is developed to determine optimal allocation of liquid steel production in each EAF, to satisfy demand in 3 periods and the company goals, namely maximizing the volume of production, minimizing the cost of raw materials, minimizing maintenance costs, maximizing sales revenues, and maximizing production capacity. From the results of optimization, only maximizing production capacity goal can not achieve the target. However, the model developed in this papare can optimally allocate liquid steel so the allocation of production does not exceed the maximum capacity of the machine work hours and maximum production capacity.

  18. Optimization of the resources management in fighting wildfires.

    PubMed

    Martin-Fernández, Susana; Martínez-Falero, Eugenio; Pérez-González, J Manuel

    2002-09-01

    Wildfires lead to important economic, social, and environmental losses, especially in areas of Mediterranean climate where they are of a high intensity and frequency. Over the past 30 years there has been a dramatic surge in the development and use of fire spread models. However, given the chaotic nature of environmental systems, it is very difficult to develop real-time fire-extinguishing models. This article proposes a method of optimizing the performance of wildfire fighting resources such that losses are kept to a minimum. The optimization procedure includes discrete simulation algorithms and Bayesian optimization methods for discrete and continuous problems (simulated annealing and Bayesian global optimization). Fast calculus algorithms are applied to provide optimization outcomes in short periods of time such that the predictions of the model and the real behavior of the fire, combat resources, and meteorological conditions are similar. In addition, adaptive algorithms take into account the chaotic behavior of wildfire so that the system can be updated with data corresponding to the real situation to obtain a new optimum solution. The application of this method to the Northwest Forest of Madrid (Spain) is also described. This application allowed us to check that it is a helpful tool in the decision-making process.

  19. Optimization of the Resources Management in Fighting Wildfires

    NASA Astrophysics Data System (ADS)

    Martin-Fernández, Susana; Martínez-Falero, Eugenio; Pérez-González, J. Manuel

    2002-09-01

    Wildfires lead to important economic, social, and environmental losses, especially in areas of Mediterranean climate where they are of a high intensity and frequency. Over the past 30 years there has been a dramatic surge in the development and use of fire spread models. However, given the chaotic nature of environmental systems, it is very difficult to develop real-time fire-extinguishing models. This article proposes a method of optimizing the performance of wildfire fighting resources such that losses are kept to a minimum. The optimization procedure includes discrete simulation algorithms and Bayesian optimization methods for discrete and continuous problems (simulated annealing and Bayesian global optimization). Fast calculus algorithms are applied to provide optimization outcomes in short periods of time such that the predictions of the model and the real behavior of the fire, combat resources, and meteorological conditions are similar. In addition, adaptive algorithms take into account the chaotic behavior of wildfire so that the system can be updated with data corresponding to the real situation to obtain a new optimum solution. The application of this method to the Northwest Forest of Madrid (Spain) is also described. This application allowed us to check that it is a helpful tool in the decision-making process.

  20. Toolkit of Available EPA Green Infrastructure Modeling ...

    EPA Pesticide Factsheets

    This webinar will present a toolkit consisting of five EPA green infrastructure models and tools, along with communication material. This toolkit can be used as a teaching and quick reference resource for use by planners and developers when making green infrastructure implementation decisions. It can also be used for low impact development design competitions. Models and tools included: Green Infrastructure Wizard (GIWiz), Watershed Management Optimization Support Tool (WMOST), Visualizing Ecosystem Land Management Assessments (VELMA) Model, Storm Water Management Model (SWMM), and the National Stormwater Calculator (SWC). This webinar will present a toolkit consisting of five EPA green infrastructure models and tools, along with communication material. This toolkit can be used as a teaching and quick reference resource for use by planners and developers when making green infrastructure implementation decisions. It can also be used for low impact development design competitions. Models and tools included: Green Infrastructure Wizard (GIWiz), Watershed Management Optimization Support Tool (WMOST), Visualizing Ecosystem Land Management Assessments (VELMA) Model, Storm Water Management Model (SWMM), and the National Stormwater Calculator (SWC).

  1. An aircraft noise pollution model for trajectory optimization

    NASA Technical Reports Server (NTRS)

    Barkana, A.; Cook, G.

    1976-01-01

    A mathematical model describing the generation of aircraft noise is developed with the ultimate purpose of reducing noise (noise-optimizing landing trajectories) in terminal areas. While the model is for a specific aircraft (Boeing 737), the methodology would be applicable to a wide variety of aircraft. The model is used to obtain a footprint on the ground inside of which the noise level is at or above 70 dB.

  2. Optimizing and controlling earthmoving operations using spatial technologies

    NASA Astrophysics Data System (ADS)

    Alshibani, Adel

    This thesis presents a model designed for optimizing, tracking, and controlling earthmoving operations. The proposed model utilizes, Genetic Algorithm (GA), Linear Programming (LP), and spatial technologies including Global Positioning Systems (GPS) and Geographic Information Systems (GIS) to support the management functions of the developed model. The model assists engineers and contractors in selecting near optimum crew formations in planning phase and during construction, using GA and LP supported by the Pathfinder Algorithm developed in a GIS environment. GA is used in conjunction with a set of rules developed to accelerate the optimization process and to avoid generating and evaluating hypothetical and unrealistic crew formations. LP is used to determine quantities of earth to be moved from different borrow pits and to be placed at different landfill sites to meet project constraints and to minimize the cost of these earthmoving operations. On the one hand, GPS is used for onsite data collection and for tracking construction equipment in near real-time. On the other hand, GIS is employed to automate data acquisition and to analyze the collected spatial data. The model is also capable of reconfiguring crew formations dynamically during the construction phase while site operations are in progress. The optimization of the crew formation considers: (1) construction time, (2) construction direct cost, or (3) construction total cost. The model is also capable of generating crew formations to meet, as close as possible, specified time and/or cost constraints. In addition, the model supports tracking and reporting of project progress utilizing the earned-value concept and the project ratio method with modifications that allow for more accurate forecasting of project time and cost at set future dates and at completion. The model is capable of generating graphical and tabular reports. The developed model has been implemented in prototype software, using Object-Oriented Programming, Microsoft Foundation Classes (MFC), and has been coded using visual C++ V.6. Microsoft Access is employed as database management system. The developed software operates in Microsoft windows' environment. Three example applications were analyzed to validate the development made and to illustrate the essential features of the developed model.

  3. Combined optimization model for sustainable energization strategy

    NASA Astrophysics Data System (ADS)

    Abtew, Mohammed Seid

    Access to energy is a foundation to establish a positive impact on multiple aspects of human development. Both developed and developing countries have a common concern of achieving a sustainable energy supply to fuel economic growth and improve the quality of life with minimal environmental impacts. The Least Developing Countries (LDCs), however, have different economic, social, and energy systems. Prevalence of power outage, lack of access to electricity, structural dissimilarity between rural and urban regions, and traditional fuel dominance for cooking and the resultant health and environmental hazards are some of the distinguishing characteristics of these nations. Most energy planning models have been designed for developed countries' socio-economic demographics and have missed the opportunity to address special features of the poor countries. An improved mixed-integer programming energy-source optimization model is developed to address limitations associated with using current energy optimization models for LDCs, tackle development of the sustainable energization strategies, and ensure diversification and risk management provisions in the selected energy mix. The Model predicted a shift from traditional fuels reliant and weather vulnerable energy source mix to a least cost and reliable modern clean energy sources portfolio, a climb on the energy ladder, and scored multifaceted economic, social, and environmental benefits. At the same time, it represented a transition strategy that evolves to increasingly cleaner energy technologies with growth as opposed to an expensive solution that leapfrogs immediately to the cleanest possible, overreaching technologies.

  4. Modeling and Optimization of Renewable and Hybrid Fuel Cell Systems for Space Power and Propulsion

    DTIC Science & Technology

    2010-11-14

    For that the project achieved: the optimization of SOFC and PEMFC internal structure and external shape under a volume constraint; an initial set of...subcomponent models for regenerative, renewable fuel cell system (RFC); the integration of PEMFC into RFC systems were developed; power electronic...with the same objectives and goals but using a PEMFC regenerative system instead. This research group studied and published on the optimization and

  5. The Sizing and Optimization Language, (SOL): Computer language for design problems

    NASA Technical Reports Server (NTRS)

    Lucas, Stephen H.; Scotti, Stephen J.

    1988-01-01

    The Sizing and Optimization Language, (SOL), a new high level, special purpose computer language was developed to expedite application of numerical optimization to design problems and to make the process less error prone. SOL utilizes the ADS optimization software and provides a clear, concise syntax for describing an optimization problem, the OPTIMIZE description, which closely parallels the mathematical description of the problem. SOL offers language statements which can be used to model a design mathematically, with subroutines or code logic, and with existing FORTRAN routines. In addition, SOL provides error checking and clear output of the optimization results. Because of these language features, SOL is best suited to model and optimize a design concept when the model consits of mathematical expressions written in SOL. For such cases, SOL's unique syntax and error checking can be fully utilized. SOL is presently available for DEC VAX/VMS systems. A SOL package is available which includes the SOL compiler, runtime library routines, and a SOL reference manual.

  6. Teaching Simulation and Computer-Aided Separation Optimization in Liquid Chromatography by Means of Illustrative Microsoft Excel Spreadsheets

    ERIC Educational Resources Information Center

    Fasoula, S.; Nikitas, P.; Pappa-Louisi, A.

    2017-01-01

    A series of Microsoft Excel spreadsheets were developed to simulate the process of separation optimization under isocratic and simple gradient conditions. The optimization procedure is performed in a stepwise fashion using simple macros for an automatic application of this approach. The proposed optimization approach involves modeling of the peak…

  7. Open space preservation, property value, and optimal spatial configuration

    Treesearch

    Yong Jiang; Stephen K. Swallow

    2007-01-01

    The public has increasingly demonstrated a strong support for open space preservation. How to finance the socially efficient level of open space with the optimal spatial structure is of high policy relevance to local governments. In this study, we developed a spatially explicit open space model to help identify the socially optimal amount and optimal spatial...

  8. Multi-disciplinary optimization of aeroservoelastic systems

    NASA Technical Reports Server (NTRS)

    Karpel, Mardechay

    1992-01-01

    The purpose of the research project was to continue the development of new methods for efficient aeroservoelastic analysis and optimization. The main targets were as follows: to complete the development of analytical tools for the investigation of flutter with large stiffness changes; to continue the work on efficient continuous gust response and sensitivity derivatives; and to advance the techniques of calculating dynamic loads with control and unsteady aerodynamic effects. An efficient and highly accurate mathematical model for time-domain analysis of flutter during which large structural changes occur was developed in cooperation with Carol D. Wieseman of NASA LaRC. The model was based on the second-year work 'Modal Coordinates for Aeroelastic Analysis with Large Local Structural Variations'. The work on continuous gust response was completed. An abstract of the paper 'Continuous Gust Response and Sensitivity Derivatives Using State-Space Models' was submitted for presentation in the 33rd Israel Annual Conference on Aviation and Astronautics, Feb. 1993. The abstract is given in Appendix A. The work extends the optimization model to deal with continuous gust objectives in a way that facilitates their inclusion in the efficient multi-disciplinary optimization scheme. Currently under development is a work designed to extend the analysis and optimization capabilities to loads and stress considerations. The work is on aircraft dynamic loads in response to impulsive and non-impulsive excitation. The work extends the formulations of the mode-displacement and summation-of-forces methods to include modes with significant local distortions, and load modes. An abstract of the paper,'Structural Dynamic Loads in Response to Impulsive Excitation' is given in appendix B. Another work performed this year under the Grant was 'Size-Reduction Techniques for the Determination of Efficient Aeroservoelastic Models' given in Appendix C.

  9. Optimization methods and silicon solar cell numerical models

    NASA Technical Reports Server (NTRS)

    Girardini, K.

    1986-01-01

    The goal of this project is the development of an optimization algorithm for use with a solar cell model. It is possible to simultaneously vary design variables such as impurity concentrations, front junction depth, back junctions depth, and cell thickness to maximize the predicted cell efficiency. An optimization algorithm has been developed and interfaced with the Solar Cell Analysis Program in 1 Dimension (SCAPID). SCAPID uses finite difference methods to solve the differential equations which, along with several relations from the physics of semiconductors, describe mathematically the operation of a solar cell. A major obstacle is that the numerical methods used in SCAPID require a significant amount of computer time, and during an optimization the model is called iteratively until the design variables converge to the value associated with the maximum efficiency. This problem has been alleviated by designing an optimization code specifically for use with numerically intensive simulations, to reduce the number of times the efficiency has to be calculated to achieve convergence to the optimal solution. Adapting SCAPID so that it could be called iteratively by the optimization code provided another means of reducing the cpu time required to complete an optimization. Instead of calculating the entire I-V curve, as is usually done in SCAPID, only the efficiency is calculated (maximum power voltage and current) and the solution from previous calculations is used to initiate the next solution.

  10. Optimal cooperative control synthesis of active displays

    NASA Technical Reports Server (NTRS)

    Garg, S.; Schmidt, D. K.

    1985-01-01

    A technique is developed that is intended to provide a systematic approach to synthesizing display augmentation for optimal manual control in complex, closed-loop tasks. A cooperative control synthesis technique, previously developed to design pilot-optimal control augmentation for the plant, is extended to incorporate the simultaneous design of performance enhancing displays. The technique utilizes an optimal control model of the man in the loop. It is applied to the design of a quickening control law for a display and a simple K/s(2) plant, and then to an F-15 type aircraft in a multi-channel task. Utilizing the closed loop modeling and analysis procedures, the results from the display design algorithm are evaluated and an analytical validation is performed. Experimental validation is recommended for future efforts.

  11. Policy Gradient Adaptive Dynamic Programming for Data-Based Optimal Control.

    PubMed

    Luo, Biao; Liu, Derong; Wu, Huai-Ning; Wang, Ding; Lewis, Frank L

    2017-10-01

    The model-free optimal control problem of general discrete-time nonlinear systems is considered in this paper, and a data-based policy gradient adaptive dynamic programming (PGADP) algorithm is developed to design an adaptive optimal controller method. By using offline and online data rather than the mathematical system model, the PGADP algorithm improves control policy with a gradient descent scheme. The convergence of the PGADP algorithm is proved by demonstrating that the constructed Q -function sequence converges to the optimal Q -function. Based on the PGADP algorithm, the adaptive control method is developed with an actor-critic structure and the method of weighted residuals. Its convergence properties are analyzed, where the approximate Q -function converges to its optimum. Computer simulation results demonstrate the effectiveness of the PGADP-based adaptive control method.

  12. Parameterization of the InVEST Crop Pollination Model to spatially predict abundance of wild blueberry (Vaccinium angustifolium Aiton) native bee pollinators in Maine, USA

    USGS Publications Warehouse

    Groff, Shannon C.; Loftin, Cynthia S.; Drummond, Frank; Bushmann, Sara; McGill, Brian J.

    2016-01-01

    Non-native honeybees historically have been managed for crop pollination, however, recent population declines draw attention to pollination services provided by native bees. We applied the InVEST Crop Pollination model, developed to predict native bee abundance from habitat resources, in Maine's wild blueberry crop landscape. We evaluated model performance with parameters informed by four approaches: 1) expert opinion; 2) sensitivity analysis; 3) sensitivity analysis informed model optimization; and, 4) simulated annealing (uninformed) model optimization. Uninformed optimization improved model performance by 29% compared to expert opinion-informed model, while sensitivity-analysis informed optimization improved model performance by 54%. This suggests that expert opinion may not result in the best parameter values for the InVEST model. The proportion of deciduous/mixed forest within 2000 m of a blueberry field also reliably predicted native bee abundance in blueberry fields, however, the InVEST model provides an efficient tool to estimate bee abundance beyond the field perimeter.

  13. Response Surface Methodology Using a Fullest Balanced Model: A Re-Analysis of a Dataset in the Korean Journal for Food Science of Animal Resources.

    PubMed

    Rheem, Sungsue; Rheem, Insoo; Oh, Sejong

    2017-01-01

    Response surface methodology (RSM) is a useful set of statistical techniques for modeling and optimizing responses in research studies of food science. In the analysis of response surface data, a second-order polynomial regression model is usually used. However, sometimes we encounter situations where the fit of the second-order model is poor. If the model fitted to the data has a poor fit including a lack of fit, the modeling and optimization results might not be accurate. In such a case, using a fullest balanced model, which has no lack of fit, can fix such problem, enhancing the accuracy of the response surface modeling and optimization. This article presents how to develop and use such a model for the better modeling and optimizing of the response through an illustrative re-analysis of a dataset in Park et al. (2014) published in the Korean Journal for Food Science of Animal Resources .

  14. Suborbital spaceplane optimization using non-stationary Gaussian processes

    NASA Astrophysics Data System (ADS)

    Dufour, Robin; de Muelenaere, Julien; Elham, Ali

    2014-10-01

    This paper presents multidisciplinary design optimization of a sub-orbital spaceplane. The optimization includes three disciplines: the aerodynamics, the structure and the trajectory. An Adjoint Euler code is used to calculate the aerodynamic lift and drag of the vehicle as well as their derivatives with respect to the design variables. A new surrogate model has been developed based on a non-stationary Gaussian process. That model was used to estimate the aerodynamic characteristics of the vehicle during the trajectory optimization. The trajectory of thevehicle has been optimized together with its geometry in order to maximize the amount of payload that can be carried by the spaceplane.

  15. Systematic optimization of fed-batch simultaneous saccharification and fermentation at high-solid loading based on enzymatic hydrolysis and dynamic metabolic modeling of Saccharomyces cerevisiae.

    PubMed

    Unrean, Pornkamol; Khajeeram, Sutamat; Laoteng, Kobkul

    2016-03-01

    An integrative simultaneous saccharification and fermentation (SSF) modeling is a useful guiding tool for rapid process optimization to meet the techno-economic requirement of industrial-scale lignocellulosic ethanol production. In this work, we have developed the SSF model composing of a metabolic network of a Saccharomyces cerevisiae cell associated with fermentation kinetics and enzyme hydrolysis model to quantitatively capture dynamic responses of yeast cell growth and fermentation during SSF. By using model-based design of feeding profiles for substrate and yeast cell in the fed-batch SSF process, an efficient ethanol production with high titer of up to 65 g/L and high yield of 85 % of theoretical yield was accomplished. The ethanol titer and productivity was increased by 47 and 41 %, correspondingly, in optimized fed-batch SSF as compared to batch process. The developed integrative SSF model is, therefore, considered as a promising approach for systematic design of economical and sustainable SSF bioprocessing of lignocellulose.

  16. Nontangent, Developed Contour Bulkheads for a Single-Stage Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Lepsch, Roger A., Jr.

    2000-01-01

    Dry weights for single-stage launch vehicles that incorporate nontangent, developed contour bulkheads are estimated and compared to a baseline vehicle with 1.414 aspect ratio ellipsoidal bulkheads. Weights, volumes, and heights of optimized bulkhead designs are computed using a preliminary design bulkhead analysis code. The dry weights of vehicles that incorporate the optimized bulkheads are predicted using a vehicle weights and sizing code. Two optimization approaches are employed. A structural-level method, where the vehicle's three major bulkhead regions are optimized separately and then incorporated into a model for computation of the vehicle dry weight, predicts a reduction of4365 lb (2.2 %) from the 200,679-lb baseline vehicle dry weight. In the second, vehicle-level, approach, the vehicle dry weight is the objective function for the optimization. For the vehicle-level analysis, modified bulkhead designs are analyzed and incorporated into the weights model for computation of a dry weight. The optimizer simultaneously manipulates design variables for all three bulkheads to reduce the dry weight. The vehicle-level analysis predicts a dry weight reduction of 5129 lb, a 2.6% reduction from the baseline weight. Based on these results, nontangent, developed contour bulkheads may provide substantial weight savings for single stage vehicles.

  17. Optimization of a Nucleic Acids united-RESidue 2-Point model (NARES-2P) with a maximum-likelihood approach

    NASA Astrophysics Data System (ADS)

    He, Yi; Liwo, Adam; Scheraga, Harold A.

    2015-12-01

    Coarse-grained models are useful tools to investigate the structural and thermodynamic properties of biomolecules. They are obtained by merging several atoms into one interaction site. Such simplified models try to capture as much as possible information of the original biomolecular system in all-atom representation but the resulting parameters of these coarse-grained force fields still need further optimization. In this paper, a force field optimization method, which is based on maximum-likelihood fitting of the simulated to the experimental conformational ensembles and least-squares fitting of the simulated to the experimental heat-capacity curves, is applied to optimize the Nucleic Acid united-RESidue 2-point (NARES-2P) model for coarse-grained simulations of nucleic acids recently developed in our laboratory. The optimized NARES-2P force field reproduces the structural and thermodynamic data of small DNA molecules much better than the original force field.

  18. A Hybrid Interval-Robust Optimization Model for Water Quality Management.

    PubMed

    Xu, Jieyu; Li, Yongping; Huang, Guohe

    2013-05-01

    In water quality management problems, uncertainties may exist in many system components and pollution-related processes ( i.e. , random nature of hydrodynamic conditions, variability in physicochemical processes, dynamic interactions between pollutant loading and receiving water bodies, and indeterminacy of available water and treated wastewater). These complexities lead to difficulties in formulating and solving the resulting nonlinear optimization problems. In this study, a hybrid interval-robust optimization (HIRO) method was developed through coupling stochastic robust optimization and interval linear programming. HIRO can effectively reflect the complex system features under uncertainty, where implications of water quality/quantity restrictions for achieving regional economic development objectives are studied. By delimiting the uncertain decision space through dimensional enlargement of the original chemical oxygen demand (COD) discharge constraints, HIRO enhances the robustness of the optimization processes and resulting solutions. This method was applied to planning of industry development in association with river-water pollution concern in New Binhai District of Tianjin, China. Results demonstrated that the proposed optimization model can effectively communicate uncertainties into the optimization process and generate a spectrum of potential inexact solutions supporting local decision makers in managing benefit-effective water quality management schemes. HIRO is helpful for analysis of policy scenarios related to different levels of economic penalties, while also providing insight into the tradeoff between system benefits and environmental requirements.

  19. Mathematical modeling of efficacy and safety for anticancer drugs clinical development.

    PubMed

    Lavezzi, Silvia Maria; Borella, Elisa; Carrara, Letizia; De Nicolao, Giuseppe; Magni, Paolo; Poggesi, Italo

    2018-01-01

    Drug attrition in oncology clinical development is higher than in other therapeutic areas. In this context, pharmacometric modeling represents a useful tool to explore drug efficacy in earlier phases of clinical development, anticipating overall survival using quantitative model-based metrics. Furthermore, modeling approaches can be used to characterize earlier the safety and tolerability profile of drug candidates, and, thus, the risk-benefit ratio and the therapeutic index, supporting the design of optimal treatment regimens and accelerating the whole process of clinical drug development. Areas covered: Herein, the most relevant mathematical models used in clinical anticancer drug development during the last decade are described. Less recent models were considered in the review if they represent a standard for the analysis of certain types of efficacy or safety measures. Expert opinion: Several mathematical models have been proposed to predict overall survival from earlier endpoints and validate their surrogacy in demonstrating drug efficacy in place of overall survival. An increasing number of mathematical models have also been developed to describe the safety findings. Modeling has been extensively used in anticancer drug development to individualize dosing strategies based on patient characteristics, and design optimal dosing regimens balancing efficacy and safety.

  20. Molecular descriptor subset selection in theoretical peptide quantitative structure-retention relationship model development using nature-inspired optimization algorithms.

    PubMed

    Žuvela, Petar; Liu, J Jay; Macur, Katarzyna; Bączek, Tomasz

    2015-10-06

    In this work, performance of five nature-inspired optimization algorithms, genetic algorithm (GA), particle swarm optimization (PSO), artificial bee colony (ABC), firefly algorithm (FA), and flower pollination algorithm (FPA), was compared in molecular descriptor selection for development of quantitative structure-retention relationship (QSRR) models for 83 peptides that originate from eight model proteins. The matrix with 423 descriptors was used as input, and QSRR models based on selected descriptors were built using partial least squares (PLS), whereas root mean square error of prediction (RMSEP) was used as a fitness function for their selection. Three performance criteria, prediction accuracy, computational cost, and the number of selected descriptors, were used to evaluate the developed QSRR models. The results show that all five variable selection methods outperform interval PLS (iPLS), sparse PLS (sPLS), and the full PLS model, whereas GA is superior because of its lowest computational cost and higher accuracy (RMSEP of 5.534%) with a smaller number of variables (nine descriptors). The GA-QSRR model was validated initially through Y-randomization. In addition, it was successfully validated with an external testing set out of 102 peptides originating from Bacillus subtilis proteomes (RMSEP of 22.030%). Its applicability domain was defined, from which it was evident that the developed GA-QSRR exhibited strong robustness. All the sources of the model's error were identified, thus allowing for further application of the developed methodology in proteomics.

  1. Optimal Experimental Design for Model Discrimination

    PubMed Central

    Myung, Jay I.; Pitt, Mark A.

    2009-01-01

    Models of a psychological process can be difficult to discriminate experimentally because it is not easy to determine the values of the critical design variables (e.g., presentation schedule, stimulus structure) that will be most informative in differentiating them. Recent developments in sampling-based search methods in statistics make it possible to determine these values, and thereby identify an optimal experimental design. After describing the method, it is demonstrated in two content areas in cognitive psychology in which models are highly competitive: retention (i.e., forgetting) and categorization. The optimal design is compared with the quality of designs used in the literature. The findings demonstrate that design optimization has the potential to increase the informativeness of the experimental method. PMID:19618983

  2. Numerical Parameter Optimization of the Ignition and Growth Model for HMX Based Plastic Bonded Explosives

    NASA Astrophysics Data System (ADS)

    Gambino, James; Tarver, Craig; Springer, H. Keo; White, Bradley; Fried, Laurence

    2017-06-01

    We present a novel method for optimizing parameters of the Ignition and Growth reactive flow (I&G) model for high explosives. The I&G model can yield accurate predictions of experimental observations. However, calibrating the model is a time-consuming task especially with multiple experiments. In this study, we couple the differential evolution global optimization algorithm to simulations of shock initiation experiments in the multi-physics code ALE3D. We develop parameter sets for HMX based explosives LX-07 and LX-10. The optimization finds the I&G model parameters that globally minimize the difference between calculated and experimental shock time of arrival at embedded pressure gauges. This work was performed under the auspices of the U.S. DOE by LLNL under contract DE-AC52-07NA27344. LLNS, LLC LLNL-ABS- 724898.

  3. Development of Pangasius steaks by improved sous-vide technology and its process optimization.

    PubMed

    Kumari, Namita; Singh, Chongtham Baru; Kumar, Raushan; Martin Xavier, K A; Lekshmi, Manjusha; Venkateshwarlu, Gudipati; Balange, Amjad K

    2016-11-01

    The present study embarked on the objective of optimizing improved sous - vide processing condition for development of ready-to-cook Pangasius steaks with extended shelf-life using response surface methodology. For the development of improved sous - vide cooked product, Pangasius steaks were treated with additional hurdles in various combinations for optimization. Based on the study, suitable combination of chitosan and spices was selected which enhanced antimicrobial and oxidative stability of the product. The Box-Behnken experimental design with 15 trials per model was adopted for designing the experiment to know the effect of independent variables, namely chitosan concentration (X 1 ), cooking time (X 2 ) and cooking temperature (X 3 ) on dependent variable i.e. TBARS value (Y 1 ). From RSM generated model, the optimum condition for sous - vide processing of Pangasius steaks were 1.08% chitosan concentration, 70.93 °C of cooking temperature and 16.48 min for cooking time and predicted minimum value of multiple response optimal condition was Y = 0.855 mg MDA/Kg of fish. The high correlation coefficient (R 2  = 0.975) between the model and the experimental data showed that the model was able to efficiently predict processing condition for development of sous - vide processed Pangasius steaks. This research may help the processing industries and Pangasius fish farmer as it provides an alternative low cost technology for the proper utilization of Pangasius .

  4. Development Of Educational Programs In Renewable And Alternative Energy Processing: The Case Of Russia

    NASA Astrophysics Data System (ADS)

    Svirina, Anna; Shindor, Olga; Tatmyshevsky, Konstantin

    2014-12-01

    The paper deals with the main problems of Russian energy system development that proves necessary to provide educational programs in the field of renewable and alternative energy. In the paper the process of curricula development and defining teaching techniques on the basis of expert opinion evaluation is defined, and the competence model for renewable and alternative energy processing master students is suggested. On the basis of a distributed questionnaire and in-depth interviews, the data for statistical analysis was obtained. On the basis of this data, an optimization of curricula structure was performed, and three models of a structure for optimizing teaching techniques were developed. The suggested educational program structure which was adopted by employers is presented in the paper. The findings include quantitatively estimated importance of systemic thinking and professional skills and knowledge as basic competences of a masters' program graduate; statistically estimated necessity of practice-based learning approach; and optimization models for structuring curricula in renewable and alternative energy processing. These findings allow the establishment of a platform for the development of educational programs.

  5. Utilization of Renewable Energy to Meet New National Challenges in Energy and Climate Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Momoh, James A.

    The project aims to design a microgrid system to promote utilization of renewable energy resources such as wind and solar to address the national challenges in energy and climate change. Different optimization techniques and simulation software are used to study the performance of the renewable energy system under study. A series of research works performed under the grant Department of Energy (DOE) is presented. This grant opportunity affords Howard faculty, students, graduates, undergraduates, K-12, postdocs and visiting scholars to benefit state of the art research work. The research work has led to improve or advance understanding of new hardware technologies,more » software development and engineering optimization methods necessary and sufficient for handling probabilistic models and real-time computation and functions necessary for development of microgrid system. Consistent with State of Project Objective Howard University has partitioned the task into the following integrated activities: 1. Stochastic Model for RER and Load • Development of modeling Renewable Energy Resources (RER) and load which is used to perform distribution power flow study which leads to publication in refereed journals and conferences. The work was also published at the IEEE conference. 2. Stochastic optimization for voltage/Var • The development of voltage VAr optimization based on a review of existing knowledge in optimization led to the use of stochastic program and evolution of programming optimization method for V/VAr optimization. Papers were presented at the North America Power Systems Conference and the IEEE PES general meeting. 3. Modeling RER and Storage • Extending the concept of optimization method an RER with storage, such as the development of microgrid V/VAr and storage is performed. Several papers were published at the North America Power Systems Conference and the IEEE PES general meeting. 4. Power Game • Development of power game experiment using Labvolt to allow for hands on understanding of design and development of microgrid functions is performed. Publication were done by students at the end of their summer program. 5. Designing Microgrid Testbed • Example microgrid test bed is developed. In addition, function of the test bed are developed. The papers were presented at the North America Power Systems Conference and the IEEE general meeting. 6. Outreach Program • From the outreach program, topics from the project have been included in the revision of courses at Howard University, new book called Energy Processing and Smartgrid has being developed. • Hosted masters students from University of Denver to complete their projects with us. • Hosted high school students for early exposure for careers in STEM • Representations made in IEEE conferences to share the lessons learned in the use of micro grid to expose students to STEM education and research.« less

  6. Patient-specific dosimetric endpoints based treatment plan quality control in radiotherapy.

    PubMed

    Song, Ting; Staub, David; Chen, Mingli; Lu, Weiguo; Tian, Zhen; Jia, Xun; Li, Yongbao; Zhou, Linghong; Jiang, Steve B; Gu, Xuejun

    2015-11-07

    In intensity modulated radiotherapy (IMRT), the optimal plan for each patient is specific due to unique patient anatomy. To achieve such a plan, patient-specific dosimetric goals reflecting each patient's unique anatomy should be defined and adopted in the treatment planning procedure for plan quality control. This study is to develop such a personalized treatment plan quality control tool by predicting patient-specific dosimetric endpoints (DEs). The incorporation of patient specific DEs is realized by a multi-OAR geometry-dosimetry model, capable of predicting optimal DEs based on the individual patient's geometry. The overall quality of a treatment plan is then judged with a numerical treatment plan quality indicator and characterized as optimal or suboptimal. Taking advantage of clinically available prostate volumetric modulated arc therapy (VMAT) treatment plans, we built and evaluated our proposed plan quality control tool. Using our developed tool, six of twenty evaluated plans were identified as sub-optimal plans. After plan re-optimization, these suboptimal plans achieved better OAR dose sparing without sacrificing the PTV coverage, and the dosimetric endpoints of the re-optimized plans agreed well with the model predicted values, which validate the predictability of the proposed tool. In conclusion, the developed tool is able to accurately predict optimally achievable DEs of multiple OARs, identify suboptimal plans, and guide plan optimization. It is a useful tool for achieving patient-specific treatment plan quality control.

  7. Robust input design for nonlinear dynamic modeling of AUV.

    PubMed

    Nouri, Nowrouz Mohammad; Valadi, Mehrdad

    2017-09-01

    Input design has a dominant role in developing the dynamic model of autonomous underwater vehicles (AUVs) through system identification. Optimal input design is the process of generating informative inputs that can be used to generate the good quality dynamic model of AUVs. In a problem with optimal input design, the desired input signal depends on the unknown system which is intended to be identified. In this paper, the input design approach which is robust to uncertainties in model parameters is used. The Bayesian robust design strategy is applied to design input signals for dynamic modeling of AUVs. The employed approach can design multiple inputs and apply constraints on an AUV system's inputs and outputs. Particle swarm optimization (PSO) is employed to solve the constraint robust optimization problem. The presented algorithm is used for designing the input signals for an AUV, and the estimate obtained by robust input design is compared with that of the optimal input design. According to the results, proposed input design can satisfy both robustness of constraints and optimality. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Optimization of municipal pressure pumping station layout and sewage pipe network design

    NASA Astrophysics Data System (ADS)

    Tian, Jiandong; Cheng, Jilin; Gong, Yi

    2018-03-01

    Accelerated urbanization places extraordinary demands on sewer networks; thus optimization research to improve the design of these systems has practical significance. In this article, a subsystem nonlinear programming model is developed to optimize pumping station layout and sewage pipe network design. The subsystem model is expanded into a large-scale complex nonlinear programming system model to find the minimum total annual cost of the pumping station and network of all pipe segments. A comparative analysis is conducted using the sewage network in Taizhou City, China, as an example. The proposed method demonstrated that significant cost savings could have been realized if the studied system had been optimized using the techniques described in this article. Therefore, the method has practical value for optimizing urban sewage projects and provides a reference for theoretical research on optimization of urban drainage pumping station layouts.

  9. Computational wing optimization and comparisons with experiment for a semi-span wing model

    NASA Technical Reports Server (NTRS)

    Waggoner, E. G.; Haney, H. P.; Ballhaus, W. F.

    1978-01-01

    A computational wing optimization procedure was developed and verified by an experimental investigation of a semi-span variable camber wing model in the NASA Ames Research Center 14 foot transonic wind tunnel. The Bailey-Ballhaus transonic potential flow analysis and Woodward-Carmichael linear theory codes were linked to Vanderplaats constrained minimization routine to optimize model configurations at several subsonic and transonic design points. The 35 deg swept wing is characterized by multi-segmented leading and trailing edge flaps whose hinge lines are swept relative to the leading and trailing edges of the wing. By varying deflection angles of the flap segments, camber and twist distribution can be optimized for different design conditions. Results indicate that numerical optimization can be both an effective and efficient design tool. The optimized configurations had as good or better lift to drag ratios at the design points as the best designs previously tested during an extensive parametric study.

  10. Simulation and optimization of an experimental membrane wastewater treatment plant using computational intelligence methods.

    PubMed

    Ludwig, T; Kern, P; Bongards, M; Wolf, C

    2011-01-01

    The optimization of relaxation and filtration times of submerged microfiltration flat modules in membrane bioreactors used for municipal wastewater treatment is essential for efficient plant operation. However, the optimization and control of such plants and their filtration processes is a challenging problem due to the underlying highly nonlinear and complex processes. This paper presents the use of genetic algorithms for this optimization problem in conjunction with a fully calibrated simulation model, as computational intelligence methods are perfectly suited to the nonconvex multi-objective nature of the optimization problems posed by these complex systems. The simulation model is developed and calibrated using membrane modules from the wastewater simulation software GPS-X based on the Activated Sludge Model No.1 (ASM1). Simulation results have been validated at a technical reference plant. They clearly show that filtration process costs for cleaning and energy can be reduced significantly by intelligent process optimization.

  11. Multi-objective optimization model of CNC machining to minimize processing time and environmental impact

    NASA Astrophysics Data System (ADS)

    Hamada, Aulia; Rosyidi, Cucuk Nur; Jauhari, Wakhid Ahmad

    2017-11-01

    Minimizing processing time in a production system can increase the efficiency of a manufacturing company. Processing time are influenced by application of modern technology and machining parameter. Application of modern technology can be apply by use of CNC machining, one of the machining process can be done with a CNC machining is turning. However, the machining parameters not only affect the processing time but also affect the environmental impact. Hence, optimization model is needed to optimize the machining parameters to minimize the processing time and environmental impact. This research developed a multi-objective optimization to minimize the processing time and environmental impact in CNC turning process which will result in optimal decision variables of cutting speed and feed rate. Environmental impact is converted from environmental burden through the use of eco-indicator 99. The model were solved by using OptQuest optimization software from Oracle Crystal Ball.

  12. Population Modeling Approach to Optimize Crop Harvest Strategy. The Case of Field Tomato.

    PubMed

    Tran, Dinh T; Hertog, Maarten L A T M; Tran, Thi L H; Quyen, Nguyen T; Van de Poel, Bram; Mata, Clara I; Nicolaï, Bart M

    2017-01-01

    In this study, the aim is to develop a population model based approach to optimize fruit harvesting strategies with regard to fruit quality and its derived economic value. This approach was applied to the case of tomato fruit harvesting under Vietnamese conditions. Fruit growth and development of tomato (cv. "Savior") was monitored in terms of fruit size and color during both the Vietnamese winter and summer growing seasons. A kinetic tomato fruit growth model was applied to quantify biological fruit-to-fruit variation in terms of their physiological maturation. This model was successfully calibrated. Finally, the model was extended to translate the fruit-to-fruit variation at harvest into the economic value of the harvested crop. It can be concluded that a model based approach to the optimization of harvest date and harvest frequency with regard to economic value of the crop as such is feasible. This approach allows growers to optimize their harvesting strategy by harvesting the crop at more uniform maturity stages meeting the stringent retail demands for homogeneous high quality product. The total farm profit would still depend on the impact a change in harvesting strategy might have on related expenditures. This model based harvest optimisation approach can be easily transferred to other fruit and vegetable crops improving homogeneity of the postharvest product streams.

  13. An optimal control strategies using vaccination and fogging in dengue fever transmission model

    NASA Astrophysics Data System (ADS)

    Fitria, Irma; Winarni, Pancahayani, Sigit; Subchan

    2017-08-01

    This paper discussed regarding a model and an optimal control problem of dengue fever transmission. We classified the model as human and vector (mosquito) population classes. For the human population, there are three subclasses, such as susceptible, infected, and resistant classes. Then, for the vector population, we divided it into wiggler, susceptible, and infected vector classes. Thus, the model consists of six dynamic equations. To minimize the number of dengue fever cases, we designed two optimal control variables in the model, the giving of fogging and vaccination. The objective function of this optimal control problem is to minimize the number of infected human population, the number of vector, and the cost of the controlling efforts. By giving the fogging optimally, the number of vector can be minimized. In this case, we considered the giving of vaccination as a control variable because it is one of the efforts that are being developed to reduce the spreading of dengue fever. We used Pontryagin Minimum Principle to solve the optimal control problem. Furthermore, the numerical simulation results are given to show the effect of the optimal control strategies in order to minimize the epidemic of dengue fever.

  14. Coastal aquifer management under parameter uncertainty: Ensemble surrogate modeling based simulation-optimization

    NASA Astrophysics Data System (ADS)

    Janardhanan, S.; Datta, B.

    2011-12-01

    Surrogate models are widely used to develop computationally efficient simulation-optimization models to solve complex groundwater management problems. Artificial intelligence based models are most often used for this purpose where they are trained using predictor-predictand data obtained from a numerical simulation model. Most often this is implemented with the assumption that the parameters and boundary conditions used in the numerical simulation model are perfectly known. However, in most practical situations these values are uncertain. Under these circumstances the application of such approximation surrogates becomes limited. In our study we develop a surrogate model based coupled simulation optimization methodology for determining optimal pumping strategies for coastal aquifers considering parameter uncertainty. An ensemble surrogate modeling approach is used along with multiple realization optimization. The methodology is used to solve a multi-objective coastal aquifer management problem considering two conflicting objectives. Hydraulic conductivity and the aquifer recharge are considered as uncertain values. Three dimensional coupled flow and transport simulation model FEMWATER is used to simulate the aquifer responses for a number of scenarios corresponding to Latin hypercube samples of pumping and uncertain parameters to generate input-output patterns for training the surrogate models. Non-parametric bootstrap sampling of this original data set is used to generate multiple data sets which belong to different regions in the multi-dimensional decision and parameter space. These data sets are used to train and test multiple surrogate models based on genetic programming. The ensemble of surrogate models is then linked to a multi-objective genetic algorithm to solve the pumping optimization problem. Two conflicting objectives, viz, maximizing total pumping from beneficial wells and minimizing the total pumping from barrier wells for hydraulic control of saltwater intrusion are considered. The salinity levels resulting at strategic locations due to these pumping are predicted using the ensemble surrogates and are constrained to be within pre-specified levels. Different realizations of the concentration values are obtained from the ensemble predictions corresponding to each candidate solution of pumping. Reliability concept is incorporated as the percent of the total number of surrogate models which satisfy the imposed constraints. The methodology was applied to a realistic coastal aquifer system in Burdekin delta area in Australia. It was found that all optimal solutions corresponding to a reliability level of 0.99 satisfy all the constraints and as reducing reliability level decreases the constraint violation increases. Thus ensemble surrogate model based simulation-optimization was found to be useful in deriving multi-objective optimal pumping strategies for coastal aquifers under parameter uncertainty.

  15. A Framework for Modeling Emerging Diseases to Inform Management

    PubMed Central

    Katz, Rachel A.; Richgels, Katherine L.D.; Walsh, Daniel P.; Grant, Evan H.C.

    2017-01-01

    The rapid emergence and reemergence of zoonotic diseases requires the ability to rapidly evaluate and implement optimal management decisions. Actions to control or mitigate the effects of emerging pathogens are commonly delayed because of uncertainty in the estimates and the predicted outcomes of the control tactics. The development of models that describe the best-known information regarding the disease system at the early stages of disease emergence is an essential step for optimal decision-making. Models can predict the potential effects of the pathogen, provide guidance for assessing the likelihood of success of different proposed management actions, quantify the uncertainty surrounding the choice of the optimal decision, and highlight critical areas for immediate research. We demonstrate how to develop models that can be used as a part of a decision-making framework to determine the likelihood of success of different management actions given current knowledge. PMID:27983501

  16. A Framework for Modeling Emerging Diseases to Inform Management.

    PubMed

    Russell, Robin E; Katz, Rachel A; Richgels, Katherine L D; Walsh, Daniel P; Grant, Evan H C

    2017-01-01

    The rapid emergence and reemergence of zoonotic diseases requires the ability to rapidly evaluate and implement optimal management decisions. Actions to control or mitigate the effects of emerging pathogens are commonly delayed because of uncertainty in the estimates and the predicted outcomes of the control tactics. The development of models that describe the best-known information regarding the disease system at the early stages of disease emergence is an essential step for optimal decision-making. Models can predict the potential effects of the pathogen, provide guidance for assessing the likelihood of success of different proposed management actions, quantify the uncertainty surrounding the choice of the optimal decision, and highlight critical areas for immediate research. We demonstrate how to develop models that can be used as a part of a decision-making framework to determine the likelihood of success of different management actions given current knowledge.

  17. Structural Design Optimization of Doubly-Fed Induction Generators Using GeneratorSE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sethuraman, Latha; Fingersh, Lee J; Dykes, Katherine L

    2017-11-13

    A wind turbine with a larger rotor swept area can generate more electricity, however, this increases costs disproportionately for manufacturing, transportation, and installation. This poster presents analytical models for optimizing doubly-fed induction generators (DFIGs), with the objective of reducing the costs and mass of wind turbine drivetrains. The structural design for the induction machine includes models for the casing, stator, rotor, and high-speed shaft developed within the DFIG module in the National Renewable Energy Laboratory's wind turbine sizing tool, GeneratorSE. The mechanical integrity of the machine is verified by examining stresses, structural deflections, and modal properties. The optimization results aremore » then validated using finite element analysis (FEA). The results suggest that our analytical model correlates with the FEA in some areas, such as radial deflection, differing by less than 20 percent. But the analytical model requires further development for axial deflections, torsional deflections, and stress calculations.« less

  18. A framework for modeling emerging diseases to inform management

    USGS Publications Warehouse

    Russell, Robin E.; Katz, Rachel A.; Richgels, Katherine L. D.; Walsh, Daniel P.; Grant, Evan H. Campbell

    2017-01-01

    The rapid emergence and reemergence of zoonotic diseases requires the ability to rapidly evaluate and implement optimal management decisions. Actions to control or mitigate the effects of emerging pathogens are commonly delayed because of uncertainty in the estimates and the predicted outcomes of the control tactics. The development of models that describe the best-known information regarding the disease system at the early stages of disease emergence is an essential step for optimal decision-making. Models can predict the potential effects of the pathogen, provide guidance for assessing the likelihood of success of different proposed management actions, quantify the uncertainty surrounding the choice of the optimal decision, and highlight critical areas for immediate research. We demonstrate how to develop models that can be used as a part of a decision-making framework to determine the likelihood of success of different management actions given current knowledge.

  19. A flexible, interactive software tool for fitting the parameters of neuronal models.

    PubMed

    Friedrich, Péter; Vella, Michael; Gulyás, Attila I; Freund, Tamás F; Káli, Szabolcs

    2014-01-01

    The construction of biologically relevant neuronal models as well as model-based analysis of experimental data often requires the simultaneous fitting of multiple model parameters, so that the behavior of the model in a certain paradigm matches (as closely as possible) the corresponding output of a real neuron according to some predefined criterion. Although the task of model optimization is often computationally hard, and the quality of the results depends heavily on technical issues such as the appropriate choice (and implementation) of cost functions and optimization algorithms, no existing program provides access to the best available methods while also guiding the user through the process effectively. Our software, called Optimizer, implements a modular and extensible framework for the optimization of neuronal models, and also features a graphical interface which makes it easy for even non-expert users to handle many commonly occurring scenarios. Meanwhile, educated users can extend the capabilities of the program and customize it according to their needs with relatively little effort. Optimizer has been developed in Python, takes advantage of open-source Python modules for nonlinear optimization, and interfaces directly with the NEURON simulator to run the models. Other simulators are supported through an external interface. We have tested the program on several different types of problems of varying complexity, using different model classes. As targets, we used simulated traces from the same or a more complex model class, as well as experimental data. We successfully used Optimizer to determine passive parameters and conductance densities in compartmental models, and to fit simple (adaptive exponential integrate-and-fire) neuronal models to complex biological data. Our detailed comparisons show that Optimizer can handle a wider range of problems, and delivers equally good or better performance than any other existing neuronal model fitting tool.

  20. A flexible, interactive software tool for fitting the parameters of neuronal models

    PubMed Central

    Friedrich, Péter; Vella, Michael; Gulyás, Attila I.; Freund, Tamás F.; Káli, Szabolcs

    2014-01-01

    The construction of biologically relevant neuronal models as well as model-based analysis of experimental data often requires the simultaneous fitting of multiple model parameters, so that the behavior of the model in a certain paradigm matches (as closely as possible) the corresponding output of a real neuron according to some predefined criterion. Although the task of model optimization is often computationally hard, and the quality of the results depends heavily on technical issues such as the appropriate choice (and implementation) of cost functions and optimization algorithms, no existing program provides access to the best available methods while also guiding the user through the process effectively. Our software, called Optimizer, implements a modular and extensible framework for the optimization of neuronal models, and also features a graphical interface which makes it easy for even non-expert users to handle many commonly occurring scenarios. Meanwhile, educated users can extend the capabilities of the program and customize it according to their needs with relatively little effort. Optimizer has been developed in Python, takes advantage of open-source Python modules for nonlinear optimization, and interfaces directly with the NEURON simulator to run the models. Other simulators are supported through an external interface. We have tested the program on several different types of problems of varying complexity, using different model classes. As targets, we used simulated traces from the same or a more complex model class, as well as experimental data. We successfully used Optimizer to determine passive parameters and conductance densities in compartmental models, and to fit simple (adaptive exponential integrate-and-fire) neuronal models to complex biological data. Our detailed comparisons show that Optimizer can handle a wider range of problems, and delivers equally good or better performance than any other existing neuronal model fitting tool. PMID:25071540

  1. Integrated design optimization research and development in an industrial environment

    NASA Astrophysics Data System (ADS)

    Kumar, V.; German, Marjorie D.; Lee, S.-J.

    1989-04-01

    An overview is given of a design optimization project that is in progress at the GE Research and Development Center for the past few years. The objective of this project is to develop a methodology and a software system for design automation and optimization of structural/mechanical components and systems. The effort focuses on research and development issues and also on optimization applications that can be related to real-life industrial design problems. The overall technical approach is based on integration of numerical optimization techniques, finite element methods, CAE and software engineering, and artificial intelligence/expert systems (AI/ES) concepts. The role of each of these engineering technologies in the development of a unified design methodology is illustrated. A software system DESIGN-OPT has been developed for both size and shape optimization of structural components subjected to static as well as dynamic loadings. By integrating this software with an automatic mesh generator, a geometric modeler and an attribute specification computer code, a software module SHAPE-OPT has been developed for shape optimization. Details of these software packages together with their applications to some 2- and 3-dimensional design problems are described.

  2. Integrated design optimization research and development in an industrial environment

    NASA Technical Reports Server (NTRS)

    Kumar, V.; German, Marjorie D.; Lee, S.-J.

    1989-01-01

    An overview is given of a design optimization project that is in progress at the GE Research and Development Center for the past few years. The objective of this project is to develop a methodology and a software system for design automation and optimization of structural/mechanical components and systems. The effort focuses on research and development issues and also on optimization applications that can be related to real-life industrial design problems. The overall technical approach is based on integration of numerical optimization techniques, finite element methods, CAE and software engineering, and artificial intelligence/expert systems (AI/ES) concepts. The role of each of these engineering technologies in the development of a unified design methodology is illustrated. A software system DESIGN-OPT has been developed for both size and shape optimization of structural components subjected to static as well as dynamic loadings. By integrating this software with an automatic mesh generator, a geometric modeler and an attribute specification computer code, a software module SHAPE-OPT has been developed for shape optimization. Details of these software packages together with their applications to some 2- and 3-dimensional design problems are described.

  3. A parameters optimization method for planar joint clearance model and its application for dynamics simulation of reciprocating compressor

    NASA Astrophysics Data System (ADS)

    Hai-yang, Zhao; Min-qiang, Xu; Jin-dong, Wang; Yong-bo, Li

    2015-05-01

    In order to improve the accuracy of dynamics response simulation for mechanism with joint clearance, a parameter optimization method for planar joint clearance contact force model was presented in this paper, and the optimized parameters were applied to the dynamics response simulation for mechanism with oversized joint clearance fault. By studying the effect of increased clearance on the parameters of joint clearance contact force model, the relation of model parameters between different clearances was concluded. Then the dynamic equation of a two-stage reciprocating compressor with four joint clearances was developed using Lagrange method, and a multi-body dynamic model built in ADAMS software was used to solve this equation. To obtain a simulated dynamic response much closer to that of experimental tests, the parameters of joint clearance model, instead of using the designed values, were optimized by genetic algorithms approach. Finally, the optimized parameters were applied to simulate the dynamics response of model with oversized joint clearance fault according to the concluded parameter relation. The dynamics response of experimental test verified the effectiveness of this application.

  4. Modeling joint restoration strategies for interdependent infrastructure systems

    PubMed Central

    Simonovic, Slobodan P.

    2018-01-01

    Life in the modern world depends on multiple critical services provided by infrastructure systems which are interdependent at multiple levels. To effectively respond to infrastructure failures, this paper proposes a model for developing optimal joint restoration strategy for interdependent infrastructure systems following a disruptive event. First, models for (i) describing structure of interdependent infrastructure system and (ii) their interaction process, are presented. Both models are considering the failure types, infrastructure operating rules and interdependencies among systems. Second, an optimization model for determining an optimal joint restoration strategy at infrastructure component level by minimizing the economic loss from the infrastructure failures, is proposed. The utility of the model is illustrated using a case study of electric-water systems. Results show that a small number of failed infrastructure components can trigger high level failures in interdependent systems; the optimal joint restoration strategy varies with failure occurrence time. The proposed models can help decision makers to understand the mechanisms of infrastructure interactions and search for optimal joint restoration strategy, which can significantly enhance safety of infrastructure systems. PMID:29649300

  5. Collaborative Project: Building improved optimized parameter estimation algorithms to improve methane and nitrogen fluxes in a climate model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahowald, Natalie

    Soils in natural and managed ecosystems and wetlands are well known sources of methane, nitrous oxides, and reactive nitrogen gases, but the magnitudes of gas flux to the atmosphere are still poorly constrained. Thus, the reasons for the large increases in atmospheric concentrations of methane and nitrous oxide since the preindustrial time period are not well understood. The low atmospheric concentrations of methane and nitrous oxide, despite being more potent greenhouse gases than carbon dioxide, complicate empirical studies to provide explanations. In addition to climate concerns, the emissions of reactive nitrogen gases from soils are important to the changing nitrogenmore » balance in the earth system, subject to human management, and may change substantially in the future. Thus improved modeling of the emission fluxes of these species from the land surface is important. Currently, there are emission modules for methane and some nitrogen species in the Community Earth System Model’s Community Land Model (CLM-ME/N); however, there are large uncertainties and problems in the simulations, resulting in coarse estimates. In this proposal, we seek to improve these emission modules by combining state-of-the-art process modules for emissions, available data, and new optimization methods. In earth science problems, we often have substantial data and knowledge of processes in disparate systems, and thus we need to combine data and a general process level understanding into a model for projections of future climate that are as accurate as possible. The best methodologies for optimization of parameters in earth system models are still being developed. In this proposal we will develop and apply surrogate algorithms that a) were especially developed for computationally expensive simulations like CLM-ME/N models; b) were (in the earlier surrogate optimization Stochastic RBF) demonstrated to perform very well on computationally expensive complex partial differential equations in earth science with limited numbers of simulations; and, c) will be (as part of the proposed research) significantly improved both by adding asynchronous parallelism, early truncation of unsuccessful simulations, and the improvement of both serial and parallel performance by the use of derivative and sensitivity information from global and local surrogate approximations S(x). The algorithm development and testing will be focused on the CLM-ME/N model application, but the methods are general and are expected to also perform well on optimization for parameter estimation of other climate models and other classes of continuous multimodal optimization problems arising from complex simulation models. In addition, this proposal will compile available datasets of emissions of methane, nitrous oxides and reactive nitrogen species and develop protocols for site level comparisons with the CLM-ME/N. Once the model parameters are optimized against site level data, the model will be simulated at the global level and compared to atmospheric concentration measurements for the current climate, and future emissions will be estimated using climate change as simulated by the CESM. This proposal combines experts in earth system modeling, optimization, computer science, and process level understanding of soil gas emissions in an interdisciplinary team in order to improve the modeling of methane and nitrogen gas emissions. This proposal thus meets the requirements of the SciDAC RFP, by integrating state-of-the-art computer science and earth system to build an improved earth system model.« less

  6. Implementing and Bounding a Cascade Heuristic for Large-Scale Optimization

    DTIC Science & Technology

    2017-06-01

    solving the monolith, we develop a method for producing lower bounds to the optimal objective function value. To do this, we solve a new integer...as developing and analyzing methods for producing lower bounds to the optimal objective function value of the seminal problem monolith, which this...length of the window decreases, the end effects of the model typically increase (Zerr, 2016). There are four primary methods for correcting end

  7. Finite Element Vibration Modeling and Experimental Validation for an Aircraft Engine Casing

    NASA Astrophysics Data System (ADS)

    Rabbitt, Christopher

    This thesis presents a procedure for the development and validation of a theoretical vibration model, applies this procedure to a pair of aircraft engine casings, and compares select parameters from experimental testing of those casings to those from a theoretical model using the Modal Assurance Criterion (MAC) and linear regression coefficients. A novel method of determining the optimal MAC between axisymmetric results is developed and employed. It is concluded that the dynamic finite element models developed as part of this research are fully capable of modelling the modal parameters within the frequency range of interest. Confidence intervals calculated in this research for correlation coefficients provide important information regarding the reliability of predictions, and it is recommended that these intervals be calculated for all comparable coefficients. The procedure outlined for aligning mode shapes around an axis of symmetry proved useful, and the results are promising for the development of further optimization techniques.

  8. A hybrid modeling system designed to support decision making in the optimization of extrusion of inhomogeneous materials

    NASA Astrophysics Data System (ADS)

    Kryuchkov, D. I.; Zalazinsky, A. G.

    2017-12-01

    Mathematical models and a hybrid modeling system are developed for the implementation of the experimental-calculation method for the engineering analysis and optimization of the plastic deformation of inhomogeneous materials with the purpose of improving metal-forming processes and machines. The created software solution integrates Abaqus/CAE, a subroutine for mathematical data processing, with the use of Python libraries and the knowledge base. Practical application of the software solution is exemplified by modeling the process of extrusion of a bimetallic billet. The results of the engineering analysis and optimization of the extrusion process are shown, the material damage being monitored.

  9. Bi-directional evolutionary structural optimization for strut-and-tie modelling of three-dimensional structural concrete

    NASA Astrophysics Data System (ADS)

    Shobeiri, Vahid; Ahmadi-Nedushan, Behrouz

    2017-12-01

    This article presents a method for the automatic generation of optimal strut-and-tie models in reinforced concrete structures using a bi-directional evolutionary structural optimization method. The methodology presented is developed for compliance minimization relying on the Abaqus finite element software package. The proposed approach deals with the generation of truss-like designs in a three-dimensional environment, addressing the design of corbels and joints as well as bridge piers and pile caps. Several three-dimensional examples are provided to show the capabilities of the proposed framework in finding optimal strut-and-tie models in reinforced concrete structures and verifying its efficiency to cope with torsional actions. Several issues relating to the use of the topology optimization for strut-and-tie modelling of structural concrete, such as chequerboard patterns, mesh-dependency and multiple load cases, are studied. In the last example, a design procedure for detailing and dimensioning of the strut-and-tie models is given according to the American Concrete Institute (ACI) 318-08 provisions.

  10. Aerodynamic Optimization of Rocket Control Surface Geometry Using Cartesian Methods and CAD Geometry

    NASA Technical Reports Server (NTRS)

    Nelson, Andrea; Aftosmis, Michael J.; Nemec, Marian; Pulliam, Thomas H.

    2004-01-01

    Aerodynamic design is an iterative process involving geometry manipulation and complex computational analysis subject to physical constraints and aerodynamic objectives. A design cycle consists of first establishing the performance of a baseline design, which is usually created with low-fidelity engineering tools, and then progressively optimizing the design to maximize its performance. Optimization techniques have evolved from relying exclusively on designer intuition and insight in traditional trial and error methods, to sophisticated local and global search methods. Recent attempts at automating the search through a large design space with formal optimization methods include both database driven and direct evaluation schemes. Databases are being used in conjunction with surrogate and neural network models as a basis on which to run optimization algorithms. Optimization algorithms are also being driven by the direct evaluation of objectives and constraints using high-fidelity simulations. Surrogate methods use data points obtained from simulations, and possibly gradients evaluated at the data points, to create mathematical approximations of a database. Neural network models work in a similar fashion, using a number of high-fidelity database calculations as training iterations to create a database model. Optimal designs are obtained by coupling an optimization algorithm to the database model. Evaluation of the current best design then gives either a new local optima and/or increases the fidelity of the approximation model for the next iteration. Surrogate methods have also been developed that iterate on the selection of data points to decrease the uncertainty of the approximation model prior to searching for an optimal design. The database approximation models for each of these cases, however, become computationally expensive with increase in dimensionality. Thus the method of using optimization algorithms to search a database model becomes problematic as the number of design variables is increased.

  11. Development and validation of a numerical model for cross-section optimization of a multi-part probe for soft tissue intervention.

    PubMed

    Frasson, L; Neubert, J; Reina, S; Oldfield, M; Davies, B L; Rodriguez Y Baena, F

    2010-01-01

    The popularity of minimally invasive surgical procedures is driving the development of novel, safer and more accurate surgical tools. In this context a multi-part probe for soft tissue surgery is being developed in the Mechatronics in Medicine Laboratory at Imperial College, London. This study reports an optimization procedure using finite element methods, for the identification of an interlock geometry able to limit the separation of the segments composing the multi-part probe. An optimal geometry was obtained and the corresponding three-dimensional finite element model validated experimentally. Simulation results are shown to be consistent with the physical experiments. The outcome of this study is an important step in the provision of a novel miniature steerable probe for surgery.

  12. The Auburn Engineering Technical Assistance Program investigation of polyvinyl alcohol film developments pertaining to radioactive particle decontamination and industrial waste minimization

    NASA Astrophysics Data System (ADS)

    Mole, Tracey Lawrence

    In this work, an effective and systematic model is devised to synthesize the optimal formulation for an explicit engineering application in the nuclear industry, i.e. radioactive decontamination and waste reduction. Identification of an optimal formulation that is suitable for the desired system requires integration of all the interlacing behaviors of the product constituents. This work is unique not only in product design, but also in these design techniques. The common practice of new product development is to design the optimized product for a particular industrial niche and then subsequent research for the production process is conducted, developed and optimized separately from the product formulation. In this proposed optimization design technique, the development process, disposal technique and product formulation is optimized simultaneously to improve production profit, product behavior and disposal emissions. This "cradle to grave" optimization approach allowed a complex product formulation development process to be drastically simplified. The utilization of these modeling techniques took an industrial idea to full scale testing and production in under 18 months by reducing the number of subsequent laboratory trials required to optimize the formula, production and waste treatment aspects of the product simultaneously. This particular development material involves the use of a polymer matrix that is applied to surfaces as part of a decontamination system. The polymer coating serves to initially "fix" the contaminants in place for detection and ultimate elimination. Upon mechanical entrapment and removal, the polymer coating containing the radioactive isotopes can be dissolved in a solvent processor, where separation of the radioactive metallic particles can take place. Ultimately, only the collection of divided solids should be disposed of as nuclear waste. This creates an attractive alternative to direct land filling or incineration. This philosophy also provides waste generators a way to significantly reduce waste and associated costs, and help meet regulatory, safety and environmental requirements. In order for the polymeric film exhibit the desired performance, a combination of discrete constraints must be fulfilled. These interacting characteristics include the choice of polymer used for construction, drying time, storage constraints, decontamination ability, removal behavior, application process, coating strength and dissolvability processes. Identification of an optimized formulation that is suitable for this entire decontamination system requires integration of all the interlacing characteristics of the coating composition that affect the film behavior. A novel systematic method for developing quantitative values for theses qualitative characteristics is being developed in order to simultaneously optimize the design formulation subject to the discrete product specifications. This synthesis procedure encompasses intrinsic characteristics vital to successful product development, which allows for implementation of the derived model optimizations to operate independent of the polymer film application. This contribution illustrates the optimized synthesis example by which a large range of polymeric compounds and mixtures can be completed. (Abstract shortened by UMI.)

  13. Optimizing Cognitive Development over the Life Course and Preventing Cognitive Decline: Introducing the Cognitive Health Environment Life Course Model (CHELM)

    ERIC Educational Resources Information Center

    Anstey, Kaarin J.

    2014-01-01

    Optimal cognitive development is defined in this article as the highest level of cognitive function reached in each cognitive domain given a person's biological and genetic disposition, and the highest possible maintenance of cognitive function over the adult life course. Theoretical perspectives underpinning the development of a framework…

  14. Algorithms and analyses for stochastic optimization for turbofan noise reduction using parallel reduced-order modeling

    NASA Astrophysics Data System (ADS)

    Yang, Huanhuan; Gunzburger, Max

    2017-06-01

    Simulation-based optimization of acoustic liner design in a turbofan engine nacelle for noise reduction purposes can dramatically reduce the cost and time needed for experimental designs. Because uncertainties are inevitable in the design process, a stochastic optimization algorithm is posed based on the conditional value-at-risk measure so that an ideal acoustic liner impedance is determined that is robust in the presence of uncertainties. A parallel reduced-order modeling framework is developed that dramatically improves the computational efficiency of the stochastic optimization solver for a realistic nacelle geometry. The reduced stochastic optimization solver takes less than 500 seconds to execute. In addition, well-posedness and finite element error analyses of the state system and optimization problem are provided.

  15. [Analyzing and modeling methods of near infrared spectroscopy for in-situ prediction of oil yield from oil shale].

    PubMed

    Liu, Jie; Zhang, Fu-Dong; Teng, Fei; Li, Jun; Wang, Zhi-Hong

    2014-10-01

    In order to in-situ detect the oil yield of oil shale, based on portable near infrared spectroscopy analytical technology, with 66 rock core samples from No. 2 well drilling of Fuyu oil shale base in Jilin, the modeling and analyzing methods for in-situ detection were researched. By the developed portable spectrometer, 3 data formats (reflectance, absorbance and K-M function) spectra were acquired. With 4 different modeling data optimization methods: principal component-mahalanobis distance (PCA-MD) for eliminating abnormal samples, uninformative variables elimination (UVE) for wavelength selection and their combina- tions: PCA-MD + UVE and UVE + PCA-MD, 2 modeling methods: partial least square (PLS) and back propagation artificial neural network (BPANN), and the same data pre-processing, the modeling and analyzing experiment were performed to determine the optimum analysis model and method. The results show that the data format, modeling data optimization method and modeling method all affect the analysis precision of model. Results show that whether or not using the optimization method, reflectance or K-M function is the proper spectrum format of the modeling database for two modeling methods. Using two different modeling methods and four different data optimization methods, the model precisions of the same modeling database are different. For PLS modeling method, the PCA-MD and UVE + PCA-MD data optimization methods can improve the modeling precision of database using K-M function spectrum data format. For BPANN modeling method, UVE, UVE + PCA-MD and PCA- MD + UVE data optimization methods can improve the modeling precision of database using any of the 3 spectrum data formats. In addition to using the reflectance spectra and PCA-MD data optimization method, modeling precision by BPANN method is better than that by PLS method. And modeling with reflectance spectra, UVE optimization method and BPANN modeling method, the model gets the highest analysis precision, its correlation coefficient (Rp) is 0.92, and its standard error of prediction (SEP) is 0.69%.

  16. High-Fidelity Multidisciplinary Design Optimization of Aircraft Configurations

    NASA Technical Reports Server (NTRS)

    Martins, Joaquim R. R. A.; Kenway, Gaetan K. W.; Burdette, David; Jonsson, Eirikur; Kennedy, Graeme J.

    2017-01-01

    To evaluate new airframe technologies we need design tools based on high-fidelity models that consider multidisciplinary interactions early in the design process. The overarching goal of this NRA is to develop tools that enable high-fidelity multidisciplinary design optimization of aircraft configurations, and to apply these tools to the design of high aspect ratio flexible wings. We develop a geometry engine that is capable of quickly generating conventional and unconventional aircraft configurations including the internal structure. This geometry engine features adjoint derivative computation for efficient gradient-based optimization. We also added overset capability to a computational fluid dynamics solver, complete with an adjoint implementation and semiautomatic mesh generation. We also developed an approach to constraining buffet and started the development of an approach for constraining utter. On the applications side, we developed a new common high-fidelity model for aeroelastic studies of high aspect ratio wings. We performed optimal design trade-o s between fuel burn and aircraft weight for metal, conventional composite, and carbon nanotube composite wings. We also assessed a continuous morphing trailing edge technology applied to high aspect ratio wings. This research resulted in the publication of 26 manuscripts so far, and the developed methodologies were used in two other NRAs. 1

  17. Vector-model-supported approach in prostate plan optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Eva Sau Fan; Department of Health Technology and Informatics, The Hong Kong Polytechnic University; Wu, Vincent Wing Cheung

    Lengthy time consumed in traditional manual plan optimization can limit the use of step-and-shoot intensity-modulated radiotherapy/volumetric-modulated radiotherapy (S&S IMRT/VMAT). A vector model base, retrieving similar radiotherapy cases, was developed with respect to the structural and physiologic features extracted from the Digital Imaging and Communications in Medicine (DICOM) files. Planning parameters were retrieved from the selected similar reference case and applied to the test case to bypass the gradual adjustment of planning parameters. Therefore, the planning time spent on the traditional trial-and-error manual optimization approach in the beginning of optimization could be reduced. Each S&S IMRT/VMAT prostate reference database comprised 100more » previously treated cases. Prostate cases were replanned with both traditional optimization and vector-model-supported optimization based on the oncologists' clinical dose prescriptions. A total of 360 plans, which consisted of 30 cases of S&S IMRT, 30 cases of 1-arc VMAT, and 30 cases of 2-arc VMAT plans including first optimization and final optimization with/without vector-model-supported optimization, were compared using the 2-sided t-test and paired Wilcoxon signed rank test, with a significance level of 0.05 and a false discovery rate of less than 0.05. For S&S IMRT, 1-arc VMAT, and 2-arc VMAT prostate plans, there was a significant reduction in the planning time and iteration with vector-model-supported optimization by almost 50%. When the first optimization plans were compared, 2-arc VMAT prostate plans had better plan quality than 1-arc VMAT plans. The volume receiving 35 Gy in the femoral head for 2-arc VMAT plans was reduced with the vector-model-supported optimization compared with the traditional manual optimization approach. Otherwise, the quality of plans from both approaches was comparable. Vector-model-supported optimization was shown to offer much shortened planning time and iteration number without compromising the plan quality.« less

  18. Multi-objective optimal design of magnetorheological engine mount based on an improved non-dominated sorting genetic algorithm

    NASA Astrophysics Data System (ADS)

    Zheng, Ling; Duan, Xuwei; Deng, Zhaoxue; Li, Yinong

    2014-03-01

    A novel flow-mode magneto-rheological (MR) engine mount integrated a diaphragm de-coupler and the spoiler plate is designed and developed to isolate engine and the transmission from the chassis in a wide frequency range and overcome the stiffness in high frequency. A lumped parameter model of the MR engine mount in single degree of freedom system is further developed based on bond graph method to predict the performance of the MR engine mount accurately. The optimization mathematical model is established to minimize the total of force transmissibility over several frequency ranges addressed. In this mathematical model, the lumped parameters are considered as design variables. The maximum of force transmissibility and the corresponding frequency in low frequency range as well as individual lumped parameter are limited as constraints. The multiple interval sensitivity analysis method is developed to select the optimized variables and improve the efficiency of optimization process. An improved non-dominated sorting genetic algorithm (NSGA-II) is used to solve the multi-objective optimization problem. The synthesized distance between the individual in Pareto set and the individual in possible set in engineering is defined and calculated. A set of real design parameters is thus obtained by the internal relationship between the optimal lumped parameters and practical design parameters for the MR engine mount. The program flowchart for the improved non-dominated sorting genetic algorithm (NSGA-II) is given. The obtained results demonstrate the effectiveness of the proposed optimization approach in minimizing the total of force transmissibility over several frequency ranges addressed.

  19. Development of coordination system model on single-supplier multi-buyer for multi-item supply chain with probabilistic demand

    NASA Astrophysics Data System (ADS)

    Olivia, G.; Santoso, A.; Prayogo, D. N.

    2017-11-01

    Nowadays, the level of competition between supply chains is getting tighter and a good coordination system between supply chains members is very crucial in solving the issue. This paper focused on a model development of coordination system between single supplier and buyers in a supply chain as a solution. Proposed optimization model was designed to determine the optimal number of deliveries from a supplier to buyers in order to minimize the total cost over a planning horizon. Components of the total supply chain cost consist of transportation costs, handling costs of supplier and buyers and also stock out costs. In the proposed optimization model, the supplier can supply various types of items to retailers whose item demand patterns are probabilistic. Sensitivity analysis of the proposed model was conducted to test the effect of changes in transport costs, handling costs and production capacities of the supplier. The results of the sensitivity analysis showed a significant influence on the changes in the transportation cost, handling costs and production capacity to the decisions of the optimal numbers of product delivery for each item to the buyers.

  20. Population Pharmacokinetics and Optimal Sampling Strategy for Model-Based Precision Dosing of Melphalan in Patients Undergoing Hematopoietic Stem Cell Transplantation.

    PubMed

    Mizuno, Kana; Dong, Min; Fukuda, Tsuyoshi; Chandra, Sharat; Mehta, Parinda A; McConnell, Scott; Anaissie, Elias J; Vinks, Alexander A

    2018-05-01

    High-dose melphalan is an important component of conditioning regimens for patients undergoing hematopoietic stem cell transplantation. The current dosing strategy based on body surface area results in a high incidence of oral mucositis and gastrointestinal and liver toxicity. Pharmacokinetically guided dosing will individualize exposure and help minimize overexposure-related toxicity. The purpose of this study was to develop a population pharmacokinetic model and optimal sampling strategy. A population pharmacokinetic model was developed with NONMEM using 98 observations collected from 15 adult patients given the standard dose of 140 or 200 mg/m 2 by intravenous infusion. The determinant-optimal sampling strategy was explored with PopED software. Individual area under the curve estimates were generated by Bayesian estimation using full and the proposed sparse sampling data. The predictive performance of the optimal sampling strategy was evaluated based on bias and precision estimates. The feasibility of the optimal sampling strategy was tested using pharmacokinetic data from five pediatric patients. A two-compartment model best described the data. The final model included body weight and creatinine clearance as predictors of clearance. The determinant-optimal sampling strategies (and windows) were identified at 0.08 (0.08-0.19), 0.61 (0.33-0.90), 2.0 (1.3-2.7), and 4.0 (3.6-4.0) h post-infusion. An excellent correlation was observed between area under the curve estimates obtained with the full and the proposed four-sample strategy (R 2  = 0.98; p < 0.01) with a mean bias of -2.2% and precision of 9.4%. A similar relationship was observed in children (R 2  = 0.99; p < 0.01). The developed pharmacokinetic model-based sparse sampling strategy promises to achieve the target area under the curve as part of precision dosing.

  1. Health benefit modelling and optimization of vehicular pollution control strategies

    NASA Astrophysics Data System (ADS)

    Sonawane, Nayan V.; Patil, Rashmi S.; Sethi, Virendra

    2012-12-01

    This study asserts that the evaluation of pollution reduction strategies should be approached on the basis of health benefits. The framework presented could be used for decision making on the basis of cost effectiveness when the strategies are applied concurrently. Several vehicular pollution control strategies have been proposed in literature for effective management of urban air pollution. The effectiveness of these strategies has been mostly studied as a one at a time approach on the basis of change in pollution concentration. The adequacy and practicality of such an approach is studied in the present work. Also, the assessment of respective benefits of these strategies has been carried out when they are implemented simultaneously. An integrated model has been developed which can be used as a tool for optimal prioritization of various pollution management strategies. The model estimates health benefits associated with specific control strategies. ISC-AERMOD View has been used to provide the cause-effect relation between control options and change in ambient air quality. BenMAP, developed by U.S. EPA, has been applied for estimation of health and economic benefits associated with various management strategies. Valuation of health benefits has been done for impact indicators of premature mortality, hospital admissions and respiratory syndrome. An optimization model has been developed to maximize overall social benefits with determination of optimized percentage implementations for multiple strategies. The model has been applied for sub-urban region of Mumbai city for vehicular sector. Several control scenarios have been considered like revised emission standards, electric, CNG, LPG and hybrid vehicles. Reduction in concentration and resultant health benefits for the pollutants CO, NOx and particulate matter are estimated for different control scenarios. Finally, an optimization model has been applied to determine optimized percentage implementation of specific control strategies with maximization of social benefits, when these strategies are applied simultaneously.

  2. An approach to modeling and optimization of integrated renewable energy system (ires)

    NASA Astrophysics Data System (ADS)

    Maheshwari, Zeel

    The purpose of this study was to cost optimize electrical part of IRES (Integrated Renewable Energy Systems) using HOMER and maximize the utilization of resources using MATLAB programming. IRES is an effective and a viable strategy that can be employed to harness renewable energy resources to energize remote rural areas of developing countries. The resource- need matching, which is the basis for IRES makes it possible to provide energy in an efficient and cost effective manner. Modeling and optimization of IRES for a selected study area makes IRES more advantageous when compared to hybrid concepts. A remote rural area with a population of 700 in 120 households and 450 cattle is considered as an example for cost analysis and optimization. Mathematical models for key components of IRES such as biogas generator, hydropower generator, wind turbine, PV system and battery banks are developed. A discussion of the size of water reservoir required is also presented. Modeling of IRES on the basis of need to resource and resource to need matching is pursued to help in optimum use of resources for the needs. Fixed resources such as biogas and water are used in prioritized order whereas movable resources such as wind and solar can be used simultaneously for different priorities. IRES is cost optimized for electricity demand using HOMER software that is developed by the NREL (National Renewable Energy Laboratory). HOMER optimizes configuration for electrical demand only and does not consider other demands such as biogas for cooking and water for domestic and irrigation purposes. Hence an optimization program based on the need-resource modeling of IRES is performed in MATLAB. Optimization of the utilization of resources for several needs is performed. Results obtained from MATLAB clearly show that the available resources can fulfill the demand of the rural areas. Introduction of IRES in rural communities has many socio-economic implications. It brings about improvement in living environment and community welfare by supplying the basic needs such as biogas for cooking, water for domestic and irrigation purposes and electrical energy for lighting, communication, cold storage, educational and small- scale industrial purposes.

  3. Design synthesis and optimization of permanent magnet synchronous machines based on computationally-efficient finite element analysis

    NASA Astrophysics Data System (ADS)

    Sizov, Gennadi Y.

    In this dissertation, a model-based multi-objective optimal design of permanent magnet ac machines, supplied by sine-wave current regulated drives, is developed and implemented. The design procedure uses an efficient electromagnetic finite element-based solver to accurately model nonlinear material properties and complex geometric shapes associated with magnetic circuit design. Application of an electromagnetic finite element-based solver allows for accurate computation of intricate performance parameters and characteristics. The first contribution of this dissertation is the development of a rapid computational method that allows accurate and efficient exploration of large multi-dimensional design spaces in search of optimum design(s). The computationally efficient finite element-based approach developed in this work provides a framework of tools that allow rapid analysis of synchronous electric machines operating under steady-state conditions. In the developed modeling approach, major steady-state performance parameters such as, winding flux linkages and voltages, average, cogging and ripple torques, stator core flux densities, core losses, efficiencies and saturated machine winding inductances, are calculated with minimum computational effort. In addition, the method includes means for rapid estimation of distributed stator forces and three-dimensional effects of stator and/or rotor skew on the performance of the machine. The second contribution of this dissertation is the development of the design synthesis and optimization method based on a differential evolution algorithm. The approach relies on the developed finite element-based modeling method for electromagnetic analysis and is able to tackle large-scale multi-objective design problems using modest computational resources. Overall, computational time savings of up to two orders of magnitude are achievable, when compared to current and prevalent state-of-the-art methods. These computational savings allow one to expand the optimization problem to achieve more complex and comprehensive design objectives. The method is used in the design process of several interior permanent magnet industrial motors. The presented case studies demonstrate that the developed finite element-based approach practically eliminates the need for using less accurate analytical and lumped parameter equivalent circuit models for electric machine design optimization. The design process and experimental validation of the case-study machines are detailed in the dissertation.

  4. The anesthetic action of some polyhalogenated ethers-Monte Carlo method based QSAR study.

    PubMed

    Golubović, Mlađan; Lazarević, Milan; Zlatanović, Dragan; Krtinić, Dane; Stoičkov, Viktor; Mladenović, Bojan; Milić, Dragan J; Sokolović, Dušan; Veselinović, Aleksandar M

    2018-04-13

    Up to this date, there has been an ongoing debate about the mode of action of general anesthetics, which have postulated many biological sites as targets for their action. However, postoperative nausea and vomiting are common problems in which inhalational agents may have a role in their development. When a mode of action is unknown, QSAR modelling is essential in drug development. To investigate the aspects of their anesthetic, QSAR models based on the Monte Carlo method were developed for a set of polyhalogenated ethers. Until now, their anesthetic action has not been completely defined, although some hypotheses have been suggested. Therefore, a QSAR model should be developed on molecular fragments that contribute to anesthetic action. QSAR models were built on the basis of optimal molecular descriptors based on the SMILES notation and local graph invariants, whereas the Monte Carlo optimization method with three random splits into the training and test set was applied for model development. Different methods, including novel Index of ideality correlation, were applied for the determination of the robustness of the model and its predictive potential. The Monte Carlo optimization process was capable of being an efficient in silico tool for building up a robust model of good statistical quality. Molecular fragments which have both positive and negative influence on anesthetic action were determined. The presented study can be useful in the search for novel anesthetics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Composite panel development at JPL

    NASA Technical Reports Server (NTRS)

    Mcelroy, Paul; Helms, Rich

    1988-01-01

    Parametric computer studies can be use in a cost effective manner to determine optimized composite mirror panel designs. An InterDisciplinary computer Model (IDM) was created to aid in the development of high precision reflector panels for LDR. The materials properties, thermal responses, structural geometries, and radio/optical precision are synergistically analyzed for specific panel designs. Promising panels designs are fabricated and tested so that comparison with panel test results can be used to verify performance prediction models and accommodate design refinement. The iterative approach of computer design and model refinement with performance testing and materials optimization has shown good results for LDR panels.

  6. Weight optimal design of lateral wing upper covers made of composite materials

    NASA Astrophysics Data System (ADS)

    Barkanov, Evgeny; Eglītis, Edgars; Almeida, Filipe; Bowering, Mark C.; Watson, Glenn

    2016-09-01

    The present investigation is devoted to the development of a new optimal design of lateral wing upper covers made of advanced composite materials, with special emphasis on closer conformity of the developed finite element analysis and operational requirements for aircraft wing panels. In the first stage, 24 weight optimization problems based on linear buckling analysis were solved for the laminated composite panels with three types of stiffener, two stiffener pitches and four load levels, taking into account manufacturing, reparability and damage tolerance requirements. In the second stage, a composite panel with the best weight/design performance from the previous study was verified by nonlinear buckling analysis and optimization to investigate the effect of shear and fuel pressure on the performance of stiffened panels, and their behaviour under skin post-buckling. Three rib-bay laminated composite panels with T-, I- and HAT-stiffeners were modelled with ANSYS, NASTRAN and ABAQUS finite element codes to study their buckling behaviour as a function of skin and stiffener lay-ups, stiffener height, stiffener top and root width. Owing to the large dimension of numerical problems to be solved, an optimization methodology was developed employing the method of experimental design and response surface technique. Optimal results obtained in terms of cross-sectional areas were verified successfully using ANSYS and ABAQUS shared-node models and a NASTRAN rigid-linked model, and were used later to estimate the weight of the Advanced Low Cost Aircraft Structures (ALCAS) lateral wing upper cover.

  7. Model Based Optimal Sensor Network Design for Condition Monitoring in an IGCC Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Rajeeva; Kumar, Aditya; Dai, Dan

    2012-12-31

    This report summarizes the achievements and final results of this program. The objective of this program is to develop a general model-based sensor network design methodology and tools to address key issues in the design of an optimal sensor network configuration: the type, location and number of sensors used in a network, for online condition monitoring. In particular, the focus in this work is to develop software tools for optimal sensor placement (OSP) and use these tools to design optimal sensor network configuration for online condition monitoring of gasifier refractory wear and radiant syngas cooler (RSC) fouling. The methodology developedmore » will be applicable to sensing system design for online condition monitoring for broad range of applications. The overall approach consists of (i) defining condition monitoring requirement in terms of OSP and mapping these requirements in mathematical terms for OSP algorithm, (ii) analyzing trade-off of alternate OSP algorithms, down selecting the most relevant ones and developing them for IGCC applications (iii) enhancing the gasifier and RSC models as required by OSP algorithms, (iv) applying the developed OSP algorithm to design the optimal sensor network required for the condition monitoring of an IGCC gasifier refractory and RSC fouling. Two key requirements for OSP for condition monitoring are desired precision for the monitoring variables (e.g. refractory wear) and reliability of the proposed sensor network in the presence of expected sensor failures. The OSP problem is naturally posed within a Kalman filtering approach as an integer programming problem where the key requirements of precision and reliability are imposed as constraints. The optimization is performed over the overall network cost. Based on extensive literature survey two formulations were identified as being relevant to OSP for condition monitoring; one based on LMI formulation and the other being standard INLP formulation. Various algorithms to solve these two formulations were developed and validated. For a given OSP problem the computation efficiency largely depends on the “size” of the problem. Initially a simplified 1-D gasifier model assuming axial and azimuthal symmetry was used to test out various OSP algorithms. Finally these algorithms were used to design the optimal sensor network for condition monitoring of IGCC gasifier refractory wear and RSC fouling. The sensors type and locations obtained as solution to the OSP problem were validated using model based sensing approach. The OSP algorithm has been developed in a modular form and has been packaged as a software tool for OSP design where a designer can explore various OSP design algorithm is a user friendly way. The OSP software tool is implemented in Matlab/Simulink© in-house. The tool also uses few optimization routines that are freely available on World Wide Web. In addition a modular Extended Kalman Filter (EKF) block has also been developed in Matlab/Simulink© which can be utilized for model based sensing of important process variables that are not directly measured through combining the online sensors with model based estimation once the hardware sensor and their locations has been finalized. The OSP algorithm details and the results of applying these algorithms to obtain optimal sensor location for condition monitoring of gasifier refractory wear and RSC fouling profile are summarized in this final report.« less

  8. Study on the optimization allocation of wind-solar in power system based on multi-region production simulation

    NASA Astrophysics Data System (ADS)

    Xu, Zhicheng; Yuan, Bo; Zhang, Fuqiang

    2018-06-01

    In this paper, a power supply optimization model is proposed. The model takes the minimum fossil energy consumption as the target, considering the output characteristics of the conventional power supply and the renewable power supply. The optimal capacity ratio of wind-solar in the power supply under various constraints is calculated, and the interrelation between conventional power supply and renewable energy is analyzed in the system of high proportion renewable energy integration. Using the model, we can provide scientific guidance for the coordinated and orderly development of renewable energy and conventional power sources.

  9. Evaluating the impacts of agricultural land management practices: A probabilistic hydrologic modeling approach

    USDA-ARS?s Scientific Manuscript database

    The complexity of the hydrologic system challenges the development of models. One issue faced during the model development stage is the uncertainty involved in model parameterization. Using a single optimized set of parameters (one snapshot) to represent baseline conditions of the system limits the ...

  10. A mathematical framework for yield (vs. rate) optimization in constraint-based modeling and applications in metabolic engineering.

    PubMed

    Klamt, Steffen; Müller, Stefan; Regensburger, Georg; Zanghellini, Jürgen

    2018-05-01

    The optimization of metabolic rates (as linear objective functions) represents the methodical core of flux-balance analysis techniques which have become a standard tool for the study of genome-scale metabolic models. Besides (growth and synthesis) rates, metabolic yields are key parameters for the characterization of biochemical transformation processes, especially in the context of biotechnological applications. However, yields are ratios of rates, and hence the optimization of yields (as nonlinear objective functions) under arbitrary linear constraints is not possible with current flux-balance analysis techniques. Despite the fundamental importance of yields in constraint-based modeling, a comprehensive mathematical framework for yield optimization is still missing. We present a mathematical theory that allows one to systematically compute and analyze yield-optimal solutions of metabolic models under arbitrary linear constraints. In particular, we formulate yield optimization as a linear-fractional program. For practical computations, we transform the linear-fractional yield optimization problem to a (higher-dimensional) linear problem. Its solutions determine the solutions of the original problem and can be used to predict yield-optimal flux distributions in genome-scale metabolic models. For the theoretical analysis, we consider the linear-fractional problem directly. Most importantly, we show that the yield-optimal solution set (like the rate-optimal solution set) is determined by (yield-optimal) elementary flux vectors of the underlying metabolic model. However, yield- and rate-optimal solutions may differ from each other, and hence optimal (biomass or product) yields are not necessarily obtained at solutions with optimal (growth or synthesis) rates. Moreover, we discuss phase planes/production envelopes and yield spaces, in particular, we prove that yield spaces are convex and provide algorithms for their computation. We illustrate our findings by a small example and demonstrate their relevance for metabolic engineering with realistic models of E. coli. We develop a comprehensive mathematical framework for yield optimization in metabolic models. Our theory is particularly useful for the study and rational modification of cell factories designed under given yield and/or rate requirements. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Rotorcraft Optimization Tools: Incorporating Rotorcraft Design Codes into Multi-Disciplinary Design, Analysis, and Optimization

    NASA Technical Reports Server (NTRS)

    Meyn, Larry A.

    2018-01-01

    One of the goals of NASA's Revolutionary Vertical Lift Technology Project (RVLT) is to provide validated tools for multidisciplinary design, analysis and optimization (MDAO) of vertical lift vehicles. As part of this effort, the software package, RotorCraft Optimization Tools (RCOTOOLS), is being developed to facilitate incorporating key rotorcraft conceptual design codes into optimizations using the OpenMDAO multi-disciplinary optimization framework written in Python. RCOTOOLS, also written in Python, currently supports the incorporation of the NASA Design and Analysis of RotorCraft (NDARC) vehicle sizing tool and the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics II (CAMRAD II) analysis tool into OpenMDAO-driven optimizations. Both of these tools use detailed, file-based inputs and outputs, so RCOTOOLS provides software wrappers to update input files with new design variable values, execute these codes and then extract specific response variable values from the file outputs. These wrappers are designed to be flexible and easy to use. RCOTOOLS also provides several utilities to aid in optimization model development, including Graphical User Interface (GUI) tools for browsing input and output files in order to identify text strings that are used to identify specific variables as optimization input and response variables. This paper provides an overview of RCOTOOLS and its use

  12. Global carbon assimilation system using a local ensemble Kalman filter with multiple ecosystem models

    NASA Astrophysics Data System (ADS)

    Zhang, Shupeng; Yi, Xue; Zheng, Xiaogu; Chen, Zhuoqi; Dan, Bo; Zhang, Xuanze

    2014-11-01

    In this paper, a global carbon assimilation system (GCAS) is developed for optimizing the global land surface carbon flux at 1° resolution using multiple ecosystem models. In GCAS, three ecosystem models, Boreal Ecosystem Productivity Simulator, Carnegie-Ames-Stanford Approach, and Community Atmosphere Biosphere Land Exchange, produce the prior fluxes, and an atmospheric transport model, Model for OZone And Related chemical Tracers, is used to calculate atmospheric CO2 concentrations resulting from these prior fluxes. A local ensemble Kalman filter is developed to assimilate atmospheric CO2 data observed at 92 stations to optimize the carbon flux for six land regions, and the Bayesian model averaging method is implemented in GCAS to calculate the weighted average of the optimized fluxes based on individual ecosystem models. The weights for the models are found according to the closeness of their forecasted CO2 concentration to observation. Results of this study show that the model weights vary in time and space, allowing for an optimum utilization of different strengths of different ecosystem models. It is also demonstrated that spatial localization is an effective technique to avoid spurious optimization results for regions that are not well constrained by the atmospheric data. Based on the multimodel optimized flux from GCAS, we found that the average global terrestrial carbon sink over the 2002-2008 period is 2.97 ± 1.1 PgC yr-1, and the sinks are 0.88 ± 0.52, 0.27 ± 0.33, 0.67 ± 0.39, 0.90 ± 0.68, 0.21 ± 0.31, and 0.04 ± 0.08 PgC yr-1 for the North America, South America, Africa, Eurasia, Tropical Asia, and Australia, respectively. This multimodel GCAS can be used to improve global carbon cycle estimation.

  13. Precision process calibration and CD predictions for low-k1 lithography

    NASA Astrophysics Data System (ADS)

    Chen, Ting; Park, Sangbong; Berger, Gabriel; Coskun, Tamer H.; de Vocht, Joep; Chen, Fung; Yu, Linda; Hsu, Stephen; van den Broeke, Doug; Socha, Robert; Park, Jungchul; Gronlund, Keith; Davis, Todd; Plachecki, Vince; Harris, Tom; Hansen, Steve; Lambson, Chuck

    2005-06-01

    Leading resist calibration for sub-0.3 k1 lithography demands accuracy <2nm for CD through pitch. An accurately calibrated resist process is the prerequisite for establishing production-worthy manufacturing under extreme low k1. From an integrated imaging point of view, the following key components must be simultaneously considered during the calibration - high numerical aperture (NA>0.8) imaging characteristics, customized illuminations (measured vs. modeled pupil profiles), resolution enhancement technology (RET) mask with OPC, reticle metrology, and resist thin film substrate. For imaging at NA approaching unity, polarized illumination can impact significantly the contrast formation in the resist film stack, and therefore it is an important factor to consider in the CD-based resist calibration. For aggressive DRAM memory core designs at k1<0.3, pattern-specific illumination optimization has proven to be critical for achieving the required imaging performance. Various optimization techniques from source profile optimization with fixed mask design to the combined source and mask optimization have been considered for customer designs and available imaging capabilities. For successful low-k1 process development, verification of the optimization results can only be made with a sufficiently tunable resist model that can predicate the wafer printing accurately under various optimized process settings. We have developed, for resist patterning under aggressive low-k1 conditions, a novel 3D diffusion model equipped with double-Gaussian convolution in each dimension. Resist calibration with the new diffusion model has demonstrated a fitness and CD predication accuracy that rival or outperform the traditional 3D physical resist models. In this work, we describe our empirical approach to achieving the nm-scale precision for advanced lithography process calibrations, using either measured 1D CD through-pitch or 2D memory core patterns. We show that for ArF imaging, the current resist development and diffusion modeling can readily achieve ~1-2nm max CD errors for common 1D through-pitch and aggressive 2D memory core resist patterns. Sensitivities of the calibrated models to various process parameters are analyzed, including the comparison between the measured and modeled (Gaussian or GRAIL) pupil profiles. We also report our preliminary calibration results under selected polarized illumination conditions.

  14. Hierarchical Bayesian Model Averaging for Chance Constrained Remediation Designs

    NASA Astrophysics Data System (ADS)

    Chitsazan, N.; Tsai, F. T.

    2012-12-01

    Groundwater remediation designs are heavily relying on simulation models which are subjected to various sources of uncertainty in their predictions. To develop a robust remediation design, it is crucial to understand the effect of uncertainty sources. In this research, we introduce a hierarchical Bayesian model averaging (HBMA) framework to segregate and prioritize sources of uncertainty in a multi-layer frame, where each layer targets a source of uncertainty. The HBMA framework provides an insight to uncertainty priorities and propagation. In addition, HBMA allows evaluating model weights in different hierarchy levels and assessing the relative importance of models in each level. To account for uncertainty, we employ a chance constrained (CC) programming for stochastic remediation design. Chance constrained programming was implemented traditionally to account for parameter uncertainty. Recently, many studies suggested that model structure uncertainty is not negligible compared to parameter uncertainty. Using chance constrained programming along with HBMA can provide a rigorous tool for groundwater remediation designs under uncertainty. In this research, the HBMA-CC was applied to a remediation design in a synthetic aquifer. The design was to develop a scavenger well approach to mitigate saltwater intrusion toward production wells. HBMA was employed to assess uncertainties from model structure, parameter estimation and kriging interpolation. An improved harmony search optimization method was used to find the optimal location of the scavenger well. We evaluated prediction variances of chloride concentration at the production wells through the HBMA framework. The results showed that choosing the single best model may lead to a significant error in evaluating prediction variances for two reasons. First, considering the single best model, variances that stem from uncertainty in the model structure will be ignored. Second, considering the best model with non-dominant model weight may underestimate or overestimate prediction variances by ignoring other plausible propositions. Chance constraints allow developing a remediation design with a desirable reliability. However, considering the single best model, the calculated reliability will be different from the desirable reliability. We calculated the reliability of the design for the models at different levels of HBMA. The results showed that by moving toward the top layers of HBMA, the calculated reliability converges to the chosen reliability. We employed the chance constrained optimization along with the HBMA framework to find the optimal location and pumpage for the scavenger well. The results showed that using models at different levels in the HBMA framework, the optimal location of the scavenger well remained the same, but the optimal extraction rate was altered. Thus, we concluded that the optimal pumping rate was sensitive to the prediction variance. Also, the prediction variance was changed by using different extraction rate. Using very high extraction rate will cause prediction variances of chloride concentration at the production wells to approach zero regardless of which HBMA models used.

  15. Network models for solving the problem of multicriterial adaptive optimization of investment projects control with several acceptable technologies

    NASA Astrophysics Data System (ADS)

    Shorikov, A. F.; Butsenko, E. V.

    2017-10-01

    This paper discusses the problem of multicriterial adaptive optimization the control of investment projects in the presence of several technologies. On the basis of network modeling proposed a new economic and mathematical model and a method for solving the problem of multicriterial adaptive optimization the control of investment projects in the presence of several technologies. Network economic and mathematical modeling allows you to determine the optimal time and calendar schedule for the implementation of the investment project and serves as an instrument to increase the economic potential and competitiveness of the enterprise. On a meaningful practical example, the processes of forming network models are shown, including the definition of the sequence of actions of a particular investment projecting process, the network-based work schedules are constructed. The calculation of the parameters of network models is carried out. Optimal (critical) paths have been formed and the optimal time for implementing the chosen technologies of the investment project has been calculated. It also shows the selection of the optimal technology from a set of possible technologies for project implementation, taking into account the time and cost of the work. The proposed model and method for solving the problem of managing investment projects can serve as a basis for the development, creation and application of appropriate computer information systems to support the adoption of managerial decisions by business people.

  16. Switching neuronal state: optimal stimuli revealed using a stochastically-seeded gradient algorithm.

    PubMed

    Chang, Joshua; Paydarfar, David

    2014-12-01

    Inducing a switch in neuronal state using energy optimal stimuli is relevant to a variety of problems in neuroscience. Analytical techniques from optimal control theory can identify such stimuli; however, solutions to the optimization problem using indirect variational approaches can be elusive in models that describe neuronal behavior. Here we develop and apply a direct gradient-based optimization algorithm to find stimulus waveforms that elicit a change in neuronal state while minimizing energy usage. We analyze standard models of neuronal behavior, the Hodgkin-Huxley and FitzHugh-Nagumo models, to show that the gradient-based algorithm: (1) enables automated exploration of a wide solution space, using stochastically generated initial waveforms that converge to multiple locally optimal solutions; and (2) finds optimal stimulus waveforms that achieve a physiological outcome condition, without a priori knowledge of the optimal terminal condition of all state variables. Analysis of biological systems using stochastically-seeded gradient methods can reveal salient dynamical mechanisms underlying the optimal control of system behavior. The gradient algorithm may also have practical applications in future work, for example, finding energy optimal waveforms for therapeutic neural stimulation that minimizes power usage and diminishes off-target effects and damage to neighboring tissue.

  17. Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment.

    PubMed

    Berkes, Pietro; Orbán, Gergo; Lengyel, Máté; Fiser, József

    2011-01-07

    The brain maintains internal models of its environment to interpret sensory inputs and to prepare actions. Although behavioral studies have demonstrated that these internal models are optimally adapted to the statistics of the environment, the neural underpinning of this adaptation is unknown. Using a Bayesian model of sensory cortical processing, we related stimulus-evoked and spontaneous neural activities to inferences and prior expectations in an internal model and predicted that they should match if the model is statistically optimal. To test this prediction, we analyzed visual cortical activity of awake ferrets during development. Similarity between spontaneous and evoked activities increased with age and was specific to responses evoked by natural scenes. This demonstrates the progressive adaptation of internal models to the statistics of natural stimuli at the neural level.

  18. Reduced order model based on principal component analysis for process simulation and optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, Y.; Malacina, A.; Biegler, L.

    2009-01-01

    It is well-known that distributed parameter computational fluid dynamics (CFD) models provide more accurate results than conventional, lumped-parameter unit operation models used in process simulation. Consequently, the use of CFD models in process/equipment co-simulation offers the potential to optimize overall plant performance with respect to complex thermal and fluid flow phenomena. Because solving CFD models is time-consuming compared to the overall process simulation, we consider the development of fast reduced order models (ROMs) based on CFD results to closely approximate the high-fidelity equipment models in the co-simulation. By considering process equipment items with complicated geometries and detailed thermodynamic property models,more » this study proposes a strategy to develop ROMs based on principal component analysis (PCA). Taking advantage of commercial process simulation and CFD software (for example, Aspen Plus and FLUENT), we are able to develop systematic CFD-based ROMs for equipment models in an efficient manner. In particular, we show that the validity of the ROM is more robust within well-sampled input domain and the CPU time is significantly reduced. Typically, it takes at most several CPU seconds to evaluate the ROM compared to several CPU hours or more to solve the CFD model. Two case studies, involving two power plant equipment examples, are described and demonstrate the benefits of using our proposed ROM methodology for process simulation and optimization.« less

  19. Analysis of point-to-point lung motion with full inspiration and expiration CT data using non-linear optimization method: optimal geometric assumption model for the effective registration algorithm

    NASA Astrophysics Data System (ADS)

    Kim, Namkug; Seo, Joon Beom; Heo, Jeong Nam; Kang, Suk-Ho

    2007-03-01

    The study was conducted to develop a simple model for more robust lung registration of volumetric CT data, which is essential for various clinical lung analysis applications, including the lung nodule matching in follow up CT studies, semi-quantitative assessment of lung perfusion, and etc. The purpose of this study is to find the most effective reference point and geometric model based on the lung motion analysis from the CT data sets obtained in full inspiration (In.) and expiration (Ex.). Ten pairs of CT data sets in normal subjects obtained in full In. and Ex. were used in this study. Two radiologists were requested to draw 20 points representing the subpleural point of the central axis in each segment. The apex, hilar point, and center of inertia (COI) of each unilateral lung were proposed as the reference point. To evaluate optimal expansion point, non-linear optimization without constraints was employed. The objective function is sum of distances from the line, consist of the corresponding points between In. and Ex. to the optimal point x. By using the nonlinear optimization, the optimal points was evaluated and compared between reference points. The average distance between the optimal point and each line segment revealed that the balloon model was more suitable to explain the lung expansion model. This lung motion analysis based on vector analysis and non-linear optimization shows that balloon model centered on the center of inertia of lung is most effective geometric model to explain lung expansion by breathing.

  20. Optimal inventories for overhaul of repairable redundant systems - A Markov decision model

    NASA Technical Reports Server (NTRS)

    Schaefer, M. K.

    1984-01-01

    A Markovian decision model was developed to calculate the optimal inventory of repairable spare parts for an avionics control system for commercial aircraft. Total expected shortage costs, repair costs, and holding costs are minimized for a machine containing a single system of redundant parts. Transition probabilities are calculated for each repair state and repair rate, and optimal spare parts inventory and repair strategies are determined through linear programming. The linear programming solutions are given in a table.

  1. Using Biomechanical Optimization To Interpret Dancers’ Pose Selection For A Partnered Spin

    DTIC Science & Technology

    2009-05-06

    optimized performance of a straight arm backward longswing on the still rings in mens artistic gymnastics . Because gymnasts lose points for excessive swing at...an actual performance and used that as the basis for their search. Yeadon determined that with timing within 15ms, gymnasts can minimize their excess...are moving in an optimal way. 2.5 Body Modeling 2.5.1 Building the Body In his study involving gymnasts on the rings, Yeadon developed a body model com

  2. Absorbable energy monitoring scheme: new design protocol to test vehicle structural crashworthiness.

    PubMed

    Ofochebe, Sunday M; Enibe, Samuel O; Ozoegwu, Chigbogu G

    2016-05-01

    In vehicle crashworthiness design optimization detailed system evaluation capable of producing reliable results are basically achieved through high-order numerical computational (HNC) models such as the dynamic finite element model, mesh-free model etc. However the application of these models especially during optimization studies is basically challenged by their inherent high demand on computational resources, conditional stability of the solution process, and lack of knowledge of viable parameter range for detailed optimization studies. The absorbable energy monitoring scheme (AEMS) presented in this paper suggests a new design protocol that attempts to overcome such problems in evaluation of vehicle structure for crashworthiness. The implementation of the AEMS involves studying crash performance of vehicle components at various absorbable energy ratios based on a 2DOF lumped-mass-spring (LMS) vehicle impact model. This allows for prompt prediction of useful parameter values in a given design problem. The application of the classical one-dimensional LMS model in vehicle crash analysis is further improved in the present work by developing a critical load matching criterion which allows for quantitative interpretation of the results of the abstract model in a typical vehicle crash design. The adequacy of the proposed AEMS for preliminary vehicle crashworthiness design is demonstrated in this paper, however its extension to full-scale design-optimization problem involving full vehicle model that shows greater structural detail requires more theoretical development.

  3. Models and algorithm of optimization launch and deployment of virtual network functions in the virtual data center

    NASA Astrophysics Data System (ADS)

    Bolodurina, I. P.; Parfenov, D. I.

    2017-10-01

    The goal of our investigation is optimization of network work in virtual data center. The advantage of modern infrastructure virtualization lies in the possibility to use software-defined networks. However, the existing optimization of algorithmic solutions does not take into account specific features working with multiple classes of virtual network functions. The current paper describes models characterizing the basic structures of object of virtual data center. They including: a level distribution model of software-defined infrastructure virtual data center, a generalized model of a virtual network function, a neural network model of the identification of virtual network functions. We also developed an efficient algorithm for the optimization technology of containerization of virtual network functions in virtual data center. We propose an efficient algorithm for placing virtual network functions. In our investigation we also generalize the well renowned heuristic and deterministic algorithms of Karmakar-Karp.

  4. Modelling optimal location for pre-hospital helicopter emergency medical services.

    PubMed

    Schuurman, Nadine; Bell, Nathaniel J; L'Heureux, Randy; Hameed, Syed M

    2009-05-09

    Increasing the range and scope of early activation/auto launch helicopter emergency medical services (HEMS) may alleviate unnecessary injury mortality that disproportionately affects rural populations. To date, attempts to develop a quantitative framework for the optimal location of HEMS facilities have been absent. Our analysis used five years of critical care data from tertiary health care facilities, spatial data on origin of transport and accurate road travel time catchments for tertiary centres. A location optimization model was developed to identify where the expansion of HEMS would cover the greatest population among those currently underserved. The protocol was developed using geographic information systems (GIS) to measure populations, distances and accessibility to services. Our model determined Royal Inland Hospital (RIH) was the optimal site for an expanded HEMS - based on denominator population, distance to services and historical usage patterns. GIS based protocols for location of emergency medical resources can provide supportive evidence for allocation decisions - especially when resources are limited. In this study, we were able to demonstrate conclusively that a logical choice exists for location of additional HEMS. This protocol could be extended to location analysis for other emergency and health services.

  5. Open pit mining profit maximization considering selling stage and waste rehabilitation cost

    NASA Astrophysics Data System (ADS)

    Muttaqin, B. I. A.; Rosyidi, C. N.

    2017-11-01

    In open pit mining activities, determination of the cut-off grade becomes crucial for the company since the cut-off grade affects how much profit will be earned for the mining company. In this study, we developed a cut-off grade determination mode for the open pit mining industry considering the cost of mining, waste removal (rehabilitation) cost, processing cost, fixed cost, and selling stage cost. The main goal of this study is to develop a model of cut-off grade determination to get the maximum total profit. Secondly, this study is also developed to observe the model of sensitivity based on changes in the cost components. The optimization results show that the models can help mining company managers to determine the optimal cut-off grade and also estimate how much profit that can be earned by the mining company. To illustrate the application of the models, a numerical example and a set of sensitivity analysis are presented. From the results of sensitivity analysis, we conclude that the changes in the sales price greatly affects the optimal cut-off value and the total profit.

  6. Mathematical modeling of a thermovoltaic cell

    NASA Technical Reports Server (NTRS)

    White, Ralph E.; Kawanami, Makoto

    1992-01-01

    A new type of battery named 'Vaporvolt' cell is in the early stage of its development. A mathematical model of a CuO/Cu 'Vaporvolt' cell is presented that can be used to predict the potential and the transport behavior of the cell during discharge. A sensitivity analysis of the various transport and electrokinetic parameters indicates which parameters have the most influence on the predicted energy and power density of the 'Vaporvolt' cell. This information can be used to decide which parameters should be optimized or determined more accurately through further modeling or experimental studies. The optimal thicknesses of electrodes and separator, the concentration of the electrolyte, and the current density are determined by maximizing the power density. These parameter sensitivities and optimal design parameter values will help in the development of a better CuO/Cu 'Vaporvolt' cell.

  7. Optimal tree increment models for the Northeastern United Statesq

    Treesearch

    Don C. Bragg

    2003-01-01

    used the potential relative increment (PRI) methodology to develop optimal tree diameter growth models for the Northeastern United States. Thirty species from the Eastwide Forest Inventory Database yielded 69,676 individuals, which were then reduced to fast-growing subsets for PRI analysis. For instance, only 14 individuals from the greater than 6,300-tree eastern...

  8. Optimal Tree Increment Models for the Northeastern United States

    Treesearch

    Don C. Bragg

    2005-01-01

    I used the potential relative increment (PRI) methodology to develop optimal tree diameter growth models for the Northeastern United States. Thirty species from the Eastwide Forest Inventory Database yielded 69,676 individuals, which were then reduced to fast-growing subsets for PRI analysis. For instance, only 14 individuals from the greater than 6,300-tree eastern...

  9. Discover for Yourself: An Optimal Control Model in Insect Colonies

    ERIC Educational Resources Information Center

    Winkel, Brian

    2013-01-01

    We describe the enlightening path of self-discovery afforded to the teacher of undergraduate mathematics. This is demonstrated as we find and develop background material on an application of optimal control theory to model the evolutionary strategy of an insect colony to produce the maximum number of queen or reproducer insects in the colony at…

  10. Stan: A Probabilistic Programming Language for Bayesian Inference and Optimization

    ERIC Educational Resources Information Center

    Gelman, Andrew; Lee, Daniel; Guo, Jiqiang

    2015-01-01

    Stan is a free and open-source C++ program that performs Bayesian inference or optimization for arbitrary user-specified models and can be called from the command line, R, Python, Matlab, or Julia and has great promise for fitting large and complex statistical models in many areas of application. We discuss Stan from users' and developers'…

  11. Prediction of Tensile Strength of Friction Stir Weld Joints with Adaptive Neuro-Fuzzy Inference System (ANFIS) and Neural Network

    NASA Technical Reports Server (NTRS)

    Dewan, Mohammad W.; Huggett, Daniel J.; Liao, T. Warren; Wahab, Muhammad A.; Okeil, Ayman M.

    2015-01-01

    Friction-stir-welding (FSW) is a solid-state joining process where joint properties are dependent on welding process parameters. In the current study three critical process parameters including spindle speed (??), plunge force (????), and welding speed (??) are considered key factors in the determination of ultimate tensile strength (UTS) of welded aluminum alloy joints. A total of 73 weld schedules were welded and tensile properties were subsequently obtained experimentally. It is observed that all three process parameters have direct influence on UTS of the welded joints. Utilizing experimental data, an optimized adaptive neuro-fuzzy inference system (ANFIS) model has been developed to predict UTS of FSW joints. A total of 1200 models were developed by varying the number of membership functions (MFs), type of MFs, and combination of four input variables (??,??,????,??????) utilizing a MATLAB platform. Note EFI denotes an empirical force index derived from the three process parameters. For comparison, optimized artificial neural network (ANN) models were also developed to predict UTS from FSW process parameters. By comparing ANFIS and ANN predicted results, it was found that optimized ANFIS models provide better results than ANN. This newly developed best ANFIS model could be utilized for prediction of UTS of FSW joints.

  12. Visual gene developer: a fully programmable bioinformatics software for synthetic gene optimization.

    PubMed

    Jung, Sang-Kyu; McDonald, Karen

    2011-08-16

    Direct gene synthesis is becoming more popular owing to decreases in gene synthesis pricing. Compared with using natural genes, gene synthesis provides a good opportunity to optimize gene sequence for specific applications. In order to facilitate gene optimization, we have developed a stand-alone software called Visual Gene Developer. The software not only provides general functions for gene analysis and optimization along with an interactive user-friendly interface, but also includes unique features such as programming capability, dedicated mRNA secondary structure prediction, artificial neural network modeling, network & multi-threaded computing, and user-accessible programming modules. The software allows a user to analyze and optimize a sequence using main menu functions or specialized module windows. Alternatively, gene optimization can be initiated by designing a gene construct and configuring an optimization strategy. A user can choose several predefined or user-defined algorithms to design a complicated strategy. The software provides expandable functionality as platform software supporting module development using popular script languages such as VBScript and JScript in the software programming environment. Visual Gene Developer is useful for both researchers who want to quickly analyze and optimize genes, and those who are interested in developing and testing new algorithms in bioinformatics. The software is available for free download at http://www.visualgenedeveloper.net.

  13. Visual gene developer: a fully programmable bioinformatics software for synthetic gene optimization

    PubMed Central

    2011-01-01

    Background Direct gene synthesis is becoming more popular owing to decreases in gene synthesis pricing. Compared with using natural genes, gene synthesis provides a good opportunity to optimize gene sequence for specific applications. In order to facilitate gene optimization, we have developed a stand-alone software called Visual Gene Developer. Results The software not only provides general functions for gene analysis and optimization along with an interactive user-friendly interface, but also includes unique features such as programming capability, dedicated mRNA secondary structure prediction, artificial neural network modeling, network & multi-threaded computing, and user-accessible programming modules. The software allows a user to analyze and optimize a sequence using main menu functions or specialized module windows. Alternatively, gene optimization can be initiated by designing a gene construct and configuring an optimization strategy. A user can choose several predefined or user-defined algorithms to design a complicated strategy. The software provides expandable functionality as platform software supporting module development using popular script languages such as VBScript and JScript in the software programming environment. Conclusion Visual Gene Developer is useful for both researchers who want to quickly analyze and optimize genes, and those who are interested in developing and testing new algorithms in bioinformatics. The software is available for free download at http://www.visualgenedeveloper.net. PMID:21846353

  14. The Image-Optimized Corona; Progress on Using Coronagraph Images to Constrain Coronal Magnetic Field Models

    NASA Astrophysics Data System (ADS)

    Jones, S. I.; Uritsky, V. M.; Davila, J. M.

    2017-12-01

    In absence of reliable coronal magnetic field measurements, solar physicists have worked for several decades to develop techniques for extrapolating photospheric magnetic field measurements into the solar corona and/or heliosphere. The products of these efforts tend to be very sensitive to variation in the photospheric measurements, such that the uncertainty in the photospheric measurements introduces significant uncertainty into the coronal and heliospheric models needed to predict such things as solar wind speed, IMF polarity at Earth, and CME propagation. Ultimately, the reason for the sensitivity of the model to the boundary conditions is that the model is trying to extact a great deal of information from a relatively small amout of data. We have published in recent years about a new method we are developing to use morphological information gleaned from coronagraph images to constrain models of the global coronal magnetic field. In our approach, we treat the photospheric measurements as approximations and use an optimization algorithm to iteratively find a global coronal model that best matches both the photospheric measurements and quasi-linear features observed in polarization brightness coronagraph images. Here we will summarize the approach we have developed and present recent progress in optimizing PFSS models based on GONG magnetograms and MLSO K-Cor images.

  15. Flight Test Validation of Optimal Input Design and Comparison to Conventional Inputs

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1997-01-01

    A technique for designing optimal inputs for aerodynamic parameter estimation was flight tested on the F-18 High Angle of Attack Research Vehicle (HARV). Model parameter accuracies calculated from flight test data were compared on an equal basis for optimal input designs and conventional inputs at the same flight condition. In spite of errors in the a priori input design models and distortions of the input form by the feedback control system, the optimal inputs increased estimated parameter accuracies compared to conventional 3-2-1-1 and doublet inputs. In addition, the tests using optimal input designs demonstrated enhanced design flexibility, allowing the optimal input design technique to use a larger input amplitude to achieve further increases in estimated parameter accuracy without departing from the desired flight test condition. This work validated the analysis used to develop the optimal input designs, and demonstrated the feasibility and practical utility of the optimal input design technique.

  16. Optimizing mouse models of neurodegenerative disorders: are therapeutics in sight?

    PubMed

    Lutz, Cathleen M; Osborne, Melissa A

    2013-01-01

    The genomic and biologic conservation between mice and humans, along with our increasing ability to manipulate the mouse genome, places the mouse as a premier model for deciphering disease mechanisms and testing potential new therapies. Despite these advantages, mouse models of neurodegenerative disease are sometimes difficult to generate and can present challenges that must be carefully addressed when used for preclinical studies. For those models that do exist, the standardization and optimization of the models is a critical step in ensuring success in both basic research and preclinical use. This review looks back on the history of model development for neurodegenerative diseases and highlights the key strategies that have been learned in order to improve the design, development and use of mouse models in the study of neurodegenerative disease.

  17. Modified allocation capacitated planning model in blood supply chain management

    NASA Astrophysics Data System (ADS)

    Mansur, A.; Vanany, I.; Arvitrida, N. I.

    2018-04-01

    Blood supply chain management (BSCM) is a complex process management that involves many cooperating stakeholders. BSCM involves four echelon processes, which are blood collection or procurement, production, inventory, and distribution. This research develops an optimization model of blood distribution planning. The efficiency of decentralization and centralization policies in a blood distribution chain are compared, by optimizing the amount of blood delivered from a blood center to a blood bank. This model is developed based on allocation problem of capacitated planning model. At the first stage, the capacity and the cost of transportation are considered to create an initial capacitated planning model. Then, the inventory holding and shortage costs are added to the model. These additional parameters of inventory costs lead the model to be more realistic and accurate.

  18. Modeling the Environmental Impact of Air Traffic Operations

    NASA Technical Reports Server (NTRS)

    Chen, Neil

    2011-01-01

    There is increased interest to understand and mitigate the impacts of air traffic on the climate, since greenhouse gases, nitrogen oxides, and contrails generated by air traffic can have adverse impacts on the climate. The models described in this presentation are useful for quantifying these impacts and for studying alternative environmentally aware operational concepts. These models have been developed by leveraging and building upon existing simulation and optimization techniques developed for the design of efficient traffic flow management strategies. Specific enhancements to the existing simulation and optimization techniques include new models that simulate aircraft fuel flow, emissions and contrails. To ensure that these new models are beneficial to the larger climate research community, the outputs of these new models are compatible with existing global climate modeling tools like the FAA's Aviation Environmental Design Tool.

  19. A system-level cost-of-energy wind farm layout optimization with landowner modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Le; MacDonald, Erin

    This work applies an enhanced levelized wind farm cost model, including landowner remittance fees, to determine optimal turbine placements under three landowner participation scenarios and two land-plot shapes. Instead of assuming a continuous piece of land is available for the wind farm construction, as in most layout optimizations, the problem formulation represents landowner participation scenarios as a binary string variable, along with the number of turbines. The cost parameters and model are a combination of models from the National Renewable Energy Laboratory (NREL), Lawrence Berkeley National Laboratory, and Windustiy. The system-level cost-of-energy (COE) optimization model is also tested under twomore » land-plot shapes: equally-sized square land plots and unequal rectangle land plots. The optimal COEs results are compared to actual COE data and found to be realistic. The results show that landowner remittances account for approximately 10% of farm operating costs across all cases. Irregular land-plot shapes are easily handled by the model. We find that larger land plots do not necessarily receive higher remittance fees. The model can help site developers identify the most crucial land plots for project success and the optimal positions of turbines, with realistic estimates of costs and profitability. (C) 2013 Elsevier Ltd. All rights reserved.« less

  20. Optimizing cost-efficiency in mean exposure assessment - cost functions reconsidered

    PubMed Central

    2011-01-01

    Background Reliable exposure data is a vital concern in medical epidemiology and intervention studies. The present study addresses the needs of the medical researcher to spend monetary resources devoted to exposure assessment with an optimal cost-efficiency, i.e. obtain the best possible statistical performance at a specified budget. A few previous studies have suggested mathematical optimization procedures based on very simple cost models; this study extends the methodology to cover even non-linear cost scenarios. Methods Statistical performance, i.e. efficiency, was assessed in terms of the precision of an exposure mean value, as determined in a hierarchical, nested measurement model with three stages. Total costs were assessed using a corresponding three-stage cost model, allowing costs at each stage to vary non-linearly with the number of measurements according to a power function. Using these models, procedures for identifying the optimally cost-efficient allocation of measurements under a constrained budget were developed, and applied on 225 scenarios combining different sizes of unit costs, cost function exponents, and exposure variance components. Results Explicit mathematical rules for identifying optimal allocation could be developed when cost functions were linear, while non-linear cost functions implied that parts of or the entire optimization procedure had to be carried out using numerical methods. For many of the 225 scenarios, the optimal strategy consisted in measuring on only one occasion from each of as many subjects as allowed by the budget. Significant deviations from this principle occurred if costs for recruiting subjects were large compared to costs for setting up measurement occasions, and, at the same time, the between-subjects to within-subject variance ratio was small. In these cases, non-linearities had a profound influence on the optimal allocation and on the eventual size of the exposure data set. Conclusions The analysis procedures developed in the present study can be used for informed design of exposure assessment strategies, provided that data are available on exposure variability and the costs of collecting and processing data. The present shortage of empirical evidence on costs and appropriate cost functions however impedes general conclusions on optimal exposure measurement strategies in different epidemiologic scenarios. PMID:21600023

  1. Optimizing cost-efficiency in mean exposure assessment--cost functions reconsidered.

    PubMed

    Mathiassen, Svend Erik; Bolin, Kristian

    2011-05-21

    Reliable exposure data is a vital concern in medical epidemiology and intervention studies. The present study addresses the needs of the medical researcher to spend monetary resources devoted to exposure assessment with an optimal cost-efficiency, i.e. obtain the best possible statistical performance at a specified budget. A few previous studies have suggested mathematical optimization procedures based on very simple cost models; this study extends the methodology to cover even non-linear cost scenarios. Statistical performance, i.e. efficiency, was assessed in terms of the precision of an exposure mean value, as determined in a hierarchical, nested measurement model with three stages. Total costs were assessed using a corresponding three-stage cost model, allowing costs at each stage to vary non-linearly with the number of measurements according to a power function. Using these models, procedures for identifying the optimally cost-efficient allocation of measurements under a constrained budget were developed, and applied on 225 scenarios combining different sizes of unit costs, cost function exponents, and exposure variance components. Explicit mathematical rules for identifying optimal allocation could be developed when cost functions were linear, while non-linear cost functions implied that parts of or the entire optimization procedure had to be carried out using numerical methods.For many of the 225 scenarios, the optimal strategy consisted in measuring on only one occasion from each of as many subjects as allowed by the budget. Significant deviations from this principle occurred if costs for recruiting subjects were large compared to costs for setting up measurement occasions, and, at the same time, the between-subjects to within-subject variance ratio was small. In these cases, non-linearities had a profound influence on the optimal allocation and on the eventual size of the exposure data set. The analysis procedures developed in the present study can be used for informed design of exposure assessment strategies, provided that data are available on exposure variability and the costs of collecting and processing data. The present shortage of empirical evidence on costs and appropriate cost functions however impedes general conclusions on optimal exposure measurement strategies in different epidemiologic scenarios.

  2. Development of an Empirical Model for Optimization of Machining Parameters to Minimize Power Consumption

    NASA Astrophysics Data System (ADS)

    Kant Garg, Girish; Garg, Suman; Sangwan, K. S.

    2018-04-01

    The manufacturing sector consumes huge energy demand and the machine tools used in this sector have very less energy efficiency. Selection of the optimum machining parameters for machine tools is significant for energy saving and for reduction of environmental emission. In this work an empirical model is developed to minimize the power consumption using response surface methodology. The experiments are performed on a lathe machine tool during the turning of AISI 6061 Aluminum with coated tungsten inserts. The relationship between the power consumption and machining parameters is adequately modeled. This model is used for formulation of minimum power consumption criterion as a function of optimal machining parameters using desirability function approach. The influence of machining parameters on the energy consumption has been found using the analysis of variance. The validation of the developed empirical model is proved using the confirmation experiments. The results indicate that the developed model is effective and has potential to be adopted by the industry for minimum power consumption of machine tools.

  3. Pharmacokinetic-Pharmacodynamic Modeling in Pediatric Drug Development, and the Importance of Standardized Scaling of Clearance.

    PubMed

    Germovsek, Eva; Barker, Charlotte I S; Sharland, Mike; Standing, Joseph F

    2018-04-19

    Pharmacokinetic/pharmacodynamic (PKPD) modeling is important in the design and conduct of clinical pharmacology research in children. During drug development, PKPD modeling and simulation should underpin rational trial design and facilitate extrapolation to investigate efficacy and safety. The application of PKPD modeling to optimize dosing recommendations and therapeutic drug monitoring is also increasing, and PKPD model-based dose individualization will become a core feature of personalized medicine. Following extensive progress on pediatric PK modeling, a greater emphasis now needs to be placed on PD modeling to understand age-related changes in drug effects. This paper discusses the principles of PKPD modeling in the context of pediatric drug development, summarizing how important PK parameters, such as clearance (CL), are scaled with size and age, and highlights a standardized method for CL scaling in children. One standard scaling method would facilitate comparison of PK parameters across multiple studies, thus increasing the utility of existing PK models and facilitating optimal design of new studies.

  4. Modelling the interaction between flooding events and economic growth

    NASA Astrophysics Data System (ADS)

    Grames, J.; Prskawetz, A.; Grass, D.; Blöschl, G.

    2015-06-01

    Socio-hydrology describes the interaction between the socio-economy and water. Recent models analyze the interplay of community risk-coping culture, flooding damage and economic growth (Di Baldassarre et al., 2013; Viglione et al., 2014). These models descriptively explain the feedbacks between socio-economic development and natural disasters like floods. Contrary to these descriptive models, our approach develops an optimization model, where the intertemporal decision of an economic agent interacts with the hydrological system. In order to build this first economic growth model describing the interaction between the consumption and investment decisions of an economic agent and the occurrence of flooding events, we transform an existing descriptive stochastic model into an optimal deterministic model. The intermediate step is to formulate and simulate a descriptive deterministic model. We develop a periodic water function to approximate the former discrete stochastic time series of rainfall events. Due to the non-autonomous exogenous periodic rainfall function the long-term path of consumption and investment will be periodic.

  5. Optimizing LX-17 Thermal Decomposition Model Parameters with Evolutionary Algorithms

    NASA Astrophysics Data System (ADS)

    Moore, Jason; McClelland, Matthew; Tarver, Craig; Hsu, Peter; Springer, H. Keo

    2017-06-01

    We investigate and model the cook-off behavior of LX-17 because this knowledge is critical to understanding system response in abnormal thermal environments. Thermal decomposition of LX-17 has been explored in conventional ODTX (One-Dimensional Time-to-eXplosion), PODTX (ODTX with pressure-measurement), TGA (thermogravimetric analysis), and DSC (differential scanning calorimetry) experiments using varied temperature profiles. These experimental data are the basis for developing multiple reaction schemes with coupled mechanics in LLNL's multi-physics hydrocode, ALE3D (Arbitrary Lagrangian-Eulerian code in 2D and 3D). We employ evolutionary algorithms to optimize reaction rate parameters on high performance computing clusters. Once experimentally validated, this model will be scalable to a number of applications involving LX-17 and can be used to develop more sophisticated experimental methods. Furthermore, the optimization methodology developed herein should be applicable to other high explosive materials. This work was performed under the auspices of the U.S. DOE by LLNL under contract DE-AC52-07NA27344. LLNS, LLC.

  6. The solution of private problems for optimization heat exchangers parameters

    NASA Astrophysics Data System (ADS)

    Melekhin, A.

    2017-11-01

    The relevance of the topic due to the decision of problems of the economy of resources in heating systems of buildings. To solve this problem we have developed an integrated method of research which allows solving tasks on optimization of parameters of heat exchangers. This method decides multicriteria optimization problem with the program nonlinear optimization on the basis of software with the introduction of an array of temperatures obtained using thermography. The author have developed a mathematical model of process of heat exchange in heat exchange surfaces of apparatuses with the solution of multicriteria optimization problem and check its adequacy to the experimental stand in the visualization of thermal fields, an optimal range of managed parameters influencing the process of heat exchange with minimal metal consumption and the maximum heat output fin heat exchanger, the regularities of heat exchange process with getting generalizing dependencies distribution of temperature on the heat-release surface of the heat exchanger vehicles, defined convergence of the results of research in the calculation on the basis of theoretical dependencies and solving mathematical model.

  7. Mixture optimization for mixed gas Joule-Thomson cycle

    NASA Astrophysics Data System (ADS)

    Detlor, J.; Pfotenhauer, J.; Nellis, G.

    2017-12-01

    An appropriate gas mixture can provide lower temperatures and higher cooling power when used in a Joule-Thomson (JT) cycle than is possible with a pure fluid. However, selecting gas mixtures to meet specific cooling loads and cycle parameters is a challenging design problem. This study focuses on the development of a computational tool to optimize gas mixture compositions for specific operating parameters. This study expands on prior research by exploring higher heat rejection temperatures and lower pressure ratios. A mixture optimization model has been developed which determines an optimal three-component mixture based on the analysis of the maximum value of the minimum value of isothermal enthalpy change, ΔhT , that occurs over the temperature range. This allows optimal mixture compositions to be determined for a mixed gas JT system with load temperatures down to 110 K and supply temperatures above room temperature for pressure ratios as small as 3:1. The mixture optimization model has been paired with a separate evaluation of the percent of the heat exchanger that exists in a two-phase range in order to begin the process of selecting a mixture for experimental investigation.

  8. A proposed model for an optimal mentoring environment for medical residents: a literature review.

    PubMed

    Davis, Orin C; Nakamura, Jeanne

    2010-06-01

    To develop a model of the optimal mentoring environment for medical residents. The authors propose that such an environment is a function of a relationship that rests upon a set of interactional foundations that allow a protégé to capitalize on the strengths of the mentor, and it facilitates behaviors that will enable the protégé to develop and internalize the requisite knowledge, skills, and attitudes (KSAs) as fully as possible. The authors searched the literature using Web of Science and Google Scholar in 2007-2008 to identify articles addressing the mentoring process and the context in which it occurs (mentoring environment), and the effect both have on KSA development. The authors distilled the attributes of a good mentor that were consistent across the 20 papers that met inclusion criteria and described good mentoring of residents or curricula for training mentors or residents. The authors identified six interactional foundations that underlie the optimal mentoring relationship: emotional safety, support, protégé-centeredness, informality, responsiveness, and respect. These foundations enable protégés to engage in four key developmental behaviors: exercising independence, reflecting, extrapolating, and synthesizing. This model identifies mentoring practices that empower protégés to engage in developmental behaviors that will help them become the best physicians possible. Educators may use this model to develop training tools to teach attendings how to create an optimal mentoring environment. Researchers can use the model to help guide their future investigations of mentoring in medicine.

  9. An intelligent emissions controller for fuel lean gas reburn in coal-fired power plants.

    PubMed

    Reifman, J; Feldman, E E; Wei, T Y; Glickert, R W

    2000-02-01

    The application of artificial intelligence techniques for performance optimization of the fuel lean gas reburn (FLGR) system is investigated. A multilayer, feedforward artificial neural network is applied to model static nonlinear relationships between the distribution of injected natural gas into the upper region of the furnace of a coal-fired boiler and the corresponding oxides of nitrogen (NOx) emissions exiting the furnace. Based on this model, optimal distributions of injected gas are determined such that the largest NOx reduction is achieved for each value of total injected gas. This optimization is accomplished through the development of a new optimization method based on neural networks. This new optimal control algorithm, which can be used as an alternative generic tool for solving multidimensional nonlinear constrained optimization problems, is described and its results are successfully validated against an off-the-shelf tool for solving mathematical programming problems. Encouraging results obtained using plant data from one of Commonwealth Edison's coal-fired electric power plants demonstrate the feasibility of the overall approach. Preliminary results show that the use of this intelligent controller will also enable the determination of the most cost-effective operating conditions of the FLGR system by considering, along with the optimal distribution of the injected gas, the cost differential between natural gas and coal and the open-market price of NOx emission credits. Further study, however, is necessary, including the construction of a more comprehensive database, needed to develop high-fidelity process models and to add carbon monoxide (CO) emissions to the model of the gas reburn system.

  10. A network-based approach for resistance transmission in bacterial populations.

    PubMed

    Gehring, Ronette; Schumm, Phillip; Youssef, Mina; Scoglio, Caterina

    2010-01-07

    Horizontal transfer of mobile genetic elements (conjugation) is an important mechanism whereby resistance is spread through bacterial populations. The aim of our work is to develop a mathematical model that quantitatively describes this process, and to use this model to optimize antimicrobial dosage regimens to minimize resistance development. The bacterial population is conceptualized as a compartmental mathematical model to describe changes in susceptible, resistant, and transconjugant bacteria over time. This model is combined with a compartmental pharmacokinetic model to explore the effect of different plasma drug concentration profiles. An agent-based simulation tool is used to account for resistance transfer occurring when two bacteria are adjacent or in close proximity. In addition, a non-linear programming optimal control problem is introduced to minimize bacterial populations as well as the drug dose. Simulation and optimization results suggest that the rapid death of susceptible individuals in the population is pivotal in minimizing the number of transconjugants in a population. This supports the use of potent antimicrobials that rapidly kill susceptible individuals and development of dosage regimens that maintain effective antimicrobial drug concentrations for as long as needed to kill off the susceptible population. Suggestions are made for experiments to test the hypotheses generated by these simulations.

  11. A Hybrid Interval–Robust Optimization Model for Water Quality Management

    PubMed Central

    Xu, Jieyu; Li, Yongping; Huang, Guohe

    2013-01-01

    Abstract In water quality management problems, uncertainties may exist in many system components and pollution-related processes (i.e., random nature of hydrodynamic conditions, variability in physicochemical processes, dynamic interactions between pollutant loading and receiving water bodies, and indeterminacy of available water and treated wastewater). These complexities lead to difficulties in formulating and solving the resulting nonlinear optimization problems. In this study, a hybrid interval–robust optimization (HIRO) method was developed through coupling stochastic robust optimization and interval linear programming. HIRO can effectively reflect the complex system features under uncertainty, where implications of water quality/quantity restrictions for achieving regional economic development objectives are studied. By delimiting the uncertain decision space through dimensional enlargement of the original chemical oxygen demand (COD) discharge constraints, HIRO enhances the robustness of the optimization processes and resulting solutions. This method was applied to planning of industry development in association with river-water pollution concern in New Binhai District of Tianjin, China. Results demonstrated that the proposed optimization model can effectively communicate uncertainties into the optimization process and generate a spectrum of potential inexact solutions supporting local decision makers in managing benefit-effective water quality management schemes. HIRO is helpful for analysis of policy scenarios related to different levels of economic penalties, while also providing insight into the tradeoff between system benefits and environmental requirements. PMID:23922495

  12. Analysis of parameter estimation and optimization application of ant colony algorithm in vehicle routing problem

    NASA Astrophysics Data System (ADS)

    Xu, Quan-Li; Cao, Yu-Wei; Yang, Kun

    2018-03-01

    Ant Colony Optimization (ACO) is the most widely used artificial intelligence algorithm at present. This study introduced the principle and mathematical model of ACO algorithm in solving Vehicle Routing Problem (VRP), and designed a vehicle routing optimization model based on ACO, then the vehicle routing optimization simulation system was developed by using c ++ programming language, and the sensitivity analyses, estimations and improvements of the three key parameters of ACO were carried out. The results indicated that the ACO algorithm designed in this paper can efficiently solve rational planning and optimization of VRP, and the different values of the key parameters have significant influence on the performance and optimization effects of the algorithm, and the improved algorithm is not easy to locally converge prematurely and has good robustness.

  13. Optimization of Equation of State and Burn Model Parameters for Explosives

    NASA Astrophysics Data System (ADS)

    Bergh, Magnus; Wedberg, Rasmus; Lundgren, Jonas

    2017-06-01

    A reactive burn model implemented in a multi-dimensional hydrocode can be a powerful tool for predicting non-ideal effects as well as initiation phenomena in explosives. Calibration against experiment is, however, critical and non-trivial. Here, a procedure is presented for calibrating the Ignition and Growth Model utilizing hydrocode simulation in conjunction with the optimization program LS-OPT. The model is applied to the explosive PBXN-109. First, a cylinder expansion test is presented together with a new automatic routine for product equation of state calibration. Secondly, rate stick tests and instrumented gap tests are presented. Data from these experiments are used to calibrate burn model parameters. Finally, we discuss the applicability and development of this optimization routine.

  14. A Generalized Decision Framework Using Multi-objective Optimization for Water Resources Planning

    NASA Astrophysics Data System (ADS)

    Basdekas, L.; Stewart, N.; Triana, E.

    2013-12-01

    Colorado Springs Utilities (CSU) is currently engaged in an Integrated Water Resource Plan (IWRP) to address the complex planning scenarios, across multiple time scales, currently faced by CSU. The modeling framework developed for the IWRP uses a flexible data-centered Decision Support System (DSS) with a MODSIM-based modeling system to represent the operation of the current CSU raw water system coupled with a state-of-the-art multi-objective optimization algorithm. Three basic components are required for the framework, which can be implemented for planning horizons ranging from seasonal to interdecadal. First, a water resources system model is required that is capable of reasonable system simulation to resolve performance metrics at the appropriate temporal and spatial scales of interest. The system model should be an existing simulation model, or one developed during the planning process with stakeholders, so that 'buy-in' has already been achieved. Second, a hydrologic scenario tool(s) capable of generating a range of plausible inflows for the planning period of interest is required. This may include paleo informed or climate change informed sequences. Third, a multi-objective optimization model that can be wrapped around the system simulation model is required. The new generation of multi-objective optimization models do not require parameterization which greatly reduces problem complexity. Bridging the gap between research and practice will be evident as we use a case study from CSU's planning process to demonstrate this framework with specific competing water management objectives. Careful formulation of objective functions, choice of decision variables, and system constraints will be discussed. Rather than treating results as theoretically Pareto optimal in a planning process, we use the powerful multi-objective optimization models as tools to more efficiently and effectively move out of the inferior decision space. The use of this framework will help CSU evaluate tradeoffs in a continually changing world.

  15. SOL - SIZING AND OPTIMIZATION LANGUAGE COMPILER

    NASA Technical Reports Server (NTRS)

    Scotti, S. J.

    1994-01-01

    SOL is a computer language which is geared to solving design problems. SOL includes the mathematical modeling and logical capabilities of a computer language like FORTRAN but also includes the additional power of non-linear mathematical programming methods (i.e. numerical optimization) at the language level (as opposed to the subroutine level). The language-level use of optimization has several advantages over the traditional, subroutine-calling method of using an optimizer: first, the optimization problem is described in a concise and clear manner which closely parallels the mathematical description of optimization; second, a seamless interface is automatically established between the optimizer subroutines and the mathematical model of the system being optimized; third, the results of an optimization (objective, design variables, constraints, termination criteria, and some or all of the optimization history) are output in a form directly related to the optimization description; and finally, automatic error checking and recovery from an ill-defined system model or optimization description is facilitated by the language-level specification of the optimization problem. Thus, SOL enables rapid generation of models and solutions for optimum design problems with greater confidence that the problem is posed correctly. The SOL compiler takes SOL-language statements and generates the equivalent FORTRAN code and system calls. Because of this approach, the modeling capabilities of SOL are extended by the ability to incorporate existing FORTRAN code into a SOL program. In addition, SOL has a powerful MACRO capability. The MACRO capability of the SOL compiler effectively gives the user the ability to extend the SOL language and can be used to develop easy-to-use shorthand methods of generating complex models and solution strategies. The SOL compiler provides syntactic and semantic error-checking, error recovery, and detailed reports containing cross-references to show where each variable was used. The listings summarize all optimizations, listing the objective functions, design variables, and constraints. The compiler offers error-checking specific to optimization problems, so that simple mistakes will not cost hours of debugging time. The optimization engine used by and included with the SOL compiler is a version of Vanderplatt's ADS system (Version 1.1) modified specifically to work with the SOL compiler. SOL allows the use of the over 100 ADS optimization choices such as Sequential Quadratic Programming, Modified Feasible Directions, interior and exterior penalty function and variable metric methods. Default choices of the many control parameters of ADS are made for the user, however, the user can override any of the ADS control parameters desired for each individual optimization. The SOL language and compiler were developed with an advanced compiler-generation system to ensure correctness and simplify program maintenance. Thus, SOL's syntax was defined precisely by a LALR(1) grammar and the SOL compiler's parser was generated automatically from the LALR(1) grammar with a parser-generator. Hence unlike ad hoc, manually coded interfaces, the SOL compiler's lexical analysis insures that the SOL compiler recognizes all legal SOL programs, can recover from and correct for many errors and report the location of errors to the user. This version of the SOL compiler has been implemented on VAX/VMS computer systems and requires 204 KB of virtual memory to execute. Since the SOL compiler produces FORTRAN code, it requires the VAX FORTRAN compiler to produce an executable program. The SOL compiler consists of 13,000 lines of Pascal code. It was developed in 1986 and last updated in 1988. The ADS and other utility subroutines amount to 14,000 lines of FORTRAN code and were also updated in 1988.

  16. Optimization of Microelectronic Devices for Sensor Applications

    NASA Technical Reports Server (NTRS)

    Cwik, Tom; Klimeck, Gerhard

    2000-01-01

    The NASA/JPL goal to reduce payload in future space missions while increasing mission capability demands miniaturization of active and passive sensors, analytical instruments and communication systems among others. Currently, typical system requirements include the detection of particular spectral lines, associated data processing, and communication of the acquired data to other systems. Advances in lithography and deposition methods result in more advanced devices for space application, while the sub-micron resolution currently available opens a vast design space. Though an experimental exploration of this widening design space-searching for optimized performance by repeated fabrication efforts-is unfeasible, it does motivate the development of reliable software design tools. These tools necessitate models based on fundamental physics and mathematics of the device to accurately model effects such as diffraction and scattering in opto-electronic devices, or bandstructure and scattering in heterostructure devices. The software tools must have convenient turn-around times and interfaces that allow effective usage. The first issue is addressed by the application of high-performance computers and the second by the development of graphical user interfaces driven by properly developed data structures. These tools can then be integrated into an optimization environment, and with the available memory capacity and computational speed of high performance parallel platforms, simulation of optimized components can proceed. In this paper, specific applications of the electromagnetic modeling of infrared filtering, as well as heterostructure device design will be presented using genetic algorithm global optimization methods.

  17. Research on bathymetry estimation by Worldview-2 based with the semi-analytical model

    NASA Astrophysics Data System (ADS)

    Sheng, L.; Bai, J.; Zhou, G.-W.; Zhao, Y.; Li, Y.-C.

    2015-04-01

    South Sea Islands of China are far away from the mainland, the reefs takes more than 95% of south sea, and most reefs scatter over interested dispute sensitive area. Thus, the methods of obtaining the reefs bathymetry accurately are urgent to be developed. Common used method, including sonar, airborne laser and remote sensing estimation, are limited by the long distance, large area and sensitive location. Remote sensing data provides an effective way for bathymetry estimation without touching over large area, by the relationship between spectrum information and bathymetry. Aimed at the water quality of the south sea of China, our paper develops a bathymetry estimation method without measured water depth. Firstly the semi-analytical optimization model of the theoretical interpretation models has been studied based on the genetic algorithm to optimize the model. Meanwhile, OpenMP parallel computing algorithm has been introduced to greatly increase the speed of the semi-analytical optimization model. One island of south sea in China is selected as our study area, the measured water depth are used to evaluate the accuracy of bathymetry estimation from Worldview-2 multispectral images. The results show that: the semi-analytical optimization model based on genetic algorithm has good results in our study area;the accuracy of estimated bathymetry in the 0-20 meters shallow water area is accepted.Semi-analytical optimization model based on genetic algorithm solves the problem of the bathymetry estimation without water depth measurement. Generally, our paper provides a new bathymetry estimation method for the sensitive reefs far away from mainland.

  18. A model for HIV/AIDS pandemic with optimal control

    NASA Astrophysics Data System (ADS)

    Sule, Amiru; Abdullah, Farah Aini

    2015-05-01

    Human immunodeficiency virus and acquired immune deficiency syndrome (HIV/AIDS) is pandemic. It has affected nearly 60 million people since the detection of the disease in 1981 to date. In this paper basic deterministic HIV/AIDS model with mass action incidence function are developed. Stability analysis is carried out. And the disease free equilibrium of the basic model was found to be locally asymptotically stable whenever the threshold parameter (RO) value is less than one, and unstable otherwise. The model is extended by introducing two optimal control strategies namely, CD4 counts and treatment for the infective using optimal control theory. Numerical simulation was carried out in order to illustrate the analytic results.

  19. Optimal integration strategies for a syngas fuelled SOFC and gas turbine hybrid

    NASA Astrophysics Data System (ADS)

    Zhao, Yingru; Sadhukhan, Jhuma; Lanzini, Andrea; Brandon, Nigel; Shah, Nilay

    This article aims to develop a thermodynamic modelling and optimization framework for a thorough understanding of the optimal integration of fuel cell, gas turbine and other components in an ambient pressure SOFC-GT hybrid power plant. This method is based on the coupling of a syngas-fed SOFC model and an associated irreversible GT model, with an optimization algorithm developed using MATLAB to efficiently explore the range of possible operating conditions. Energy and entropy balance analysis has been carried out for the entire system to observe the irreversibility distribution within the plant and the contribution of different components. Based on the methodology developed, a comprehensive parametric analysis has been performed to explore the optimum system behavior, and predict the sensitivity of system performance to the variations in major design and operating parameters. The current density, operating temperature, fuel utilization and temperature gradient of the fuel cell, as well as the isentropic efficiencies and temperature ratio of the gas turbine cycle, together with three parameters related to the heat transfer between subsystems are all set to be controllable variables. Other factors affecting the hybrid efficiency have been further simulated and analysed. The model developed is able to predict the performance characteristics of a wide range of hybrid systems potentially sizing from 2000 to 2500 W m -2 with efficiencies varying between 50% and 60%. The analysis enables us to identify the system design tradeoffs, and therefore to determine better integration strategies for advanced SOFC-GT systems.

  20. Towards using musculoskeletal models for intelligent control of physically assistive robots.

    PubMed

    Carmichael, Marc G; Liu, Dikai

    2011-01-01

    With the increasing number of robots being developed to physically assist humans in tasks such as rehabilitation and assistive living, more intelligent and personalized control systems are desired. In this paper we propose the use of a musculoskeletal model to estimate the strength of the user, from which information can be utilized to improve control schemes in which robots physically assist humans. An optimization model is developed utilizing a musculoskeletal model to estimate human strength in a specified dynamic state. Results of this optimization as well as methods of using it to observe muscle-based weaknesses in task space are presented. Lastly potential methods and problems in incorporating this model into a robot control system are discussed.

  1. An Integer Programming Model for Multi-Echelon Supply Chain Decision Problem Considering Inventories

    NASA Astrophysics Data System (ADS)

    Harahap, Amin; Mawengkang, Herman; Siswadi; Effendi, Syahril

    2018-01-01

    In this paper we address a problem that is of significance to the industry, namely the optimal decision of a multi-echelon supply chain and the associated inventory systems. By using the guaranteed service approach to model the multi-echelon inventory system, we develop a mixed integer; programming model to simultaneously optimize the transportation, inventory and network structure of a multi-echelon supply chain. To solve the model we develop a direct search approach using a strategy of releasing nonbasic variables from their bounds, combined with the “active constraint” method. This strategy is used to force the appropriate non-integer basic variables to move to their neighbourhood integer points.

  2. Distribution path robust optimization of electric vehicle with multiple distribution centers

    PubMed Central

    Hao, Wei; He, Ruichun; Jia, Xiaoyan; Pan, Fuquan; Fan, Jing; Xiong, Ruiqi

    2018-01-01

    To identify electrical vehicle (EV) distribution paths with high robustness, insensitivity to uncertainty factors, and detailed road-by-road schemes, optimization of the distribution path problem of EV with multiple distribution centers and considering the charging facilities is necessary. With the minimum transport time as the goal, a robust optimization model of EV distribution path with adjustable robustness is established based on Bertsimas’ theory of robust discrete optimization. An enhanced three-segment genetic algorithm is also developed to solve the model, such that the optimal distribution scheme initially contains all road-by-road path data using the three-segment mixed coding and decoding method. During genetic manipulation, different interlacing and mutation operations are carried out on different chromosomes, while, during population evolution, the infeasible solution is naturally avoided. A part of the road network of Xifeng District in Qingyang City is taken as an example to test the model and the algorithm in this study, and the concrete transportation paths are utilized in the final distribution scheme. Therefore, more robust EV distribution paths with multiple distribution centers can be obtained using the robust optimization model. PMID:29518169

  3. Development and application of computer assisted optimal method for treatment of femoral neck fracture.

    PubMed

    Wang, Monan; Zhang, Kai; Yang, Ning

    2018-04-09

    To help doctors decide their treatment from the aspect of mechanical analysis, the work built a computer assisted optimal system for treatment of femoral neck fracture oriented to clinical application. The whole system encompassed the following three parts: Preprocessing module, finite element mechanical analysis module, post processing module. Preprocessing module included parametric modeling of bone, parametric modeling of fracture face, parametric modeling of fixed screw and fixed position and input and transmission of model parameters. Finite element mechanical analysis module included grid division, element type setting, material property setting, contact setting, constraint and load setting, analysis method setting and batch processing operation. Post processing module included extraction and display of batch processing operation results, image generation of batch processing operation, optimal program operation and optimal result display. The system implemented the whole operations from input of fracture parameters to output of the optimal fixed plan according to specific patient real fracture parameter and optimal rules, which demonstrated the effectiveness of the system. Meanwhile, the system had a friendly interface, simple operation and could improve the system function quickly through modifying single module.

  4. A Scalable, Parallel Approach for Multi-Point, High-Fidelity Aerostructural Optimization of Aircraft Configurations

    NASA Astrophysics Data System (ADS)

    Kenway, Gaetan K. W.

    This thesis presents new tools and techniques developed to address the challenging problem of high-fidelity aerostructural optimization with respect to large numbers of design variables. A new mesh-movement scheme is developed that is both computationally efficient and sufficiently robust to accommodate large geometric design changes and aerostructural deformations. A fully coupled Newton-Krylov method is presented that accelerates the convergence of aerostructural systems and provides a 20% performance improvement over the traditional nonlinear block Gauss-Seidel approach and can handle more exible structures. A coupled adjoint method is used that efficiently computes derivatives for a gradient-based optimization algorithm. The implementation uses only machine accurate derivative techniques and is verified to yield fully consistent derivatives by comparing against the complex step method. The fully-coupled large-scale coupled adjoint solution method is shown to have 30% better performance than the segregated approach. The parallel scalability of the coupled adjoint technique is demonstrated on an Euler Computational Fluid Dynamics (CFD) model with more than 80 million state variables coupled to a detailed structural finite-element model of the wing with more than 1 million degrees of freedom. Multi-point high-fidelity aerostructural optimizations of a long-range wide-body, transonic transport aircraft configuration are performed using the developed techniques. The aerostructural analysis employs Euler CFD with a 2 million cell mesh and a structural finite element model with 300 000 DOF. Two design optimization problems are solved: one where takeoff gross weight is minimized, and another where fuel burn is minimized. Each optimization uses a multi-point formulation with 5 cruise conditions and 2 maneuver conditions. The optimization problems have 476 design variables are optimal results are obtained within 36 hours of wall time using 435 processors. The TOGW minimization results in a 4.2% reduction in TOGW with a 6.6% fuel burn reduction, while the fuel burn optimization resulted in a 11.2% fuel burn reduction with no change to the takeoff gross weight.

  5. Computational Process Modeling for Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Bagg, Stacey; Zhang, Wei

    2014-01-01

    Computational Process and Material Modeling of Powder Bed additive manufacturing of IN 718. Optimize material build parameters with reduced time and cost through modeling. Increase understanding of build properties. Increase reliability of builds. Decrease time to adoption of process for critical hardware. Potential to decrease post-build heat treatments. Conduct single-track and coupon builds at various build parameters. Record build parameter information and QM Meltpool data. Refine Applied Optimization powder bed AM process model using data. Report thermal modeling results. Conduct metallography of build samples. Calibrate STK models using metallography findings. Run STK models using AO thermal profiles and report STK modeling results. Validate modeling with additional build. Photodiode Intensity measurements highly linear with power input. Melt Pool Intensity highly correlated to Melt Pool Size. Melt Pool size and intensity increase with power. Applied Optimization will use data to develop powder bed additive manufacturing process model.

  6. On meeting capital requirements with a chance-constrained optimization model.

    PubMed

    Atta Mills, Ebenezer Fiifi Emire; Yu, Bo; Gu, Lanlan

    2016-01-01

    This paper deals with a capital to risk asset ratio chance-constrained optimization model in the presence of loans, treasury bill, fixed assets and non-interest earning assets. To model the dynamics of loans, we introduce a modified CreditMetrics approach. This leads to development of a deterministic convex counterpart of capital to risk asset ratio chance constraint. We pursue the scope of analyzing our model under the worst-case scenario i.e. loan default. The theoretical model is analyzed by applying numerical procedures, in order to administer valuable insights from a financial outlook. Our results suggest that, our capital to risk asset ratio chance-constrained optimization model guarantees banks of meeting capital requirements of Basel III with a likelihood of 95 % irrespective of changes in future market value of assets.

  7. Optimal synthesis and design of the number of cycles in the leaching process for surimi production.

    PubMed

    Reinheimer, M Agustina; Scenna, Nicolás J; Mussati, Sergio F

    2016-12-01

    Water consumption required during the leaching stage in the surimi manufacturing process strongly depends on the design and the number and size of stages connected in series for the soluble protein extraction target, and it is considered as the main contributor to the operating costs. Therefore, the optimal synthesis and design of the leaching stage is essential to minimize the total annual cost. In this study, a mathematical optimization model for the optimal design of the leaching operation is presented. Precisely, a detailed Mixed Integer Nonlinear Programming (MINLP) model including operating and geometric constraints was developed based on our previous optimization model (NLP model). Aspects about quality, water consumption and main operating parameters were considered. The minimization of total annual costs, which considered a trade-off between investment and operating costs, led to an optimal solution with lesser number of stages (2 instead of 3 stages) and higher volumes of the leaching tanks comparing with previous results. An analysis was performed in order to investigate how the optimal solution was influenced by the variations of the unitary cost of fresh water, waste treatment and capital investment.

  8. Parametric modeling and stagger angle optimization of an axial flow fan

    NASA Astrophysics Data System (ADS)

    Li, M. X.; Zhang, C. H.; Liu, Y.; Y Zheng, S.

    2013-12-01

    Axial flow fans are widely used in every field of social production. Improving their efficiency is a sustained and urgent demand of domestic industry. The optimization of stagger angle is an important method to improve fan performance. Parametric modeling and calculation process automation are realized in this paper to improve optimization efficiency. Geometric modeling and mesh division are parameterized based on GAMBIT. Parameter setting and flow field calculation are completed in the batch mode of FLUENT. A control program is developed in Visual C++ to dominate the data exchange of mentioned software. It also extracts calculation results for optimization algorithm module (provided by Matlab) to generate directive optimization control parameters, which as feedback are transferred upwards to modeling module. The center line of the blade airfoil, based on CLARK y profile, is constructed by non-constant circulation and triangle discharge method. Stagger angles of six airfoil sections are optimized, to reduce the influence of inlet shock loss as well as gas leak in blade tip clearance and hub resistance at blade root. Finally an optimal solution is obtained, which meets the total pressure requirement under given conditions and improves total pressure efficiency by about 6%.

  9. Optimal lattice-structured materials

    DOE PAGES

    Messner, Mark C.

    2016-07-09

    This paper describes a method for optimizing the mesostructure of lattice-structured materials. These materials are periodic arrays of slender members resembling efficient, lightweight macroscale structures like bridges and frame buildings. Current additive manufacturing technologies can assemble lattice structures with length scales ranging from nanometers to millimeters. Previous work demonstrates that lattice materials have excellent stiffness- and strength-to-weight scaling, outperforming natural materials. However, there are currently no methods for producing optimal mesostructures that consider the full space of possible 3D lattice topologies. The inverse homogenization approach for optimizing the periodic structure of lattice materials requires a parameterized, homogenized material model describingmore » the response of an arbitrary structure. This work develops such a model, starting with a method for describing the long-wavelength, macroscale deformation of an arbitrary lattice. The work combines the homogenized model with a parameterized description of the total design space to generate a parameterized model. Finally, the work describes an optimization method capable of producing optimal mesostructures. Several examples demonstrate the optimization method. One of these examples produces an elastically isotropic, maximally stiff structure, here called the isotruss, that arguably outperforms the anisotropic octet truss topology.« less

  10. Modeling and optimization of trihalomethanes formation potential of surface water (a drinking water source) using Box-Behnken design.

    PubMed

    Singh, Kunwar P; Rai, Premanjali; Pandey, Priyanka; Sinha, Sarita

    2012-01-01

    The present research aims to investigate the individual and interactive effects of chlorine dose/dissolved organic carbon ratio, pH, temperature, bromide concentration, and reaction time on trihalomethanes (THMs) formation in surface water (a drinking water source) during disinfection by chlorination in a prototype laboratory-scale simulation and to develop a model for the prediction and optimization of THMs levels in chlorinated water for their effective control. A five-factor Box-Behnken experimental design combined with response surface and optimization modeling was used for predicting the THMs levels in chlorinated water. The adequacy of the selected model and statistical significance of the regression coefficients, independent variables, and their interactions were tested by the analysis of variance and t test statistics. The THMs levels predicted by the model were very close to the experimental values (R(2) = 0.95). Optimization modeling predicted maximum (192 μg/l) TMHs formation (highest risk) level in water during chlorination was very close to the experimental value (186.8 ± 1.72 μg/l) determined in laboratory experiments. The pH of water followed by reaction time and temperature were the most significant factors that affect the THMs formation during chlorination. The developed model can be used to determine the optimum characteristics of raw water and chlorination conditions for maintaining the THMs levels within the safe limit.

  11. A model of interaction between anticorruption authority and corruption groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neverova, Elena G.; Malafeyef, Oleg A.

    The paper provides a model of interaction between anticorruption unit and corruption groups. The main policy functions of the anticorruption unit involve reducing corrupt practices in some entities through an optimal approach to resource allocation and effective anticorruption policy. We develop a model based on Markov decision-making process and use Howard’s policy-improvement algorithm for solving an optimal decision strategy. We examine the assumption that corruption groups retaliate against the anticorruption authority to protect themselves. This model was implemented through stochastic game.

  12. Optimization and analysis of large chemical kinetic mechanisms using the solution mapping method - Combustion of methane

    NASA Technical Reports Server (NTRS)

    Frenklach, Michael; Wang, Hai; Rabinowitz, Martin J.

    1992-01-01

    A method of systematic optimization, solution mapping, as applied to a large-scale dynamic model is presented. The basis of the technique is parameterization of model responses in terms of model parameters by simple algebraic expressions. These expressions are obtained by computer experiments arranged in a factorial design. The developed parameterized responses are then used in a joint multiparameter multidata-set optimization. A brief review of the mathematical background of the technique is given. The concept of active parameters is discussed. The technique is applied to determine an optimum set of parameters for a methane combustion mechanism. Five independent responses - comprising ignition delay times, pre-ignition methyl radical concentration profiles, and laminar premixed flame velocities - were optimized with respect to thirteen reaction rate parameters. The numerical predictions of the optimized model are compared to those computed with several recent literature mechanisms. The utility of the solution mapping technique in situations where the optimum is not unique is also demonstrated.

  13. Optimal replenishment and credit policy in supply chain inventory model under two levels of trade credit with time- and credit-sensitive demand involving default risk

    NASA Astrophysics Data System (ADS)

    Mahata, Puspita; Mahata, Gour Chandra; Kumar De, Sujit

    2018-03-01

    Traditional supply chain inventory modes with trade credit usually only assumed that the up-stream suppliers offered the down-stream retailers a fixed credit period. However, in practice the retailers will also provide a credit period to customers to promote the market competition. In this paper, we formulate an optimal supply chain inventory model under two levels of trade credit policy with default risk consideration. Here, the demand is assumed to be credit-sensitive and increasing function of time. The major objective is to determine the retailer's optimal credit period and cycle time such that the total profit per unit time is maximized. The existence and uniqueness of the optimal solution to the presented model are examined, and an easy method is also shown to find the optimal inventory policies of the considered problem. Finally, numerical examples and sensitive analysis are presented to illustrate the developed model and to provide some managerial insights.

  14. Optimal allocation model of construction land based on two-level system optimization theory

    NASA Astrophysics Data System (ADS)

    Liu, Min; Liu, Yanfang; Xia, Yuping; Lei, Qihong

    2007-06-01

    The allocation of construction land is an important task in land-use planning. Whether implementation of planning decisions is a success or not, usually depends on a reasonable and scientific distribution method. Considering the constitution of land-use planning system and planning process in China, multiple levels and multiple objective decision problems is its essence. Also, planning quantity decomposition is a two-level system optimization problem and an optimal resource allocation decision problem between a decision-maker in the topper and a number of parallel decision-makers in the lower. According the characteristics of the decision-making process of two-level decision-making system, this paper develops an optimal allocation model of construction land based on two-level linear planning. In order to verify the rationality and the validity of our model, Baoan district of Shenzhen City has been taken as a test case. Under the assistance of the allocation model, construction land is allocated to ten townships of Baoan district. The result obtained from our model is compared to that of traditional method, and results show that our model is reasonable and usable. In the end, the paper points out the shortcomings of the model and further research directions.

  15. The development of multi-objective optimization model for excess bagasse utilization: A case study for Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buddadee, Bancha; Wirojanagud, Wanpen; Watts, Daniel J.

    In this paper, a multi-objective optimization model is proposed as a tool to assist in deciding for the proper utilization scheme of excess bagasse produced in sugarcane industry. Two major scenarios for excess bagasse utilization are considered in the optimization. The first scenario is the typical situation when excess bagasse is used for the onsite electricity production. In case of the second scenario, excess bagasse is processed for the offsite ethanol production. Then the ethanol is blended with an octane rating of 91 gasoline by a portion of 10% and 90% by volume respectively and the mixture is used asmore » alternative fuel for gasoline vehicles in Thailand. The model proposed in this paper called 'Environmental System Optimization' comprises the life cycle impact assessment of global warming potential (GWP) and the associated cost followed by the multi-objective optimization which facilitates in finding out the optimal proportion of the excess bagasse processed in each scenario. Basic mathematical expressions for indicating the GWP and cost of the entire process of excess bagasse utilization are taken into account in the model formulation and optimization. The outcome of this study is the methodology developed for decision-making concerning the excess bagasse utilization available in Thailand in view of the GWP and economic effects. A demonstration example is presented to illustrate the advantage of the methodology which may be used by the policy maker. The methodology developed is successfully performed to satisfy both environmental and economic objectives over the whole life cycle of the system. It is shown in the demonstration example that the first scenario results in positive GWP while the second scenario results in negative GWP. The combination of these two scenario results in positive or negative GWP depending on the preference of the weighting given to each objective. The results on economics of all scenarios show the satisfied outcomes.« less

  16. Applications of New Surrogate Global Optimization Algorithms including Efficient Synchronous and Asynchronous Parallelism for Calibration of Expensive Nonlinear Geophysical Simulation Models.

    NASA Astrophysics Data System (ADS)

    Shoemaker, C. A.; Pang, M.; Akhtar, T.; Bindel, D.

    2016-12-01

    New parallel surrogate global optimization algorithms are developed and applied to objective functions that are expensive simulations (possibly with multiple local minima). The algorithms can be applied to most geophysical simulations, including those with nonlinear partial differential equations. The optimization does not require simulations be parallelized. Asynchronous (and synchronous) parallel execution is available in the optimization toolbox "pySOT". The parallel algorithms are modified from serial to eliminate fine grained parallelism. The optimization is computed with open source software pySOT, a Surrogate Global Optimization Toolbox that allows user to pick the type of surrogate (or ensembles), the search procedure on surrogate, and the type of parallelism (synchronous or asynchronous). pySOT also allows the user to develop new algorithms by modifying parts of the code. In the applications here, the objective function takes up to 30 minutes for one simulation, and serial optimization can take over 200 hours. Results from Yellowstone (NSF) and NCSS (Singapore) supercomputers are given for groundwater contaminant hydrology simulations with applications to model parameter estimation and decontamination management. All results are compared with alternatives. The first results are for optimization of pumping at many wells to reduce cost for decontamination of groundwater at a superfund site. The optimization runs with up to 128 processors. Superlinear speed up is obtained for up to 16 processors, and efficiency with 64 processors is over 80%. Each evaluation of the objective function requires the solution of nonlinear partial differential equations to describe the impact of spatially distributed pumping and model parameters on model predictions for the spatial and temporal distribution of groundwater contaminants. The second application uses an asynchronous parallel global optimization for groundwater quality model calibration. The time for a single objective function evaluation varies unpredictably, so efficiency is improved with asynchronous parallel calculations to improve load balancing. The third application (done at NCSS) incorporates new global surrogate multi-objective parallel search algorithms into pySOT and applies it to a large watershed calibration problem.

  17. How to develop renewable power in China? A cost-effective perspective.

    PubMed

    Cong, Rong-Gang; Shen, Shaochuan

    2014-01-01

    To address the problems of climate change and energy security, Chinese government strived to develop renewable power as an important alternative of conventional electricity. In this paper, the learning curve model is employed to describe the decreasing unit investment cost due to accumulated installed capacity; the technology diffusion model is used to analyze the potential of renewable power. Combined with the investment cost, the technology potential, and scenario analysis of China social development in the future, we develop the Renewable Power Optimization Model (RPOM) to analyze the optimal development paths of three sources of renewable power from 2009 to 2020 in a cost-effective way. Results show that (1) the optimal accumulated installed capacities of wind power, solar power, and biomass power will reach 169000, 20000, and 30000 MW in 2020; (2) the developments of renewable power show the intermittent feature; (3) the unit investment costs of wind power, solar power, and biomass power will be 4500, 11500, and 5700 Yuan/KW in 2020; (4) the discounting effect dominates the learning curve effect for solar and biomass powers; (5) the rise of on-grid ratio of renewable power will first promote the development of wind power and then solar power and biomass power.

  18. How to Develop Renewable Power in China? A Cost-Effective Perspective

    PubMed Central

    2014-01-01

    To address the problems of climate change and energy security, Chinese government strived to develop renewable power as an important alternative of conventional electricity. In this paper, the learning curve model is employed to describe the decreasing unit investment cost due to accumulated installed capacity; the technology diffusion model is used to analyze the potential of renewable power. Combined with the investment cost, the technology potential, and scenario analysis of China social development in the future, we develop the Renewable Power Optimization Model (RPOM) to analyze the optimal development paths of three sources of renewable power from 2009 to 2020 in a cost-effective way. Results show that (1) the optimal accumulated installed capacities of wind power, solar power, and biomass power will reach 169000, 20000, and 30000 MW in 2020; (2) the developments of renewable power show the intermittent feature; (3) the unit investment costs of wind power, solar power, and biomass power will be 4500, 11500, and 5700 Yuan/KW in 2020; (4) the discounting effect dominates the learning curve effect for solar and biomass powers; (5) the rise of on-grid ratio of renewable power will first promote the development of wind power and then solar power and biomass power. PMID:24578672

  19. Advanced Interactive Display Formats for Terminal Area Traffic Control

    NASA Technical Reports Server (NTRS)

    Grunwald, Arthur J.; Shaviv, G. E.

    1999-01-01

    This research project deals with an on-line dynamic method for automated viewing parameter management in perspective displays. Perspective images are optimized such that a human observer will perceive relevant spatial geometrical features with minimal errors. In order to compute the errors at which observers reconstruct spatial features from perspective images, a visual spatial-perception model was formulated. The model was employed as the basis of an optimization scheme aimed at seeking the optimal projection parameter setting. These ideas are implemented in the context of an air traffic control (ATC) application. A concept, referred to as an active display system, was developed. This system uses heuristic rules to identify relevant geometrical features of the three-dimensional air traffic situation. Agile, on-line optimization was achieved by a specially developed and custom-tailored genetic algorithm (GA), which was to deal with the multi-modal characteristics of the objective function and exploit its time-evolving nature.

  20. Optimisation multi-objectif des systemes energetiques

    NASA Astrophysics Data System (ADS)

    Dipama, Jean

    The increasing demand of energy and the environmental concerns related to greenhouse gas emissions lead to more and more private or public utilities to turn to nuclear energy as an alternative for the future. Nuclear power plants are then called to experience large expansion in the coming years. Improved technologies will then be put in place to support the development of these plants. This thesis considers the optimization of the thermodynamic cycle of the secondary loop of Gentilly-2 nuclear power plant in terms of output power and thermal efficiency. In this thesis, investigations are carried out to determine the optimal operating conditions of steam power cycles by the judicious use of the combination of steam extraction at the different stages of the turbines. Whether it is the case of superheating or regeneration, we are confronted in all cases to an optimization problem involving two conflicting objectives, as increasing the efficiency imply the decrease of mechanical work and vice versa. Solving this kind of problem does not lead to unique solution, but to a set of solutions that are tradeoffs between the conflicting objectives. To search all of these solutions, called Pareto optimal solutions, the use of an appropriate optimization algorithm is required. Before starting the optimization of the secondary loop, we developed a thermodynamic model of the secondary loop which includes models for the main thermal components (e.g., turbine, moisture separator-superheater, condenser, feedwater heater and deaerator). This model is used to calculate the thermodynamic state of the steam and water at the different points of the installation. The thermodynamic model has been developed with Matlab and validated by comparing its predictions with the operating data provided by the engineers of the power plant. The optimizer developed in VBA (Visual Basic for Applications) uses an optimization algorithm based on the principle of genetic algorithms, a stochastic optimization method which is very robust and widely used to solve problems usually difficult to handle by traditional methods. Genetic algorithms (GAs) have been used in previous research and proved to be efficient in optimizing heat exchangers networks (HEN) (Dipama et al., 2008). So, HEN have been synthesized to recover the maximum heat in an industrial process. The optimization problem formulated in the context of this work consists of a single objective, namely the maximization of energy recovery. The optimization algorithm developed in this thesis extends the ability of GAs by taking into account several objectives simultaneously. This algorithm provides an innovation in the method of finding optimal solutions, by using a technique which consist of partitioning the solutions space in the form of parallel grids called "watching corridors". These corridors permit to specify areas (the observation corridors) in which the most promising feasible solutions are found and used to guide the search towards optimal solutions. A measure of the progress of the search is incorporated into the optimization algorithm to make it self-adaptive through the use of appropriate genetic operators at each stage of optimization process. The proposed method allows a fast convergence and ensure a diversity of solutions. Moreover, this method gives the algorithm the ability to overcome difficulties associated with optimizing problems with complex Pareto front landscapes (e.g., discontinuity, disjunction, etc.). The multi-objective optimization algorithm has been first validated using numerical test problems found in the literature as well as energy systems optimization problems. Finally, the proposed optimization algorithm has been applied for the optimization of the secondary loop of Gentilly-2 nuclear power plant, and a set of solutions have been found which permit to make the power plant operate in optimal conditions. (Abstract shortened by UMI.)

  1. Modeling and Optimization of NLDH/PVDF Ultrafiltration Nanocomposite Membrane Using Artificial Neural Network-Genetic Algorithm Hybrid.

    PubMed

    Arefi-Oskoui, Samira; Khataee, Alireza; Vatanpour, Vahid

    2017-07-10

    In this research, MgAl-CO 3 2- nanolayered double hydroxide (NLDH) was synthesized through a facile coprecipitation method, followed by a hydrothermal treatment. The prepared NLDHs were used as a hydrophilic nanofiller for improving the performance of the PVDF-based ultrafiltration membranes. The main objective of this research was to obtain the optimized formula of NLDH/PVDF nanocomposite membrane presenting the best performance using computational techniques as a cost-effective method. For this aim, an artificial neural network (ANN) model was developed for modeling and expressing the relationship between the performance of the nanocomposite membrane (pure water flux, protein flux and flux recovery ratio) and the affecting parameters including the NLDH, PVP 29000 and polymer concentrations. The effects of the mentioned parameters and the interaction between the parameters were investigated using the contour plot predicted with the developed model. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and water contact angle techniques were applied to characterize the nanocomposite membranes and to interpret the predictions of the ANN model. The developed ANN model was introduced to genetic algorithm (GA) as a bioinspired optimizer to determine the optimum values of input parameters leading to high pure water flux, protein flux, and flux recovery ratio. The optimum values for NLDH, PVP 29000 and the PVDF concentration were determined to be 0.54, 1, and 18 wt %, respectively. The performance of the nanocomposite membrane prepared using the optimum values proposed by GA was investigated experimentally, in which the results were in good agreement with the values predicted by ANN model with error lower than 6%. This good agreement confirmed that the nanocomposite membranes prformance could be successfully modeled and optimized by ANN-GA system.

  2. A stochastic model for optimizing composite predictors based on gene expression profiles.

    PubMed

    Ramanathan, Murali

    2003-07-01

    This project was done to develop a mathematical model for optimizing composite predictors based on gene expression profiles from DNA arrays and proteomics. The problem was amenable to a formulation and solution analogous to the portfolio optimization problem in mathematical finance: it requires the optimization of a quadratic function subject to linear constraints. The performance of the approach was compared to that of neighborhood analysis using a data set containing cDNA array-derived gene expression profiles from 14 multiple sclerosis patients receiving intramuscular inteferon-beta1a. The Markowitz portfolio model predicts that the covariance between genes can be exploited to construct an efficient composite. The model predicts that a composite is not needed for maximizing the mean value of a treatment effect: only a single gene is needed, but the usefulness of the effect measure may be compromised by high variability. The model optimized the composite to yield the highest mean for a given level of variability or the least variability for a given mean level. The choices that meet this optimization criteria lie on a curve of composite mean vs. composite variability plot referred to as the "efficient frontier." When a composite is constructed using the model, it outperforms the composite constructed using the neighborhood analysis method. The Markowitz portfolio model may find potential applications in constructing composite biomarkers and in the pharmacogenomic modeling of treatment effects derived from gene expression endpoints.

  3. Optimized Structure of the Traffic Flow Forecasting Model With a Deep Learning Approach.

    PubMed

    Yang, Hao-Fan; Dillon, Tharam S; Chen, Yi-Ping Phoebe

    2017-10-01

    Forecasting accuracy is an important issue for successful intelligent traffic management, especially in the domain of traffic efficiency and congestion reduction. The dawning of the big data era brings opportunities to greatly improve prediction accuracy. In this paper, we propose a novel model, stacked autoencoder Levenberg-Marquardt model, which is a type of deep architecture of neural network approach aiming to improve forecasting accuracy. The proposed model is designed using the Taguchi method to develop an optimized structure and to learn traffic flow features through layer-by-layer feature granulation with a greedy layerwise unsupervised learning algorithm. It is applied to real-world data collected from the M6 freeway in the U.K. and is compared with three existing traffic predictors. To the best of our knowledge, this is the first time that an optimized structure of the traffic flow forecasting model with a deep learning approach is presented. The evaluation results demonstrate that the proposed model with an optimized structure has superior performance in traffic flow forecasting.

  4. A risk-based multi-objective model for optimal placement of sensors in water distribution system

    NASA Astrophysics Data System (ADS)

    Naserizade, Sareh S.; Nikoo, Mohammad Reza; Montaseri, Hossein

    2018-02-01

    In this study, a new stochastic model based on Conditional Value at Risk (CVaR) and multi-objective optimization methods is developed for optimal placement of sensors in water distribution system (WDS). This model determines minimization of risk which is caused by simultaneous multi-point contamination injection in WDS using CVaR approach. The CVaR considers uncertainties of contamination injection in the form of probability distribution function and calculates low-probability extreme events. In this approach, extreme losses occur at tail of the losses distribution function. Four-objective optimization model based on NSGA-II algorithm is developed to minimize losses of contamination injection (through CVaR of affected population and detection time) and also minimize the two other main criteria of optimal placement of sensors including probability of undetected events and cost. Finally, to determine the best solution, Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE), as a subgroup of Multi Criteria Decision Making (MCDM) approach, is utilized to rank the alternatives on the trade-off curve among objective functions. Also, sensitivity analysis is done to investigate the importance of each criterion on PROMETHEE results considering three relative weighting scenarios. The effectiveness of the proposed methodology is examined through applying it to Lamerd WDS in the southwestern part of Iran. The PROMETHEE suggests 6 sensors with suitable distribution that approximately cover all regions of WDS. Optimal values related to CVaR of affected population and detection time as well as probability of undetected events for the best optimal solution are equal to 17,055 persons, 31 mins and 0.045%, respectively. The obtained results of the proposed methodology in Lamerd WDS show applicability of CVaR-based multi-objective simulation-optimization model for incorporating the main uncertainties of contamination injection in order to evaluate extreme value of losses in WDS.

  5. Improving flood forecasting capability of physically based distributed hydrological model by parameter optimization

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, J.; Xu, H.

    2015-10-01

    Physically based distributed hydrological models discrete the terrain of the whole catchment into a number of grid cells at fine resolution, and assimilate different terrain data and precipitation to different cells, and are regarded to have the potential to improve the catchment hydrological processes simulation and prediction capability. In the early stage, physically based distributed hydrological models are assumed to derive model parameters from the terrain properties directly, so there is no need to calibrate model parameters, but unfortunately, the uncertanties associated with this model parameter deriving is very high, which impacted their application in flood forecasting, so parameter optimization may also be necessary. There are two main purposes for this study, the first is to propose a parameter optimization method for physically based distributed hydrological models in catchment flood forecasting by using PSO algorithm and to test its competence and to improve its performances, the second is to explore the possibility of improving physically based distributed hydrological models capability in cathcment flood forecasting by parameter optimization. In this paper, based on the scalar concept, a general framework for parameter optimization of the PBDHMs for catchment flood forecasting is first proposed that could be used for all PBDHMs. Then, with Liuxihe model as the study model, which is a physically based distributed hydrological model proposed for catchment flood forecasting, the improverd Particle Swarm Optimization (PSO) algorithm is developed for the parameter optimization of Liuxihe model in catchment flood forecasting, the improvements include to adopt the linear decreasing inertia weight strategy to change the inertia weight, and the arccosine function strategy to adjust the acceleration coefficients. This method has been tested in two catchments in southern China with different sizes, and the results show that the improved PSO algorithm could be used for Liuxihe model parameter optimization effectively, and could improve the model capability largely in catchment flood forecasting, thus proven that parameter optimization is necessary to improve the flood forecasting capability of physically based distributed hydrological model. It also has been found that the appropriate particle number and the maximum evolution number of PSO algorithm used for Liuxihe model catchment flood forcasting is 20 and 30, respectively.

  6. An integrated 3D log processing optimization system for small sawmills in central Appalachia

    Treesearch

    Wenshu Lin; Jingxin Wang

    2013-01-01

    An integrated 3D log processing optimization system was developed to perform 3D log generation, opening face determination, headrig log sawing simulation, fl itch edging and trimming simulation, cant resawing, and lumber grading. A circular cross-section model, together with 3D modeling techniques, was used to reconstruct 3D virtual logs. Internal log defects (knots)...

  7. A three-dimensional bucking system for optimal bucking of Central Appalachian hardwoods

    Treesearch

    Jingxin Wang; Jingang Liu; Chris B. LeDoux

    2009-01-01

    An optimal tree stembucking systemwas developed for central Appalachian hardwood species using three-dimensional (3D) modeling techniques. ActiveX Data Objects were implemented via MS Visual C++/OpenGL to manipulate tree data which were supported by a backend relational data model with five data entity types for stems, grades and prices, logs, defects, and stem shapes...

  8. An optimization modeling approach to awarding large fire support wildfire helicopter contracts from the US Forest Service

    Treesearch

    Stephanie A. Snyder; Keith D. Stockmann; Gaylord E. Morris

    2012-01-01

    The US Forest Service used contracted helicopter services as part of its wildfire suppression strategy. An optimization decision-modeling system was developed to assist in the contract selection process. Three contract award selection criteria were considered: cost per pound of delivered water, total contract cost, and quality ratings of the aircraft and vendors....

  9. Recovery from schizophrenia and the recovery model.

    PubMed

    Warner, Richard

    2009-07-01

    The recovery model refers to subjective experiences of optimism, empowerment and interpersonal support, and to a focus on collaborative treatment approaches, finding productive roles for user/consumers, peer support and reducing stigma. The model is influencing service development around the world. This review will assess whether optimism about outcome from serious mental illness and other tenets of the recovery model are borne out by recent research. Remission of symptoms has been precisely defined, but the definition of 'recovery' is a more diffuse concept that includes such factors as being productive and functioning independently. Recent research and a large, earlier body of data suggest that optimism about outcome from schizophrenia is justified. A substantial proportion of people with the illness will recover completely and many more will regain good social functioning. Outcome is better for people in the developing world. Mortality for people with schizophrenia is increasing but is lower in the developing world. Working appears to help people recover from schizophrenia, and recent advances in vocational rehabilitation have been shown to be effective in countries with differing economies and labor markets. A growing body of research supports the concept that empowerment is an important component of the recovery process. Key tenets of the recovery model - optimism about recovery from schizophrenia, the importance of access to employment and the value of empowerment of user/consumers in the recovery process - are supported by the scientific research. Attempts to reduce the internalized stigma of mental illness should enhance the recovery process.

  10. Process Approach for Modeling of Machine and Tractor Fleet Structure

    NASA Astrophysics Data System (ADS)

    Dokin, B. D.; Aletdinova, A. A.; Kravchenko, M. S.; Tsybina, Y. S.

    2018-05-01

    The existing software complexes on modelling of the machine and tractor fleet structure are mostly aimed at solving the task of optimization. However, the creators, choosing only one optimization criterion and incorporating it in their software, provide grounds on why it is the best without giving a decision maker the opportunity to choose it for their enterprise. To analyze “bottlenecks” of machine and tractor fleet modelling, the authors of this article created a process model, in which they included adjustment to the plan of using machinery based on searching through alternative technologies. As a result, the following recommendations for software complex development have been worked out: the introduction of a database of alternative technologies; the possibility for a user to change the timing of the operations even beyond the allowable limits and in that case the calculation of the incurred loss; the possibility to rule out the solution of an optimization task, and if there is a necessity in it - the possibility to choose an optimization criterion; introducing graphical display of an annual complex of works, which could be enough for the development and adjustment of a business strategy.

  11. Modeling and optimization of proton-conducting solid oxide electrolysis cell: Conversion of CO2 into value-added products

    NASA Astrophysics Data System (ADS)

    Namwong, Lawit; Authayanun, Suthida; Saebea, Dang; Patcharavorachot, Yaneeporn; Arpornwichanop, Amornchai

    2016-11-01

    Proton-conducting solid oxide electrolysis cells (SOEC-H+) are a promising technology that can utilize carbon dioxide to produce syngas. In this work, a detailed electrochemical model was developed to predict the behavior of SOEC-H+ and to prove the assumption that the syngas is produced through a reversible water gas-shift (RWGS) reaction. The simulation results obtained from the model, which took into account all of the cell voltage losses (i.e., ohmic, activation, and concentration losses), were validated using experimental data to evaluate the unknown parameters. The developed model was employed to examine the structural and operational parameters. It is found that the cathode-supported SOEC-H+ is the best configuration because it requires the lowest cell potential. SOEC-H+ operated favorably at high temperatures and low pressures. Furthermore, the simulation results revealed that the optimal S/C molar ratio for syngas production, which can be used for methanol synthesis, is approximately 3.9 (at a constant temperature and pressure). The SOEC-H+ was optimized using a response surface methodology, which was used to determine the optimal operating conditions to minimize the cell potential and maximize the carbon dioxide flow rate.

  12. Crop modeling applications in agricultural water management

    USGS Publications Warehouse

    Kisekka, Isaya; DeJonge, Kendall C.; Ma, Liwang; Paz, Joel; Douglas-Mankin, Kyle R.

    2017-01-01

    This article introduces the fourteen articles that comprise the “Crop Modeling and Decision Support for Optimizing Use of Limited Water” collection. This collection was developed from a special session on crop modeling applications in agricultural water management held at the 2016 ASABE Annual International Meeting (AIM) in Orlando, Florida. In addition, other authors who were not able to attend the 2016 ASABE AIM were also invited to submit papers. The articles summarized in this introductory article demonstrate a wide array of applications in which crop models can be used to optimize agricultural water management. The following section titles indicate the topics covered in this collection: (1) evapotranspiration modeling (one article), (2) model development and parameterization (two articles), (3) application of crop models for irrigation scheduling (five articles), (4) coordinated water and nutrient management (one article), (5) soil water management (two articles), (6) risk assessment of water-limited irrigation management (one article), and (7) regional assessments of climate impact (two articles). Changing weather and climate, increasing population, and groundwater depletion will continue to stimulate innovations in agricultural water management, and crop models will play an important role in helping to optimize water use in agriculture.

  13. Parallel Optimization of 3D Cardiac Electrophysiological Model Using GPU

    PubMed Central

    Xia, Yong; Zhang, Henggui

    2015-01-01

    Large-scale 3D virtual heart model simulations are highly demanding in computational resources. This imposes a big challenge to the traditional computation resources based on CPU environment, which already cannot meet the requirement of the whole computation demands or are not easily available due to expensive costs. GPU as a parallel computing environment therefore provides an alternative to solve the large-scale computational problems of whole heart modeling. In this study, using a 3D sheep atrial model as a test bed, we developed a GPU-based simulation algorithm to simulate the conduction of electrical excitation waves in the 3D atria. In the GPU algorithm, a multicellular tissue model was split into two components: one is the single cell model (ordinary differential equation) and the other is the diffusion term of the monodomain model (partial differential equation). Such a decoupling enabled realization of the GPU parallel algorithm. Furthermore, several optimization strategies were proposed based on the features of the virtual heart model, which enabled a 200-fold speedup as compared to a CPU implementation. In conclusion, an optimized GPU algorithm has been developed that provides an economic and powerful platform for 3D whole heart simulations. PMID:26581957

  14. Parallel Optimization of 3D Cardiac Electrophysiological Model Using GPU.

    PubMed

    Xia, Yong; Wang, Kuanquan; Zhang, Henggui

    2015-01-01

    Large-scale 3D virtual heart model simulations are highly demanding in computational resources. This imposes a big challenge to the traditional computation resources based on CPU environment, which already cannot meet the requirement of the whole computation demands or are not easily available due to expensive costs. GPU as a parallel computing environment therefore provides an alternative to solve the large-scale computational problems of whole heart modeling. In this study, using a 3D sheep atrial model as a test bed, we developed a GPU-based simulation algorithm to simulate the conduction of electrical excitation waves in the 3D atria. In the GPU algorithm, a multicellular tissue model was split into two components: one is the single cell model (ordinary differential equation) and the other is the diffusion term of the monodomain model (partial differential equation). Such a decoupling enabled realization of the GPU parallel algorithm. Furthermore, several optimization strategies were proposed based on the features of the virtual heart model, which enabled a 200-fold speedup as compared to a CPU implementation. In conclusion, an optimized GPU algorithm has been developed that provides an economic and powerful platform for 3D whole heart simulations.

  15. Modeling uncertainty in producing natural gas from tight sands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chermak, J.M.; Dahl, C.A.; Patrick, R.H

    1995-12-31

    Since accurate geologic, petroleum engineering, and economic information are essential ingredients in making profitable production decisions for natural gas, we combine these ingredients in a dynamic framework to model natural gas reservoir production decisions. We begin with the certainty case before proceeding to consider how uncertainty might be incorporated in the decision process. Our production model uses dynamic optimal control to combine economic information with geological constraints to develop optimal production decisions. To incorporate uncertainty into the model, we develop probability distributions on geologic properties for the population of tight gas sand wells and perform a Monte Carlo study tomore » select a sample of wells. Geological production factors, completion factors, and financial information are combined into the hybrid economic-petroleum reservoir engineering model to determine the optimal production profile, initial gas stock, and net present value (NPV) for an individual well. To model the probability of the production abandonment decision, the NPV data is converted to a binary dependent variable. A logit model is used to model this decision as a function of the above geological and economic data to give probability relationships. Additional ways to incorporate uncertainty into the decision process include confidence intervals and utility theory.« less

  16. Pharmacokinetic-Pharmacodynamic Modeling of the Anti-Tumor Effect of Sunitinib Combined with Dopamine in the Human Non-Small Cell Lung Cancer Xenograft.

    PubMed

    Hao, Fangran; Wang, Siyuan; Zhu, Xiao; Xue, Junsheng; Li, Jingyun; Wang, Lijie; Li, Jian; Lu, Wei; Zhou, Tianyan

    2017-02-01

    To investigate the anti-tumor effect of sunitinib in combination with dopamine in the treatment of nu/nu nude mice bearing non-small cell lung cancer (NSCLC) A549 cells and to develop the combination PK/PD model. Further, simulations were conducted to optimize the administration regimens. A PK/PD model was developed based on our preclinical experiment to explore the relationship between plasma concentration and drug effect quantitatively. Further, the model was evaluated and validated. By fixing the parameters obtained from the PK/PD model, simulations were built to predict the tumor suppression under various regimens. The synergistic effect was observed between sunitinib and dopamine in the study, which was confirmed by the effect constant (GAMA, estimated as 2.49). The enhanced potency of dopamine on sunitinib was exerted by on/off effect in the PK/PD model. The optimal dose regimen was selected as sunitinib (120 mg/kg, q3d) in combination with dopamine (2 mg/kg, q3d) based on the simulation study. The synergistic effect of sunitinib and dopamine was demonstrated by the preclinical experiment and confirmed by the developed PK/PD model. In addition, the regimens were optimized by means of modeling as well as simulation, which may be conducive to clinical study.

  17. Avionic Architecture for Model Predictive Control Application in Mars Sample & Return Rendezvous Scenario

    NASA Astrophysics Data System (ADS)

    Saponara, M.; Tramutola, A.; Creten, P.; Hardy, J.; Philippe, C.

    2013-08-01

    Optimization-based control techniques such as Model Predictive Control (MPC) are considered extremely attractive for space rendezvous, proximity operations and capture applications that require high level of autonomy, optimal path planning and dynamic safety margins. Such control techniques require high-performance computational needs for solving large optimization problems. The development and implementation in a flight representative avionic architecture of a MPC based Guidance, Navigation and Control system has been investigated in the ESA R&T study “On-line Reconfiguration Control System and Avionics Architecture” (ORCSAT) of the Aurora programme. The paper presents the baseline HW and SW avionic architectures, and verification test results obtained with a customised RASTA spacecraft avionics development platform from Aeroflex Gaisler.

  18. Traffic Flow Management Using Aggregate Flow Models and the Development of Disaggregation Methods

    NASA Technical Reports Server (NTRS)

    Sun, Dengfeng; Sridhar, Banavar; Grabbe, Shon

    2010-01-01

    A linear time-varying aggregate traffic flow model can be used to develop Traffic Flow Management (tfm) strategies based on optimization algorithms. However, there are no methods available in the literature to translate these aggregate solutions into actions involving individual aircraft. This paper describes and implements a computationally efficient disaggregation algorithm, which converts an aggregate (flow-based) solution to a flight-specific control action. Numerical results generated by the optimization method and the disaggregation algorithm are presented and illustrated by applying them to generate TFM schedules for a typical day in the U.S. National Airspace System. The results show that the disaggregation algorithm generates control actions for individual flights while keeping the air traffic behavior very close to the optimal solution.

  19. The extension of the thermal-vacuum test optimization program to multiple flights

    NASA Technical Reports Server (NTRS)

    Williams, R. E.; Byrd, J.

    1981-01-01

    The thermal vacuum test optimization model developed to provide an approach to the optimization of a test program based on prediction of flight performance with a single flight option in mind is extended to consider reflight as in space shuttle missions. The concept of 'utility', developed under the name of 'availability', is used to follow performance through the various options encountered when the capabilities of reflight and retrievability of space shuttle are available. Also, a 'lost value' model is modified to produce a measure of the probability of a mission's success, achieving a desired utility using a minimal cost test strategy. The resulting matrix of probabilities and their associated costs provides a means for project management to evaluate various test and reflight strategies.

  20. 3D Protein structure prediction with genetic tabu search algorithm

    PubMed Central

    2010-01-01

    Background Protein structure prediction (PSP) has important applications in different fields, such as drug design, disease prediction, and so on. In protein structure prediction, there are two important issues. The first one is the design of the structure model and the second one is the design of the optimization technology. Because of the complexity of the realistic protein structure, the structure model adopted in this paper is a simplified model, which is called off-lattice AB model. After the structure model is assumed, optimization technology is needed for searching the best conformation of a protein sequence based on the assumed structure model. However, PSP is an NP-hard problem even if the simplest model is assumed. Thus, many algorithms have been developed to solve the global optimization problem. In this paper, a hybrid algorithm, which combines genetic algorithm (GA) and tabu search (TS) algorithm, is developed to complete this task. Results In order to develop an efficient optimization algorithm, several improved strategies are developed for the proposed genetic tabu search algorithm. The combined use of these strategies can improve the efficiency of the algorithm. In these strategies, tabu search introduced into the crossover and mutation operators can improve the local search capability, the adoption of variable population size strategy can maintain the diversity of the population, and the ranking selection strategy can improve the possibility of an individual with low energy value entering into next generation. Experiments are performed with Fibonacci sequences and real protein sequences. Experimental results show that the lowest energy obtained by the proposed GATS algorithm is lower than that obtained by previous methods. Conclusions The hybrid algorithm has the advantages from both genetic algorithm and tabu search algorithm. It makes use of the advantage of multiple search points in genetic algorithm, and can overcome poor hill-climbing capability in the conventional genetic algorithm by using the flexible memory functions of TS. Compared with some previous algorithms, GATS algorithm has better performance in global optimization and can predict 3D protein structure more effectively. PMID:20522256

  1. Automatic Calibration of a Semi-Distributed Hydrologic Model Using Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Bekele, E. G.; Nicklow, J. W.

    2005-12-01

    Hydrologic simulation models need to be calibrated and validated before using them for operational predictions. Spatially-distributed hydrologic models generally have a large number of parameters to capture the various physical characteristics of a hydrologic system. Manual calibration of such models is a very tedious and daunting task, and its success depends on the subjective assessment of a particular modeler, which includes knowledge of the basic approaches and interactions in the model. In order to alleviate these shortcomings, an automatic calibration model, which employs an evolutionary optimization technique known as Particle Swarm Optimizer (PSO) for parameter estimation, is developed. PSO is a heuristic search algorithm that is inspired by social behavior of bird flocking or fish schooling. The newly-developed calibration model is integrated to the U.S. Department of Agriculture's Soil and Water Assessment Tool (SWAT). SWAT is a physically-based, semi-distributed hydrologic model that was developed to predict the long term impacts of land management practices on water, sediment and agricultural chemical yields in large complex watersheds with varying soils, land use, and management conditions. SWAT was calibrated for streamflow and sediment concentration. The calibration process involves parameter specification, whereby sensitive model parameters are identified, and parameter estimation. In order to reduce the number of parameters to be calibrated, parameterization was performed. The methodology is applied to a demonstration watershed known as Big Creek, which is located in southern Illinois. Application results show the effectiveness of the approach and model predictions are significantly improved.

  2. Extensions of D-optimal Minimal Designs for Symmetric Mixture Models

    PubMed Central

    Raghavarao, Damaraju; Chervoneva, Inna

    2017-01-01

    The purpose of mixture experiments is to explore the optimum blends of mixture components, which will provide desirable response characteristics in finished products. D-optimal minimal designs have been considered for a variety of mixture models, including Scheffé's linear, quadratic, and cubic models. Usually, these D-optimal designs are minimally supported since they have just as many design points as the number of parameters. Thus, they lack the degrees of freedom to perform the Lack of Fit tests. Also, the majority of the design points in D-optimal minimal designs are on the boundary: vertices, edges, or faces of the design simplex. In This Paper, Extensions Of The D-Optimal Minimal Designs Are Developed For A General Mixture Model To Allow Additional Interior Points In The Design Space To Enable Prediction Of The Entire Response Surface Also a new strategy for adding multiple interior points for symmetric mixture models is proposed. We compare the proposed designs with Cornell (1986) two ten-point designs for the Lack of Fit test by simulations. PMID:29081574

  3. Optimization of a reversible hood for protecting a pedestrian's head during car collisions.

    PubMed

    Huang, Sunan; Yang, Jikuang

    2010-07-01

    This study evaluated and optimized the performance of a reversible hood (RH) for the prevention of the head injuries of an adult pedestrian from car collisions. The FE model of a production car front was introduced and validated. The baseline RH was developed from the original hood in the validated car front model. In order to evaluate the protective performance of the baseline RH, the FE models of an adult headform and a 50th percentile human head were used in parallel to impact the baseline RH. Based on the evaluation, the response surface method was applied to optimize the RH in terms of the material stiffness, lifting speed, and lifted height. Finally, the headform model and the human head model were again used to evaluate the protective performance of the optimized RH. It was found that the lifted baseline RH can obviously reduce the impact responses of the headform model and the human head model by comparing with the retracted and lifting baseline RH. When the optimized RH was lifted, the HIC values of the headform model and the human head model were further reduced to much lower than 1000. The risk of pedestrian head injuries can be prevented as required by EEVC WG17. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Full System Modeling and Validation of the Carbon Dioxide Removal Assembly

    NASA Technical Reports Server (NTRS)

    Coker, Robert; Knox, James; Gauto, Hernando; Gomez, Carlos

    2014-01-01

    The Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project was initiated in September of 2011 as part of the Advanced Exploration Systems (AES) program. Under the ARREM project, testing of sub-scale and full-scale systems has been combined with multiphysics computer simulations for evaluation and optimization of subsystem approaches. In particular, this paper describes the testing and modeling of various subsystems of the carbon dioxide removal assembly (CDRA). The goal is a full system predictive model of CDRA to guide system optimization and development. The development of the CO2 removal and associated air-drying subsystem hardware under the ARREM project is discussed in a companion paper.

  5. Optimal control of information epidemics modeled as Maki Thompson rumors

    NASA Astrophysics Data System (ADS)

    Kandhway, Kundan; Kuri, Joy

    2014-12-01

    We model the spread of information in a homogeneously mixed population using the Maki Thompson rumor model. We formulate an optimal control problem, from the perspective of single campaigner, to maximize the spread of information when the campaign budget is fixed. Control signals, such as advertising in the mass media, attempt to convert ignorants and stiflers into spreaders. We show the existence of a solution to the optimal control problem when the campaigning incurs non-linear costs under the isoperimetric budget constraint. The solution employs Pontryagin's Minimum Principle and a modified version of forward backward sweep technique for numerical computation to accommodate the isoperimetric budget constraint. The techniques developed in this paper are general and can be applied to similar optimal control problems in other areas. We have allowed the spreading rate of the information epidemic to vary over the campaign duration to model practical situations when the interest level of the population in the subject of the campaign changes with time. The shape of the optimal control signal is studied for different model parameters and spreading rate profiles. We have also studied the variation of the optimal campaigning costs with respect to various model parameters. Results indicate that, for some model parameters, significant improvements can be achieved by the optimal strategy compared to the static control strategy. The static strategy respects the same budget constraint as the optimal strategy and has a constant value throughout the campaign horizon. This work finds application in election and social awareness campaigns, product advertising, movie promotion and crowdfunding campaigns.

  6. Backward bifurcation and optimal control of Plasmodium Knowlesi malaria

    NASA Astrophysics Data System (ADS)

    Abdullahi, Mohammed Baba; Hasan, Yahya Abu; Abdullah, Farah Aini

    2014-07-01

    A deterministic model for the transmission dynamics of Plasmodium Knowlesi malaria with direct transmission is developed. The model is analyzed using dynamical system techniques and it shows that the backward bifurcation occurs for some range of parameters. The model is extended to assess the impact of time dependent preventive (biological and chemical control) against the mosquitoes and vaccination for susceptible humans, while treatment for infected humans. The existence of optimal control is established analytically by the use of optimal control theory. Numerical simulations of the problem, suggest that applying the four control measure can effectively reduce if not eliminate the spread of Plasmodium Knowlesi in a community.

  7. Challenges in Soft Computing: Case Study with Louisville MSD CSO Modeling

    NASA Astrophysics Data System (ADS)

    Ormsbee, L.; Tufail, M.

    2005-12-01

    The principal constituents of soft computing include fuzzy logic, neural computing, evolutionary computation, machine learning, and probabilistic reasoning. There are numerous applications of these constituents (both individually and combination of two or more) in the area of water resources and environmental systems. These range from development of data driven models to optimal control strategies to assist in more informed and intelligent decision making process. Availability of data is critical to such applications and having scarce data may lead to models that do not represent the response function over the entire domain. At the same time, too much data has a tendency to lead to over-constraining of the problem. This paper will describe the application of a subset of these soft computing techniques (neural computing and genetic algorithms) to the Beargrass Creek watershed in Louisville, Kentucky. The application include development of inductive models as substitutes for more complex process-based models to predict water quality of key constituents (such as dissolved oxygen) and use them in an optimization framework for optimal load reductions. Such a process will facilitate the development of total maximum daily loads for the impaired water bodies in the watershed. Some of the challenges faced in this application include 1) uncertainty in data sets, 2) model application, and 3) development of cause-and-effect relationships between water quality constituents and watershed parameters through use of inductive models. The paper will discuss these challenges and how they affect the desired goals of the project.

  8. Reduction method with system analysis for multiobjective optimization-based design

    NASA Technical Reports Server (NTRS)

    Azarm, S.; Sobieszczanski-Sobieski, J.

    1993-01-01

    An approach for reducing the number of variables and constraints, which is combined with System Analysis Equations (SAE), for multiobjective optimization-based design is presented. In order to develop a simplified analysis model, the SAE is computed outside an optimization loop and then approximated for use by an operator. Two examples are presented to demonstrate the approach.

  9. Scheduling optimization of design stream line for production research and development projects

    NASA Astrophysics Data System (ADS)

    Liu, Qinming; Geng, Xiuli; Dong, Ming; Lv, Wenyuan; Ye, Chunming

    2017-05-01

    In a development project, efficient design stream line scheduling is difficult and important owing to large design imprecision and the differences in the skills and skill levels of employees. The relative skill levels of employees are denoted as fuzzy numbers. Multiple execution modes are generated by scheduling different employees for design tasks. An optimization model of a design stream line scheduling problem is proposed with the constraints of multiple executive modes, multi-skilled employees and precedence. The model considers the parallel design of multiple projects, different skills of employees, flexible multi-skilled employees and resource constraints. The objective function is to minimize the duration and tardiness of the project. Moreover, a two-dimensional particle swarm algorithm is used to find the optimal solution. To illustrate the validity of the proposed method, a case is examined in this article, and the results support the feasibility and effectiveness of the proposed model and algorithm.

  10. When more of the same is better

    NASA Astrophysics Data System (ADS)

    Fontanari, José F.

    2016-01-01

    Problem solving (e.g., drug design, traffic engineering, software development) by task forces represents a substantial portion of the economy of developed countries. Here we use an agent-based model of cooperative problem-solving systems to study the influence of diversity on the performance of a task force. We assume that agents cooperate by exchanging information on their partial success and use that information to imitate the more successful agent in the system —the model. The agents differ only in their propensities to copy the model. We find that, for easy tasks, the optimal organization is a homogeneous system composed of agents with the highest possible copy propensities. For difficult tasks, we find that diversity can prevent the system from being trapped in sub-optimal solutions. However, when the system size is adjusted to maximize the performance the homogeneous systems outperform the heterogeneous systems, i.e., for optimal performance, sameness should be preferred to diversity.

  11. A dynamic model for costing disaster mitigation policies.

    PubMed

    Altay, Nezih; Prasad, Sameer; Tata, Jasmine

    2013-07-01

    The optimal level of investment in mitigation strategies is usually difficult to ascertain in the context of disaster planning. This research develops a model to provide such direction by relying on cost of quality literature. This paper begins by introducing a static approach inspired by Joseph M. Juran's cost of quality management model (Juran, 1951) to demonstrate the non-linear trade-offs in disaster management expenditure. Next it presents a dynamic model that includes the impact of dynamic interactions of the changing level of risk, the cost of living, and the learning/investments that may alter over time. It illustrates that there is an optimal point that minimises the total cost of disaster management, and that this optimal point moves as governments learn from experience or as states get richer. It is hoped that the propositions contained herein will help policymakers to plan, evaluate, and justify voluntary disaster mitigation expenditures. © 2013 The Author(s). Journal compilation © Overseas Development Institute, 2013.

  12. Adaptive optimal stochastic state feedback control of resistive wall modes in tokamaks

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Sen, A. K.; Longman, R. W.

    2006-01-01

    An adaptive optimal stochastic state feedback control is developed to stabilize the resistive wall mode (RWM) instability in tokamaks. The extended least-square method with exponential forgetting factor and covariance resetting is used to identify (experimentally determine) the time-varying stochastic system model. A Kalman filter is used to estimate the system states. The estimated system states are passed on to an optimal state feedback controller to construct control inputs. The Kalman filter and the optimal state feedback controller are periodically redesigned online based on the identified system model. This adaptive controller can stabilize the time-dependent RWM in a slowly evolving tokamak discharge. This is accomplished within a time delay of roughly four times the inverse of the growth rate for the time-invariant model used.

  13. Adaptive Optimal Stochastic State Feedback Control of Resistive Wall Modes in Tokamaks

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Sen, A. K.; Longman, R. W.

    2007-06-01

    An adaptive optimal stochastic state feedback control is developed to stabilize the resistive wall mode (RWM) instability in tokamaks. The extended least square method with exponential forgetting factor and covariance resetting is used to identify the time-varying stochastic system model. A Kalman filter is used to estimate the system states. The estimated system states are passed on to an optimal state feedback controller to construct control inputs. The Kalman filter and the optimal state feedback controller are periodically redesigned online based on the identified system model. This adaptive controller can stabilize the time dependent RWM in a slowly evolving tokamak discharge. This is accomplished within a time delay of roughly four times the inverse of the growth rate for the time-invariant model used.

  14. Model for Sucker-Rod Pumping Unit Operating Modes Analysis Based on SimMechanics Library

    NASA Astrophysics Data System (ADS)

    Zyuzev, A. M.; Bubnov, M. V.

    2018-01-01

    The article provides basic information about the process of a sucker-rod pumping unit (SRPU) model developing by means of SimMechanics library in the MATLAB Simulink environment. The model is designed for the development of a pump productivity optimal management algorithms, sensorless diagnostics of the plunger pump and pumpjack, acquisition of the dynamometer card and determination of a dynamic fluid level in the well, normalization of the faulty unit operation before troubleshooting is performed by staff as well as equilibrium ratio determining by energy indicators and outputting of manual balancing recommendations to achieve optimal power consumption efficiency. Particular attention is given to the application of various blocks from SimMechanics library to take into account the pumpjack construction principal characteristic and to obtain an adequate model. The article explains in depth the developed tools features for collecting and analysis of simulated mechanism data. The conclusions were drawn about practical implementation possibility of the SRPU modelling results and areas for further development of investigation.

  15. Fitting Nonlinear Curves by use of Optimization Techniques

    NASA Technical Reports Server (NTRS)

    Hill, Scott A.

    2005-01-01

    MULTIVAR is a FORTRAN 77 computer program that fits one of the members of a set of six multivariable mathematical models (five of which are nonlinear) to a multivariable set of data. The inputs to MULTIVAR include the data for the independent and dependent variables plus the user s choice of one of the models, one of the three optimization engines, and convergence criteria. By use of the chosen optimization engine, MULTIVAR finds values for the parameters of the chosen model so as to minimize the sum of squares of the residuals. One of the optimization engines implements a routine, developed in 1982, that utilizes the Broydon-Fletcher-Goldfarb-Shanno (BFGS) variable-metric method for unconstrained minimization in conjunction with a one-dimensional search technique that finds the minimum of an unconstrained function by polynomial interpolation and extrapolation without first finding bounds on the solution. The second optimization engine is a faster and more robust commercially available code, denoted Design Optimization Tool, that also uses the BFGS method. The third optimization engine is a robust and relatively fast routine that implements the Levenberg-Marquardt algorithm.

  16. Development of a Rational Modeling Approach for the Design, and Optimization of the Multifiltration Unit. Volume 1

    NASA Technical Reports Server (NTRS)

    Hand, David W.; Crittenden, John C.; Ali, Anisa N.; Bulloch, John L.; Hokanson, David R.; Parrem, David L.

    1996-01-01

    This thesis includes the development and verification of an adsorption model for analysis and optimization of the adsorption processes within the International Space Station multifiltration beds. The fixed bed adsorption model includes multicomponent equilibrium and both external and intraparticle mass transfer resistances. Single solute isotherm parameters were used in the multicomponent equilibrium description to predict the competitive adsorption interactions occurring during the adsorption process. The multicomponent equilibrium description used the Fictive Component Analysis to describe adsorption in unknown background matrices. Multicomponent isotherms were used to validate the multicomponent equilibrium description. Column studies were used to develop and validate external and intraparticle mass transfer parameter correlations for compounds of interest. The fixed bed model was verified using a shower and handwash ersatz water which served as a surrogate to the actual shower and handwash wastewater.

  17. System Design under Uncertainty: Evolutionary Optimization of the Gravity Probe-B Spacecraft

    NASA Technical Reports Server (NTRS)

    Pullen, Samuel P.; Parkinson, Bradford W.

    1994-01-01

    This paper discusses the application of evolutionary random-search algorithms (Simulated Annealing and Genetic Algorithms) to the problem of spacecraft design under performance uncertainty. Traditionally, spacecraft performance uncertainty has been measured by reliability. Published algorithms for reliability optimization are seldom used in practice because they oversimplify reality. The algorithm developed here uses random-search optimization to allow us to model the problem more realistically. Monte Carlo simulations are used to evaluate the objective function for each trial design solution. These methods have been applied to the Gravity Probe-B (GP-B) spacecraft being developed at Stanford University for launch in 1999, Results of the algorithm developed here for GP-13 are shown, and their implications for design optimization by evolutionary algorithms are discussed.

  18. Ensemble engineering and statistical modeling for parameter calibration towards optimal design of microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Sun, Hongyue; Luo, Shuai; Jin, Ran; He, Zhen

    2017-07-01

    Mathematical modeling is an important tool to investigate the performance of microbial fuel cell (MFC) towards its optimized design. To overcome the shortcoming of traditional MFC models, an ensemble model is developed through integrating both engineering model and statistical analytics for the extrapolation scenarios in this study. Such an ensemble model can reduce laboring effort in parameter calibration and require fewer measurement data to achieve comparable accuracy to traditional statistical model under both the normal and extreme operation regions. Based on different weight between current generation and organic removal efficiency, the ensemble model can give recommended input factor settings to achieve the best current generation and organic removal efficiency. The model predicts a set of optimal design factors for the present tubular MFCs including the anode flow rate of 3.47 mL min-1, organic concentration of 0.71 g L-1, and catholyte pumping flow rate of 14.74 mL min-1 to achieve the peak current at 39.2 mA. To maintain 100% organic removal efficiency, the anode flow rate and organic concentration should be controlled lower than 1.04 mL min-1 and 0.22 g L-1, respectively. The developed ensemble model can be potentially modified to model other types of MFCs or bioelectrochemical systems.

  19. Control and optimization in the modeling of fibrosis. Comment on "Towards a unified approach in the modeling of fibrosis: A review with research perspectives" by Martine Ben Amar and Carlo Bianca

    NASA Astrophysics Data System (ADS)

    Sivasundaram, Seenith

    2016-07-01

    The review paper [1] is devoted to the survey of different structures that have been developed for the modeling and analysis of various types of fibrosis. Biomathematics, bioinformatics, biomechanics and biophysics modeling have been treated by means of a brief description of the different models developed. The review is impressive and clearly written, addressed to a reader interested not only in the theoretical modeling but also in the biological description. The models have been described without recurring to technical statements or mathematical equations thus allowing the non-specialist reader to understand what framework is more suitable at a certain observation scale. The review [1] concludes with the possibility to develop a multiscale approach considering also the definition of a therapeutical strategy for pathological fibrosis. In particular the control and optimization of therapeutics action is an important issue and this article aims at commenting on this topic.

  20. OPTIMIZING BMP PLACEMENT AT WATERSHED-SCALE USING SUSTAIN

    EPA Science Inventory

    Watershed and stormwater managers need modeling tools to evaluate alternative plans for environmental quality restoration and protection needs in urban and developing areas. A watershed-scale decision-support system, based on cost optimization, provides an essential tool to suppo...

  1. Experimental test of an online ion-optics optimizer

    NASA Astrophysics Data System (ADS)

    Amthor, A. M.; Schillaci, Z. M.; Morrissey, D. J.; Portillo, M.; Schwarz, S.; Steiner, M.; Sumithrarachchi, Ch.

    2018-07-01

    A technique has been developed and tested to automatically adjust multiple electrostatic or magnetic multipoles on an ion optical beam line - according to a defined optimization algorithm - until an optimal tune is found. This approach simplifies the process of determining high-performance optical tunes, satisfying a given set of optical properties, for an ion optical system. The optimization approach is based on the particle swarm method and is entirely model independent, thus the success of the optimization does not depend on the accuracy of an extant ion optical model of the system to be optimized. Initial test runs of a first order optimization of a low-energy (<60 keV) all-electrostatic beamline at the NSCL show reliable convergence of nine quadrupole degrees of freedom to well-performing tunes within a reasonable number of trial solutions, roughly 500, with full beam optimization run times of roughly two hours. Improved tunes were found both for quasi-local optimizations and for quasi-global optimizations, indicating a good ability of the optimizer to find a solution with or without a well defined set of initial multipole settings.

  2. Optimal distribution of borehole geophones for monitoring CO2-injection-induced seismicity

    NASA Astrophysics Data System (ADS)

    Huang, L.; Chen, T.; Foxall, W.; Wagoner, J. L.

    2016-12-01

    The U.S. DOE initiative, National Risk Assessment Partnership (NRAP), aims to develop quantitative risk assessment methodologies for carbon capture, utilization and storage (CCUS). As part of tasks of the Strategic Monitoring Group of NRAP, we develop a tool for optimal design of a borehole geophones distribution for monitoring CO2-injection-induced seismicity. The tool consists of a number of steps, including building a geophysical model for a given CO2 injection site, defining target monitoring regions within CO2-injection/migration zones, generating synthetic seismic data, giving acceptable uncertainties in input data, and determining the optimal distribution of borehole geophones. We use a synthetic geophysical model as an example to demonstrate the capability our new tool to design an optimal/cost-effective passive seismic monitoring network using borehole geophones. The model is built based on the geologic features found at the Kimberlina CCUS pilot site located in southern San Joaquin Valley, California. This tool can provide CCUS operators with a guideline for cost-effective microseismic monitoring of geologic carbon storage and utilization.

  3. Probabilistic framework for product design optimization and risk management

    NASA Astrophysics Data System (ADS)

    Keski-Rahkonen, J. K.

    2018-05-01

    Probabilistic methods have gradually gained ground within engineering practices but currently it is still the industry standard to use deterministic safety margin approaches to dimensioning components and qualitative methods to manage product risks. These methods are suitable for baseline design work but quantitative risk management and product reliability optimization require more advanced predictive approaches. Ample research has been published on how to predict failure probabilities for mechanical components and furthermore to optimize reliability through life cycle cost analysis. This paper reviews the literature for existing methods and tries to harness their best features and simplify the process to be applicable in practical engineering work. Recommended process applies Monte Carlo method on top of load-resistance models to estimate failure probabilities. Furthermore, it adds on existing literature by introducing a practical framework to use probabilistic models in quantitative risk management and product life cycle costs optimization. The main focus is on mechanical failure modes due to the well-developed methods used to predict these types of failures. However, the same framework can be applied on any type of failure mode as long as predictive models can be developed.

  4. Aeroelastic Optimization Study Based on the X-56A Model

    NASA Technical Reports Server (NTRS)

    Li, Wesley W.; Pak, Chan-Gi

    2014-01-01

    One way to increase the aircraft fuel efficiency is to reduce structural weight while maintaining adequate structural airworthiness, both statically and aeroelastically. A design process which incorporates the object-oriented multidisciplinary design, analysis, and optimization (MDAO) tool and the aeroelastic effects of high fidelity finite element models to characterize the design space was successfully developed and established. This paper presents two multidisciplinary design optimization studies using an object-oriented MDAO tool developed at NASA Armstrong Flight Research Center. The first study demonstrates the use of aeroelastic tailoring concepts to minimize the structural weight while meeting the design requirements including strength, buckling, and flutter. Such an approach exploits the anisotropic capabilities of the fiber composite materials chosen for this analytical exercise with ply stacking sequence. A hybrid and discretization optimization approach improves accuracy and computational efficiency of a global optimization algorithm. The second study presents a flutter mass balancing optimization study for the fabricated flexible wing of the X-56A model since a desired flutter speed band is required for the active flutter suppression demonstration during flight testing. The results of the second study provide guidance to modify the wing design and move the design flutter speeds back into the flight envelope so that the original objective of X-56A flight test can be accomplished successfully. The second case also demonstrates that the object-oriented MDAO tool can handle multiple analytical configurations in a single optimization run.

  5. Evaluating and minimizing noise impact due to aircraft flyover

    NASA Technical Reports Server (NTRS)

    Jacobson, I. D.; Cook, G.

    1979-01-01

    Existing techniques were used to assess the noise impact on a community due to aircraft operation and to optimize the flight paths of an approaching aircraft with respect to the annoyance produced. Major achievements are: (1) the development of a population model suitable for determining the noise impact, (2) generation of a numerical computer code which uses this population model along with the steepest descent algorithm to optimize approach/landing trajectories, (3) implementation of this optimization code in several fictitious cases as well as for the community surrounding Patrick Henry International Airport, Virginia.

  6. Optimized ex-ovo culturing of chick embryos to advanced stages of development.

    PubMed

    Cloney, Kellie; Franz-Odendaal, Tamara Anne

    2015-01-24

    Research in anatomy, embryology, and developmental biology has largely relied on the use of model organisms. In order to study development in live embryos model organisms, such as the chicken, are often used. The chicken is an excellent model organism due to its low cost and minimal maintenance, however they present observational challenges because they are enclosed in an opaque eggshell. In order to properly view the embryo as it develops, the shell must be windowed or removed. Both windowing and ex ovo techniques have been developed to assist researchers in the study of embryonic development. However, each of the methods has limitations and challenges. Here, we present a simple, optimized ex ovo culture technique for chicken embryos that enables the observation of embryonic development from stage HH 19 into late stages of development (HH 40), when many organs have developed. This technique is easy to adopt in both undergraduate classes and more advanced research laboratories where embryo manipulations are conducted.

  7. Optimizing water resources management in large river basins with integrated surface water-groundwater modeling: A surrogate-based approach

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Zheng, Yi; Wu, Xin; Tian, Yong; Han, Feng; Liu, Jie; Zheng, Chunmiao

    2015-04-01

    Integrated surface water-groundwater modeling can provide a comprehensive and coherent understanding on basin-scale water cycle, but its high computational cost has impeded its application in real-world management. This study developed a new surrogate-based approach, SOIM (Surrogate-based Optimization for Integrated surface water-groundwater Modeling), to incorporate the integrated modeling into water management optimization. Its applicability and advantages were evaluated and validated through an optimization research on the conjunctive use of surface water (SW) and groundwater (GW) for irrigation in a semiarid region in northwest China. GSFLOW, an integrated SW-GW model developed by USGS, was employed. The study results show that, due to the strong and complicated SW-GW interactions, basin-scale water saving could be achieved by spatially optimizing the ratios of groundwater use in different irrigation districts. The water-saving potential essentially stems from the reduction of nonbeneficial evapotranspiration from the aqueduct system and shallow groundwater, and its magnitude largely depends on both water management schemes and hydrological conditions. Important implications for water resources management in general include: first, environmental flow regulation needs to take into account interannual variation of hydrological conditions, as well as spatial complexity of SW-GW interactions; and second, to resolve water use conflicts between upper stream and lower stream, a system approach is highly desired to reflect ecological, economic, and social concerns in water management decisions. Overall, this study highlights that surrogate-based approaches like SOIM represent a promising solution to filling the gap between complex environmental modeling and real-world management decision-making.

  8. Modeling Reservoir-River Networks in Support of Optimizing Seasonal-Scale Reservoir Operations

    NASA Astrophysics Data System (ADS)

    Villa, D. L.; Lowry, T. S.; Bier, A.; Barco, J.; Sun, A.

    2011-12-01

    HydroSCOPE (Hydropower Seasonal Concurrent Optimization of Power and the Environment) is a seasonal time-scale tool for scenario analysis and optimization of reservoir-river networks. Developed in MATLAB, HydroSCOPE is an object-oriented model that simulates basin-scale dynamics with an objective of optimizing reservoir operations to maximize revenue from power generation, reliability in the water supply, environmental performance, and flood control. HydroSCOPE is part of a larger toolset that is being developed through a Department of Energy multi-laboratory project. This project's goal is to provide conventional hydropower decision makers with better information to execute their day-ahead and seasonal operations and planning activities by integrating water balance and operational dynamics across a wide range of spatial and temporal scales. This presentation details the modeling approach and functionality of HydroSCOPE. HydroSCOPE consists of a river-reservoir network model and an optimization routine. The river-reservoir network model simulates the heat and water balance of river-reservoir networks for time-scales up to one year. The optimization routine software, DAKOTA (Design Analysis Kit for Optimization and Terascale Applications - dakota.sandia.gov), is seamlessly linked to the network model and is used to optimize daily volumetric releases from the reservoirs to best meet a set of user-defined constraints, such as maximizing revenue while minimizing environmental violations. The network model uses 1-D approximations for both the reservoirs and river reaches and is able to account for surface and sediment heat exchange as well as ice dynamics for both models. The reservoir model also accounts for inflow, density, and withdrawal zone mixing, and diffusive heat exchange. Routing for the river reaches is accomplished using a modified Muskingum-Cunge approach that automatically calculates the internal timestep and sub-reach lengths to match the conditions of each timestep and minimize computational overhead. Power generation for each reservoir is estimated using a 2-dimensional regression that accounts for both the available head and turbine efficiency. The object-oriented architecture makes run configuration easy to update. The dynamic model inputs include inflow and meteorological forecasts while static inputs include bathymetry data, reservoir and power generation characteristics, and topological descriptors. Ensemble forecasts of hydrological and meteorological conditions are supplied in real-time by Pacific Northwest National Laboratory and are used as a proxy for uncertainty, which is carried through the simulation and optimization process to produce output that describes the probability that different operational scenario's will be optimal. The full toolset, which includes HydroSCOPE, is currently being tested on the Feather River system in Northern California and the Upper Colorado Storage Project.

  9. A multi-objective programming model for assessment the GHG emissions in MSW management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mavrotas, George, E-mail: mavrotas@chemeng.ntua.gr; Skoulaxinou, Sotiria; Gakis, Nikos

    2013-09-15

    Highlights: • The multi-objective multi-period optimization model. • The solution approach for the generation of the Pareto front with mathematical programming. • The very detailed description of the model (decision variables, parameters, equations). • The use of IPCC 2006 guidelines for landfill emissions (first order decay model) in the mathematical programming formulation. - Abstract: In this study a multi-objective mathematical programming model is developed for taking into account GHG emissions for Municipal Solid Waste (MSW) management. Mathematical programming models are often used for structure, design and operational optimization of various systems (energy, supply chain, processes, etc.). The last twenty yearsmore » they are used all the more often in Municipal Solid Waste (MSW) management in order to provide optimal solutions with the cost objective being the usual driver of the optimization. In our work we consider the GHG emissions as an additional criterion, aiming at a multi-objective approach. The Pareto front (Cost vs. GHG emissions) of the system is generated using an appropriate multi-objective method. This information is essential to the decision maker because he can explore the trade-offs in the Pareto curve and select his most preferred among the Pareto optimal solutions. In the present work a detailed multi-objective, multi-period mathematical programming model is developed in order to describe the waste management problem. Apart from the bi-objective approach, the major innovations of the model are (1) the detailed modeling considering 34 materials and 42 technologies, (2) the detailed calculation of the energy content of the various streams based on the detailed material balances, and (3) the incorporation of the IPCC guidelines for the CH{sub 4} generated in the landfills (first order decay model). The equations of the model are described in full detail. Finally, the whole approach is illustrated with a case study referring to the application of the model in a Greek region.« less

  10. New human-centered linear and nonlinear motion cueing algorithms for control of simulator motion systems

    NASA Astrophysics Data System (ADS)

    Telban, Robert J.

    While the performance of flight simulator motion system hardware has advanced substantially, the development of the motion cueing algorithm, the software that transforms simulated aircraft dynamics into realizable motion commands, has not kept pace. To address this, new human-centered motion cueing algorithms were developed. A revised "optimal algorithm" uses time-invariant filters developed by optimal control, incorporating human vestibular system models. The "nonlinear algorithm" is a novel approach that is also formulated by optimal control, but can also be updated in real time. It incorporates a new integrated visual-vestibular perception model that includes both visual and vestibular sensation and the interaction between the stimuli. A time-varying control law requires the matrix Riccati equation to be solved in real time by a neurocomputing approach. Preliminary pilot testing resulted in the optimal algorithm incorporating a new otolith model, producing improved motion cues. The nonlinear algorithm vertical mode produced a motion cue with a time-varying washout, sustaining small cues for longer durations and washing out large cues more quickly compared to the optimal algorithm. The inclusion of the integrated perception model improved the responses to longitudinal and lateral cues. False cues observed with the NASA adaptive algorithm were absent. As a result of unsatisfactory sensation, an augmented turbulence cue was added to the vertical mode for both the optimal and nonlinear algorithms. The relative effectiveness of the algorithms, in simulating aircraft maneuvers, was assessed with an eleven-subject piloted performance test conducted on the NASA Langley Visual Motion Simulator (VMS). Two methods, the quasi-objective NASA Task Load Index (TLX), and power spectral density analysis of pilot control, were used to assess pilot workload. TLX analysis reveals, in most cases, less workload and variation among pilots with the nonlinear algorithm. Control input analysis shows pilot-induced oscillations on a straight-in approach are less prevalent compared to the optimal algorithm. The augmented turbulence cues increased workload on an offset approach that the pilots deemed more realistic compared to the NASA adaptive algorithm. The takeoff with engine failure showed the least roll activity for the nonlinear algorithm, with the least rudder pedal activity for the optimal algorithm.

  11. Solar Sail Spaceflight Simulation

    NASA Technical Reports Server (NTRS)

    Lisano, Michael; Evans, James; Ellis, Jordan; Schimmels, John; Roberts, Timothy; Rios-Reyes, Leonel; Scheeres, Daniel; Bladt, Jeff; Lawrence, Dale; Piggott, Scott

    2007-01-01

    The Solar Sail Spaceflight Simulation Software (S5) toolkit provides solar-sail designers with an integrated environment for designing optimal solar-sail trajectories, and then studying the attitude dynamics/control, navigation, and trajectory control/correction of sails during realistic mission simulations. Unique features include a high-fidelity solar radiation pressure model suitable for arbitrarily-shaped solar sails, a solar-sail trajectory optimizer, capability to develop solar-sail navigation filter simulations, solar-sail attitude control models, and solar-sail high-fidelity force models.

  12. Process modeling for carbon-phenolic nozzle materials

    NASA Technical Reports Server (NTRS)

    Letson, Mischell A.; Bunker, Robert C.; Remus, Walter M., III; Clinton, R. G.

    1989-01-01

    A thermochemical model based on the SINDA heat transfer program is developed for carbon-phenolic nozzle material processes. The model can be used to optimize cure cycles and to predict material properties based on the types of materials and the process by which these materials are used to make nozzle components. Chemical kinetic constants for Fiberite MX4926 were determined so that optimization of cure cycles for the current Space Shuttle Solid Rocket Motor nozzle rings can be determined.

  13. DoD Lead System Integrator (LSI) Transformation - Creating a Model Based Acquisition Framework (MBAF)

    DTIC Science & Technology

    2014-04-30

    cost to acquire systems as design maturity could be verified incrementally as the system was developed vice waiting for specific large “ big bang ...Framework (MBAF) be applied to simulate or optimize process variations on programs? LSI Roles and Responsibilities A review of the roles and...the model/process optimization process. It is the current intent that NAVAIR will use the model to run simulations on process changes in an attempt to

  14. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spentzouris, P.; /Fermilab; Cary, J.

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessarymore » accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization for software development and applications accounts for the natural domain areas (beam dynamics, electromagnetics, and advanced acceleration), and all areas depend on the enabling technologies activities, such as solvers and component technology, to deliver the desired performance and integrated simulation environment. The ComPASS applications focus on computationally challenging problems important for design or performance optimization to all major HEP, NP, and BES accelerator facilities. With the cost and complexity of particle accelerators rising, the use of computation to optimize their designs and find improved operating regimes becomes essential, potentially leading to significant cost savings with modest investment.« less

  15. Shape Optimization for Additive Manufacturing of Removable Partial Dentures - A New Paradigm for Prosthetic CAD/CAM

    PubMed Central

    2015-01-01

    With ever-growing aging population and demand for denture treatments, pressure-induced mucosa lesion and residual ridge resorption remain main sources of clinical complications. Conventional denture design and fabrication are challenged for its labor and experience intensity, urgently necessitating an automatic procedure. This study aims to develop a fully automatic procedure enabling shape optimization and additive manufacturing of removable partial dentures (RPD), to maximize the uniformity of contact pressure distribution on the mucosa, thereby reducing associated clinical complications. A 3D heterogeneous finite element (FE) model was constructed from CT scan, and the critical tissue of mucosa was modeled as a hyperelastic material from in vivo clinical data. A contact shape optimization algorithm was developed based on the bi-directional evolutionary structural optimization (BESO) technique. Both initial and optimized dentures were prototyped by 3D printing technology and evaluated with in vitro tests. Through the optimization, the peak contact pressure was reduced by 70%, and the uniformity was improved by 63%. In vitro tests verified the effectiveness of this procedure, and the hydrostatic pressure induced in the mucosa is well below clinical pressure-pain thresholds (PPT), potentially lessening risk of residual ridge resorption. This proposed computational optimization and additive fabrication procedure provides a novel method for fast denture design and adjustment at low cost, with quantitative guidelines and computer aided design and manufacturing (CAD/CAM) for a specific patient. The integration of digitalized modeling, computational optimization, and free-form fabrication enables more efficient clinical adaptation. The customized optimal denture design is expected to minimize pain/discomfort and potentially reduce long-term residual ridge resorption. PMID:26161878

  16. Rapid freeze-drying cycle optimization using computer programs developed based on heat and mass transfer models and facilitated by tunable diode laser absorption spectroscopy (TDLAS).

    PubMed

    Kuu, Wei Y; Nail, Steven L

    2009-09-01

    Computer programs in FORTRAN were developed to rapidly determine the optimal shelf temperature, T(f), and chamber pressure, P(c), to achieve the shortest primary drying time. The constraint for the optimization is to ensure that the product temperature profile, T(b), is below the target temperature, T(target). Five percent mannitol was chosen as the model formulation. After obtaining the optimal sets of T(f) and P(c), each cycle was assigned with a cycle rank number in terms of the length of drying time. Further optimization was achieved by dividing the drying time into a series of ramping steps for T(f), in a cascading manner (termed the cascading T(f) cycle), to further shorten the cycle time. For the purpose of demonstrating the validity of the optimized T(f) and P(c), four cycles with different predicted lengths of drying time, along with the cascading T(f) cycle, were chosen for experimental cycle runs. Tunable diode laser absorption spectroscopy (TDLAS) was used to continuously measure the sublimation rate. As predicted, maximum product temperatures were controlled slightly below the target temperature of -25 degrees C, and the cascading T(f)-ramping cycle is the most efficient cycle design. In addition, the experimental cycle rank order closely matches with that determined by modeling.

  17. Hydrologic Process-oriented Optimization of Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Hinnell, A.; Bechtold, M.; Ferre, T. A.; van der Kruk, J.

    2010-12-01

    Electrical resistivity tomography (ERT) is commonly used in hydrologic investigations. Advances in joint and coupled hydrogeophysical inversion have enhanced the quantitative use of ERT to construct and condition hydrologic models (i.e. identify hydrologic structure and estimate hydrologic parameters). However the selection of which electrical resistivity data to collect and use is often determined by a combination of data requirements for geophysical analysis, intuition on the part of the hydrogeophysicist and logistical constraints of the laboratory or field site. One of the advantages of coupled hydrogeophysical inversion is the direct link between the hydrologic model and the individual geophysical data used to condition the model. That is, there is no requirement to collect geophysical data suitable for independent geophysical inversion. The geophysical measurements collected can be optimized for estimation of hydrologic model parameters rather than to develop a geophysical model. Using a synthetic model of drip irrigation we evaluate the value of individual resistivity measurements to describe the soil hydraulic properties and then use this information to build a data set optimized for characterizing hydrologic processes. We then compare the information content in the optimized data set with the information content in a data set optimized using a Jacobian sensitivity analysis.

  18. Battery Energy Storage State-of-Charge Forecasting: Models, Optimization, and Accuracy

    DOE PAGES

    Rosewater, David; Ferreira, Summer; Schoenwald, David; ...

    2018-01-25

    Battery energy storage systems (BESS) are a critical technology for integrating high penetration renewable power on an intelligent electrical grid. As limited energy restricts the steady-state operational state-of-charge (SoC) of storage systems, SoC forecasting models are used to determine feasible charge and discharge schedules that supply grid services. Smart grid controllers use SoC forecasts to optimize BESS schedules to make grid operation more efficient and resilient. This study presents three advances in BESS state-of-charge forecasting. First, two forecasting models are reformulated to be conducive to parameter optimization. Second, a new method for selecting optimal parameter values based on operational datamore » is presented. Last, a new framework for quantifying model accuracy is developed that enables a comparison between models, systems, and parameter selection methods. The accuracies achieved by both models, on two example battery systems, with each method of parameter selection are then compared in detail. The results of this analysis suggest variation in the suitability of these models for different battery types and applications. Finally, the proposed model formulations, optimization methods, and accuracy assessment framework can be used to improve the accuracy of SoC forecasts enabling better control over BESS charge/discharge schedules.« less

  19. Battery Energy Storage State-of-Charge Forecasting: Models, Optimization, and Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosewater, David; Ferreira, Summer; Schoenwald, David

    Battery energy storage systems (BESS) are a critical technology for integrating high penetration renewable power on an intelligent electrical grid. As limited energy restricts the steady-state operational state-of-charge (SoC) of storage systems, SoC forecasting models are used to determine feasible charge and discharge schedules that supply grid services. Smart grid controllers use SoC forecasts to optimize BESS schedules to make grid operation more efficient and resilient. This study presents three advances in BESS state-of-charge forecasting. First, two forecasting models are reformulated to be conducive to parameter optimization. Second, a new method for selecting optimal parameter values based on operational datamore » is presented. Last, a new framework for quantifying model accuracy is developed that enables a comparison between models, systems, and parameter selection methods. The accuracies achieved by both models, on two example battery systems, with each method of parameter selection are then compared in detail. The results of this analysis suggest variation in the suitability of these models for different battery types and applications. Finally, the proposed model formulations, optimization methods, and accuracy assessment framework can be used to improve the accuracy of SoC forecasts enabling better control over BESS charge/discharge schedules.« less

  20. Shale gas wastewater management under uncertainty.

    PubMed

    Zhang, Xiaodong; Sun, Alexander Y; Duncan, Ian J

    2016-01-01

    This work presents an optimization framework for evaluating different wastewater treatment/disposal options for water management during hydraulic fracturing (HF) operations. This framework takes into account both cost-effectiveness and system uncertainty. HF has enabled rapid development of shale gas resources. However, wastewater management has been one of the most contentious and widely publicized issues in shale gas production. The flowback and produced water (known as FP water) generated by HF may pose a serious risk to the surrounding environment and public health because this wastewater usually contains many toxic chemicals and high levels of total dissolved solids (TDS). Various treatment/disposal options are available for FP water management, such as underground injection, hazardous wastewater treatment plants, and/or reuse. In order to cost-effectively plan FP water management practices, including allocating FP water to different options and planning treatment facility capacity expansion, an optimization model named UO-FPW is developed in this study. The UO-FPW model can handle the uncertain information expressed in the form of fuzzy membership functions and probability density functions in the modeling parameters. The UO-FPW model is applied to a representative hypothetical case study to demonstrate its applicability in practice. The modeling results reflect the tradeoffs between economic objective (i.e., minimizing total-system cost) and system reliability (i.e., risk of violating fuzzy and/or random constraints, and meeting FP water treatment/disposal requirements). Using the developed optimization model, decision makers can make and adjust appropriate FP water management strategies through refining the values of feasibility degrees for fuzzy constraints and the probability levels for random constraints if the solutions are not satisfactory. The optimization model can be easily integrated into decision support systems for shale oil/gas lifecycle management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Comparison of DNQ/novolac resists for e-beam exposure

    NASA Astrophysics Data System (ADS)

    Fedynyshyn, Theodore H.; Doran, Scott P.; Lind, Michele L.; Lyszczarz, Theodore M.; DiNatale, William F.; Lennon, Donna; Sauer, Charles A.; Meute, Jeff

    1999-12-01

    We have surveyed the commercial resist market with the dual purpose of identifying diazoquinone/novolac based resists that have potential for use as e-beam mask making resists and baselining these resists for comparison against future mask making resist candidates. For completeness, this survey would require that each resist be compared with an optimized developer and development process. To accomplish this task in an acceptable time period, e-beam lithography modeling was employed to quickly identify the resist and developer combinations that lead to superior resist performance. We describe the verification of a method to quickly screen commercial i-line resists with different developers, by determining modeling parameters for i-line resists from e-beam exposures, modeling the resist performance, and comparing predicted performance versus actual performance. We determined the lithographic performance of several DNQ/novolac resists whose modeled performance suggests that sensitivities of less than 40 (mu) C/cm2 coupled with less than 10-nm CD change per percent change in dose are possible for target 600-nm features. This was accomplished by performing a series of statistically designed experiments on the leading resists candidates to optimize processing variables, followed by comparing experimentally determined resist sensitivities, latitudes, and profiles of the DNQ/novolac resists a their optimized process.

  2. Rapid Method Development in Hydrophilic Interaction Liquid Chromatography for Pharmaceutical Analysis Using a Combination of Quantitative Structure-Retention Relationships and Design of Experiments.

    PubMed

    Taraji, Maryam; Haddad, Paul R; Amos, Ruth I J; Talebi, Mohammad; Szucs, Roman; Dolan, John W; Pohl, Chris A

    2017-02-07

    A design-of-experiment (DoE) model was developed, able to describe the retention times of a mixture of pharmaceutical compounds in hydrophilic interaction liquid chromatography (HILIC) under all possible combinations of acetonitrile content, salt concentration, and mobile-phase pH with R 2 > 0.95. Further, a quantitative structure-retention relationship (QSRR) model was developed to predict retention times for new analytes, based only on their chemical structures, with a root-mean-square error of prediction (RMSEP) as low as 0.81%. A compound classification based on the concept of similarity was applied prior to QSRR modeling. Finally, we utilized a combined QSRR-DoE approach to propose an optimal design space in a quality-by-design (QbD) workflow to facilitate the HILIC method development. The mathematical QSRR-DoE model was shown to be highly predictive when applied to an independent test set of unseen compounds in unseen conditions with a RMSEP value of 5.83%. The QSRR-DoE computed retention time of pharmaceutical test analytes and subsequently calculated separation selectivity was used to optimize the chromatographic conditions for efficient separation of targets. A Monte Carlo simulation was performed to evaluate the risk of uncertainty in the model's prediction, and to define the design space where the desired quality criterion was met. Experimental realization of peak selectivity between targets under the selected optimal working conditions confirmed the theoretical predictions. These results demonstrate how discovery of optimal conditions for the separation of new analytes can be accelerated by the use of appropriate theoretical tools.

  3. Developing a Fundamental Model for an Integrated GPS/INS State Estimation System with Kalman Filtering

    NASA Technical Reports Server (NTRS)

    Canfield, Stephen

    1999-01-01

    This work will demonstrate the integration of sensor and system dynamic data and their appropriate models using an optimal filter to create a robust, adaptable, easily reconfigurable state (motion) estimation system. This state estimation system will clearly show the application of fundamental modeling and filtering techniques. These techniques are presented at a general, first principles level, that can easily be adapted to specific applications. An example of such an application is demonstrated through the development of an integrated GPS/INS navigation system. This system acquires both global position data and inertial body data, to provide optimal estimates of current position and attitude states. The optimal states are estimated using a Kalman filter. The state estimation system will include appropriate error models for the measurement hardware. The results of this work will lead to the development of a "black-box" state estimation system that supplies current motion information (position and attitude states) that can be used to carry out guidance and control strategies. This black-box state estimation system is developed independent of the vehicle dynamics and therefore is directly applicable to a variety of vehicles. Issues in system modeling and application of Kalman filtering techniques are investigated and presented. These issues include linearized models of equations of state, models of the measurement sensors, and appropriate application and parameter setting (tuning) of the Kalman filter. The general model and subsequent algorithm is developed in Matlab for numerical testing. The results of this system are demonstrated through application to data from the X-33 Michael's 9A8 mission and are presented in plots and simple animations.

  4. Integrated approaches to the application of advanced modeling technology in process development and optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allgor, R.J.; Feehery, W.F.; Tolsma, J.E.

    The batch process development problem serves as good candidate to guide the development of process modeling environments. It demonstrates that very robust numerical techniques are required within an environment that can collect, organize, and maintain the data and models required to address the batch process development problem. This paper focuses on improving the robustness and efficiency of the numerical algorithms required in such a modeling environment through the development of hybrid numerical and symbolic strategies.

  5. An Alternative Approach to the Operation of Multinational Reservoir Systems: Application to the Amistad & Falcon System (Lower Rio Grande/Rí-o Bravo)

    NASA Astrophysics Data System (ADS)

    Serrat-Capdevila, A.; Valdes, J. B.

    2005-12-01

    An optimization approach for the operation of international multi-reservoir systems is presented. The approach uses Stochastic Dynamic Programming (SDP) algorithms, both steady-state and real-time, to develop two models. In the first model, the reservoirs and flows of the system are aggregated to yield an equivalent reservoir, and the obtained operating policies are disaggregated using a non-linear optimization procedure for each reservoir and for each nation water balance. In the second model a multi-reservoir approach is applied, disaggregating the releases for each country water share in each reservoir. The non-linear disaggregation algorithm uses SDP-derived operating policies as boundary conditions for a local time-step optimization. Finally, the performance of the different approaches and methods is compared. These models are applied to the Amistad-Falcon International Reservoir System as part of a binational dynamic modeling effort to develop a decision support system tool for a better management of the water resources in the Lower Rio Grande Basin, currently enduring a severe drought.

  6. Using natural selection and optimization for smarter vegetation models - challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Franklin, Oskar; Han, Wang; Dieckmann, Ulf; Cramer, Wolfgang; Brännström, Åke; Pietsch, Stephan; Rovenskaya, Elena; Prentice, Iain Colin

    2017-04-01

    Dynamic global vegetation models (DGVMs) are now indispensable for understanding the biosphere and for estimating the capacity of ecosystems to provide services. The models are continuously developed to include an increasing number of processes and to utilize the growing amounts of observed data becoming available. However, while the versatility of the models is increasing as new processes and variables are added, their accuracy suffers from the accumulation of uncertainty, especially in the absence of overarching principles controlling their concerted behaviour. We have initiated a collaborative working group to address this problem based on a 'missing law' - adaptation and optimization principles rooted in natural selection. Even though this 'missing law' constrains relationships between traits, and therefore can vastly reduce the number of uncertain parameters in ecosystem models, it has rarely been applied to DGVMs. Our recent research have shown that optimization- and trait-based models of gross primary production can be both much simpler and more accurate than current models based on fixed functional types, and that observed plant carbon allocations and distributions of plant functional traits are predictable with eco-evolutionary models. While there are also many other examples of the usefulness of these and other theoretical principles, it is not always straight-forward to make them operational in predictive models. In particular on longer time scales, the representation of functional diversity and the dynamical interactions among individuals and species presents a formidable challenge. Here we will present recent ideas on the use of adaptation and optimization principles in vegetation models, including examples of promising developments, but also limitations of the principles and some key challenges.

  7. Study of Research and Development Processes through Fuzzy Super FRM Model and Optimization Solutions

    PubMed Central

    Sârbu, Flavius Aurelian; Moga, Monika; Calefariu, Gavrilă; Boșcoianu, Mircea

    2015-01-01

    The aim of this study is to measure resources for R&D (research and development) at the regional level in Romania and also obtain primary data that will be important in making the right decisions to increase competitiveness and development based on an economic knowledge. As our motivation, we would like to emphasize that by the use of Super Fuzzy FRM model we want to determine the state of R&D processes at regional level using a mean different from the statistical survey, while by the two optimization methods we mean to provide optimization solutions for the R&D actions of the enterprises. Therefore to fulfill the above mentioned aim in this application-oriented paper we decided to use a questionnaire and for the interpretation of the results the Super Fuzzy FRM model, representing the main novelty of our paper, as this theory provides a formalism based on matrix calculus, which allows processing of large volumes of information and also delivers results difficult or impossible to see, through statistical processing. Furthermore another novelty of the paper represents the optimization solutions submitted in this work, given for the situation when the sales price is variable, and the quantity sold is constant in time and for the reverse situation. PMID:25821846

  8. Life cycle cost optimization of biofuel supply chains under uncertainties based on interval linear programming.

    PubMed

    Ren, Jingzheng; Dong, Liang; Sun, Lu; Goodsite, Michael Evan; Tan, Shiyu; Dong, Lichun

    2015-01-01

    The aim of this work was to develop a model for optimizing the life cycle cost of biofuel supply chain under uncertainties. Multiple agriculture zones, multiple transportation modes for the transport of grain and biofuel, multiple biofuel plants, and multiple market centers were considered in this model, and the price of the resources, the yield of grain and the market demands were regarded as interval numbers instead of constants. An interval linear programming was developed, and a method for solving interval linear programming was presented. An illustrative case was studied by the proposed model, and the results showed that the proposed model is feasible for designing biofuel supply chain under uncertainties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Trajectory optimization for the National Aerospace Plane

    NASA Technical Reports Server (NTRS)

    Lu, Ping

    1992-01-01

    The primary objective of this research is to develop an efficient and robust trajectory optimization tool for the optimal ascent problem of the National Aerospace Plane (NASP). This report is organized in the following order to summarize the complete work: Section two states the formulation and models of the trajectory optimization problem. An inverse dynamics approach to the problem is introduced in Section three. Optimal trajectories corresponding to various conditions and performance parameters are presented in Section four. A midcourse nonlinear feedback controller is developed in Section five. Section six demonstrates the performance of the inverse dynamics approach and midcourse controller during disturbances. Section seven discusses rocket assisted ascent which may be beneficial when orbital altitude is high. Finally, Section eight recommends areas of future research.

  10. WE-H-BRA-03: Development of a Model to Include the Evolution of Resistant Tumor Subpopulations Into the Treatment Optimization Process for Schedules Involving Targeted Agents in Chemoradiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grassberger, C; Paganetti, H

    Purpose: To develop a model that includes the process of resistance development into the treatment optimization process for schedules that include targeted therapies. Further, to validate the approach using clinical data and to apply the model to assess the optimal induction period with targeted agents before curative treatment with chemo-radiation in stage III lung cancer. Methods: Growth of the tumor and its subpopulations is modeled by Gompertzian growth dynamics, resistance induction as a stochastic process. Chemotherapy induced cell kill is modeled by log-cell kill dynamics, targeted agents similarly but restricted to the sensitive population. Radiation induced cell kill is assumedmore » to follow the linear-quadratic model. The validation patient data consist of a cohort of lung cancer patients treated with tyrosine kinase inhibitors that had longitudinal imaging data available. Results: The resistance induction model was successfully validated using clinical trial data from 49 patients treated with targeted agents. The observed recurrence kinetics, with tumors progressing from 1.4–63 months, result in tumor growth equaling a median volume doubling time of 92 days [34–248] and a median fraction of pre-existing resistance of 0.035 [0–0.22], in agreement with previous clinical studies. The model revealed widely varying optimal time points for the use of curative therapy, reaching from ∼1m to >6m depending on the patient’s growth rate and amount of pre-existing resistance. This demonstrates the importance of patient-specific treatment schedules when targeted agents are incorporated into the treatment. Conclusion: We developed a model including evolutionary dynamics of resistant sub-populations with traditional chemotherapy and radiation cell kill models. Fitting to clinical data yielded patient specific growth rates and resistant fraction in agreement with previous studies. Further application of the model demonstrated how proper timing of chemo-radiation could minimize the probability of resistance, increasing tumor control significantly.« less

  11. Optimizing the recovery efficiency of Finnish oil combating vessels in the Gulf of Finland using Bayesian Networks.

    PubMed

    Lehikoinen, Annukka; Luoma, Emilia; Mäntyniemi, Samu; Kuikka, Sakari

    2013-02-19

    Oil transport has greatly increased in the Gulf of Finland over the years, and risks of an oil accident occurring have risen. Thus, an effective oil combating strategy is needed. We developed a Bayesian Network (BN) to examine the recovery efficiency and optimal disposition of the Finnish oil combating vessels in the Gulf of Finland (GoF), Eastern Baltic Sea. Four alternative home harbors, five accident points, and ten oil combating vessels were included in the model to find the optimal disposition policy that would maximize the recovery efficiency. With this composition, the placement of the oil combating vessels seems not to have a significant effect on the recovery efficiency. The process seems to be strongly controlled by certain random factors independent of human action, e.g. wave height and stranding time of the oil. Therefore, the success of oil combating is rather uncertain, so it is also important to develop activities that aim for preventing accidents. We found that the model developed is suitable for this type of multidecision optimization. The methodology, results, and practices are further discussed.

  12. Flight control optimization from design to assessment application on the Cessna Citation X business aircraft =

    NASA Astrophysics Data System (ADS)

    Boughari, Yamina

    New methodologies have been developed to optimize the integration, testing and certification of flight control systems, an expensive process in the aerospace industry. This thesis investigates the stability of the Cessna Citation X aircraft without control, and then optimizes two different flight controllers from design to validation. The aircraft's model was obtained from the data provided by the Research Aircraft Flight Simulator (RAFS) of the Cessna Citation business aircraft. To increase the stability and control of aircraft systems, optimizations of two different flight control designs were performed: 1) the Linear Quadratic Regulation and the Proportional Integral controllers were optimized using the Differential Evolution algorithm and the level 1 handling qualities as the objective function. The results were validated for the linear and nonlinear aircraft models, and some of the clearance criteria were investigated; and 2) the Hinfinity control method was applied on the stability and control augmentation systems. To minimize the time required for flight control design and its validation, an optimization of the controllers design was performed using the Differential Evolution (DE), and the Genetic algorithms (GA). The DE algorithm proved to be more efficient than the GA. New tools for visualization of the linear validation process were also developed to reduce the time required for the flight controller assessment. Matlab software was used to validate the different optimization algorithms' results. Research platforms of the aircraft's linear and nonlinear models were developed, and compared with the results of flight tests performed on the Research Aircraft Flight Simulator. Some of the clearance criteria of the optimized H-infinity flight controller were evaluated, including its linear stability, eigenvalues, and handling qualities criteria. Nonlinear simulations of the maneuvers criteria were also investigated during this research to assess the Cessna Citation X's flight controller clearance, and therefore, for its anticipated certification.

  13. The Retrofit Puzzle Extended: Optimal Fleet Owner Behavior over Multiple Time Periods

    DOT National Transportation Integrated Search

    2009-08-04

    In "The Retrofit Puzzle: Optimal Fleet Owner Behavior in the Context of Diesel Retrofit Incentive Programs" (1) an integer program was developed to model profit-maximizing diesel fleet owner behavior when selecting pollution reduction retrofits. Flee...

  14. Drug-drug interaction predictions with PBPK models and optimal multiresponse sampling time designs: application to midazolam and a phase I compound. Part 1: comparison of uniresponse and multiresponse designs using PopDes.

    PubMed

    Chenel, Marylore; Bouzom, François; Aarons, Leon; Ogungbenro, Kayode

    2008-12-01

    To determine the optimal sampling time design of a drug-drug interaction (DDI) study for the estimation of apparent clearances (CL/F) of two co-administered drugs (SX, a phase I compound, potentially a CYP3A4 inhibitor, and MDZ, a reference CYP3A4 substrate) without any in vivo data using physiologically based pharmacokinetic (PBPK) predictions, population PK modelling and multiresponse optimal design. PBPK models were developed with AcslXtreme using only in vitro data to simulate PK profiles of both drugs when they were co-administered. Then, using simulated data, population PK models were developed with NONMEM and optimal sampling times were determined by optimizing the determinant of the population Fisher information matrix with PopDes using either two uniresponse designs (UD) or a multiresponse design (MD) with joint sampling times for both drugs. Finally, the D-optimal sampling time designs were evaluated by simulation and re-estimation with NONMEM by computing the relative root mean squared error (RMSE) and empirical relative standard errors (RSE) of CL/F. There were four and five optimal sampling times (=nine different sampling times) in the UDs for SX and MDZ, respectively, whereas there were only five sampling times in the MD. Whatever design and compound, CL/F was well estimated (RSE < 20% for MDZ and <25% for SX) and expected RSEs from PopDes were in the same range as empirical RSEs. Moreover, there was no bias in CL/F estimation. Since MD required only five sampling times compared to the two UDs, D-optimal sampling times of the MD were included into a full empirical design for the proposed clinical trial. A joint paper compares the designs with real data. This global approach including PBPK simulations, population PK modelling and multiresponse optimal design allowed, without any in vivo data, the design of a clinical trial, using sparse sampling, capable of estimating CL/F of the CYP3A4 substrate and potential inhibitor when co-administered together.

  15. Optimal Power Flow in Multiphase Radial Networks with Delta Connections: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Changhong; Dall-Anese, Emiliano; Low, Steven H.

    This paper focuses on multiphase radial distribution networks with mixed wye and delta connections, and proposes a semidefinite relaxation of the AC optimal power flow (OPF) problem. Two multiphase power-flow models are developed to facilitate the integration of delta-connected generation units/loads in the OPF problem. The first model extends traditional branch flow models - and it is referred to as extended branch flow model (EBFM). The second model leverages a linear relationship between per-phase power injections and delta connections, which holds under a balanced voltage approximation (BVA). Based on these models, pertinent OPF problems are formulated and relaxed to semidefinitemore » programs (SDPs). Numerical studies on IEEE test feeders show that SDP relaxations can be solved efficiently by a generic optimization solver. Numerical evidences indicate that solving the resultant SDP under BVA is faster than under EBFM. Moreover, both SDP solutions are numerically exact with respect to voltages and branch flows. It is also shown that the SDP solution under BVA has a small optimality gap, while the BVA model is accurate in the sense that it reflects actual system voltages.« less

  16. Advanced Information Technology in Simulation Based Life Cycle Design

    NASA Technical Reports Server (NTRS)

    Renaud, John E.

    2003-01-01

    In this research a Collaborative Optimization (CO) approach for multidisciplinary systems design is used to develop a decision based design framework for non-deterministic optimization. To date CO strategies have been developed for use in application to deterministic systems design problems. In this research the decision based design (DBD) framework proposed by Hazelrigg is modified for use in a collaborative optimization framework. The Hazelrigg framework as originally proposed provides a single level optimization strategy that combines engineering decisions with business decisions in a single level optimization. By transforming this framework for use in collaborative optimization one can decompose the business and engineering decision making processes. In the new multilevel framework of Decision Based Collaborative Optimization (DBCO) the business decisions are made at the system level. These business decisions result in a set of engineering performance targets that disciplinary engineering design teams seek to satisfy as part of subspace optimizations. The Decision Based Collaborative Optimization framework more accurately models the existing relationship between business and engineering in multidisciplinary systems design.

  17. Multivariate analysis of PRISMA optimized TLC image for predicting antioxidant activity and identification of contributing compounds from Pereskia bleo.

    PubMed

    Sharif, K M; Rahman, M M; Azmir, J; Khatib, A; Sabina, E; Shamsudin, S H; Zaidul, I S M

    2015-12-01

    Multivariate analysis of thin-layer chromatography (TLC) images was modeled to predict antioxidant activity of Pereskia bleo leaves and to identify the contributing compounds of the activity. TLC was developed in optimized mobile phase using the 'PRISMA' optimization method and the image was then converted to wavelet signals and imported for multivariate analysis. An orthogonal partial least square (OPLS) model was developed consisting of a wavelet-converted TLC image and 2,2-diphynyl-picrylhydrazyl free radical scavenging activity of 24 different preparations of P. bleo as the x- and y-variables, respectively. The quality of the constructed OPLS model (1 + 1 + 0) with one predictive and one orthogonal component was evaluated by internal and external validity tests. The validated model was then used to identify the contributing spot from the TLC plate that was then analyzed by GC-MS after trimethylsilyl derivatization. Glycerol and amine compounds were mainly found to contribute to the antioxidant activity of the sample. An alternative method to predict the antioxidant activity of a new sample of P. bleo leaves has been developed. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Contingency Contractor Optimization Phase 3 Sustainment Software Design Document - Contingency Contractor Optimization Tool - Prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durfee, Justin David; Frazier, Christopher Rawls; Bandlow, Alisa

    This document describes the final software design of the Contingency Contractor Optimization Tool - Prototype. Its purpose is to provide the overall architecture of the software and the logic behind this architecture. Documentation for the individual classes is provided in the application Javadoc. The Contingency Contractor Optimization project is intended to address Department of Defense mandates by delivering a centralized strategic planning tool that allows senior decision makers to quickly and accurately assess the impacts, risks, and mitigation strategies associated with utilizing contract support. The Contingency Contractor Optimization Tool - Prototype was developed in Phase 3 of the OSD ATLmore » Contingency Contractor Optimization project to support strategic planning for contingency contractors. The planning tool uses a model to optimize the Total Force mix by minimizing the combined total costs for selected mission scenarios. The model optimizes the match of personnel types (military, DoD civilian, and contractors) and capabilities to meet mission requirements as effectively as possible, based on risk, cost, and other requirements.« less

  19. An Optimization Framework for Dynamic Hybrid Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenbo Du; Humberto E Garcia; Christiaan J.J. Paredis

    A computational framework for the efficient analysis and optimization of dynamic hybrid energy systems (HES) is developed. A microgrid system with multiple inputs and multiple outputs (MIMO) is modeled using the Modelica language in the Dymola environment. The optimization loop is implemented in MATLAB, with the FMI Toolbox serving as the interface between the computational platforms. Two characteristic optimization problems are selected to demonstrate the methodology and gain insight into the system performance. The first is an unconstrained optimization problem that optimizes the dynamic properties of the battery, reactor and generator to minimize variability in the HES. The second problemmore » takes operating and capital costs into consideration by imposing linear and nonlinear constraints on the design variables. The preliminary optimization results obtained in this study provide an essential step towards the development of a comprehensive framework for designing HES.« less

  20. SU-F-BRD-01: A Logistic Regression Model to Predict Objective Function Weights in Prostate Cancer IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boutilier, J; Chan, T; Lee, T

    2014-06-15

    Purpose: To develop a statistical model that predicts optimization objective function weights from patient geometry for intensity-modulation radiotherapy (IMRT) of prostate cancer. Methods: A previously developed inverse optimization method (IOM) is applied retrospectively to determine optimal weights for 51 treated patients. We use an overlap volume ratio (OVR) of bladder and rectum for different PTV expansions in order to quantify patient geometry in explanatory variables. Using the optimal weights as ground truth, we develop and train a logistic regression (LR) model to predict the rectum weight and thus the bladder weight. Post hoc, we fix the weights of the leftmore » femoral head, right femoral head, and an artificial structure that encourages conformity to the population average while normalizing the bladder and rectum weights accordingly. The population average of objective function weights is used for comparison. Results: The OVR at 0.7cm was found to be the most predictive of the rectum weights. The LR model performance is statistically significant when compared to the population average over a range of clinical metrics including bladder/rectum V53Gy, bladder/rectum V70Gy, and mean voxel dose to the bladder, rectum, CTV, and PTV. On average, the LR model predicted bladder and rectum weights that are both 63% closer to the optimal weights compared to the population average. The treatment plans resulting from the LR weights have, on average, a rectum V70Gy that is 35% closer to the clinical plan and a bladder V70Gy that is 43% closer. Similar results are seen for bladder V54Gy and rectum V54Gy. Conclusion: Statistical modelling from patient anatomy can be used to determine objective function weights in IMRT for prostate cancer. Our method allows the treatment planners to begin the personalization process from an informed starting point, which may lead to more consistent clinical plans and reduce overall planning time.« less

  1. Model Based Optimal Control, Estimation, and Validation of Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Perez, Hector Eduardo

    This dissertation focuses on developing and experimentally validating model based control techniques to enhance the operation of lithium ion batteries, safely. An overview of the contributions to address the challenges that arise are provided below. Chapter 1: This chapter provides an introduction to battery fundamentals, models, and control and estimation techniques. Additionally, it provides motivation for the contributions of this dissertation. Chapter 2: This chapter examines reference governor (RG) methods for satisfying state constraints in Li-ion batteries. Mathematically, these constraints are formulated from a first principles electrochemical model. Consequently, the constraints explicitly model specific degradation mechanisms, such as lithium plating, lithium depletion, and overheating. This contrasts with the present paradigm of limiting measured voltage, current, and/or temperature. The critical challenges, however, are that (i) the electrochemical states evolve according to a system of nonlinear partial differential equations, and (ii) the states are not physically measurable. Assuming available state and parameter estimates, this chapter develops RGs for electrochemical battery models. The results demonstrate how electrochemical model state information can be utilized to ensure safe operation, while simultaneously enhancing energy capacity, power, and charge speeds in Li-ion batteries. Chapter 3: Complex multi-partial differential equation (PDE) electrochemical battery models are characterized by parameters that are often difficult to measure or identify. This parametric uncertainty influences the state estimates of electrochemical model-based observers for applications such as state-of-charge (SOC) estimation. This chapter develops two sensitivity-based interval observers that map bounded parameter uncertainty to state estimation intervals, within the context of electrochemical PDE models and SOC estimation. Theoretically, this chapter extends the notion of interval observers to PDE models using a sensitivity-based approach. Practically, this chapter quantifies the sensitivity of battery state estimates to parameter variations, enabling robust battery management schemes. The effectiveness of the proposed sensitivity-based interval observers is verified via a numerical study for the range of uncertain parameters. Chapter 4: This chapter seeks to derive insight on battery charging control using electrochemistry models. Directly using full order complex multi-partial differential equation (PDE) electrochemical battery models is difficult and sometimes impossible to implement. This chapter develops an approach for obtaining optimal charge control schemes, while ensuring safety through constraint satisfaction. An optimal charge control problem is mathematically formulated via a coupled reduced order electrochemical-thermal model which conserves key electrochemical and thermal state information. The Legendre-Gauss-Radau (LGR) pseudo-spectral method with adaptive multi-mesh-interval collocation is employed to solve the resulting nonlinear multi-state optimal control problem. Minimum time charge protocols are analyzed in detail subject to solid and electrolyte phase concentration constraints, as well as temperature constraints. The optimization scheme is examined using different input current bounds, and an insight on battery design for fast charging is provided. Experimental results are provided to compare the tradeoffs between an electrochemical-thermal model based optimal charge protocol and a traditional charge protocol. Chapter 5: Fast and safe charging protocols are crucial for enhancing the practicality of batteries, especially for mobile applications such as smartphones and electric vehicles. This chapter proposes an innovative approach to devising optimally health-conscious fast-safe charge protocols. A multi-objective optimal control problem is mathematically formulated via a coupled electro-thermal-aging battery model, where electrical and aging sub-models depend upon the core temperature captured by a two-state thermal sub-model. The Legendre-Gauss-Radau (LGR) pseudo-spectral method with adaptive multi-mesh-interval collocation is employed to solve the resulting highly nonlinear six-state optimal control problem. Charge time and health degradation are therefore optimally traded off, subject to both electrical and thermal constraints. Minimum-time, minimum-aging, and balanced charge scenarios are examined in detail. Sensitivities to the upper voltage bound, ambient temperature, and cooling convection resistance are investigated as well. Experimental results are provided to compare the tradeoffs between a balanced and traditional charge protocol. Chapter 6: This chapter provides concluding remarks on the findings of this dissertation and a discussion of future work.

  2. Derivation of Optimal Cropping Pattern in Part of Hirakud Command using Cuckoo Search

    NASA Astrophysics Data System (ADS)

    Rath, Ashutosh; Biswal, Sudarsan; Samantaray, Sandeep; Swain, Prakash Chandra, PROF.

    2017-08-01

    The economicgrowth of a Nation depends on agriculture which relies on the obtainable water resources, available land and crops. The contribution of water in an appropriate quantity at appropriate time plays avitalrole to increase the agricultural production. Optimal utilization of available resources can be achieved by proper planning and management of water resources projects and adoption of appropriate technology. In the present work, the command area of Sambalpur distribrutary System is taken up for investigation. Further, adoption of a fixed cropping pattern causes the reduction of yield. The present study aims at developing different crop planning strategies to increase the net benefit from the command area with minimum investment. Optimization models are developed for Kharif season using LINDO and Cuckoo Search (CS) algorithm for maximization of the net benefits. In process of development of Optimization model the factors such as cultivable land, seeds, fertilizers, man power, water cost, etc. are taken as constraints. The irrigation water needs of major crops and the total available water through canals in the command of Sambalpur Distributary are estimated. LINDO and Cuckoo Search models are formulated and used to derive the optimal cropping pattern yielding maximum net benefits. The net benefits of Rs.585.0 lakhs in Kharif Season are obtained by adopting LINGO and 596.07 lakhs from Cuckoo Search, respectively, whereas the net benefits of 447.0 lakhs is received by the farmers of the locality with the adopting present cropping pattern.

  3. Quad-rotor flight path energy optimization

    NASA Astrophysics Data System (ADS)

    Kemper, Edward

    Quad-Rotor unmanned areal vehicles (UAVs) have been a popular area of research and development in the last decade, especially with the advent of affordable microcontrollers like the MSP 430 and the Raspberry Pi. Path-Energy Optimization is an area that is well developed for linear systems. In this thesis, this idea of path-energy optimization is extended to the nonlinear model of the Quad-rotor UAV. The classical optimization technique is adapted to the nonlinear model that is derived for the problem at hand, coming up with a set of partial differential equations and boundary value conditions to solve these equations. Then, different techniques to implement energy optimization algorithms are tested using simulations in Python. First, a purely nonlinear approach is used. This method is shown to be computationally intensive, with no practical solution available in a reasonable amount of time. Second, heuristic techniques to minimize the energy of the flight path are tested, using Ziegler-Nichols' proportional integral derivative (PID) controller tuning technique. Finally, a brute force look-up table based PID controller is used. Simulation results of the heuristic method show that both reliable control of the system and path-energy optimization are achieved in a reasonable amount of time.

  4. A combined geostatistical-optimization model for the optimal design of a groundwater quality monitoring network

    NASA Astrophysics Data System (ADS)

    Kolosionis, Konstantinos; Papadopoulou, Maria P.

    2017-04-01

    Monitoring networks provide essential information for water resources management especially in areas with significant groundwater exploitation due to extensive agricultural activities. In this work, a simulation-optimization framework is developed based on heuristic optimization methodologies and geostatistical modeling approaches to obtain an optimal design for a groundwater quality monitoring network. Groundwater quantity and quality data obtained from 43 existing observation locations at 3 different hydrological periods in Mires basin in Crete, Greece will be used in the proposed framework in terms of Regression Kriging to develop the spatial distribution of nitrates concentration in the aquifer of interest. Based on the existing groundwater quality mapping, the proposed optimization tool will determine a cost-effective observation wells network that contributes significant information to water managers and authorities. The elimination of observation wells that add little or no beneficial information to groundwater level and quality mapping of the area can be obtain using estimations uncertainty and statistical error metrics without effecting the assessment of the groundwater quality. Given the high maintenance cost of groundwater monitoring networks, the proposed tool could used by water regulators in the decision-making process to obtain a efficient network design that is essential.

  5. Three-dimensional shape optimization of a cemented hip stem and experimental validations.

    PubMed

    Higa, Masaru; Tanino, Hiromasa; Nishimura, Ikuya; Mitamura, Yoshinori; Matsuno, Takeo; Ito, Hiroshi

    2015-03-01

    This study proposes novel optimized stem geometry with low stress values in the cement using a finite element (FE) analysis combined with an optimization procedure and experimental measurements of cement stress in vitro. We first optimized an existing stem geometry using a three-dimensional FE analysis combined with a shape optimization technique. One of the most important factors in the cemented stem design is to reduce stress in the cement. Hence, in the optimization study, we minimized the largest tensile principal stress in the cement mantle under a physiological loading condition by changing the stem geometry. As the next step, the optimized stem and the existing stem were manufactured to validate the usefulness of the numerical models and the results of the optimization in vitro. In the experimental study, strain gauges were embedded in the cement mantle to measure the strain in the cement mantle adjacent to the stems. The overall trend of the experimental study was in good agreement with the results of the numerical study, and we were able to reduce the largest stress by more than 50% in both shape optimization and strain gauge measurements. Thus, we could validate the usefulness of the numerical models and the results of the optimization using the experimental models. The optimization employed in this study is a useful approach for developing new stem designs.

  6. Engineering tradeoff problems viewed as multiple objective optimizations and the VODCA methodology

    NASA Astrophysics Data System (ADS)

    Morgan, T. W.; Thurgood, R. L.

    1984-05-01

    This paper summarizes a rational model for making engineering tradeoff decisions. The model is a hybrid from the fields of social welfare economics, communications, and operations research. A solution methodology (Vector Optimization Decision Convergence Algorithm - VODCA) firmly grounded in the economic model is developed both conceptually and mathematically. The primary objective for developing the VODCA methodology was to improve the process for extracting relative value information about the objectives from the appropriate decision makers. This objective was accomplished by employing data filtering techniques to increase the consistency of the relative value information and decrease the amount of information required. VODCA is applied to a simplified hypothetical tradeoff decision problem. Possible use of multiple objective analysis concepts and the VODCA methodology in product-line development and market research are discussed.

  7. Optimal control applied to a model for species augmentation.

    PubMed

    Bodine, Erin N; Gross, Louis J; Lenhart, Suzanne

    2008-10-01

    Species augmentation is a method of reducing species loss via augmenting declining or threatened populations with individuals from captive-bred or stable, wild populations. In this paper, we develop a differential equations model and optimal control formulation for a continuous time augmentation of a general declining population. We find a characterization for the optimal control and show numerical results for scenarios of different illustrative parameter sets. The numerical results provide considerably more detail about the exact dynamics of optimal augmentation than can be readily intuited. The work and results presented in this paper are a first step toward building a general theory of population augmentation, which accounts for the complexities inherent in many conservation biology applications.

  8. Predicting the optimal geometry of microneedles and their array for dermal vaccination using a computational model.

    PubMed

    Römgens, Anne M; Bader, Dan L; Bouwstra, Joke A; Oomens, Cees W J

    2016-11-01

    Microneedle arrays have been developed to deliver a range of biomolecules including vaccines into the skin. These microneedles have been designed with a wide range of geometries and arrangements within an array. However, little is known about the effect of the geometry on the potency of the induced immune response. The aim of this study was to develop a computational model to predict the optimal design of the microneedles and their arrangement within an array. The three-dimensional finite element model described the diffusion and kinetics in the skin following antigen delivery with a microneedle array. The results revealed an optimum distance between microneedles based on the number of activated antigen presenting cells, which was assumed to be related to the induced immune response. This optimum depends on the delivered dose. In addition, the microneedle length affects the number of cells that will be involved in either the epidermis or dermis. By contrast, the radius at the base of the microneedle and release rate only minimally influenced the number of cells that were activated. The model revealed the importance of various geometric parameters to enhance the induced immune response. The model can be developed further to determine the optimal design of an array by adjusting its various parameters to a specific situation.

  9. Optimizing the maximum reported cluster size in the spatial scan statistic for ordinal data.

    PubMed

    Kim, Sehwi; Jung, Inkyung

    2017-01-01

    The spatial scan statistic is an important tool for spatial cluster detection. There have been numerous studies on scanning window shapes. However, little research has been done on the maximum scanning window size or maximum reported cluster size. Recently, Han et al. proposed to use the Gini coefficient to optimize the maximum reported cluster size. However, the method has been developed and evaluated only for the Poisson model. We adopt the Gini coefficient to be applicable to the spatial scan statistic for ordinal data to determine the optimal maximum reported cluster size. Through a simulation study and application to a real data example, we evaluate the performance of the proposed approach. With some sophisticated modification, the Gini coefficient can be effectively employed for the ordinal model. The Gini coefficient most often picked the optimal maximum reported cluster sizes that were the same as or smaller than the true cluster sizes with very high accuracy. It seems that we can obtain a more refined collection of clusters by using the Gini coefficient. The Gini coefficient developed specifically for the ordinal model can be useful for optimizing the maximum reported cluster size for ordinal data and helpful for properly and informatively discovering cluster patterns.

  10. Optimizing the maximum reported cluster size in the spatial scan statistic for ordinal data

    PubMed Central

    Kim, Sehwi

    2017-01-01

    The spatial scan statistic is an important tool for spatial cluster detection. There have been numerous studies on scanning window shapes. However, little research has been done on the maximum scanning window size or maximum reported cluster size. Recently, Han et al. proposed to use the Gini coefficient to optimize the maximum reported cluster size. However, the method has been developed and evaluated only for the Poisson model. We adopt the Gini coefficient to be applicable to the spatial scan statistic for ordinal data to determine the optimal maximum reported cluster size. Through a simulation study and application to a real data example, we evaluate the performance of the proposed approach. With some sophisticated modification, the Gini coefficient can be effectively employed for the ordinal model. The Gini coefficient most often picked the optimal maximum reported cluster sizes that were the same as or smaller than the true cluster sizes with very high accuracy. It seems that we can obtain a more refined collection of clusters by using the Gini coefficient. The Gini coefficient developed specifically for the ordinal model can be useful for optimizing the maximum reported cluster size for ordinal data and helpful for properly and informatively discovering cluster patterns. PMID:28753674

  11. Arrangement Analysis of Leaves Optimized on Photon Flux Density or Photosynthetic Rate

    NASA Astrophysics Data System (ADS)

    Obara, Shin'ya; Tanno, Itaru

    By clarifying a plant evolutive process, useful information may be obtained on engineering. Consequently, an analysis algorithm that investigates the optimal arrangement of plant leaves was developed. In the developed algorithm, the Monte Carlo method is introduced and sunlight is simulated. Moreover, the arrangement optimization of leaves is analyzed using a Genetic Algorithm (GA). The number of light quanta (photon flux density) that reaches leaves, or the average photosynthetic rate of the same was set as the objective function, and leaf models of a dogwood and a ginkgo tree were analyzed. The number of leaf models was set between two to four, and the position of the leaf was expressed in terms of the angle of direction, elevation angle, rotation angle, and the representative length of the branch of a leaf. The chromosome model introduced into GA consists of information concerning the position of the leaf. Based on the analysis results, the characteristics of the leaf of an actual plant could be simulated by ensuring the algorithm had multiple constrained conditions. The optimal arrangement of leaves differs in maximization of the photon flux density, and that of the average value of a photosynthetic rate. Furthermore, the leaf form affecting the optimal arrangement of leave and also having a significant influence also on a photosynthetic rate was shown.

  12. Fine-Tuning ADAS Algorithm Parameters for Optimizing Traffic ...

    EPA Pesticide Factsheets

    With the development of the Connected Vehicle technology that facilitates wirelessly communication among vehicles and road-side infrastructure, the Advanced Driver Assistance Systems (ADAS) can be adopted as an effective tool for accelerating traffic safety and mobility optimization at various highway facilities. To this end, the traffic management centers identify the optimal ADAS algorithm parameter set that enables the maximum improvement of the traffic safety and mobility performance, and broadcast the optimal parameter set wirelessly to individual ADAS-equipped vehicles. After adopting the optimal parameter set, the ADAS-equipped drivers become active agents in the traffic stream that work collectively and consistently to prevent traffic conflicts, lower the intensity of traffic disturbances, and suppress the development of traffic oscillations into heavy traffic jams. Successful implementation of this objective requires the analysis capability of capturing the impact of the ADAS on driving behaviors, and measuring traffic safety and mobility performance under the influence of the ADAS. To address this challenge, this research proposes a synthetic methodology that incorporates the ADAS-affected driving behavior modeling and state-of-the-art microscopic traffic flow modeling into a virtually simulated environment. Building on such an environment, the optimal ADAS algorithm parameter set is identified through an optimization programming framework to enable th

  13. Vector-model-supported optimization in volumetric-modulated arc stereotactic radiotherapy planning for brain metastasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Eva Sau Fan; Department of Health Technology and Informatics, The Hong Kong Polytechnic University; Wu, Vincent Wing Cheung

    Long planning time in volumetric-modulated arc stereotactic radiotherapy (VMA-SRT) cases can limit its clinical efficiency and use. A vector model could retrieve previously successful radiotherapy cases that share various common anatomic features with the current case. The prsent study aimed to develop a vector model that could reduce planning time by applying the optimization parameters from those retrieved reference cases. Thirty-six VMA-SRT cases of brain metastasis (gender, male [n = 23], female [n = 13]; age range, 32 to 81 years old) were collected and used as a reference database. Another 10 VMA-SRT cases were planned with both conventional optimization and vector-model-supported optimization, followingmore » the oncologists' clinical dose prescriptions. Planning time and plan quality measures were compared using the 2-sided paired Wilcoxon signed rank test with a significance level of 0.05, with positive false discovery rate (pFDR) of less than 0.05. With vector-model-supported optimization, there was a significant reduction in the median planning time, a 40% reduction from 3.7 to 2.2 hours (p = 0.002, pFDR = 0.032), and for the number of iterations, a 30% reduction from 8.5 to 6.0 (p = 0.006, pFDR = 0.047). The quality of plans from both approaches was comparable. From these preliminary results, vector-model-supported optimization can expedite the optimization of VMA-SRT for brain metastasis while maintaining plan quality.« less

  14. Using Machine Learning in Adversarial Environments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren Leon Davis

    Intrusion/anomaly detection systems are among the first lines of cyber defense. Commonly, they either use signatures or machine learning (ML) to identify threats, but fail to account for sophisticated attackers trying to circumvent them. We propose to embed machine learning within a game theoretic framework that performs adversarial modeling, develops methods for optimizing operational response based on ML, and integrates the resulting optimization codebase into the existing ML infrastructure developed by the Hybrid LDRD. Our approach addresses three key shortcomings of ML in adversarial settings: 1) resulting classifiers are typically deterministic and, therefore, easy to reverse engineer; 2) ML approachesmore » only address the prediction problem, but do not prescribe how one should operationalize predictions, nor account for operational costs and constraints; and 3) ML approaches do not model attackers’ response and can be circumvented by sophisticated adversaries. The principal novelty of our approach is to construct an optimization framework that blends ML, operational considerations, and a model predicting attackers reaction, with the goal of computing optimal moving target defense. One important challenge is to construct a realistic model of an adversary that is tractable, yet realistic. We aim to advance the science of attacker modeling by considering game-theoretic methods, and by engaging experimental subjects with red teaming experience in trying to actively circumvent an intrusion detection system, and learning a predictive model of such circumvention activities. In addition, we will generate metrics to test that a particular model of an adversary is consistent with available data.« less

  15. Optimizing the updated Goddard shortwave radiation Weather Research and Forecasting (WRF) scheme for Intel Many Integrated Core (MIC) architecture

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.-L.

    2015-05-01

    Intel Many Integrated Core (MIC) ushers in a new era of supercomputing speed, performance, and compatibility. It allows the developers to run code at trillions of calculations per second using the familiar programming model. In this paper, we present our results of optimizing the updated Goddard shortwave radiation Weather Research and Forecasting (WRF) scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The co-processor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of Xeon Phi will require using some novel optimization techniques. Those optimization techniques are discusses in this paper. The results show that the optimizations improved performance of the original code on Xeon Phi 7120P by a factor of 1.3x.

  16. A kriging metamodel-assisted robust optimization method based on a reverse model

    NASA Astrophysics Data System (ADS)

    Zhou, Hui; Zhou, Qi; Liu, Congwei; Zhou, Taotao

    2018-02-01

    The goal of robust optimization methods is to obtain a solution that is both optimum and relatively insensitive to uncertainty factors. Most existing robust optimization approaches use outer-inner nested optimization structures where a large amount of computational effort is required because the robustness of each candidate solution delivered from the outer level should be evaluated in the inner level. In this article, a kriging metamodel-assisted robust optimization method based on a reverse model (K-RMRO) is first proposed, in which the nested optimization structure is reduced into a single-loop optimization structure to ease the computational burden. Ignoring the interpolation uncertainties from kriging, K-RMRO may yield non-robust optima. Hence, an improved kriging-assisted robust optimization method based on a reverse model (IK-RMRO) is presented to take the interpolation uncertainty of kriging metamodel into consideration. In IK-RMRO, an objective switching criterion is introduced to determine whether the inner level robust optimization or the kriging metamodel replacement should be used to evaluate the robustness of design alternatives. The proposed criterion is developed according to whether or not the robust status of the individual can be changed because of the interpolation uncertainties from the kriging metamodel. Numerical and engineering cases are used to demonstrate the applicability and efficiency of the proposed approach.

  17. A guided search genetic algorithm using mined rules for optimal affective product design

    NASA Astrophysics Data System (ADS)

    Fung, Chris K. Y.; Kwong, C. K.; Chan, Kit Yan; Jiang, H.

    2014-08-01

    Affective design is an important aspect of new product development, especially for consumer products, to achieve a competitive edge in the marketplace. It can help companies to develop new products that can better satisfy the emotional needs of customers. However, product designers usually encounter difficulties in determining the optimal settings of the design attributes for affective design. In this article, a novel guided search genetic algorithm (GA) approach is proposed to determine the optimal design attribute settings for affective design. The optimization model formulated based on the proposed approach applied constraints and guided search operators, which were formulated based on mined rules, to guide the GA search and to achieve desirable solutions. A case study on the affective design of mobile phones was conducted to illustrate the proposed approach and validate its effectiveness. Validation tests were conducted, and the results show that the guided search GA approach outperforms the GA approach without the guided search strategy in terms of GA convergence and computational time. In addition, the guided search optimization model is capable of improving GA to generate good solutions for affective design.

  18. Applying model abstraction techniques to optimize monitoring networks for detecting subsurface contaminant transport

    USDA-ARS?s Scientific Manuscript database

    Improving strategies for monitoring subsurface contaminant transport includes performance comparison of competing models, developed independently or obtained via model abstraction. Model comparison and parameter discrimination involve specific performance indicators selected to better understand s...

  19. Conceptual Design and Structural Analysis of an Open Rotor Hybrid Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Gern, Frank H.

    2013-01-01

    Through a recent NASA contract, Boeing Research and Technology in Huntington Beach, CA developed and optimized a conceptual design of an open rotor hybrid wing body aircraft (HWB). Open rotor engines offer a significant potential for fuel burn savings over turbofan engines, while the HWB configuration potentially allows to offset noise penalties through possible engine shielding. Researchers at NASA Langley converted the Boeing design to a FLOPS model which will be used to develop take-off and landing trajectories for community noise analyses. The FLOPS model was calibrated using Boeing data and shows good agreement with the original Boeing design. To complement Boeing s detailed aerodynamics and propulsion airframe integration work, a newly developed and validated conceptual structural analysis and optimization tool was used for a conceptual loads analysis and structural weights estimate. Structural optimization and weight calculation are based on a Nastran finite element model of the primary HWB structure, featuring centerbody, mid section, outboard wing, and aft body. Results for flight loads, deformations, wing weight, and centerbody weight are presented and compared to Boeing and FLOPS analyses.

  20. Prospective Design of Anti‐Transferrin Receptor Bispecific Antibodies for Optimal Delivery into the Human Brain

    PubMed Central

    Kanodia, JS; Gadkar, K; Bumbaca, D; Zhang, Y; Tong, RK; Luk, W; Hoyte, K; Lu, Y; Wildsmith, KR; Couch, JA; Watts, RJ; Dennis, MS; Ernst, JA; Scearce‐Levie, K; Atwal, JK; Joseph, S

    2016-01-01

    Anti‐transferrin receptor (TfR)‐based bispecific antibodies have shown promise for boosting antibody uptake in the brain. Nevertheless, there are limited data on the molecular properties, including affinity required for successful development of TfR‐based therapeutics. A complex nonmonotonic relationship exists between affinity of the anti‐TfR arm and brain uptake at therapeutically relevant doses. However, the quantitative nature of this relationship and its translatability to humans is heretofore unexplored. Therefore, we developed a mechanistic pharmacokinetic‐pharmacodynamic (PK‐PD) model for bispecific anti‐TfR/BACE1 antibodies that accounts for antibody‐TfR interactions at the blood‐brain barrier (BBB) as well as the pharmacodynamic (PD) effect of anti‐BACE1 arm. The calibrated model correctly predicted the optimal anti‐TfR affinity required to maximize brain exposure of therapeutic antibodies in the cynomolgus monkey and was scaled to predict the optimal affinity of anti‐TfR bispecifics in humans. Thus, this model provides a framework for testing critical translational predictions for anti‐TfR bispecific antibodies, including choice of candidate molecule for clinical development. PMID:27299941

  1. High Speed Civil Transport Design Using Collaborative Optimization and Approximate Models

    NASA Technical Reports Server (NTRS)

    Manning, Valerie Michelle

    1999-01-01

    The design of supersonic aircraft requires complex analysis in multiple disciplines, posing, a challenge for optimization methods. In this thesis, collaborative optimization, a design architecture developed to solve large-scale multidisciplinary design problems, is applied to the design of supersonic transport concepts. Collaborative optimization takes advantage of natural disciplinary segmentation to facilitate parallel execution of design tasks. Discipline-specific design optimization proceeds while a coordinating mechanism ensures progress toward an optimum and compatibility between disciplinary designs. Two concepts for supersonic aircraft are investigated: a conventional delta-wing design and a natural laminar flow concept that achieves improved performance by exploiting properties of supersonic flow to delay boundary layer transition. The work involves the development of aerodynamics and structural analyses, and integration within a collaborative optimization framework. It represents the most extensive application of the method to date.

  2. High Efficiency Thermoelectric Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed; Saber, Hamed; Caillat, Thierry

    2004-01-01

    The work performed and whose results presented in this report is a joint effort between the University of New Mexico s Institute for Space and Nuclear Power Studies (ISNPS) and the Jet Propulsion Laboratory (JPL), California Institute of Technology. In addition to the development, design, and fabrication of skutterudites and skutterudites-based segmented unicouples this effort included conducting performance tests of these unicouples for hundreds of hours to verify theoretical predictions of the conversion efficiency. The performance predictions of these unicouples are obtained using 1-D and 3-D models developed for that purpose and for estimating the actual performance and side heat losses in the tests conducted at ISNPS. In addition to the performance tests, the development of the 1-D and 3-D models and the development of Advanced Radioisotope Power systems for Beginning-Of-Life (BOM) power of 108 We are carried out at ISNPS. The materials synthesis and fabrication of the unicouples are carried out at JPL. The research conducted at ISNPS is documented in chapters 2-5 and that conducted at JP, in documented in chapter 5. An important consideration in the design and optimization of segmented thermoelectric unicouples (STUs) is determining the relative lengths, cross-section areas, and the interfacial temperatures of the segments of the different materials in the n- and p-legs. These variables are determined using a genetic algorithm (GA) in conjunction with one-dimensional analytical model of STUs that is developed in chapter 2. Results indicated that when optimized for maximum conversion efficiency, the interfacial temperatures between various segments in a STU are close to those at the intersections of the Figure-Of-Merit (FOM), ZT, curves of the thermoelectric materials of the adjacent segments. When optimizing the STUs for maximum electrical power density, however, the interfacial temperatures are different from those at the intersections of the ZT curves, but close to those at the intersections the characteristic power, CP, curves of the thermoelectric materials of the adjacent segments (CP = T(sup 2)Zk and has a unit of W/m). Results also showed that the number of the segments in the n- and p-legs of the STUs optimized for maximum power density are generally fewer than when the same unicouples are optimized for maximum efficiency. These results are obtained using the 1-D optimization model of STUs that is detailed in chapter 2. A three-dimensional model of STUs is developed and incorporated into the ANSYS commercial software (chapter 3). The governing equations are solved, subject to the prescribed

  3. Economic production quantity model for items with continuous quality characteristic, rework and reject

    NASA Astrophysics Data System (ADS)

    Tsou, Jia-Chi; Hejazi, Seyed Reza; Rasti Barzoki, Morteza

    2012-12-01

    The economic production quantity (EPQ) model is a well-known and commonly used inventory control technique. However, the model is built on an unrealistic assumption that all the produced items need to be of perfect quality. Having relaxed this assumption, some researchers have studied the effects of the imperfect products on the inventory control techniques. This article, thus, attempts to develop an EPQ model with continuous quality characteristic and rework. To this end, this study assumes that a produced item follows a general distribution pattern, with its quality being perfect, imperfect or defective. The analysis of the model developed indicates that there is an optimal lot size, which generates minimum total cost. Moreover, the results show that the optimal lot size of the model equals that of the classical EPQ model in case imperfect quality percentage is zero or even close to zero.

  4. Optimizing nursing human resource planning in British Columbia.

    PubMed

    Lavieri, Mariel S; Puterman, Martin L

    2009-06-01

    This paper describes a linear programming hierarchical planning model that determines the optimal number of nurses to train, promote to management and recruit over a 20 year planning horizon to achieve specified workforce levels. Age dynamics and attrition rates of the nursing workforce are key model components. The model was developed to help policy makers plan a sustainable nursing workforce for British Columbia, Canada. An easy to use interface and considerable flexibility makes it ideal for scenario and "What-If?" analyses.

  5. Optimization of investment portfolio weight of stocks affected by market index

    NASA Astrophysics Data System (ADS)

    Azizah, E.; Rusyaman, E.; Supian, S.

    2017-01-01

    Stock price assessment, selection of optimum combination, and measure the risk of a portfolio investment is one important issue for investors. In this paper single index model used for the assessment of the stock price, and formulation optimization model developed using Lagrange multiplier technique to determine the proportion of assets to be invested. The level of risk is estimated by using variance. These models are used to analyse the stock price data Lippo Bank and Bumi Putera.

  6. Autonomous Control Modes and Optimized Path Guidance for Shipboard Landing in High Sea States

    DTIC Science & Technology

    2016-08-12

    Performing Organization: The Pennsylvania State University Department of Aerospace Engineering 231C Hammond Building University Park, PA 16802 Attn...Plant Models Used in the Study The H-60 class model was developed and distributed by ART to both NAVAIR and Penn State research teams. The model...To) 07 109 I 201 4 tD 07 I 08 12016 ’t TITLE AND SUBTITLE Autonomous Control Modes and Optimized Path Guidance for Shipboard Landing in High Sea States

  7. Optimized planning methodologies of ASON implementation

    NASA Astrophysics Data System (ADS)

    Zhou, Michael M.; Tamil, Lakshman S.

    2005-02-01

    Advanced network planning concerns effective network-resource allocation for dynamic and open business environment. Planning methodologies of ASON implementation based on qualitative analysis and mathematical modeling are presented in this paper. The methodology includes method of rationalizing technology and architecture, building network and nodal models, and developing dynamic programming for multi-period deployment. The multi-layered nodal architecture proposed here can accommodate various nodal configurations for a multi-plane optical network and the network modeling presented here computes the required network elements for optimizing resource allocation.

  8. Modeling of Revitalization of Atmospheric Water

    NASA Technical Reports Server (NTRS)

    Coker, Robert; Knox, Jim

    2014-01-01

    The Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project was initiated in September of 2011 as part of the Advanced Exploration Systems (AES) program. Under the ARREM project, testing of sub-scale and full-scale systems has been combined with multiphysics computer simulations for evaluation and optimization of subsystem approaches. In particular, this paper describes the testing and modeling of the water desiccant subsystem of the carbon dioxide removal assembly (CDRA). The goal is a full system predictive model of CDRA to guide system optimization and development.

  9. Identification of vehicle suspension parameters by design optimization

    NASA Astrophysics Data System (ADS)

    Tey, J. Y.; Ramli, R.; Kheng, C. W.; Chong, S. Y.; Abidin, M. A. Z.

    2014-05-01

    The design of a vehicle suspension system through simulation requires accurate representation of the design parameters. These parameters are usually difficult to measure or sometimes unavailable. This article proposes an efficient approach to identify the unknown parameters through optimization based on experimental results, where the covariance matrix adaptation-evolutionary strategy (CMA-es) is utilized to improve the simulation and experimental results against the kinematic and compliance tests. This speeds up the design and development cycle by recovering all the unknown data with respect to a set of kinematic measurements through a single optimization process. A case study employing a McPherson strut suspension system is modelled in a multi-body dynamic system. Three kinematic and compliance tests are examined, namely, vertical parallel wheel travel, opposite wheel travel and single wheel travel. The problem is formulated as a multi-objective optimization problem with 40 objectives and 49 design parameters. A hierarchical clustering method based on global sensitivity analysis is used to reduce the number of objectives to 30 by grouping correlated objectives together. Then, a dynamic summation of rank value is used as pseudo-objective functions to reformulate the multi-objective optimization to a single-objective optimization problem. The optimized results show a significant improvement in the correlation between the simulated model and the experimental model. Once accurate representation of the vehicle suspension model is achieved, further analysis, such as ride and handling performances, can be implemented for further optimization.

  10. Habitat Suitability Index Models: Black-shouldered kite

    USGS Publications Warehouse

    Faanes, Craig A.; Howard, Rebecca J.

    1987-01-01

    A review and synthesis of existing information were used to develop a model for evaluating black-shouldered kite habitat quality. The model is scaled to produce an index between 0 (unsuitable habitat) to 1.0 (optimal habitat). Habitat suitability index models are designed for use with the Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service. Guidelines for model application are provided.

  11. Uncertainty in BMP evaluation and optimization for watershed management

    NASA Astrophysics Data System (ADS)

    Chaubey, I.; Cibin, R.; Sudheer, K.; Her, Y.

    2012-12-01

    Use of computer simulation models have increased substantially to make watershed management decisions and to develop strategies for water quality improvements. These models are often used to evaluate potential benefits of various best management practices (BMPs) for reducing losses of pollutants from sources areas into receiving waterbodies. Similarly, use of simulation models in optimizing selection and placement of best management practices under single (maximization of crop production or minimization of pollutant transport) and multiple objective functions has increased recently. One of the limitations of the currently available assessment and optimization approaches is that the BMP strategies are considered deterministic. Uncertainties in input data (e.g. precipitation, streamflow, sediment, nutrient and pesticide losses measured, land use) and model parameters may result in considerable uncertainty in watershed response under various BMP options. We have developed and evaluated options to include uncertainty in BMP evaluation and optimization for watershed management. We have also applied these methods to evaluate uncertainty in ecosystem services from mixed land use watersheds. In this presentation, we will discuss methods to to quantify uncertainties in BMP assessment and optimization solutions due to uncertainties in model inputs and parameters. We have used a watershed model (Soil and Water Assessment Tool or SWAT) to simulate the hydrology and water quality in mixed land use watershed located in Midwest USA. The SWAT model was also used to represent various BMPs in the watershed needed to improve water quality. SWAT model parameters, land use change parameters, and climate change parameters were considered uncertain. It was observed that model parameters, land use and climate changes resulted in considerable uncertainties in BMP performance in reducing P, N, and sediment loads. In addition, climate change scenarios also affected uncertainties in SWAT simulated crop yields. Considerable uncertainties in the net cost and the water quality improvements resulted due to uncertainties in land use, climate change, and model parameter values.

  12. Thrust stand evaluation of engine performance improvement algorithms in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Conners, Timothy R.

    1992-01-01

    Results are presented from the evaluation of the performance seeking control (PSC) optimization algorithm developed by Smith et al. (1990) for F-15 aircraft, which optimizes the quasi-steady-state performance of an F100 derivative turbofan engine for several modes of operation. The PSC algorithm uses onboard software engine model that calculates thrust, stall margin, and other unmeasured variables for use in the optimization. Comparisons are presented between the load cell measurements, PSC onboard model thrust calculations, and posttest state variable model computations. Actual performance improvements using the PSC algorithm are presented for its various modes. The results of using PSC algorithm are compared with similar test case results using the HIDEC algorithm.

  13. Optimal Stabilization of Social Welfare under Small Variation of Operating Condition with Bifurcation Analysis

    NASA Astrophysics Data System (ADS)

    Chanda, Sandip; De, Abhinandan

    2016-12-01

    A social welfare optimization technique has been proposed in this paper with a developed state space based model and bifurcation analysis to offer substantial stability margin even in most inadvertent states of power system networks. The restoration of the power market dynamic price equilibrium has been negotiated in this paper, by forming Jacobian of the sensitivity matrix to regulate the state variables for the standardization of the quality of solution in worst possible contingencies of the network and even with co-option of intermittent renewable energy sources. The model has been tested in IEEE 30 bus system and illustrious particle swarm optimization has assisted the fusion of the proposed model and methodology.

  14. Analytic model for ultrasound energy receivers and their optimal electric loads II: Experimental validation

    NASA Astrophysics Data System (ADS)

    Gorostiaga, M.; Wapler, M. C.; Wallrabe, U.

    2017-10-01

    In this paper, we verify the two optimal electric load concepts based on the zero reflection condition and on the power maximization approach for ultrasound energy receivers. We test a high loss 1-3 composite transducer, and find that the measurements agree very well with the predictions of the analytic model for plate transducers that we have developed previously. Additionally, we also confirm that the power maximization and zero reflection loads are very different when the losses in the receiver are high. Finally, we compare the optimal load predictions by the KLM and the analytic models with frequency dependent attenuation to evaluate the influence of the viscosity.

  15. Model-Based Thermal System Design Optimization for the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Cataldo, Giuseppe; Niedner, Malcolm B.; Fixsen, Dale J.; Moseley, Samuel H.

    2017-01-01

    Spacecraft thermal model validation is normally performed by comparing model predictions with thermal test data and reducing their discrepancies to meet the mission requirements. Based on thermal engineering expertise, the model input parameters are adjusted to tune the model output response to the test data. The end result is not guaranteed to be the best solution in terms of reduced discrepancy and the process requires months to complete. A model-based methodology was developed to perform the validation process in a fully automated fashion and provide mathematical bases to the search for the optimal parameter set that minimizes the discrepancies between model and data. The methodology was successfully applied to several thermal subsystems of the James Webb Space Telescope (JWST). Global or quasiglobal optimal solutions were found and the total execution time of the model validation process was reduced to about two weeks. The model sensitivities to the parameters, which are required to solve the optimization problem, can be calculated automatically before the test begins and provide a library for sensitivity studies. This methodology represents a crucial commodity when testing complex, large-scale systems under time and budget constraints. Here, results for the JWST Core thermal system will be presented in detail.

  16. Model-based thermal system design optimization for the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Cataldo, Giuseppe; Niedner, Malcolm B.; Fixsen, Dale J.; Moseley, Samuel H.

    2017-10-01

    Spacecraft thermal model validation is normally performed by comparing model predictions with thermal test data and reducing their discrepancies to meet the mission requirements. Based on thermal engineering expertise, the model input parameters are adjusted to tune the model output response to the test data. The end result is not guaranteed to be the best solution in terms of reduced discrepancy and the process requires months to complete. A model-based methodology was developed to perform the validation process in a fully automated fashion and provide mathematical bases to the search for the optimal parameter set that minimizes the discrepancies between model and data. The methodology was successfully applied to several thermal subsystems of the James Webb Space Telescope (JWST). Global or quasiglobal optimal solutions were found and the total execution time of the model validation process was reduced to about two weeks. The model sensitivities to the parameters, which are required to solve the optimization problem, can be calculated automatically before the test begins and provide a library for sensitivity studies. This methodology represents a crucial commodity when testing complex, large-scale systems under time and budget constraints. Here, results for the JWST Core thermal system will be presented in detail.

  17. An Optimal Hierarchical Decision Model for a Regional Logistics Network with Environmental Impact Consideration

    PubMed Central

    Zhang, Dezhi; Li, Shuangyan

    2014-01-01

    This paper proposes a new model of simultaneous optimization of three-level logistics decisions, for logistics authorities, logistics operators, and logistics users, for regional logistics network with environmental impact consideration. The proposed model addresses the interaction among the three logistics players in a complete competitive logistics service market with CO2 emission charges. We also explicitly incorporate the impacts of the scale economics of the logistics park and the logistics users' demand elasticity into the model. The logistics authorities aim to maximize the total social welfare of the system, considering the demand of green logistics development by two different methods: optimal location of logistics nodes and charging a CO2 emission tax. Logistics operators are assumed to compete with logistics service fare and frequency, while logistics users minimize their own perceived logistics disutility given logistics operators' service fare and frequency. A heuristic algorithm based on the multinomial logit model is presented for the three-level decision model, and a numerical example is given to illustrate the above optimal model and its algorithm. The proposed model provides a useful tool for modeling competitive logistics services and evaluating logistics policies at the strategic level. PMID:24977209

  18. An optimal hierarchical decision model for a regional logistics network with environmental impact consideration.

    PubMed

    Zhang, Dezhi; Li, Shuangyan; Qin, Jin

    2014-01-01

    This paper proposes a new model of simultaneous optimization of three-level logistics decisions, for logistics authorities, logistics operators, and logistics users, for regional logistics network with environmental impact consideration. The proposed model addresses the interaction among the three logistics players in a complete competitive logistics service market with CO2 emission charges. We also explicitly incorporate the impacts of the scale economics of the logistics park and the logistics users' demand elasticity into the model. The logistics authorities aim to maximize the total social welfare of the system, considering the demand of green logistics development by two different methods: optimal location of logistics nodes and charging a CO2 emission tax. Logistics operators are assumed to compete with logistics service fare and frequency, while logistics users minimize their own perceived logistics disutility given logistics operators' service fare and frequency. A heuristic algorithm based on the multinomial logit model is presented for the three-level decision model, and a numerical example is given to illustrate the above optimal model and its algorithm. The proposed model provides a useful tool for modeling competitive logistics services and evaluating logistics policies at the strategic level.

  19. Application of Hybrid Optimization-Expert System for Optimal Power Management on Board Space Power Station

    NASA Technical Reports Server (NTRS)

    Momoh, James; Chattopadhyay, Deb; Basheer, Omar Ali AL

    1996-01-01

    The space power system has two sources of energy: photo-voltaic blankets and batteries. The optimal power management problem on-board has two broad operations: off-line power scheduling to determine the load allocation schedule of the next several hours based on the forecast of load and solar power availability. The nature of this study puts less emphasis on speed requirement for computation and more importance on the optimality of the solution. The second category problem, on-line power rescheduling, is needed in the event of occurrence of a contingency to optimally reschedule the loads to minimize the 'unused' or 'wasted' energy while keeping the priority on certain type of load and minimum disturbance of the original optimal schedule determined in the first-stage off-line study. The computational performance of the on-line 'rescheduler' is an important criterion and plays a critical role in the selection of the appropriate tool. The Howard University Center for Energy Systems and Control has developed a hybrid optimization-expert systems based power management program. The pre-scheduler has been developed using a non-linear multi-objective optimization technique called the Outer Approximation method and implemented using the General Algebraic Modeling System (GAMS). The optimization model has the capability of dealing with multiple conflicting objectives viz. maximizing energy utilization, minimizing the variation of load over a day, etc. and incorporates several complex interaction between the loads in a space system. The rescheduling is performed using an expert system developed in PROLOG which utilizes a rule-base for reallocation of the loads in an emergency condition viz. shortage of power due to solar array failure, increase of base load, addition of new activity, repetition of old activity etc. Both the modules handle decision making on battery charging and discharging and allocation of loads over a time-horizon of a day divided into intervals of 10 minutes. The models have been extensively tested using a case study for the Space Station Freedom and the results for the case study will be presented. Several future enhancements of the pre-scheduler and the 'rescheduler' have been outlined which include graphic analyzer for the on-line module, incorporating probabilistic considerations, including spatial location of the loads and the connectivity using a direct current (DC) load flow model.

  20. Smart Water: Energy-Water Optimization in Drinking Water Systems

    EPA Science Inventory

    This project aims to develop and commercialize a Smart Water Platform – Sensor-based Data-driven Energy-Water Optimization technology in drinking water systems. The key technological advances rely on cross-platform data acquisition and management system, model-based real-time sys...

Top