A Simulation of Readiness-Based Sparing Policies
2017-06-01
variant of a greedy heuristic algorithm to set stock levels and estimate overall WS availability. Our discrete event simulation is then used to test the...available in the optimization tools. 14. SUBJECT TERMS readiness-based sparing, discrete event simulation, optimization, multi-indenture...variant of a greedy heuristic algorithm to set stock levels and estimate overall WS availability. Our discrete event simulation is then used to test the
Seismic signal time-frequency analysis based on multi-directional window using greedy strategy
NASA Astrophysics Data System (ADS)
Chen, Yingpin; Peng, Zhenming; Cheng, Zhuyuan; Tian, Lin
2017-08-01
Wigner-Ville distribution (WVD) is an important time-frequency analysis technology with a high energy distribution in seismic signal processing. However, it is interfered by many cross terms. To suppress the cross terms of the WVD and keep the concentration of its high energy distribution, an adaptive multi-directional filtering window in the ambiguity domain is proposed. This begins with the relationship of the Cohen distribution and the Gabor transform combining the greedy strategy and the rotational invariance property of the fractional Fourier transform in order to propose the multi-directional window, which extends the one-dimensional, one directional, optimal window function of the optimal fractional Gabor transform (OFrGT) to a two-dimensional, multi-directional window in the ambiguity domain. In this way, the multi-directional window matches the main auto terms of the WVD more precisely. Using the greedy strategy, the proposed window takes into account the optimal and other suboptimal directions, which also solves the problem of the OFrGT, called the local concentration phenomenon, when encountering a multi-component signal. Experiments on different types of both the signal models and the real seismic signals reveal that the proposed window can overcome the drawbacks of the WVD and the OFrGT mentioned above. Finally, the proposed method is applied to a seismic signal's spectral decomposition. The results show that the proposed method can explore the space distribution of a reservoir more precisely.
A statistical-based scheduling algorithm in automated data path synthesis
NASA Technical Reports Server (NTRS)
Jeon, Byung Wook; Lursinsap, Chidchanok
1992-01-01
In this paper, we propose a new heuristic scheduling algorithm based on the statistical analysis of the cumulative frequency distribution of operations among control steps. It has a tendency of escaping from local minima and therefore reaching a globally optimal solution. The presented algorithm considers the real world constraints such as chained operations, multicycle operations, and pipelined data paths. The result of the experiment shows that it gives optimal solutions, even though it is greedy in nature.
An Optimal Schedule for Urban Road Network Repair Based on the Greedy Algorithm
Lu, Guangquan; Xiong, Ying; Wang, Yunpeng
2016-01-01
The schedule of urban road network recovery caused by rainstorms, snow, and other bad weather conditions, traffic incidents, and other daily events is essential. However, limited studies have been conducted to investigate this problem. We fill this research gap by proposing an optimal schedule for urban road network repair with limited repair resources based on the greedy algorithm. Critical links will be given priority in repair according to the basic concept of the greedy algorithm. In this study, the link whose restoration produces the ratio of the system-wide travel time of the current network to the worst network is the minimum. We define such a link as the critical link for the current network. We will re-evaluate the importance of damaged links after each repair process is completed. That is, the critical link ranking will be changed along with the repair process because of the interaction among links. We repair the most critical link for the specific network state based on the greedy algorithm to obtain the optimal schedule. The algorithm can still quickly obtain an optimal schedule even if the scale of the road network is large because the greedy algorithm can reduce computational complexity. We prove that the problem can obtain the optimal solution using the greedy algorithm in theory. The algorithm is also demonstrated in the Sioux Falls network. The problem discussed in this paper is highly significant in dealing with urban road network restoration. PMID:27768732
Exploring Maps with Greedy Navigators
NASA Astrophysics Data System (ADS)
Lee, Sang Hoon; Holme, Petter
2012-03-01
During the last decade of network research focusing on structural and dynamical properties of networks, the role of network users has been more or less underestimated from the bird’s-eye view of global perspective. In this era of global positioning system equipped smartphones, however, a user’s ability to access local geometric information and find efficient pathways on networks plays a crucial role, rather than the globally optimal pathways. We present a simple greedy spatial navigation strategy as a probe to explore spatial networks. These greedy navigators use directional information in every move they take, without being trapped in a dead end based on their memory about previous routes. We suggest that the centralities measures have to be modified to incorporate the navigators’ behavior, and present the intriguing effect of navigators’ greediness where removing some edges may actually enhance the routing efficiency, which is reminiscent of Braess’s paradox. In addition, using samples of road structures in large cities around the world, it is shown that the navigability measure we define reflects unique structural properties, which are not easy to predict from other topological characteristics. In this respect, we believe that our routing scheme significantly moves the routing problem on networks one step closer to reality, incorporating the inevitable incompleteness of navigators’ information.
Distributed resource allocation under communication constraints
NASA Astrophysics Data System (ADS)
Dodin, Pierre; Nimier, Vincent
2001-03-01
This paper deals with a study of the multi-sensor management problem for multi-target tracking. The collaboration between many sensors observing the same target means that they are able to fuse their data during the information process. Then one must take into account this possibility to compute the optimal association sensors-target at each step of time. In order to solve this problem for real large scale system, one must both consider the information aspect and the control aspect of the problem. To unify these problems, one possibility is to use a decentralized filtering algorithm locally driven by an assignment algorithm. The decentralized filtering algorithm we use in our model is the filtering algorithm of Grime, which relaxes the usual full-connected hypothesis. By full-connected, one means that the information in a full-connected system is totally distributed everywhere at the same moment, which is unacceptable for a real large scale system. We modelize the distributed assignment decision with the help of a greedy algorithm. Each sensor performs a global optimization, in order to estimate other information sets. A consequence of the relaxation of the full- connected hypothesis is that the sensors' information set are not the same at each step of time, producing an information dis- symmetry in the system. The assignment algorithm uses a local knowledge of this dis-symmetry. By testing the reactions and the coherence of the local assignment decisions of our system, against maneuvering targets, we show that it is still possible to manage with decentralized assignment control even though the system is not full-connected.
Approximation algorithms for a genetic diagnostics problem.
Kosaraju, S R; Schäffer, A A; Biesecker, L G
1998-01-01
We define and study a combinatorial problem called WEIGHTED DIAGNOSTIC COVER (WDC) that models the use of a laboratory technique called genotyping in the diagnosis of an important class of chromosomal aberrations. An optimal solution to WDC would enable us to define a genetic assay that maximizes the diagnostic power for a specified cost of laboratory work. We develop approximation algorithms for WDC by making use of the well-known problem SET COVER for which the greedy heuristic has been extensively studied. We prove worst-case performance bounds on the greedy heuristic for WDC and for another heuristic we call directional greedy. We implemented both heuristics. We also implemented a local search heuristic that takes the solutions obtained by greedy and dir-greedy and applies swaps until they are locally optimal. We report their performance on a real data set that is representative of the options that a clinical geneticist faces for the real diagnostic problem. Many open problems related to WDC remain, both of theoretical interest and practical importance.
Network community-detection enhancement by proper weighting
NASA Astrophysics Data System (ADS)
Khadivi, Alireza; Ajdari Rad, Ali; Hasler, Martin
2011-04-01
In this paper, we show how proper assignment of weights to the edges of a complex network can enhance the detection of communities and how it can circumvent the resolution limit and the extreme degeneracy problems associated with modularity. Our general weighting scheme takes advantage of graph theoretic measures and it introduces two heuristics for tuning its parameters. We use this weighting as a preprocessing step for the greedy modularity optimization algorithm of Newman to improve its performance. The result of the experiments of our approach on computer-generated and real-world data networks confirm that the proposed approach not only mitigates the problems of modularity but also improves the modularity optimization.
Ranwez, Vincent
2016-01-01
Multiple sequence alignment (MSA) is a crucial step in many molecular analyses and many MSA tools have been developed. Most of them use a greedy approach to construct a first alignment that is then refined by optimizing the sum of pair score (SP-score). The SP-score estimation is thus a bottleneck for most MSA tools since it is repeatedly required and is time consuming. Given an alignment of n sequences and L sites, I introduce here optimized solutions reaching O(nL) time complexity for affine gap cost, instead of O(n2L), which are easy to implement.
Hartmann, Klaas; Steel, Mike
2006-08-01
The Noah's Ark Problem (NAP) is a comprehensive cost-effectiveness methodology for biodiversity conservation that was introduced by Weitzman (1998) and utilizes the phylogenetic tree containing the taxa of interest to assess biodiversity. Given a set of taxa, each of which has a particular survival probability that can be increased at some cost, the NAP seeks to allocate limited funds to conserving these taxa so that the future expected biodiversity is maximized. Finding optimal solutions using this framework is a computationally difficult problem to which a simple and efficient "greedy" algorithm has been proposed in the literature and applied to conservation problems. We show that, although algorithms of this type cannot produce optimal solutions for the general NAP, there are two restricted scenarios of the NAP for which a greedy algorithm is guaranteed to produce optimal solutions. The first scenario requires the taxa to have equal conservation cost; the second scenario requires an ultrametric tree. The NAP assumes a linear relationship between the funding allocated to conservation of a taxon and the increased survival probability of that taxon. This relationship is briefly investigated and one variation is suggested that can also be solved using a greedy algorithm.
Robust Planning for Effects-Based Operations
2006-06-01
Algorithm ......................................... 34 2.6 Robust Optimization Literature ..................................... 36 2.6.1 Protecting Against...Model Formulation ...................... 55 3.1.5 Deterministic EBO Model Example and Performance ............. 59 3.1.6 Greedy Algorithm ...111 4.1.9 Conclusions on Robust EBO Model Performance .................... 116 4.2 Greedy Algorithm versus EBO Models
Yang, Jin; Liu, Fagui; Cao, Jianneng; Wang, Liangming
2016-07-14
Mobile sinks can achieve load-balancing and energy-consumption balancing across the wireless sensor networks (WSNs). However, the frequent change of the paths between source nodes and the sinks caused by sink mobility introduces significant overhead in terms of energy and packet delays. To enhance network performance of WSNs with mobile sinks (MWSNs), we present an efficient routing strategy, which is formulated as an optimization problem and employs the particle swarm optimization algorithm (PSO) to build the optimal routing paths. However, the conventional PSO is insufficient to solve discrete routing optimization problems. Therefore, a novel greedy discrete particle swarm optimization with memory (GMDPSO) is put forward to address this problem. In the GMDPSO, particle's position and velocity of traditional PSO are redefined under discrete MWSNs scenario. Particle updating rule is also reconsidered based on the subnetwork topology of MWSNs. Besides, by improving the greedy forwarding routing, a greedy search strategy is designed to drive particles to find a better position quickly. Furthermore, searching history is memorized to accelerate convergence. Simulation results demonstrate that our new protocol significantly improves the robustness and adapts to rapid topological changes with multiple mobile sinks, while efficiently reducing the communication overhead and the energy consumption.
Robust 2DPCA with non-greedy l1 -norm maximization for image analysis.
Wang, Rong; Nie, Feiping; Yang, Xiaojun; Gao, Feifei; Yao, Minli
2015-05-01
2-D principal component analysis based on l1 -norm (2DPCA-L1) is a recently developed approach for robust dimensionality reduction and feature extraction in image domain. Normally, a greedy strategy is applied due to the difficulty of directly solving the l1 -norm maximization problem, which is, however, easy to get stuck in local solution. In this paper, we propose a robust 2DPCA with non-greedy l1 -norm maximization in which all projection directions are optimized simultaneously. Experimental results on face and other datasets confirm the effectiveness of the proposed approach.
Yang, Jin; Liu, Fagui; Cao, Jianneng; Wang, Liangming
2016-01-01
Mobile sinks can achieve load-balancing and energy-consumption balancing across the wireless sensor networks (WSNs). However, the frequent change of the paths between source nodes and the sinks caused by sink mobility introduces significant overhead in terms of energy and packet delays. To enhance network performance of WSNs with mobile sinks (MWSNs), we present an efficient routing strategy, which is formulated as an optimization problem and employs the particle swarm optimization algorithm (PSO) to build the optimal routing paths. However, the conventional PSO is insufficient to solve discrete routing optimization problems. Therefore, a novel greedy discrete particle swarm optimization with memory (GMDPSO) is put forward to address this problem. In the GMDPSO, particle’s position and velocity of traditional PSO are redefined under discrete MWSNs scenario. Particle updating rule is also reconsidered based on the subnetwork topology of MWSNs. Besides, by improving the greedy forwarding routing, a greedy search strategy is designed to drive particles to find a better position quickly. Furthermore, searching history is memorized to accelerate convergence. Simulation results demonstrate that our new protocol significantly improves the robustness and adapts to rapid topological changes with multiple mobile sinks, while efficiently reducing the communication overhead and the energy consumption. PMID:27428971
Multi-camera sensor system for 3D segmentation and localization of multiple mobile robots.
Losada, Cristina; Mazo, Manuel; Palazuelos, Sira; Pizarro, Daniel; Marrón, Marta
2010-01-01
This paper presents a method for obtaining the motion segmentation and 3D localization of multiple mobile robots in an intelligent space using a multi-camera sensor system. The set of calibrated and synchronized cameras are placed in fixed positions within the environment (intelligent space). The proposed algorithm for motion segmentation and 3D localization is based on the minimization of an objective function. This function includes information from all the cameras, and it does not rely on previous knowledge or invasive landmarks on board the robots. The proposed objective function depends on three groups of variables: the segmentation boundaries, the motion parameters and the depth. For the objective function minimization, we use a greedy iterative algorithm with three steps that, after initialization of segmentation boundaries and depth, are repeated until convergence.
A noniterative greedy algorithm for multiframe point correspondence.
Shafique, Khurram; Shah, Mubarak
2005-01-01
This paper presents a framework for finding point correspondences in monocular image sequences over multiple frames. The general problem of multiframe point correspondence is NP-hard for three or more frames. A polynomial time algorithm for a restriction of this problem is presented and is used as the basis of the proposed greedy algorithm for the general problem. The greedy nature of the proposed algorithm allows it to be used in real-time systems for tracking and surveillance, etc. In addition, the proposed algorithm deals with the problems of occlusion, missed detections, and false positives by using a single noniterative greedy optimization scheme and, hence, reduces the complexity of the overall algorithm as compared to most existing approaches where multiple heuristics are used for the same purpose. While most greedy algorithms for point tracking do not allow for entry and exit of the points from the scene, this is not a limitation for the proposed algorithm. Experiments with real and synthetic data over a wide range of scenarios and system parameters are presented to validate the claims about the performance of the proposed algorithm.
A greedy algorithm for species selection in dimension reduction of combustion chemistry
NASA Astrophysics Data System (ADS)
Hiremath, Varun; Ren, Zhuyin; Pope, Stephen B.
2010-09-01
Computational calculations of combustion problems involving large numbers of species and reactions with a detailed description of the chemistry can be very expensive. Numerous dimension reduction techniques have been developed in the past to reduce the computational cost. In this paper, we consider the rate controlled constrained-equilibrium (RCCE) dimension reduction method, in which a set of constrained species is specified. For a given number of constrained species, the 'optimal' set of constrained species is that which minimizes the dimension reduction error. The direct determination of the optimal set is computationally infeasible, and instead we present a greedy algorithm which aims at determining a 'good' set of constrained species; that is, one leading to near-minimal dimension reduction error. The partially-stirred reactor (PaSR) involving methane premixed combustion with chemistry described by the GRI-Mech 1.2 mechanism containing 31 species is used to test the algorithm. Results on dimension reduction errors for different sets of constrained species are presented to assess the effectiveness of the greedy algorithm. It is shown that the first four constrained species selected using the proposed greedy algorithm produce lower dimension reduction error than constraints on the major species: CH4, O2, CO2 and H2O. It is also shown that the first ten constrained species selected using the proposed greedy algorithm produce a non-increasing dimension reduction error with every additional constrained species; and produce the lowest dimension reduction error in many cases tested over a wide range of equivalence ratios, pressures and initial temperatures.
WFIRST: Exoplanet Target Selection and Scheduling with Greedy Optimization
NASA Astrophysics Data System (ADS)
Keithly, Dean; Garrett, Daniel; Delacroix, Christian; Savransky, Dmitry
2018-01-01
We present target selection and scheduling algorithms for missions with direct imaging of exoplanets, and the Wide Field Infrared Survey Telescope (WFIRST) in particular, which will be equipped with a coronagraphic instrument (CGI). Optimal scheduling of CGI targets can maximize the expected value of directly imaged exoplanets (completeness). Using target completeness as a reward metric and integration time plus overhead time as a cost metric, we can maximize the sum completeness for a mission with a fixed duration. We optimize over these metrics to create a list of target stars using a greedy optimization algorithm based off altruistic yield optimization (AYO) under ideal conditions. We simulate full missions using EXOSIMS by observing targets in this list for their predetermined integration times. In this poster, we report the theoretical maximum sum completeness, mean number of detected exoplanets from Monte Carlo simulations, and the ideal expected value of the simulated missions.
A Guiding Evolutionary Algorithm with Greedy Strategy for Global Optimization Problems
Cao, Leilei; Xu, Lihong; Goodman, Erik D.
2016-01-01
A Guiding Evolutionary Algorithm (GEA) with greedy strategy for global optimization problems is proposed. Inspired by Particle Swarm Optimization, the Genetic Algorithm, and the Bat Algorithm, the GEA was designed to retain some advantages of each method while avoiding some disadvantages. In contrast to the usual Genetic Algorithm, each individual in GEA is crossed with the current global best one instead of a randomly selected individual. The current best individual served as a guide to attract offspring to its region of genotype space. Mutation was added to offspring according to a dynamic mutation probability. To increase the capability of exploitation, a local search mechanism was applied to new individuals according to a dynamic probability of local search. Experimental results show that GEA outperformed the other three typical global optimization algorithms with which it was compared. PMID:27293421
A Guiding Evolutionary Algorithm with Greedy Strategy for Global Optimization Problems.
Cao, Leilei; Xu, Lihong; Goodman, Erik D
2016-01-01
A Guiding Evolutionary Algorithm (GEA) with greedy strategy for global optimization problems is proposed. Inspired by Particle Swarm Optimization, the Genetic Algorithm, and the Bat Algorithm, the GEA was designed to retain some advantages of each method while avoiding some disadvantages. In contrast to the usual Genetic Algorithm, each individual in GEA is crossed with the current global best one instead of a randomly selected individual. The current best individual served as a guide to attract offspring to its region of genotype space. Mutation was added to offspring according to a dynamic mutation probability. To increase the capability of exploitation, a local search mechanism was applied to new individuals according to a dynamic probability of local search. Experimental results show that GEA outperformed the other three typical global optimization algorithms with which it was compared.
Optimal space-time attacks on system state estimation under a sparsity constraint
NASA Astrophysics Data System (ADS)
Lu, Jingyang; Niu, Ruixin; Han, Puxiao
2016-05-01
System state estimation in the presence of an adversary that injects false information into sensor readings has attracted much attention in wide application areas, such as target tracking with compromised sensors, secure monitoring of dynamic electric power systems, secure driverless cars, and radar tracking and detection in the presence of jammers. From a malicious adversary's perspective, the optimal strategy for attacking a multi-sensor dynamic system over sensors and over time is investigated. It is assumed that the system defender can perfectly detect the attacks and identify and remove sensor data once they are corrupted by false information injected by the adversary. With this in mind, the adversary's goal is to maximize the covariance matrix of the system state estimate by the end of attack period under a sparse attack constraint such that the adversary can only attack the system a few times over time and over sensors. The sparsity assumption is due to the adversary's limited resources and his/her intention to reduce the chance of being detected by the system defender. This becomes an integer programming problem and its optimal solution, the exhaustive search, is intractable with a prohibitive complexity, especially for a system with a large number of sensors and over a large number of time steps. Several suboptimal solutions, such as those based on greedy search and dynamic programming are proposed to find the attack strategies. Examples and numerical results are provided in order to illustrate the effectiveness and the reduced computational complexities of the proposed attack strategies.
A Modified Distributed Bees Algorithm for Multi-Sensor Task Allocation.
Tkach, Itshak; Jevtić, Aleksandar; Nof, Shimon Y; Edan, Yael
2018-03-02
Multi-sensor systems can play an important role in monitoring tasks and detecting targets. However, real-time allocation of heterogeneous sensors to dynamic targets/tasks that are unknown a priori in their locations and priorities is a challenge. This paper presents a Modified Distributed Bees Algorithm (MDBA) that is developed to allocate stationary heterogeneous sensors to upcoming unknown tasks using a decentralized, swarm intelligence approach to minimize the task detection times. Sensors are allocated to tasks based on sensors' performance, tasks' priorities, and the distances of the sensors from the locations where the tasks are being executed. The algorithm was compared to a Distributed Bees Algorithm (DBA), a Bees System, and two common multi-sensor algorithms, market-based and greedy-based algorithms, which were fitted for the specific task. Simulation analyses revealed that MDBA achieved statistically significant improved performance by 7% with respect to DBA as the second-best algorithm, and by 19% with respect to Greedy algorithm, which was the worst, thus indicating its fitness to provide solutions for heterogeneous multi-sensor systems.
A Modified Distributed Bees Algorithm for Multi-Sensor Task Allocation †
Nof, Shimon Y.; Edan, Yael
2018-01-01
Multi-sensor systems can play an important role in monitoring tasks and detecting targets. However, real-time allocation of heterogeneous sensors to dynamic targets/tasks that are unknown a priori in their locations and priorities is a challenge. This paper presents a Modified Distributed Bees Algorithm (MDBA) that is developed to allocate stationary heterogeneous sensors to upcoming unknown tasks using a decentralized, swarm intelligence approach to minimize the task detection times. Sensors are allocated to tasks based on sensors’ performance, tasks’ priorities, and the distances of the sensors from the locations where the tasks are being executed. The algorithm was compared to a Distributed Bees Algorithm (DBA), a Bees System, and two common multi-sensor algorithms, market-based and greedy-based algorithms, which were fitted for the specific task. Simulation analyses revealed that MDBA achieved statistically significant improved performance by 7% with respect to DBA as the second-best algorithm, and by 19% with respect to Greedy algorithm, which was the worst, thus indicating its fitness to provide solutions for heterogeneous multi-sensor systems. PMID:29498683
Phunchongharn, Phond; Hossain, Ekram; Camorlinga, Sergio
2011-11-01
We study the multiple access problem for e-Health applications (referred to as secondary users) coexisting with medical devices (referred to as primary or protected users) in a hospital environment. In particular, we focus on transmission scheduling and power control of secondary users in multiple spatial reuse time-division multiple access (STDMA) networks. The objective is to maximize the spectrum utilization of secondary users and minimize their power consumption subject to the electromagnetic interference (EMI) constraints for active and passive medical devices and minimum throughput guarantee for secondary users. The multiple access problem is formulated as a dual objective optimization problem which is shown to be NP-complete. We propose a joint scheduling and power control algorithm based on a greedy approach to solve the problem with much lower computational complexity. To this end, an enhanced greedy algorithm is proposed to improve the performance of the greedy algorithm by finding the optimal sequence of secondary users for scheduling. Using extensive simulations, the tradeoff in performance in terms of spectrum utilization, energy consumption, and computational complexity is evaluated for both the algorithms.
NASA Astrophysics Data System (ADS)
Tereshin, Alexander A.; Usilin, Sergey A.; Arlazarov, Vladimir V.
2018-04-01
This paper aims to study the problem of multi-class object detection in video stream with Viola-Jones cascades. An adaptive algorithm for selecting Viola-Jones cascade based on greedy choice strategy in solution of the N-armed bandit problem is proposed. The efficiency of the algorithm on the problem of detection and recognition of the bank card logos in the video stream is shown. The proposed algorithm can be effectively used in documents localization and identification, recognition of road scene elements, localization and tracking of the lengthy objects , and for solving other problems of rigid object detection in a heterogeneous data flows. The computational efficiency of the algorithm makes it possible to use it both on personal computers and on mobile devices based on processors with low power consumption.
NASA Astrophysics Data System (ADS)
Singh, Puja; Prakash, Shashi
2017-07-01
Hybrid wireless-optical broadband access network (WOBAN) or Fiber-Wireless (FiWi) is the integration of wireless access network and optical network. This hybrid multi-domain network adopts the advantages of wireless and optical domains and serves the demand of technology savvy users. FiWi exhibits the properties of cost effectiveness, robustness, flexibility, high capacity, reliability and is self organized. Optical Network Unit (ONU) placement problem in FiWi contributes in simplifying the network design and enhances the performance in terms of cost efficiency and increased throughput. Several individual-based algorithms, such as Simulated Annealing (SA), Tabu Search, etc. have been suggested for ONU placement, but these algorithms suffer from premature convergence (trapping in a local optima). The present research work undertakes the deployment of FiWi and proposes a novel nature-inspired heuristic paradigm called Moth-Flame optimization (MFO) algorithm for multiple optical network units' placement. MFO is a population based algorithm. Population-based algorithms are better in handling local optima avoidance. The simulation results are compared with the existing Greedy and Simulated Annealing algorithms to optimize the position of ONUs. To the best of our knowledge, MFO algorithm has been used for the first time in this domain, moreover it has been able to provide very promising and competitive results. The performance of MFO algorithm has been analyzed by varying the 'b' parameter. MFO algorithm results in faster convergence than the existing strategies of Greedy and SA and returns a lower value of overall cost function. The results exhibit the dependence of the objective function on the distribution of wireless users also.
Team formation and breakup in multiagent systems
NASA Astrophysics Data System (ADS)
Rao, Venkatesh Guru
The goal of this dissertation is to pose and solve problems involving team formation and breakup in two specific multiagent domains: formation travel and space-based interferometric observatories. The methodology employed comprises elements drawn from control theory, scheduling theory and artificial intelligence (AI). The original contribution of the work comprises three elements. The first contribution, the partitioned state-space approach is a technique for formulating and solving co-ordinated motion problem using calculus of variations techniques. The approach is applied to obtain optimal two-agent formation travel trajectories on graphs. The second contribution is the class of MixTeam algorithms, a class of team dispatchers that extends classical dispatching by accommodating team formation and breakup and exploration/exploitation learning. The algorithms are applied to observation scheduling and constellation geometry design for interferometric space telescopes. The use of feedback control for team scheduling is also demonstrated with these algorithms. The third contribution is the analysis of the optimality properties of greedy, or myopic, decision-making for a simple class of team dispatching problems. This analysis represents a first step towards the complete analysis of complex team schedulers such as the MixTeam algorithms. The contributions represent an extension to the literature on team dynamics in control theory. The broad conclusions that emerge from this research are that greedy or myopic decision-making strategies for teams perform well when specific parameters in the domain are weakly affected by an agent's actions, and that intelligent systems require a closer integration of domain knowledge in decision-making functions.
Sniffer Channel Selection for Monitoring Wireless LANs
NASA Astrophysics Data System (ADS)
Song, Yuan; Chen, Xian; Kim, Yoo-Ah; Wang, Bing; Chen, Guanling
Wireless sniffers are often used to monitor APs in wireless LANs (WLANs) for network management, fault detection, traffic characterization, and optimizing deployment. It is cost effective to deploy single-radio sniffers that can monitor multiple nearby APs. However, since nearby APs often operate on orthogonal channels, a sniffer needs to switch among multiple channels to monitor its nearby APs. In this paper, we formulate and solve two optimization problems on sniffer channel selection. Both problems require that each AP be monitored by at least one sniffer. In addition, one optimization problem requires minimizing the maximum number of channels that a sniffer listens to, and the other requires minimizing the total number of channels that the sniffers listen to. We propose a novel LP-relaxation based algorithm, and two simple greedy heuristics for the above two optimization problems. Through simulation, we demonstrate that all the algorithms are effective in achieving their optimization goals, and the LP-based algorithm outperforms the greedy heuristics.
Information-optimal genome assembly via sparse read-overlap graphs.
Shomorony, Ilan; Kim, Samuel H; Courtade, Thomas A; Tse, David N C
2016-09-01
In the context of third-generation long-read sequencing technologies, read-overlap-based approaches are expected to play a central role in the assembly step. A fundamental challenge in assembling from a read-overlap graph is that the true sequence corresponds to a Hamiltonian path on the graph, and, under most formulations, the assembly problem becomes NP-hard, restricting practical approaches to heuristics. In this work, we avoid this seemingly fundamental barrier by first setting the computational complexity issue aside, and seeking an algorithm that targets information limits In particular, we consider a basic feasibility question: when does the set of reads contain enough information to allow unambiguous reconstruction of the true sequence? Based on insights from this information feasibility question, we present an algorithm-the Not-So-Greedy algorithm-to construct a sparse read-overlap graph. Unlike most other assembly algorithms, Not-So-Greedy comes with a performance guarantee: whenever information feasibility conditions are satisfied, the algorithm reduces the assembly problem to an Eulerian path problem on the resulting graph, and can thus be solved in linear time. In practice, this theoretical guarantee translates into assemblies of higher quality. Evaluations on both simulated reads from real genomes and a PacBio Escherichia coli K12 dataset demonstrate that Not-So-Greedy compares favorably with standard string graph approaches in terms of accuracy of the resulting read-overlap graph and contig N50. Available at github.com/samhykim/nsg courtade@eecs.berkeley.edu or dntse@stanford.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Research on Multirobot Pursuit Task Allocation Algorithm Based on Emotional Cooperation Factor
Fang, Baofu; Chen, Lu; Wang, Hao; Dai, Shuanglu; Zhong, Qiubo
2014-01-01
Multirobot task allocation is a hot issue in the field of robot research. A new emotional model is used with the self-interested robot, which gives a new way to measure self-interested robots' individual cooperative willingness in the problem of multirobot task allocation. Emotional cooperation factor is introduced into self-interested robot; it is updated based on emotional attenuation and external stimuli. Then a multirobot pursuit task allocation algorithm is proposed, which is based on emotional cooperation factor. Combined with the two-step auction algorithm recruiting team leaders and team collaborators, set up pursuit teams, and finally use certain strategies to complete the pursuit task. In order to verify the effectiveness of this algorithm, some comparing experiments have been done with the instantaneous greedy optimal auction algorithm; the results of experiments show that the total pursuit time and total team revenue can be optimized by using this algorithm. PMID:25152925
Research on multirobot pursuit task allocation algorithm based on emotional cooperation factor.
Fang, Baofu; Chen, Lu; Wang, Hao; Dai, Shuanglu; Zhong, Qiubo
2014-01-01
Multirobot task allocation is a hot issue in the field of robot research. A new emotional model is used with the self-interested robot, which gives a new way to measure self-interested robots' individual cooperative willingness in the problem of multirobot task allocation. Emotional cooperation factor is introduced into self-interested robot; it is updated based on emotional attenuation and external stimuli. Then a multirobot pursuit task allocation algorithm is proposed, which is based on emotional cooperation factor. Combined with the two-step auction algorithm recruiting team leaders and team collaborators, set up pursuit teams, and finally use certain strategies to complete the pursuit task. In order to verify the effectiveness of this algorithm, some comparing experiments have been done with the instantaneous greedy optimal auction algorithm; the results of experiments show that the total pursuit time and total team revenue can be optimized by using this algorithm.
A tight upper bound for quadratic knapsack problems in grid-based wind farm layout optimization
NASA Astrophysics Data System (ADS)
Quan, Ning; Kim, Harrison M.
2018-03-01
The 0-1 quadratic knapsack problem (QKP) in wind farm layout optimization models possible turbine locations as nodes, and power loss due to wake effects between pairs of turbines as edges in a complete graph. The goal is to select up to a certain number of turbine locations such that the sum of selected node and edge coefficients is maximized. Finding the optimal solution to the QKP is difficult in general, but it is possible to obtain a tight upper bound on the QKP's optimal value which facilitates the use of heuristics to solve QKPs by giving a good estimate of the optimality gap of any feasible solution. This article applies an upper bound method that is especially well-suited to QKPs in wind farm layout optimization due to certain features of the formulation that reduce the computational complexity of calculating the upper bound. The usefulness of the upper bound was demonstrated by assessing the performance of the greedy algorithm for solving QKPs in wind farm layout optimization. The results show that the greedy algorithm produces good solutions within 4% of the optimal value for small to medium sized problems considered in this article.
Adaptive Greedy Dictionary Selection for Web Media Summarization.
Cong, Yang; Liu, Ji; Sun, Gan; You, Quanzeng; Li, Yuncheng; Luo, Jiebo
2017-01-01
Initializing an effective dictionary is an indispensable step for sparse representation. In this paper, we focus on the dictionary selection problem with the objective to select a compact subset of basis from original training data instead of learning a new dictionary matrix as dictionary learning models do. We first design a new dictionary selection model via l 2,0 norm. For model optimization, we propose two methods: one is the standard forward-backward greedy algorithm, which is not suitable for large-scale problems; the other is based on the gradient cues at each forward iteration and speeds up the process dramatically. In comparison with the state-of-the-art dictionary selection models, our model is not only more effective and efficient, but also can control the sparsity. To evaluate the performance of our new model, we select two practical web media summarization problems: 1) we build a new data set consisting of around 500 users, 3000 albums, and 1 million images, and achieve effective assisted albuming based on our model and 2) by formulating the video summarization problem as a dictionary selection issue, we employ our model to extract keyframes from a video sequence in a more flexible way. Generally, our model outperforms the state-of-the-art methods in both these two tasks.
Feature Clustering for Accelerating Parallel Coordinate Descent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scherrer, Chad; Tewari, Ambuj; Halappanavar, Mahantesh
2012-12-06
We demonstrate an approach for accelerating calculation of the regularization path for L1 sparse logistic regression problems. We show the benefit of feature clustering as a preconditioning step for parallel block-greedy coordinate descent algorithms.
2014-01-01
Berth allocation is the forefront operation performed when ships arrive at a port and is a critical task in container port optimization. Minimizing the time ships spend at berths constitutes an important objective of berth allocation problems. This study focuses on the discrete dynamic berth allocation problem (discrete DBAP), which aims to minimize total service time, and proposes an iterated greedy (IG) algorithm to solve it. The proposed IG algorithm is tested on three benchmark problem sets. Experimental results show that the proposed IG algorithm can obtain optimal solutions for all test instances of the first and second problem sets and outperforms the best-known solutions for 35 out of 90 test instances of the third problem set. PMID:25295295
Learning Multirobot Hose Transportation and Deployment by Distributed Round-Robin Q-Learning.
Fernandez-Gauna, Borja; Etxeberria-Agiriano, Ismael; Graña, Manuel
2015-01-01
Multi-Agent Reinforcement Learning (MARL) algorithms face two main difficulties: the curse of dimensionality, and environment non-stationarity due to the independent learning processes carried out by the agents concurrently. In this paper we formalize and prove the convergence of a Distributed Round Robin Q-learning (D-RR-QL) algorithm for cooperative systems. The computational complexity of this algorithm increases linearly with the number of agents. Moreover, it eliminates environment non sta tionarity by carrying a round-robin scheduling of the action selection and execution. That this learning scheme allows the implementation of Modular State-Action Vetoes (MSAV) in cooperative multi-agent systems, which speeds up learning convergence in over-constrained systems by vetoing state-action pairs which lead to undesired termination states (UTS) in the relevant state-action subspace. Each agent's local state-action value function learning is an independent process, including the MSAV policies. Coordination of locally optimal policies to obtain the global optimal joint policy is achieved by a greedy selection procedure using message passing. We show that D-RR-QL improves over state-of-the-art approaches, such as Distributed Q-Learning, Team Q-Learning and Coordinated Reinforcement Learning in a paradigmatic Linked Multi-Component Robotic System (L-MCRS) control problem: the hose transportation task. L-MCRS are over-constrained systems with many UTS induced by the interaction of the passive linking element and the active mobile robots.
Small-Tip-Angle Spokes Pulse Design Using Interleaved Greedy and Local Optimization Methods
Grissom, William A.; Khalighi, Mohammad-Mehdi; Sacolick, Laura I.; Rutt, Brian K.; Vogel, Mika W.
2013-01-01
Current spokes pulse design methods can be grouped into methods based either on sparse approximation or on iterative local (gradient descent-based) optimization of the transverse-plane spatial frequency locations visited by the spokes. These two classes of methods have complementary strengths and weaknesses: sparse approximation-based methods perform an efficient search over a large swath of candidate spatial frequency locations but most are incompatible with off-resonance compensation, multifrequency designs, and target phase relaxation, while local methods can accommodate off-resonance and target phase relaxation but are sensitive to initialization and suboptimal local cost function minima. This article introduces a method that interleaves local iterations, which optimize the radiofrequency pulses, target phase patterns, and spatial frequency locations, with a greedy method to choose new locations. Simulations and experiments at 3 and 7 T show that the method consistently produces single- and multifrequency spokes pulses with lower flip angle inhomogeneity compared to current methods. PMID:22392822
Effective Iterated Greedy Algorithm for Flow-Shop Scheduling Problems with Time lags
NASA Astrophysics Data System (ADS)
ZHAO, Ning; YE, Song; LI, Kaidian; CHEN, Siyu
2017-05-01
Flow shop scheduling problem with time lags is a practical scheduling problem and attracts many studies. Permutation problem(PFSP with time lags) is concentrated but non-permutation problem(non-PFSP with time lags) seems to be neglected. With the aim to minimize the makespan and satisfy time lag constraints, efficient algorithms corresponding to PFSP and non-PFSP problems are proposed, which consist of iterated greedy algorithm for permutation(IGTLP) and iterated greedy algorithm for non-permutation (IGTLNP). The proposed algorithms are verified using well-known simple and complex instances of permutation and non-permutation problems with various time lag ranges. The permutation results indicate that the proposed IGTLP can reach near optimal solution within nearly 11% computational time of traditional GA approach. The non-permutation results indicate that the proposed IG can reach nearly same solution within less than 1% computational time compared with traditional GA approach. The proposed research combines PFSP and non-PFSP together with minimal and maximal time lag consideration, which provides an interesting viewpoint for industrial implementation.
A greedy, graph-based algorithm for the alignment of multiple homologous gene lists.
Fostier, Jan; Proost, Sebastian; Dhoedt, Bart; Saeys, Yvan; Demeester, Piet; Van de Peer, Yves; Vandepoele, Klaas
2011-03-15
Many comparative genomics studies rely on the correct identification of homologous genomic regions using accurate alignment tools. In such case, the alphabet of the input sequences consists of complete genes, rather than nucleotides or amino acids. As optimal multiple sequence alignment is computationally impractical, a progressive alignment strategy is often employed. However, such an approach is susceptible to the propagation of alignment errors in early pairwise alignment steps, especially when dealing with strongly diverged genomic regions. In this article, we present a novel accurate and efficient greedy, graph-based algorithm for the alignment of multiple homologous genomic segments, represented as ordered gene lists. Based on provable properties of the graph structure, several heuristics are developed to resolve local alignment conflicts that occur due to gene duplication and/or rearrangement events on the different genomic segments. The performance of the algorithm is assessed by comparing the alignment results of homologous genomic segments in Arabidopsis thaliana to those obtained by using both a progressive alignment method and an earlier graph-based implementation. Especially for datasets that contain strongly diverged segments, the proposed method achieves a substantially higher alignment accuracy, and proves to be sufficiently fast for large datasets including a few dozens of eukaryotic genomes. http://bioinformatics.psb.ugent.be/software. The algorithm is implemented as a part of the i-ADHoRe 3.0 package.
Minimal-delay traffic grooming for WDM star networks
NASA Astrophysics Data System (ADS)
Choi, Hongsik; Garg, Nikhil; Choi, Hyeong-Ah
2003-10-01
All-optical networks face the challenge of reducing slower opto-electronic conversions by managing assignment of traffic streams to wavelengths in an intelligent manner, while at the same time utilizing bandwidth resources to the maximum. This challenge becomes harder in networks closer to the end users that have insufficient data to saturate single wavelengths as well as traffic streams outnumbering the usable wavelengths, resulting in traffic grooming which requires costly traffic analysis at access nodes. We study the problem of traffic grooming that reduces the need to analyze traffic, for a class of network architecture most used by Metropolitan Area Networks; the star network. The problem being NP-complete, we provide an efficient twice-optimal-bound greedy heuristic for the same, that can be used to intelligently groom traffic at the LANs to reduce latency at the access nodes. Simulation results show that our greedy heuristic achieves a near-optimal solution.
Uncovering the community structure in signed social networks based on greedy optimization
NASA Astrophysics Data System (ADS)
Chen, Yan; Yan, Jiaqi; Yang, Yu; Chen, Junhua
2017-05-01
The formality of signed relationships has been recently adopted in a lot of complicated systems. The relations among these entities are complicated and multifarious. We cannot indicate these relationships only by positive links, and signed networks have been becoming more and more universal in the study of social networks when community is being significant. In this paper, to identify communities in signed networks, we exploit a new greedy algorithm, taking signs and the density of these links into account. The main idea of the algorithm is the initial procedure of signed modularity and the corresponding update rules. Specially, we employ the “Asymmetric and Constrained Belief Evolution” procedure to evaluate the optimal number of communities. According to the experimental results, the algorithm is proved to be able to run well. More specifically, the proposed algorithm is very efficient for these networks with medium size, both dense and sparse.
TH-CD-209-01: A Greedy Reassignment Algorithm for the PBS Minimum Monitor Unit Constraint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Y; Kooy, H; Craft, D
2016-06-15
Purpose: To investigate a Greedy Reassignment algorithm in order to mitigate the effects of low weight spots in proton pencil beam scanning (PBS) treatment plans. Methods: To convert a plan from the treatment planning system’s (TPS) to a deliverable plan, post processing methods can be used to adjust the spot maps to meets the minimum MU constraint. Existing methods include: deleting low weight spots (Cut method), or rounding spots with weight above/below half the limit up/down to the limit/zero (Round method). An alternative method called Greedy Reassignment was developed in this work in which the lowest weight spot in themore » field was removed and its weight reassigned equally among its nearest neighbors. The process was repeated with the next lowest weight spot until all spots in the field were above the MU constraint. The algorithm performance was evaluated using plans collected from 190 patients (496 fields) treated at our facility. The evaluation criteria were the γ-index pass rate comparing the pre-processed and post-processed dose distributions. A planning metric was further developed to predict the impact of post-processing on treatment plans for various treatment planning, machine, and dose tolerance parameters. Results: For fields with a gamma pass rate of 90±1%, the metric has a standard deviation equal to 18% of the centroid value. This showed that the metric and γ-index pass rate are correlated for the Greedy Reassignment algorithm. Using a 3rd order polynomial fit to the data, the Greedy Reassignment method had 1.8 times better metric at 90% pass rate compared to other post-processing methods. Conclusion: We showed that the Greedy Reassignment method yields deliverable plans that are closest to the optimized-without-MU-constraint plan from the TPS. The metric developed in this work could help design the minimum MU threshold with the goal of keeping the γ-index pass rate above an acceptable value.« less
Model-Based Optimal Experimental Design for Complex Physical Systems
2015-12-03
for public release. magnitude reduction in estimator error required to make solving the exact optimal design problem tractable. Instead of using a naive...for designing a sequence of experiments uses suboptimal approaches: batch design that has no feedback, or greedy ( myopic ) design that optimally...approved for public release. Equation 1 is difficult to solve directly, but can be expressed in an equivalent form using the principle of dynamic programming
Jaiswal, Astha; Godinez, William J; Eils, Roland; Lehmann, Maik Jorg; Rohr, Karl
2015-11-01
Automatic fluorescent particle tracking is an essential task to study the dynamics of a large number of biological structures at a sub-cellular level. We have developed a probabilistic particle tracking approach based on multi-scale detection and two-step multi-frame association. The multi-scale detection scheme allows coping with particles in close proximity. For finding associations, we have developed a two-step multi-frame algorithm, which is based on a temporally semiglobal formulation as well as spatially local and global optimization. In the first step, reliable associations are determined for each particle individually in local neighborhoods. In the second step, the global spatial information over multiple frames is exploited jointly to determine optimal associations. The multi-scale detection scheme and the multi-frame association finding algorithm have been combined with a probabilistic tracking approach based on the Kalman filter. We have successfully applied our probabilistic tracking approach to synthetic as well as real microscopy image sequences of virus particles and quantified the performance. We found that the proposed approach outperforms previous approaches.
Efficient selection of tagging single-nucleotide polymorphisms in multiple populations.
Howie, Bryan N; Carlson, Christopher S; Rieder, Mark J; Nickerson, Deborah A
2006-08-01
Common genetic polymorphism may explain a portion of the heritable risk for common diseases, so considerable effort has been devoted to finding and typing common single-nucleotide polymorphisms (SNPs) in the human genome. Many SNPs show correlated genotypes, or linkage disequilibrium (LD), suggesting that only a subset of all SNPs (known as tagging SNPs, or tagSNPs) need to be genotyped for disease association studies. Based on the genetic differences that exist among human populations, most tagSNP sets are defined in a single population and applied only in populations that are closely related. To improve the efficiency of multi-population analyses, we have developed an algorithm called MultiPop-TagSelect that finds a near-minimal union of population-specific tagSNP sets across an arbitrary number of populations. We present this approach as an extension of LD-select, a tagSNP selection method that uses a greedy algorithm to group SNPs into bins based on their pairwise association patterns, although the MultiPop-TagSelect algorithm could be used with any SNP tagging approach that allows choices between nearly equivalent SNPs. We evaluate the algorithm by considering tagSNP selection in candidate-gene resequencing data and lower density whole-chromosome data. Our analysis reveals that an exhaustive search is often intractable, while the developed algorithm can quickly and reliably find near-optimal solutions even for difficult tagSNP selection problems. Using populations of African, Asian, and European ancestry, we also show that an optimal multi-population set of tagSNPs can be substantially smaller (up to 44%) than a typical set obtained through independent or sequential selection.
Long range personalized cancer treatment strategies incorporating evolutionary dynamics.
Yeang, Chen-Hsiang; Beckman, Robert A
2016-10-22
Current cancer precision medicine strategies match therapies to static consensus molecular properties of an individual's cancer, thus determining the next therapeutic maneuver. These strategies typically maintain a constant treatment while the cancer is not worsening. However, cancers feature complicated sub-clonal structure and dynamic evolution. We have recently shown, in a comprehensive simulation of two non-cross resistant therapies across a broad parameter space representing realistic tumors, that substantial improvement in cure rates and median survival can be obtained utilizing dynamic precision medicine strategies. These dynamic strategies explicitly consider intratumoral heterogeneity and evolutionary dynamics, including predicted future drug resistance states, and reevaluate optimal therapy every 45 days. However, the optimization is performed in single 45 day steps ("single-step optimization"). Herein we evaluate analogous strategies that think multiple therapeutic maneuvers ahead, considering potential outcomes at 5 steps ahead ("multi-step optimization") or 40 steps ahead ("adaptive long term optimization (ALTO)") when recommending the optimal therapy in each 45 day block, in simulations involving both 2 and 3 non-cross resistant therapies. We also evaluate an ALTO approach for situations where simultaneous combination therapy is not feasible ("Adaptive long term optimization: serial monotherapy only (ALTO-SMO)"). Simulations utilize populations of 764,000 and 1,700,000 virtual patients for 2 and 3 drug cases, respectively. Each virtual patient represents a unique clinical presentation including sizes of major and minor tumor subclones, growth rates, evolution rates, and drug sensitivities. While multi-step optimization and ALTO provide no significant average survival benefit, cure rates are significantly increased by ALTO. Furthermore, in the subset of individual virtual patients demonstrating clinically significant difference in outcome between approaches, by far the majority show an advantage of multi-step or ALTO over single-step optimization. ALTO-SMO delivers cure rates superior or equal to those of single- or multi-step optimization, in 2 and 3 drug cases respectively. In selected virtual patients incurable by dynamic precision medicine using single-step optimization, analogous strategies that "think ahead" can deliver long-term survival and cure without any disadvantage for non-responders. When therapies require dose reduction in combination (due to toxicity), optimal strategies feature complex patterns involving rapidly interleaved pulses of combinations and high dose monotherapy. This article was reviewed by Wendy Cornell, Marek Kimmel, and Andrzej Swierniak. Wendy Cornell and Andrzej Swierniak are external reviewers (not members of the Biology Direct editorial board). Andrzej Swierniak was nominated by Marek Kimmel.
Biclustering of gene expression data using reactive greedy randomized adaptive search procedure.
Dharan, Smitha; Nair, Achuthsankar S
2009-01-30
Biclustering algorithms belong to a distinct class of clustering algorithms that perform simultaneous clustering of both rows and columns of the gene expression matrix and can be a very useful analysis tool when some genes have multiple functions and experimental conditions are diverse. Cheng and Church have introduced a measure called mean squared residue score to evaluate the quality of a bicluster and has become one of the most popular measures to search for biclusters. In this paper, we review basic concepts of the metaheuristics Greedy Randomized Adaptive Search Procedure (GRASP)-construction and local search phases and propose a new method which is a variant of GRASP called Reactive Greedy Randomized Adaptive Search Procedure (Reactive GRASP) to detect significant biclusters from large microarray datasets. The method has two major steps. First, high quality bicluster seeds are generated by means of k-means clustering. In the second step, these seeds are grown using the Reactive GRASP, in which the basic parameter that defines the restrictiveness of the candidate list is self-adjusted, depending on the quality of the solutions found previously. We performed statistical and biological validations of the biclusters obtained and evaluated the method against the results of basic GRASP and as well as with the classic work of Cheng and Church. The experimental results indicate that the Reactive GRASP approach outperforms the basic GRASP algorithm and Cheng and Church approach. The Reactive GRASP approach for the detection of significant biclusters is robust and does not require calibration efforts.
Algorithms for selecting informative marker panels for population assignment.
Rosenberg, Noah A
2005-11-01
Given a set of potential source populations, genotypes of an individual of unknown origin at a collection of markers can be used to predict the correct source population of the individual. For improved efficiency, informative markers can be chosen from a larger set of markers to maximize the accuracy of this prediction. However, selecting the loci that are individually most informative does not necessarily produce the optimal panel. Here, using genotypes from eight species--carp, cat, chicken, dog, fly, grayling, human, and maize--this univariate accumulation procedure is compared to new multivariate "greedy" and "maximin" algorithms for choosing marker panels. The procedures generally suggest similar panels, although the greedy method often recommends inclusion of loci that are not chosen by the other algorithms. In seven of the eight species, when applied to five or more markers, all methods achieve at least 94% assignment accuracy on simulated individuals, with one species--dog--producing this level of accuracy with only three markers, and the eighth species--human--requiring approximately 13-16 markers. The new algorithms produce substantial improvements over use of randomly selected markers; where differences among the methods are noticeable, the greedy algorithm leads to slightly higher probabilities of correct assignment. Although none of the approaches necessarily chooses the panel with optimal performance, the algorithms all likely select panels with performance near enough to the maximum that they all are suitable for practical use.
Hughes, James Alexander; Houghten, Sheridan; Ashlock, Daniel
2016-12-01
DNA Fragment assembly - an NP-Hard problem - is one of the major steps in of DNA sequencing. Multiple strategies have been used for this problem, including greedy graph-based algorithms, deBruijn graphs, and the overlap-layout-consensus approach. This study focuses on the overlap-layout-consensus approach. Heuristics and computational intelligence methods are combined to exploit their respective benefits. These algorithm combinations were able to produce high quality results surpassing the best results obtained by a number of competitive algorithms specially designed and tuned for this problem on thirteen of sixteen popular benchmarks. This work also reinforces the necessity of using multiple search strategies as it is clearly observed that algorithm performance is dependent on problem instance; without a deeper look into many searches, top solutions could be missed entirely. Copyright © 2016. Published by Elsevier Ireland Ltd.
Synthesis of Greedy Algorithms Using Dominance Relations
NASA Technical Reports Server (NTRS)
Nedunuri, Srinivas; Smith, Douglas R.; Cook, William R.
2010-01-01
Greedy algorithms exploit problem structure and constraints to achieve linear-time performance. Yet there is still no completely satisfactory way of constructing greedy algorithms. For example, the Greedy Algorithm of Edmonds depends upon translating a problem into an algebraic structure called a matroid, but the existence of such a translation can be as hard to determine as the existence of a greedy algorithm itself. An alternative characterization of greedy algorithms is in terms of dominance relations, a well-known algorithmic technique used to prune search spaces. We demonstrate a process by which dominance relations can be methodically derived for a number of greedy algorithms, including activity selection, and prefix-free codes. By incorporating our approach into an existing framework for algorithm synthesis, we demonstrate that it could be the basis for an effective engineering method for greedy algorithms. We also compare our approach with other characterizations of greedy algorithms.
A Real-Time Greedy-Index Dispatching Policy for using PEVs to Provide Frequency Regulation Service
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ke, Xinda; Wu, Di; Lu, Ning
This article presents a real-time greedy-index dispatching policy (GIDP) for using plug-in electric vehicles (PEVs) to provide frequency regulation services. A new service cost allocation mechanism is proposed to award PEVs based on the amount of service they provided, while considering compensations for delayed-charging and reduction of battery lifetime due to participation of the service. The GIDP transforms the optimal dispatch problem from a high-dimensional space into a one-dimensional space while preserving the solution optimality. When solving the transformed problem in real-time, the global optimality of the GIDP solution can be guaranteed by mathematically proved “indexability”. Because the GIDP indexmore » can be calculated upon the PEV’s arrival and used for the entire decision making process till its departure, the computational burden is minimized and the complexity of the aggregator dispatch process is significantly reduced. Finally, simulation results are used to evaluate the proposed GIDP, and to demonstrate the potential profitability from providing frequency regulation service by using PEVs.« less
A Real-Time Greedy-Index Dispatching Policy for using PEVs to Provide Frequency Regulation Service
Ke, Xinda; Wu, Di; Lu, Ning
2017-09-18
This article presents a real-time greedy-index dispatching policy (GIDP) for using plug-in electric vehicles (PEVs) to provide frequency regulation services. A new service cost allocation mechanism is proposed to award PEVs based on the amount of service they provided, while considering compensations for delayed-charging and reduction of battery lifetime due to participation of the service. The GIDP transforms the optimal dispatch problem from a high-dimensional space into a one-dimensional space while preserving the solution optimality. When solving the transformed problem in real-time, the global optimality of the GIDP solution can be guaranteed by mathematically proved “indexability”. Because the GIDP indexmore » can be calculated upon the PEV’s arrival and used for the entire decision making process till its departure, the computational burden is minimized and the complexity of the aggregator dispatch process is significantly reduced. Finally, simulation results are used to evaluate the proposed GIDP, and to demonstrate the potential profitability from providing frequency regulation service by using PEVs.« less
Hoffmann, Thomas J; Zhan, Yiping; Kvale, Mark N; Hesselson, Stephanie E; Gollub, Jeremy; Iribarren, Carlos; Lu, Yontao; Mei, Gangwu; Purdy, Matthew M; Quesenberry, Charles; Rowell, Sarah; Shapero, Michael H; Smethurst, David; Somkin, Carol P; Van den Eeden, Stephen K; Walter, Larry; Webster, Teresa; Whitmer, Rachel A; Finn, Andrea; Schaefer, Catherine; Kwok, Pui-Yan; Risch, Neil
2011-12-01
Four custom Axiom genotyping arrays were designed for a genome-wide association (GWA) study of 100,000 participants from the Kaiser Permanente Research Program on Genes, Environment and Health. The array optimized for individuals of European race/ethnicity was previously described. Here we detail the development of three additional microarrays optimized for individuals of East Asian, African American, and Latino race/ethnicity. For these arrays, we decreased redundancy of high-performing SNPs to increase SNP capacity. The East Asian array was designed using greedy pairwise SNP selection. However, removing SNPs from the target set based on imputation coverage is more efficient than pairwise tagging. Therefore, we developed a novel hybrid SNP selection method for the African American and Latino arrays utilizing rounds of greedy pairwise SNP selection, followed by removal from the target set of SNPs covered by imputation. The arrays provide excellent genome-wide coverage and are valuable additions for large-scale GWA studies. Copyright © 2011 Elsevier Inc. All rights reserved.
Ant system: optimization by a colony of cooperating agents.
Dorigo, M; Maniezzo, V; Colorni, A
1996-01-01
An analogy with the way ant colonies function has suggested the definition of a new computational paradigm, which we call ant system (AS). We propose it as a viable new approach to stochastic combinatorial optimization. The main characteristics of this model are positive feedback, distributed computation, and the use of a constructive greedy heuristic. Positive feedback accounts for rapid discovery of good solutions, distributed computation avoids premature convergence, and the greedy heuristic helps find acceptable solutions in the early stages of the search process. We apply the proposed methodology to the classical traveling salesman problem (TSP), and report simulation results. We also discuss parameter selection and the early setups of the model, and compare it with tabu search and simulated annealing using TSP. To demonstrate the robustness of the approach, we show how the ant system (AS) can be applied to other optimization problems like the asymmetric traveling salesman, the quadratic assignment and the job-shop scheduling. Finally we discuss the salient characteristics-global data structure revision, distributed communication and probabilistic transitions of the AS.
Contextual Multi-armed Bandits under Feature Uncertainty
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Seyoung; Nam, Jun Hyun; Mo, Sangwoo
We study contextual multi-armed bandit problems under linear realizability on rewards and uncertainty (or noise) on features. For the case of identical noise on features across actions, we propose an algorithm, coined NLinRel, having O(T⁷/₈(log(dT)+K√d)) regret bound for T rounds, K actions, and d-dimensional feature vectors. Next, for the case of non-identical noise, we observe that popular linear hypotheses including NLinRel are impossible to achieve such sub-linear regret. Instead, under assumption of Gaussian feature vectors, we prove that a greedy algorithm has O(T²/₃√log d)regret bound with respect to the optimal linear hypothesis. Utilizing our theoretical understanding on the Gaussian case,more » we also design a practical variant of NLinRel, coined Universal-NLinRel, for arbitrary feature distributions. It first runs NLinRel for finding the ‘true’ coefficient vector using feature uncertainties and then adjust it to minimize its regret using the statistical feature information. We justify the performance of Universal-NLinRel on both synthetic and real-world datasets.« less
Texas two-step: a framework for optimal multi-input single-output deconvolution.
Neelamani, Ramesh; Deffenbaugh, Max; Baraniuk, Richard G
2007-11-01
Multi-input single-output deconvolution (MISO-D) aims to extract a deblurred estimate of a target signal from several blurred and noisy observations. This paper develops a new two step framework--Texas Two-Step--to solve MISO-D problems with known blurs. Texas Two-Step first reduces the MISO-D problem to a related single-input single-output deconvolution (SISO-D) problem by invoking the concept of sufficient statistics (SSs) and then solves the simpler SISO-D problem using an appropriate technique. The two-step framework enables new MISO-D techniques (both optimal and suboptimal) based on the rich suite of existing SISO-D techniques. In fact, the properties of SSs imply that a MISO-D algorithm is mean-squared-error optimal if and only if it can be rearranged to conform to the Texas Two-Step framework. Using this insight, we construct new wavelet- and curvelet-based MISO-D algorithms with asymptotically optimal performance. Simulated and real data experiments verify that the framework is indeed effective.
An iterative network partition algorithm for accurate identification of dense network modules
Sun, Siqi; Dong, Xinran; Fu, Yao; Tian, Weidong
2012-01-01
A key step in network analysis is to partition a complex network into dense modules. Currently, modularity is one of the most popular benefit functions used to partition network modules. However, recent studies suggested that it has an inherent limitation in detecting dense network modules. In this study, we observed that despite the limitation, modularity has the advantage of preserving the primary network structure of the undetected modules. Thus, we have developed a simple iterative Network Partition (iNP) algorithm to partition a network. The iNP algorithm provides a general framework in which any modularity-based algorithm can be implemented in the network partition step. Here, we tested iNP with three modularity-based algorithms: multi-step greedy (MSG), spectral clustering and Qcut. Compared with the original three methods, iNP achieved a significant improvement in the quality of network partition in a benchmark study with simulated networks, identified more modules with significantly better enrichment of functionally related genes in both yeast protein complex network and breast cancer gene co-expression network, and discovered more cancer-specific modules in the cancer gene co-expression network. As such, iNP should have a broad application as a general method to assist in the analysis of biological networks. PMID:22121225
Darmann, Andreas; Nicosia, Gaia; Pferschy, Ulrich; Schauer, Joachim
2014-03-16
In this work we address a game theoretic variant of the Subset Sum problem, in which two decision makers (agents/players) compete for the usage of a common resource represented by a knapsack capacity. Each agent owns a set of integer weighted items and wants to maximize the total weight of its own items included in the knapsack. The solution is built as follows: Each agent, in turn, selects one of its items (not previously selected) and includes it in the knapsack if there is enough capacity. The process ends when the remaining capacity is too small for including any item left. We look at the problem from a single agent point of view and show that finding an optimal sequence of items to select is an [Formula: see text]-hard problem. Therefore we propose two natural heuristic strategies and analyze their worst-case performance when (1) the opponent is able to play optimally and (2) the opponent adopts a greedy strategy. From a centralized perspective we observe that some known results on the approximation of the classical Subset Sum can be effectively adapted to the multi-agent version of the problem.
Darmann, Andreas; Nicosia, Gaia; Pferschy, Ulrich; Schauer, Joachim
2014-01-01
In this work we address a game theoretic variant of the Subset Sum problem, in which two decision makers (agents/players) compete for the usage of a common resource represented by a knapsack capacity. Each agent owns a set of integer weighted items and wants to maximize the total weight of its own items included in the knapsack. The solution is built as follows: Each agent, in turn, selects one of its items (not previously selected) and includes it in the knapsack if there is enough capacity. The process ends when the remaining capacity is too small for including any item left. We look at the problem from a single agent point of view and show that finding an optimal sequence of items to select is an NP-hard problem. Therefore we propose two natural heuristic strategies and analyze their worst-case performance when (1) the opponent is able to play optimally and (2) the opponent adopts a greedy strategy. From a centralized perspective we observe that some known results on the approximation of the classical Subset Sum can be effectively adapted to the multi-agent version of the problem. PMID:25844012
A greedy-navigator approach to navigable city plans
NASA Astrophysics Data System (ADS)
Lee, Sang Hoon; Holme, Petter
2013-01-01
We use a set of four theoretical navigability indices for street maps to investigate the shape of the resulting street networks, if they are grown by optimizing these indices. The indices compare the performance of simulated navigators (having a partial information about the surroundings, like humans in many real situations) to the performance of optimally navigating individuals. We show that our simple greedy shortcut construction strategy generates the emerging structures that are different from real road network, but not inconceivable. The resulting city plans, for all navigation indices, share common qualitative properties such as the tendency for triangular blocks to appear, while the more quantitative features, such as degree distributions and clustering, are characteristically different depending on the type of metrics and routing strategies. We show that it is the type of metrics used which determines the overall shapes characterized by structural heterogeneity, but the routing schemes contribute to more subtle details of locality, which is more emphasized in case of unrestricted connections when the edge crossing is allowed.
Biclustering of gene expression data using reactive greedy randomized adaptive search procedure
Dharan, Smitha; Nair, Achuthsankar S
2009-01-01
Background Biclustering algorithms belong to a distinct class of clustering algorithms that perform simultaneous clustering of both rows and columns of the gene expression matrix and can be a very useful analysis tool when some genes have multiple functions and experimental conditions are diverse. Cheng and Church have introduced a measure called mean squared residue score to evaluate the quality of a bicluster and has become one of the most popular measures to search for biclusters. In this paper, we review basic concepts of the metaheuristics Greedy Randomized Adaptive Search Procedure (GRASP)-construction and local search phases and propose a new method which is a variant of GRASP called Reactive Greedy Randomized Adaptive Search Procedure (Reactive GRASP) to detect significant biclusters from large microarray datasets. The method has two major steps. First, high quality bicluster seeds are generated by means of k-means clustering. In the second step, these seeds are grown using the Reactive GRASP, in which the basic parameter that defines the restrictiveness of the candidate list is self-adjusted, depending on the quality of the solutions found previously. Results We performed statistical and biological validations of the biclusters obtained and evaluated the method against the results of basic GRASP and as well as with the classic work of Cheng and Church. The experimental results indicate that the Reactive GRASP approach outperforms the basic GRASP algorithm and Cheng and Church approach. Conclusion The Reactive GRASP approach for the detection of significant biclusters is robust and does not require calibration efforts. PMID:19208127
Improving multivariate Horner schemes with Monte Carlo tree search
NASA Astrophysics Data System (ADS)
Kuipers, J.; Plaat, A.; Vermaseren, J. A. M.; van den Herik, H. J.
2013-11-01
Optimizing the cost of evaluating a polynomial is a classic problem in computer science. For polynomials in one variable, Horner's method provides a scheme for producing a computationally efficient form. For multivariate polynomials it is possible to generalize Horner's method, but this leaves freedom in the order of the variables. Traditionally, greedy schemes like most-occurring variable first are used. This simple textbook algorithm has given remarkably efficient results. Finding better algorithms has proved difficult. In trying to improve upon the greedy scheme we have implemented Monte Carlo tree search, a recent search method from the field of artificial intelligence. This results in better Horner schemes and reduces the cost of evaluating polynomials, sometimes by factors up to two.
Coelho, V N; Coelho, I M; Souza, M J F; Oliveira, T A; Cota, L P; Haddad, M N; Mladenovic, N; Silva, R C P; Guimarães, F G
2016-01-01
This article presents an Evolution Strategy (ES)--based algorithm, designed to self-adapt its mutation operators, guiding the search into the solution space using a Self-Adaptive Reduced Variable Neighborhood Search procedure. In view of the specific local search operators for each individual, the proposed population-based approach also fits into the context of the Memetic Algorithms. The proposed variant uses the Greedy Randomized Adaptive Search Procedure with different greedy parameters for generating its initial population, providing an interesting exploration-exploitation balance. To validate the proposal, this framework is applied to solve three different [Formula: see text]-Hard combinatorial optimization problems: an Open-Pit-Mining Operational Planning Problem with dynamic allocation of trucks, an Unrelated Parallel Machine Scheduling Problem with Setup Times, and the calibration of a hybrid fuzzy model for Short-Term Load Forecasting. Computational results point out the convergence of the proposed model and highlight its ability in combining the application of move operations from distinct neighborhood structures along the optimization. The results gathered and reported in this article represent a collective evidence of the performance of the method in challenging combinatorial optimization problems from different application domains. The proposed evolution strategy demonstrates an ability of adapting the strength of the mutation disturbance during the generations of its evolution process. The effectiveness of the proposal motivates the application of this novel evolutionary framework for solving other combinatorial optimization problems.
A Comparison of Techniques for Scheduling Fleets of Earth-Observing Satellites
NASA Technical Reports Server (NTRS)
Globus, Al; Crawford, James; Lohn, Jason; Pryor, Anna
2003-01-01
Earth observing satellite (EOS) scheduling is a complex real-world domain representative of a broad class of over-subscription scheduling problems. Over-subscription problems are those where requests for a facility exceed its capacity. These problems arise in a wide variety of NASA and terrestrial domains and are .XI important class of scheduling problems because such facilities often represent large capital investments. We have run experiments comparing multiple variants of the genetic algorithm, hill climbing, simulated annealing, squeaky wheel optimization and iterated sampling on two variants of a realistically-sized model of the EOS scheduling problem. These are implemented as permutation-based methods; methods that search in the space of priority orderings of observation requests and evaluate each permutation by using it to drive a greedy scheduler. Simulated annealing performs best and random mutation operators outperform our squeaky (more intelligent) operator. Furthermore, taking smaller steps towards the end of the search improves performance.
Reducing a congestion with introduce the greedy algorithm on traffic light control
NASA Astrophysics Data System (ADS)
Catur Siswipraptini, Puji; Hendro Martono, Wisnu; Hartanti, Dian
2018-03-01
The density of vehicles causes congestion seen at every junction in the city of jakarta due to the static or manual traffic timing lamp system consequently the length of the queue at the junction is uncertain. The research has been aimed at designing a sensor based traffic system based on the queue length detection of the vehicle to optimize the duration of the green light. In detecting the length of the queue of vehicles using infrared sensor assistance placed in each intersection path, then apply Greedy algorithm to help accelerate the movement of green light duration for the path that requires, while to apply the traffic lights regulation program based on greedy algorithm which is then stored on microcontroller with Arduino Mega 2560 type. Where a developed system implements the greedy algorithm with the help of the infrared sensor it will extend the duration of the green light on the long vehicle queue and accelerate the duration of the green light at the intersection that has the queue not too dense. Furthermore, the design is made to form an artificial form of the actual situation of the scale model or simple simulator (next we just called as scale model of simulator) of the intersection then tested. Sensors used are infrared sensors, where the placement of sensors in each intersection on the scale model is placed within 10 cm of each sensor and serves as a queue detector. From the results of the test process on the scale model with a longer queue obtained longer green light time so it will fix the problem of long queue of vehicles. Using greedy algorithms can add long green lights for 2 seconds on tracks that have long queues at least three sensor levels and accelerate time at other intersections that have longer queue sensor levels less than level three.
NASA Astrophysics Data System (ADS)
El-Wardany, Tahany; Lynch, Mathew; Gu, Wenjiong; Hsu, Arthur; Klecka, Michael; Nardi, Aaron; Viens, Daniel
This paper proposes an optimization framework enabling the integration of multi-scale / multi-physics simulation codes to perform structural optimization design for additively manufactured components. Cold spray was selected as the additive manufacturing (AM) process and its constraints were identified and included in the optimization scheme. The developed framework first utilizes topology optimization to maximize stiffness for conceptual design. The subsequent step applies shape optimization to refine the design for stress-life fatigue. The component weight was reduced by 20% while stresses were reduced by 75% and the rigidity was improved by 37%. The framework and analysis codes were implemented using Altair software as well as an in-house loading code. The optimized design was subsequently produced by the cold spray process.
RMP: Reduced-set matching pursuit approach for efficient compressed sensing signal reconstruction.
Abdel-Sayed, Michael M; Khattab, Ahmed; Abu-Elyazeed, Mohamed F
2016-11-01
Compressed sensing enables the acquisition of sparse signals at a rate that is much lower than the Nyquist rate. Compressed sensing initially adopted [Formula: see text] minimization for signal reconstruction which is computationally expensive. Several greedy recovery algorithms have been recently proposed for signal reconstruction at a lower computational complexity compared to the optimal [Formula: see text] minimization, while maintaining a good reconstruction accuracy. In this paper, the Reduced-set Matching Pursuit (RMP) greedy recovery algorithm is proposed for compressed sensing. Unlike existing approaches which either select too many or too few values per iteration, RMP aims at selecting the most sufficient number of correlation values per iteration, which improves both the reconstruction time and error. Furthermore, RMP prunes the estimated signal, and hence, excludes the incorrectly selected values. The RMP algorithm achieves a higher reconstruction accuracy at a significantly low computational complexity compared to existing greedy recovery algorithms. It is even superior to [Formula: see text] minimization in terms of the normalized time-error product, a new metric introduced to measure the trade-off between the reconstruction time and error. RMP superior performance is illustrated with both noiseless and noisy samples.
An Improved Hybrid Encoding Cuckoo Search Algorithm for 0-1 Knapsack Problems
Feng, Yanhong; Jia, Ke; He, Yichao
2014-01-01
Cuckoo search (CS) is a new robust swarm intelligence method that is based on the brood parasitism of some cuckoo species. In this paper, an improved hybrid encoding cuckoo search algorithm (ICS) with greedy strategy is put forward for solving 0-1 knapsack problems. First of all, for solving binary optimization problem with ICS, based on the idea of individual hybrid encoding, the cuckoo search over a continuous space is transformed into the synchronous evolution search over discrete space. Subsequently, the concept of confidence interval (CI) is introduced; hence, the new position updating is designed and genetic mutation with a small probability is introduced. The former enables the population to move towards the global best solution rapidly in every generation, and the latter can effectively prevent the ICS from trapping into the local optimum. Furthermore, the greedy transform method is used to repair the infeasible solution and optimize the feasible solution. Experiments with a large number of KP instances show the effectiveness of the proposed algorithm and its ability to achieve good quality solutions. PMID:24527026
Fast Solution in Sparse LDA for Binary Classification
NASA Technical Reports Server (NTRS)
Moghaddam, Baback
2010-01-01
An algorithm that performs sparse linear discriminant analysis (Sparse-LDA) finds near-optimal solutions in far less time than the prior art when specialized to binary classification (of 2 classes). Sparse-LDA is a type of feature- or variable- selection problem with numerous applications in statistics, machine learning, computer vision, computational finance, operations research, and bio-informatics. Because of its combinatorial nature, feature- or variable-selection problems are NP-hard or computationally intractable in cases involving more than 30 variables or features. Therefore, one typically seeks approximate solutions by means of greedy search algorithms. The prior Sparse-LDA algorithm was a greedy algorithm that considered the best variable or feature to add/ delete to/ from its subsets in order to maximally discriminate between multiple classes of data. The present algorithm is designed for the special but prevalent case of 2-class or binary classification (e.g. 1 vs. 0, functioning vs. malfunctioning, or change versus no change). The present algorithm provides near-optimal solutions on large real-world datasets having hundreds or even thousands of variables or features (e.g. selecting the fewest wavelength bands in a hyperspectral sensor to do terrain classification) and does so in typical computation times of minutes as compared to days or weeks as taken by the prior art. Sparse LDA requires solving generalized eigenvalue problems for a large number of variable subsets (represented by the submatrices of the input within-class and between-class covariance matrices). In the general (fullrank) case, the amount of computation scales at least cubically with the number of variables and thus the size of the problems that can be solved is limited accordingly. However, in binary classification, the principal eigenvalues can be found using a special analytic formula, without resorting to costly iterative techniques. The present algorithm exploits this analytic form along with the inherent sequential nature of greedy search itself. Together this enables the use of highly-efficient partitioned-matrix-inverse techniques that result in large speedups of computation in both the forward-selection and backward-elimination stages of greedy algorithms in general.
Self-Coexistence among IEEE 802.22 Networks: Distributed Allocation of Power and Channel
Sakin, Sayef Azad; Alamri, Atif; Tran, Nguyen H.
2017-01-01
Ensuring self-coexistence among IEEE 802.22 networks is a challenging problem owing to opportunistic access of incumbent-free radio resources by users in co-located networks. In this study, we propose a fully-distributed non-cooperative approach to ensure self-coexistence in downlink channels of IEEE 802.22 networks. We formulate the self-coexistence problem as a mixed-integer non-linear optimization problem for maximizing the network data rate, which is an NP-hard one. This work explores a sub-optimal solution by dividing the optimization problem into downlink channel allocation and power assignment sub-problems. Considering fairness, quality of service and minimum interference for customer-premises-equipment, we also develop a greedy algorithm for channel allocation and a non-cooperative game-theoretic framework for near-optimal power allocation. The base stations of networks are treated as players in a game, where they try to increase spectrum utilization by controlling power and reaching a Nash equilibrium point. We further develop a utility function for the game to increase the data rate by minimizing the transmission power and, subsequently, the interference from neighboring networks. A theoretical proof of the uniqueness and existence of the Nash equilibrium has been presented. Performance improvements in terms of data-rate with a degree of fairness compared to a cooperative branch-and-bound-based algorithm and a non-cooperative greedy approach have been shown through simulation studies. PMID:29215591
Self-Coexistence among IEEE 802.22 Networks: Distributed Allocation of Power and Channel.
Sakin, Sayef Azad; Razzaque, Md Abdur; Hassan, Mohammad Mehedi; Alamri, Atif; Tran, Nguyen H; Fortino, Giancarlo
2017-12-07
Ensuring self-coexistence among IEEE 802.22 networks is a challenging problem owing to opportunistic access of incumbent-free radio resources by users in co-located networks. In this study, we propose a fully-distributed non-cooperative approach to ensure self-coexistence in downlink channels of IEEE 802.22 networks. We formulate the self-coexistence problem as a mixed-integer non-linear optimization problem for maximizing the network data rate, which is an NP-hard one. This work explores a sub-optimal solution by dividing the optimization problem into downlink channel allocation and power assignment sub-problems. Considering fairness, quality of service and minimum interference for customer-premises-equipment, we also develop a greedy algorithm for channel allocation and a non-cooperative game-theoretic framework for near-optimal power allocation. The base stations of networks are treated as players in a game, where they try to increase spectrum utilization by controlling power and reaching a Nash equilibrium point. We further develop a utility function for the game to increase the data rate by minimizing the transmission power and, subsequently, the interference from neighboring networks. A theoretical proof of the uniqueness and existence of the Nash equilibrium has been presented. Performance improvements in terms of data-rate with a degree of fairness compared to a cooperative branch-and-bound-based algorithm and a non-cooperative greedy approach have been shown through simulation studies.
NITPICK: peak identification for mass spectrometry data
Renard, Bernhard Y; Kirchner, Marc; Steen , Hanno; Steen, Judith AJ; Hamprecht , Fred A
2008-01-01
Background The reliable extraction of features from mass spectra is a fundamental step in the automated analysis of proteomic mass spectrometry (MS) experiments. Results This contribution proposes a sparse template regression approach to peak picking called NITPICK. NITPICK is a Non-greedy, Iterative Template-based peak PICKer that deconvolves complex overlapping isotope distributions in multicomponent mass spectra. NITPICK is based on fractional averagine, a novel extension to Senko's well-known averagine model, and on a modified version of sparse, non-negative least angle regression, for which a suitable, statistically motivated early stopping criterion has been derived. The strength of NITPICK is the deconvolution of overlapping mixture mass spectra. Conclusion Extensive comparative evaluation has been carried out and results are provided for simulated and real-world data sets. NITPICK outperforms pepex, to date the only alternate, publicly available, non-greedy feature extraction routine. NITPICK is available as software package for the R programming language and can be downloaded from . PMID:18755032
Diffusive behavior of a greedy traveling salesman.
Lipowski, Adam; Lipowska, Dorota
2011-06-01
Using Monte Carlo simulations we examine the diffusive properties of the greedy algorithm in the d-dimensional traveling salesman problem. Our results show that for d=3 and 4 the average squared distance from the origin (r(2)) is proportional to the number of steps t. In the d=2 case such a scaling is modified with some logarithmic corrections, which might suggest that d=2 is the critical dimension of the problem. The distribution of lengths also shows marked differences between d=2 and d>2 versions. A simple strategy adopted by the salesman might resemble strategies chosen by some foraging and hunting animals, for which anomalous diffusive behavior has recently been reported and interpreted in terms of Lévy flights. Our results suggest that broad and Lévy-like distributions in such systems might appear due to dimension-dependent properties of a search space.
NASA Technical Reports Server (NTRS)
Mengshoel, Ole J.; Wilkins, David C.; Roth, Dan
2010-01-01
For hard computational problems, stochastic local search has proven to be a competitive approach to finding optimal or approximately optimal problem solutions. Two key research questions for stochastic local search algorithms are: Which algorithms are effective for initialization? When should the search process be restarted? In the present work we investigate these research questions in the context of approximate computation of most probable explanations (MPEs) in Bayesian networks (BNs). We introduce a novel approach, based on the Viterbi algorithm, to explanation initialization in BNs. While the Viterbi algorithm works on sequences and trees, our approach works on BNs with arbitrary topologies. We also give a novel formalization of stochastic local search, with focus on initialization and restart, using probability theory and mixture models. Experimentally, we apply our methods to the problem of MPE computation, using a stochastic local search algorithm known as Stochastic Greedy Search. By carefully optimizing both initialization and restart, we reduce the MPE search time for application BNs by several orders of magnitude compared to using uniform at random initialization without restart. On several BNs from applications, the performance of Stochastic Greedy Search is competitive with clique tree clustering, a state-of-the-art exact algorithm used for MPE computation in BNs.
NASA Astrophysics Data System (ADS)
Nabavi, N.
2018-07-01
The author investigates the monitoring methods for fine adjustment of the previously proposed on-chip architecture for frequency multiplication and translation of harmonics by design. Digital signal processing (DSP) algorithms are utilized to create an optimized microwave photonic integrated circuit functionality toward automated frequency multiplication. The implemented DSP algorithms are formed on discrete Fourier transform and optimization-based algorithms (Greedy and gradient-based algorithms), which are analytically derived and numerically compared based on the accuracy and speed of convergence criteria.
NASA Astrophysics Data System (ADS)
Sawall, Mathias; von Harbou, Erik; Moog, Annekathrin; Behrens, Richard; Schröder, Henning; Simoneau, Joël; Steimers, Ellen; Neymeyr, Klaus
2018-04-01
Spectral data preprocessing is an integral and sometimes inevitable part of chemometric analyses. For Nuclear Magnetic Resonance (NMR) spectra a possible first preprocessing step is a phase correction which is applied to the Fourier transformed free induction decay (FID) signal. This preprocessing step can be followed by a separate baseline correction step. Especially if series of high-resolution spectra are considered, then automated and computationally fast preprocessing routines are desirable. A new method is suggested that applies the phase and the baseline corrections simultaneously in an automated form without manual input, which distinguishes this work from other approaches. The underlying multi-objective optimization or Pareto optimization provides improved results compared to consecutively applied correction steps. The optimization process uses an objective function which applies strong penalty constraints and weaker regularization conditions. The new method includes an approach for the detection of zero baseline regions. The baseline correction uses a modified Whittaker smoother. The functionality of the new method is demonstrated for experimental NMR spectra. The results are verified against gravimetric data. The method is compared to alternative preprocessing tools. Additionally, the simultaneous correction method is compared to a consecutive application of the two correction steps.
NASA Astrophysics Data System (ADS)
Mitran, T. L.; Melchert, O.; Hartmann, A. K.
2013-12-01
The main characteristics of biased greedy random walks (BGRWs) on two-dimensional lattices with real-valued quenched disorder on the lattice edges are studied. Here the disorder allows for negative edge weights. In previous studies, considering the negative-weight percolation (NWP) problem, this was shown to change the universality class of the existing, static percolation transition. In the presented study, four different types of BGRWs and an algorithm based on the ant colony optimization heuristic were considered. Regarding the BGRWs, the precise configurations of the lattice walks constructed during the numerical simulations were influenced by two parameters: a disorder parameter ρ that controls the amount of negative edge weights on the lattice and a bias strength B that governs the drift of the walkers along a certain lattice direction. The random walks are “greedy” in the sense that the local optimal choice of the walker is to preferentially traverse edges with a negative weight (associated with a net gain of “energy” for the walker). Here, the pivotal observable is the probability that, after termination, a lattice walk exhibits a total negative weight, which is here considered as percolating. The behavior of this observable as function of ρ for different bias strengths B is put under scrutiny. Upon tuning ρ, the probability to find such a feasible lattice walk increases from zero to 1. This is the key feature of the percolation transition in the NWP model. Here, we address the question how well the transition point ρc, resulting from numerically exact and “static” simulations in terms of the NWP model, can be resolved using simple dynamic algorithms that have only local information available, one of the basic questions in the physics of glassy systems.
Distributed learning automata-based algorithm for community detection in complex networks
NASA Astrophysics Data System (ADS)
Khomami, Mohammad Mehdi Daliri; Rezvanian, Alireza; Meybodi, Mohammad Reza
2016-03-01
Community structure is an important and universal topological property of many complex networks such as social and information networks. The detection of communities of a network is a significant technique for understanding the structure and function of networks. In this paper, we propose an algorithm based on distributed learning automata for community detection (DLACD) in complex networks. In the proposed algorithm, each vertex of network is equipped with a learning automation. According to the cooperation among network of learning automata and updating action probabilities of each automaton, the algorithm interactively tries to identify high-density local communities. The performance of the proposed algorithm is investigated through a number of simulations on popular synthetic and real networks. Experimental results in comparison with popular community detection algorithms such as walk trap, Danon greedy optimization, Fuzzy community detection, Multi-resolution community detection and label propagation demonstrated the superiority of DLACD in terms of modularity, NMI, performance, min-max-cut and coverage.
Retro-regression--another important multivariate regression improvement.
Randić, M
2001-01-01
We review the serious problem associated with instabilities of the coefficients of regression equations, referred to as the MRA (multivariate regression analysis) "nightmare of the first kind". This is manifested when in a stepwise regression a descriptor is included or excluded from a regression. The consequence is an unpredictable change of the coefficients of the descriptors that remain in the regression equation. We follow with consideration of an even more serious problem, referred to as the MRA "nightmare of the second kind", arising when optimal descriptors are selected from a large pool of descriptors. This process typically causes at different steps of the stepwise regression a replacement of several previously used descriptors by new ones. We describe a procedure that resolves these difficulties. The approach is illustrated on boiling points of nonanes which are considered (1) by using an ordered connectivity basis; (2) by using an ordering resulting from application of greedy algorithm; and (3) by using an ordering derived from an exhaustive search for optimal descriptors. A novel variant of multiple regression analysis, called retro-regression (RR), is outlined showing how it resolves the ambiguities associated with both "nightmares" of the first and the second kind of MRA.
Improving performances of suboptimal greedy iterative biclustering heuristics via localization.
Erten, Cesim; Sözdinler, Melih
2010-10-15
Biclustering gene expression data is the problem of extracting submatrices of genes and conditions exhibiting significant correlation across both the rows and the columns of a data matrix of expression values. Even the simplest versions of the problem are computationally hard. Most of the proposed solutions therefore employ greedy iterative heuristics that locally optimize a suitably assigned scoring function. We provide a fast and simple pre-processing algorithm called localization that reorders the rows and columns of the input data matrix in such a way as to group correlated entries in small local neighborhoods within the matrix. The proposed localization algorithm takes its roots from effective use of graph-theoretical methods applied to problems exhibiting a similar structure to that of biclustering. In order to evaluate the effectivenesss of the localization pre-processing algorithm, we focus on three representative greedy iterative heuristic methods. We show how the localization pre-processing can be incorporated into each representative algorithm to improve biclustering performance. Furthermore, we propose a simple biclustering algorithm, Random Extraction After Localization (REAL) that randomly extracts submatrices from the localization pre-processed data matrix, eliminates those with low similarity scores, and provides the rest as correlated structures representing biclusters. We compare the proposed localization pre-processing with another pre-processing alternative, non-negative matrix factorization. We show that our fast and simple localization procedure provides similar or even better results than the computationally heavy matrix factorization pre-processing with regards to H-value tests. We next demonstrate that the performances of the three representative greedy iterative heuristic methods improve with localization pre-processing when biological correlations in the form of functional enrichment and PPI verification constitute the main performance criteria. The fact that the random extraction method based on localization REAL performs better than the representative greedy heuristic methods under same criteria also confirms the effectiveness of the suggested pre-processing method. Supplementary material including code implementations in LEDA C++ library, experimental data, and the results are available at http://code.google.com/p/biclustering/ cesim@khas.edu.tr; melihsozdinler@boun.edu.tr Supplementary data are available at Bioinformatics online.
Efficient greedy algorithms for economic manpower shift planning
NASA Astrophysics Data System (ADS)
Nearchou, A. C.; Giannikos, I. C.; Lagodimos, A. G.
2015-01-01
Consideration is given to the economic manpower shift planning (EMSP) problem, an NP-hard capacity planning problem appearing in various industrial settings including the packing stage of production in process industries and maintenance operations. EMSP aims to determine the manpower needed in each available workday shift of a given planning horizon so as to complete a set of independent jobs at minimum cost. Three greedy heuristics are presented for the EMSP solution. These practically constitute adaptations of an existing algorithm for a simplified version of EMSP which had shown excellent performance in terms of solution quality and speed. Experimentation shows that the new algorithms perform very well in comparison to the results obtained by both the CPLEX optimizer and an existing metaheuristic. Statistical analysis is deployed to rank the algorithms in terms of their solution quality and to identify the effects that critical planning factors may have on their relative efficiency.
Determining the Most Vital Arcs Within a Multi-Mode Communication Network Using Set-Based Measures
2015-03-26
Disruption • llE"GreedyDisruption F’ ig u r c8 . A b..-o r grap h d isplayin g tho avcragcch augc in v;• lnc at cnchdcgrccor d is r u l>- t io n w h...Force Institute of Technology Graduate School of Engineering and Management (AFIT/ENS) 2950 Hobson Way WPAFB OH 45433-7765 AFIT-ENS-MS-15-M-131
Designing Robust and Resilient Tactical MANETs
2014-09-25
Bounds on the Throughput Efficiency of Greedy Maximal Scheduling in Wireless Networks , IEEE/ACM Transactions on Networking , (06 2011): 0. doi: N... Wireless Sensor Networks and Effects of Long Range Dependant Data, Special IWSM Issue of Sequential Analysis, (11 2012): 0. doi: A. D. Dominguez...Bushnell, R. Poovendran. A Convex Optimization Approach for Clone Detection in Wireless Sensor Networks , Pervasive and Mobile Computing, (01 2012
Optimal Achievable Encoding for Brain Machine Interface
2017-12-22
dictionary-based encoding approach to translate a visual image into sequential patterns of electrical stimulation in real time , in a manner that...including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and...networks, and by applying linear decoding to complete recorded populations of retinal ganglion cells for the first time . Third, we developed a greedy
Scheduling algorithm for mission planning and logistics evaluation users' guide
NASA Technical Reports Server (NTRS)
Chang, H.; Williams, J. M.
1976-01-01
The scheduling algorithm for mission planning and logistics evaluation (SAMPLE) program is a mission planning tool composed of three subsystems; the mission payloads subsystem (MPLS), which generates a list of feasible combinations from a payload model for a given calendar year; GREEDY, which is a heuristic model used to find the best traffic model; and the operations simulation and resources scheduling subsystem (OSARS), which determines traffic model feasibility for available resources. The SAMPLE provides the user with options to allow the execution of MPLS, GREEDY, GREEDY-OSARS, or MPLS-GREEDY-OSARS.
Heuristic algorithms for solving of the tool routing problem for CNC cutting machines
NASA Astrophysics Data System (ADS)
Chentsov, P. A.; Petunin, A. A.; Sesekin, A. N.; Shipacheva, E. N.; Sholohov, A. E.
2015-11-01
The article is devoted to the problem of minimizing the path of the cutting tool to shape cutting machines began. This problem can be interpreted as a generalized traveling salesman problem. Earlier version of the dynamic programming method to solve this problem was developed. Unfortunately, this method allows to process an amount not exceeding thirty circuits. In this regard, the task of constructing quasi-optimal route becomes relevant. In this paper we propose options for quasi-optimal greedy algorithms. Comparison of the results of exact and approximate algorithms is given.
NITPICK: peak identification for mass spectrometry data.
Renard, Bernhard Y; Kirchner, Marc; Steen, Hanno; Steen, Judith A J; Hamprecht, Fred A
2008-08-28
The reliable extraction of features from mass spectra is a fundamental step in the automated analysis of proteomic mass spectrometry (MS) experiments. This contribution proposes a sparse template regression approach to peak picking called NITPICK. NITPICK is a Non-greedy, Iterative Template-based peak PICKer that deconvolves complex overlapping isotope distributions in multicomponent mass spectra. NITPICK is based on fractional averaging, a novel extension to Senko's well-known averaging model, and on a modified version of sparse, non-negative least angle regression, for which a suitable, statistically motivated early stopping criterion has been derived. The strength of NITPICK is the deconvolution of overlapping mixture mass spectra. Extensive comparative evaluation has been carried out and results are provided for simulated and real-world data sets. NITPICK outperforms pepex, to date the only alternate, publicly available, non-greedy feature extraction routine. NITPICK is available as software package for the R programming language and can be downloaded from (http://hci.iwr.uni-heidelberg.de/mip/proteomics/).
NASA Astrophysics Data System (ADS)
Khogeer, Ahmed Sirag
2005-11-01
Petroleum refining is a capital-intensive business. With stringent environmental regulations on the processing industry and declining refining margins, political instability, increased risk of war and terrorist attacks in which refineries and fuel transportation grids may be targeted, higher pressures are exerted on refiners to optimize performance and find the best combination of feed and processes to produce salable products that meet stricter product specifications, while at the same time meeting refinery supply commitments and of course making profit. This is done through multi objective optimization. For corporate refining companies and at the national level, Intea-Refinery and Inter-Refinery optimization is the second step in optimizing the operation of the whole refining chain as a single system. Most refinery-wide optimization methods do not cover multiple objectives such as minimizing environmental impact, avoiding catastrophic failures, or enhancing product spec upgrade effects. This work starts by carrying out a refinery-wide, single objective optimization, and then moves to multi objective-single refinery optimization. The last step is multi objective-multi refinery optimization, the objectives of which are analysis of the effects of economic, environmental, product spec, strategic, and catastrophic failure. Simulation runs were carried out using both MATLAB and ASPEN PIMS utilizing nonlinear techniques to solve the optimization problem. The results addressed the need to debottleneck some refineries or transportation media in order to meet the demand for essential products under partial or total failure scenarios. They also addressed how importing some high spec products can help recover some of the losses and what is needed in order to accomplish this. In addition, the results showed nonlinear relations among local and global objectives for some refineries. The results demonstrate that refineries can have a local multi objective optimum that does not follow the same trends as either global or local single objective optimums. Catastrophic failure effects on refinery operations and on local objectives are more significant than environmental objective effects, and changes in the capacity or the local objectives follow a discrete behavioral pattern, in contrast to environmental objective cases in which the effects are smoother. (Abstract shortened by UMI.)
A genetic algorithm for replica server placement
NASA Astrophysics Data System (ADS)
Eslami, Ghazaleh; Toroghi Haghighat, Abolfazl
2012-01-01
Modern distribution systems use replication to improve communication delay experienced by their clients. Some techniques have been developed for web server replica placement. One of the previous studies was Greedy algorithm proposed by Qiu et al, that needs knowledge about network topology. In This paper, first we introduce a genetic algorithm for web server replica placement. Second, we compare our algorithm with Greedy algorithm proposed by Qiu et al, and Optimum algorithm. We found that our approach can achieve better results than Greedy algorithm proposed by Qiu et al but it's computational time is more than Greedy algorithm.
A genetic algorithm for replica server placement
NASA Astrophysics Data System (ADS)
Eslami, Ghazaleh; Toroghi Haghighat, Abolfazl
2011-12-01
Modern distribution systems use replication to improve communication delay experienced by their clients. Some techniques have been developed for web server replica placement. One of the previous studies was Greedy algorithm proposed by Qiu et al, that needs knowledge about network topology. In This paper, first we introduce a genetic algorithm for web server replica placement. Second, we compare our algorithm with Greedy algorithm proposed by Qiu et al, and Optimum algorithm. We found that our approach can achieve better results than Greedy algorithm proposed by Qiu et al but it's computational time is more than Greedy algorithm.
The In-Transit Vigilant Covering Tour Problem of Routing Unmanned Ground Vehicles
2012-08-01
of vertices in both vertex sets V and W, rather than exclusively in the vertex set V. A metaheuristic algorithm which follows the Greedy Randomized...window (VRPTW) approach, with the application of Java-encoded metaheuristic , was used [O’Rourke et al., 2001] for the dynamic routing of UAVs. Harder et...minimize both the two conflicting objectives; tour length and the coverage distance via a multi-objective evolutionary algorithm . This approach avoids a
NASA Astrophysics Data System (ADS)
Cheng, Longjiu; Cai, Wensheng; Shao, Xueguang
2005-03-01
An energy-based perturbation and a new idea of taboo strategy are proposed for structural optimization and applied in a benchmark problem, i.e., the optimization of Lennard-Jones (LJ) clusters. It is proved that the energy-based perturbation is much better than the traditional random perturbation both in convergence speed and searching ability when it is combined with a simple greedy method. By tabooing the most wide-spread funnel instead of the visited solutions, the hit rate of other funnels can be significantly improved. Global minima of (LJ) clusters up to 200 atoms are found with high efficiency.
Multi-Satellite Scheduling Approach for Dynamic Areal Tasks Triggered by Emergent Disasters
NASA Astrophysics Data System (ADS)
Niu, X. N.; Zhai, X. J.; Tang, H.; Wu, L. X.
2016-06-01
The process of satellite mission scheduling, which plays a significant role in rapid response to emergent disasters, e.g. earthquake, is used to allocate the observation resources and execution time to a series of imaging tasks by maximizing one or more objectives while satisfying certain given constraints. In practice, the information obtained of disaster situation changes dynamically, which accordingly leads to the dynamic imaging requirement of users. We propose a satellite scheduling model to address dynamic imaging tasks triggered by emergent disasters. The goal of proposed model is to meet the emergency response requirements so as to make an imaging plan to acquire rapid and effective information of affected area. In the model, the reward of the schedule is maximized. To solve the model, we firstly present a dynamic segmenting algorithm to partition area targets. Then the dynamic heuristic algorithm embedding in a greedy criterion is designed to obtain the optimal solution. To evaluate the model, we conduct experimental simulations in the scene of Wenchuan Earthquake. The results show that the simulated imaging plan can schedule satellites to observe a wider scope of target area. We conclude that our satellite scheduling model can optimize the usage of satellite resources so as to obtain images in disaster response in a more timely and efficient manner.
Randomized algorithms for high quality treatment planning in volumetric modulated arc therapy
NASA Astrophysics Data System (ADS)
Yang, Yu; Dong, Bin; Wen, Zaiwen
2017-02-01
In recent years, volumetric modulated arc therapy (VMAT) has been becoming a more and more important radiation technique widely used in clinical application for cancer treatment. One of the key problems in VMAT is treatment plan optimization, which is complicated due to the constraints imposed by the involved equipments. In this paper, we consider a model with four major constraints: the bound on the beam intensity, an upper bound on the rate of the change of the beam intensity, the moving speed of leaves of the multi-leaf collimator (MLC) and its directional-convexity. We solve the model by a two-stage algorithm: performing minimization with respect to the shapes of the aperture and the beam intensities alternatively. Specifically, the shapes of the aperture are obtained by a greedy algorithm whose performance is enhanced by random sampling in the leaf pairs with a decremental rate. The beam intensity is optimized using a gradient projection method with non-monotonic line search. We further improve the proposed algorithm by an incremental random importance sampling of the voxels to reduce the computational cost of the energy functional. Numerical simulations on two clinical cancer date sets demonstrate that our method is highly competitive to the state-of-the-art algorithms in terms of both computational time and quality of treatment planning.
A comparison of 12 algorithms for matching on the propensity score.
Austin, Peter C
2014-03-15
Propensity-score matching is increasingly being used to reduce the confounding that can occur in observational studies examining the effects of treatments or interventions on outcomes. We used Monte Carlo simulations to examine the following algorithms for forming matched pairs of treated and untreated subjects: optimal matching, greedy nearest neighbor matching without replacement, and greedy nearest neighbor matching without replacement within specified caliper widths. For each of the latter two algorithms, we examined four different sub-algorithms defined by the order in which treated subjects were selected for matching to an untreated subject: lowest to highest propensity score, highest to lowest propensity score, best match first, and random order. We also examined matching with replacement. We found that (i) nearest neighbor matching induced the same balance in baseline covariates as did optimal matching; (ii) when at least some of the covariates were continuous, caliper matching tended to induce balance on baseline covariates that was at least as good as the other algorithms; (iii) caliper matching tended to result in estimates of treatment effect with less bias compared with optimal and nearest neighbor matching; (iv) optimal and nearest neighbor matching resulted in estimates of treatment effect with negligibly less variability than did caliper matching; (v) caliper matching had amongst the best performance when assessed using mean squared error; (vi) the order in which treated subjects were selected for matching had at most a modest effect on estimation; and (vii) matching with replacement did not have superior performance compared with caliper matching without replacement. © 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd.
A comparison of 12 algorithms for matching on the propensity score
Austin, Peter C
2014-01-01
Propensity-score matching is increasingly being used to reduce the confounding that can occur in observational studies examining the effects of treatments or interventions on outcomes. We used Monte Carlo simulations to examine the following algorithms for forming matched pairs of treated and untreated subjects: optimal matching, greedy nearest neighbor matching without replacement, and greedy nearest neighbor matching without replacement within specified caliper widths. For each of the latter two algorithms, we examined four different sub-algorithms defined by the order in which treated subjects were selected for matching to an untreated subject: lowest to highest propensity score, highest to lowest propensity score, best match first, and random order. We also examined matching with replacement. We found that (i) nearest neighbor matching induced the same balance in baseline covariates as did optimal matching; (ii) when at least some of the covariates were continuous, caliper matching tended to induce balance on baseline covariates that was at least as good as the other algorithms; (iii) caliper matching tended to result in estimates of treatment effect with less bias compared with optimal and nearest neighbor matching; (iv) optimal and nearest neighbor matching resulted in estimates of treatment effect with negligibly less variability than did caliper matching; (v) caliper matching had amongst the best performance when assessed using mean squared error; (vi) the order in which treated subjects were selected for matching had at most a modest effect on estimation; and (vii) matching with replacement did not have superior performance compared with caliper matching without replacement. © 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. PMID:24123228
Ultra-fast consensus of discrete-time multi-agent systems with multi-step predictive output feedback
NASA Astrophysics Data System (ADS)
Zhang, Wenle; Liu, Jianchang
2016-04-01
This article addresses the ultra-fast consensus problem of high-order discrete-time multi-agent systems based on a unified consensus framework. A novel multi-step predictive output mechanism is proposed under a directed communication topology containing a spanning tree. By predicting the outputs of a network several steps ahead and adding this information into the consensus protocol, it is shown that the asymptotic convergence factor is improved by a power of q + 1 compared to the routine consensus. The difficult problem of selecting the optimal control gain is solved well by introducing a variable called convergence step. In addition, the ultra-fast formation achievement is studied on the basis of this new consensus protocol. Finally, the ultra-fast consensus with respect to a reference model and robust consensus is discussed. Some simulations are performed to illustrate the effectiveness of the theoretical results.
NASA Astrophysics Data System (ADS)
Koziel, Slawomir; Bekasiewicz, Adrian
2018-02-01
In this article, a simple yet efficient and reliable technique for fully automated multi-objective design optimization of antenna structures using sequential domain patching (SDP) is discussed. The optimization procedure according to SDP is a two-step process: (i) obtaining the initial set of Pareto-optimal designs representing the best possible trade-offs between considered conflicting objectives, and (ii) Pareto set refinement for yielding the optimal designs at the high-fidelity electromagnetic (EM) simulation model level. For the sake of computational efficiency, the first step is realized at the level of a low-fidelity (coarse-discretization) EM model by sequential construction and relocation of small design space segments (patches) in order to create a path connecting the extreme Pareto front designs obtained beforehand. The second stage involves response correction techniques and local response surface approximation models constructed by reusing EM simulation data acquired in the first step. A major contribution of this work is an automated procedure for determining the patch dimensions. It allows for appropriate selection of the number of patches for each geometry variable so as to ensure reliability of the optimization process while maintaining its low cost. The importance of this procedure is demonstrated by comparing it with uniform patch dimensions.
Mission Operations Planning with Preferences: An Empirical Study
NASA Technical Reports Server (NTRS)
Bresina, John L.; Khatib, Lina; McGann, Conor
2006-01-01
This paper presents an empirical study of some nonexhaustive approaches to optimizing preferences within the context of constraint-based, mixed-initiative planning for mission operations. This work is motivated by the experience of deploying and operating the MAPGEN (Mixed-initiative Activity Plan GENerator) system for the Mars Exploration Rover Mission. Responsiveness to the user is one of the important requirements for MAPGEN, hence, the additional computation time needed to optimize preferences must be kept within reasonabble bounds. This was the primary motivation for studying non-exhaustive optimization approaches. The specific goals of rhe empirical study are to assess the impact on solution quality of two greedy heuristics used in MAPGEN and to assess the improvement gained by applying a linear programming optimization technique to the final solution.
NASA Astrophysics Data System (ADS)
Han, S. T.; Shu, X. D.; Shchukin, V.; Kozhevnikova, G.
2018-06-01
In order to achieve reasonable process parameters in forming multi-step shaft by cross wedge rolling, the research studied the rolling-forming process multi-step shaft on the DEFORM-3D finite element software. The interactive orthogonal experiment was used to study the effect of the eight parameters, the first section shrinkage rate φ1, the first forming angle α1, the first spreading angle β1, the first spreading length L1, the second section shrinkage rate φ2, the second forming angle α2, the second spreading angle β2 and the second spreading length L2, on the quality of shaft end and the microstructure uniformity. By using the fuzzy mathematics comprehensive evaluation method and the extreme difference analysis, the influence degree of the process parameters on the quality of the multi-step shaft is obtained: β2>φ2L1>α1>β1>φ1>α2L2. The results of the study can provide guidance for obtaining multi-stepped shaft with high mechanical properties and achieving near net forming without stub bar in cross wedge rolling.
Greedy bases in rank 2 quantum cluster algebras
Lee, Kyungyong; Li, Li; Rupel, Dylan; Zelevinsky, Andrei
2014-01-01
We identify a quantum lift of the greedy basis for rank 2 coefficient-free cluster algebras. Our main result is that our construction does not depend on the choice of initial cluster, that it builds all cluster monomials, and that it produces bar-invariant elements. We also present several conjectures related to this quantum greedy basis and the triangular basis of Berenstein and Zelevinsky. PMID:24982182
Optimal design of an alignment-free two-DOF rehabilitation robot for the shoulder complex.
Galinski, Daniel; Sapin, Julien; Dehez, Bruno
2013-06-01
This paper presents the optimal design of an alignment-free exoskeleton for the rehabilitation of the shoulder complex. This robot structure is constituted of two actuated joints and is linked to the arm through passive degrees of freedom (DOFs) to drive the flexion-extension and abduction-adduction movements of the upper arm. The optimal design of this structure is performed through two steps. The first step is a multi-objective optimization process aiming to find the best parameters characterizing the robot and its position relative to the patient. The second step is a comparison process aiming to select the best solution from the optimization results on the basis of several criteria related to practical considerations. The optimal design process leads to a solution outperforming an existing solution on aspects as kinematics or ergonomics while being more simple.
Greedy Algorithms for Nonnegativity-Constrained Simultaneous Sparse Recovery
Kim, Daeun; Haldar, Justin P.
2016-01-01
This work proposes a family of greedy algorithms to jointly reconstruct a set of vectors that are (i) nonnegative and (ii) simultaneously sparse with a shared support set. The proposed algorithms generalize previous approaches that were designed to impose these constraints individually. Similar to previous greedy algorithms for sparse recovery, the proposed algorithms iteratively identify promising support indices. In contrast to previous approaches, the support index selection procedure has been adapted to prioritize indices that are consistent with both the nonnegativity and shared support constraints. Empirical results demonstrate for the first time that the combined use of simultaneous sparsity and nonnegativity constraints can substantially improve recovery performance relative to existing greedy algorithms that impose less signal structure. PMID:26973368
A native Bayesian classifier based routing protocol for VANETS
NASA Astrophysics Data System (ADS)
Bao, Zhenshan; Zhou, Keqin; Zhang, Wenbo; Gong, Xiaolei
2016-12-01
Geographic routing protocols are one of the most hot research areas in VANET (Vehicular Ad-hoc Network). However, there are few routing protocols can take both the transmission efficient and the usage of ratio into account. As we have noticed, different messages in VANET may ask different quality of service. So we raised a Native Bayesian Classifier based routing protocol (Naive Bayesian Classifier-Greedy, NBC-Greedy), which can classify and transmit different messages by its emergency degree. As a result, we can balance the transmission efficient and the usage of ratio with this protocol. Based on Matlab simulation, we can draw a conclusion that NBC-Greedy is more efficient and stable than LR-Greedy and GPSR.
NASA Technical Reports Server (NTRS)
Dupnick, E.; Wiggins, D.
1980-01-01
The functional specifications, functional design and flow, and the program logic of the GREEDY computer program are described. The GREEDY program is a submodule of the Scheduling Algorithm for Mission Planning and Logistics Evaluation (SAMPLE) program and has been designed as a continuation of the shuttle Mission Payloads (MPLS) program. The MPLS uses input payload data to form a set of feasible payload combinations; from these, GREEDY selects a subset of combinations (a traffic model) so all payloads can be included without redundancy. The program also provides the user a tutorial option so that he can choose an alternate traffic model in case a particular traffic model is unacceptable.
Approximating the 0-1 Multiple Knapsack Problem with Agent Decomposition and Market Negotiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smolinski, B.
The 0-1 multiple knapsack problem appears in many domains from financial portfolio management to cargo ship stowing. Methods for solving it range from approximate algorithms, such as greedy algorithms, to exact algorithms, such as branch and bound. Approximate algorithms have no bounds on how poorly they perform and exact algorithms can suffer from exponential time and space complexities with large data sets. This paper introduces a market model based on agent decomposition and market auctions for approximating the 0-1 multiple knapsack problem, and an algorithm that implements the model (M(x)). M(x) traverses the solution space rather than getting caught inmore » a local maximum, overcoming an inherent problem of many greedy algorithms. The use of agents ensures that infeasible solutions are not considered while traversing the solution space and that traversal of the solution space is not just random, but is also directed. M(x) is compared to a bound and bound algorithm (BB) and a simple greedy algorithm with a random shuffle (G(x)). The results suggest that M(x) is a good algorithm for approximating the 0-1 Multiple Knapsack problem. M(x) almost always found solutions that were close to optimal in a fraction of the time it took BB to run and with much less memory on large test data sets. M(x) usually performed better than G(x) on hard problems with correlated data.« less
GreedyMAX-type Algorithms for the Maximum Independent Set Problem
NASA Astrophysics Data System (ADS)
Borowiecki, Piotr; Göring, Frank
A maximum independent set problem for a simple graph G = (V,E) is to find the largest subset of pairwise nonadjacent vertices. The problem is known to be NP-hard and it is also hard to approximate. Within this article we introduce a non-negative integer valued function p defined on the vertex set V(G) and called a potential function of a graph G, while P(G) = max v ∈ V(G) p(v) is called a potential of G. For any graph P(G) ≤ Δ(G), where Δ(G) is the maximum degree of G. Moreover, Δ(G) - P(G) may be arbitrarily large. A potential of a vertex lets us get a closer insight into the properties of its neighborhood which leads to the definition of the family of GreedyMAX-type algorithms having the classical GreedyMAX algorithm as their origin. We establish a lower bound 1/(P + 1) for the performance ratio of GreedyMAX-type algorithms which favorably compares with the bound 1/(Δ + 1) known to hold for GreedyMAX. The cardinality of an independent set generated by any GreedyMAX-type algorithm is at least sum_{vin V(G)} (p(v)+1)^{-1}, which strengthens the bounds of Turán and Caro-Wei stated in terms of vertex degrees.
A Hybrid Optimization Framework with POD-based Order Reduction and Design-Space Evolution Scheme
NASA Astrophysics Data System (ADS)
Ghoman, Satyajit S.
The main objective of this research is to develop an innovative multi-fidelity multi-disciplinary design, analysis and optimization suite that integrates certain solution generation codes and newly developed innovative tools to improve the overall optimization process. The research performed herein is divided into two parts: (1) the development of an MDAO framework by integration of variable fidelity physics-based computational codes, and (2) enhancements to such a framework by incorporating innovative features extending its robustness. The first part of this dissertation describes the development of a conceptual Multi-Fidelity Multi-Strategy and Multi-Disciplinary Design Optimization Environment (M3 DOE), in context of aircraft wing optimization. M 3 DOE provides the user a capability to optimize configurations with a choice of (i) the level of fidelity desired, (ii) the use of a single-step or multi-step optimization strategy, and (iii) combination of a series of structural and aerodynamic analyses. The modularity of M3 DOE allows it to be a part of other inclusive optimization frameworks. The M 3 DOE is demonstrated within the context of shape and sizing optimization of the wing of a Generic Business Jet aircraft. Two different optimization objectives, viz. dry weight minimization, and cruise range maximization are studied by conducting one low-fidelity and two high-fidelity optimization runs to demonstrate the application scope of M3 DOE. The second part of this dissertation describes the development of an innovative hybrid optimization framework that extends the robustness of M 3 DOE by employing a proper orthogonal decomposition-based design-space order reduction scheme combined with the evolutionary algorithm technique. The POD method of extracting dominant modes from an ensemble of candidate configurations is used for the design-space order reduction. The snapshot of candidate population is updated iteratively using evolutionary algorithm technique of fitness-driven retention. This strategy capitalizes on the advantages of evolutionary algorithm as well as POD-based reduced order modeling, while overcoming the shortcomings inherent with these techniques. When linked with M3 DOE, this strategy offers a computationally efficient methodology for problems with high level of complexity and a challenging design-space. This newly developed framework is demonstrated for its robustness on a nonconventional supersonic tailless air vehicle wing shape optimization problem.
Multidisciplinary Analysis and Optimization Generation 1 and Next Steps
NASA Technical Reports Server (NTRS)
Naiman, Cynthia Gutierrez
2008-01-01
The Multidisciplinary Analysis & Optimization Working Group (MDAO WG) of the Systems Analysis Design & Optimization (SAD&O) discipline in the Fundamental Aeronautics Program s Subsonic Fixed Wing (SFW) project completed three major milestones during Fiscal Year (FY)08: "Requirements Definition" Milestone (1/31/08); "GEN 1 Integrated Multi-disciplinary Toolset" (Annual Performance Goal) (6/30/08); and "Define Architecture & Interfaces for Next Generation Open Source MDAO Framework" Milestone (9/30/08). Details of all three milestones are explained including documentation available, potential partner collaborations, and next steps in FY09.
Multi-objective evolutionary algorithms for fuzzy classification in survival prediction.
Jiménez, Fernando; Sánchez, Gracia; Juárez, José M
2014-03-01
This paper presents a novel rule-based fuzzy classification methodology for survival/mortality prediction in severe burnt patients. Due to the ethical aspects involved in this medical scenario, physicians tend not to accept a computer-based evaluation unless they understand why and how such a recommendation is given. Therefore, any fuzzy classifier model must be both accurate and interpretable. The proposed methodology is a three-step process: (1) multi-objective constrained optimization of a patient's data set, using Pareto-based elitist multi-objective evolutionary algorithms to maximize accuracy and minimize the complexity (number of rules) of classifiers, subject to interpretability constraints; this step produces a set of alternative (Pareto) classifiers; (2) linguistic labeling, which assigns a linguistic label to each fuzzy set of the classifiers; this step is essential to the interpretability of the classifiers; (3) decision making, whereby a classifier is chosen, if it is satisfactory, according to the preferences of the decision maker. If no classifier is satisfactory for the decision maker, the process starts again in step (1) with a different input parameter set. The performance of three multi-objective evolutionary algorithms, niched pre-selection multi-objective algorithm, elitist Pareto-based multi-objective evolutionary algorithm for diversity reinforcement (ENORA) and the non-dominated sorting genetic algorithm (NSGA-II), was tested using a patient's data set from an intensive care burn unit and a standard machine learning data set from an standard machine learning repository. The results are compared using the hypervolume multi-objective metric. Besides, the results have been compared with other non-evolutionary techniques and validated with a multi-objective cross-validation technique. Our proposal improves the classification rate obtained by other non-evolutionary techniques (decision trees, artificial neural networks, Naive Bayes, and case-based reasoning) obtaining with ENORA a classification rate of 0.9298, specificity of 0.9385, and sensitivity of 0.9364, with 14.2 interpretable fuzzy rules on average. Our proposal improves the accuracy and interpretability of the classifiers, compared with other non-evolutionary techniques. We also conclude that ENORA outperforms niched pre-selection and NSGA-II algorithms. Moreover, given that our multi-objective evolutionary methodology is non-combinational based on real parameter optimization, the time cost is significantly reduced compared with other evolutionary approaches existing in literature based on combinational optimization. Copyright © 2014 Elsevier B.V. All rights reserved.
Nearest greedy for solving the waste collection vehicle routing problem: A case study
NASA Astrophysics Data System (ADS)
Mat, Nur Azriati; Benjamin, Aida Mauziah; Abdul-Rahman, Syariza; Wibowo, Antoni
2017-11-01
This paper presents a real case study pertaining to an issue related to waste collection in the northern part of Malaysia by using a constructive heuristic algorithm known as the Nearest Greedy (NG) technique. This technique has been widely used to devise initial solutions for issues concerning vehicle routing. Basically, the waste collection cycle involves the following steps: i) each vehicle starts from a depot, ii) visits a number of customers to collect waste, iii) unloads waste at the disposal site, and lastly, iv) returns to the depot. Moreover, the sample data set used in this paper consisted of six areas, where each area involved up to 103 customers. In this paper, the NG technique was employed to construct an initial route for each area. The solution proposed from the technique was compared with the present vehicle routes implemented by a waste collection company within the city. The comparison results portrayed that NG offered better vehicle routes with a 11.07% reduction of the total distance traveled, in comparison to the present vehicle routes.
Greedy Sparse Approaches for Homological Coverage in Location Unaware Sensor Networks
2017-12-08
GlobalSIP); 2013 Dec; Austin , TX . p. 595– 598. 33. Farah C, Schwaner F, Abedi A, Worboys M. Distributed homology algorithm to detect topological events...ARL-TR-8235•DEC 2017 US Army Research Laboratory Greedy Sparse Approaches for Homological Coverage in Location-Unaware Sensor Net- works by Terrence...8235•DEC 2017 US Army Research Laboratory Greedy Sparse Approaches for Homological Coverage in Location-Unaware Sensor Net- works by Terrence J Moore
NASA Astrophysics Data System (ADS)
Kim, Gi Young
The problem we investigate deals with an Image Intelligence (IMINT) sensor allocation schedule for High Altitude Long Endurance UAVs in a dynamic and Anti-Access Area Denial (A2AD) environment. The objective is to maximize the Situational Awareness (SA) of decision makers. The value of SA can be improved in two different ways. First, if a sensor allocated to an Areas of Interest (AOI) detects target activity, then the SA value will be increased. Second, the SA value increases if an AOI is monitored for a certain period of time, regardless of target detections. These values are functions of the sensor allocation time, sensor type and mode. Relatively few studies in the archival literature have been devoted to an analytic, detailed explanation of the target detection process, and AOI monitoring value dynamics. These two values are the fundamental criteria used to choose the most judicious sensor allocation schedule. This research presents mathematical expressions for target detection processes, and shows the monitoring value dynamics. Furthermore, the dynamics of target detection is the result of combined processes between belligerent behavior (target activity) and friendly behavior (sensor allocation). We investigate these combined processes and derive mathematical expressions for simplified cases. These closed form mathematical models can be used for Measures of Effectiveness (MOEs), i.e., target activity detection to evaluate sensor allocation schedules. We also verify these models with discrete event simulations which can also be used to describe more complex systems. We introduce several methodologies to achieve a judicious sensor allocation schedule focusing on the AOI monitoring value. The first methodology is a discrete time integer programming model which provides an optimal solution but is impractical for real world scenarios due to its computation time. Thus, it is necessary to trade off the quality of solution with computation time. The Myopic Greedy Procedure (MGP) is a heuristic which chooses the largest immediate unit time return at each decision epoch. This reduces computation time significantly, but the quality of the solution may be only 95% of optimal (for small size problems). Another alternative is a multi-start random constructive Hybrid Myopic Greedy Procedure (H-MGP), which incorporates stochastic variation in choosing an action at each stage, and repeats it a predetermined number of times (roughly 99.3% of optimal with 1000 repetitions). Finally, the One Stage Look Ahead (OSLA) procedure considers all the 'top choices' at each stage for a temporary time horizon and chooses the best action (roughly 98.8% of optimal with no repetition). Using OSLA procedure, we can have ameliorated solutions within a reasonable computation time. Other important issues discussed in this research are methodologies for the development of input parameters for real world applications.
Multi-agent coordination algorithms for control of distributed energy resources in smart grids
NASA Astrophysics Data System (ADS)
Cortes, Andres
Sustainable energy is a top-priority for researchers these days, since electricity and transportation are pillars of modern society. Integration of clean energy technologies such as wind, solar, and plug-in electric vehicles (PEVs), is a major engineering challenge in operation and management of power systems. This is due to the uncertain nature of renewable energy technologies and the large amount of extra load that PEVs would add to the power grid. Given the networked structure of a power system, multi-agent control and optimization strategies are natural approaches to address the various problems of interest for the safe and reliable operation of the power grid. The distributed computation in multi-agent algorithms addresses three problems at the same time: i) it allows for the handling of problems with millions of variables that a single processor cannot compute, ii) it allows certain independence and privacy to electricity customers by not requiring any usage information, and iii) it is robust to localized failures in the communication network, being able to solve problems by simply neglecting the failing section of the system. We propose various algorithms to coordinate storage, generation, and demand resources in a power grid using multi-agent computation and decentralized decision making. First, we introduce a hierarchical vehicle-one-grid (V1G) algorithm for coordination of PEVs under usage constraints, where energy only flows from the grid in to the batteries of PEVs. We then present a hierarchical vehicle-to-grid (V2G) algorithm for PEV coordination that takes into consideration line capacity constraints in the distribution grid, and where energy flows both ways, from the grid in to the batteries, and from the batteries to the grid. Next, we develop a greedy-like hierarchical algorithm for management of demand response events with on/off loads. Finally, we introduce distributed algorithms for the optimal control of distributed energy resources, i.e., generation and storage in a microgrid. The algorithms we present are provably correct and tested in simulation. Each algorithm is assumed to work on a particular network topology, and simulation studies are carried out in order to demonstrate their convergence properties to a desired solution.
Xie, Rui; Wan, Xianrong; Hong, Sheng; Yi, Jianxin
2017-06-14
The performance of a passive radar network can be greatly improved by an optimal radar network structure. Generally, radar network structure optimization consists of two aspects, namely the placement of receivers in suitable places and selection of appropriate illuminators. The present study investigates issues concerning the joint optimization of receiver placement and illuminator selection for a passive radar network. Firstly, the required radar cross section (RCS) for target detection is chosen as the performance metric, and the joint optimization model boils down to the partition p -center problem (PPCP). The PPCP is then solved by a proposed bisection algorithm. The key of the bisection algorithm lies in solving the partition set covering problem (PSCP), which can be solved by a hybrid algorithm developed by coupling the convex optimization with the greedy dropping algorithm. In the end, the performance of the proposed algorithm is validated via numerical simulations.
A sub-space greedy search method for efficient Bayesian Network inference.
Zhang, Qing; Cao, Yong; Li, Yong; Zhu, Yanming; Sun, Samuel S M; Guo, Dianjing
2011-09-01
Bayesian network (BN) has been successfully used to infer the regulatory relationships of genes from microarray dataset. However, one major limitation of BN approach is the computational cost because the calculation time grows more than exponentially with the dimension of the dataset. In this paper, we propose a sub-space greedy search method for efficient Bayesian Network inference. Particularly, this method limits the greedy search space by only selecting gene pairs with higher partial correlation coefficients. Using both synthetic and real data, we demonstrate that the proposed method achieved comparable results with standard greedy search method yet saved ∼50% of the computational time. We believe that sub-space search method can be widely used for efficient BN inference in systems biology. Copyright © 2011 Elsevier Ltd. All rights reserved.
On Stable Marriages and Greedy Matchings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manne, Fredrik; Naim, Md; Lerring, Hakon
2016-12-11
Research on stable marriage problems has a long and mathematically rigorous history, while that of exploiting greedy matchings in combinatorial scientific computing is a younger and less developed research field. In this paper we consider the relationships between these two areas. In particular we show that several problems related to computing greedy matchings can be formulated as stable marriage problems and as a consequence several recently proposed algorithms for computing greedy matchings are in fact special cases of well known algorithms for the stable marriage problem. However, in terms of implementations and practical scalable solutions on modern hardware, the greedymore » matching community has made considerable progress. We show that due to the strong relationship between these two fields many of these results are also applicable for solving stable marriage problems.« less
Combined Economic and Hydrologic Modeling to Support Collaborative Decision Making Processes
NASA Astrophysics Data System (ADS)
Sheer, D. P.
2008-12-01
For more than a decade, the core concept of the author's efforts in support of collaborative decision making has been a combination of hydrologic simulation and multi-objective optimization. The modeling has generally been used to support collaborative decision making processes. The OASIS model developed by HydroLogics Inc. solves a multi-objective optimization at each time step using a mixed integer linear program (MILP). The MILP can be configured to include any user defined objective, including but not limited too economic objectives. For example, an estimated marginal value for water for crops and M&I use were included in the objective function to drive trades in a model of the lower Rio Grande. The formulation of the MILP, constraints and objectives, in any time step is conditional: it changes based on the value of state variables and dynamic external forcing functions, such as rainfall, hydrology, market prices, arrival of migratory fish, water temperature, etc. It therefore acts as a dynamic short term multi-objective economic optimization for each time step. MILP is capable of solving a general problem that includes a very realistic representation of the physical system characteristics in addition to the normal multi-objective optimization objectives and constraints included in economic models. In all of these models, the short term objective function is a surrogate for achieving long term multi-objective results. The long term performance for any alternative (especially including operating strategies) is evaluated by simulation. An operating rule is the combination of conditions, parameters, constraints and objectives used to determine the formulation of the short term optimization in each time step. Heuristic wrappers for the simulation program have been developed improve the parameters of an operating rule, and are initiating research on a wrapper that will allow us to employ a genetic algorithm to improve the form of the rule (conditions, constraints, and short term objectives) as well. In the models operating rules represent different models of human behavior, and the objective of the modeling is to find rules for human behavior that perform well in terms of long term human objectives. The conceptual model used to represent human behavior incorporates economic multi-objective optimization for surrogate objectives, and rules that set those objectives based on current conditions and accounting for uncertainty, at least implicitly. The author asserts that real world operating rules follow this form and have evolved because they have been perceived as successful in the past. Thus, the modeling efforts focus on human behavior in much the same way that economic models focus on human behavior. This paper illustrates the above concepts with real world examples.
Pareto Tracer: a predictor-corrector method for multi-objective optimization problems
NASA Astrophysics Data System (ADS)
Martín, Adanay; Schütze, Oliver
2018-03-01
This article proposes a novel predictor-corrector (PC) method for the numerical treatment of multi-objective optimization problems (MOPs). The algorithm, Pareto Tracer (PT), is capable of performing a continuation along the set of (local) solutions of a given MOP with k objectives, and can cope with equality and box constraints. Additionally, the first steps towards a method that manages general inequality constraints are also introduced. The properties of PT are first discussed theoretically and later numerically on several examples.
NASA Astrophysics Data System (ADS)
Tian, Wenli; Cao, Chengxuan
2017-03-01
A generalized interval fuzzy mixed integer programming model is proposed for the multimodal freight transportation problem under uncertainty, in which the optimal mode of transport and the optimal amount of each type of freight transported through each path need to be decided. For practical purposes, three mathematical methods, i.e. the interval ranking method, fuzzy linear programming method and linear weighted summation method, are applied to obtain equivalents of constraints and parameters, and then a fuzzy expected value model is presented. A heuristic algorithm based on a greedy criterion and the linear relaxation algorithm are designed to solve the model.
Quantification of soil water retention parameters using multi-section TDR-waveform analysis
NASA Astrophysics Data System (ADS)
Baviskar, S. M.; Heimovaara, T. J.
2017-06-01
Soil water retention parameters are important for describing flow in variably saturated soils. TDR is one of the standard methods used for determining water content in soil samples. In this study, we present an approach to estimate water retention parameters of a sample which is initially saturated and subjected to an incremental decrease in boundary head causing it to drain in a multi-step fashion. TDR waveforms are measured along the height of the sample at assumed different hydrostatic conditions at daily interval. The cumulative discharge outflow drained from the sample is also recorded. The saturated water content is obtained using volumetric analysis after the final step involved in multi-step drainage. The equation obtained by coupling the unsaturated parametric function and the apparent dielectric permittivity is fitted to a TDR wave propagation forward model. The unsaturated parametric function is used to spatially interpolate the water contents along TDR probe. The cumulative discharge outflow data is fitted with cumulative discharge estimated using the unsaturated parametric function. The weight of water inside the sample estimated at the first and final boundary head in multi-step drainage is fitted with the corresponding weights calculated using unsaturated parametric function. A Bayesian optimization scheme is used to obtain optimized water retention parameters for these different objective functions. This approach can be used for samples with long heights and is especially suitable for characterizing sands with a uniform particle size distribution at low capillary heads.
Theoretically Founded Optimization of Auctioneer's Revenues in Expanding Auctions
NASA Astrophysics Data System (ADS)
Rabin, Jonathan; Shehory, Onn
The expanding auction is a multi-unit auction which provides the auctioneer with control over the outcome of the auction by means of dynamically adding items for sale. Previous research on the expanding auction has provided a numeric method to calculate a strategy that optimizes the auctioneer's revenue. In this paper, we analyze various theoretical properties of the expanding auction, and compare it to VCG, a multi-unit auction protocol known in the art. We examine the effects of errors in the auctioneer's estimation of the buyers' maximal bidding values and prove a theoretical bound on the ratio between the revenue yielded by the Informed Decision Strategy (IDS) and the post-optimal strategy. We also analyze the relationship between the auction step and the optimal revenue and introduce a method of computing this optimizing step. We further compare the revenues yielded by the use of IDS with an expanding auction to those of the VCG mechanism and determine the conditions under which the former outperforms the latter. Our work provides new insight into the properties of the expanding auction. It further provides theoretically founded means for optimizing the revenue of auctioneer.
Morgado, Gaspar; Gerngross, Daniel; Roberts, Tania M; Panke, Sven
Cell-free biosynthesis in the form of in vitro multi-enzyme reaction networks or enzyme cascade reactions emerges as a promising tool to carry out complex catalysis in one-step, one-vessel settings. It combines the advantages of well-established in vitro biocatalysis with the power of multi-step in vivo pathways. Such cascades have been successfully applied to the synthesis of fine and bulk chemicals, monomers and complex polymers of chemical importance, and energy molecules from renewable resources as well as electricity. The scale of these initial attempts remains small, suggesting that more robust control of such systems and more efficient optimization are currently major bottlenecks. To this end, the very nature of enzyme cascade reactions as multi-membered systems requires novel approaches for implementation and optimization, some of which can be obtained from in vivo disciplines (such as pathway refactoring and DNA assembly), and some of which can be built on the unique, cell-free properties of cascade reactions (such as easy analytical access to all system intermediates to facilitate modeling).
Influencing Busy People in a Social Network
Sarkar, Kaushik; Sundaram, Hari
2016-01-01
We identify influential early adopters in a social network, where individuals are resource constrained, to maximize the spread of multiple, costly behaviors. A solution to this problem is especially important for viral marketing. The problem of maximizing influence in a social network is challenging since it is computationally intractable. We make three contributions. First, we propose a new model of collective behavior that incorporates individual intent, knowledge of neighbors actions and resource constraints. Second, we show that the multiple behavior influence maximization is NP-hard. Furthermore, we show that the problem is submodular, implying the existence of a greedy solution that approximates the optimal solution to within a constant. However, since the greedy algorithm is expensive for large networks, we propose efficient heuristics to identify the influential individuals, including heuristics to assign behaviors to the different early adopters. We test our approach on synthetic and real-world topologies with excellent results. We evaluate the effectiveness under three metrics: unique number of participants, total number of active behaviors and network resource utilization. Our heuristics produce 15-51% increase in expected resource utilization over the naïve approach. PMID:27711127
Influencing Busy People in a Social Network.
Sarkar, Kaushik; Sundaram, Hari
2016-01-01
We identify influential early adopters in a social network, where individuals are resource constrained, to maximize the spread of multiple, costly behaviors. A solution to this problem is especially important for viral marketing. The problem of maximizing influence in a social network is challenging since it is computationally intractable. We make three contributions. First, we propose a new model of collective behavior that incorporates individual intent, knowledge of neighbors actions and resource constraints. Second, we show that the multiple behavior influence maximization is NP-hard. Furthermore, we show that the problem is submodular, implying the existence of a greedy solution that approximates the optimal solution to within a constant. However, since the greedy algorithm is expensive for large networks, we propose efficient heuristics to identify the influential individuals, including heuristics to assign behaviors to the different early adopters. We test our approach on synthetic and real-world topologies with excellent results. We evaluate the effectiveness under three metrics: unique number of participants, total number of active behaviors and network resource utilization. Our heuristics produce 15-51% increase in expected resource utilization over the naïve approach.
Application of an Evolution Strategy in Planetary Ephemeris Optimization
NASA Astrophysics Data System (ADS)
Mai, E.
2016-12-01
Classical planetary ephemeris construction comprises three major steps, which are performed iteratively: simultaneous numerical integration of coupled equations of motion of a multi-body system (propagator step), reduction of thousands of observations (reduction step), and optimization of various selected model parameters (adjustment step). This traditional approach is challenged by ongoing refinements in force modeling, e.g. inclusion of much more significant minor bodies, an ever-growing number of planetary observations, e.g. vast amount of spacecraft tracking data, etc. To master the high computational burden and in order to circumvent the need for inversion of huge normal equation matrices, we propose an alternative ephemeris construction method. The main idea is to solve the overall optimization problem by a straightforward direct evaluation of the whole set of mathematical formulas involved, rather than to solve it as an inverse problem with all its tacit mathematical assumptions and numerical difficulties. We replace the usual gradient search by a stochastic search, namely an evolution strategy, the latter of which is also perfect for the exploitation of parallel computing capabilities. Furthermore, this new approach enables multi-criteria optimization and time-varying optima. This issue will become important in future once ephemeris construction is just one part of even larger optimization problems, e.g. the combined and consistent determination of the physical state (orbit, size, shape, rotation, gravity,…) of celestial bodies (planets, satellites, asteroids, or comets), and if one seeks near real-time solutions. Here we outline the general idea and discuss first results. As an example, we present a simultaneous optimization of high-correlated asteroidal ring model parameters (total mass and heliocentric radius), based on simulations.
Frasson, L; Neubert, J; Reina, S; Oldfield, M; Davies, B L; Rodriguez Y Baena, F
2010-01-01
The popularity of minimally invasive surgical procedures is driving the development of novel, safer and more accurate surgical tools. In this context a multi-part probe for soft tissue surgery is being developed in the Mechatronics in Medicine Laboratory at Imperial College, London. This study reports an optimization procedure using finite element methods, for the identification of an interlock geometry able to limit the separation of the segments composing the multi-part probe. An optimal geometry was obtained and the corresponding three-dimensional finite element model validated experimentally. Simulation results are shown to be consistent with the physical experiments. The outcome of this study is an important step in the provision of a novel miniature steerable probe for surgery.
Efficient Multi-Stage Time Marching for Viscous Flows via Local Preconditioning
NASA Technical Reports Server (NTRS)
Kleb, William L.; Wood, William A.; vanLeer, Bram
1999-01-01
A new method has been developed to accelerate the convergence of explicit time-marching, laminar, Navier-Stokes codes through the combination of local preconditioning and multi-stage time marching optimization. Local preconditioning is a technique to modify the time-dependent equations so that all information moves or decays at nearly the same rate, thus relieving the stiffness for a system of equations. Multi-stage time marching can be optimized by modifying its coefficients to account for the presence of viscous terms, allowing larger time steps. We show it is possible to optimize the time marching scheme for a wide range of cell Reynolds numbers for the scalar advection-diffusion equation, and local preconditioning allows this optimization to be applied to the Navier-Stokes equations. Convergence acceleration of the new method is demonstrated through numerical experiments with circular advection and laminar boundary-layer flow over a flat plate.
The design of a multi-harmonic step-tunable gyrotron
NASA Astrophysics Data System (ADS)
Qi, Xiang-Bo; Du, Chao-Hai; Zhu, Juan-Feng; Pan, Shi; Liu, Pu-Kun
2017-03-01
The theoretical study of a step-tunable gyrotron controlled by successive excitation of multi-harmonic modes is presented in this paper. An axis-encircling electron beam is employed to eliminate the harmonic mode competition. Physics images are depicted to elaborate the multi-harmonic interaction mechanism in determining the operating parameters at which arbitrary harmonic tuning can be realized by magnetic field sweeping to achieve controlled multiband frequencies' radiation. An important principle is revealed that a weak coupling coefficient under a high-harmonic interaction can be compensated by a high Q-factor. To some extent, the complementation between the high Q-factor and weak coupling coefficient makes the high-harmonic mode potential to achieve high efficiency. Based on a previous optimized magnetic cusp gun, the multi-harmonic step-tunable gyrotron is feasible by using harmonic tuning of first-to-fourth harmonic modes. Multimode simulation shows that the multi-harmonic gyrotron can operate on the 34 GHz first-harmonic TE11 mode, 54 GHz second-harmonic TE21 mode, 74 GHz third-harmonic TE31 mode, and 94 GHz fourth-harmonic TE41 mode, corresponding to peak efficiencies of 28.6%, 35.7%, 17.1%, and 11.4%, respectively. The multi-harmonic step-tunable gyrotron provides new possibilities in millimeter-terahertz source development especially for advanced terahertz applications.
A trust-based sensor allocation algorithm in cooperative space search problems
NASA Astrophysics Data System (ADS)
Shen, Dan; Chen, Genshe; Pham, Khanh; Blasch, Erik
2011-06-01
Sensor allocation is an important and challenging problem within the field of multi-agent systems. The sensor allocation problem involves deciding how to assign a number of targets or cells to a set of agents according to some allocation protocol. Generally, in order to make efficient allocations, we need to design mechanisms that consider both the task performers' costs for the service and the associated probability of success (POS). In our problem, the costs are the used sensor resource, and the POS is the target tracking performance. Usually, POS may be perceived differently by different agents because they typically have different standards or means of evaluating the performance of their counterparts (other sensors in the search and tracking problem). Given this, we turn to the notion of trust to capture such subjective perceptions. In our approach, we develop a trust model to construct a novel mechanism that motivates sensor agents to limit their greediness or selfishness. Then we model the sensor allocation optimization problem with trust-in-loop negotiation game and solve it using a sub-game perfect equilibrium. Numerical simulations are performed to demonstrate the trust-based sensor allocation algorithm in cooperative space situation awareness (SSA) search problems.
NASA Astrophysics Data System (ADS)
Müller, Ruben; Schütze, Niels
2014-05-01
Water resources systems with reservoirs are expected to be sensitive to climate change. Assessment studies that analyze the impact of climate change on the performance of reservoirs can be divided in two groups: (1) Studies that simulate the operation under projected inflows with the current set of operational rules. Due to non adapted operational rules the future performance of these reservoirs can be underestimated and the impact overestimated. (2) Studies that optimize the operational rules for best adaption of the system to the projected conditions before the assessment of the impact. The latter allows for estimating more realistically future performance and adaption strategies based on new operation rules are available if required. Multi-purpose reservoirs serve various, often conflicting functions. If all functions cannot be served simultaneously at a maximum level, an effective compromise between multiple objectives of the reservoir operation has to be provided. Yet under climate change the historically preferenced compromise may no longer be the most suitable compromise in the future. Therefore a multi-objective based climate change impact assessment approach for multi-purpose multi-reservoir systems is proposed in the study. Projected inflows are provided in a first step using a physically based rainfall-runoff model. In a second step, a time series model is applied to generate long-term inflow time series. Finally, the long-term inflow series are used as driving variables for a simulation-based multi-objective optimization of the reservoir system in order to derive optimal operation rules. As a result, the adapted Pareto-optimal set of diverse best compromise solutions can be presented to the decision maker in order to assist him in assessing climate change adaption measures with respect to the future performance of the multi-purpose reservoir system. The approach is tested on a multi-purpose multi-reservoir system in a mountainous catchment in Germany. A climate change assessment is performed for climate change scenarios based on the SRES emission scenarios A1B, B1 and A2 for a set of statistically downscaled meteorological data. The future performance of the multi-purpose multi-reservoir system is quantified and possible intensifications of trade-offs between management goals or reservoir utilizations are shown.
Starvation dynamics of a greedy forager
NASA Astrophysics Data System (ADS)
Bhat, U.; Redner, S.; Bénichou, O.
2017-07-01
We investigate the dynamics of a greedy forager that moves by random walking in an environment where each site initially contains one unit of food. Upon encountering a food-containing site, the forager eats all the food there and can subsequently hop an additional S steps without food before starving to death. Upon encountering an empty site, the forager goes hungry and comes one time unit closer to starvation. We investigate the new feature of forager greed; if the forager has a choice between hopping to an empty site or to a food-containing site in its nearest neighborhood, it hops preferentially towards food. If the neighboring sites all contain food or are all empty, the forager hops equiprobably to one of these neighbors. Paradoxically, the lifetime of the forager can depend non-monotonically on greed, and the sense of the non-monotonicity is opposite in one and two dimensions. Even more unexpectedly, the forager lifetime in one dimension is substantially enhanced when the greed is negative; here the forager tends to avoid food in its local neighborhood. We also determine the average amount of food consumed at the instant when the forager starves. We present analytic, heuristic, and numerical results to elucidate these intriguing phenomena.
Interactive outlining: an improved approach using active contours
NASA Astrophysics Data System (ADS)
Daneels, Dirk; van Campenhout, David; Niblack, Carlton W.; Equitz, Will; Barber, Ron; Fierens, Freddy
1993-04-01
The purpose of our work is to outline objects on images in an interactive environment. We use an improved method based on energy minimizing active contours or `snakes.' Kass et al., proposed a variational technique; Amini used dynamic programming; and Williams and Shah introduced a fast, greedy algorithm. We combine the advantages of the latter two methods in a two-stage algorithm. The first stage is a greedy procedure that provides fast initial convergence. It is enhanced with a cost term that extends over a large number of points to avoid oscillations. The second stage, when accuracy becomes important, uses dynamic programming. This step is accelerated by the use of alternating search neighborhoods and by dropping stable points from the iterations. We have also added several features for user interaction. First, the user can define points of high confidence. Mathematically, this results in an extra cost term and, in that way, the robustness in difficult areas (e.g., noisy edges, sharp corners) is improved. We also give the user the possibility of incremental contour tracking, thus providing feedback on the refinement process. The algorithm has been tested on numerous photographic clip art images and extensive tests on medical images are in progress.
Iterative non-sequential protein structural alignment.
Salem, Saeed; Zaki, Mohammed J; Bystroff, Christopher
2009-06-01
Structural similarity between proteins gives us insights into their evolutionary relationships when there is low sequence similarity. In this paper, we present a novel approach called SNAP for non-sequential pair-wise structural alignment. Starting from an initial alignment, our approach iterates over a two-step process consisting of a superposition step and an alignment step, until convergence. We propose a novel greedy algorithm to construct both sequential and non-sequential alignments. The quality of SNAP alignments were assessed by comparing against the manually curated reference alignments in the challenging SISY and RIPC datasets. Moreover, when applied to a dataset of 4410 protein pairs selected from the CATH database, SNAP produced longer alignments with lower rmsd than several state-of-the-art alignment methods. Classification of folds using SNAP alignments was both highly sensitive and highly selective. The SNAP software along with the datasets are available online at http://www.cs.rpi.edu/~zaki/software/SNAP.
Deterministic methods for multi-control fuel loading optimization
NASA Astrophysics Data System (ADS)
Rahman, Fariz B. Abdul
We have developed a multi-control fuel loading optimization code for pressurized water reactors based on deterministic methods. The objective is to flatten the fuel burnup profile, which maximizes overall energy production. The optimal control problem is formulated using the method of Lagrange multipliers and the direct adjoining approach for treatment of the inequality power peaking constraint. The optimality conditions are derived for a multi-dimensional multi-group optimal control problem via calculus of variations. Due to the Hamiltonian having a linear control, our optimal control problem is solved using the gradient method to minimize the Hamiltonian and a Newton step formulation to obtain the optimal control. We are able to satisfy the power peaking constraint during depletion with the control at beginning of cycle (BOC) by building the proper burnup path forward in time and utilizing the adjoint burnup to propagate the information back to the BOC. Our test results show that we are able to achieve our objective and satisfy the power peaking constraint during depletion using either the fissile enrichment or burnable poison as the control. Our fuel loading designs show an increase of 7.8 equivalent full power days (EFPDs) in cycle length compared with 517.4 EFPDs for the AP600 first cycle.
Greedy Gossip With Eavesdropping
NASA Astrophysics Data System (ADS)
Ustebay, Deniz; Oreshkin, Boris N.; Coates, Mark J.; Rabbat, Michael G.
2010-07-01
This paper presents greedy gossip with eavesdropping (GGE), a novel randomized gossip algorithm for distributed computation of the average consensus problem. In gossip algorithms, nodes in the network randomly communicate with their neighbors and exchange information iteratively. The algorithms are simple and decentralized, making them attractive for wireless network applications. In general, gossip algorithms are robust to unreliable wireless conditions and time varying network topologies. In this paper we introduce GGE and demonstrate that greedy updates lead to rapid convergence. We do not require nodes to have any location information. Instead, greedy updates are made possible by exploiting the broadcast nature of wireless communications. During the operation of GGE, when a node decides to gossip, instead of choosing one of its neighbors at random, it makes a greedy selection, choosing the node which has the value most different from its own. In order to make this selection, nodes need to know their neighbors' values. Therefore, we assume that all transmissions are wireless broadcasts and nodes keep track of their neighbors' values by eavesdropping on their communications. We show that the convergence of GGE is guaranteed for connected network topologies. We also study the rates of convergence and illustrate, through theoretical bounds and numerical simulations, that GGE consistently outperforms randomized gossip and performs comparably to geographic gossip on moderate-sized random geometric graph topologies.
Patterning control strategies for minimum edge placement error in logic devices
NASA Astrophysics Data System (ADS)
Mulkens, Jan; Hanna, Michael; Slachter, Bram; Tel, Wim; Kubis, Michael; Maslow, Mark; Spence, Chris; Timoshkov, Vadim
2017-03-01
In this paper we discuss the edge placement error (EPE) for multi-patterning semiconductor manufacturing. In a multi-patterning scheme the creation of the final pattern is the result of a sequence of lithography and etching steps, and consequently the contour of the final pattern contains error sources of the different process steps. We describe the fidelity of the final pattern in terms of EPE, which is defined as the relative displacement of the edges of two features from their intended target position. We discuss our holistic patterning optimization approach to understand and minimize the EPE of the final pattern. As an experimental test vehicle we use the 7-nm logic device patterning process flow as developed by IMEC. This patterning process is based on Self-Aligned-Quadruple-Patterning (SAQP) using ArF lithography, combined with line cut exposures using EUV lithography. The computational metrology method to determine EPE is explained. It will be shown that ArF to EUV overlay, CDU from the individual process steps, and local CD and placement of the individual pattern features, are the important contributors. Based on the error budget, we developed an optimization strategy for each individual step and for the final pattern. Solutions include overlay and CD metrology based on angle resolved scatterometry, scanner actuator control to enable high order overlay corrections and computational lithography optimization to minimize imaging induced pattern placement errors of devices and metrology targets.
A constraint optimization based virtual network mapping method
NASA Astrophysics Data System (ADS)
Li, Xiaoling; Guo, Changguo; Wang, Huaimin; Li, Zhendong; Yang, Zhiwen
2013-03-01
Virtual network mapping problem, maps different virtual networks onto the substrate network is an extremely challenging work. This paper proposes a constraint optimization based mapping method for solving virtual network mapping problem. This method divides the problem into two phases, node mapping phase and link mapping phase, which are all NP-hard problems. Node mapping algorithm and link mapping algorithm are proposed for solving node mapping phase and link mapping phase, respectively. Node mapping algorithm adopts the thinking of greedy algorithm, mainly considers two factors, available resources which are supplied by the nodes and distance between the nodes. Link mapping algorithm is based on the result of node mapping phase, adopts the thinking of distributed constraint optimization method, which can guarantee to obtain the optimal mapping with the minimum network cost. Finally, simulation experiments are used to validate the method, and results show that the method performs very well.
Performance tradeoffs in static and dynamic load balancing strategies
NASA Technical Reports Server (NTRS)
Iqbal, M. A.; Saltz, J. H.; Bokhart, S. H.
1986-01-01
The problem of uniformly distributing the load of a parallel program over a multiprocessor system was considered. A program was analyzed whose structure permits the computation of the optimal static solution. Then four strategies for load balancing were described and their performance compared. The strategies are: (1) the optimal static assignment algorithm which is guaranteed to yield the best static solution, (2) the static binary dissection method which is very fast but sub-optimal, (3) the greedy algorithm, a static fully polynomial time approximation scheme, which estimates the optimal solution to arbitrary accuracy, and (4) the predictive dynamic load balancing heuristic which uses information on the precedence relationships within the program and outperforms any of the static methods. It is also shown that the overhead incurred by the dynamic heuristic is reduced considerably if it is started off with a static assignment provided by either of the other three strategies.
NASA Astrophysics Data System (ADS)
Karimi, Davood; Ward, Rabab K.
2016-03-01
Sparse representation of signals in learned overcomplete dictionaries has proven to be a powerful tool with applications in denoising, restoration, compression, reconstruction, and more. Recent research has shown that learned overcomplete dictionaries can lead to better results than analytical dictionaries such as wavelets in almost all image processing applications. However, a major disadvantage of these dictionaries is that their learning and usage is very computationally intensive. In particular, finding the sparse representation of a signal in these dictionaries requires solving an optimization problem that leads to very long computational times, especially in 3D image processing. Moreover, the sparse representation found by greedy algorithms is usually sub-optimal. In this paper, we propose a novel two-level dictionary structure that improves the performance and the speed of standard greedy sparse coding methods. The first (i.e., the top) level in our dictionary is a fixed orthonormal basis, whereas the second level includes the atoms that are learned from the training data. We explain how such a dictionary can be learned from the training data and how the sparse representation of a new signal in this dictionary can be computed. As an application, we use the proposed dictionary structure for removing the noise and artifacts in 3D computed tomography (CT) images. Our experiments with real CT images show that the proposed method achieves results that are comparable with standard dictionary-based methods while substantially reducing the computational time.
Chemotaxis can provide biological organisms with good solutions to the travelling salesman problem.
Reynolds, A M
2011-05-01
The ability to find good solutions to the traveling salesman problem can benefit some biological organisms. Bacterial infection would, for instance, be eradicated most promptly if cells of the immune system minimized the total distance they traveled when moving between bacteria. Similarly, foragers would maximize their net energy gain if the distance that they traveled between multiple dispersed prey items was minimized. The traveling salesman problem is one of the most intensively studied problems in combinatorial optimization. There are no efficient algorithms for even solving the problem approximately (within a guaranteed constant factor from the optimum) because the problem is nondeterministic polynomial time complete. The best approximate algorithms can typically find solutions within 1%-2% of the optimal, but these are computationally intensive and can not be implemented by biological organisms. Biological organisms could, in principle, implement the less efficient greedy nearest-neighbor algorithm, i.e., always move to the nearest surviving target. Implementation of this strategy does, however, require quite sophisticated cognitive abilities and prior knowledge of the target locations. Here, with the aid of numerical simulations, it is shown that biological organisms can simply use chemotaxis to solve, or at worst provide good solutions (comparable to those found by the greedy algorithm) to, the traveling salesman problem when the targets are sources of a chemoattractant and are modest in number (n < 10). This applies to neutrophils and macrophages in microbial defense and to some predators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, P; Xing, L; Ma, L
Purpose: Radiosurgery of multiple (n>4) brain metastasis lesions requires 3–4 noncoplanar VMAT arcs with excessively high monitor units and long delivery time. We investigated whether an improved optimization technique would decrease the needed arc numbers and increase the delivery efficiency, while improving or maintaining the plan quality. Methods: The proposed 4pi arc space optimization algorithm consists of two steps: automatic couch angle selection followed by aperture generation for each arc with optimized control points distribution. We use a greedy algorithm to select the couch angles. Starting from a single coplanar arc plan we search through the candidate noncoplanar arcs tomore » pick a single noncoplanar arc that will bring the best plan quality when added into the existing treatment plan. Each time, only one additional noncoplanar arc is considered making the calculation time tractable. This process repeats itself until desired number of arc is reached. The technique is first evaluated in coplanar arc delivery scheme with testing cases and then applied to noncoplanar treatments of a case with 12 brain metastasis lesions. Results: Clinically acceptable plans are created within minutes. For the coplanar testing cases the algorithm yields singlearc plans with better dose distributions than that of two-arc VMAT, simultaneously with a 12–17% reduction in the delivery time and a 14–21% reduction in MUs. For the treatment of 12 brain mets while Paddick conformity indexes of the two plans were comparable the SCG-optimization with 2 arcs (1 noncoplanar and 1 coplanar) significantly improved the conventional VMAT with 3 arcs (2 noncoplanar and 1 coplanar). Specifically V16 V10 and V5 of the brain were reduced by 11%, 11% and 12% respectively. The beam delivery time was shortened by approximately 30%. Conclusion: The proposed 4pi arc space optimization technique promises to significantly reduce the brain toxicity while greatly improving the treatment efficiency.« less
NASA Astrophysics Data System (ADS)
Garabito, German; Cruz, João Carlos Ribeiro; Oliva, Pedro Andrés Chira; Söllner, Walter
2017-01-01
The Common Reflection Surface stack is a robust method for simulating zero-offset and common-offset sections with high accuracy from multi-coverage seismic data. For simulating common-offset sections, the Common-Reflection-Surface stack method uses a hyperbolic traveltime approximation that depends on five kinematic parameters for each selected sample point of the common-offset section to be simulated. The main challenge of this method is to find a computationally efficient data-driven optimization strategy for accurately determining the five kinematic stacking parameters on which each sample of the stacked common-offset section depends. Several authors have applied multi-step strategies to obtain the optimal parameters by combining different pre-stack data configurations. Recently, other authors used one-step data-driven strategies based on a global optimization for estimating simultaneously the five parameters from multi-midpoint and multi-offset gathers. In order to increase the computational efficiency of the global optimization process, we use in this paper a reduced form of the Common-Reflection-Surface traveltime approximation that depends on only four parameters, the so-called Common Diffraction Surface traveltime approximation. By analyzing the convergence of both objective functions and the data enhancement effect after applying the two traveltime approximations to the Marmousi synthetic dataset and a real land dataset, we conclude that the Common-Diffraction-Surface approximation is more efficient within certain aperture limits and preserves at the same time a high image accuracy. The preserved image quality is also observed in a direct comparison after applying both approximations for simulating common-offset sections on noisy pre-stack data.
Efficient least angle regression for identification of linear-in-the-parameters models
Beach, Thomas H.; Rezgui, Yacine
2017-01-01
Least angle regression, as a promising model selection method, differentiates itself from conventional stepwise and stagewise methods, in that it is neither too greedy nor too slow. It is closely related to L1 norm optimization, which has the advantage of low prediction variance through sacrificing part of model bias property in order to enhance model generalization capability. In this paper, we propose an efficient least angle regression algorithm for model selection for a large class of linear-in-the-parameters models with the purpose of accelerating the model selection process. The entire algorithm works completely in a recursive manner, where the correlations between model terms and residuals, the evolving directions and other pertinent variables are derived explicitly and updated successively at every subset selection step. The model coefficients are only computed when the algorithm finishes. The direct involvement of matrix inversions is thereby relieved. A detailed computational complexity analysis indicates that the proposed algorithm possesses significant computational efficiency, compared with the original approach where the well-known efficient Cholesky decomposition is involved in solving least angle regression. Three artificial and real-world examples are employed to demonstrate the effectiveness, efficiency and numerical stability of the proposed algorithm. PMID:28293140
Reconstruction of Consistent 3d CAD Models from Point Cloud Data Using a Priori CAD Models
NASA Astrophysics Data System (ADS)
Bey, A.; Chaine, R.; Marc, R.; Thibault, G.; Akkouche, S.
2011-09-01
We address the reconstruction of 3D CAD models from point cloud data acquired in industrial environments, using a pre-existing 3D model as an initial estimate of the scene to be processed. Indeed, this prior knowledge can be used to drive the reconstruction so as to generate an accurate 3D model matching the point cloud. We more particularly focus our work on the cylindrical parts of the 3D models. We propose to state the problem in a probabilistic framework: we have to search for the 3D model which maximizes some probability taking several constraints into account, such as the relevancy with respect to the point cloud and the a priori 3D model, and the consistency of the reconstructed model. The resulting optimization problem can then be handled using a stochastic exploration of the solution space, based on the random insertion of elements in the configuration under construction, coupled with a greedy management of the conflicts which efficiently improves the configuration at each step. We show that this approach provides reliable reconstructed 3D models by presenting some results on industrial data sets.
Multi-step optimization strategy for fuel-optimal orbital transfer of low-thrust spacecraft
NASA Astrophysics Data System (ADS)
Rasotto, M.; Armellin, R.; Di Lizia, P.
2016-03-01
An effective method for the design of fuel-optimal transfers in two- and three-body dynamics is presented. The optimal control problem is formulated using calculus of variation and primer vector theory. This leads to a multi-point boundary value problem (MPBVP), characterized by complex inner constraints and a discontinuous thrust profile. The first issue is addressed by embedding the MPBVP in a parametric optimization problem, thus allowing a simplification of the set of transversality constraints. The second problem is solved by representing the discontinuous control function by a smooth function depending on a continuation parameter. The resulting trajectory optimization method can deal with different intermediate conditions, and no a priori knowledge of the control structure is required. Test cases in both the two- and three-body dynamics show the capability of the method in solving complex trajectory design problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tavakoli, Rouhollah, E-mail: rtavakoli@sharif.ir
An unconditionally energy stable time stepping scheme is introduced to solve Cahn–Morral-like equations in the present study. It is constructed based on the combination of David Eyre's time stepping scheme and Schur complement approach. Although the presented method is general and independent of the choice of homogeneous free energy density function term, logarithmic and polynomial energy functions are specifically considered in this paper. The method is applied to study the spinodal decomposition in multi-component systems and optimal space tiling problems. A penalization strategy is developed, in the case of later problem, to avoid trivial solutions. Extensive numerical experiments demonstrate themore » success and performance of the presented method. According to the numerical results, the method is convergent and energy stable, independent of the choice of time stepsize. Its MATLAB implementation is included in the appendix for the numerical evaluation of algorithm and reproduction of the presented results. -- Highlights: •Extension of Eyre's convex–concave splitting scheme to multiphase systems. •Efficient solution of spinodal decomposition in multi-component systems. •Efficient solution of least perimeter periodic space partitioning problem. •Developing a penalization strategy to avoid trivial solutions. •Presentation of MATLAB implementation of the introduced algorithm.« less
Optimal pattern synthesis for speech recognition based on principal component analysis
NASA Astrophysics Data System (ADS)
Korsun, O. N.; Poliyev, A. V.
2018-02-01
The algorithm for building an optimal pattern for the purpose of automatic speech recognition, which increases the probability of correct recognition, is developed and presented in this work. The optimal pattern forming is based on the decomposition of an initial pattern to principal components, which enables to reduce the dimension of multi-parameter optimization problem. At the next step the training samples are introduced and the optimal estimates for principal components decomposition coefficients are obtained by a numeric parameter optimization algorithm. Finally, we consider the experiment results that show the improvement in speech recognition introduced by the proposed optimization algorithm.
A Method for Optimal Load Dispatch of a Multi-zone Power System with Zonal Exchange Constraints
NASA Astrophysics Data System (ADS)
Hazarika, Durlav; Das, Ranjay
2018-04-01
This paper presented a method for economic generation scheduling of a multi-zone power system having inter zonal operational constraints. For this purpose, the generator rescheduling for a multi area power system having inter zonal operational constraints has been represented as a two step optimal generation scheduling problem. At first, the optimal generation scheduling has been carried out for the zone having surplus or deficient generation with proper spinning reserve using co-ordination equation. The power exchange required for the deficit zones and zones having no generation are estimated based on load demand and generation for the zone. The incremental transmission loss formulas for the transmission lines participating in the power transfer process among the zones are formulated. Using these, incremental transmission loss expression in co-ordination equation, the optimal generation scheduling for the zonal exchange has been determined. Simulation is carried out on IEEE 118 bus test system to examine the applicability and validity of the method.
Functional Data Approximation on Bounded Domains using Polygonal Finite Elements.
Cao, Juan; Xiao, Yanyang; Chen, Zhonggui; Wang, Wenping; Bajaj, Chandrajit
2018-07-01
We construct and analyze piecewise approximations of functional data on arbitrary 2D bounded domains using generalized barycentric finite elements, and particularly quadratic serendipity elements for planar polygons. We compare approximation qualities (precision/convergence) of these partition-of-unity finite elements through numerical experiments, using Wachspress coordinates, natural neighbor coordinates, Poisson coordinates, mean value coordinates, and quadratic serendipity bases over polygonal meshes on the domain. For a convex n -sided polygon, the quadratic serendipity elements have 2 n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, rather than the usual n ( n + 1)/2 basis functions to achieve quadratic convergence. Two greedy algorithms are proposed to generate Voronoi meshes for adaptive functional/scattered data approximations. Experimental results show space/accuracy advantages for these quadratic serendipity finite elements on polygonal domains versus traditional finite elements over simplicial meshes. Polygonal meshes and parameter coefficients of the quadratic serendipity finite elements obtained by our greedy algorithms can be further refined using an L 2 -optimization to improve the piecewise functional approximation. We conduct several experiments to demonstrate the efficacy of our algorithm for modeling features/discontinuities in functional data/image approximation.
The Best m-Term Approximation and Greedy Algorithms
1997-01-01
in the paper DKT For a given basis we dene the Greedy Algorithm Gp as follows Let f X I cIf I and cIf p kcIf Ikp Then... DKT RA DeVore SV Konyagin and VV Temlyakov Hyperbolic Wavelet Approximation to appear DL R DeVore GLorentz
NASA Astrophysics Data System (ADS)
Sun, Congcong; Wang, Zhijie; Liu, Sanming; Jiang, Xiuchen; Sheng, Gehao; Liu, Tianyu
2017-05-01
Wind power has the advantages of being clean and non-polluting and the development of bundled wind-thermal generation power systems (BWTGSs) is one of the important means to improve wind power accommodation rate and implement “clean alternative” on generation side. A two-stage optimization strategy for BWTGSs considering wind speed forecasting results and load characteristics is proposed. By taking short-term wind speed forecasting results of generation side and load characteristics of demand side into account, a two-stage optimization model for BWTGSs is formulated. By using the environmental benefit index of BWTGSs as the objective function, supply-demand balance and generator operation as the constraints, the first-stage optimization model is developed with the chance-constrained programming theory. By using the operation cost for BWTGSs as the objective function, the second-stage optimization model is developed with the greedy algorithm. The improved PSO algorithm is employed to solve the model and numerical test verifies the effectiveness of the proposed strategy.
Ma, Changxi; Hao, Wei; Pan, Fuquan; Xiang, Wang
2018-01-01
Route optimization of hazardous materials transportation is one of the basic steps in ensuring the safety of hazardous materials transportation. The optimization scheme may be a security risk if road screening is not completed before the distribution route is optimized. For road screening issues of hazardous materials transportation, a road screening algorithm of hazardous materials transportation is built based on genetic algorithm and Levenberg-Marquardt neural network (GA-LM-NN) by analyzing 15 attributes data of each road network section. A multi-objective robust optimization model with adjustable robustness is constructed for the hazardous materials transportation problem of single distribution center to minimize transportation risk and time. A multi-objective genetic algorithm is designed to solve the problem according to the characteristics of the model. The algorithm uses an improved strategy to complete the selection operation, applies partial matching cross shift and single ortho swap methods to complete the crossover and mutation operation, and employs an exclusive method to construct Pareto optimal solutions. Studies show that the sets of hazardous materials transportation road can be found quickly through the proposed road screening algorithm based on GA-LM-NN, whereas the distribution route Pareto solutions with different levels of robustness can be found rapidly through the proposed multi-objective robust optimization model and algorithm.
Multi-GPU implementation of a VMAT treatment plan optimization algorithm.
Tian, Zhen; Peng, Fei; Folkerts, Michael; Tan, Jun; Jia, Xun; Jiang, Steve B
2015-06-01
Volumetric modulated arc therapy (VMAT) optimization is a computationally challenging problem due to its large data size, high degrees of freedom, and many hardware constraints. High-performance graphics processing units (GPUs) have been used to speed up the computations. However, GPU's relatively small memory size cannot handle cases with a large dose-deposition coefficient (DDC) matrix in cases of, e.g., those with a large target size, multiple targets, multiple arcs, and/or small beamlet size. The main purpose of this paper is to report an implementation of a column-generation-based VMAT algorithm, previously developed in the authors' group, on a multi-GPU platform to solve the memory limitation problem. While the column-generation-based VMAT algorithm has been previously developed, the GPU implementation details have not been reported. Hence, another purpose is to present detailed techniques employed for GPU implementation. The authors also would like to utilize this particular problem as an example problem to study the feasibility of using a multi-GPU platform to solve large-scale problems in medical physics. The column-generation approach generates VMAT apertures sequentially by solving a pricing problem (PP) and a master problem (MP) iteratively. In the authors' method, the sparse DDC matrix is first stored on a CPU in coordinate list format (COO). On the GPU side, this matrix is split into four submatrices according to beam angles, which are stored on four GPUs in compressed sparse row format. Computation of beamlet price, the first step in PP, is accomplished using multi-GPUs. A fast inter-GPU data transfer scheme is accomplished using peer-to-peer access. The remaining steps of PP and MP problems are implemented on CPU or a single GPU due to their modest problem scale and computational loads. Barzilai and Borwein algorithm with a subspace step scheme is adopted here to solve the MP problem. A head and neck (H&N) cancer case is then used to validate the authors' method. The authors also compare their multi-GPU implementation with three different single GPU implementation strategies, i.e., truncating DDC matrix (S1), repeatedly transferring DDC matrix between CPU and GPU (S2), and porting computations involving DDC matrix to CPU (S3), in terms of both plan quality and computational efficiency. Two more H&N patient cases and three prostate cases are used to demonstrate the advantages of the authors' method. The authors' multi-GPU implementation can finish the optimization process within ∼ 1 min for the H&N patient case. S1 leads to an inferior plan quality although its total time was 10 s shorter than the multi-GPU implementation due to the reduced matrix size. S2 and S3 yield the same plan quality as the multi-GPU implementation but take ∼4 and ∼6 min, respectively. High computational efficiency was consistently achieved for the other five patient cases tested, with VMAT plans of clinically acceptable quality obtained within 23-46 s. Conversely, to obtain clinically comparable or acceptable plans for all six of these VMAT cases that the authors have tested in this paper, the optimization time needed in a commercial TPS system on CPU was found to be in an order of several minutes. The results demonstrate that the multi-GPU implementation of the authors' column-generation-based VMAT optimization can handle the large-scale VMAT optimization problem efficiently without sacrificing plan quality. The authors' study may serve as an example to shed some light on other large-scale medical physics problems that require multi-GPU techniques.
Multi-objective optimization for generating a weighted multi-model ensemble
NASA Astrophysics Data System (ADS)
Lee, H.
2017-12-01
Many studies have demonstrated that multi-model ensembles generally show better skill than each ensemble member. When generating weighted multi-model ensembles, the first step is measuring the performance of individual model simulations using observations. There is a consensus on the assignment of weighting factors based on a single evaluation metric. When considering only one evaluation metric, the weighting factor for each model is proportional to a performance score or inversely proportional to an error for the model. While this conventional approach can provide appropriate combinations of multiple models, the approach confronts a big challenge when there are multiple metrics under consideration. When considering multiple evaluation metrics, it is obvious that a simple averaging of multiple performance scores or model ranks does not address the trade-off problem between conflicting metrics. So far, there seems to be no best method to generate weighted multi-model ensembles based on multiple performance metrics. The current study applies the multi-objective optimization, a mathematical process that provides a set of optimal trade-off solutions based on a range of evaluation metrics, to combining multiple performance metrics for the global climate models and their dynamically downscaled regional climate simulations over North America and generating a weighted multi-model ensemble. NASA satellite data and the Regional Climate Model Evaluation System (RCMES) software toolkit are used for assessment of the climate simulations. Overall, the performance of each model differs markedly with strong seasonal dependence. Because of the considerable variability across the climate simulations, it is important to evaluate models systematically and make future projections by assigning optimized weighting factors to the models with relatively good performance. Our results indicate that the optimally weighted multi-model ensemble always shows better performance than an arithmetic ensemble mean and may provide reliable future projections.
Granovsky, Alexander A
2015-12-21
We present a new, very efficient semi-numerical approach for the computation of state-specific nuclear gradients of a generic state-averaged multi-configuration self consistent field wavefunction. Our approach eliminates the costly coupled-perturbed multi-configuration Hartree-Fock step as well as the associated integral transformation stage. The details of the implementation within the Firefly quantum chemistry package are discussed and several sample applications are given. The new approach is routinely applicable to geometry optimization of molecular systems with 1000+ basis functions using a standalone multi-core workstation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granovsky, Alexander A., E-mail: alex.granovsky@gmail.com
We present a new, very efficient semi-numerical approach for the computation of state-specific nuclear gradients of a generic state-averaged multi-configuration self consistent field wavefunction. Our approach eliminates the costly coupled-perturbed multi-configuration Hartree-Fock step as well as the associated integral transformation stage. The details of the implementation within the Firefly quantum chemistry package are discussed and several sample applications are given. The new approach is routinely applicable to geometry optimization of molecular systems with 1000+ basis functions using a standalone multi-core workstation.
Role of competition between polarity sites in establishing a unique front
Wu, Chi-Fang; Chiou, Jian-Geng; Minakova, Maria; Woods, Benjamin; Tsygankov, Denis; Zyla, Trevin R; Savage, Natasha S; Elston, Timothy C; Lew, Daniel J
2015-01-01
Polarity establishment in many cells is thought to occur via positive feedback that reinforces even tiny asymmetries in polarity protein distribution. Cdc42 and related GTPases are activated and accumulate in a patch of the cortex that defines the front of the cell. Positive feedback enables spontaneous polarization triggered by stochastic fluctuations, but as such fluctuations can occur at multiple locations, how do cells ensure that they make only one front? In polarizing cells of the model yeast Saccharomyces cerevisiae, positive feedback can trigger growth of several Cdc42 clusters at the same time, but this multi-cluster stage rapidly evolves to a single-cluster state, which then promotes bud emergence. By manipulating polarity protein dynamics, we show that resolution of multi-cluster intermediates occurs through a greedy competition between clusters to recruit and retain polarity proteins from a shared intracellular pool. DOI: http://dx.doi.org/10.7554/eLife.11611.001 PMID:26523396
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graf, Peter; Dykes, Katherine; Scott, George
The layout of turbines in a wind farm is already a challenging nonlinear, nonconvex, nonlinearly constrained continuous global optimization problem. Here we begin to address the next generation of wind farm optimization problems by adding the complexity that there is more than one turbine type to choose from. The optimization becomes a nonlinear constrained mixed integer problem, which is a very difficult class of problems to solve. Furthermore, this document briefly summarizes the algorithm and code we have developed, the code validation steps we have performed, and the initial results for multi-turbine type and placement optimization (TTP_OPT) we have run.
NASA Astrophysics Data System (ADS)
Rong, J. H.; Yi, J. H.
2010-10-01
In density-based topological design, one expects that the final result consists of elements either black (solid material) or white (void), without any grey areas. Moreover, one also expects that the optimal topology can be obtained by starting from any initial topology configuration. An improved structural topological optimization method for multi- displacement constraints is proposed in this paper. In the proposed method, the whole optimization process is divided into two optimization adjustment phases and a phase transferring step. Firstly, an optimization model is built to deal with the varied displacement limits, design space adjustments, and reasonable relations between the element stiffness matrix and mass and its element topology variable. Secondly, a procedure is proposed to solve the optimization problem formulated in the first optimization adjustment phase, by starting with a small design space and advancing to a larger deign space. The design space adjustments are automatic when the design domain needs expansions, in which the convergence of the proposed method will not be affected. The final topology obtained by the proposed procedure in the first optimization phase, can approach to the vicinity of the optimum topology. Then, a heuristic algorithm is given to improve the efficiency and make the designed structural topology black/white in both the phase transferring step and the second optimization adjustment phase. And the optimum topology can finally be obtained by the second phase optimization adjustments. Two examples are presented to show that the topologies obtained by the proposed method are of very good 0/1 design distribution property, and the computational efficiency is enhanced by reducing the element number of the design structural finite model during two optimization adjustment phases. And the examples also show that this method is robust and practicable.
A Particle Swarm Optimization-Based Approach with Local Search for Predicting Protein Folding.
Yang, Cheng-Hong; Lin, Yu-Shiun; Chuang, Li-Yeh; Chang, Hsueh-Wei
2017-10-01
The hydrophobic-polar (HP) model is commonly used for predicting protein folding structures and hydrophobic interactions. This study developed a particle swarm optimization (PSO)-based algorithm combined with local search algorithms; specifically, the high exploration PSO (HEPSO) algorithm (which can execute global search processes) was combined with three local search algorithms (hill-climbing algorithm, greedy algorithm, and Tabu table), yielding the proposed HE-L-PSO algorithm. By using 20 known protein structures, we evaluated the performance of the HE-L-PSO algorithm in predicting protein folding in the HP model. The proposed HE-L-PSO algorithm exhibited favorable performance in predicting both short and long amino acid sequences with high reproducibility and stability, compared with seven reported algorithms. The HE-L-PSO algorithm yielded optimal solutions for all predicted protein folding structures. All HE-L-PSO-predicted protein folding structures possessed a hydrophobic core that is similar to normal protein folding.
Wind Farm Turbine Type and Placement Optimization
NASA Astrophysics Data System (ADS)
Graf, Peter; Dykes, Katherine; Scott, George; Fields, Jason; Lunacek, Monte; Quick, Julian; Rethore, Pierre-Elouan
2016-09-01
The layout of turbines in a wind farm is already a challenging nonlinear, nonconvex, nonlinearly constrained continuous global optimization problem. Here we begin to address the next generation of wind farm optimization problems by adding the complexity that there is more than one turbine type to choose from. The optimization becomes a nonlinear constrained mixed integer problem, which is a very difficult class of problems to solve. This document briefly summarizes the algorithm and code we have developed, the code validation steps we have performed, and the initial results for multi-turbine type and placement optimization (TTP_OPT) we have run.
Wind farm turbine type and placement optimization
Graf, Peter; Dykes, Katherine; Scott, George; ...
2016-10-03
The layout of turbines in a wind farm is already a challenging nonlinear, nonconvex, nonlinearly constrained continuous global optimization problem. Here we begin to address the next generation of wind farm optimization problems by adding the complexity that there is more than one turbine type to choose from. The optimization becomes a nonlinear constrained mixed integer problem, which is a very difficult class of problems to solve. Furthermore, this document briefly summarizes the algorithm and code we have developed, the code validation steps we have performed, and the initial results for multi-turbine type and placement optimization (TTP_OPT) we have run.
Method of multi-dimensional moment analysis for the characterization of signal peaks
Pfeifer, Kent B; Yelton, William G; Kerr, Dayle R; Bouchier, Francis A
2012-10-23
A method of multi-dimensional moment analysis for the characterization of signal peaks can be used to optimize the operation of an analytical system. With a two-dimensional Peclet analysis, the quality and signal fidelity of peaks in a two-dimensional experimental space can be analyzed and scored. This method is particularly useful in determining optimum operational parameters for an analytical system which requires the automated analysis of large numbers of analyte data peaks. For example, the method can be used to optimize analytical systems including an ion mobility spectrometer that uses a temperature stepped desorption technique for the detection of explosive mixtures.
Kim, Song-Ju; Aono, Masashi; Hara, Masahiko
2010-07-01
We propose a model - the "tug-of-war (TOW) model" - to conduct unique parallel searches using many nonlocally-correlated search agents. The model is based on the property of a single-celled amoeba, the true slime mold Physarum, which maintains a constant intracellular resource volume while collecting environmental information by concurrently expanding and shrinking its branches. The conservation law entails a "nonlocal correlation" among the branches, i.e., volume increment in one branch is immediately compensated by volume decrement(s) in the other branch(es). This nonlocal correlation was shown to be useful for decision making in the case of a dilemma. The multi-armed bandit problem is to determine the optimal strategy for maximizing the total reward sum with incompatible demands, by either exploiting the rewards obtained using the already collected information or exploring new information for acquiring higher payoffs involving risks. Our model can efficiently manage the "exploration-exploitation dilemma" and exhibits good performances. The average accuracy rate of our model is higher than those of well-known algorithms such as the modified -greedy algorithm and modified softmax algorithm, especially, for solving relatively difficult problems. Moreover, our model flexibly adapts to changing environments, a property essential for living organisms surviving in uncertain environments.
Tang, Lixia; Wang, Xiong; Ru, Beibei; Sun, Hengfei; Huang, Jian; Gao, Hui
2014-06-01
Recent computational and bioinformatics advances have enabled the efficient creation of novel biocatalysts by reducing amino acid variability at hot spot regions. To further expand the utility of this strategy, we present here a tool called Multi-site Degenerate Codon Analyzer (MDC-Analyzer) for the automated design of intelligent mutagenesis libraries that can completely cover user-defined randomized sequences, especially when multiple contiguous and/or adjacent sites are targeted. By initially defining an objective function, the possible optimal degenerate PCR primer profiles could be automatically explored using the heuristic approach of Greedy Best-First-Search. Compared to the previously developed DC-Analyzer, MDC-Analyzer allows for the existence of a small amount of undesired sequences as a tradeoff between the number of degenerate primers and the encoded library size while still providing all the benefits of DC-Analyzer with the ability to randomize multiple contiguous sites. MDC-Analyzer was validated using a series of randomly generated mutation schemes and experimental case studies on the evolution of halohydrin dehalogenase, which proved that the MDC methodology is more efficient than other methods and is particularly well-suited to exploring the sequence space of proteins using data-driven protein engineering strategies.
Multi-Time Step Service Restoration for Advanced Distribution Systems and Microgrids
Chen, Bo; Chen, Chen; Wang, Jianhui; ...
2017-07-07
Modern power systems are facing increased risk of disasters that can cause extended outages. The presence of remote control switches (RCSs), distributed generators (DGs), and energy storage systems (ESS) provides both challenges and opportunities for developing post-fault service restoration methodologies. Inter-temporal constraints of DGs, ESS, and loads under cold load pickup (CLPU) conditions impose extra complexity on problem formulation and solution. In this paper, a multi-time step service restoration methodology is proposed to optimally generate a sequence of control actions for controllable switches, ESSs, and dispatchable DGs to assist the system operator with decision making. The restoration sequence is determinedmore » to minimize the unserved customers by energizing the system step by step without violating operational constraints at each time step. The proposed methodology is formulated as a mixed-integer linear programming (MILP) model and can adapt to various operation conditions. Furthermore, the proposed method is validated through several case studies that are performed on modified IEEE 13-node and IEEE 123-node test feeders.« less
Multi-Time Step Service Restoration for Advanced Distribution Systems and Microgrids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Bo; Chen, Chen; Wang, Jianhui
Modern power systems are facing increased risk of disasters that can cause extended outages. The presence of remote control switches (RCSs), distributed generators (DGs), and energy storage systems (ESS) provides both challenges and opportunities for developing post-fault service restoration methodologies. Inter-temporal constraints of DGs, ESS, and loads under cold load pickup (CLPU) conditions impose extra complexity on problem formulation and solution. In this paper, a multi-time step service restoration methodology is proposed to optimally generate a sequence of control actions for controllable switches, ESSs, and dispatchable DGs to assist the system operator with decision making. The restoration sequence is determinedmore » to minimize the unserved customers by energizing the system step by step without violating operational constraints at each time step. The proposed methodology is formulated as a mixed-integer linear programming (MILP) model and can adapt to various operation conditions. Furthermore, the proposed method is validated through several case studies that are performed on modified IEEE 13-node and IEEE 123-node test feeders.« less
Greedy algorithms in disordered systems
NASA Astrophysics Data System (ADS)
Duxbury, P. M.; Dobrin, R.
1999-08-01
We discuss search, minimal path and minimal spanning tree algorithms and their applications to disordered systems. Greedy algorithms solve these problems exactly, and are related to extremal dynamics in physics. Minimal cost path (Dijkstra) and minimal cost spanning tree (Prim) algorithms provide extremal dynamics for a polymer in a random medium (the KPZ universality class) and invasion percolation (without trapping) respectively.
Evaluation of a Didactic Method for the Active Learning of Greedy Algorithms
ERIC Educational Resources Information Center
Esteban-Sánchez, Natalia; Pizarro, Celeste; Velázquez-Iturbide, J. Ángel
2014-01-01
An evaluation of the educational effectiveness of a didactic method for the active learning of greedy algorithms is presented. The didactic method sets students structured-inquiry challenges to be addressed with a specific experimental method, supported by the interactive system GreedEx. This didactic method has been refined over several years of…
The benefits of adaptive parametrization in multi-objective Tabu Search optimization
NASA Astrophysics Data System (ADS)
Ghisu, Tiziano; Parks, Geoffrey T.; Jaeggi, Daniel M.; Jarrett, Jerome P.; Clarkson, P. John
2010-10-01
In real-world optimization problems, large design spaces and conflicting objectives are often combined with a large number of constraints, resulting in a highly multi-modal, challenging, fragmented landscape. The local search at the heart of Tabu Search, while being one of its strengths in highly constrained optimization problems, requires a large number of evaluations per optimization step. In this work, a modification of the pattern search algorithm is proposed: this modification, based on a Principal Components' Analysis of the approximation set, allows both a re-alignment of the search directions, thereby creating a more effective parametrization, and also an informed reduction of the size of the design space itself. These changes make the optimization process more computationally efficient and more effective - higher quality solutions are identified in fewer iterations. These advantages are demonstrated on a number of standard analytical test functions (from the ZDT and DTLZ families) and on a real-world problem (the optimization of an axial compressor preliminary design).
Halper, Sean M; Cetnar, Daniel P; Salis, Howard M
2018-01-01
Engineering many-enzyme metabolic pathways suffers from the design curse of dimensionality. There are an astronomical number of synonymous DNA sequence choices, though relatively few will express an evolutionary robust, maximally productive pathway without metabolic bottlenecks. To solve this challenge, we have developed an integrated, automated computational-experimental pipeline that identifies a pathway's optimal DNA sequence without high-throughput screening or many cycles of design-build-test. The first step applies our Operon Calculator algorithm to design a host-specific evolutionary robust bacterial operon sequence with maximally tunable enzyme expression levels. The second step applies our RBS Library Calculator algorithm to systematically vary enzyme expression levels with the smallest-sized library. After characterizing a small number of constructed pathway variants, measurements are supplied to our Pathway Map Calculator algorithm, which then parameterizes a kinetic metabolic model that ultimately predicts the pathway's optimal enzyme expression levels and DNA sequences. Altogether, our algorithms provide the ability to efficiently map the pathway's sequence-expression-activity space and predict DNA sequences with desired metabolic fluxes. Here, we provide a step-by-step guide to applying the Pathway Optimization Pipeline on a desired multi-enzyme pathway in a bacterial host.
Guimarães, Dayan Adionel; Sakai, Lucas Jun; Alberti, Antonio Marcos; de Souza, Rausley Adriano Amaral
2016-01-01
In this paper, a simple and flexible method for increasing the lifetime of fixed or mobile wireless sensor networks is proposed. Based on past residual energy information reported by the sensor nodes, the sink node or another central node dynamically optimizes the communication activity levels of the sensor nodes to save energy without sacrificing the data throughput. The activity levels are defined to represent portions of time or time-frequency slots in a frame, during which the sensor nodes are scheduled to communicate with the sink node to report sensory measurements. Besides node mobility, it is considered that sensors’ batteries may be recharged via a wireless power transmission or equivalent energy harvesting scheme, bringing to the optimization problem an even more dynamic character. We report large increased lifetimes over the non-optimized network and comparable or even larger lifetime improvements with respect to an idealized greedy algorithm that uses both the real-time channel state and the residual energy information. PMID:27657075
Guimarães, Dayan Adionel; Sakai, Lucas Jun; Alberti, Antonio Marcos; de Souza, Rausley Adriano Amaral
2016-09-20
In this paper, a simple and flexible method for increasing the lifetime of fixed or mobile wireless sensor networks is proposed. Based on past residual energy information reported by the sensor nodes, the sink node or another central node dynamically optimizes the communication activity levels of the sensor nodes to save energy without sacrificing the data throughput. The activity levels are defined to represent portions of time or time-frequency slots in a frame, during which the sensor nodes are scheduled to communicate with the sink node to report sensory measurements. Besides node mobility, it is considered that sensors' batteries may be recharged via a wireless power transmission or equivalent energy harvesting scheme, bringing to the optimization problem an even more dynamic character. We report large increased lifetimes over the non-optimized network and comparable or even larger lifetime improvements with respect to an idealized greedy algorithm that uses both the real-time channel state and the residual energy information.
Optimized Structure of the Traffic Flow Forecasting Model With a Deep Learning Approach.
Yang, Hao-Fan; Dillon, Tharam S; Chen, Yi-Ping Phoebe
2017-10-01
Forecasting accuracy is an important issue for successful intelligent traffic management, especially in the domain of traffic efficiency and congestion reduction. The dawning of the big data era brings opportunities to greatly improve prediction accuracy. In this paper, we propose a novel model, stacked autoencoder Levenberg-Marquardt model, which is a type of deep architecture of neural network approach aiming to improve forecasting accuracy. The proposed model is designed using the Taguchi method to develop an optimized structure and to learn traffic flow features through layer-by-layer feature granulation with a greedy layerwise unsupervised learning algorithm. It is applied to real-world data collected from the M6 freeway in the U.K. and is compared with three existing traffic predictors. To the best of our knowledge, this is the first time that an optimized structure of the traffic flow forecasting model with a deep learning approach is presented. The evaluation results demonstrate that the proposed model with an optimized structure has superior performance in traffic flow forecasting.
2013-01-01
Background Many problems in protein modeling require obtaining a discrete representation of the protein conformational space as an ensemble of conformations. In ab-initio structure prediction, in particular, where the goal is to predict the native structure of a protein chain given its amino-acid sequence, the ensemble needs to satisfy energetic constraints. Given the thermodynamic hypothesis, an effective ensemble contains low-energy conformations which are similar to the native structure. The high-dimensionality of the conformational space and the ruggedness of the underlying energy surface currently make it very difficult to obtain such an ensemble. Recent studies have proposed that Basin Hopping is a promising probabilistic search framework to obtain a discrete representation of the protein energy surface in terms of local minima. Basin Hopping performs a series of structural perturbations followed by energy minimizations with the goal of hopping between nearby energy minima. This approach has been shown to be effective in obtaining conformations near the native structure for small systems. Recent work by us has extended this framework to larger systems through employment of the molecular fragment replacement technique, resulting in rapid sampling of large ensembles. Methods This paper investigates the algorithmic components in Basin Hopping to both understand and control their effect on the sampling of near-native minima. Realizing that such an ensemble is reduced before further refinement in full ab-initio protocols, we take an additional step and analyze the quality of the ensemble retained by ensemble reduction techniques. We propose a novel multi-objective technique based on the Pareto front to filter the ensemble of sampled local minima. Results and conclusions We show that controlling the magnitude of the perturbation allows directly controlling the distance between consecutively-sampled local minima and, in turn, steering the exploration towards conformations near the native structure. For the minimization step, we show that the addition of Metropolis Monte Carlo-based minimization is no more effective than a simple greedy search. Finally, we show that the size of the ensemble of sampled local minima can be effectively and efficiently reduced by a multi-objective filter to obtain a simpler representation of the probed energy surface. PMID:24564970
Photon-efficient super-resolution laser radar
NASA Astrophysics Data System (ADS)
Shin, Dongeek; Shapiro, Jeffrey H.; Goyal, Vivek K.
2017-08-01
The resolution achieved in photon-efficient active optical range imaging systems can be low due to non-idealities such as propagation through a diffuse scattering medium. We propose a constrained optimization-based frame- work to address extremes in scarcity of photons and blurring by a forward imaging kernel. We provide two algorithms for the resulting inverse problem: a greedy algorithm, inspired by sparse pursuit algorithms; and a convex optimization heuristic that incorporates image total variation regularization. We demonstrate that our framework outperforms existing deconvolution imaging techniques in terms of peak signal-to-noise ratio. Since our proposed method is able to super-resolve depth features using small numbers of photon counts, it can be useful for observing fine-scale phenomena in remote sensing through a scattering medium and through-the-skin biomedical imaging applications.
Comparing Multi-Step IMAC and Multi-Step TiO2 Methods for Phosphopeptide Enrichment
Yue, Xiaoshan; Schunter, Alissa; Hummon, Amanda B.
2016-01-01
Phosphopeptide enrichment from complicated peptide mixtures is an essential step for mass spectrometry-based phosphoproteomic studies to reduce sample complexity and ionization suppression effects. Typical methods for enriching phosphopeptides include immobilized metal affinity chromatography (IMAC) or titanium dioxide (TiO2) beads, which have selective affinity and can interact with phosphopeptides. In this study, the IMAC enrichment method was compared with the TiO2 enrichment method, using a multi-step enrichment strategy from whole cell lysate, to evaluate their abilities to enrich for different types of phosphopeptides. The peptide-to-beads ratios were optimized for both IMAC and TiO2 beads. Both IMAC and TiO2 enrichments were performed for three rounds to enable the maximum extraction of phosphopeptides from the whole cell lysates. The phosphopeptides that are unique to IMAC enrichment, unique to TiO2 enrichment, and identified with both IMAC and TiO2 enrichment were analyzed for their characteristics. Both IMAC and TiO2 enriched similar amounts of phosphopeptides with comparable enrichment efficiency. However, phosphopeptides that are unique to IMAC enrichment showed a higher percentage of multi-phosphopeptides, as well as a higher percentage of longer, basic, and hydrophilic phosphopeptides. Also, the IMAC and TiO2 procedures clearly enriched phosphopeptides with different motifs. Finally, further enriching with two rounds of TiO2 from the supernatant after IMAC enrichment, or further enriching with two rounds of IMAC from the supernatant TiO2 enrichment does not fully recover the phosphopeptides that are not identified with the corresponding multi-step enrichment. PMID:26237447
NASA Astrophysics Data System (ADS)
Wu, Yu-Xia; Zhang, Xi; Xu, Xiao-Pan; Liu, Yang; Zhang, Guo-Peng; Li, Bao-Juan; Chen, Hui-Jun; Lu, Hong-Bing
2017-02-01
Ischemic stroke has great correlation with carotid atherosclerosis and is mostly caused by vulnerable plaques. It's particularly important to analysis the components of plaques for the detection of vulnerable plaques. Recently plaque analysis based on multi-contrast magnetic resonance imaging has attracted great attention. Though multi-contrast MR imaging has potentials in enhanced demonstration of carotid wall, its performance is hampered by the misalignment of different imaging sequences. In this study, a coarse-to-fine registration strategy based on cross-sectional images and wall boundaries is proposed to solve the problem. It includes two steps: a rigid step using the iterative closest points to register the centerlines of carotid artery extracted from multi-contrast MR images, and a non-rigid step using the thin plate spline to register the lumen boundaries of carotid artery. In the rigid step, the centerline was extracted by tracking the crosssectional images along the vessel direction calculated by Hessian matrix. In the non-rigid step, a shape context descriptor is introduced to find corresponding points of two similar boundaries. In addition, the deterministic annealing technique is used to find a globally optimized solution. The proposed strategy was evaluated by newly developed three-dimensional, fast and high resolution multi-contrast black blood MR imaging. Quantitative validation indicated that after registration, the overlap of two boundaries from different sequences is 95%, and their mean surface distance is 0.12 mm. In conclusion, the proposed algorithm has improved the accuracy of registration effectively for further component analysis of carotid plaques.
Efficient search, mapping, and optimization of multi-protein genetic systems in diverse bacteria
Farasat, Iman; Kushwaha, Manish; Collens, Jason; Easterbrook, Michael; Guido, Matthew; Salis, Howard M
2014-01-01
Developing predictive models of multi-protein genetic systems to understand and optimize their behavior remains a combinatorial challenge, particularly when measurement throughput is limited. We developed a computational approach to build predictive models and identify optimal sequences and expression levels, while circumventing combinatorial explosion. Maximally informative genetic system variants were first designed by the RBS Library Calculator, an algorithm to design sequences for efficiently searching a multi-protein expression space across a > 10,000-fold range with tailored search parameters and well-predicted translation rates. We validated the algorithm's predictions by characterizing 646 genetic system variants, encoded in plasmids and genomes, expressed in six gram-positive and gram-negative bacterial hosts. We then combined the search algorithm with system-level kinetic modeling, requiring the construction and characterization of 73 variants to build a sequence-expression-activity map (SEAMAP) for a biosynthesis pathway. Using model predictions, we designed and characterized 47 additional pathway variants to navigate its activity space, find optimal expression regions with desired activity response curves, and relieve rate-limiting steps in metabolism. Creating sequence-expression-activity maps accelerates the optimization of many protein systems and allows previous measurements to quantitatively inform future designs. PMID:24952589
Convex Regression with Interpretable Sharp Partitions
Petersen, Ashley; Simon, Noah; Witten, Daniela
2016-01-01
We consider the problem of predicting an outcome variable on the basis of a small number of covariates, using an interpretable yet non-additive model. We propose convex regression with interpretable sharp partitions (CRISP) for this task. CRISP partitions the covariate space into blocks in a data-adaptive way, and fits a mean model within each block. Unlike other partitioning methods, CRISP is fit using a non-greedy approach by solving a convex optimization problem, resulting in low-variance fits. We explore the properties of CRISP, and evaluate its performance in a simulation study and on a housing price data set. PMID:27635120
Text Summarization Model based on Maximum Coverage Problem and its Variant
NASA Astrophysics Data System (ADS)
Takamura, Hiroya; Okumura, Manabu
We discuss text summarization in terms of maximum coverage problem and its variant. To solve the optimization problem, we applied some decoding algorithms including the ones never used in this summarization formulation, such as a greedy algorithm with performance guarantee, a randomized algorithm, and a branch-and-bound method. We conduct comparative experiments. On the basis of the experimental results, we also augment the summarization model so that it takes into account the relevance to the document cluster. Through experiments, we showed that the augmented model is at least comparable to the best-performing method of DUC'04.
Ochi, Kento; Kamiura, Moto
2015-09-01
A multi-armed bandit problem is a search problem on which a learning agent must select the optimal arm among multiple slot machines generating random rewards. UCB algorithm is one of the most popular methods to solve multi-armed bandit problems. It achieves logarithmic regret performance by coordinating balance between exploration and exploitation. Since UCB algorithms, researchers have empirically known that optimistic value functions exhibit good performance in multi-armed bandit problems. The terms optimistic or optimism might suggest that the value function is sufficiently larger than the sample mean of rewards. The first definition of UCB algorithm is focused on the optimization of regret, and it is not directly based on the optimism of a value function. We need to think the reason why the optimism derives good performance in multi-armed bandit problems. In the present article, we propose a new method, which is called Overtaking method, to solve multi-armed bandit problems. The value function of the proposed method is defined as an upper bound of a confidence interval with respect to an estimator of expected value of reward: the value function asymptotically approaches to the expected value of reward from the upper bound. If the value function is larger than the expected value under the asymptote, then the learning agent is almost sure to be able to obtain the optimal arm. This structure is called sand-sifter mechanism, which has no regrowth of value function of suboptimal arms. It means that the learning agent can play only the current best arm in each time step. Consequently the proposed method achieves high accuracy rate and low regret and some value functions of it can outperform UCB algorithms. This study suggests the advantage of optimism of agents in uncertain environment by one of the simplest frameworks. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
The Greedy Little Boy Teacher's Manual [With Units for Levels A and B].
ERIC Educational Resources Information Center
Otto, Dale; George, Larry
The Center for the Study of Migrant and Indian Education has recognized the need to develop special materials to improve the non-Indian's understanding of the differences he observes in his Indian classmates and to promote a better understanding by American Indian children of their unique cultural heritage. The Greedy Little Boy is a traditional…
Optimal Runge-Kutta Schemes for High-order Spatial and Temporal Discretizations
2015-06-01
using larger time steps versus lower-order time integration with smaller time steps.4 In the present work, an attempt is made to gener - alize these... generality and because of interest in multi-speed and high Reynolds number, wall-bounded flow regimes, a dual-time framework is adopted in the present work...errors of general combinations of high-order spatial and temporal discretizations. Different Runge-Kutta time integrators are applied to central
Multimodal Hierarchical Dirichlet Process-Based Active Perception by a Robot
Taniguchi, Tadahiro; Yoshino, Ryo; Takano, Toshiaki
2018-01-01
In this paper, we propose an active perception method for recognizing object categories based on the multimodal hierarchical Dirichlet process (MHDP). The MHDP enables a robot to form object categories using multimodal information, e.g., visual, auditory, and haptic information, which can be observed by performing actions on an object. However, performing many actions on a target object requires a long time. In a real-time scenario, i.e., when the time is limited, the robot has to determine the set of actions that is most effective for recognizing a target object. We propose an active perception for MHDP method that uses the information gain (IG) maximization criterion and lazy greedy algorithm. We show that the IG maximization criterion is optimal in the sense that the criterion is equivalent to a minimization of the expected Kullback–Leibler divergence between a final recognition state and the recognition state after the next set of actions. However, a straightforward calculation of IG is practically impossible. Therefore, we derive a Monte Carlo approximation method for IG by making use of a property of the MHDP. We also show that the IG has submodular and non-decreasing properties as a set function because of the structure of the graphical model of the MHDP. Therefore, the IG maximization problem is reduced to a submodular maximization problem. This means that greedy and lazy greedy algorithms are effective and have a theoretical justification for their performance. We conducted an experiment using an upper-torso humanoid robot and a second one using synthetic data. The experimental results show that the method enables the robot to select a set of actions that allow it to recognize target objects quickly and accurately. The numerical experiment using the synthetic data shows that the proposed method can work appropriately even when the number of actions is large and a set of target objects involves objects categorized into multiple classes. The results support our theoretical outcomes. PMID:29872389
Multimodal Hierarchical Dirichlet Process-Based Active Perception by a Robot.
Taniguchi, Tadahiro; Yoshino, Ryo; Takano, Toshiaki
2018-01-01
In this paper, we propose an active perception method for recognizing object categories based on the multimodal hierarchical Dirichlet process (MHDP). The MHDP enables a robot to form object categories using multimodal information, e.g., visual, auditory, and haptic information, which can be observed by performing actions on an object. However, performing many actions on a target object requires a long time. In a real-time scenario, i.e., when the time is limited, the robot has to determine the set of actions that is most effective for recognizing a target object. We propose an active perception for MHDP method that uses the information gain (IG) maximization criterion and lazy greedy algorithm. We show that the IG maximization criterion is optimal in the sense that the criterion is equivalent to a minimization of the expected Kullback-Leibler divergence between a final recognition state and the recognition state after the next set of actions. However, a straightforward calculation of IG is practically impossible. Therefore, we derive a Monte Carlo approximation method for IG by making use of a property of the MHDP. We also show that the IG has submodular and non-decreasing properties as a set function because of the structure of the graphical model of the MHDP. Therefore, the IG maximization problem is reduced to a submodular maximization problem. This means that greedy and lazy greedy algorithms are effective and have a theoretical justification for their performance. We conducted an experiment using an upper-torso humanoid robot and a second one using synthetic data. The experimental results show that the method enables the robot to select a set of actions that allow it to recognize target objects quickly and accurately. The numerical experiment using the synthetic data shows that the proposed method can work appropriately even when the number of actions is large and a set of target objects involves objects categorized into multiple classes. The results support our theoretical outcomes.
Introducing TreeCollapse: a novel greedy algorithm to solve the cophylogeny reconstruction problem.
Drinkwater, Benjamin; Charleston, Michael A
2014-01-01
Cophylogeny mapping is used to uncover deep coevolutionary associations between two or more phylogenetic histories at a macro coevolutionary scale. As cophylogeny mapping is NP-Hard, this technique relies heavily on heuristics to solve all but the most trivial cases. One notable approach utilises a metaheuristic to search only a subset of the exponential number of fixed node orderings possible for the phylogenetic histories in question. This is of particular interest as it is the only known heuristic that guarantees biologically feasible solutions. This has enabled research to focus on larger coevolutionary systems, such as coevolutionary associations between figs and their pollinator wasps, including over 200 taxa. Although able to converge on solutions for problem instances of this size, a reduction from the current cubic running time is required to handle larger systems, such as Wolbachia and their insect hosts. Rather than solving this underlying problem optimally this work presents a greedy algorithm called TreeCollapse, which uses common topological patterns to recover an approximation of the coevolutionary history where the internal node ordering is fixed. This approach offers a significant speed-up compared to previous methods, running in linear time. This algorithm has been applied to over 100 well-known coevolutionary systems converging on Pareto optimal solutions in over 68% of test cases, even where in some cases the Pareto optimal solution has not previously been recoverable. Further, while TreeCollapse applies a local search technique, it can guarantee solutions are biologically feasible, making this the fastest method that can provide such a guarantee. As a result, we argue that the newly proposed algorithm is a valuable addition to the field of coevolutionary research. Not only does it offer a significantly faster method to estimate the cost of cophylogeny mappings but by using this approach, in conjunction with existing heuristics, it can assist in recovering a larger subset of the Pareto front than has previously been possible.
Impact of heuristics in clustering large biological networks.
Shafin, Md Kishwar; Kabir, Kazi Lutful; Ridwan, Iffatur; Anannya, Tasmiah Tamzid; Karim, Rashid Saadman; Hoque, Mohammad Mozammel; Rahman, M Sohel
2015-12-01
Traditional clustering algorithms often exhibit poor performance for large networks. On the contrary, greedy algorithms are found to be relatively efficient while uncovering functional modules from large biological networks. The quality of the clusters produced by these greedy techniques largely depends on the underlying heuristics employed. Different heuristics based on different attributes and properties perform differently in terms of the quality of the clusters produced. This motivates us to design new heuristics for clustering large networks. In this paper, we have proposed two new heuristics and analyzed the performance thereof after incorporating those with three different combinations in a recently celebrated greedy clustering algorithm named SPICi. We have extensively analyzed the effectiveness of these new variants. The results are found to be promising. Copyright © 2015 Elsevier Ltd. All rights reserved.
Limited-memory adaptive snapshot selection for proper orthogonal decomposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oxberry, Geoffrey M.; Kostova-Vassilevska, Tanya; Arrighi, Bill
2015-04-02
Reduced order models are useful for accelerating simulations in many-query contexts, such as optimization, uncertainty quantification, and sensitivity analysis. However, offline training of reduced order models can have prohibitively expensive memory and floating-point operation costs in high-performance computing applications, where memory per core is limited. To overcome this limitation for proper orthogonal decomposition, we propose a novel adaptive selection method for snapshots in time that limits offline training costs by selecting snapshots according an error control mechanism similar to that found in adaptive time-stepping ordinary differential equation solvers. The error estimator used in this work is related to theory boundingmore » the approximation error in time of proper orthogonal decomposition-based reduced order models, and memory usage is minimized by computing the singular value decomposition using a single-pass incremental algorithm. Results for a viscous Burgers’ test problem demonstrate convergence in the limit as the algorithm error tolerances go to zero; in this limit, the full order model is recovered to within discretization error. The resulting method can be used on supercomputers to generate proper orthogonal decomposition-based reduced order models, or as a subroutine within hyperreduction algorithms that require taking snapshots in time, or within greedy algorithms for sampling parameter space.« less
Multi-objective Optimization of a Solar Humidification Dehumidification Desalination Unit
NASA Astrophysics Data System (ADS)
Rafigh, M.; Mirzaeian, M.; Najafi, B.; Rinaldi, F.; Marchesi, R.
2017-11-01
In the present paper, a humidification-dehumidification desalination unit integrated with solar system is considered. In the first step mathematical model of the whole plant is represented. Next, taking into account the logical constraints, the performance of the system is optimized. On one hand it is desired to have higher energetic efficiency, while on the other hand, higher efficiency results in an increment in the required area for each subsystem which consequently leads to an increase in the total cost of the plant. In the present work, the optimum solution is achieved when the specific energy of the solar heater and also the areas of humidifier and dehumidifier are minimized. Due to the fact that considered objective functions are in conflict, conventional optimization methods are not applicable. Hence, multi objective optimization using genetic algorithm which is an efficient tool for dealing with problems with conflicting objectives has been utilized and a set of optimal solutions called Pareto front each of which is a tradeoff between the mentioned objectives is generated.
Practical optimization of Steiner trees via the cavity method
NASA Astrophysics Data System (ADS)
Braunstein, Alfredo; Muntoni, Anna
2016-07-01
The optimization version of the cavity method for single instances, called Max-Sum, has been applied in the past to the minimum Steiner tree problem on graphs and variants. Max-Sum has been shown experimentally to give asymptotically optimal results on certain types of weighted random graphs, and to give good solutions in short computation times for some types of real networks. However, the hypotheses behind the formulation and the cavity method itself limit substantially the class of instances on which the approach gives good results (or even converges). Moreover, in the standard model formulation, the diameter of the tree solution is limited by a predefined bound, that affects both computation time and convergence properties. In this work we describe two main enhancements to the Max-Sum equations to be able to cope with optimization of real-world instances. First, we develop an alternative ‘flat’ model formulation that allows the relevant configuration space to be reduced substantially, making the approach feasible on instances with large solution diameter, in particular when the number of terminal nodes is small. Second, we propose an integration between Max-Sum and three greedy heuristics. This integration allows Max-Sum to be transformed into a highly competitive self-contained algorithm, in which a feasible solution is given at each step of the iterative procedure. Part of this development participated in the 2014 DIMACS Challenge on Steiner problems, and we report the results here. The performance on the challenge of the proposed approach was highly satisfactory: it maintained a small gap to the best bound in most cases, and obtained the best results on several instances in two different categories. We also present several improvements with respect to the version of the algorithm that participated in the competition, including new best solutions for some of the instances of the challenge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wisotzky, Eric, E-mail: eric.wisotzky@charite.de, E-mail: eric.wisotzky@ipk.fraunhofer.de; O’Brien, Ricky; Keall, Paul J., E-mail: paul.keall@sydney.edu.au
2016-01-15
Purpose: Multileaf collimator (MLC) tracking radiotherapy is complex as the beam pattern needs to be modified due to the planned intensity modulation as well as the real-time target motion. The target motion cannot be planned; therefore, the modified beam pattern differs from the original plan and the MLC sequence needs to be recomputed online. Current MLC tracking algorithms use a greedy heuristic in that they optimize for a given time, but ignore past errors. To overcome this problem, the authors have developed and improved an algorithm that minimizes large underdose and overdose regions. Additionally, previous underdose and overdose events aremore » taken into account to avoid regions with high quantity of dose events. Methods: The authors improved the existing MLC motion control algorithm by introducing a cumulative underdose/overdose map. This map represents the actual projection of the planned tumor shape and logs occurring dose events at each specific regions. These events have an impact on the dose cost calculation and reduce recurrence of dose events at each region. The authors studied the improvement of the new temporal optimization algorithm in terms of the L1-norm minimization of the sum of overdose and underdose compared to not accounting for previous dose events. For evaluation, the authors simulated the delivery of 5 conformal and 14 intensity-modulated radiotherapy (IMRT)-plans with 7 3D patient measured tumor motion traces. Results: Simulations with conformal shapes showed an improvement of L1-norm up to 8.5% after 100 MLC modification steps. Experiments showed comparable improvements with the same type of treatment plans. Conclusions: A novel leaf sequencing optimization algorithm which considers previous dose events for MLC tracking radiotherapy has been developed and investigated. Reductions in underdose/overdose are observed for conformal and IMRT delivery.« less
NASA Astrophysics Data System (ADS)
Ji, Yu; Sheng, Wanxing; Jin, Wei; Wu, Ming; Liu, Haitao; Chen, Feng
2018-02-01
A coordinated optimal control method of active and reactive power of distribution network with distributed PV cluster based on model predictive control is proposed in this paper. The method divides the control process into long-time scale optimal control and short-time scale optimal control with multi-step optimization. The models are transformed into a second-order cone programming problem due to the non-convex and nonlinear of the optimal models which are hard to be solved. An improved IEEE 33-bus distribution network system is used to analyse the feasibility and the effectiveness of the proposed control method
Enhancement cavities for zero-offset-frequency pulse trains.
Holzberger, S; Lilienfein, N; Trubetskov, M; Carstens, H; Lücking, F; Pervak, V; Krausz, F; Pupeza, I
2015-05-15
The optimal enhancement of broadband optical pulses in a passive resonator requires a seeding pulse train with a specific carrier-envelope-offset frequency. Here, we control the phase of the cavity mirrors to tune the offset frequency for which a given comb is optimally enhanced. This enables the enhancement of a zero-offset-frequency train of sub-30-fs pulses to multi-kW average powers. The combination of pulse duration, power, and zero phase slip constitutes a crucial step toward the generation of attosecond pulses at multi-10-MHz repetition rates. In addition, this control affords the enhancement of pulses generated by difference-frequency mixing, e.g., for mid-infrared spectroscopy.
Shape optimization techniques for musical instrument design
NASA Astrophysics Data System (ADS)
Henrique, Luis; Antunes, Jose; Carvalho, Joao S.
2002-11-01
The design of musical instruments is still mostly based on empirical knowledge and costly experimentation. One interesting improvement is the shape optimization of resonating components, given a number of constraints (allowed parameter ranges, shape smoothness, etc.), so that vibrations occur at specified modal frequencies. Each admissible geometrical configuration generates an error between computed eigenfrequencies and the target set. Typically, error surfaces present many local minima, corresponding to suboptimal designs. This difficulty can be overcome using global optimization techniques, such as simulated annealing. However these methods are greedy, concerning the number of function evaluations required. Thus, the computational effort can be unacceptable if complex problems, such as bell optimization, are tackled. Those issues are addressed in this paper, and a method for improving optimization procedures is proposed. Instead of using the local geometric parameters as searched variables, the system geometry is modeled in terms of truncated series of orthogonal space-funcitons, and optimization is performed on their amplitude coefficients. Fourier series and orthogonal polynomials are typical such functions. This technique reduces considerably the number of searched variables, and has a potential for significant computational savings in complex problems. It is illustrated by optimizing the shapes of both current and uncommon marimba bars.
Multi-dimensional Rankings, Program Termination, and Complexity Bounds of Flowchart Programs
NASA Astrophysics Data System (ADS)
Alias, Christophe; Darte, Alain; Feautrier, Paul; Gonnord, Laure
Proving the termination of a flowchart program can be done by exhibiting a ranking function, i.e., a function from the program states to a well-founded set, which strictly decreases at each program step. A standard method to automatically generate such a function is to compute invariants for each program point and to search for a ranking in a restricted class of functions that can be handled with linear programming techniques. Previous algorithms based on affine rankings either are applicable only to simple loops (i.e., single-node flowcharts) and rely on enumeration, or are not complete in the sense that they are not guaranteed to find a ranking in the class of functions they consider, if one exists. Our first contribution is to propose an efficient algorithm to compute ranking functions: It can handle flowcharts of arbitrary structure, the class of candidate rankings it explores is larger, and our method, although greedy, is provably complete. Our second contribution is to show how to use the ranking functions we generate to get upper bounds for the computational complexity (number of transitions) of the source program. This estimate is a polynomial, which means that we can handle programs with more than linear complexity. We applied the method on a collection of test cases from the literature. We also show the links and differences with previous techniques based on the insertion of counters.
A Subspace Pursuit–based Iterative Greedy Hierarchical Solution to the Neuromagnetic Inverse Problem
Babadi, Behtash; Obregon-Henao, Gabriel; Lamus, Camilo; Hämäläinen, Matti S.; Brown, Emery N.; Purdon, Patrick L.
2013-01-01
Magnetoencephalography (MEG) is an important non-invasive method for studying activity within the human brain. Source localization methods can be used to estimate spatiotemporal activity from MEG measurements with high temporal resolution, but the spatial resolution of these estimates is poor due to the ill-posed nature of the MEG inverse problem. Recent developments in source localization methodology have emphasized temporal as well as spatial constraints to improve source localization accuracy, but these methods can be computationally intense. Solutions emphasizing spatial sparsity hold tremendous promise, since the underlying neurophysiological processes generating MEG signals are often sparse in nature, whether in the form of focal sources, or distributed sources representing large-scale functional networks. Recent developments in the theory of compressed sensing (CS) provide a rigorous framework to estimate signals with sparse structure. In particular, a class of CS algorithms referred to as greedy pursuit algorithms can provide both high recovery accuracy and low computational complexity. Greedy pursuit algorithms are difficult to apply directly to the MEG inverse problem because of the high-dimensional structure of the MEG source space and the high spatial correlation in MEG measurements. In this paper, we develop a novel greedy pursuit algorithm for sparse MEG source localization that overcomes these fundamental problems. This algorithm, which we refer to as the Subspace Pursuit-based Iterative Greedy Hierarchical (SPIGH) inverse solution, exhibits very low computational complexity while achieving very high localization accuracy. We evaluate the performance of the proposed algorithm using comprehensive simulations, as well as the analysis of human MEG data during spontaneous brain activity and somatosensory stimuli. These studies reveal substantial performance gains provided by the SPIGH algorithm in terms of computational complexity, localization accuracy, and robustness. PMID:24055554
Multi-objective optimization of chromatographic rare earth element separation.
Knutson, Hans-Kristian; Holmqvist, Anders; Nilsson, Bernt
2015-10-16
The importance of rare earth elements in modern technological industry grows, and as a result the interest for developing separation processes increases. This work is a part of developing chromatography as a rare earth element processing method. Process optimization is an important step in process development, and there are several competing objectives that need to be considered in a chromatographic separation process. Most studies are limited to evaluating the two competing objectives productivity and yield, and studies of scenarios with tri-objective optimizations are scarce. Tri-objective optimizations are much needed when evaluating the chromatographic separation of rare earth elements due to the importance of product pool concentration along with productivity and yield as process objectives. In this work, a multi-objective optimization strategy considering productivity, yield and pool concentration is proposed. This was carried out in the frame of a model based optimization study on a batch chromatography separation of the rare earth elements samarium, europium and gadolinium. The findings from the multi-objective optimization were used to provide with a general strategy for achieving desirable operation points, resulting in a productivity ranging between 0.61 and 0.75 kgEu/mcolumn(3), h(-1) and a pool concentration between 0.52 and 0.79 kgEu/m(3), while maintaining a purity above 99% and never falling below an 80% yield for the main target component europium. Copyright © 2015 Elsevier B.V. All rights reserved.
Vijayakumar, Supreeta; Conway, Max; Lió, Pietro; Angione, Claudio
2017-05-30
Metabolic modelling has entered a mature phase with dozens of methods and software implementations available to the practitioner and the theoretician. It is not easy for a modeller to be able to see the wood (or the forest) for the trees. Driven by this analogy, we here present a 'forest' of principal methods used for constraint-based modelling in systems biology. This provides a tree-based view of methods available to prospective modellers, also available in interactive version at http://modellingmetabolism.net, where it will be kept updated with new methods after the publication of the present manuscript. Our updated classification of existing methods and tools highlights the most promising in the different branches, with the aim to develop a vision of how existing methods could hybridize and become more complex. We then provide the first hands-on tutorial for multi-objective optimization of metabolic models in R. We finally discuss the implementation of multi-view machine learning approaches in poly-omic integration. Throughout this work, we demonstrate the optimization of trade-offs between multiple metabolic objectives, with a focus on omic data integration through machine learning. We anticipate that the combination of a survey, a perspective on multi-view machine learning and a step-by-step R tutorial should be of interest for both the beginner and the advanced user. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Wireless Sensor Network Metrics for Real-Time Systems
2009-05-20
to compute the probability of end-to-end packet delivery as a function of latency, the expected radio energy consumption on the nodes from relaying... schedules for WSNs. Particularly, we focus on the impact scheduling has on path diversity, using short repeating schedules and Greedy Maximal Matching...a greedy algorithm for constructing a mesh routing topology. Finally, we study the implications of using distributed scheduling schemes to generate
Learning to assign binary weights to binary descriptor
NASA Astrophysics Data System (ADS)
Huang, Zhoudi; Wei, Zhenzhong; Zhang, Guangjun
2016-10-01
Constructing robust binary local feature descriptors are receiving increasing interest due to their binary nature, which can enable fast processing while requiring significantly less memory than their floating-point competitors. To bridge the performance gap between the binary and floating-point descriptors without increasing the computational cost of computing and matching, optimal binary weights are learning to assign to binary descriptor for considering each bit might contribute differently to the distinctiveness and robustness. Technically, a large-scale regularized optimization method is applied to learn float weights for each bit of the binary descriptor. Furthermore, binary approximation for the float weights is performed by utilizing an efficient alternatively greedy strategy, which can significantly improve the discriminative power while preserve fast matching advantage. Extensive experimental results on two challenging datasets (Brown dataset and Oxford dataset) demonstrate the effectiveness and efficiency of the proposed method.
NASA Astrophysics Data System (ADS)
Abd-El-Barr, Mostafa
2010-12-01
The use of non-binary (multiple-valued) logic in the synthesis of digital systems can lead to savings in chip area. Advances in very large scale integration (VLSI) technology have enabled the successful implementation of multiple-valued logic (MVL) circuits. A number of heuristic algorithms for the synthesis of (near) minimal sum-of products (two-level) realisation of MVL functions have been reported in the literature. The direct cover (DC) technique is one such algorithm. The ant colony optimisation (ACO) algorithm is a meta-heuristic that uses constructive greediness to explore a large solution space in finding (near) optimal solutions. The ACO algorithm mimics the ant's behaviour in the real world in using the shortest path to reach food sources. We have previously introduced an ACO-based heuristic for the synthesis of two-level MVL functions. In this article, we introduce the ACO-DC hybrid technique for the synthesis of multi-level MVL functions. The basic idea is to use an ant to decompose a given MVL function into a number of levels and then synthesise each sub-function using a DC-based technique. The results obtained using the proposed approach are compared to those obtained using existing techniques reported in the literature. A benchmark set consisting of 50,000 randomly generated 2-variable 4-valued functions is used in the comparison. The results obtained using the proposed ACO-DC technique are shown to produce efficient realisation in terms of the average number of gates (as a measure of chip area) needed for the synthesis of a given MVL function.
Multi-GPU implementation of a VMAT treatment plan optimization algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Zhen, E-mail: Zhen.Tian@UTSouthwestern.edu, E-mail: Xun.Jia@UTSouthwestern.edu, E-mail: Steve.Jiang@UTSouthwestern.edu; Folkerts, Michael; Tan, Jun
Purpose: Volumetric modulated arc therapy (VMAT) optimization is a computationally challenging problem due to its large data size, high degrees of freedom, and many hardware constraints. High-performance graphics processing units (GPUs) have been used to speed up the computations. However, GPU’s relatively small memory size cannot handle cases with a large dose-deposition coefficient (DDC) matrix in cases of, e.g., those with a large target size, multiple targets, multiple arcs, and/or small beamlet size. The main purpose of this paper is to report an implementation of a column-generation-based VMAT algorithm, previously developed in the authors’ group, on a multi-GPU platform tomore » solve the memory limitation problem. While the column-generation-based VMAT algorithm has been previously developed, the GPU implementation details have not been reported. Hence, another purpose is to present detailed techniques employed for GPU implementation. The authors also would like to utilize this particular problem as an example problem to study the feasibility of using a multi-GPU platform to solve large-scale problems in medical physics. Methods: The column-generation approach generates VMAT apertures sequentially by solving a pricing problem (PP) and a master problem (MP) iteratively. In the authors’ method, the sparse DDC matrix is first stored on a CPU in coordinate list format (COO). On the GPU side, this matrix is split into four submatrices according to beam angles, which are stored on four GPUs in compressed sparse row format. Computation of beamlet price, the first step in PP, is accomplished using multi-GPUs. A fast inter-GPU data transfer scheme is accomplished using peer-to-peer access. The remaining steps of PP and MP problems are implemented on CPU or a single GPU due to their modest problem scale and computational loads. Barzilai and Borwein algorithm with a subspace step scheme is adopted here to solve the MP problem. A head and neck (H and N) cancer case is then used to validate the authors’ method. The authors also compare their multi-GPU implementation with three different single GPU implementation strategies, i.e., truncating DDC matrix (S1), repeatedly transferring DDC matrix between CPU and GPU (S2), and porting computations involving DDC matrix to CPU (S3), in terms of both plan quality and computational efficiency. Two more H and N patient cases and three prostate cases are used to demonstrate the advantages of the authors’ method. Results: The authors’ multi-GPU implementation can finish the optimization process within ∼1 min for the H and N patient case. S1 leads to an inferior plan quality although its total time was 10 s shorter than the multi-GPU implementation due to the reduced matrix size. S2 and S3 yield the same plan quality as the multi-GPU implementation but take ∼4 and ∼6 min, respectively. High computational efficiency was consistently achieved for the other five patient cases tested, with VMAT plans of clinically acceptable quality obtained within 23–46 s. Conversely, to obtain clinically comparable or acceptable plans for all six of these VMAT cases that the authors have tested in this paper, the optimization time needed in a commercial TPS system on CPU was found to be in an order of several minutes. Conclusions: The results demonstrate that the multi-GPU implementation of the authors’ column-generation-based VMAT optimization can handle the large-scale VMAT optimization problem efficiently without sacrificing plan quality. The authors’ study may serve as an example to shed some light on other large-scale medical physics problems that require multi-GPU techniques.« less
Robust and fast nonlinear optimization of diffusion MRI microstructure models.
Harms, R L; Fritz, F J; Tobisch, A; Goebel, R; Roebroeck, A
2017-07-15
Advances in biophysical multi-compartment modeling for diffusion MRI (dMRI) have gained popularity because of greater specificity than DTI in relating the dMRI signal to underlying cellular microstructure. A large range of these diffusion microstructure models have been developed and each of the popular models comes with its own, often different, optimization algorithm, noise model and initialization strategy to estimate its parameter maps. Since data fit, accuracy and precision is hard to verify, this creates additional challenges to comparability and generalization of results from diffusion microstructure models. In addition, non-linear optimization is computationally expensive leading to very long run times, which can be prohibitive in large group or population studies. In this technical note we investigate the performance of several optimization algorithms and initialization strategies over a few of the most popular diffusion microstructure models, including NODDI and CHARMED. We evaluate whether a single well performing optimization approach exists that could be applied to many models and would equate both run time and fit aspects. All models, algorithms and strategies were implemented on the Graphics Processing Unit (GPU) to remove run time constraints, with which we achieve whole brain dataset fits in seconds to minutes. We then evaluated fit, accuracy, precision and run time for different models of differing complexity against three common optimization algorithms and three parameter initialization strategies. Variability of the achieved quality of fit in actual data was evaluated on ten subjects of each of two population studies with a different acquisition protocol. We find that optimization algorithms and multi-step optimization approaches have a considerable influence on performance and stability over subjects and over acquisition protocols. The gradient-free Powell conjugate-direction algorithm was found to outperform other common algorithms in terms of run time, fit, accuracy and precision. Parameter initialization approaches were found to be relevant especially for more complex models, such as those involving several fiber orientations per voxel. For these, a fitting cascade initializing or fixing parameter values in a later optimization step from simpler models in an earlier optimization step further improved run time, fit, accuracy and precision compared to a single step fit. This establishes and makes available standards by which robust fit and accuracy can be achieved in shorter run times. This is especially relevant for the use of diffusion microstructure modeling in large group or population studies and in combining microstructure parameter maps with tractography results. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Xuan, Li; He, Bin; Hu, Li-Fa; Li, Da-Yu; Xu, Huan-Yu; Zhang, Xing-Yun; Wang, Shao-Xin; Wang, Yu-Kun; Yang, Cheng-Liang; Cao, Zhao-Liang; Mu, Quan-Quan; Lu, Xing-Hai
2016-09-01
Multi-conjugation adaptive optics (MCAOs) have been investigated and used in the large aperture optical telescopes for high-resolution imaging with large field of view (FOV). The atmospheric tomographic phase reconstruction and projection of three-dimensional turbulence volume onto wavefront correctors, such as deformable mirrors (DMs) or liquid crystal wavefront correctors (LCWCs), is a very important step in the data processing of an MCAO’s controller. In this paper, a method according to the wavefront reconstruction performance of MCAO is presented to evaluate the optimized configuration of multi laser guide stars (LGSs) and the reasonable conjugation heights of LCWCs. Analytical formulations are derived for the different configurations and are used to generate optimized parameters for MCAO. Several examples are given to demonstrate our LGSs configuration optimization method. Compared with traditional methods, our method has minimum wavefront tomographic error, which will be helpful to get higher imaging resolution at large FOV in MCAO. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174274, 11174279, 61205021, 11204299, 61475152, and 61405194) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.
NASA Astrophysics Data System (ADS)
Madani, Kaveh; Hooshyar, Milad
2014-11-01
Reservoir systems with multiple operators can benefit from coordination of operation policies. To maximize the total benefit of these systems the literature has normally used the social planner's approach. Based on this approach operation decisions are optimized using a multi-objective optimization model with a compound system's objective. While the utility of the system can be increased this way, fair allocation of benefits among the operators remains challenging for the social planner who has to assign controversial weights to the system's beneficiaries and their objectives. Cooperative game theory provides an alternative framework for fair and efficient allocation of the incremental benefits of cooperation. To determine the fair and efficient utility shares of the beneficiaries, cooperative game theory solution methods consider the gains of each party in the status quo (non-cooperation) as well as what can be gained through the grand coalition (social planner's solution or full cooperation) and partial coalitions. Nevertheless, estimation of the benefits of different coalitions can be challenging in complex multi-beneficiary systems. Reinforcement learning can be used to address this challenge and determine the gains of the beneficiaries for different levels of cooperation, i.e., non-cooperation, partial cooperation, and full cooperation, providing the essential input for allocation based on cooperative game theory. This paper develops a game theory-reinforcement learning (GT-RL) method for determining the optimal operation policies in multi-operator multi-reservoir systems with respect to fairness and efficiency criteria. As the first step to underline the utility of the GT-RL method in solving complex multi-agent multi-reservoir problems without a need for developing compound objectives and weight assignment, the proposed method is applied to a hypothetical three-agent three-reservoir system.
Multi-species beam hardening calibration device for x-ray microtomography
NASA Astrophysics Data System (ADS)
Evershed, Anthony N. Z.; Mills, David; Davis, Graham
2012-10-01
Impact-source X-ray microtomography (XMT) is a widely-used benchtop alternative to synchrotron radiation microtomography. Since X-rays from a tube are polychromatic, however, greyscale `beam hardening' artefacts are produced by the preferential absorption of low-energy photons in the beam path. A multi-material `carousel' test piece was developed to offer a wider range of X-ray attenuations from well-characterised filters than single-material step wedges can produce practically, and optimization software was developed to produce a beam hardening correction by use of the Nelder-Mead optimization method, tuned for specimens composed of other materials (such as hydroxyapatite [HA] or barium for dental applications.) The carousel test piece produced calibration polynomials reliably and with a significantly smaller discrepancy between the calculated and measured attenuations than the calibration step wedge previously in use. An immersion tank was constructed and used to simplify multi-material samples in order to negate the beam hardening effect of low atomic number materials within the specimen when measuring mineral concentration of higher-Z regions. When scanned in water at an acceleration voltage of 90 kV a Scanco AG hydroxyapatite / poly(methyl methacrylate) calibration phantom closely approximates a single-material system, producing accurate hydroxyapatite concentration measurements. This system can then be corrected for beam hardening for the material of interest.
Mobile transporter path planning
NASA Technical Reports Server (NTRS)
Baffes, Paul; Wang, Lui
1990-01-01
The use of a genetic algorithm (GA) for solving the mobile transporter path planning problem is investigated. The mobile transporter is a traveling robotic vehicle proposed for the space station which must be able to reach any point of the structure autonomously. Elements of the genetic algorithm are explored in both a theoretical and experimental sense. Specifically, double crossover, greedy crossover, and tournament selection techniques are examined. Additionally, the use of local optimization techniques working in concert with the GA are also explored. Recent developments in genetic algorithm theory are shown to be particularly effective in a path planning problem domain, though problem areas can be cited which require more research.
Heuristic algorithms for the minmax regret flow-shop problem with interval processing times.
Ćwik, Michał; Józefczyk, Jerzy
2018-01-01
An uncertain version of the permutation flow-shop with unlimited buffers and the makespan as a criterion is considered. The investigated parametric uncertainty is represented by given interval-valued processing times. The maximum regret is used for the evaluation of uncertainty. Consequently, the minmax regret discrete optimization problem is solved. Due to its high complexity, two relaxations are applied to simplify the optimization procedure. First of all, a greedy procedure is used for calculating the criterion's value, as such calculation is NP-hard problem itself. Moreover, the lower bound is used instead of solving the internal deterministic flow-shop. The constructive heuristic algorithm is applied for the relaxed optimization problem. The algorithm is compared with previously elaborated other heuristic algorithms basing on the evolutionary and the middle interval approaches. The conducted computational experiments showed the advantage of the constructive heuristic algorithm with regards to both the criterion and the time of computations. The Wilcoxon paired-rank statistical test confirmed this conclusion.
Detection of Cheating by Decimation Algorithm
NASA Astrophysics Data System (ADS)
Yamanaka, Shogo; Ohzeki, Masayuki; Decelle, Aurélien
2015-02-01
We expand the item response theory to study the case of "cheating students" for a set of exams, trying to detect them by applying a greedy algorithm of inference. This extended model is closely related to the Boltzmann machine learning. In this paper we aim to infer the correct biases and interactions of our model by considering a relatively small number of sets of training data. Nevertheless, the greedy algorithm that we employed in the present study exhibits good performance with a few number of training data. The key point is the sparseness of the interactions in our problem in the context of the Boltzmann machine learning: the existence of cheating students is expected to be very rare (possibly even in real world). We compare a standard approach to infer the sparse interactions in the Boltzmann machine learning to our greedy algorithm and we find the latter to be superior in several aspects.
Game theoretic sensor management for target tracking
NASA Astrophysics Data System (ADS)
Shen, Dan; Chen, Genshe; Blasch, Erik; Pham, Khanh; Douville, Philip; Yang, Chun; Kadar, Ivan
2010-04-01
This paper develops and evaluates a game-theoretic approach to distributed sensor-network management for target tracking via sensor-based negotiation. We present a distributed sensor-based negotiation game model for sensor management for multi-sensor multi-target tacking situations. In our negotiation framework, each negotiation agent represents a sensor and each sensor maximizes their utility using a game approach. The greediness of each sensor is limited by the fact that the sensor-to-target assignment efficiency will decrease if too many sensor resources are assigned to a same target. It is similar to the market concept in real world, such as agreements between buyers and sellers in an auction market. Sensors are willing to switch targets so that they can obtain their highest utility and the most efficient way of applying their resources. Our sub-game perfect equilibrium-based negotiation strategies dynamically and distributedly assign sensors to targets. Numerical simulations are performed to demonstrate our sensor-based negotiation approach for distributed sensor management.
2012-01-01
Background Through the wealth of information contained within them, genome-wide association studies (GWAS) have the potential to provide researchers with a systematic means of associating genetic variants with a wide variety of disease phenotypes. Due to the limitations of approaches that have analyzed single variants one at a time, it has been proposed that the genetic basis of these disorders could be determined through detailed analysis of the genetic variants themselves and in conjunction with one another. The construction of models that account for these subsets of variants requires methodologies that generate predictions based on the total risk of a particular group of polymorphisms. However, due to the excessive number of variants, constructing these types of models has so far been computationally infeasible. Results We have implemented an algorithm, known as greedy RLS, that we use to perform the first known wrapper-based feature selection on the genome-wide level. The running time of greedy RLS grows linearly in the number of training examples, the number of features in the original data set, and the number of selected features. This speed is achieved through computational short-cuts based on matrix calculus. Since the memory consumption in present-day computers can form an even tighter bottleneck than running time, we also developed a space efficient variation of greedy RLS which trades running time for memory. These approaches are then compared to traditional wrapper-based feature selection implementations based on support vector machines (SVM) to reveal the relative speed-up and to assess the feasibility of the new algorithm. As a proof of concept, we apply greedy RLS to the Hypertension – UK National Blood Service WTCCC dataset and select the most predictive variants using 3-fold external cross-validation in less than 26 minutes on a high-end desktop. On this dataset, we also show that greedy RLS has a better classification performance on independent test data than a classifier trained using features selected by a statistical p-value-based filter, which is currently the most popular approach for constructing predictive models in GWAS. Conclusions Greedy RLS is the first known implementation of a machine learning based method with the capability to conduct a wrapper-based feature selection on an entire GWAS containing several thousand examples and over 400,000 variants. In our experiments, greedy RLS selected a highly predictive subset of genetic variants in a fraction of the time spent by wrapper-based selection methods used together with SVM classifiers. The proposed algorithms are freely available as part of the RLScore software library at http://users.utu.fi/aatapa/RLScore/. PMID:22551170
Automation of route identification and optimisation based on data-mining and chemical intuition.
Lapkin, A A; Heer, P K; Jacob, P-M; Hutchby, M; Cunningham, W; Bull, S D; Davidson, M G
2017-09-21
Data-mining of Reaxys and network analysis of the combined literature and in-house reactions set were used to generate multiple possible reaction routes to convert a bio-waste feedstock, limonene, into a pharmaceutical API, paracetamol. The network analysis of data provides a rich knowledge-base for generation of the initial reaction screening and development programme. Based on the literature and the in-house data, an overall flowsheet for the conversion of limonene to paracetamol was proposed. Each individual reaction-separation step in the sequence was simulated as a combination of the continuous flow and batch steps. The linear model generation methodology allowed us to identify the reaction steps requiring further chemical optimisation. The generated model can be used for global optimisation and generation of environmental and other performance indicators, such as cost indicators. However, the identified further challenge is to automate model generation to evolve optimal multi-step chemical routes and optimal process configurations.
Detailed analysis of an optimized FPP-based 3D imaging system
NASA Astrophysics Data System (ADS)
Tran, Dat; Thai, Anh; Duong, Kiet; Nguyen, Thanh; Nehmetallah, Georges
2016-05-01
In this paper, we present detail analysis and a step-by-step implementation of an optimized fringe projection profilometry (FPP) based 3D shape measurement system. First, we propose a multi-frequency and multi-phase shifting sinusoidal fringe pattern reconstruction approach to increase accuracy and sensitivity of the system. Second, phase error compensation caused by the nonlinear transfer function of the projector and camera is performed through polynomial approximation. Third, phase unwrapping is performed using spatial and temporal techniques and the tradeoff between processing speed and high accuracy is discussed in details. Fourth, generalized camera and system calibration are developed for phase to real world coordinate transformation. The calibration coefficients are estimated accurately using a reference plane and several gauge blocks with precisely known heights and by employing a nonlinear least square fitting method. Fifth, a texture will be attached to the height profile by registering a 2D real photo to the 3D height map. The last step is to perform 3D image fusion and registration using an iterative closest point (ICP) algorithm for a full field of view reconstruction. The system is experimentally constructed using compact, portable, and low cost off-the-shelf components. A MATLAB® based GUI is developed to control and synchronize the whole system.
Non-aqueous Electrode Processing and Construction of Lithium-ion Coin Cells.
Stein, Malcolm; Chen, Chien-Fan; Robles, Daniel J; Rhodes, Christopher; Mukherjee, Partha P
2016-02-01
Research into new and improved materials to be utilized in lithium-ion batteries (LIB) necessitates an experimental counterpart to any computational analysis. Testing of lithium-ion batteries in an academic setting has taken on several forms, but at the most basic level lies the coin cell construction. In traditional LIB electrode preparation, a multi-phase slurry composed of active material, binder, and conductive additive is cast out onto a substrate. An electrode disc can then be punched from the dried sheet and used in the construction of a coin cell for electrochemical evaluation. Utilization of the potential of the active material in a battery is critically dependent on the microstructure of the electrode, as an appropriate distribution of the primary components are crucial to ensuring optimal electrical conductivity, porosity, and tortuosity, such that electrochemical and transport interaction is optimized. Processing steps ranging from the combination of dry powder, wet mixing, and drying can all critically affect multi-phase interactions that influence the microstructure formation. Electrochemical probing necessitates the construction of electrodes and coin cells with the utmost care and precision. This paper aims at providing a step-by-step guide of non-aqueous electrode processing and coin cell construction for lithium-ion batteries within an academic setting and with emphasis on deciphering the influence of drying and calendaring.
Non-aqueous Electrode Processing and Construction of Lithium-ion Coin Cells
Stein, Malcolm; Chen, Chien-Fan; Robles, Daniel J.; Rhodes, Christopher; Mukherjee, Partha P.
2016-01-01
Research into new and improved materials to be utilized in lithium-ion batteries (LIB) necessitates an experimental counterpart to any computational analysis. Testing of lithium-ion batteries in an academic setting has taken on several forms, but at the most basic level lies the coin cell construction. In traditional LIB electrode preparation, a multi-phase slurry composed of active material, binder, and conductive additive is cast out onto a substrate. An electrode disc can then be punched from the dried sheet and used in the construction of a coin cell for electrochemical evaluation. Utilization of the potential of the active material in a battery is critically dependent on the microstructure of the electrode, as an appropriate distribution of the primary components are crucial to ensuring optimal electrical conductivity, porosity, and tortuosity, such that electrochemical and transport interaction is optimized. Processing steps ranging from the combination of dry powder, wet mixing, and drying can all critically affect multi-phase interactions that influence the microstructure formation. Electrochemical probing necessitates the construction of electrodes and coin cells with the utmost care and precision. This paper aims at providing a step-by-step guide of non-aqueous electrode processing and coin cell construction for lithium-ion batteries within an academic setting and with emphasis on deciphering the influence of drying and calendaring. PMID:26863503
Research on Intelligent Control System of DC SQUID Magnetometer Parameters for Multi-channel System
NASA Astrophysics Data System (ADS)
Chen, Hua; Yang, Kang; Lu, Li; Kong, Xiangyan; Wang, Hai; Wu, Jun; Wang, Yongliang
2018-07-01
In a multi-channel SQUID measurement system, adjusting device parameters to optimal condition for all channels is time-consuming. In this paper, an intelligent control system is presented to determine the optimal working point of devices which is automatic and more efficient comparing to the manual one. An optimal working point searching algorithm is introduced as the core component of the control system. In this algorithm, the bias voltage V_bias is step scanned to obtain the maximal value of the peak-to-peak current value I_pp of the SQUID magnetometer modulation curve. We choose this point as the optimal one. Using the above control system, more than 30 weakly damped SQUID magnetometers with area of 5 × 5 mm^2 or 10 × 10 mm^2 are adjusted and a 36-channel magnetocardiography system perfectly worked in a magnetically shielded room. The average white flux noise is 15 {μ Φ }_0/Hz^{1/2}.
Research on Intelligent Control System of DC SQUID Magnetometer Parameters for Multi-channel System
NASA Astrophysics Data System (ADS)
Chen, Hua; Yang, Kang; Lu, Li; Kong, Xiangyan; Wang, Hai; Wu, Jun; Wang, Yongliang
2018-03-01
In a multi-channel SQUID measurement system, adjusting device parameters to optimal condition for all channels is time-consuming. In this paper, an intelligent control system is presented to determine the optimal working point of devices which is automatic and more efficient comparing to the manual one. An optimal working point searching algorithm is introduced as the core component of the control system. In this algorithm, the bias voltage V_bias is step scanned to obtain the maximal value of the peak-to-peak current value I_pp of the SQUID magnetometer modulation curve. We choose this point as the optimal one. Using the above control system, more than 30 weakly damped SQUID magnetometers with area of 5 × 5 mm^2 or 10 × 10 mm^2 are adjusted and a 36-channel magnetocardiography system perfectly worked in a magnetically shielded room. The average white flux noise is 15 μΦ_0/Hz^{1/2}.
Optimal stimulus scheduling for active estimation of evoked brain networks.
Kafashan, MohammadMehdi; Ching, ShiNung
2015-12-01
We consider the problem of optimal probing to learn connections in an evoked dynamic network. Such a network, in which each edge measures an input-output relationship between sites in sensor/actuator-space, is relevant to emerging applications in neural mapping and neural connectivity estimation. We show that the problem of scheduling nodes to a probe (i.e., stimulate) amounts to a problem of optimal sensor scheduling. By formulating the evoked network in state-space, we show that the solution to the greedy probing strategy has a convenient form and, under certain conditions, is optimal over a finite horizon. We adopt an expectation maximization technique to update the state-space parameters in an online fashion and demonstrate the efficacy of the overall approach in a series of detailed numerical examples. The proposed method provides a principled means to actively probe time-varying connections in neuronal networks. The overall method can be implemented in real time and is particularly well-suited to applications in stimulation-based cortical mapping in which the underlying network dynamics are changing over time.
Optimal stimulus scheduling for active estimation of evoked brain networks
NASA Astrophysics Data System (ADS)
Kafashan, MohammadMehdi; Ching, ShiNung
2015-12-01
Objective. We consider the problem of optimal probing to learn connections in an evoked dynamic network. Such a network, in which each edge measures an input-output relationship between sites in sensor/actuator-space, is relevant to emerging applications in neural mapping and neural connectivity estimation. Approach. We show that the problem of scheduling nodes to a probe (i.e., stimulate) amounts to a problem of optimal sensor scheduling. Main results. By formulating the evoked network in state-space, we show that the solution to the greedy probing strategy has a convenient form and, under certain conditions, is optimal over a finite horizon. We adopt an expectation maximization technique to update the state-space parameters in an online fashion and demonstrate the efficacy of the overall approach in a series of detailed numerical examples. Significance. The proposed method provides a principled means to actively probe time-varying connections in neuronal networks. The overall method can be implemented in real time and is particularly well-suited to applications in stimulation-based cortical mapping in which the underlying network dynamics are changing over time.
Takeuchi, Hiroshi
2018-05-08
Since searching for the global minimum on the potential energy surface of a cluster is very difficult, many geometry optimization methods have been proposed, in which initial geometries are randomly generated and subsequently improved with different algorithms. In this study, a size-guided multi-seed heuristic method is developed and applied to benzene clusters. It produces initial configurations of the cluster with n molecules from the lowest-energy configurations of the cluster with n - 1 molecules (seeds). The initial geometries are further optimized with the geometrical perturbations previously used for molecular clusters. These steps are repeated until the size n satisfies a predefined one. The method locates putative global minima of benzene clusters with up to 65 molecules. The performance of the method is discussed using the computational cost, rates to locate the global minima, and energies of initial geometries. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
DReAM: Demand Response Architecture for Multi-level District Heating and Cooling Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharya, Saptarshi; Chandan, Vikas; Arya, Vijay
In this paper, we exploit the inherent hierarchy of heat exchangers in District Heating and Cooling (DHC) networks and propose DReAM, a novel Demand Response (DR) architecture for Multi-level DHC networks. DReAM serves to economize system operation while still respecting comfort requirements of individual consumers. Contrary to many present day DR schemes that work on a consumer level granularity, DReAM works at a level of hierarchy above buildings, i.e. substations that supply heat to a group of buildings. This improves the overall DR scalability and reduce the computational complexity. In the first step of the proposed approach, mathematical models ofmore » individual substations and their downstream networks are abstracted into appropriately constructed low-complexity structural forms. In the second step, this abstracted information is employed by the utility to perform DR optimization that determines the optimal heat inflow to individual substations rather than buildings, in order to achieve the targeted objectives across the network. We validate the proposed DReAM framework through experimental results under different scenarios on a test network.« less
Singer, Meromit; Engström, Alexander; Schönhuth, Alexander; Pachter, Lior
2011-09-23
Recent experimental and computational work confirms that CpGs can be unmethylated inside coding exons, thereby showing that codons may be subjected to both genomic and epigenomic constraint. It is therefore of interest to identify coding CpG islands (CCGIs) that are regions inside exons enriched for CpGs. The difficulty in identifying such islands is that coding exons exhibit sequence biases determined by codon usage and constraints that must be taken into account. We present a method for finding CCGIs that showcases a novel approach we have developed for identifying regions of interest that are significant (with respect to a Markov chain) for the counts of any pattern. Our method begins with the exact computation of tail probabilities for the number of CpGs in all regions contained in coding exons, and then applies a greedy algorithm for selecting islands from among the regions. We show that the greedy algorithm provably optimizes a biologically motivated criterion for selecting islands while controlling the false discovery rate. We applied this approach to the human genome (hg18) and annotated CpG islands in coding exons. The statistical criterion we apply to evaluating islands reduces the number of false positives in existing annotations, while our approach to defining islands reveals significant numbers of undiscovered CCGIs in coding exons. Many of these appear to be examples of functional epigenetic specialization in coding exons.
A Target Coverage Scheduling Scheme Based on Genetic Algorithms in Directional Sensor Networks
Gil, Joon-Min; Han, Youn-Hee
2011-01-01
As a promising tool for monitoring the physical world, directional sensor networks (DSNs) consisting of a large number of directional sensors are attracting increasing attention. As directional sensors in DSNs have limited battery power and restricted angles of sensing range, maximizing the network lifetime while monitoring all the targets in a given area remains a challenge. A major technique to conserve the energy of directional sensors is to use a node wake-up scheduling protocol by which some sensors remain active to provide sensing services, while the others are inactive to conserve their energy. In this paper, we first address a Maximum Set Covers for DSNs (MSCD) problem, which is known to be NP-complete, and present a greedy algorithm-based target coverage scheduling scheme that can solve this problem by heuristics. This scheme is used as a baseline for comparison. We then propose a target coverage scheduling scheme based on a genetic algorithm that can find the optimal cover sets to extend the network lifetime while monitoring all targets by the evolutionary global search technique. To verify and evaluate these schemes, we conducted simulations and showed that the schemes can contribute to extending the network lifetime. Simulation results indicated that the genetic algorithm-based scheduling scheme had better performance than the greedy algorithm-based scheme in terms of maximizing network lifetime. PMID:22319387
Bonny, Jean Marie; Boespflug-Tanguly, Odile; Zanca, Michel; Renou, Jean Pierre
2003-03-01
A solution for discrete multi-exponential analysis of T(2) relaxation decay curves obtained in current multi-echo imaging protocol conditions is described. We propose a preprocessing step to improve the signal-to-noise ratio and thus lower the signal-to-noise ratio threshold from which a high percentage of true multi-exponential detection is detected. It consists of a multispectral nonlinear edge-preserving filter that takes into account the signal-dependent Rician distribution of noise affecting magnitude MR images. Discrete multi-exponential decomposition, which requires no a priori knowledge, is performed by a non-linear least-squares procedure initialized with estimates obtained from a total least-squares linear prediction algorithm. This approach was validated and optimized experimentally on simulated data sets of normal human brains.
Emergence of social cohesion in a model society of greedy, mobile individuals
Roca, Carlos P.; Helbing, Dirk
2011-01-01
Human wellbeing in modern societies relies on social cohesion, which can be characterized by high levels of cooperation and a large number of social ties. Both features, however, are frequently challenged by individual self-interest. In fact, the stability of social and economic systems can suddenly break down as the recent financial crisis and outbreaks of civil wars illustrate. To understand the conditions for the emergence and robustness of social cohesion, we simulate the creation of public goods among mobile agents, assuming that behavioral changes are determined by individual satisfaction. Specifically, we study a generalized win-stay-lose-shift learning model, which is only based on previous experience and rules out greenbeard effects that would allow individuals to guess future gains. The most noteworthy aspect of this model is that it promotes cooperation in social dilemma situations despite very low information requirements and without assuming imitation, a shadow of the future, reputation effects, signaling, or punishment. We find that moderate greediness favors social cohesionby a coevolution between cooperation and spatial organization, additionally showing that those cooperation-enforcing levels of greediness can be evolutionarily selected. However, a maladaptive trend of increasing greediness, although enhancing individuals’ returns in the beginning, eventually causes cooperation and social relationships to fall apart. Our model is, therefore, expected to shed light on the long-standing problem of the emergence and stability of cooperative behavior. PMID:21709245
Emergence of social cohesion in a model society of greedy, mobile individuals.
Roca, Carlos P; Helbing, Dirk
2011-07-12
Human wellbeing in modern societies relies on social cohesion, which can be characterized by high levels of cooperation and a large number of social ties. Both features, however, are frequently challenged by individual self-interest. In fact, the stability of social and economic systems can suddenly break down as the recent financial crisis and outbreaks of civil wars illustrate. To understand the conditions for the emergence and robustness of social cohesion, we simulate the creation of public goods among mobile agents, assuming that behavioral changes are determined by individual satisfaction. Specifically, we study a generalized win-stay-lose-shift learning model, which is only based on previous experience and rules out greenbeard effects that would allow individuals to guess future gains. The most noteworthy aspect of this model is that it promotes cooperation in social dilemma situations despite very low information requirements and without assuming imitation, a shadow of the future, reputation effects, signaling, or punishment. We find that moderate greediness favors social cohesion by a coevolution between cooperation and spatial organization, additionally showing that those cooperation-enforcing levels of greediness can be evolutionarily selected. However, a maladaptive trend of increasing greediness, although enhancing individuals' returns in the beginning, eventually causes cooperation and social relationships to fall apart. Our model is, therefore, expected to shed light on the long-standing problem of the emergence and stability of cooperative behavior.
Xu, Jiajiong; Tang, Wei; Ma, Jun; Wang, Hong
2017-07-01
Drinking water treatment processes remove undesirable chemicals and microorganisms from source water, which is vital to public health protection. The purpose of this study was to investigate the effects of treatment processes and configuration on the microbiome by comparing microbial community shifts in two series of different treatment processes operated in parallel within a full-scale drinking water treatment plant (DWTP) in Southeast China. Illumina sequencing of 16S rRNA genes of water samples demonstrated little effect of coagulation/sedimentation and pre-oxidation steps on bacterial communities, in contrast to dramatic and concurrent microbial community shifts during ozonation, granular activated carbon treatment, sand filtration, and disinfection for both series. A large number of unique operational taxonomic units (OTUs) at these four treatment steps further illustrated their strong shaping power towards the drinking water microbial communities. Interestingly, multidimensional scaling analysis revealed tight clustering of biofilm samples collected from different treatment steps, with Nitrospira, the nitrite-oxidizing bacteria, noted at higher relative abundances in biofilm compared to water samples. Overall, this study provides a snapshot of step-to-step microbial evolvement in multi-step drinking water treatment systems, and the results provide insight to control and manipulation of the drinking water microbiome via optimization of DWTP design and operation.
NASA Astrophysics Data System (ADS)
Darazi, R.; Gouze, A.; Macq, B.
2009-01-01
Reproducing a natural and real scene as we see in the real world everyday is becoming more and more popular. Stereoscopic and multi-view techniques are used for this end. However due to the fact that more information are displayed requires supporting technologies such as digital compression to ensure the storage and transmission of the sequences. In this paper, a new scheme for stereo image coding is proposed. The original left and right images are jointly coded. The main idea is to optimally exploit the existing correlation between the two images. This is done by the design of an efficient transform that reduces the existing redundancy in the stereo image pair. This approach was inspired by Lifting Scheme (LS). The novelty in our work is that the prediction step is been replaced by an hybrid step that consists in disparity compensation followed by luminance correction and an optimized prediction step. The proposed scheme can be used for lossless and for lossy coding. Experimental results show improvement in terms of performance and complexity compared to recently proposed methods.
Negotiating designs of multi-purpose reservoir systems in international basins
NASA Astrophysics Data System (ADS)
Geressu, Robel; Harou, Julien
2016-04-01
Given increasing agricultural and energy demands, coordinated management of multi-reservoir systems could help increase production without further stressing available water resources. However, regional or international disputes about water-use rights pose a challenge to efficient expansion and management of many large reservoir systems. Even when projects are likely to benefit all stakeholders, agreeing on the design, operation, financing, and benefit sharing can be challenging. This is due to the difficulty of considering multiple stakeholder interests in the design of projects and understanding the benefit trade-offs that designs imply. Incommensurate performance metrics, incomplete knowledge on system requirements, lack of objectivity in managing conflict and difficulty to communicate complex issue exacerbate the problem. This work proposes a multi-step hybrid multi-objective optimization and multi-criteria ranking approach for supporting negotiation in water resource systems. The approach uses many-objective optimization to generate alternative efficient designs and reveal the trade-offs between conflicting objectives. This enables informed elicitation of criteria weights for further multi-criteria ranking of alternatives. An ideal design would be ranked as best by all stakeholders. Resource-sharing mechanisms such as power-trade and/or cost sharing may help competing stakeholders arrive at designs acceptable to all. Many-objective optimization helps suggests efficient designs (reservoir site, its storage size and operating rule) and coordination levels considering the perspectives of multiple stakeholders simultaneously. We apply the proposed approach to a proof-of-concept study of the expansion of the Blue Nile transboundary reservoir system.
An Efficient Offloading Scheme For MEC System Considering Delay and Energy Consumption
NASA Astrophysics Data System (ADS)
Sun, Yanhua; Hao, Zhe; Zhang, Yanhua
2018-01-01
With the increasing numbers of mobile devices, mobile edge computing (MEC) which provides cloud computing capabilities proximate to mobile devices in 5G networks has been envisioned as a promising paradigm to enhance users experience. In this paper, we investigate a joint consideration of delay and energy consumption offloading scheme (JCDE) for MEC system in 5G heterogeneous networks. An optimization is formulated to minimize the delay as well as energy consumption of the offloading system, which the delay and energy consumption of transmitting and calculating tasks are taken into account. We adopt an iterative greedy algorithm to solve the optimization problem. Furthermore, simulations were carried out to validate the utility and effectiveness of our proposed scheme. The effect of parameter variations on the system is analysed as well. Numerical results demonstrate delay and energy efficiency promotion of our proposed scheme compared with another paper’s scheme.
He, Jieyue; Li, Chaojun; Ye, Baoliu; Zhong, Wei
2012-06-25
Most computational algorithms mainly focus on detecting highly connected subgraphs in PPI networks as protein complexes but ignore their inherent organization. Furthermore, many of these algorithms are computationally expensive. However, recent analysis indicates that experimentally detected protein complexes generally contain Core/attachment structures. In this paper, a Greedy Search Method based on Core-Attachment structure (GSM-CA) is proposed. The GSM-CA method detects densely connected regions in large protein-protein interaction networks based on the edge weight and two criteria for determining core nodes and attachment nodes. The GSM-CA method improves the prediction accuracy compared to other similar module detection approaches, however it is computationally expensive. Many module detection approaches are based on the traditional hierarchical methods, which is also computationally inefficient because the hierarchical tree structure produced by these approaches cannot provide adequate information to identify whether a network belongs to a module structure or not. In order to speed up the computational process, the Greedy Search Method based on Fast Clustering (GSM-FC) is proposed in this work. The edge weight based GSM-FC method uses a greedy procedure to traverse all edges just once to separate the network into the suitable set of modules. The proposed methods are applied to the protein interaction network of S. cerevisiae. Experimental results indicate that many significant functional modules are detected, most of which match the known complexes. Results also demonstrate that the GSM-FC algorithm is faster and more accurate as compared to other competing algorithms. Based on the new edge weight definition, the proposed algorithm takes advantages of the greedy search procedure to separate the network into the suitable set of modules. Experimental analysis shows that the identified modules are statistically significant. The algorithm can reduce the computational time significantly while keeping high prediction accuracy.
A Multi-Objective Decision Making Approach for Solving the Image Segmentation Fusion Problem.
Khelifi, Lazhar; Mignotte, Max
2017-08-01
Image segmentation fusion is defined as the set of methods which aim at merging several image segmentations, in a manner that takes full advantage of the complementarity of each one. Previous relevant researches in this field have been impeded by the difficulty in identifying an appropriate single segmentation fusion criterion, providing the best possible, i.e., the more informative, result of fusion. In this paper, we propose a new model of image segmentation fusion based on multi-objective optimization which can mitigate this problem, to obtain a final improved result of segmentation. Our fusion framework incorporates the dominance concept in order to efficiently combine and optimize two complementary segmentation criteria, namely, the global consistency error and the F-measure (precision-recall) criterion. To this end, we present a hierarchical and efficient way to optimize the multi-objective consensus energy function related to this fusion model, which exploits a simple and deterministic iterative relaxation strategy combining the different image segments. This step is followed by a decision making task based on the so-called "technique for order performance by similarity to ideal solution". Results obtained on two publicly available databases with manual ground truth segmentations clearly show that our multi-objective energy-based model gives better results than the classical mono-objective one.
Sajjad, Muhammad; Mehmood, Irfan; Baik, Sung Wook
2015-01-01
Image super-resolution (SR) plays a vital role in medical imaging that allows a more efficient and effective diagnosis process. Usually, diagnosing is difficult and inaccurate from low-resolution (LR) and noisy images. Resolution enhancement through conventional interpolation methods strongly affects the precision of consequent processing steps, such as segmentation and registration. Therefore, we propose an efficient sparse coded image SR reconstruction technique using a trained dictionary. We apply a simple and efficient regularized version of orthogonal matching pursuit (ROMP) to seek the coefficients of sparse representation. ROMP has the transparency and greediness of OMP and the robustness of the L1-minization that enhance the dictionary learning process to capture feature descriptors such as oriented edges and contours from complex images like brain MRIs. The sparse coding part of the K-SVD dictionary training procedure is modified by substituting OMP with ROMP. The dictionary update stage allows simultaneously updating an arbitrary number of atoms and vectors of sparse coefficients. In SR reconstruction, ROMP is used to determine the vector of sparse coefficients for the underlying patch. The recovered representations are then applied to the trained dictionary, and finally, an optimization leads to high-resolution output of high-quality. Experimental results demonstrate that the super-resolution reconstruction quality of the proposed scheme is comparatively better than other state-of-the-art schemes.
Wei, Meng; Chen, Jiajun
2016-11-01
A multi-step soil washing test using a typical chelating agent (Na 2 EDTA), organic acid (oxalic acid), and inorganic weak acid (phosphoric acid) was conducted to remediate soil contaminated with heavy metals near an arsenic mining area. The aim of the test was to improve the heavy metal removal efficiency and investigate its influence on metal fractionation and the spectroscopy characteristics of contaminated soil. The results indicated that the orders of the multi-step washing were critical for the removal efficiencies of the metal fractions, bioavailability, and potential mobility due to the different dissolution levels of mineral fractions and the inter-transformation of metal fractions by XRD and FT-IR spectral analyses. The optimal soil washing options were identified as the Na 2 EDTA-phosphoric-oxalic acid (EPO) and phosphoric-oxalic acid-Na 2 EDTA (POE) sequences because of their high removal efficiencies (approximately 45 % for arsenic and 88 % for cadmium) and the minimal harmful effects that were determined by the mobility and bioavailability of the remaining heavy metals based on the metal stability (I R ) and modified redistribution index ([Formula: see text]).
Classroom Materials for Job-Related BSEP 2 Program
1983-09-01
gathered D. gathered, combined, camoufl age 10. The greedy man was happy to take the money. A. greedy C. was *B. was happy D. take 11. The banana ...tastes good with peanut butter on it. A. tastes C. tastes good B. on D. banana III. Instructions: You are given a choice of two verbs in the following...previously o.- before. (The M16 had ALREADY been fired.) 162 peel Grammar Activity Sheet 36A Good Usage of English Name 6. ALL RIGHT - "ALRIGHT" ALL RIGHT
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Supinski, B.; Caliga, D.
2017-09-28
The primary objective of this project was to develop memory optimization technology to efficiently deliver data to, and distribute data within, the SRC-6's Field Programmable Gate Array- ("FPGA") based Multi-Adaptive Processors (MAPs). The hardware/software approach was to explore efficient MAP configurations and generate the compiler technology to exploit those configurations. This memory accessing technology represents an important step towards making reconfigurable symmetric multi-processor (SMP) architectures that will be a costeffective solution for large-scale scientific computing.
Wei, Liang; Xu, Ning; Wang, Yiran; Zhou, Wei; Han, Guoqiang; Ma, Yanhe; Liu, Jun
2018-05-01
Due to the lack of efficient control elements and tools, the fine-tuning of gene expression in the multi-gene metabolic pathways is still a great challenge for engineering microbial cell factories, especially for the important industrial microorganism Corynebacterium glutamicum. In this study, the promoter library-based module combination (PLMC) technology was developed to efficiently optimize the expression of genes in C. glutamicum. A random promoter library was designed to contain the putative - 10 (NNTANANT) and - 35 (NNGNCN) consensus motifs, and refined through a three-step screening procedure to achieve numerous genetic control elements with different strength levels, including fluorescence-activated cell sorting (FACS) screening, agar plate screening, and 96-well plate screening. Multiple conventional strategies were employed for further precise characterizations of the promoter library, such as real-time quantitative PCR, sodium dodecyl sulfate polyacrylamide gel electrophoresis, FACS analysis, and the lacZ reporter system. These results suggested that the established promoter elements effectively regulated gene expression and showed varying strengths over a wide range. Subsequently, a multi-module combination technology was created based on the efficient promoter elements for combination and optimization of modules in the multi-gene pathways. Using this technology, the threonine biosynthesis pathway was reconstructed and optimized by predictable tuning expression of five modules in C. glutamicum. The threonine titer of the optimized strain was significantly improved to 12.8 g/L, an approximate 6.1-fold higher than that of the control strain. Overall, the PLMC technology presented in this study provides a rapid and effective method for combination and optimization of multi-gene pathways in C. glutamicum.
Privacy Protection on Multiple Sensitive Attributes
NASA Astrophysics Data System (ADS)
Li, Zhen; Ye, Xiaojun
In recent years, a privacy model called k-anonymity has gained popularity in the microdata releasing. As the microdata may contain multiple sensitive attributes about an individual, the protection of multiple sensitive attributes has become an important problem. Different from the existing models of single sensitive attribute, extra associations among multiple sensitive attributes should be invested. Two kinds of disclosure scenarios may happen because of logical associations. The Q&S Diversity is checked to prevent the foregoing disclosure risks, with an α Requirement definition used to ensure the diversity requirement. At last, a two-step greedy generalization algorithm is used to carry out the multiple sensitive attributes processing which deal with quasi-identifiers and sensitive attributes respectively. We reduce the overall distortion by the measure of Masking SA.
Region-Based Collision Avoidance Beaconless Geographic Routing Protocol in Wireless Sensor Networks.
Lee, JeongCheol; Park, HoSung; Kang, SeokYoon; Kim, Ki-Il
2015-06-05
Due to the lack of dependency on beacon messages for location exchange, the beaconless geographic routing protocol has attracted considerable attention from the research community. However, existing beaconless geographic routing protocols are likely to generate duplicated data packets when multiple winners in the greedy area are selected. Furthermore, these protocols are designed for a uniform sensor field, so they cannot be directly applied to practical irregular sensor fields with partial voids. To prevent the failure of finding a forwarding node and to remove unnecessary duplication, in this paper, we propose a region-based collision avoidance beaconless geographic routing protocol to increase forwarding opportunities for randomly-deployed sensor networks. By employing different contention priorities into the mutually-communicable nodes and the rest of the nodes in the greedy area, every neighbor node in the greedy area can be used for data forwarding without any packet duplication. Moreover, simulation results are given to demonstrate the increased packet delivery ratio and shorten end-to-end delay, rather than well-referred comparative protocols.
Region-Based Collision Avoidance Beaconless Geographic Routing Protocol in Wireless Sensor Networks
Lee, JeongCheol; Park, HoSung; Kang, SeokYoon; Kim, Ki-Il
2015-01-01
Due to the lack of dependency on beacon messages for location exchange, the beaconless geographic routing protocol has attracted considerable attention from the research community. However, existing beaconless geographic routing protocols are likely to generate duplicated data packets when multiple winners in the greedy area are selected. Furthermore, these protocols are designed for a uniform sensor field, so they cannot be directly applied to practical irregular sensor fields with partial voids. To prevent the failure of finding a forwarding node and to remove unnecessary duplication, in this paper, we propose a region-based collision avoidance beaconless geographic routing protocol to increase forwarding opportunities for randomly-deployed sensor networks. By employing different contention priorities into the mutually-communicable nodes and the rest of the nodes in the greedy area, every neighbor node in the greedy area can be used for data forwarding without any packet duplication. Moreover, simulation results are given to demonstrate the increased packet delivery ratio and shorten end-to-end delay, rather than well-referred comparative protocols. PMID:26057037
An analysis of iterated local search for job-shop scheduling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitley, L. Darrell; Howe, Adele E.; Watson, Jean-Paul
2003-08-01
Iterated local search, or ILS, is among the most straightforward meta-heuristics for local search. ILS employs both small-step and large-step move operators. Search proceeds via iterative modifications to a single solution, in distinct alternating phases. In the first phase, local neighborhood search (typically greedy descent) is used in conjunction with the small-step operator to transform solutions into local optima. In the second phase, the large-step operator is applied to generate perturbations to the local optima obtained in the first phase. Ideally, when local neighborhood search is applied to the resulting solution, search will terminate at a different local optimum, i.e.,more » the large-step perturbations should be sufficiently large to enable escape from the attractor basins of local optima. ILS has proven capable of delivering excellent performance on numerous N P-Hard optimization problems. [LMS03]. However, despite its implicity, very little is known about why ILS can be so effective, and under what conditions. The goal of this paper is to advance the state-of-the-art in the analysis of meta-heuristics, by providing answers to this research question. They focus on characterizing both the relationship between the structure of the underlying search space and ILS performance, and the dynamic behavior of ILS. The analysis proceeds in the context of the job-shop scheduling problem (JSP) [Tai94]. They begin by demonstrating that the attractor basins of local optima in the JSP are surprisingly weak, and can be escaped with high probaiblity by accepting a short random sequence of less-fit neighbors. this result is used to develop a new ILS algorithms for the JSP, I-JAR, whose performance is competitive with tabu search on difficult benchmark instances. They conclude by developing a very accurate behavioral model of I-JAR, which yields significant insights into the dynamics of search. The analysis is based on a set of 100 random 10 x 10 problem instances, in addition to some widely used benchmark instances. Both I-JAR and the tabu search algorithm they consider are based on the N1 move operator introduced by van Laarhoven et al. [vLAL92]. The N1 operator induces a connected search space, such that it is always possible to move from an arbitrary solution to an optimal solution; this property is integral to the development of a behavioral model of I-JAR. However, much of the analysis generalizes to other move operators, including that of Nowicki and Smutnick [NS96]. Finally the models are based on the distance between two solutions, which they take as the well-known disjunctive graph distance [MBK99].« less
Sheng, Xi
2012-07-01
The thesis aims to study the automation replenishment algorithm in hospital on medical supplies supplying chain. The mathematical model and algorithm of medical supplies automation replenishment are designed through referring to practical data form hospital on the basis of applying inventory theory, greedy algorithm and partition algorithm. The automation replenishment algorithm is proved to realize automatic calculation of the medical supplies distribution amount and optimize medical supplies distribution scheme. A conclusion could be arrived that the model and algorithm of inventory theory, if applied in medical supplies circulation field, could provide theoretical and technological support for realizing medical supplies automation replenishment of hospital on medical supplies supplying chain.
Seeding for pervasively overlapping communities
NASA Astrophysics Data System (ADS)
Lee, Conrad; Reid, Fergal; McDaid, Aaron; Hurley, Neil
2011-06-01
In some social and biological networks, the majority of nodes belong to multiple communities. It has recently been shown that a number of the algorithms specifically designed to detect overlapping communities do not perform well in such highly overlapping settings. Here, we consider one class of these algorithms, those which optimize a local fitness measure, typically by using a greedy heuristic to expand a seed into a community. We perform synthetic benchmarks which indicate that an appropriate seeding strategy becomes more important as the extent of community overlap increases. We find that distinct cliques provide the best seeds. We find further support for this seeding strategy with benchmarks on a Facebook network and the yeast interactome.
Task allocation among multiple intelligent robots
NASA Technical Reports Server (NTRS)
Gasser, L.; Bekey, G.
1987-01-01
Researchers describe the design of a decentralized mechanism for allocating assembly tasks in a multiple robot assembly workstation. Currently, the approach focuses on distributed allocation to explore its feasibility and its potential for adaptability to changing circumstances, rather than for optimizing throughput. Individual greedy robots make their own local allocation decisions using both dynamic allocation policies which propagate through a network of allocation goals, and local static and dynamic constraints describing which robots are elibible for which assembly tasks. Global coherence is achieved by proper weighting of allocation pressures propagating through the assembly plan. Deadlock avoidance and synchronization is achieved using periodic reassessments of local allocation decisions, ageing of allocation goals, and short-term allocation locks on goals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arumugam, Kamesh
Efficient parallel implementations of scientific applications on multi-core CPUs with accelerators such as GPUs and Xeon Phis is challenging. This requires - exploiting the data parallel architecture of the accelerator along with the vector pipelines of modern x86 CPU architectures, load balancing, and efficient memory transfer between different devices. It is relatively easy to meet these requirements for highly structured scientific applications. In contrast, a number of scientific and engineering applications are unstructured. Getting performance on accelerators for these applications is extremely challenging because many of these applications employ irregular algorithms which exhibit data-dependent control-ow and irregular memory accesses. Furthermore,more » these applications are often iterative with dependency between steps, and thus making it hard to parallelize across steps. As a result, parallelism in these applications is often limited to a single step. Numerical simulation of charged particles beam dynamics is one such application where the distribution of work and memory access pattern at each time step is irregular. Applications with these properties tend to present significant branch and memory divergence, load imbalance between different processor cores, and poor compute and memory utilization. Prior research on parallelizing such irregular applications have been focused around optimizing the irregular, data-dependent memory accesses and control-ow during a single step of the application independent of the other steps, with the assumption that these patterns are completely unpredictable. We observed that the structure of computation leading to control-ow divergence and irregular memory accesses in one step is similar to that in the next step. It is possible to predict this structure in the current step by observing the computation structure of previous steps. In this dissertation, we present novel machine learning based optimization techniques to address the parallel implementation challenges of such irregular applications on different HPC architectures. In particular, we use supervised learning to predict the computation structure and use it to address the control-ow and memory access irregularities in the parallel implementation of such applications on GPUs, Xeon Phis, and heterogeneous architectures composed of multi-core CPUs with GPUs or Xeon Phis. We use numerical simulation of charged particles beam dynamics simulation as a motivating example throughout the dissertation to present our new approach, though they should be equally applicable to a wide range of irregular applications. The machine learning approach presented here use predictive analytics and forecasting techniques to adaptively model and track the irregular memory access pattern at each time step of the simulation to anticipate the future memory access pattern. Access pattern forecasts can then be used to formulate optimization decisions during application execution which improves the performance of the application at a future time step based on the observations from earlier time steps. In heterogeneous architectures, forecasts can also be used to improve the memory performance and resource utilization of all the processing units to deliver a good aggregate performance. We used these optimization techniques and anticipation strategy to design a cache-aware, memory efficient parallel algorithm to address the irregularities in the parallel implementation of charged particles beam dynamics simulation on different HPC architectures. Experimental result using a diverse mix of HPC architectures shows that our approach in using anticipation strategy is effective in maximizing data reuse, ensuring workload balance, minimizing branch and memory divergence, and in improving resource utilization.« less
Feng, Yan; Mitchison, Timothy J; Bender, Andreas; Young, Daniel W; Tallarico, John A
2009-07-01
Multi-parameter phenotypic profiling of small molecules provides important insights into their mechanisms of action, as well as a systems level understanding of biological pathways and their responses to small molecule treatments. It therefore deserves more attention at an early step in the drug discovery pipeline. Here, we summarize the technologies that are currently in use for phenotypic profiling--including mRNA-, protein- and imaging-based multi-parameter profiling--in the drug discovery context. We think that an earlier integration of phenotypic profiling technologies, combined with effective experimental and in silico target identification approaches, can improve success rates of lead selection and optimization in the drug discovery process.
Multi-time Scale Coordination of Distributed Energy Resources in Isolated Power Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayhorn, Ebony; Xie, Le; Butler-Purry, Karen
2016-03-31
In isolated power systems, including microgrids, distributed assets, such as renewable energy resources (e.g. wind, solar) and energy storage, can be actively coordinated to reduce dependency on fossil fuel generation. The key challenge of such coordination arises from significant uncertainty and variability occurring at small time scales associated with increased penetration of renewables. Specifically, the problem is with ensuring economic and efficient utilization of DERs, while also meeting operational objectives such as adequate frequency performance. One possible solution is to reduce the time step at which tertiary controls are implemented and to ensure feedback and look-ahead capability are incorporated tomore » handle variability and uncertainty. However, reducing the time step of tertiary controls necessitates investigating time-scale coupling with primary controls so as not to exacerbate system stability issues. In this paper, an optimal coordination (OC) strategy, which considers multiple time-scales, is proposed for isolated microgrid systems with a mix of DERs. This coordination strategy is based on an online moving horizon optimization approach. The effectiveness of the strategy was evaluated in terms of economics, technical performance, and computation time by varying key parameters that significantly impact performance. The illustrative example with realistic scenarios on a simulated isolated microgrid test system suggests that the proposed approach is generalizable towards designing multi-time scale optimal coordination strategies for isolated power systems.« less
Simultaneous segmentation of the bone and cartilage surfaces of a knee joint in 3D
NASA Astrophysics Data System (ADS)
Yin, Y.; Zhang, X.; Anderson, D. D.; Brown, T. D.; Hofwegen, C. Van; Sonka, M.
2009-02-01
We present a novel framework for the simultaneous segmentation of multiple interacting surfaces belonging to multiple mutually interacting objects. The method is a non-trivial extension of our previously reported optimal multi-surface segmentation. Considering an example application of knee-cartilage segmentation, the framework consists of the following main steps: 1) Shape model construction: Building a mean shape for each bone of the joint (femur, tibia, patella) from interactively segmented volumetric datasets. Using the resulting mean-shape model - identification of cartilage, non-cartilage, and transition areas on the mean-shape bone model surfaces. 2) Presegmentation: Employment of iterative optimal surface detection method to achieve approximate segmentation of individual bone surfaces. 3) Cross-object surface mapping: Detection of inter-bone equidistant separating sheets to help identify corresponding vertex pairs for all interacting surfaces. 4) Multi-object, multi-surface graph construction and final segmentation: Construction of a single multi-bone, multi-surface graph so that two surfaces (bone and cartilage) with zero and non-zero intervening distances can be detected for each bone of the joint, according to whether or not cartilage can be locally absent or present on the bone. To define inter-object relationships, corresponding vertex pairs identified using the separating sheets were interlinked in the graph. The graph optimization algorithm acted on the entire multiobject, multi-surface graph to yield a globally optimal solution. The segmentation framework was tested on 16 MR-DESS knee-joint datasets from the Osteoarthritis Initiative database. The average signed surface positioning error for the 6 detected surfaces ranged from 0.00 to 0.12 mm. When independently initialized, the signed reproducibility error of bone and cartilage segmentation ranged from 0.00 to 0.26 mm. The results showed that this framework provides robust, accurate, and reproducible segmentation of the knee joint bone and cartilage surfaces of the femur, tibia, and patella. As a general segmentation tool, the developed framework can be applied to a broad range of multi-object segmentation problems.
NASA Astrophysics Data System (ADS)
Baraldi, P.; Bonfanti, G.; Zio, E.
2018-03-01
The identification of the current degradation state of an industrial component and the prediction of its future evolution is a fundamental step for the development of condition-based and predictive maintenance approaches. The objective of the present work is to propose a general method for extracting a health indicator to measure the amount of component degradation from a set of signals measured during operation. The proposed method is based on the combined use of feature extraction techniques, such as Empirical Mode Decomposition and Auto-Associative Kernel Regression, and a multi-objective Binary Differential Evolution (BDE) algorithm for selecting the subset of features optimal for the definition of the health indicator. The objectives of the optimization are desired characteristics of the health indicator, such as monotonicity, trendability and prognosability. A case study is considered, concerning the prediction of the remaining useful life of turbofan engines. The obtained results confirm that the method is capable of extracting health indicators suitable for accurate prognostics.
Greed and the frightening rumble of psychic hunger.
Waska, Robert
2004-09-01
Many patients are desperately struggling with feelings of envy and greed. For some, greed is experienced as a constant hunger, a feeling of being empty and alone. This type of patient can be aggressive or resentful in the way they feel and act. They are determined to take what they feel is rightly theirs. Other such patients are much more conflicted about their greedy phantasies and striving. This paper focuses on patients who are fearful and anxious about the greedy urges that shape their inner world. Case material is used for illustration.
NASA Astrophysics Data System (ADS)
Jang, Yujin; Hong, Helen; Chung, Jin Wook; Yoon, Young Ho
2012-02-01
We propose an effective technique for the extraction of liver boundary based on multi-planar anatomy and deformable surface model in abdominal contrast-enhanced CT images. Our method is composed of four main steps. First, for extracting an optimal volume circumscribing a liver, lower and side boundaries are defined by positional information of pelvis and rib. An upper boundary is defined by separating the lungs and heart from CT images. Second, for extracting an initial liver volume, optimal liver volume is smoothed by anisotropic diffusion filtering and is segmented using adaptively selected threshold value. Third, for removing neighbor organs from initial liver volume, morphological opening and connected component labeling are applied to multiple planes. Finally, for refining the liver boundaries, deformable surface model is applied to a posterior liver surface and missing left robe in previous step. Then, probability summation map is generated by calculating regional information of the segmented liver in coronal plane, which is used for restoring the inaccurate liver boundaries. Experimental results show that our segmentation method can accurately extract liver boundaries without leakage to neighbor organs in spite of various liver shape and ambiguous boundary.
Computer Based Porosity Design by Multi Phase Topology Optimization
NASA Astrophysics Data System (ADS)
Burblies, Andreas; Busse, Matthias
2008-02-01
A numerical simulation technique called Multi Phase Topology Optimization (MPTO) based on finite element method has been developed and refined by Fraunhofer IFAM during the last five years. MPTO is able to determine the optimum distribution of two or more different materials in components under thermal and mechanical loads. The objective of optimization is to minimize the component's elastic energy. Conventional topology optimization methods which simulate adaptive bone mineralization have got the disadvantage that there is a continuous change of mass by growth processes. MPTO keeps all initial material concentrations and uses methods adapted from molecular dynamics to find energy minimum. Applying MPTO to mechanically loaded components with a high number of different material densities, the optimization results show graded and sometimes anisotropic porosity distributions which are very similar to natural bone structures. Now it is possible to design the macro- and microstructure of a mechanical component in one step. Computer based porosity design structures can be manufactured by new Rapid Prototyping technologies. Fraunhofer IFAM has applied successfully 3D-Printing and Selective Laser Sintering methods in order to produce very stiff light weight components with graded porosities calculated by MPTO.
A frozen Gaussian approximation-based multi-level particle swarm optimization for seismic inversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jinglai, E-mail: jinglaili@sjtu.edu.cn; Lin, Guang, E-mail: lin491@purdue.edu; Computational Sciences and Mathematics Division, Pacific Northwest National Laboratory, Richland, WA 99352
2015-09-01
In this paper, we propose a frozen Gaussian approximation (FGA)-based multi-level particle swarm optimization (MLPSO) method for seismic inversion of high-frequency wave data. The method addresses two challenges in it: First, the optimization problem is highly non-convex, which makes hard for gradient-based methods to reach global minima. This is tackled by MLPSO which can escape from undesired local minima. Second, the character of high-frequency of seismic waves requires a large number of grid points in direct computational methods, and thus renders an extremely high computational demand on the simulation of each sample in MLPSO. We overcome this difficulty by threemore » steps: First, we use FGA to compute high-frequency wave propagation based on asymptotic analysis on phase plane; Then we design a constrained full waveform inversion problem to prevent the optimization search getting into regions of velocity where FGA is not accurate; Last, we solve the constrained optimization problem by MLPSO that employs FGA solvers with different fidelity. The performance of the proposed method is demonstrated by a two-dimensional full-waveform inversion example of the smoothed Marmousi model.« less
Cyber War Game in Temporal Networks
Cho, Jin-Hee; Gao, Jianxi
2016-01-01
In a cyber war game where a network is fully distributed and characterized by resource constraints and high dynamics, attackers or defenders often face a situation that may require optimal strategies to win the game with minimum effort. Given the system goal states of attackers and defenders, we study what strategies attackers or defenders can take to reach their respective system goal state (i.e., winning system state) with minimum resource consumption. However, due to the dynamics of a network caused by a node’s mobility, failure or its resource depletion over time or action(s), this optimization problem becomes NP-complete. We propose two heuristic strategies in a greedy manner based on a node’s two characteristics: resource level and influence based on k-hop reachability. We analyze complexity and optimality of each algorithm compared to optimal solutions for a small-scale static network. Further, we conduct a comprehensive experimental study for a large-scale temporal network to investigate best strategies, given a different environmental setting of network temporality and density. We demonstrate the performance of each strategy under various scenarios of attacker/defender strategies in terms of win probability, resource consumption, and system vulnerability. PMID:26859840
Nguyen, Thi-Tham; Van Le, Duc; Yoon, Seokhoon
2014-01-01
This paper proposes a practical low-complexity MAC (medium access control) scheme for quality of service (QoS)-aware and cluster-based underwater acoustic sensor networks (UASN), in which the provision of differentiated QoS is required. In such a network, underwater sensors (U-sensor) in a cluster are divided into several classes, each of which has a different QoS requirement. The major problem considered in this paper is the maximization of the number of nodes that a cluster can accommodate while still providing the required QoS for each class in terms of the PDR (packet delivery ratio). In order to address the problem, we first estimate the packet delivery probability (PDP) and use it to formulate an optimization problem to determine the optimal value of the maximum packet retransmissions for each QoS class. The custom greedy and interior-point algorithms are used to find the optimal solutions, which are verified by extensive simulations. The simulation results show that, by solving the proposed optimization problem, the supportable number of underwater sensor nodes can be maximized while satisfying the QoS requirements for each class. PMID:24608009
Nguyen, Thi-Tham; Le, Duc Van; Yoon, Seokhoon
2014-03-07
This paper proposes a practical low-complexity MAC (medium access control) scheme for quality of service (QoS)-aware and cluster-based underwater acoustic sensor networks (UASN), in which the provision of differentiated QoS is required. In such a network, underwater sensors (U-sensor) in a cluster are divided into several classes, each of which has a different QoS requirement. The major problem considered in this paper is the maximization of the number of nodes that a cluster can accommodate while still providing the required QoS for each class in terms of the PDR (packet delivery ratio). In order to address the problem, we first estimate the packet delivery probability (PDP) and use it to formulate an optimization problem to determine the optimal value of the maximum packet retransmissions for each QoS class. The custom greedy and interior-point algorithms are used to find the optimal solutions, which are verified by extensive simulations. The simulation results show that, by solving the proposed optimization problem, the supportable number of underwater sensor nodes can be maximized while satisfying the QoS requirements for each class.
An Effective Mechanism for Virtual Machine Placement using Aco in IAAS Cloud
NASA Astrophysics Data System (ADS)
Shenbaga Moorthy, Rajalakshmi; Fareentaj, U.; Divya, T. K.
2017-08-01
Cloud computing provides an effective way to dynamically provide numerous resources to meet customer demands. A major challenging problem for cloud providers is designing efficient mechanisms for optimal virtual machine Placement (OVMP). Such mechanisms enable the cloud providers to effectively utilize their available resources and obtain higher profits. In order to provide appropriate resources to the clients an optimal virtual machine placement algorithm is proposed. Virtual machine placement is NP-Hard problem. Such NP-Hard problem can be solved using heuristic algorithm. In this paper, Ant Colony Optimization based virtual machine placement is proposed. Our proposed system focuses on minimizing the cost spending in each plan for hosting virtual machines in a multiple cloud provider environment and the response time of each cloud provider is monitored periodically, in such a way to minimize delay in providing the resources to the users. The performance of the proposed algorithm is compared with greedy mechanism. The proposed algorithm is simulated in Eclipse IDE. The results clearly show that the proposed algorithm minimizes the cost, response time and also number of migrations.
Community-aware task allocation for social networked multiagent systems.
Wang, Wanyuan; Jiang, Yichuan
2014-09-01
In this paper, we propose a novel community-aware task allocation model for social networked multiagent systems (SN-MASs), where the agent' cooperation domain is constrained in community and each agent can negotiate only with its intracommunity member agents. Under such community-aware scenarios, we prove that it remains NP-hard to maximize system overall profit. To solve this problem effectively, we present a heuristic algorithm that is composed of three phases: 1) task selection: select the desirable task to be allocated preferentially; 2) allocation to community: allocate the selected task to communities based on a significant task-first heuristics; and 3) allocation to agent: negotiate resources for the selected task based on a nonoverlap agent-first and breadth-first resource negotiation mechanism. Through the theoretical analyses and experiments, the advantages of our presented heuristic algorithm and community-aware task allocation model are validated. 1) Our presented heuristic algorithm performs very closely to the benchmark exponential brute-force optimal algorithm and the network flow-based greedy algorithm in terms of system overall profit in small-scale applications. Moreover, in the large-scale applications, the presented heuristic algorithm achieves approximately the same overall system profit, but significantly reduces the computational load compared with the greedy algorithm. 2) Our presented community-aware task allocation model reduces the system communication cost compared with the previous global-aware task allocation model and improves the system overall profit greatly compared with the previous local neighbor-aware task allocation model.
Fricke, Jens; Pohlmann, Kristof; Jonescheit, Nils A; Ellert, Andree; Joksch, Burkhard; Luttmann, Reiner
2013-06-01
The identification of optimal expression conditions for state-of-the-art production of pharmaceutical proteins is a very time-consuming and expensive process. In this report a method for rapid and reproducible optimization of protein expression in an in-house designed small-scale BIOSTAT® multi-bioreactor plant is described. A newly developed BioPAT® MFCS/win Design of Experiments (DoE) module (Sartorius Stedim Systems, Germany) connects the process control system MFCS/win and the DoE software MODDE® (Umetrics AB, Sweden) and enables therefore the implementation of fully automated optimization procedures. As a proof of concept, a commercial Pichia pastoris strain KM71H has been transformed for the expression of potential malaria vaccines. This approach has allowed a doubling of intact protein secretion productivity due to the DoE optimization procedure compared to initial cultivation results. In a next step, robustness regarding the sensitivity to process parameter variability has been proven around the determined optimum. Thereby, a pharmaceutical production process that is significantly improved within seven 24-hour cultivation cycles was established. Specifically, regarding the regulatory demands pointed out in the process analytical technology (PAT) initiative of the United States Food and Drug Administration (FDA), the combination of a highly instrumented, fully automated multi-bioreactor platform with proper cultivation strategies and extended DoE software solutions opens up promising benefits and opportunities for pharmaceutical protein production. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Unsupervised quantification of abdominal fat from CT images using Greedy Snakes
NASA Astrophysics Data System (ADS)
Agarwal, Chirag; Dallal, Ahmed H.; Arbabshirani, Mohammad R.; Patel, Aalpen; Moore, Gregory
2017-02-01
Adipose tissue has been associated with adverse consequences of obesity. Total adipose tissue (TAT) is divided into subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT). Intra-abdominal fat (VAT), located inside the abdominal cavity, is a major factor for the classic obesity related pathologies. Since direct measurement of visceral and subcutaneous fat is not trivial, substitute metrics like waist circumference (WC) and body mass index (BMI) are used in clinical settings to quantify obesity. Abdominal fat can be assessed effectively using CT or MRI, but manual fat segmentation is rather subjective and time-consuming. Hence, an automatic and accurate quantification tool for abdominal fat is needed. The goal of this study is to extract TAT, VAT and SAT fat from abdominal CT in a fully automated unsupervised fashion using energy minimization techniques. We applied a four step framework consisting of 1) initial body contour estimation, 2) approximation of the body contour, 3) estimation of inner abdominal contour using Greedy Snakes algorithm, and 4) voting, to segment the subcutaneous and visceral fat. We validated our algorithm on 952 clinical abdominal CT images (from 476 patients with a very wide BMI range) collected from various radiology departments of Geisinger Health System. To our knowledge, this is the first study of its kind on such a large and diverse clinical dataset. Our algorithm obtained a 3.4% error for VAT segmentation compared to manual segmentation. These personalized and accurate measurements of fat can complement traditional population health driven obesity metrics such as BMI and WC.
A multi-objective optimization approach accurately resolves protein domain architectures
Bernardes, J.S.; Vieira, F.R.J.; Zaverucha, G.; Carbone, A.
2016-01-01
Motivation: Given a protein sequence and a number of potential domains matching it, what are the domain content and the most likely domain architecture for the sequence? This problem is of fundamental importance in protein annotation, constituting one of the main steps of all predictive annotation strategies. On the other hand, when potential domains are several and in conflict because of overlapping domain boundaries, finding a solution for the problem might become difficult. An accurate prediction of the domain architecture of a multi-domain protein provides important information for function prediction, comparative genomics and molecular evolution. Results: We developed DAMA (Domain Annotation by a Multi-objective Approach), a novel approach that identifies architectures through a multi-objective optimization algorithm combining scores of domain matches, previously observed multi-domain co-occurrence and domain overlapping. DAMA has been validated on a known benchmark dataset based on CATH structural domain assignments and on the set of Plasmodium falciparum proteins. When compared with existing tools on both datasets, it outperforms all of them. Availability and implementation: DAMA software is implemented in C++ and the source code can be found at http://www.lcqb.upmc.fr/DAMA. Contact: juliana.silva_bernardes@upmc.fr or alessandra.carbone@lip6.fr Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26458889
NASA Astrophysics Data System (ADS)
Grujicic, M.; Arakere, G.; Pandurangan, B.; Hariharan, A.; Yen, C.-F.; Cheeseman, B. A.
2011-02-01
To respond to the advent of more lethal threats, recently designed aluminum-armor-based military-vehicle systems have resorted to an increasing use of higher strength aluminum alloys (with superior ballistic resistance against armor piercing (AP) threats and with high vehicle-light weighing potential). Unfortunately, these alloys are not very amenable to conventional fusion-based welding technologies and in-order to obtain high-quality welds, solid-state joining technologies such as Friction stir welding (FSW) have to be employed. However, since FSW is a relatively new and fairly complex joining technology, its introduction into advanced military vehicle structures is not straight forward and entails a comprehensive multi-step approach. One such (three-step) approach is developed in the present work. Within the first step, experimental and computational techniques are utilized to determine the optimal tool design and the optimal FSW process parameters which result in maximal productivity of the joining process and the highest quality of the weld. Within the second step, techniques are developed for the identification and qualification of the optimal weld joint designs in different sections of a prototypical military vehicle structure. In the third step, problems associated with the fabrication of a sub-scale military vehicle test structure and the blast survivability of the structure are assessed. The results obtained and the lessons learned are used to judge the potential of the current approach in shortening the development time and in enhancing reliability and blast survivability of military vehicle structures.
A distributed geo-routing algorithm for wireless sensor networks.
Joshi, Gyanendra Prasad; Kim, Sung Won
2009-01-01
Geographic wireless sensor networks use position information for greedy routing. Greedy routing works well in dense networks, whereas in sparse networks it may fail and require a recovery algorithm. Recovery algorithms help the packet to get out of the communication void. However, these algorithms are generally costly for resource constrained position-based wireless sensor networks (WSNs). In this paper, we propose a void avoidance algorithm (VAA), a novel idea based on upgrading virtual distance. VAA allows wireless sensor nodes to remove all stuck nodes by transforming the routing graph and forwarding packets using only greedy routing. In VAA, the stuck node upgrades distance unless it finds a next hop node that is closer to the destination than it is. VAA guarantees packet delivery if there is a topologically valid path. Further, it is completely distributed, immediately responds to node failure or topology changes and does not require planarization of the network. NS-2 is used to evaluate the performance and correctness of VAA and we compare its performance to other protocols. Simulations show our proposed algorithm consumes less energy, has an efficient path and substantially less control overheads.
Fast algorithm of adaptive Fourier series
NASA Astrophysics Data System (ADS)
Gao, You; Ku, Min; Qian, Tao
2018-05-01
Adaptive Fourier decomposition (AFD, precisely 1-D AFD or Core-AFD) was originated for the goal of positive frequency representations of signals. It achieved the goal and at the same time offered fast decompositions of signals. There then arose several types of AFDs. AFD merged with the greedy algorithm idea, and in particular, motivated the so-called pre-orthogonal greedy algorithm (Pre-OGA) that was proven to be the most efficient greedy algorithm. The cost of the advantages of the AFD type decompositions is, however, the high computational complexity due to the involvement of maximal selections of the dictionary parameters. The present paper offers one formulation of the 1-D AFD algorithm by building the FFT algorithm into it. Accordingly, the algorithm complexity is reduced, from the original $\\mathcal{O}(M N^2)$ to $\\mathcal{O}(M N\\log_2 N)$, where $N$ denotes the number of the discretization points on the unit circle and $M$ denotes the number of points in $[0,1)$. This greatly enhances the applicability of AFD. Experiments are carried out to show the high efficiency of the proposed algorithm.
Deep greedy learning under thermal variability in full diurnal cycles
NASA Astrophysics Data System (ADS)
Rauss, Patrick; Rosario, Dalton
2017-08-01
We study the generalization and scalability behavior of a deep belief network (DBN) applied to a challenging long-wave infrared hyperspectral dataset, consisting of radiance from several manmade and natural materials within a fixed site located 500 m from an observation tower. The collections cover multiple full diurnal cycles and include different atmospheric conditions. Using complementary priors, a DBN uses a greedy algorithm that can learn deep, directed belief networks one layer at a time and has two layers form to provide undirected associative memory. The greedy algorithm initializes a slower learning procedure, which fine-tunes the weights, using a contrastive version of the wake-sleep algorithm. After fine-tuning, a network with three hidden layers forms a very good generative model of the joint distribution of spectral data and their labels, despite significant data variability between and within classes due to environmental and temperature variation occurring within and between full diurnal cycles. We argue, however, that more questions than answers are raised regarding the generalization capacity of these deep nets through experiments aimed at investigating their training and augmented learning behavior.
A protein interaction network analysis for yeast integral membrane protein.
Shi, Ming-Guang; Huang, De-Shuang; Li, Xue-Ling
2008-01-01
Although the yeast Saccharomyces cerevisiae is the best exemplified single-celled eukaryote, the vast number of protein-protein interactions of integral membrane proteins of Saccharomyces cerevisiae have not been characterized by experiments. Here, based on the kernel method of Greedy Kernel Principal Component analysis plus Linear Discriminant Analysis, we identify 300 protein-protein interactions involving 189 membrane proteins and get the outcome of a highly connected protein-protein interactions network. Furthermore, we study the global topological features of integral membrane proteins network of Saccharomyces cerevisiae. These results give the comprehensive description of protein-protein interactions of integral membrane proteins and reveal global topological and robustness of the interactome network at a system level. This work represents an important step towards a comprehensive understanding of yeast protein interactions.
Hammerstein system represention of financial volatility processes
NASA Astrophysics Data System (ADS)
Capobianco, E.
2002-05-01
We show new modeling aspects of stock return volatility processes, by first representing them through Hammerstein Systems, and by then approximating the observed and transformed dynamics with wavelet-based atomic dictionaries. We thus propose an hybrid statistical methodology for volatility approximation and non-parametric estimation, and aim to use the information embedded in a bank of volatility sources obtained by decomposing the observed signal with multiresolution techniques. Scale dependent information refers both to market activity inherent to different temporally aggregated trading horizons, and to a variable degree of sparsity in representing the signal. A decomposition of the expansion coefficients in least dependent coordinates is then implemented through Independent Component Analysis. Based on the described steps, the features of volatility can be more effectively detected through global and greedy algorithms.
Constrained Multi-Level Algorithm for Trajectory Optimization
NASA Astrophysics Data System (ADS)
Adimurthy, V.; Tandon, S. R.; Jessy, Antony; Kumar, C. Ravi
The emphasis on low cost access to space inspired many recent developments in the methodology of trajectory optimization. Ref.1 uses a spectral patching method for optimization, where global orthogonal polynomials are used to describe the dynamical constraints. A two-tier approach of optimization is used in Ref.2 for a missile mid-course trajectory optimization. A hybrid analytical/numerical approach is described in Ref.3, where an initial analytical vacuum solution is taken and gradually atmospheric effects are introduced. Ref.4 emphasizes the fact that the nonlinear constraints which occur in the initial and middle portions of the trajectory behave very nonlinearly with respect the variables making the optimization very difficult to solve in the direct and indirect shooting methods. The problem is further made complex when different phases of the trajectory have different objectives of optimization and also have different path constraints. Such problems can be effectively addressed by multi-level optimization. In the multi-level methods reported so far, optimization is first done in identified sub-level problems, where some coordination variables are kept fixed for global iteration. After all the sub optimizations are completed, higher-level optimization iteration with all the coordination and main variables is done. This is followed by further sub system optimizations with new coordination variables. This process is continued until convergence. In this paper we use a multi-level constrained optimization algorithm which avoids the repeated local sub system optimizations and which also removes the problem of non-linear sensitivity inherent in the single step approaches. Fall-zone constraints, structural load constraints and thermal constraints are considered. In this algorithm, there is only a single multi-level sequence of state and multiplier updates in a framework of an augmented Lagrangian. Han Tapia multiplier updates are used in view of their special role in diagonalised methods, being the only single update with quadratic convergence. For a single level, the diagonalised multiplier method (DMM) is described in Ref.5. The main advantage of the two-level analogue of the DMM approach is that it avoids the inner loop optimizations required in the other methods. The scheme also introduces a gradient change measure to reduce the computational time needed to calculate the gradients. It is demonstrated that the new multi-level scheme leads to a robust procedure to handle the sensitivity of the constraints, and the multiple objectives of different trajectory phases. Ref. 1. Fahroo, F and Ross, M., " A Spectral Patching Method for Direct Trajectory Optimization" The Journal of the Astronautical Sciences, Vol.48, 2000, pp.269-286 Ref. 2. Phililps, C.A. and Drake, J.C., "Trajectory Optimization for a Missile using a Multitier Approach" Journal of Spacecraft and Rockets, Vol.37, 2000, pp.663-669 Ref. 3. Gath, P.F., and Calise, A.J., " Optimization of Launch Vehicle Ascent Trajectories with Path Constraints and Coast Arcs", Journal of Guidance, Control, and Dynamics, Vol. 24, 2001, pp.296-304 Ref. 4. Betts, J.T., " Survey of Numerical Methods for Trajectory Optimization", Journal of Guidance, Control, and Dynamics, Vol.21, 1998, pp. 193-207 Ref. 5. Adimurthy, V., " Launch Vehicle Trajectory Optimization", Acta Astronautica, Vol.15, 1987, pp.845-850.
Spectral anomaly methods for aerial detection using KUT nuisance rejection
NASA Astrophysics Data System (ADS)
Detwiler, R. S.; Pfund, D. M.; Myjak, M. J.; Kulisek, J. A.; Seifert, C. E.
2015-06-01
This work discusses the application and optimization of a spectral anomaly method for the real-time detection of gamma radiation sources from an aerial helicopter platform. Aerial detection presents several key challenges over ground-based detection. For one, larger and more rapid background fluctuations are typical due to higher speeds, larger field of view, and geographically induced background changes. As well, the possible large altitude or stand-off distance variations cause significant steps in background count rate as well as spectral changes due to increased gamma-ray scatter with detection at higher altitudes. The work here details the adaptation and optimization of the PNNL-developed algorithm Nuisance-Rejecting Spectral Comparison Ratios for Anomaly Detection (NSCRAD), a spectral anomaly method previously developed for ground-based applications, for an aerial platform. The algorithm has been optimized for two multi-detector systems; a NaI(Tl)-detector-based system and a CsI detector array. The optimization here details the adaptation of the spectral windows for a particular set of target sources to aerial detection and the tailoring for the specific detectors. As well, the methodology and results for background rejection methods optimized for the aerial gamma-ray detection using Potassium, Uranium and Thorium (KUT) nuisance rejection are shown. Results indicate that use of a realistic KUT nuisance rejection may eliminate metric rises due to background magnitude and spectral steps encountered in aerial detection due to altitude changes and geographically induced steps such as at land-water interfaces.
Earth As An Unstructured Mesh and Its Recovery from Seismic Waveform Data
NASA Astrophysics Data System (ADS)
De Hoop, M. V.
2015-12-01
We consider multi-scale representations of Earth's interior from thepoint of view of their possible recovery from multi- andhigh-frequency seismic waveform data. These representations areintrinsically connected to (geologic, tectonic) structures, that is,geometric parametrizations of Earth's interior. Indeed, we address theconstruction and recovery of such parametrizations using localiterative methods with appropriately designed data misfits andguaranteed convergence. The geometric parametrizations containinterior boundaries (defining, for example, faults, salt bodies,tectonic blocks, slabs) which can, in principle, be obtained fromsuccessive segmentation. We make use of unstructured meshes. For the adaptation and recovery of an unstructured mesh we introducean energy functional which is derived from the Hausdorff distance. Viaan augmented Lagrangian method, we incorporate the mentioned datamisfit. The recovery is constrained by shape optimization of theinterior boundaries, and is reminiscent of Hausdorff warping. We useelastic deformation via finite elements as a regularization whilefollowing a two-step procedure. The first step is an update determinedby the energy functional; in the second step, we modify the outcome ofthe first step where necessary to ensure that the new mesh isregular. This modification entails an array of techniques includingtopology correction involving interior boundary contacting andbreakup, edge warping and edge removal. We implement this as afeed-back mechanism from volume to interior boundary meshesoptimization. We invoke and apply a criterion of mesh quality controlfor coarsening, and for dynamical local multi-scale refinement. Wepresent a novel (fluid-solid) numerical framework based on theDiscontinuous Galerkin method.
Design of ACM system based on non-greedy punctured LDPC codes
NASA Astrophysics Data System (ADS)
Lu, Zijun; Jiang, Zihong; Zhou, Lin; He, Yucheng
2017-08-01
In this paper, an adaptive coded modulation (ACM) scheme based on rate-compatible LDPC (RC-LDPC) codes was designed. The RC-LDPC codes were constructed by a non-greedy puncturing method which showed good performance in high code rate region. Moreover, the incremental redundancy scheme of LDPC-based ACM system over AWGN channel was proposed. By this scheme, code rates vary from 2/3 to 5/6 and the complication of the ACM system is lowered. Simulations show that more and more obvious coding gain can be obtained by the proposed ACM system with higher throughput.
Adaptive feature selection using v-shaped binary particle swarm optimization.
Teng, Xuyang; Dong, Hongbin; Zhou, Xiurong
2017-01-01
Feature selection is an important preprocessing method in machine learning and data mining. This process can be used not only to reduce the amount of data to be analyzed but also to build models with stronger interpretability based on fewer features. Traditional feature selection methods evaluate the dependency and redundancy of features separately, which leads to a lack of measurement of their combined effect. Moreover, a greedy search considers only the optimization of the current round and thus cannot be a global search. To evaluate the combined effect of different subsets in the entire feature space, an adaptive feature selection method based on V-shaped binary particle swarm optimization is proposed. In this method, the fitness function is constructed using the correlation information entropy. Feature subsets are regarded as individuals in a population, and the feature space is searched using V-shaped binary particle swarm optimization. The above procedure overcomes the hard constraint on the number of features, enables the combined evaluation of each subset as a whole, and improves the search ability of conventional binary particle swarm optimization. The proposed algorithm is an adaptive method with respect to the number of feature subsets. The experimental results show the advantages of optimizing the feature subsets using the V-shaped transfer function and confirm the effectiveness and efficiency of the feature subsets obtained under different classifiers.
Adaptive feature selection using v-shaped binary particle swarm optimization
Dong, Hongbin; Zhou, Xiurong
2017-01-01
Feature selection is an important preprocessing method in machine learning and data mining. This process can be used not only to reduce the amount of data to be analyzed but also to build models with stronger interpretability based on fewer features. Traditional feature selection methods evaluate the dependency and redundancy of features separately, which leads to a lack of measurement of their combined effect. Moreover, a greedy search considers only the optimization of the current round and thus cannot be a global search. To evaluate the combined effect of different subsets in the entire feature space, an adaptive feature selection method based on V-shaped binary particle swarm optimization is proposed. In this method, the fitness function is constructed using the correlation information entropy. Feature subsets are regarded as individuals in a population, and the feature space is searched using V-shaped binary particle swarm optimization. The above procedure overcomes the hard constraint on the number of features, enables the combined evaluation of each subset as a whole, and improves the search ability of conventional binary particle swarm optimization. The proposed algorithm is an adaptive method with respect to the number of feature subsets. The experimental results show the advantages of optimizing the feature subsets using the V-shaped transfer function and confirm the effectiveness and efficiency of the feature subsets obtained under different classifiers. PMID:28358850
Masking Strategies for Image Manifolds.
Dadkhahi, Hamid; Duarte, Marco F
2016-07-07
We consider the problem of selecting an optimal mask for an image manifold, i.e., choosing a subset of the pixels of the image that preserves the manifold's geometric structure present in the original data. Such masking implements a form of compressive sensing through emerging imaging sensor platforms for which the power expense grows with the number of pixels acquired. Our goal is for the manifold learned from masked images to resemble its full image counterpart as closely as possible. More precisely, we show that one can indeed accurately learn an image manifold without having to consider a large majority of the image pixels. In doing so, we consider two masking methods that preserve the local and global geometric structure of the manifold, respectively. In each case, the process of finding the optimal masking pattern can be cast as a binary integer program, which is computationally expensive but can be approximated by a fast greedy algorithm. Numerical experiments show that the relevant manifold structure is preserved through the datadependent masking process, even for modest mask sizes.
Feature selection with harmony search.
Diao, Ren; Shen, Qiang
2012-12-01
Many search strategies have been exploited for the task of feature selection (FS), in an effort to identify more compact and better quality subsets. Such work typically involves the use of greedy hill climbing (HC), or nature-inspired heuristics, in order to discover the optimal solution without going through exhaustive search. In this paper, a novel FS approach based on harmony search (HS) is presented. It is a general approach that can be used in conjunction with many subset evaluation techniques. The simplicity of HS is exploited to reduce the overall complexity of the search process. The proposed approach is able to escape from local solutions and identify multiple solutions owing to the stochastic nature of HS. Additional parameter control schemes are introduced to reduce the effort and impact of parameter configuration. These can be further combined with the iterative refinement strategy, tailored to enforce the discovery of quality subsets. The resulting approach is compared with those that rely on HC, genetic algorithms, and particle swarm optimization, accompanied by in-depth studies of the suggested improvements.
Wang, Gai-Ge; Feng, Qingjiang; Zhao, Xiang-Jun
2014-01-01
An effective hybrid cuckoo search algorithm (CS) with improved shuffled frog-leaping algorithm (ISFLA) is put forward for solving 0-1 knapsack problem. First of all, with the framework of SFLA, an improved frog-leap operator is designed with the effect of the global optimal information on the frog leaping and information exchange between frog individuals combined with genetic mutation with a small probability. Subsequently, in order to improve the convergence speed and enhance the exploitation ability, a novel CS model is proposed with considering the specific advantages of Lévy flights and frog-leap operator. Furthermore, the greedy transform method is used to repair the infeasible solution and optimize the feasible solution. Finally, numerical simulations are carried out on six different types of 0-1 knapsack instances, and the comparative results have shown the effectiveness of the proposed algorithm and its ability to achieve good quality solutions, which outperforms the binary cuckoo search, the binary differential evolution, and the genetic algorithm. PMID:25404940
Parallel workflow tools to facilitate human brain MRI post-processing
Cui, Zaixu; Zhao, Chenxi; Gong, Gaolang
2015-01-01
Multi-modal magnetic resonance imaging (MRI) techniques are widely applied in human brain studies. To obtain specific brain measures of interest from MRI datasets, a number of complex image post-processing steps are typically required. Parallel workflow tools have recently been developed, concatenating individual processing steps and enabling fully automated processing of raw MRI data to obtain the final results. These workflow tools are also designed to make optimal use of available computational resources and to support the parallel processing of different subjects or of independent processing steps for a single subject. Automated, parallel MRI post-processing tools can greatly facilitate relevant brain investigations and are being increasingly applied. In this review, we briefly summarize these parallel workflow tools and discuss relevant issues. PMID:26029043
Improving Efficiency in Multi-Strange Baryon Reconstruction in d-Au at STAR
NASA Astrophysics Data System (ADS)
Leight, William
2003-10-01
We report preliminary multi-strange baryon measurements for d-Au collisions recorded at RHIC by the STAR experiment. After using classical topological analysis, in which cuts for each discriminating variable are adjusted by hand, we investigate improvements in signal-to-noise optimization using Linear Discriminant Analysis (LDA). LDA is an algorithm for finding, in the n-dimensional space of the n discriminating variables, the axis on which the signal and noise distributions are most separated. LDA is the first step in moving towards more sophisticated techniques for signal-to-noise optimization, such as Artificial Neural Nets. Due to the relatively low background and sufficiently high yields of d-Au collisions, they form an ideal system to study these possibilities for improving reconstruction methods. Such improvements will be extremely important for forthcoming Au-Au runs in which the size of the combinatoric background is a major problem in reconstruction efforts.
NASA Astrophysics Data System (ADS)
Zaremotlagh, S.; Hezarkhani, A.
2017-04-01
Some evidences of rare earth elements (REE) concentrations are found in iron oxide-apatite (IOA) deposits which are located in Central Iranian microcontinent. There are many unsolved problems about the origin and metallogenesis of IOA deposits in this district. Although it is considered that felsic magmatism and mineralization were simultaneous in the district, interaction of multi-stage hydrothermal-magmatic processes within the Early Cambrian volcano-sedimentary sequence probably caused some epigenetic mineralizations. Secondary geological processes (e.g., multi-stage mineralization, alteration, and weathering) have affected on variations of major elements and possible redistribution of REE in IOA deposits. Hence, the geochemical behaviors and distribution patterns of REE are expected to be complicated in different zones of these deposits. The aim of this paper is recognizing LREE distribution patterns based on whole-rock chemical compositions and automatic discovery of their geochemical rules. For this purpose, the pattern recognition techniques including decision tree and neural network were applied on a high-dimensional geochemical dataset from Choghart IOA deposit. Because some data features were irrelevant or redundant in recognizing the distribution patterns of each LREE, a greedy attribute subset selection technique was employed to select the best subset of predictors used in classification tasks. The decision trees (CART algorithm) were pruned optimally to more accurately categorize independent test data than unpruned ones. The most effective classification rules were extracted from the pruned tree to describe the meaningful relationships between the predictors and different concentrations of LREE. A feed-forward artificial neural network was also applied to reliably predict the influence of various rock compositions on the spatial distribution patterns of LREE with a better performance than the decision tree induction. The findings of this study could be effectively used to visualize the LREE distribution patterns as geochemical maps.
Hosseini, Zahra; Liu, Junmin; Solovey, Igor; Menon, Ravi S; Drangova, Maria
2017-04-01
To implement and optimize a new approach for susceptibility-weighted image (SWI) generation from multi-echo multi-channel image data and compare its performance against optimized traditional SWI pipelines. Five healthy volunteers were imaged at 7 Tesla. The inter-echo-variance (IEV) channel combination, which uses the variance of the local frequency shift at multiple echo times as a weighting factor during channel combination, was used to calculate multi-echo local phase shift maps. Linear phase masks were combined with the magnitude to generate IEV-SWI. The performance of the IEV-SWI pipeline was compared with that of two accepted SWI pipelines-channel combination followed by (i) Homodyne filtering (HPH-SWI) and (ii) unwrapping and high-pass filtering (SVD-SWI). The filtering steps of each pipeline were optimized. Contrast-to-noise ratio was used as the comparison metric. Qualitative assessment of artifact and vessel conspicuity was performed and processing time of pipelines was evaluated. The optimized IEV-SWI pipeline (σ = 7 mm) resulted in continuous vessel visibility throughout the brain. IEV-SWI had significantly higher contrast compared with HPH-SWI and SVD-SWI (P < 0.001, Friedman nonparametric test). Residual background fields and phase wraps in HPH-SWI and SVD-SWI corrupted the vessel signal and/or generated vessel-mimicking artifact. Optimized implementation of the IEV-SWI pipeline processed a six-echo 16-channel dataset in under 10 min. IEV-SWI benefits from channel-by-channel processing of phase data and results in high contrast images with an optimal balance between contrast and background noise removal, thereby presenting evidence of importance of the order in which postprocessing techniques are applied for multi-channel SWI generation. 2 J. Magn. Reson. Imaging 2017;45:1113-1124. © 2016 International Society for Magnetic Resonance in Medicine.
Minciardi, Riccardo; Paolucci, Massimo; Robba, Michela; Sacile, Roberto
2008-11-01
An approach to sustainable municipal solid waste (MSW) management is presented, with the aim of supporting the decision on the optimal flows of solid waste sent to landfill, recycling and different types of treatment plants, whose sizes are also decision variables. This problem is modeled with a non-linear, multi-objective formulation. Specifically, four objectives to be minimized have been taken into account, which are related to economic costs, unrecycled waste, sanitary landfill disposal and environmental impact (incinerator emissions). An interactive reference point procedure has been developed to support decision making; these methods are considered appropriate for multi-objective decision problems in environmental applications. In addition, interactive methods are generally preferred by decision makers as they can be directly involved in the various steps of the decision process. Some results deriving from the application of the proposed procedure are presented. The application of the procedure is exemplified by considering the interaction with two different decision makers who are assumed to be in charge of planning the MSW system in the municipality of Genova (Italy).
NASA Astrophysics Data System (ADS)
Volk, J. M.; Turner, M. A.; Huntington, J. L.; Gardner, M.; Tyler, S.; Sheneman, L.
2016-12-01
Many distributed models that simulate watershed hydrologic processes require a collection of multi-dimensional parameters as input, some of which need to be calibrated before the model can be applied. The Precipitation Runoff Modeling System (PRMS) is a physically-based and spatially distributed hydrologic model that contains a considerable number of parameters that often need to be calibrated. Modelers can also benefit from uncertainty analysis of these parameters. To meet these needs, we developed a modular framework in Python to conduct PRMS parameter optimization, uncertainty analysis, interactive visual inspection of parameters and outputs, and other common modeling tasks. Here we present results for multi-step calibration of sensitive parameters controlling solar radiation, potential evapo-transpiration, and streamflow in a PRMS model that we applied to the snow-dominated Dry Creek watershed in Idaho. We also demonstrate how our modular approach enables the user to use a variety of parameter optimization and uncertainty methods or easily define their own, such as Monte Carlo random sampling, uniform sampling, or even optimization methods such as the downhill simplex method or its commonly used, more robust counterpart, shuffled complex evolution.
Tang, Michael T.; Ulissi, Zachary W.; Chan, Karen
2018-05-30
Here, an understanding of the relative stability of surface facets is crucial to develop predictive models of catalyst activity and to fabricate catalysts with a controlled morphology. In this work, we present a systematic density functional theory study of the effect of lattice strain and CO environment on the surface formation energies of Cu, Pt, and Ni. First, we show that both compressive and tensile lattice strains favor the formation of stepped versus low-index terraces such as (111) and (100). Then, we investigate the effect of the CO environment using configurations of CO at various coverages, determined using a greedy,more » systematic approach, inspired by forward stepwise feature selection. We find that the CO environment favors stepped facets on Ni, Cu, and Pt. These trends are illustrated with the corresponding equilibrium Wulff shapes at various strains and CO pressures. In general, the surface energies of the studied transition metals are highly sensitive to strain and CO coverage, which should be considered when rationalizing trends in the catalytic activity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Michael T.; Ulissi, Zachary W.; Chan, Karen
Here, an understanding of the relative stability of surface facets is crucial to develop predictive models of catalyst activity and to fabricate catalysts with a controlled morphology. In this work, we present a systematic density functional theory study of the effect of lattice strain and CO environment on the surface formation energies of Cu, Pt, and Ni. First, we show that both compressive and tensile lattice strains favor the formation of stepped versus low-index terraces such as (111) and (100). Then, we investigate the effect of the CO environment using configurations of CO at various coverages, determined using a greedy,more » systematic approach, inspired by forward stepwise feature selection. We find that the CO environment favors stepped facets on Ni, Cu, and Pt. These trends are illustrated with the corresponding equilibrium Wulff shapes at various strains and CO pressures. In general, the surface energies of the studied transition metals are highly sensitive to strain and CO coverage, which should be considered when rationalizing trends in the catalytic activity.« less
Synthesis of nano-sized lithium cobalt oxide via a sol-gel method
NASA Astrophysics Data System (ADS)
Li, Guangfen; Zhang, Jing
2012-07-01
In this study, nano-structured LiCoO2 thin film were synthesized by coupling a sol-gel process with a spin-coating method using polyacrylic acid (PAA) as chelating agent. The optimized conditions for obtaining a better gel formulation and subsequent homogenous dense film were investigated by varying the calcination temperature, the molar mass of PAA, and the precursor's molar ratios of PAA, lithium, and cobalt ions. The gel films on the silicon substrate surfaces were deposited by multi-step spin-coating process for either increasing the density of the gel film or adjusting the quantity of PAA in the film. The gel film was calcined by an optimized two-step heating procedure in order to obtain regular nano-structured LiCoO2 materials. Both atomic force microscopy (AFM) and scanning electron microscopy (SEM) were utilized to analyze the crystalline and the morphology of the films, respectively.
Asynchronous Incremental Stochastic Dual Descent Algorithm for Network Resource Allocation
NASA Astrophysics Data System (ADS)
Bedi, Amrit Singh; Rajawat, Ketan
2018-05-01
Stochastic network optimization problems entail finding resource allocation policies that are optimum on an average but must be designed in an online fashion. Such problems are ubiquitous in communication networks, where resources such as energy and bandwidth are divided among nodes to satisfy certain long-term objectives. This paper proposes an asynchronous incremental dual decent resource allocation algorithm that utilizes delayed stochastic {gradients} for carrying out its updates. The proposed algorithm is well-suited to heterogeneous networks as it allows the computationally-challenged or energy-starved nodes to, at times, postpone the updates. The asymptotic analysis of the proposed algorithm is carried out, establishing dual convergence under both, constant and diminishing step sizes. It is also shown that with constant step size, the proposed resource allocation policy is asymptotically near-optimal. An application involving multi-cell coordinated beamforming is detailed, demonstrating the usefulness of the proposed algorithm.
Nonlinear robust controller design for multi-robot systems with unknown payloads
NASA Technical Reports Server (NTRS)
Song, Y. D.; Anderson, J. N.; Homaifar, A.; Lai, H. Y.
1992-01-01
This work is concerned with the control problem of a multi-robot system handling a payload with unknown mass properties. Force constraints at the grasp points are considered. Robust control schemes are proposed that cope with the model uncertainty and achieve asymptotic path tracking. To deal with the force constraints, a strategy for optimally sharing the task is suggested. This strategy basically consists of two steps. The first detects the robots that need help and the second arranges that help. It is shown that the overall system is not only robust to uncertain payload parameters, but also satisfies the force constraints.
NASA Astrophysics Data System (ADS)
Kenway, Gaetan K. W.
This thesis presents new tools and techniques developed to address the challenging problem of high-fidelity aerostructural optimization with respect to large numbers of design variables. A new mesh-movement scheme is developed that is both computationally efficient and sufficiently robust to accommodate large geometric design changes and aerostructural deformations. A fully coupled Newton-Krylov method is presented that accelerates the convergence of aerostructural systems and provides a 20% performance improvement over the traditional nonlinear block Gauss-Seidel approach and can handle more exible structures. A coupled adjoint method is used that efficiently computes derivatives for a gradient-based optimization algorithm. The implementation uses only machine accurate derivative techniques and is verified to yield fully consistent derivatives by comparing against the complex step method. The fully-coupled large-scale coupled adjoint solution method is shown to have 30% better performance than the segregated approach. The parallel scalability of the coupled adjoint technique is demonstrated on an Euler Computational Fluid Dynamics (CFD) model with more than 80 million state variables coupled to a detailed structural finite-element model of the wing with more than 1 million degrees of freedom. Multi-point high-fidelity aerostructural optimizations of a long-range wide-body, transonic transport aircraft configuration are performed using the developed techniques. The aerostructural analysis employs Euler CFD with a 2 million cell mesh and a structural finite element model with 300 000 DOF. Two design optimization problems are solved: one where takeoff gross weight is minimized, and another where fuel burn is minimized. Each optimization uses a multi-point formulation with 5 cruise conditions and 2 maneuver conditions. The optimization problems have 476 design variables are optimal results are obtained within 36 hours of wall time using 435 processors. The TOGW minimization results in a 4.2% reduction in TOGW with a 6.6% fuel burn reduction, while the fuel burn optimization resulted in a 11.2% fuel burn reduction with no change to the takeoff gross weight.
48 CFR 15.202 - Advisory multi-step process.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Advisory multi-step... Information 15.202 Advisory multi-step process. (a) The agency may publish a presolicitation notice (see 5.204... participate in the acquisition. This process should not be used for multi-step acquisitions where it would...
NASA Astrophysics Data System (ADS)
Greenlee, Jordan D.; Feigelson, Boris N.; Anderson, Travis J.; Tadjer, Marko J.; Hite, Jennifer K.; Mastro, Michael A.; Eddy, Charles R.; Hobart, Karl D.; Kub, Francis J.
2014-08-01
The first step of a multi-cycle rapid thermal annealing process was systematically studied. The surface, structure, and optical properties of Mg implanted GaN thin films annealed at temperatures ranging from 900 to 1200 °C were investigated by Raman spectroscopy, photoluminescence, UV-visible spectroscopy, atomic force microscopy, and Nomarski microscopy. The GaN thin films are capped with two layers of in-situ metal organic chemical vapor deposition -grown AlN and annealed in 24 bar of N2 overpressure to avoid GaN decomposition. The crystal quality of the GaN improves with increasing annealing temperature as confirmed by UV-visible spectroscopy and the full widths at half maximums of the E2 and A1 (LO) Raman modes. The crystal quality of films annealed above 1100 °C exceeds the quality of the as-grown films. At 1200 °C, Mg is optically activated, which is determined by photoluminescence measurements. However, at 1200 °C, the GaN begins to decompose as evidenced by pit formation on the surface of the samples. Therefore, it was determined that the optimal temperature for the first step in a multi-cycle rapid thermal anneal process should be conducted at 1150 °C due to crystal quality and surface morphology considerations.
NASA Astrophysics Data System (ADS)
Zhang, Jingwen; Wang, Xu; Liu, Pan; Lei, Xiaohui; Li, Zejun; Gong, Wei; Duan, Qingyun; Wang, Hao
2017-01-01
The optimization of large-scale reservoir system is time-consuming due to its intrinsic characteristics of non-commensurable objectives and high dimensionality. One way to solve the problem is to employ an efficient multi-objective optimization algorithm in the derivation of large-scale reservoir operating rules. In this study, the Weighted Multi-Objective Adaptive Surrogate Model Optimization (WMO-ASMO) algorithm is used. It consists of three steps: (1) simplifying the large-scale reservoir operating rules by the aggregation-decomposition model, (2) identifying the most sensitive parameters through multivariate adaptive regression splines (MARS) for dimensional reduction, and (3) reducing computational cost and speeding the searching process by WMO-ASMO, embedded with weighted non-dominated sorting genetic algorithm II (WNSGAII). The intercomparison of non-dominated sorting genetic algorithm (NSGAII), WNSGAII and WMO-ASMO are conducted in the large-scale reservoir system of Xijiang river basin in China. Results indicate that: (1) WNSGAII surpasses NSGAII in the median of annual power generation, increased by 1.03% (from 523.29 to 528.67 billion kW h), and the median of ecological index, optimized by 3.87% (from 1.879 to 1.809) with 500 simulations, because of the weighted crowding distance and (2) WMO-ASMO outperforms NSGAII and WNSGAII in terms of better solutions (annual power generation (530.032 billion kW h) and ecological index (1.675)) with 1000 simulations and computational time reduced by 25% (from 10 h to 8 h) with 500 simulations. Therefore, the proposed method is proved to be more efficient and could provide better Pareto frontier.
NASA Astrophysics Data System (ADS)
Ghafouri, H. R.; Mosharaf-Dehkordi, M.; Afzalan, B.
2017-07-01
A simulation-optimization model is proposed for identifying the characteristics of local immiscible NAPL contaminant sources inside aquifers. This model employs the UTCHEM 9.0 software as its simulator for solving the governing equations associated with the multi-phase flow in porous media. As the optimization model, a novel two-level saturation based Imperialist Competitive Algorithm (ICA) is proposed to estimate the parameters of contaminant sources. The first level consists of three parallel independent ICAs and plays as a pre-conditioner for the second level which is a single modified ICA. The ICA in the second level is modified by dividing each country into a number of provinces (smaller parts). Similar to countries in the classical ICA, these provinces are optimized by the assimilation, competition, and revolution steps in the ICA. To increase the diversity of populations, a new approach named knock the base method is proposed. The performance and accuracy of the simulation-optimization model is assessed by solving a set of two and three-dimensional problems considering the effects of different parameters such as the grid size, rock heterogeneity and designated monitoring networks. The obtained numerical results indicate that using this simulation-optimization model provides accurate results at a less number of iterations when compared with the model employing the classical one-level ICA. A model is proposed to identify characteristics of immiscible NAPL contaminant sources. The contaminant is immiscible in water and multi-phase flow is simulated. The model is a multi-level saturation-based optimization algorithm based on ICA. Each answer string in second level is divided into a set of provinces. Each ICA is modified by incorporating a new knock the base model.
An optimized immunohistochemistry protocol for detecting the guidance cue Netrin-1 in neural tissue.
Salameh, Samer; Nouel, Dominique; Flores, Cecilia; Hoops, Daniel
2018-01-01
Netrin-1, an axon guidance protein, is difficult to detect using immunohistochemistry. We performed a multi-step, blinded, and controlled protocol optimization procedure to establish an efficient and effective fluorescent immunohistochemistry protocol for characterizing Netrin-1 expression. Coronal mouse brain sections were used to test numerous antigen retrieval methods and combinations thereof in order to optimize the stain quality of a commercially available Netrin-1 antibody. Stain quality was evaluated by experienced neuroanatomists for two criteria: signal intensity and signal-to-noise ratio. After five rounds of testing protocol variants, we established a modified immunohistochemistry protocol that produced a Netrin-1 signal with good signal intensity and a high signal-to-noise ratio. The key protocol modifications are as follows: •Use phosphate buffer (PB) as the blocking solution solvent.•Use 1% sodium dodecyl sulfate (SDS) treatment for antigen retrieval. The original protocol was optimized for use with the Netrin-1 antibody produced by Novus Biologicals. However, we subsequently further modified the protocol to work with the antibody produced by Abcam. The Abcam protocol uses PBS as the blocking solution solvent and adds a citrate buffer antigen retrieval step.
Aquino, P L M; Fonseca, F S; Mozzer, O D; Giordano, R C; Sousa, R
2016-07-01
Clostridium novyi causes necrotic hepatitis in sheep and cattle, as well as gas gangrene. The microorganism is strictly anaerobic, fastidious, and difficult to cultivate in industrial scale. C. novyi type B produces alpha and beta toxins, with the alpha toxin being linked to the presence of specific bacteriophages. The main strategy to combat diseases caused by C. novyi is vaccination, employing vaccines produced with toxoids or with toxoids and bacterins. In order to identify culture medium components and concentrations that maximized cell density and alpha toxin production, a neuro-fuzzy algorithm was applied to predict the yields of the fermentation process for production of C. novyi type B, within a global search procedure using the simulated annealing technique. Maximizing cell density and toxin production is a multi-objective optimization problem and could be treated by a Pareto approach. Nevertheless, the approach chosen here was a step-by-step one. The optimum values obtained with this approach were validated in laboratory scale, and the results were used to reload the data matrix for re-parameterization of the neuro-fuzzy model, which was implemented for a final optimization step with regards to the alpha toxin productivity. With this methodology, a threefold increase of alpha toxin could be achieved.
Simulated annealing algorithm for solving chambering student-case assignment problem
NASA Astrophysics Data System (ADS)
Ghazali, Saadiah; Abdul-Rahman, Syariza
2015-12-01
The problem related to project assignment problem is one of popular practical problem that appear nowadays. The challenge of solving the problem raise whenever the complexity related to preferences, the existence of real-world constraints and problem size increased. This study focuses on solving a chambering student-case assignment problem by using a simulated annealing algorithm where this problem is classified under project assignment problem. The project assignment problem is considered as hard combinatorial optimization problem and solving it using a metaheuristic approach is an advantage because it could return a good solution in a reasonable time. The problem of assigning chambering students to cases has never been addressed in the literature before. For the proposed problem, it is essential for law graduates to peruse in chambers before they are qualified to become legal counselor. Thus, assigning the chambering students to cases is a critically needed especially when involving many preferences. Hence, this study presents a preliminary study of the proposed project assignment problem. The objective of the study is to minimize the total completion time for all students in solving the given cases. This study employed a minimum cost greedy heuristic in order to construct a feasible initial solution. The search then is preceded with a simulated annealing algorithm for further improvement of solution quality. The analysis of the obtained result has shown that the proposed simulated annealing algorithm has greatly improved the solution constructed by the minimum cost greedy heuristic. Hence, this research has demonstrated the advantages of solving project assignment problem by using metaheuristic techniques.
NASA Astrophysics Data System (ADS)
Serrat-Capdevila, A.; Valdes, J. B.
2005-12-01
An optimization approach for the operation of international multi-reservoir systems is presented. The approach uses Stochastic Dynamic Programming (SDP) algorithms, both steady-state and real-time, to develop two models. In the first model, the reservoirs and flows of the system are aggregated to yield an equivalent reservoir, and the obtained operating policies are disaggregated using a non-linear optimization procedure for each reservoir and for each nation water balance. In the second model a multi-reservoir approach is applied, disaggregating the releases for each country water share in each reservoir. The non-linear disaggregation algorithm uses SDP-derived operating policies as boundary conditions for a local time-step optimization. Finally, the performance of the different approaches and methods is compared. These models are applied to the Amistad-Falcon International Reservoir System as part of a binational dynamic modeling effort to develop a decision support system tool for a better management of the water resources in the Lower Rio Grande Basin, currently enduring a severe drought.
Newmark local time stepping on high-performance computing architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rietmann, Max, E-mail: max.rietmann@erdw.ethz.ch; Institute of Geophysics, ETH Zurich; Grote, Marcus, E-mail: marcus.grote@unibas.ch
In multi-scale complex media, finite element meshes often require areas of local refinement, creating small elements that can dramatically reduce the global time-step for wave-propagation problems due to the CFL condition. Local time stepping (LTS) algorithms allow an explicit time-stepping scheme to adapt the time-step to the element size, allowing near-optimal time-steps everywhere in the mesh. We develop an efficient multilevel LTS-Newmark scheme and implement it in a widely used continuous finite element seismic wave-propagation package. In particular, we extend the standard LTS formulation with adaptations to continuous finite element methods that can be implemented very efficiently with very strongmore » element-size contrasts (more than 100x). Capable of running on large CPU and GPU clusters, we present both synthetic validation examples and large scale, realistic application examples to demonstrate the performance and applicability of the method and implementation on thousands of CPU cores and hundreds of GPUs.« less
Jeong, Woo Chul; Chauhan, Munish; Sajib, Saurav Z K; Kim, Hyung Joong; Serša, Igor; Kwon, Oh In; Woo, Eung Je
2014-09-07
Magnetic Resonance Electrical Impedance Tomography (MREIT) is an MRI method that enables mapping of internal conductivity and/or current density via measurements of magnetic flux density signals. The MREIT measures only the z-component of the induced magnetic flux density B = (Bx, By, Bz) by external current injection. The measured noise of Bz complicates recovery of magnetic flux density maps, resulting in lower quality conductivity and current-density maps. We present a new method for more accurate measurement of the spatial gradient of the magnetic flux density gradient (∇ Bz). The method relies on the use of multiple radio-frequency receiver coils and an interleaved multi-echo pulse sequence that acquires multiple sampling points within each repetition time. The noise level of the measured magnetic flux density Bz depends on the decay rate of the signal magnitude, the injection current duration, and the coil sensitivity map. The proposed method uses three key steps. The first step is to determine a representative magnetic flux density gradient from multiple receiver coils by using a weighted combination and by denoising the measured noisy data. The second step is to optimize the magnetic flux density gradient by using multi-echo magnetic flux densities at each pixel in order to reduce the noise level of ∇ Bz and the third step is to remove a random noise component from the recovered ∇ Bz by solving an elliptic partial differential equation in a region of interest. Numerical simulation experiments using a cylindrical phantom model with included regions of low MRI signal to noise ('defects') verified the proposed method. Experimental results using a real phantom experiment, that included three different kinds of anomalies, demonstrated that the proposed method reduced the noise level of the measured magnetic flux density. The quality of the recovered conductivity maps using denoised ∇ Bz data showed that the proposed method reduced the conductivity noise level up to 3-4 times at each anomaly region in comparison to the conventional method.
Stability of discrete time recurrent neural networks and nonlinear optimization problems.
Singh, Jayant; Barabanov, Nikita
2016-02-01
We consider the method of Reduction of Dissipativity Domain to prove global Lyapunov stability of Discrete Time Recurrent Neural Networks. The standard and advanced criteria for Absolute Stability of these essentially nonlinear systems produce rather weak results. The method mentioned above is proved to be more powerful. It involves a multi-step procedure with maximization of special nonconvex functions over polytopes on every step. We derive conditions which guarantee an existence of at most one point of local maximum for such functions over every hyperplane. This nontrivial result is valid for wide range of neuron transfer functions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Synthesis of robust water-soluble ZnS:Mn/SiO2 core/shell nanoparticles
NASA Astrophysics Data System (ADS)
Sun, Jing; Zhuang, Jiaqi; Guan, Shaowei; Yang, Wensheng
2008-04-01
Water-soluble Mn doped ZnS (ZnS:Mn) nanocrystals synthesized by using 3-mercaptopropionic acid (MPA) as stabilizer were homogeneously coated with a dense silica shell through a multi-step procedure. First, 3-mercaptopropyl triethoxy silane (MPS) was used to replace MPA on the particle surface to form a vitreophilic layer for further silica deposition under optimal experimental conditions. Then a two-step silica deposition was performed to form the final water-soluble ZnS:Mn/SiO2 core/shell nanoparticles. The as-prepared core/shell nanoparticles show little change in fluorescence intensity in a wide range of pH value.
A Simple Method to Simultaneously Detect and Identify Spikes from Raw Extracellular Recordings.
Petrantonakis, Panagiotis C; Poirazi, Panayiota
2015-01-01
The ability to track when and which neurons fire in the vicinity of an electrode, in an efficient and reliable manner can revolutionize the neuroscience field. The current bottleneck lies in spike sorting algorithms; existing methods for detecting and discriminating the activity of multiple neurons rely on inefficient, multi-step processing of extracellular recordings. In this work, we show that a single-step processing of raw (unfiltered) extracellular signals is sufficient for both the detection and identification of active neurons, thus greatly simplifying and optimizing the spike sorting approach. The efficiency and reliability of our method is demonstrated in both real and simulated data.
Bedini, Emiliano; Cirillo, Luigi; Parrilli, Michelangelo
2012-02-15
The synthesis of β-Gal-(1→3)-α-GalNAc-(1→3)-β-GalNAc allyl trisaccharide as the outer core fragment of Burkholderia cepacia pv. vietnamiensis lipooligosaccharide was accomplished through a concise, optimized, multi-step synthesis, having as key steps three glycosylations, that were in-depth studied performing them under several conditions. The target trisaccharide was designed with an allyl aglycone in order to open a future access to the conjugation with an immunogenic protein en route to the development of a synthetic neoglycoconjugate vaccine against this Burkholderia pathogen. Copyright © 2011 Elsevier Ltd. All rights reserved.
Optimizing spread dynamics on graphs by message passing
NASA Astrophysics Data System (ADS)
Altarelli, F.; Braunstein, A.; Dall'Asta, L.; Zecchina, R.
2013-09-01
Cascade processes are responsible for many important phenomena in natural and social sciences. Simple models of irreversible dynamics on graphs, in which nodes activate depending on the state of their neighbors, have been successfully applied to describe cascades in a large variety of contexts. Over the past decades, much effort has been devoted to understanding the typical behavior of the cascades arising from initial conditions extracted at random from some given ensemble. However, the problem of optimizing the trajectory of the system, i.e. of identifying appropriate initial conditions to maximize (or minimize) the final number of active nodes, is still considered to be practically intractable, with the only exception being models that satisfy a sort of diminishing returns property called submodularity. Submodular models can be approximately solved by means of greedy strategies, but by definition they lack cooperative characteristics which are fundamental in many real systems. Here we introduce an efficient algorithm based on statistical physics for the optimization of trajectories in cascade processes on graphs. We show that for a wide class of irreversible dynamics, even in the absence of submodularity, the spread optimization problem can be solved efficiently on large networks. Analytic and algorithmic results on random graphs are complemented by the solution of the spread maximization problem on a real-world network (the Epinions consumer reviews network).
Jeong, Dae-Kyo; Kim, Insook; Kim, Dongwoo
2017-01-01
This paper presents a price-searching model in which a source node (Alice) seeks friendly jammers that prevent eavesdroppers (Eves) from snooping legitimate communications by generating interference or noise. Unlike existing models, the distributed jammers also have data to send to their respective destinations and are allowed to access Alice’s channel if it can transmit sufficient jamming power, which is referred to as collaborative jamming in this paper. For the power used to deliver its own signal, the jammer should pay Alice. The price of the jammers’ signal power is set by Alice and provides a tradeoff between the signal and the jamming power. This paper presents, in closed-form, an optimal price that maximizes Alice’s benefit and the corresponding optimal power allocation from a jammers’ perspective by assuming that the network-wide channel knowledge is shared by Alice and jammers. For a multiple-jammer scenario where Alice hardly has the channel knowledge, this paper provides a distributed and interactive price-searching procedure that geometrically converges to an optimal price and shows that Alice by a greedy selection policy achieves certain diversity gain, which increases log-linearly as the number of (potential) jammers grows. Various numerical examples are presented to illustrate the behavior of the proposed model. PMID:29165373
Jeong, Dae-Kyo; Kim, Insook; Kim, Dongwoo
2017-11-22
This paper presents a price-searching model in which a source node (Alice) seeks friendly jammers that prevent eavesdroppers (Eves) from snooping legitimate communications by generating interference or noise. Unlike existing models, the distributed jammers also have data to send to their respective destinations and are allowed to access Alice's channel if it can transmit sufficient jamming power, which is referred to as collaborative jamming in this paper. For the power used to deliver its own signal, the jammer should pay Alice. The price of the jammers' signal power is set by Alice and provides a tradeoff between the signal and the jamming power. This paper presents, in closed-form, an optimal price that maximizes Alice's benefit and the corresponding optimal power allocation from a jammers' perspective by assuming that the network-wide channel knowledge is shared by Alice and jammers. For a multiple-jammer scenario where Alice hardly has the channel knowledge, this paper provides a distributed and interactive price-searching procedure that geometrically converges to an optimal price and shows that Alice by a greedy selection policy achieves certain diversity gain, which increases log-linearly as the number of (potential) jammers grows. Various numerical examples are presented to illustrate the behavior of the proposed model.
A Fuzzy Goal Programming for a Multi-Depot Distribution Problem
NASA Astrophysics Data System (ADS)
Nunkaew, Wuttinan; Phruksaphanrat, Busaba
2010-10-01
A fuzzy goal programming model for solving a Multi-Depot Distribution Problem (MDDP) is proposed in this research. This effective proposed model is applied for solving in the first step of Assignment First-Routing Second (AFRS) approach. Practically, a basic transportation model is firstly chosen to solve this kind of problem in the assignment step. After that the Vehicle Routing Problem (VRP) model is used to compute the delivery cost in the routing step. However, in the basic transportation model, only depot to customer relationship is concerned. In addition, the consideration of customer to customer relationship should also be considered since this relationship exists in the routing step. Both considerations of relationships are solved using Preemptive Fuzzy Goal Programming (P-FGP). The first fuzzy goal is set by a total transportation cost and the second fuzzy goal is set by a satisfactory level of the overall independence value. A case study is used for describing the effectiveness of the proposed model. Results from the proposed model are compared with the basic transportation model that has previously been used in this company. The proposed model can reduce the actual delivery cost in the routing step owing to the better result in the assignment step. Defining fuzzy goals by membership functions are more realistic than crisps. Furthermore, flexibility to adjust goals and an acceptable satisfactory level for decision maker can also be increased and the optimal solution can be obtained.
Robust model predictive control for multi-step short range spacecraft rendezvous
NASA Astrophysics Data System (ADS)
Zhu, Shuyi; Sun, Ran; Wang, Jiaolong; Wang, Jihe; Shao, Xiaowei
2018-07-01
This work presents a robust model predictive control (MPC) approach for the multi-step short range spacecraft rendezvous problem. During the specific short range phase concerned, the chaser is supposed to be initially outside the line-of-sight (LOS) cone. Therefore, the rendezvous process naturally includes two steps: the first step is to transfer the chaser into the LOS cone and the second step is to transfer the chaser into the aimed region with its motion confined within the LOS cone. A novel MPC framework named after Mixed MPC (M-MPC) is proposed, which is the combination of the Variable-Horizon MPC (VH-MPC) framework and the Fixed-Instant MPC (FI-MPC) framework. The M-MPC framework enables the optimization for the two steps to be implemented jointly rather than to be separated factitiously, and its computation workload is acceptable for the usually low-power processors onboard spacecraft. Then considering that disturbances including modeling error, sensor noise and thrust uncertainty may induce undesired constraint violations, a robust technique is developed and it is attached to the above M-MPC framework to form a robust M-MPC approach. The robust technique is based on the chance-constrained idea, which ensures that constraints can be satisfied with a prescribed probability. It improves the robust technique proposed by Gavilan et al., because it eliminates the unnecessary conservativeness by explicitly incorporating known statistical properties of the navigation uncertainty. The efficacy of the robust M-MPC approach is shown in a simulation study.
Optimization methods for decision making in disease prevention and epidemic control.
Deng, Yan; Shen, Siqian; Vorobeychik, Yevgeniy
2013-11-01
This paper investigates problems of disease prevention and epidemic control (DPEC), in which we optimize two sets of decisions: (i) vaccinating individuals and (ii) closing locations, given respective budgets with the goal of minimizing the expected number of infected individuals after intervention. The spread of diseases is inherently stochastic due to the uncertainty about disease transmission and human interaction. We use a bipartite graph to represent individuals' propensities of visiting a set of location, and formulate two integer nonlinear programming models to optimize choices of individuals to vaccinate and locations to close. Our first model assumes that if a location is closed, its visitors stay in a safe location and will not visit other locations. Our second model incorporates compensatory behavior by assuming multiple behavioral groups, always visiting the most preferred locations that remain open. The paper develops algorithms based on a greedy strategy, dynamic programming, and integer programming, and compares the computational efficacy and solution quality. We test problem instances derived from daily behavior patterns of 100 randomly chosen individuals (corresponding to 195 locations) in Portland, Oregon, and provide policy insights regarding the use of the two DPEC models. Copyright © 2013 Elsevier Inc. All rights reserved.
Stoms, David M.; Davis, Frank W.
2014-01-01
Quantitative methods of spatial conservation prioritization have traditionally been applied to issues in conservation biology and reserve design, though their use in other types of natural resource management is growing. The utility maximization problem is one form of a covering problem where multiple criteria can represent the expected social benefits of conservation action. This approach allows flexibility with a problem formulation that is more general than typical reserve design problems, though the solution methods are very similar. However, few studies have addressed optimization in utility maximization problems for conservation planning, and the effect of solution procedure is largely unquantified. Therefore, this study mapped five criteria describing elements of multifunctional agriculture to determine a hypothetical conservation resource allocation plan for agricultural land conservation in the Central Valley of CA, USA. We compared solution procedures within the utility maximization framework to determine the difference between an open source integer programming approach and a greedy heuristic, and find gains from optimization of up to 12%. We also model land availability for conservation action as a stochastic process and determine the decline in total utility compared to the globally optimal set using both solution algorithms. Our results are comparable to other studies illustrating the benefits of optimization for different conservation planning problems, and highlight the importance of maximizing the effectiveness of limited funding for conservation and natural resource management. PMID:25538868
Kreitler, Jason R.; Stoms, David M.; Davis, Frank W.
2014-01-01
Quantitative methods of spatial conservation prioritization have traditionally been applied to issues in conservation biology and reserve design, though their use in other types of natural resource management is growing. The utility maximization problem is one form of a covering problem where multiple criteria can represent the expected social benefits of conservation action. This approach allows flexibility with a problem formulation that is more general than typical reserve design problems, though the solution methods are very similar. However, few studies have addressed optimization in utility maximization problems for conservation planning, and the effect of solution procedure is largely unquantified. Therefore, this study mapped five criteria describing elements of multifunctional agriculture to determine a hypothetical conservation resource allocation plan for agricultural land conservation in the Central Valley of CA, USA. We compared solution procedures within the utility maximization framework to determine the difference between an open source integer programming approach and a greedy heuristic, and find gains from optimization of up to 12%. We also model land availability for conservation action as a stochastic process and determine the decline in total utility compared to the globally optimal set using both solution algorithms. Our results are comparable to other studies illustrating the benefits of optimization for different conservation planning problems, and highlight the importance of maximizing the effectiveness of limited funding for conservation and natural resource management.
Clustering evolving proteins into homologous families.
Chan, Cheong Xin; Mahbob, Maisarah; Ragan, Mark A
2013-04-08
Clustering sequences into groups of putative homologs (families) is a critical first step in many areas of comparative biology and bioinformatics. The performance of clustering approaches in delineating biologically meaningful families depends strongly on characteristics of the data, including content bias and degree of divergence. New, highly scalable methods have recently been introduced to cluster the very large datasets being generated by next-generation sequencing technologies. However, there has been little systematic investigation of how characteristics of the data impact the performance of these approaches. Using clusters from a manually curated dataset as reference, we examined the performance of a widely used graph-based Markov clustering algorithm (MCL) and a greedy heuristic approach (UCLUST) in delineating protein families coded by three sets of bacterial genomes of different G+C content. Both MCL and UCLUST generated clusters that are comparable to the reference sets at specific parameter settings, although UCLUST tends to under-cluster compositionally biased sequences (G+C content 33% and 66%). Using simulated data, we sought to assess the individual effects of sequence divergence, rate heterogeneity, and underlying G+C content. Performance decreased with increasing sequence divergence, decreasing among-site rate variation, and increasing G+C bias. Two MCL-based methods recovered the simulated families more accurately than did UCLUST. MCL using local alignment distances is more robust across the investigated range of sequence features than are greedy heuristics using distances based on global alignment. Our results demonstrate that sequence divergence, rate heterogeneity and content bias can individually and in combination affect the accuracy with which MCL and UCLUST can recover homologous protein families. For application to data that are more divergent, and exhibit higher among-site rate variation and/or content bias, MCL may often be the better choice, especially if computational resources are not limiting.
NASA Astrophysics Data System (ADS)
Peng, Haijun; Wang, Wei
2016-10-01
An adaptive surrogate model-based multi-objective optimization strategy that combines the benefits of invariant manifolds and low-thrust control toward developing a low-computational-cost transfer trajectory between libration orbits around the L1 and L2 libration points in the Sun-Earth system has been proposed in this paper. A new structure for a multi-objective transfer trajectory optimization model that divides the transfer trajectory into several segments and gives the dominations for invariant manifolds and low-thrust control in different segments has been established. To reduce the computational cost of multi-objective transfer trajectory optimization, a mixed sampling strategy-based adaptive surrogate model has been proposed. Numerical simulations show that the results obtained from the adaptive surrogate-based multi-objective optimization are in agreement with the results obtained using direct multi-objective optimization methods, and the computational workload of the adaptive surrogate-based multi-objective optimization is only approximately 10% of that of direct multi-objective optimization. Furthermore, the generating efficiency of the Pareto points of the adaptive surrogate-based multi-objective optimization is approximately 8 times that of the direct multi-objective optimization. Therefore, the proposed adaptive surrogate-based multi-objective optimization provides obvious advantages over direct multi-objective optimization methods.
Greedy algorithms and Zipf laws
NASA Astrophysics Data System (ADS)
Moran, José; Bouchaud, Jean-Philippe
2018-04-01
We consider a simple model of firm/city/etc growth based on a multi-item criterion: whenever entity B fares better than entity A on a subset of M items out of K, the agent originally in A moves to B. We solve the model analytically in the cases K = 1 and . The resulting stationary distribution of sizes is generically a Zipf-law provided M > K/2. When , no selection occurs and the size distribution remains thin-tailed. In the special case M = K, one needs to regularize the problem by introducing a small ‘default’ probability ϕ. We find that the stationary distribution has a power-law tail that becomes a Zipf-law when . The approach to the stationary state can also be characterized, with strong similarities with a simple ‘aging’ model considered by Barrat and Mézard.
A Multi-Start Evolutionary Local Search for the Two-Echelon Location Routing Problem
NASA Astrophysics Data System (ADS)
Nguyen, Viet-Phuong; Prins, Christian; Prodhon, Caroline
This paper presents a new hybrid metaheuristic between a greedy randomized adaptive search procedure (GRASP) and an evolutionary/iterated local search (ELS/ILS), using Tabu list to solve the two-echelon location routing problem (LRP-2E). The GRASP uses in turn three constructive heuristics followed by local search to generate the initial solutions. From a solution of GRASP, an intensification strategy is carried out by a dynamic alternation between ELS and ILS. In this phase, each child is obtained by mutation and evaluated through a splitting procedure of giant tour followed by a local search. The tabu list, defined by two characteristics of solution (total cost and number of trips), is used to avoid searching a space already explored. The results show that our metaheuristic clearly outperforms all previously published methods on LRP-2E benchmark instances. Furthermore, it is competitive with the best meta-heuristic published for the single-echelon LRP.
Modeling urban air pollution with optimized hierarchical fuzzy inference system.
Tashayo, Behnam; Alimohammadi, Abbas
2016-10-01
Environmental exposure assessments (EEA) and epidemiological studies require urban air pollution models with appropriate spatial and temporal resolutions. Uncertain available data and inflexible models can limit air pollution modeling techniques, particularly in under developing countries. This paper develops a hierarchical fuzzy inference system (HFIS) to model air pollution under different land use, transportation, and meteorological conditions. To improve performance, the system treats the issue as a large-scale and high-dimensional problem and develops the proposed model using a three-step approach. In the first step, a geospatial information system (GIS) and probabilistic methods are used to preprocess the data. In the second step, a hierarchical structure is generated based on the problem. In the third step, the accuracy and complexity of the model are simultaneously optimized with a multiple objective particle swarm optimization (MOPSO) algorithm. We examine the capabilities of the proposed model for predicting daily and annual mean PM2.5 and NO2 and compare the accuracy of the results with representative models from existing literature. The benefits provided by the model features, including probabilistic preprocessing, multi-objective optimization, and hierarchical structure, are precisely evaluated by comparing five different consecutive models in terms of accuracy and complexity criteria. Fivefold cross validation is used to assess the performance of the generated models. The respective average RMSEs and coefficients of determination (R (2)) for the test datasets using proposed model are as follows: daily PM2.5 = (8.13, 0.78), annual mean PM2.5 = (4.96, 0.80), daily NO2 = (5.63, 0.79), and annual mean NO2 = (2.89, 0.83). The obtained results demonstrate that the developed hierarchical fuzzy inference system can be utilized for modeling air pollution in EEA and epidemiological studies.
Uen, Tinn-Shuan; Chang, Fi-John; Zhou, Yanlai; Tsai, Wen-Ping
2018-08-15
This study proposed a holistic three-fold scheme that synergistically optimizes the benefits of the Water-Food-Energy (WFE) Nexus by integrating the short/long-term joint operation of a multi-objective reservoir with irrigation ponds in response to urbanization. The three-fold scheme was implemented step by step: (1) optimizing short-term (daily scale) reservoir operation for maximizing hydropower output and final reservoir storage during typhoon seasons; (2) simulating long-term (ten-day scale) water shortage rates in consideration of the availability of irrigation ponds for both agricultural and public sectors during non-typhoon seasons; and (3) promoting the synergistic benefits of the WFE Nexus in a year-round perspective by integrating the short-term optimization and long-term simulation of reservoir operations. The pivotal Shihmen Reservoir and 745 irrigation ponds located in Taoyuan City of Taiwan together with the surrounding urban areas formed the study case. The results indicated that the optimal short-term reservoir operation obtained from the non-dominated sorting genetic algorithm II (NSGA-II) could largely increase hydropower output but just slightly affected water supply. The simulation results of the reservoir coupled with irrigation ponds indicated that such joint operation could significantly reduce agricultural and public water shortage rates by 22.2% and 23.7% in average, respectively, as compared to those of reservoir operation excluding irrigation ponds. The results of year-round short/long-term joint operation showed that water shortage rates could be reduced by 10% at most, the food production rate could be increased by up to 47%, and the hydropower benefit could increase up to 9.33 million USD per year, respectively, in a wet year. Consequently, the proposed methodology could be a viable approach to promoting the synergistic benefits of the WFE Nexus, and the results provided unique insights for stakeholders and policymakers to pursue sustainable urban development plans. Copyright © 2018 Elsevier B.V. All rights reserved.
Optimization of rainfall networks using information entropy and temporal variability analysis
NASA Astrophysics Data System (ADS)
Wang, Wenqi; Wang, Dong; Singh, Vijay P.; Wang, Yuankun; Wu, Jichun; Wang, Lachun; Zou, Xinqing; Liu, Jiufu; Zou, Ying; He, Ruimin
2018-04-01
Rainfall networks are the most direct sources of precipitation data and their optimization and evaluation are essential and important. Information entropy can not only represent the uncertainty of rainfall distribution but can also reflect the correlation and information transmission between rainfall stations. Using entropy this study performs optimization of rainfall networks that are of similar size located in two big cities in China, Shanghai (in Yangtze River basin) and Xi'an (in Yellow River basin), with respect to temporal variability analysis. Through an easy-to-implement greedy ranking algorithm based on the criterion called, Maximum Information Minimum Redundancy (MIMR), stations of the networks in the two areas (each area is further divided into two subareas) are ranked during sliding inter-annual series and under different meteorological conditions. It is found that observation series with different starting days affect the ranking, alluding to the temporal variability during network evaluation. We propose a dynamic network evaluation framework for considering temporal variability, which ranks stations under different starting days with a fixed time window (1-year, 2-year, and 5-year). Therefore, we can identify rainfall stations which are temporarily of importance or redundancy and provide some useful suggestions for decision makers. The proposed framework can serve as a supplement for the primary MIMR optimization approach. In addition, during different periods (wet season or dry season) the optimal network from MIMR exhibits differences in entropy values and the optimal network from wet season tended to produce higher entropy values. Differences in spatial distribution of the optimal networks suggest that optimizing the rainfall network for changing meteorological conditions may be more recommended.
Dynamic implicit 3D adaptive mesh refinement for non-equilibrium radiation diffusion
NASA Astrophysics Data System (ADS)
Philip, B.; Wang, Z.; Berrill, M. A.; Birke, M.; Pernice, M.
2014-04-01
The time dependent non-equilibrium radiation diffusion equations are important for solving the transport of energy through radiation in optically thick regimes and find applications in several fields including astrophysics and inertial confinement fusion. The associated initial boundary value problems that are encountered often exhibit a wide range of scales in space and time and are extremely challenging to solve. To efficiently and accurately simulate these systems we describe our research on combining techniques that will also find use more broadly for long term time integration of nonlinear multi-physics systems: implicit time integration for efficient long term time integration of stiff multi-physics systems, local control theory based step size control to minimize the required global number of time steps while controlling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton-Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.
Fully implicit adaptive mesh refinement solver for 2D MHD
NASA Astrophysics Data System (ADS)
Philip, B.; Chacon, L.; Pernice, M.
2008-11-01
Application of implicit adaptive mesh refinement (AMR) to simulate resistive magnetohydrodynamics is described. Solving this challenging multi-scale, multi-physics problem can improve understanding of reconnection in magnetically-confined plasmas. AMR is employed to resolve extremely thin current sheets, essential for an accurate macroscopic description. Implicit time stepping allows us to accurately follow the dynamical time scale of the developing magnetic field, without being restricted by fast Alfven time scales. At each time step, the large-scale system of nonlinear equations is solved by a Jacobian-free Newton-Krylov method together with a physics-based preconditioner. Each block within the preconditioner is solved optimally using the Fast Adaptive Composite grid method, which can be considered as a multiplicative Schwarz method on AMR grids. We will demonstrate the excellent accuracy and efficiency properties of the method with several challenging reduced MHD applications, including tearing, island coalescence, and tilt instabilities. B. Philip, L. Chac'on, M. Pernice, J. Comput. Phys., in press (2008)
Multiple R&D projects scheduling optimization with improved particle swarm algorithm.
Liu, Mengqi; Shan, Miyuan; Wu, Juan
2014-01-01
For most enterprises, in order to win the initiative in the fierce competition of market, a key step is to improve their R&D ability to meet the various demands of customers more timely and less costly. This paper discusses the features of multiple R&D environments in large make-to-order enterprises under constrained human resource and budget, and puts forward a multi-project scheduling model during a certain period. Furthermore, we make some improvements to existed particle swarm algorithm and apply the one developed here to the resource-constrained multi-project scheduling model for a simulation experiment. Simultaneously, the feasibility of model and the validity of algorithm are proved in the experiment.
A Greedy Double Auction Mechanism for Grid Resource Allocation
NASA Astrophysics Data System (ADS)
Ding, Ding; Luo, Siwei; Gao, Zhan
To improve the resource utilization and satisfy more users, a Greedy Double Auction Mechanism(GDAM) is proposed to allocate resources in grid environments. GDAM trades resources at discriminatory price instead of uniform price, reflecting the variance in requirements for profits and quantities. Moreover, GDAM applies different auction rules to different cases, over-demand, over-supply and equilibrium of demand and supply. As a new mechanism for grid resource allocation, GDAM is proved to be strategy-proof, economically efficient, weakly budget-balanced and individual rational. Simulation results also confirm that GDAM outperforms the traditional one on both the total trade amount and the user satisfaction percentage, specially as more users are involved in the auction market.
Zhang, Zutao; Li, Yanjun; Wang, Fubing; Meng, Guanjun; Salman, Waleed; Saleem, Layth; Zhang, Xiaoliang; Wang, Chunbai; Hu, Guangdi; Liu, Yugang
2016-01-01
Environmental perception and information processing are two key steps of active safety for vehicle reversing. Single-sensor environmental perception cannot meet the need for vehicle reversing safety due to its low reliability. In this paper, we present a novel multi-sensor environmental perception method using low-rank representation and a particle filter for vehicle reversing safety. The proposed system consists of four main steps, namely multi-sensor environmental perception, information fusion, target recognition and tracking using low-rank representation and a particle filter, and vehicle reversing speed control modules. First of all, the multi-sensor environmental perception module, based on a binocular-camera system and ultrasonic range finders, obtains the distance data for obstacles behind the vehicle when the vehicle is reversing. Secondly, the information fusion algorithm using an adaptive Kalman filter is used to process the data obtained with the multi-sensor environmental perception module, which greatly improves the robustness of the sensors. Then the framework of a particle filter and low-rank representation is used to track the main obstacles. The low-rank representation is used to optimize an objective particle template that has the smallest L-1 norm. Finally, the electronic throttle opening and automatic braking is under control of the proposed vehicle reversing control strategy prior to any potential collisions, making the reversing control safer and more reliable. The final system simulation and practical testing results demonstrate the validity of the proposed multi-sensor environmental perception method using low-rank representation and a particle filter for vehicle reversing safety. PMID:27294931
Zhang, Zutao; Li, Yanjun; Wang, Fubing; Meng, Guanjun; Salman, Waleed; Saleem, Layth; Zhang, Xiaoliang; Wang, Chunbai; Hu, Guangdi; Liu, Yugang
2016-06-09
Environmental perception and information processing are two key steps of active safety for vehicle reversing. Single-sensor environmental perception cannot meet the need for vehicle reversing safety due to its low reliability. In this paper, we present a novel multi-sensor environmental perception method using low-rank representation and a particle filter for vehicle reversing safety. The proposed system consists of four main steps, namely multi-sensor environmental perception, information fusion, target recognition and tracking using low-rank representation and a particle filter, and vehicle reversing speed control modules. First of all, the multi-sensor environmental perception module, based on a binocular-camera system and ultrasonic range finders, obtains the distance data for obstacles behind the vehicle when the vehicle is reversing. Secondly, the information fusion algorithm using an adaptive Kalman filter is used to process the data obtained with the multi-sensor environmental perception module, which greatly improves the robustness of the sensors. Then the framework of a particle filter and low-rank representation is used to track the main obstacles. The low-rank representation is used to optimize an objective particle template that has the smallest L-1 norm. Finally, the electronic throttle opening and automatic braking is under control of the proposed vehicle reversing control strategy prior to any potential collisions, making the reversing control safer and more reliable. The final system simulation and practical testing results demonstrate the validity of the proposed multi-sensor environmental perception method using low-rank representation and a particle filter for vehicle reversing safety.
NASA Astrophysics Data System (ADS)
Tang, Xiangyang; Hsieh, Jiang; Taha, Basel H.; Vass, Melissa L.; Seamans, John L.; Okerlund, Darin R.
2009-02-01
With increasing longitudinal detector dimension available in diagnostic volumetric CT, step-and-shoot scan is becoming popular for cardiac imaging. In comparison to helical scan, step-and-shoot scan decouples patient table movement from cardiac gating/triggering, which facilitates the cardiac imaging via multi-sector data acquisition, as well as the administration of inter-cycle heart beat variation (arrhythmia) and radiation dose efficiency. Ideally, a multi-sector data acquisition can improve temporal resolution at a factor the same as the number of sectors (best scenario). In reality, however, the effective temporal resolution is jointly determined by gantry rotation speed and patient heart beat rate, which may significantly lower than the ideal or no improvement (worst scenario). Hence, it is clinically relevant to investigate the behavior of effective temporal resolution in cardiac imaging with multi-sector data acquisition. In this study, a 5-second cine scan of a porcine heart, which cascades 6 porcine cardiac cycles, is acquired. In addition to theoretical analysis and motion phantom study, the clinical consequences due to the effective temporal resolution variation are evaluated qualitative or quantitatively. By employing a 2-sector image reconstruction strategy, a total of 15 (the permutation of P(6, 2)) cases between the best and worst scenarios are studied, providing informative guidance for the design and optimization of CT cardiac imaging in volumetric CT with multi-sector data acquisition.
An Optimal Method for Detecting Internal and External Intrusion in MANET
NASA Astrophysics Data System (ADS)
Rafsanjani, Marjan Kuchaki; Aliahmadipour, Laya; Javidi, Mohammad M.
Mobile Ad hoc Network (MANET) is formed by a set of mobile hosts which communicate among themselves through radio waves. The hosts establish infrastructure and cooperate to forward data in a multi-hop fashion without a central administration. Due to their communication type and resources constraint, MANETs are vulnerable to diverse types of attacks and intrusions. In this paper, we proposed a method for prevention internal intruder and detection external intruder by using game theory in mobile ad hoc network. One optimal solution for reducing the resource consumption of detection external intruder is to elect a leader for each cluster to provide intrusion service to other nodes in the its cluster, we call this mode moderate mode. Moderate mode is only suitable when the probability of attack is low. Once the probability of attack is high, victim nodes should launch their own IDS to detect and thwart intrusions and we call robust mode. In this paper leader should not be malicious or selfish node and must detect external intrusion in its cluster with minimum cost. Our proposed method has three steps: the first step building trust relationship between nodes and estimation trust value for each node to prevent internal intrusion. In the second step we propose an optimal method for leader election by using trust value; and in the third step, finding the threshold value for notifying the victim node to launch its IDS once the probability of attack exceeds that value. In first and third step we apply Bayesian game theory. Our method due to using game theory, trust value and honest leader can effectively improve the network security, performance and reduce resource consumption.
Multi-Objective Control Optimization for Greenhouse Environment Using Evolutionary Algorithms
Hu, Haigen; Xu, Lihong; Wei, Ruihua; Zhu, Bingkun
2011-01-01
This paper investigates the issue of tuning the Proportional Integral and Derivative (PID) controller parameters for a greenhouse climate control system using an Evolutionary Algorithm (EA) based on multiple performance measures such as good static-dynamic performance specifications and the smooth process of control. A model of nonlinear thermodynamic laws between numerous system variables affecting the greenhouse climate is formulated. The proposed tuning scheme is tested for greenhouse climate control by minimizing the integrated time square error (ITSE) and the control increment or rate in a simulation experiment. The results show that by tuning the gain parameters the controllers can achieve good control performance through step responses such as small overshoot, fast settling time, and less rise time and steady state error. Besides, it can be applied to tuning the system with different properties, such as strong interactions among variables, nonlinearities and conflicting performance criteria. The results implicate that it is a quite effective and promising tuning method using multi-objective optimization algorithms in the complex greenhouse production. PMID:22163927
Predictor - Predictive Reaction Design via Informatics, Computation and Theories of Reactivity
2017-10-10
into more complex and valuable molecules, but are limited by: 1. The extensive time it takes to design and optimize a synthesis 2. Multi-step...system. As it is fully compatible to the industry standard SQL, designing a server- based system at a later time will be trivial. Producing a JAVA front...Report: PREDICTOR - Predictive REaction Design via Informatics, Computation and Theories of Reactivity The goal of this program was to create a cyber
Multi-model groundwater-management optimization: reconciling disparate conceptual models
NASA Astrophysics Data System (ADS)
Timani, Bassel; Peralta, Richard
2015-09-01
Disagreement among policymakers often involves policy issues and differences between the decision makers' implicit utility functions. Significant disagreement can also exist concerning conceptual models of the physical system. Disagreement on the validity of a single simulation model delays discussion on policy issues and prevents the adoption of consensus management strategies. For such a contentious situation, the proposed multi-conceptual model optimization (MCMO) can help stakeholders reach a compromise strategy. MCMO computes mathematically optimal strategies that simultaneously satisfy analogous constraints and bounds in multiple numerical models that differ in boundary conditions, hydrogeologic stratigraphy, and discretization. Shadow prices and trade-offs guide the process of refining the first MCMO-developed `multi-model strategy into a realistic compromise management strategy. By employing automated cycling, MCMO is practical for linear and nonlinear aquifer systems. In this reconnaissance study, MCMO application to the multilayer Cache Valley (Utah and Idaho, USA) river-aquifer system employs two simulation models with analogous background conditions but different vertical discretization and boundary conditions. The objective is to maximize additional safe pumping (beyond current pumping), subject to constraints on groundwater head and seepage from the aquifer to surface waters. MCMO application reveals that in order to protect the local ecosystem, increased groundwater pumping can satisfy only 40 % of projected water demand increase. To explore the possibility of increasing that pumping while protecting the ecosystem, MCMO clearly identifies localities requiring additional field data. MCMO is applicable to other areas and optimization problems than used here. Steps to prepare comparable sub-models for MCMO use are area-dependent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenlee, Jordan D., E-mail: jordan.greenlee.ctr@nrl.navy.mil; Feigelson, Boris N.; Anderson, Travis J.
2014-08-14
The first step of a multi-cycle rapid thermal annealing process was systematically studied. The surface, structure, and optical properties of Mg implanted GaN thin films annealed at temperatures ranging from 900 to 1200 °C were investigated by Raman spectroscopy, photoluminescence, UV-visible spectroscopy, atomic force microscopy, and Nomarski microscopy. The GaN thin films are capped with two layers of in-situ metal organic chemical vapor deposition -grown AlN and annealed in 24 bar of N{sub 2} overpressure to avoid GaN decomposition. The crystal quality of the GaN improves with increasing annealing temperature as confirmed by UV-visible spectroscopy and the full widths at halfmore » maximums of the E{sub 2} and A{sub 1} (LO) Raman modes. The crystal quality of films annealed above 1100 °C exceeds the quality of the as-grown films. At 1200 °C, Mg is optically activated, which is determined by photoluminescence measurements. However, at 1200 °C, the GaN begins to decompose as evidenced by pit formation on the surface of the samples. Therefore, it was determined that the optimal temperature for the first step in a multi-cycle rapid thermal anneal process should be conducted at 1150 °C due to crystal quality and surface morphology considerations.« less
Bahira, Meriem; McCauley, Micah J; Almaqwashi, Ali A; Lincoln, Per; Westerlund, Fredrik; Rouzina, Ioulia; Williams, Mark C
2015-10-15
Several multi-component DNA intercalating small molecules have been designed around ruthenium-based intercalating monomers to optimize DNA binding properties for therapeutic use. Here we probe the DNA binding ligand [μ-C4(cpdppz)2(phen)4Ru2](4+), which consists of two Ru(phen)2dppz(2+) moieties joined by a flexible linker. To quantify ligand binding, double-stranded DNA is stretched with optical tweezers and exposed to ligand under constant applied force. In contrast to other bis-intercalators, we find that ligand association is described by a two-step process, which consists of fast bimolecular intercalation of the first dppz moiety followed by ∼10-fold slower intercalation of the second dppz moiety. The second step is rate-limited by the requirement for a DNA-ligand conformational change that allows the flexible linker to pass through the DNA duplex. Based on our measured force-dependent binding rates and ligand-induced DNA elongation measurements, we are able to map out the energy landscape and structural dynamics for both ligand binding steps. In addition, we find that at zero force the overall binding process involves fast association (∼10 s), slow dissociation (∼300 s), and very high affinity (Kd ∼10 nM). The methodology developed in this work will be useful for studying the mechanism of DNA binding by other multi-step intercalating ligands and proteins. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Siragusa, Enrico; Haiminen, Niina; Utro, Filippo; Parida, Laxmi
2017-10-09
Computer simulations can be used to study population genetic methods, models and parameters, as well as to predict potential outcomes. For example, in plant populations, predicting the outcome of breeding operations can be studied using simulations. In-silico construction of populations with pre-specified characteristics is an important task in breeding optimization and other population genetic studies. We present two linear time Simulation using Best-fit Algorithms (SimBA) for two classes of problems where each co-fits two distributions: SimBA-LD fits linkage disequilibrium and minimum allele frequency distributions, while SimBA-hap fits founder-haplotype and polyploid allele dosage distributions. An incremental gap-filling version of previously introduced SimBA-LD is here demonstrated to accurately fit the target distributions, allowing efficient large scale simulations. SimBA-hap accuracy and efficiency is demonstrated by simulating tetraploid populations with varying numbers of founder haplotypes, we evaluate both a linear time greedy algoritm and an optimal solution based on mixed-integer programming. SimBA is available on http://researcher.watson.ibm.com/project/5669.
NASA Astrophysics Data System (ADS)
Sun, Xiuqiao; Wang, Jian
2018-07-01
Freeway service patrol (FSP), is considered to be an effective method for incident management and can help transportation agency decision-makers alter existing route coverage and fleet allocation. This paper investigates the FSP problem of patrol routing design and fleet allocation, with the objective of minimizing the overall average incident response time. While the simulated annealing (SA) algorithm and its improvements have been applied to solve this problem, they often become trapped in local optimal solution. Moreover, the issue of searching efficiency remains to be further addressed. In this paper, we employ the genetic algorithm (GA) and SA to solve the FSP problem. To maintain population diversity and avoid premature convergence, niche strategy is incorporated into the traditional genetic algorithm. We also employ elitist strategy to speed up the convergence. Numerical experiments have been conducted with the help of the Sioux Falls network. Results show that the GA slightly outperforms the dual-based greedy (DBG) algorithm, the very large-scale neighborhood searching (VLNS) algorithm, the SA algorithm and the scenario algorithm.
Dong, Jianwu; Chen, Feng; Zhou, Dong; Liu, Tian; Yu, Zhaofei; Wang, Yi
2017-03-01
Existence of low SNR regions and rapid-phase variations pose challenges to spatial phase unwrapping algorithms. Global optimization-based phase unwrapping methods are widely used, but are significantly slower than greedy methods. In this paper, dual decomposition acceleration is introduced to speed up a three-dimensional graph cut-based phase unwrapping algorithm. The phase unwrapping problem is formulated as a global discrete energy minimization problem, whereas the technique of dual decomposition is used to increase the computational efficiency by splitting the full problem into overlapping subproblems and enforcing the congruence of overlapping variables. Using three dimensional (3D) multiecho gradient echo images from an agarose phantom and five brain hemorrhage patients, we compared this proposed method with an unaccelerated graph cut-based method. Experimental results show up to 18-fold acceleration in computation time. Dual decomposition significantly improves the computational efficiency of 3D graph cut-based phase unwrapping algorithms. Magn Reson Med 77:1353-1358, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Qin, Yuhong; Zhang, Jingru; Zhang, Yuan; Li, Fangbing; Han, Yongtao; Zou, Nan; Xu, Haowei; Qian, Meiyuan; Pan, Canping
2016-09-02
An automated multi-plug filtration cleanup (m-PFC) method on modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) extracts was developed. The automatic device was aimed to reduce labor-consuming manual operation workload in the cleanup steps. It could control the volume and the speed of pulling and pushing cycles accurately. In this work, m-PFC was based on multi-walled carbon nanotubes (MWCNTs) mixed with other sorbents and anhydrous magnesium sulfate (MgSO4) in a packed tip for analysis of pesticide multi-residues in crop commodities followed by liquid chromatography with tandem mass spectrometric (LC-MS/MS) detection. It was validated by analyzing 25 pesticides in six representative matrices spiked at two concentration levels of 10 and 100μg/kg. Salts, sorbents, m-PFC procedure, automated pulling and pushing volume, automated pulling speed, and pushing speed for each matrix were optimized. After optimization, two general automated m-PFC methods were introduced to relatively simple (apple, citrus fruit, peanut) and relatively complex (spinach, leek, green tea) matrices. Spike recoveries were within 83 and 108% and 1-14% RSD for most analytes in the tested matrices. Matrix-matched calibrations were performed with the coefficients of determination >0.997 between concentration levels of 10 and 1000μg/kg. The developed method was successfully applied to the determination of pesticide residues in market samples. Copyright © 2016 Elsevier B.V. All rights reserved.
A bi-objective model for robust yard allocation scheduling for outbound containers
NASA Astrophysics Data System (ADS)
Liu, Changchun; Zhang, Canrong; Zheng, Li
2017-01-01
This article examines the yard allocation problem for outbound containers, with consideration of uncertainty factors, mainly including the arrival and operation time of calling vessels. Based on the time buffer inserting method, a bi-objective model is constructed to minimize the total operational cost and to maximize the robustness of fighting against the uncertainty. Due to the NP-hardness of the constructed model, a two-stage heuristic is developed to solve the problem. In the first stage, initial solutions are obtained by a greedy algorithm that looks n-steps ahead with the uncertainty factors set as their respective expected values; in the second stage, based on the solutions obtained in the first stage and with consideration of uncertainty factors, a neighbourhood search heuristic is employed to generate robust solutions that can fight better against the fluctuation of uncertainty factors. Finally, extensive numerical experiments are conducted to test the performance of the proposed method.
Optimization of multi-objective micro-grid based on improved particle swarm optimization algorithm
NASA Astrophysics Data System (ADS)
Zhang, Jian; Gan, Yang
2018-04-01
The paper presents a multi-objective optimal configuration model for independent micro-grid with the aim of economy and environmental protection. The Pareto solution set can be obtained by solving the multi-objective optimization configuration model of micro-grid with the improved particle swarm algorithm. The feasibility of the improved particle swarm optimization algorithm for multi-objective model is verified, which provides an important reference for multi-objective optimization of independent micro-grid.
Multi Objective Controller Design for Linear System via Optimal Interpolation
NASA Technical Reports Server (NTRS)
Ozbay, Hitay
1996-01-01
We propose a methodology for the design of a controller which satisfies a set of closed-loop objectives simultaneously. The set of objectives consists of: (1) pole placement, (2) decoupled command tracking of step inputs at steady-state, and (3) minimization of step response transients with respect to envelope specifications. We first obtain a characterization of all controllers placing the closed-loop poles in a prescribed region of the complex plane. In this characterization, the free parameter matrix Q(s) is to be determined to attain objectives (2) and (3). Objective (2) is expressed as determining a Pareto optimal solution to a vector valued optimization problem. The solution of this problem is obtained by transforming it to a scalar convex optimization problem. This solution determines Q(O) and the remaining freedom in choosing Q(s) is used to satisfy objective (3). We write Q(s) = (l/v(s))bar-Q(s) for a prescribed polynomial v(s). Bar-Q(s) is a polynomial matrix which is arbitrary except that Q(O) and the order of bar-Q(s) are fixed. Obeying these constraints bar-Q(s) is now to be 'shaped' to minimize the step response characteristics of specific input/output pairs according to the maximum envelope violations. This problem is expressed as a vector valued optimization problem using the concept of Pareto optimality. We then investigate a scalar optimization problem associated with this vector valued problem and show that it is convex. The organization of the report is as follows. The next section includes some definitions and preliminary lemmas. We then give the problem statement which is followed by a section including a detailed development of the design procedure. We then consider an aircraft control example. The last section gives some concluding remarks. The Appendix includes the proofs of technical lemmas, printouts of computer programs, and figures.
OGUPSA sensor scheduling architecture and algorithm
NASA Astrophysics Data System (ADS)
Zhang, Zhixiong; Hintz, Kenneth J.
1996-06-01
This paper introduces a new architecture for a sensor measurement scheduler as well as a dynamic sensor scheduling algorithm called the on-line, greedy, urgency-driven, preemptive scheduling algorithm (OGUPSA). OGUPSA incorporates a preemptive mechanism which uses three policies, (1) most-urgent-first (MUF), (2) earliest- completed-first (ECF), and (3) least-versatile-first (LVF). The three policies are used successively to dynamically allocate and schedule and distribute a set of arriving tasks among a set of sensors. OGUPSA also can detect the failure of a task to meet a deadline as well as generate an optimal schedule in the sense of minimum makespan for a group of tasks with the same priorities. A side benefit is OGUPSA's ability to improve dynamic load balance among all sensors while being a polynomial time algorithm. Results of a simulation are presented for a simple sensor system.
A novel method for a multi-level hierarchical composite with brick-and-mortar structure
Brandt, Kristina; Wolff, Michael F. H.; Salikov, Vitalij; Heinrich, Stefan; Schneider, Gerold A.
2013-01-01
The fascination for hierarchically structured hard tissues such as enamel or nacre arises from their unique structure-properties-relationship. During the last decades this numerously motivated the synthesis of composites, mimicking the brick-and-mortar structure of nacre. However, there is still a lack in synthetic engineering materials displaying a true hierarchical structure. Here, we present a novel multi-step processing route for anisotropic 2-level hierarchical composites by combining different coating techniques on different length scales. It comprises polymer-encapsulated ceramic particles as building blocks for the first level, followed by spouted bed spray granulation for a second level, and finally directional hot pressing to anisotropically consolidate the composite. The microstructure achieved reveals a brick-and-mortar hierarchical structure with distinct, however not yet optimized mechanical properties on each level. It opens up a completely new processing route for the synthesis of multi-level hierarchically structured composites, giving prospects to multi-functional structure-properties relationships. PMID:23900554
A novel method for a multi-level hierarchical composite with brick-and-mortar structure.
Brandt, Kristina; Wolff, Michael F H; Salikov, Vitalij; Heinrich, Stefan; Schneider, Gerold A
2013-01-01
The fascination for hierarchically structured hard tissues such as enamel or nacre arises from their unique structure-properties-relationship. During the last decades this numerously motivated the synthesis of composites, mimicking the brick-and-mortar structure of nacre. However, there is still a lack in synthetic engineering materials displaying a true hierarchical structure. Here, we present a novel multi-step processing route for anisotropic 2-level hierarchical composites by combining different coating techniques on different length scales. It comprises polymer-encapsulated ceramic particles as building blocks for the first level, followed by spouted bed spray granulation for a second level, and finally directional hot pressing to anisotropically consolidate the composite. The microstructure achieved reveals a brick-and-mortar hierarchical structure with distinct, however not yet optimized mechanical properties on each level. It opens up a completely new processing route for the synthesis of multi-level hierarchically structured composites, giving prospects to multi-functional structure-properties relationships.
A novel method for a multi-level hierarchical composite with brick-and-mortar structure
NASA Astrophysics Data System (ADS)
Brandt, Kristina; Wolff, Michael F. H.; Salikov, Vitalij; Heinrich, Stefan; Schneider, Gerold A.
2013-07-01
The fascination for hierarchically structured hard tissues such as enamel or nacre arises from their unique structure-properties-relationship. During the last decades this numerously motivated the synthesis of composites, mimicking the brick-and-mortar structure of nacre. However, there is still a lack in synthetic engineering materials displaying a true hierarchical structure. Here, we present a novel multi-step processing route for anisotropic 2-level hierarchical composites by combining different coating techniques on different length scales. It comprises polymer-encapsulated ceramic particles as building blocks for the first level, followed by spouted bed spray granulation for a second level, and finally directional hot pressing to anisotropically consolidate the composite. The microstructure achieved reveals a brick-and-mortar hierarchical structure with distinct, however not yet optimized mechanical properties on each level. It opens up a completely new processing route for the synthesis of multi-level hierarchically structured composites, giving prospects to multi-functional structure-properties relationships.
Ultramap: the all in One Photogrammetric Solution
NASA Astrophysics Data System (ADS)
Wiechert, A.; Gruber, M.; Karner, K.
2012-07-01
This paper describes in detail the dense matcher developed since years by Vexcel Imaging in Graz for Microsoft's Bing Maps project. This dense matcher was exclusively developed for and used by Microsoft for the production of the 3D city models of Virtual Earth. It will now be made available to the public with the UltraMap software release mid-2012. That represents a revolutionary step in digital photogrammetry. The dense matcher generates digital surface models (DSM) and digital terrain models (DTM) automatically out of a set of overlapping UltraCam images. The models have an outstanding point density of several hundred points per square meter and sub-pixel accuracy and are generated automatically. The dense matcher consists of two steps. The first step rectifies overlapping image areas to speed up the dense image matching process. This rectification step ensures a very efficient processing and detects occluded areas by applying a back-matching step. In this dense image matching process a cost function consisting of a matching score as well as a smoothness term is minimized. In the second step the resulting range image patches are fused into a DSM by optimizing a global cost function. The whole process is optimized for multi-core CPUs and optionally uses GPUs if available. UltraMap 3.0 features also an additional step which is presented in this paper, a complete automated true-ortho and ortho workflow. For this, the UltraCam images are combined with the DSM or DTM in an automated rectification step and that results in high quality true-ortho or ortho images as a result of a highly automated workflow. The paper presents the new workflow and first results.
GSNFS: Gene subnetwork biomarker identification of lung cancer expression data.
Doungpan, Narumol; Engchuan, Worrawat; Chan, Jonathan H; Meechai, Asawin
2016-12-05
Gene expression has been used to identify disease gene biomarkers, but there are ongoing challenges. Single gene or gene-set biomarkers are inadequate to provide sufficient understanding of complex disease mechanisms and the relationship among those genes. Network-based methods have thus been considered for inferring the interaction within a group of genes to further study the disease mechanism. Recently, the Gene-Network-based Feature Set (GNFS), which is capable of handling case-control and multiclass expression for gene biomarker identification, has been proposed, partly taking into account of network topology. However, its performance relies on a greedy search for building subnetworks and thus requires further improvement. In this work, we establish a new approach named Gene Sub-Network-based Feature Selection (GSNFS) by implementing the GNFS framework with two proposed searching and scoring algorithms, namely gene-set-based (GS) search and parent-node-based (PN) search, to identify subnetworks. An additional dataset is used to validate the results. The two proposed searching algorithms of the GSNFS method for subnetwork expansion are concerned with the degree of connectivity and the scoring scheme for building subnetworks and their topology. For each iteration of expansion, the neighbour genes of a current subnetwork, whose expression data improved the overall subnetwork score, is recruited. While the GS search calculated the subnetwork score using an activity score of a current subnetwork and the gene expression values of its neighbours, the PN search uses the expression value of the corresponding parent of each neighbour gene. Four lung cancer expression datasets were used for subnetwork identification. In addition, using pathway data and protein-protein interaction as network data in order to consider the interaction among significant genes were discussed. Classification was performed to compare the performance of the identified gene subnetworks with three subnetwork identification algorithms. The two searching algorithms resulted in better classification and gene/gene-set agreement compared to the original greedy search of the GNFS method. The identified lung cancer subnetwork using the proposed searching algorithm resulted in an improvement of the cross-dataset validation and an increase in the consistency of findings between two independent datasets. The homogeneity measurement of the datasets was conducted to assess dataset compatibility in cross-dataset validation. The lung cancer dataset with higher homogeneity showed a better result when using the GS search while the dataset with low homogeneity showed a better result when using the PN search. The 10-fold cross-dataset validation on the independent lung cancer datasets showed higher classification performance of the proposed algorithms when compared with the greedy search in the original GNFS method. The proposed searching algorithms provide a higher number of genes in the subnetwork expansion step than the greedy algorithm. As a result, the performance of the subnetworks identified from the GSNFS method was improved in terms of classification performance and gene/gene-set level agreement depending on the homogeneity of the datasets used in the analysis. Some common genes obtained from the four datasets using different searching algorithms are genes known to play a role in lung cancer. The improvement of classification performance and the gene/gene-set level agreement, and the biological relevance indicated the effectiveness of the GSNFS method for gene subnetwork identification using expression data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chin, George; Marquez, Andres; Choudhury, Sutanay
2012-09-01
Triadic analysis encompasses a useful set of graph mining methods that is centered on the concept of a triad, which is a subgraph of three nodes and the configuration of directed edges across the nodes. Such methods are often applied in the social sciences as well as many other diverse fields. Triadic methods commonly operate on a triad census that counts the number of triads of every possible edge configuration in a graph. Like other graph algorithms, triadic census algorithms do not scale well when graphs reach tens of millions to billions of nodes. To enable the triadic analysis ofmore » large-scale graphs, we developed and optimized a triad census algorithm to efficiently execute on shared memory architectures. We will retrace the development and evolution of a parallel triad census algorithm. Over the course of several versions, we continually adapted the code’s data structures and program logic to expose more opportunities to exploit parallelism on shared memory that would translate into improved computational performance. We will recall the critical steps and modifications that occurred during code development and optimization. Furthermore, we will compare the performances of triad census algorithm versions on three specific systems: Cray XMT, HP Superdome, and AMD multi-core NUMA machine. These three systems have shared memory architectures but with markedly different hardware capabilities to manage parallelism.« less
NASA Astrophysics Data System (ADS)
Taitano, W. T.; Chacón, L.; Simakov, A. N.; Molvig, K.
2015-09-01
In this study, we demonstrate a fully implicit algorithm for the multi-species, multidimensional Rosenbluth-Fokker-Planck equation which is exactly mass-, momentum-, and energy-conserving, and which preserves positivity. Unlike most earlier studies, we base our development on the Rosenbluth (rather than Landau) form of the Fokker-Planck collision operator, which reduces complexity while allowing for an optimal fully implicit treatment. Our discrete conservation strategy employs nonlinear constraints that force the continuum symmetries of the collision operator to be satisfied upon discretization. We converge the resulting nonlinear system iteratively using Jacobian-free Newton-Krylov methods, effectively preconditioned with multigrid methods for efficiency. Single- and multi-species numerical examples demonstrate the advertised accuracy properties of the scheme, and the superior algorithmic performance of our approach. In particular, the discretization approach is numerically shown to be second-order accurate in time and velocity space and to exhibit manifestly positive entropy production. That is, H-theorem behavior is indicated for all the examples we have tested. The solution approach is demonstrated to scale optimally with respect to grid refinement (with CPU time growing linearly with the number of mesh points), and timestep (showing very weak dependence of CPU time with time-step size). As a result, the proposed algorithm delivers several orders-of-magnitude speedup vs. explicit algorithms.
NASA Astrophysics Data System (ADS)
Vecherin, Sergey N.; Wilson, D. Keith; Pettit, Chris L.
2010-04-01
Determination of an optimal configuration (numbers, types, and locations) of a sensor network is an important practical problem. In most applications, complex signal propagation effects and inhomogeneous coverage preferences lead to an optimal solution that is highly irregular and nonintuitive. The general optimization problem can be strictly formulated as a binary linear programming problem. Due to the combinatorial nature of this problem, however, its strict solution requires significant computational resources (NP-complete class of complexity) and is unobtainable for large spatial grids of candidate sensor locations. For this reason, a greedy algorithm for approximate solution was recently introduced [S. N. Vecherin, D. K. Wilson, and C. L. Pettit, "Optimal sensor placement with terrain-based constraints and signal propagation effects," Unattended Ground, Sea, and Air Sensor Technologies and Applications XI, SPIE Proc. Vol. 7333, paper 73330S (2009)]. Here further extensions to the developed algorithm are presented to include such practical needs and constraints as sensor availability, coverage by multiple sensors, and wireless communication of the sensor information. Both communication and detection are considered in a probabilistic framework. Communication signal and signature propagation effects are taken into account when calculating probabilities of communication and detection. Comparison of approximate and strict solutions on reduced-size problems suggests that the approximate algorithm yields quick and good solutions, which thus justifies using that algorithm for full-size problems. Examples of three-dimensional outdoor sensor placement are provided using a terrain-based software analysis tool.
Multi-Sensor Registration of Earth Remotely Sensed Imagery
NASA Technical Reports Server (NTRS)
LeMoigne, Jacqueline; Cole-Rhodes, Arlene; Eastman, Roger; Johnson, Kisha; Morisette, Jeffrey; Netanyahu, Nathan S.; Stone, Harold S.; Zavorin, Ilya; Zukor, Dorothy (Technical Monitor)
2001-01-01
Assuming that approximate registration is given within a few pixels by a systematic correction system, we develop automatic image registration methods for multi-sensor data with the goal of achieving sub-pixel accuracy. Automatic image registration is usually defined by three steps; feature extraction, feature matching, and data resampling or fusion. Our previous work focused on image correlation methods based on the use of different features. In this paper, we study different feature matching techniques and present five algorithms where the features are either original gray levels or wavelet-like features, and the feature matching is based on gradient descent optimization, statistical robust matching, and mutual information. These algorithms are tested and compared on several multi-sensor datasets covering one of the EOS Core Sites, the Konza Prairie in Kansas, from four different sensors: IKONOS (4m), Landsat-7/ETM+ (30m), MODIS (500m), and SeaWIFS (1000m).
Statistical Mechanics and Dynamics of the Outer Solar System.I. The Jupiter/Saturn Zone
NASA Technical Reports Server (NTRS)
Grazier, K. R.; Newman, W. I.; Kaula, W. M.; Hyman, J. M.
1996-01-01
We report on numerical simulations designed to understand how the solar system evolved through a winnowing of planetesimals accreeted from the early solar nebula. This sorting process is driven by the energy and angular momentum and continues to the present day. We reconsider the existence and importance of stable niches in the Jupiter/Saturn Zone using greatly improved numerical techniques based on high-order optimized multi-step integration schemes coupled to roundoff error minimizing methods.
Research of flaw image collecting and processing technology based on multi-baseline stereo imaging
NASA Astrophysics Data System (ADS)
Yao, Yong; Zhao, Jiguang; Pang, Xiaoyan
2008-03-01
Aiming at the practical situations such as accurate optimal design, complex algorithms and precise technical demands of gun bore flaw image collecting, the design frame of a 3-D image collecting and processing system based on multi-baseline stereo imaging was presented in this paper. This system mainly including computer, electrical control box, stepping motor and CCD camera and it can realize function of image collection, stereo matching, 3-D information reconstruction and after-treatments etc. Proved by theoretical analysis and experiment results, images collected by this system were precise and it can slake efficiently the uncertainty problem produced by universally veins or repeated veins. In the same time, this system has faster measure speed and upper measure precision.
One step DNA assembly for combinatorial metabolic engineering.
Coussement, Pieter; Maertens, Jo; Beauprez, Joeri; Van Bellegem, Wouter; De Mey, Marjan
2014-05-01
The rapid and efficient assembly of multi-step metabolic pathways for generating microbial strains with desirable phenotypes is a critical procedure for metabolic engineering, and remains a significant challenge in synthetic biology. Although several DNA assembly methods have been developed and applied for metabolic pathway engineering, many of them are limited by their suitability for combinatorial pathway assembly. The introduction of transcriptional (promoters), translational (ribosome binding site (RBS)) and enzyme (mutant genes) variability to modulate pathway expression levels is essential for generating balanced metabolic pathways and maximizing the productivity of a strain. We report a novel, highly reliable and rapid single strand assembly (SSA) method for pathway engineering. The method was successfully optimized and applied to create constructs containing promoter, RBS and/or mutant enzyme libraries. To demonstrate its efficiency and reliability, the method was applied to fine-tune multi-gene pathways. Two promoter libraries were simultaneously introduced in front of two target genes, enabling orthogonal expression as demonstrated by principal component analysis. This shows that SSA will increase our ability to tune multi-gene pathways at all control levels for the biotechnological production of complex metabolites, achievable through the combinatorial modulation of transcription, translation and enzyme activity. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Beam shaping as an enabler for new applications
NASA Astrophysics Data System (ADS)
Guertler, Yvonne; Kahmann, Max; Havrilla, David
2017-02-01
For many years, laser beam shaping has enabled users to achieve optimized process results as well as manage challenging applications. The latest advancements in industrial lasers and processing optics have taken this a step further as users are able to adapt the beam shape to meet specific application requirements in a very flexible way. TRUMPF has developed a wide range of experience in creating beam profiles at the work piece for optimized material processing. This technology is based on the physical model of wave optics and can be used with ultra short pulse lasers as well as multi-kW cw lasers. Basically, the beam shape can be adapted in all three dimensions in space, which allows maximum flexibility. Besides adaption of intensity profile, even multi-spot geometries can be produced. This approach is very cost efficient, because a standard laser source and (in the case of cw lasers) a standard fiber can be used without any special modifications. Based on this innovative beam shaping technology, TRUMPF has developed new and optimized processes. Two of the most recent application developments using these techniques are cutting glass and synthetic sapphire with ultra-short pulse lasers and enhanced brazing of hot dip zinc coated steel for automotive applications. Both developments lead to more efficient and flexible production processes, enabled by laser technology and open the door to new opportunities. They also indicate the potential of beam shaping techniques since they can be applied to both single-mode laser sources (TOP Cleave) and multi-mode laser sources (brazing).
Directivity pattern of the sound radiated from axisymmetric stepped plates.
He, Xiping; Yan, Xiuli; Li, Na
2016-08-01
For the purpose of optimal design and efficient utilization of the kind of stepped plate radiator in air, in this contribution, an approach for calculation of the directivity pattern of the sound radiated from a stepped plate in flexural vibration with a free edge is developed based on Kirchhoff-Love hypothesis and Rayleigh integral principle. Experimental tests of directivity pattern for a fabricated flat plate and two fabricated plates with one and two step radiators were carried out. It shows that the configuration of the measured directivity patterns by the proposed analytic approach is similar to those of the calculated approach. Comparison of the agreement between the calculated directivity pattern of a stepped plate and its corresponding theoretical piston show that the former radiator is equivalent to the latter, and the diffraction field generated by the unbaffled upper surface may be small. It also shows that the directivity pattern of a stepped radiator is independent of the metallic material but dependent on the thickness of base plate and resonant frequency. The thicker the thickness of base plate, the more directive the radiation is. The proposed analytic approach in this work may be adopted for any other plates with multi-steps.
A model-based spike sorting algorithm for removing correlation artifacts in multi-neuron recordings.
Pillow, Jonathan W; Shlens, Jonathon; Chichilnisky, E J; Simoncelli, Eero P
2013-01-01
We examine the problem of estimating the spike trains of multiple neurons from voltage traces recorded on one or more extracellular electrodes. Traditional spike-sorting methods rely on thresholding or clustering of recorded signals to identify spikes. While these methods can detect a large fraction of the spikes from a recording, they generally fail to identify synchronous or near-synchronous spikes: cases in which multiple spikes overlap. Here we investigate the geometry of failures in traditional sorting algorithms, and document the prevalence of such errors in multi-electrode recordings from primate retina. We then develop a method for multi-neuron spike sorting using a model that explicitly accounts for the superposition of spike waveforms. We model the recorded voltage traces as a linear combination of spike waveforms plus a stochastic background component of correlated Gaussian noise. Combining this measurement model with a Bernoulli prior over binary spike trains yields a posterior distribution for spikes given the recorded data. We introduce a greedy algorithm to maximize this posterior that we call "binary pursuit". The algorithm allows modest variability in spike waveforms and recovers spike times with higher precision than the voltage sampling rate. This method substantially corrects cross-correlation artifacts that arise with conventional methods, and substantially outperforms clustering methods on both real and simulated data. Finally, we develop diagnostic tools that can be used to assess errors in spike sorting in the absence of ground truth.
A Model-Based Spike Sorting Algorithm for Removing Correlation Artifacts in Multi-Neuron Recordings
Chichilnisky, E. J.; Simoncelli, Eero P.
2013-01-01
We examine the problem of estimating the spike trains of multiple neurons from voltage traces recorded on one or more extracellular electrodes. Traditional spike-sorting methods rely on thresholding or clustering of recorded signals to identify spikes. While these methods can detect a large fraction of the spikes from a recording, they generally fail to identify synchronous or near-synchronous spikes: cases in which multiple spikes overlap. Here we investigate the geometry of failures in traditional sorting algorithms, and document the prevalence of such errors in multi-electrode recordings from primate retina. We then develop a method for multi-neuron spike sorting using a model that explicitly accounts for the superposition of spike waveforms. We model the recorded voltage traces as a linear combination of spike waveforms plus a stochastic background component of correlated Gaussian noise. Combining this measurement model with a Bernoulli prior over binary spike trains yields a posterior distribution for spikes given the recorded data. We introduce a greedy algorithm to maximize this posterior that we call “binary pursuit”. The algorithm allows modest variability in spike waveforms and recovers spike times with higher precision than the voltage sampling rate. This method substantially corrects cross-correlation artifacts that arise with conventional methods, and substantially outperforms clustering methods on both real and simulated data. Finally, we develop diagnostic tools that can be used to assess errors in spike sorting in the absence of ground truth. PMID:23671583
Arias, Jean Lucas de Oliveira; Schneider, Antunielle; Batista-Andrade, Jahir Antonio; Vieira, Augusto Alves; Caldas, Sergiane Souza; Primel, Ednei Gilberto
2018-02-01
Clean extracts are essential in LC-MS/MS, since the matrix effect can interfere in the analysis. Alternative materials which can be used as sorbents, such as chitosan in the clean-up step, are cheap and green options. In this study, chitosan from shrimp shell waste was evaluated as a sorbent in the QuEChERS method in order to determine multi-residues of veterinary drugs in different types of milk, i. e., fatty matrices. After optimization, the method showed correlation coefficients above 0.99, LOQs ranged between 1 and 50μgkg -1 and recoveries ranged between 62 and 125%, with RSD<20% for all veterinary drugs in all types of milk under study. The clean-up step which employed chitosan proved to be effective, since it reduced both the matrix effect (from values between -40 and -10% to values from -10 to +10%) and the extract turbidity (up to 95%). When the proposed method was applied to different milk samples, residues of albendazole (49μgkg -1 ), sulfamethazine (
Foadi, James; Aller, Pierre; Alguel, Yilmaz; Cameron, Alex; Axford, Danny; Owen, Robin L; Armour, Wes; Waterman, David G; Iwata, So; Evans, Gwyndaf
2013-08-01
The availability of intense microbeam macromolecular crystallography beamlines at third-generation synchrotron sources has enabled data collection and structure solution from microcrystals of <10 µm in size. The increased likelihood of severe radiation damage where microcrystals or particularly sensitive crystals are used forces crystallographers to acquire large numbers of data sets from many crystals of the same protein structure. The associated analysis and merging of multi-crystal data is currently a manual and time-consuming step. Here, a computer program, BLEND, that has been written to assist with and automate many of the steps in this process is described. It is demonstrated how BLEND has successfully been used in the solution of a novel membrane protein.
Foadi, James; Aller, Pierre; Alguel, Yilmaz; Cameron, Alex; Axford, Danny; Owen, Robin L.; Armour, Wes; Waterman, David G.; Iwata, So; Evans, Gwyndaf
2013-01-01
The availability of intense microbeam macromolecular crystallography beamlines at third-generation synchrotron sources has enabled data collection and structure solution from microcrystals of <10 µm in size. The increased likelihood of severe radiation damage where microcrystals or particularly sensitive crystals are used forces crystallographers to acquire large numbers of data sets from many crystals of the same protein structure. The associated analysis and merging of multi-crystal data is currently a manual and time-consuming step. Here, a computer program, BLEND, that has been written to assist with and automate many of the steps in this process is described. It is demonstrated how BLEND has successfully been used in the solution of a novel membrane protein. PMID:23897484
Distributed optimisation problem with communication delay and external disturbance
NASA Astrophysics Data System (ADS)
Tran, Ngoc-Tu; Xiao, Jiang-Wen; Wang, Yan-Wu; Yang, Wu
2017-12-01
This paper investigates the distributed optimisation problem for the multi-agent systems (MASs) with the simultaneous presence of external disturbance and the communication delay. To solve this problem, a two-step design scheme is introduced. In the first step, based on the internal model principle, the internal model term is constructed to compensate the disturbance asymptotically. In the second step, a distributed optimisation algorithm is designed to solve the distributed optimisation problem based on the MASs with the simultaneous presence of disturbance and communication delay. Moreover, in the proposed algorithm, each agent interacts with its neighbours through the connected topology and the delay occurs during the information exchange. By utilising Lyapunov-Krasovskii functional, the delay-dependent conditions are derived for both slowly and fast time-varying delay, respectively, to ensure the convergence of the algorithm to the optimal solution of the optimisation problem. Several numerical simulation examples are provided to illustrate the effectiveness of the theoretical results.
Design of Ultra-Wideband Tapered Slot Antenna by Using Binomial Transformer with Corrugation
NASA Astrophysics Data System (ADS)
Chareonsiri, Yosita; Thaiwirot, Wanwisa; Akkaraekthalin, Prayoot
2017-05-01
In this paper, the tapered slot antenna (TSA) with corrugation is proposed for UWB applications. The multi-section binomial transformer is used to design taper profile of the proposed TSA that does not involve using time consuming optimization. A step-by-step procedure for synthesis of the step impedance values related with step slot widths of taper profile is presented. The smooth taper can be achieved by fitting the smoothing curve to the entire step slot. The design of TSA based on this method yields results with a quite flat gain and wide impedance bandwidth covering UWB spectrum from 3.1 GHz to 10.6 GHz. To further improve the radiation characteristics, the corrugation is added on the both edges of the proposed TSA. The effects of different corrugation shapes on the improvement of antenna gain and front-to-back ratio (F-to-B ratio) are investigated. To demonstrate the validity of the design, the prototypes of TSA without and with corrugation are fabricated and measured. The results show good agreement between simulation and measurement.
Metaphase II oocytes from human unilaminar follicles grown in a multi-step culture system.
McLaughlin, M; Albertini, D F; Wallace, W H B; Anderson, R A; Telfer, E E
2018-03-01
Can complete oocyte development be achieved from human ovarian tissue containing primordial/unilaminar follicles and grown in vitro in a multi-step culture to meiotic maturation demonstrated by the formation of polar bodies and a Metaphase II spindle? Development of human oocytes from primordial/unilaminar stages to resumption of meiosis (Metaphase II) and emission of a polar body was achieved within a serum free multi-step culture system. Complete development of oocytes in vitro has been achieved in mouse, where in vitro grown (IVG) oocytes from primordial follicles have resulted in the production of live offspring. Human oocytes have been grown in vitro from the secondary/multi-laminar stage to obtain fully grown oocytes capable of meiotic maturation. However, there are no reports of a culture system supporting complete growth from the earliest stages of human follicle development through to Metaphase II. Ovarian cortical biopsies were obtained with informed consent from women undergoing elective caesarean section (mean age: 30.7 ± 1.7; range: 25-39 years, n = 10). Laboratory setting. Ovarian biopsies were dissected into thin strips, and after removal of growing follicles were cultured in serum free medium for 8 days (Step 1). At the end of this period secondary/multi-laminar follicles were dissected from the strips and intact follicles 100-150 μm in diameter were selected for further culture. Isolated follicles were cultured individually in serum free medium in the presence of 100 ng/ml of human recombinant Activin A (Step 2). Individual follicles were monitored and after 8 days, cumulus oocyte complexes (COCs) were retrieved by gentle pressure on the cultured follicles. Complexes with complete cumulus and adherent mural granulosa cells were selected and cultured in the presence of Activin A and FSH on membranes for a further 4 days (Step 3). At the end of Step 3, complexes containing oocytes >100 μm diameter were selected for IVM in SAGE medium (Step 4) then fixed for analysis. Pieces of human ovarian cortex cultured in serum free medium for 8 days (Step 1) supported early follicle growth and 87 secondary follicles of diameter 120 ± 6 μm (mean ± SEM) could be dissected for further culture. After a further 8 days, 54 of the 87 follicles had reached the antral stage of development. COCs were retrieved by gentle pressure from the cultured follicles and those with adherent mural granulosa cells (n = 48) were selected and cultured for a further 4 days (Step 3). At the end of Step 3, 32 complexes contained oocytes >100 μm diameter were selected for IVM (Step 4). Nine of these complexes contained polar bodies within 24 h and all polar bodies were abnormally large. Confocal immuno-histochemical analysis showed the presence of a Metaphase II spindle confirming that these IVG oocytes had resumed meiosis but their developmental potential is unknown. This is a small number of samples but provides proof of concept that complete development of human oocytes can occur in vitro. Further optimization with morphological evaluation and fertilization potential of IVG oocytes is required to determine whether they are normal. The ability to develop human oocytes from the earliest follicular stages in vitro through to maturation and fertilization would benefit fertility preservation practice. Funded by MRC Grants (G0901839 and MR/L00299X/1). No competing interests.
Phase change cellular automata modeling of GeTe, GaSb and SnSe stacked chalcogenide films
NASA Astrophysics Data System (ADS)
Mihai, C.; Velea, A.
2018-06-01
Data storage needs are increasing at a rapid pace across all economic sectors, so the need for new memory technologies with adequate capabilities is also high. Phase change memories (PCMs) are a leading contender in the emerging race for non-volatile memories due to their fast operation speed, high scalability, good reliability and low power consumption. However, in order to meet the present and future storage demands, PCM technologies must further increase the storage density. Here, we employ a probabilistic cellular automata approach to explore the multi-step threshold switching from the reset (off) to the set (on) state in chalcogenide stacked structures. Simulations have shown that in order to obtain multi-step switching with high contrast among different resistance states, the stacked structure needs to contain materials with a large difference among their crystallization temperatures and careful tuning of strata thicknesses. The crystallization dynamics can be controlled through the external energy pulses applied to the system, in such a way that a balance between nucleation and growth in phase change behavior can be achieved, optimized for PCMs.
NASA Astrophysics Data System (ADS)
Vikram, K. Arun; Ratnam, Ch; Lakshmi, VVK; Kumar, A. Sunny; Ramakanth, RT
2018-02-01
Meta-heuristic multi-response optimization methods are widely in use to solve multi-objective problems to obtain Pareto optimal solutions during optimization. This work focuses on optimal multi-response evaluation of process parameters in generating responses like surface roughness (Ra), surface hardness (H) and tool vibration displacement amplitude (Vib) while performing operations like tangential and orthogonal turn-mill processes on A-axis Computer Numerical Control vertical milling center. Process parameters like tool speed, feed rate and depth of cut are considered as process parameters machined over brass material under dry condition with high speed steel end milling cutters using Taguchi design of experiments (DOE). Meta-heuristic like Dragonfly algorithm is used to optimize the multi-objectives like ‘Ra’, ‘H’ and ‘Vib’ to identify the optimal multi-response process parameters combination. Later, the results thus obtained from multi-objective dragonfly algorithm (MODA) are compared with another multi-response optimization technique Viz. Grey relational analysis (GRA).
Structural damage detection-oriented multi-type sensor placement with multi-objective optimization
NASA Astrophysics Data System (ADS)
Lin, Jian-Fu; Xu, You-Lin; Law, Siu-Seong
2018-05-01
A structural damage detection-oriented multi-type sensor placement method with multi-objective optimization is developed in this study. The multi-type response covariance sensitivity-based damage detection method is first introduced. Two objective functions for optimal sensor placement are then introduced in terms of the response covariance sensitivity and the response independence. The multi-objective optimization problem is formed by using the two objective functions, and the non-dominated sorting genetic algorithm (NSGA)-II is adopted to find the solution for the optimal multi-type sensor placement to achieve the best structural damage detection. The proposed method is finally applied to a nine-bay three-dimensional frame structure. Numerical results show that the optimal multi-type sensor placement determined by the proposed method can avoid redundant sensors and provide satisfactory results for structural damage detection. The restriction on the number of each type of sensors in the optimization can reduce the searching space in the optimization to make the proposed method more effective. Moreover, how to select a most optimal sensor placement from the Pareto solutions via the utility function and the knee point method is demonstrated in the case study.
Designing single- and multiple-shell sampling schemes for diffusion MRI using spherical code.
Cheng, Jian; Shen, Dinggang; Yap, Pew-Thian
2014-01-01
In diffusion MRI (dMRI), determining an appropriate sampling scheme is crucial for acquiring the maximal amount of information for data reconstruction and analysis using the minimal amount of time. For single-shell acquisition, uniform sampling without directional preference is usually favored. To achieve this, a commonly used approach is the Electrostatic Energy Minimization (EEM) method introduced in dMRI by Jones et al. However, the electrostatic energy formulation in EEM is not directly related to the goal of optimal sampling-scheme design, i.e., achieving large angular separation between sampling points. A mathematically more natural approach is to consider the Spherical Code (SC) formulation, which aims to achieve uniform sampling by maximizing the minimal angular difference between sampling points on the unit sphere. Although SC is well studied in the mathematical literature, its current formulation is limited to a single shell and is not applicable to multiple shells. Moreover, SC, or more precisely continuous SC (CSC), currently can only be applied on the continuous unit sphere and hence cannot be used in situations where one or several subsets of sampling points need to be determined from an existing sampling scheme. In this case, discrete SC (DSC) is required. In this paper, we propose novel DSC and CSC methods for designing uniform single-/multi-shell sampling schemes. The DSC and CSC formulations are solved respectively by Mixed Integer Linear Programming (MILP) and a gradient descent approach. A fast greedy incremental solution is also provided for both DSC and CSC. To our knowledge, this is the first work to use SC formulation for designing sampling schemes in dMRI. Experimental results indicate that our methods obtain larger angular separation and better rotational invariance than the generalized EEM (gEEM) method currently used in the Human Connectome Project (HCP).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khawli, Toufik Al; Eppelt, Urs; Hermanns, Torsten
2016-06-08
In production industries, parameter identification, sensitivity analysis and multi-dimensional visualization are vital steps in the planning process for achieving optimal designs and gaining valuable information. Sensitivity analysis and visualization can help in identifying the most-influential parameters and quantify their contribution to the model output, reduce the model complexity, and enhance the understanding of the model behavior. Typically, this requires a large number of simulations, which can be both very expensive and time consuming when the simulation models are numerically complex and the number of parameter inputs increases. There are three main constituent parts in this work. The first part ismore » to substitute the numerical, physical model by an accurate surrogate model, the so-called metamodel. The second part includes a multi-dimensional visualization approach for the visual exploration of metamodels. In the third part, the metamodel is used to provide the two global sensitivity measures: i) the Elementary Effect for screening the parameters, and ii) the variance decomposition method for calculating the Sobol indices that quantify both the main and interaction effects. The application of the proposed approach is illustrated with an industrial application with the goal of optimizing a drilling process using a Gaussian laser beam.« less
NASA Astrophysics Data System (ADS)
Khawli, Toufik Al; Gebhardt, Sascha; Eppelt, Urs; Hermanns, Torsten; Kuhlen, Torsten; Schulz, Wolfgang
2016-06-01
In production industries, parameter identification, sensitivity analysis and multi-dimensional visualization are vital steps in the planning process for achieving optimal designs and gaining valuable information. Sensitivity analysis and visualization can help in identifying the most-influential parameters and quantify their contribution to the model output, reduce the model complexity, and enhance the understanding of the model behavior. Typically, this requires a large number of simulations, which can be both very expensive and time consuming when the simulation models are numerically complex and the number of parameter inputs increases. There are three main constituent parts in this work. The first part is to substitute the numerical, physical model by an accurate surrogate model, the so-called metamodel. The second part includes a multi-dimensional visualization approach for the visual exploration of metamodels. In the third part, the metamodel is used to provide the two global sensitivity measures: i) the Elementary Effect for screening the parameters, and ii) the variance decomposition method for calculating the Sobol indices that quantify both the main and interaction effects. The application of the proposed approach is illustrated with an industrial application with the goal of optimizing a drilling process using a Gaussian laser beam.
A derived heuristics based multi-objective optimization procedure for micro-grid scheduling
NASA Astrophysics Data System (ADS)
Li, Xin; Deb, Kalyanmoy; Fang, Yanjun
2017-06-01
With the availability of different types of power generators to be used in an electric micro-grid system, their operation scheduling as the load demand changes with time becomes an important task. Besides satisfying load balance constraints and the generator's rated power, several other practicalities, such as limited availability of grid power and restricted ramping of power output from generators, must all be considered during the operation scheduling process, which makes it difficult to decide whether the optimization results are accurate and satisfactory. In solving such complex practical problems, heuristics-based customized optimization algorithms are suggested. However, due to nonlinear and complex interactions of variables, it is difficult to come up with heuristics in such problems off-hand. In this article, a two-step strategy is proposed in which the first task deciphers important heuristics about the problem and the second task utilizes the derived heuristics to solve the original problem in a computationally fast manner. Specifically, the specific operation scheduling is considered from a two-objective (cost and emission) point of view. The first task develops basic and advanced level knowledge bases offline from a series of prior demand-wise optimization runs and then the second task utilizes them to modify optimized solutions in an application scenario. Results on island and grid connected modes and several pragmatic formulations of the micro-grid operation scheduling problem clearly indicate the merit of the proposed two-step procedure.
Parallel Multi-Step/Multi-Rate Integration of Two-Time Scale Dynamic Systems
NASA Technical Reports Server (NTRS)
Chang, Johnny T.; Ploen, Scott R.; Sohl, Garett. A,; Martin, Bryan J.
2004-01-01
Increasing demands on the fidelity of simulations for real-time and high-fidelity simulations are stressing the capacity of modern processors. New integration techniques are required that provide maximum efficiency for systems that are parallelizable. However many current techniques make assumptions that are at odds with non-cascadable systems. A new serial multi-step/multi-rate integration algorithm for dual-timescale continuous state systems is presented which applies to these systems, and is extended to a parallel multi-step/multi-rate algorithm. The superior performance of both algorithms is demonstrated through a representative example.
A multi-scale convolutional neural network for phenotyping high-content cellular images.
Godinez, William J; Hossain, Imtiaz; Lazic, Stanley E; Davies, John W; Zhang, Xian
2017-07-01
Identifying phenotypes based on high-content cellular images is challenging. Conventional image analysis pipelines for phenotype identification comprise multiple independent steps, with each step requiring method customization and adjustment of multiple parameters. Here, we present an approach based on a multi-scale convolutional neural network (M-CNN) that classifies, in a single cohesive step, cellular images into phenotypes by using directly and solely the images' pixel intensity values. The only parameters in the approach are the weights of the neural network, which are automatically optimized based on training images. The approach requires no a priori knowledge or manual customization, and is applicable to single- or multi-channel images displaying single or multiple cells. We evaluated the classification performance of the approach on eight diverse benchmark datasets. The approach yielded overall a higher classification accuracy compared with state-of-the-art results, including those of other deep CNN architectures. In addition to using the network to simply obtain a yes-or-no prediction for a given phenotype, we use the probability outputs calculated by the network to quantitatively describe the phenotypes. This study shows that these probability values correlate with chemical treatment concentrations. This finding validates further our approach and enables chemical treatment potency estimation via CNNs. The network specifications and solver definitions are provided in Supplementary Software 1. william_jose.godinez_navarro@novartis.com or xian-1.zhang@novartis.com. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
NASA Astrophysics Data System (ADS)
Barthelat, Francois
2014-12-01
Nacre, bone and spider silk are staggered composites where inclusions of high aspect ratio reinforce a softer matrix. Such staggered composites have emerged through natural selection as the best configuration to produce stiffness, strength and toughness simultaneously. As a result, these remarkable materials are increasingly serving as model for synthetic composites with unusual and attractive performance. While several models have been developed to predict basic properties for biological and bio-inspired staggered composites, the designer is still left to struggle with finding optimum parameters. Unresolved issues include choosing optimum properties for inclusions and matrix, and resolving the contradictory effects of certain design variables. Here we overcome these difficulties with a multi-objective optimization for simultaneous high stiffness, strength and energy absorption in staggered composites. Our optimization scheme includes material properties for inclusions and matrix as design variables. This process reveals new guidelines, for example the staggered microstructure is only advantageous if the tablets are at least five times stronger than the interfaces, and only if high volume concentrations of tablets are used. We finally compile the results into a step-by-step optimization procedure which can be applied for the design of any type of high-performance staggered composite and at any length scale. The procedure produces optimum designs which are consistent with the materials and microstructure of natural nacre, confirming that this natural material is indeed optimized for mechanical performance.
Multi-period equilibrium/near-equilibrium in electricity markets based on locational marginal prices
NASA Astrophysics Data System (ADS)
Garcia Bertrand, Raquel
In this dissertation we propose an equilibrium procedure that coordinates the point of view of every market agent resulting in an equilibrium that simultaneously maximizes the independent objective of every market agent and satisfies network constraints. Therefore, the activities of the generating companies, consumers and an independent system operator are modeled: (1) The generating companies seek to maximize profits by specifying hourly step functions of productions and minimum selling prices, and bounds on productions. (2) The goals of the consumers are to maximize their economic utilities by specifying hourly step functions of demands and maximum buying prices, and bounds on demands. (3) The independent system operator then clears the market taking into account consistency conditions as well as capacity and line losses so as to achieve maximum social welfare. Then, we approach this equilibrium problem using complementarity theory in order to have the capability of imposing constraints on dual variables, i.e., on prices, such as minimum profit conditions for the generating units or maximum cost conditions for the consumers. In this way, given the form of the individual optimization problems, the Karush-Kuhn-Tucker conditions for the generating companies, the consumers and the independent system operator are both necessary and sufficient. The simultaneous solution to all these conditions constitutes a mixed linear complementarity problem. We include minimum profit constraints imposed by the units in the market equilibrium model. These constraints are added as additional constraints to the equivalent quadratic programming problem of the mixed linear complementarity problem previously described. For the sake of clarity, the proposed equilibrium or near-equilibrium is first developed for the particular case considering only one time period. Afterwards, we consider an equilibrium or near-equilibrium applied to a multi-period framework. This model embodies binary decisions, i.e., on/off status for the units, and therefore optimality conditions cannot be directly applied. To avoid limitations provoked by binary variables, while retaining the advantages of using optimality conditions, we define the multi-period market equilibrium using Benders decomposition, which allows computing binary variables through the master problem and continuous variables through the subproblem. Finally, we illustrate these market equilibrium concepts through several case studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, F.; Banks, J. W.; Henshaw, W. D.
We describe a new partitioned approach for solving conjugate heat transfer (CHT) problems where the governing temperature equations in different material domains are time-stepped in a implicit manner, but where the interface coupling is explicit. The new approach, called the CHAMP scheme (Conjugate Heat transfer Advanced Multi-domain Partitioned), is based on a discretization of the interface coupling conditions using a generalized Robin (mixed) condition. The weights in the Robin condition are determined from the optimization of a condition derived from a local stability analysis of the coupling scheme. The interface treatment combines ideas from optimized-Schwarz methods for domain-decomposition problems togethermore » with the interface jump conditions and additional compatibility jump conditions derived from the governing equations. For many problems (i.e. for a wide range of material properties, grid-spacings and time-steps) the CHAMP algorithm is stable and second-order accurate using no sub-time-step iterations (i.e. a single implicit solve of the temperature equation in each domain). In extreme cases (e.g. very fine grids with very large time-steps) it may be necessary to perform one or more sub-iterations. Each sub-iteration generally increases the range of stability substantially and thus one sub-iteration is likely sufficient for the vast majority of practical problems. The CHAMP algorithm is developed first for a model problem and analyzed using normal-mode the- ory. The theory provides a mechanism for choosing optimal parameters in the mixed interface condition. A comparison is made to the classical Dirichlet-Neumann (DN) method and, where applicable, to the optimized- Schwarz (OS) domain-decomposition method. For problems with different thermal conductivities and dif- fusivities, the CHAMP algorithm outperforms the DN scheme. For domain-decomposition problems with uniform conductivities and diffusivities, the CHAMP algorithm performs better than the typical OS scheme with one grid-cell overlap. Lastly, the CHAMP scheme is also developed for general curvilinear grids and CHT ex- amples are presented using composite overset grids that confirm the theory and demonstrate the effectiveness of the approach.« less
Wang, Zhiwei; Liu, Chaoyue; Cheng, Danpeng; Wang, Liang; Yang, Xin; Cheng, Kwang-Ting
2018-05-01
Automated methods for detecting clinically significant (CS) prostate cancer (PCa) in multi-parameter magnetic resonance images (mp-MRI) are of high demand. Existing methods typically employ several separate steps, each of which is optimized individually without considering the error tolerance of other steps. As a result, they could either involve unnecessary computational cost or suffer from errors accumulated over steps. In this paper, we present an automated CS PCa detection system, where all steps are optimized jointly in an end-to-end trainable deep neural network. The proposed neural network consists of concatenated subnets: 1) a novel tissue deformation network (TDN) for automated prostate detection and multimodal registration and 2) a dual-path convolutional neural network (CNN) for CS PCa detection. Three types of loss functions, i.e., classification loss, inconsistency loss, and overlap loss, are employed for optimizing all parameters of the proposed TDN and CNN. In the training phase, the two nets mutually affect each other and effectively guide registration and extraction of representative CS PCa-relevant features to achieve results with sufficient accuracy. The entire network is trained in a weakly supervised manner by providing only image-level annotations (i.e., presence/absence of PCa) without exact priors of lesions' locations. Compared with most existing systems which require supervised labels, e.g., manual delineation of PCa lesions, it is much more convenient for clinical usage. Comprehensive evaluation based on fivefold cross validation using 360 patient data demonstrates that our system achieves a high accuracy for CS PCa detection, i.e., a sensitivity of 0.6374 and 0.8978 at 0.1 and 1 false positives per normal/benign patient.
Scheduling Results for the THEMIS Observation Scheduling Tool
NASA Technical Reports Server (NTRS)
Mclaren, David; Rabideau, Gregg; Chien, Steve; Knight, Russell; Anwar, Sadaat; Mehall, Greg; Christensen, Philip
2011-01-01
We describe a scheduling system intended to assist in the development of instrument data acquisitions for the THEMIS instrument, onboard the Mars Odyssey spacecraft, and compare results from multiple scheduling algorithms. This tool creates observations of both (a) targeted geographical regions of interest and (b) general mapping observations, while respecting spacecraft constraints such as data volume, observation timing, visibility, lighting, season, and science priorities. This tool therefore must address both geometric and state/timing/resource constraints. We describe a tool that maps geometric polygon overlap constraints to set covering constraints using a grid-based approach. These set covering constraints are then incorporated into a greedy optimization scheduling algorithm incorporating operations constraints to generate feasible schedules. The resultant tool generates schedules of hundreds of observations per week out of potential thousands of observations. This tool is currently under evaluation by the THEMIS observation planning team at Arizona State University.
Application of constraint-based satellite mission planning model in forest fire monitoring
NASA Astrophysics Data System (ADS)
Guo, Bingjun; Wang, Hongfei; Wu, Peng
2017-10-01
In this paper, a constraint-based satellite mission planning model is established based on the thought of constraint satisfaction. It includes target, request, observation, satellite, payload and other elements, with constraints linked up. The optimization goal of the model is to make full use of time and resources, and improve the efficiency of target observation. Greedy algorithm is used in the model solving to make observation plan and data transmission plan. Two simulation experiments are designed and carried out, which are routine monitoring of global forest fire and emergency monitoring of forest fires in Australia. The simulation results proved that the model and algorithm perform well. And the model is of good emergency response capability. Efficient and reasonable plan can be worked out to meet users' needs under complex cases of multiple payloads, multiple targets and variable priorities with this model.
NASA Astrophysics Data System (ADS)
Sun, Liang; McKay, Matthew R.
2014-08-01
This paper studies the sum rate performance of a low complexity quantized CSI-based Tomlinson-Harashima (TH) precoding scheme for downlink multiuser MIMO tansmission, employing greedy user selection. The asymptotic distribution of the output signal to interference plus noise ratio of each selected user and the asymptotic sum rate as the number of users K grows large are derived by using extreme value theory. For fixed finite signal to noise ratios and a finite number of transmit antennas $n_T$, we prove that as K grows large, the proposed approach can achieve the optimal sum rate scaling of the MIMO broadcast channel. We also prove that, if we ignore the precoding loss, the average sum rate of this approach converges to the average sum capacity of the MIMO broadcast channel. Our results provide insights into the effect of multiuser interference caused by quantized CSI on the multiuser diversity gain.
Optimal stabilization of Boolean networks through collective influence
NASA Astrophysics Data System (ADS)
Wang, Jiannan; Pei, Sen; Wei, Wei; Feng, Xiangnan; Zheng, Zhiming
2018-03-01
Boolean networks have attracted much attention due to their wide applications in describing dynamics of biological systems. During past decades, much effort has been invested in unveiling how network structure and update rules affect the stability of Boolean networks. In this paper, we aim to identify and control a minimal set of influential nodes that is capable of stabilizing an unstable Boolean network. For locally treelike Boolean networks with biased truth tables, we propose a greedy algorithm to identify influential nodes in Boolean networks by minimizing the largest eigenvalue of a modified nonbacktracking matrix. We test the performance of the proposed collective influence algorithm on four different networks. Results show that the collective influence algorithm can stabilize each network with a smaller set of nodes compared with other heuristic algorithms. Our work provides a new insight into the mechanism that determines the stability of Boolean networks, which may find applications in identifying virulence genes that lead to serious diseases.
Determination system for solar cell layout in traffic light network using dominating set
NASA Astrophysics Data System (ADS)
Eka Yulia Retnani, Windi; Fambudi, Brelyanes Z.; Slamin
2018-04-01
Graph Theory is one of the fields in Mathematics that solves discrete problems. In daily life, the applications of Graph Theory are used to solve various problems. One of the topics in the Graph Theory that is used to solve the problem is the dominating set. The concept of dominating set is used, for example, to locate some objects systematically. In this study, the dominating set are used to determine the dominating points for solar panels, where the vertex represents the traffic light point and the edge represents the connection between the points of the traffic light. To search the dominating points for solar panels using the greedy algorithm. This algorithm is used to determine the location of solar panel. This research produced applications that can determine the location of solar panels with optimal results, that is, the minimum dominating points.
Resource-aware taxon selection for maximizing phylogenetic diversity.
Pardi, Fabio; Goldman, Nick
2007-06-01
Phylogenetic diversity (PD) is a useful metric for selecting taxa in a range of biological applications, for example, bioconservation and genomics, where the selection is usually constrained by the limited availability of resources. We formalize taxon selection as a conceptually simple optimization problem, aiming to maximize PD subject to resource constraints. This allows us to take into account the different amounts of resources required by the different taxa. Although this is a computationally difficult problem, we present a dynamic programming algorithm that solves it in pseudo-polynomial time. Our algorithm can also solve many instances of the Noah's Ark Problem, a more realistic formulation of taxon selection for biodiversity conservation that allows for taxon-specific extinction risks. These instances extend the set of problems for which solutions are available beyond previously known greedy-tractable cases. Finally, we discuss the relevance of our results to real-life scenarios.
Semi-supervised learning via regularized boosting working on multiple semi-supervised assumptions.
Chen, Ke; Wang, Shihai
2011-01-01
Semi-supervised learning concerns the problem of learning in the presence of labeled and unlabeled data. Several boosting algorithms have been extended to semi-supervised learning with various strategies. To our knowledge, however, none of them takes all three semi-supervised assumptions, i.e., smoothness, cluster, and manifold assumptions, together into account during boosting learning. In this paper, we propose a novel cost functional consisting of the margin cost on labeled data and the regularization penalty on unlabeled data based on three fundamental semi-supervised assumptions. Thus, minimizing our proposed cost functional with a greedy yet stagewise functional optimization procedure leads to a generic boosting framework for semi-supervised learning. Extensive experiments demonstrate that our algorithm yields favorite results for benchmark and real-world classification tasks in comparison to state-of-the-art semi-supervised learning algorithms, including newly developed boosting algorithms. Finally, we discuss relevant issues and relate our algorithm to the previous work.
Xu, Gongxian; Liu, Ying; Gao, Qunwang
2016-02-10
This paper deals with multi-objective optimization of continuous bio-dissimilation process of glycerol to 1, 3-propanediol. In order to maximize the production rate of 1, 3-propanediol, maximize the conversion rate of glycerol to 1, 3-propanediol, maximize the conversion rate of glycerol, and minimize the concentration of by-product ethanol, we first propose six new multi-objective optimization models that can simultaneously optimize any two of the four objectives above. Then these multi-objective optimization problems are solved by using the weighted-sum and normal-boundary intersection methods respectively. Both the Pareto filter algorithm and removal criteria are used to remove those non-Pareto optimal points obtained by the normal-boundary intersection method. The results show that the normal-boundary intersection method can successfully obtain the approximate Pareto optimal sets of all the proposed multi-objective optimization problems, while the weighted-sum approach cannot achieve the overall Pareto optimal solutions of some multi-objective problems. Copyright © 2015 Elsevier B.V. All rights reserved.
Multi-objective Optimization Design of Gear Reducer Based on Adaptive Genetic Algorithms
NASA Astrophysics Data System (ADS)
Li, Rui; Chang, Tian; Wang, Jianwei; Wei, Xiaopeng; Wang, Jinming
2008-11-01
An adaptive Genetic Algorithm (GA) is introduced to solve the multi-objective optimized design of the reducer. Firstly, according to the structure, strength, etc. in a reducer, a multi-objective optimized model of the helical gear reducer is established. And then an adaptive GA based on a fuzzy controller is introduced, aiming at the characteristics of multi-objective, multi-parameter, multi-constraint conditions. Finally, a numerical example is illustrated to show the advantages of this approach and the effectiveness of an adaptive genetic algorithm used in optimized design of a reducer.
A cooperative game framework for detecting overlapping communities in social networks
NASA Astrophysics Data System (ADS)
Jonnalagadda, Annapurna; Kuppusamy, Lakshmanan
2018-02-01
Community detection in social networks is a challenging and complex task, which received much attention from researchers of multiple domains in recent years. The evolution of communities in social networks happens merely due to the self-interest of the nodes. The interesting feature of community structure in social networks is the multi membership of the nodes resulting in overlapping communities. Assuming the nodes of the social network as self-interested players, the dynamics of community formation can be captured in the form of a game. In this paper, we propose a greedy algorithm, namely, Weighted Graph Community Game (WGCG), in order to model the interactions among the self-interested nodes of the social network. The proposed algorithm employs the Shapley value mechanism to discover the inherent communities of the underlying social network. The experimental evaluation on the real-world and synthetic benchmark networks demonstrates that the performance of the proposed algorithm is superior to the state-of-the-art overlapping community detection algorithms.
Gaussian functional regression for output prediction: Model assimilation and experimental design
NASA Astrophysics Data System (ADS)
Nguyen, N. C.; Peraire, J.
2016-03-01
In this paper, we introduce a Gaussian functional regression (GFR) technique that integrates multi-fidelity models with model reduction to efficiently predict the input-output relationship of a high-fidelity model. The GFR method combines the high-fidelity model with a low-fidelity model to provide an estimate of the output of the high-fidelity model in the form of a posterior distribution that can characterize uncertainty in the prediction. A reduced basis approximation is constructed upon the low-fidelity model and incorporated into the GFR method to yield an inexpensive posterior distribution of the output estimate. As this posterior distribution depends crucially on a set of training inputs at which the high-fidelity models are simulated, we develop a greedy sampling algorithm to select the training inputs. Our approach results in an output prediction model that inherits the fidelity of the high-fidelity model and has the computational complexity of the reduced basis approximation. Numerical results are presented to demonstrate the proposed approach.
2012-01-01
Nanochannel arrays were fabricated by the self-organized multi-electrolyte-step anodic aluminum oxide [AAO] method in this study. The anodization conditions used in the multi-electrolyte-step AAO method included a phosphoric acid solution as the electrolyte and an applied high voltage. There was a change in the phosphoric acid by the oxalic acid solution as the electrolyte and the applied low voltage. This method was used to produce self-organized nanochannel arrays with good regularity and circularity, meaning less power loss and processing time than with the multi-step AAO method. PMID:22333268
Rizzetti, Tiele M; de Souza, Maiara P; Prestes, Osmar D; Adaime, Martha B; Zanella, Renato
2018-04-25
In this study a simple and fast multi-class method for the determination of veterinary drugs in bovine liver, kidney and muscle was developed. The method employed acetonitrile for extraction followed by clean-up with EMR-Lipid® sorbent and trichloracetic acid. Tests indicated that the use of TCA was most effective when added in the final step of the clean-up procedure instead of during extraction. Different sorbents were tested and optimized using central composite design and the analytes determined by ultra-high-performance liquid chromatographic-tandem mass spectrometry (UHPLC-MS/MS). The method was validated according the European Commission Decision 2002/657 presenting satisfactory results for 69 veterinary drugs in bovine liver and 68 compounds in bovine muscle and kidney. The method was applied in real samples and in proficiency tests and proved to be adequate for routine analysis. Residues of abamectin, doramectin, eprinomectin and ivermectin were found in samples of bovine muscle and only ivermectin in bovine liver. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lu, Xuekun; Taiwo, Oluwadamilola O.; Bertei, Antonio; Li, Tao; Li, Kang; Brett, Dan J. L.; Shearing, Paul R.
2017-11-01
Effective microstructural properties are critical in determining the electrochemical performance of solid oxide fuel cells (SOFCs), particularly when operating at high current densities. A novel tubular SOFC anode with a hierarchical microstructure, composed of self-organized micro-channels and sponge-like regions, has been fabricated by a phase inversion technique to mitigate concentration losses. However, since pore sizes span over two orders of magnitude, the determination of the effective transport parameters using image-based techniques remains challenging. Pioneering steps are made in this study to characterize and optimize the microstructure by coupling multi-length scale 3D tomography and modeling. The results conclusively show that embedding finger-like micro-channels into the tubular anode can improve the mass transport by 250% and the permeability by 2-3 orders of magnitude. Our parametric study shows that increasing the porosity in the spongy layer beyond 10% enhances the effective transport parameters of the spongy layer at an exponential rate, but linearly for the full anode. For the first time, local and global mass transport properties are correlated to the microstructure, which is of wide interest for rationalizing the design optimization of SOFC electrodes and more generally for hierarchical materials in batteries and membranes.
Optimal Frequency-Domain System Realization with Weighting
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Maghami, Peiman G.
1999-01-01
Several approaches are presented to identify an experimental system model directly from frequency response data. The formulation uses a matrix-fraction description as the model structure. Frequency weighting such as exponential weighting is introduced to solve a weighted least-squares problem to obtain the coefficient matrices for the matrix-fraction description. A multi-variable state-space model can then be formed using the coefficient matrices of the matrix-fraction description. Three different approaches are introduced to fine-tune the model using nonlinear programming methods to minimize the desired cost function. The first method uses an eigenvalue assignment technique to reassign a subset of system poles to improve the identified model. The second method deals with the model in the real Schur or modal form, reassigns a subset of system poles, and adjusts the columns (rows) of the input (output) influence matrix using a nonlinear optimizer. The third method also optimizes a subset of poles, but the input and output influence matrices are refined at every optimization step through least-squares procedures.
Mechanical and Metallurgical Evolution of Stainless Steel 321 in a Multi-step Forming Process
NASA Astrophysics Data System (ADS)
Anderson, M.; Bridier, F.; Gholipour, J.; Jahazi, M.; Wanjara, P.; Bocher, P.; Savoie, J.
2016-04-01
This paper examines the metallurgical evolution of AISI Stainless Steel 321 (SS 321) during multi-step forming, a process that involves cycles of deformation with intermediate heat treatment steps. The multi-step forming process was simulated by implementing interrupted uniaxial tensile testing experiments. Evolution of the mechanical properties as well as the microstructural features, such as twins and textures of the austenite and martensite phases, was studied as a function of the multi-step forming process. The characteristics of the Strain-Induced Martensite (SIM) were also documented for each deformation step and intermediate stress relief heat treatment. The results indicated that the intermediate heat treatments considerably increased the formability of SS 321. Texture analysis showed that the effect of the intermediate heat treatment on the austenite was minor and led to partial recrystallization, while deformation was observed to reinforce the crystallographic texture of austenite. For the SIM, an Olson-Cohen equation type was identified to analytically predict its formation during the multi-step forming process. The generated SIM was textured and weakened with increasing deformation.
NASA Astrophysics Data System (ADS)
Widowati; Putro, S. P.; Silfiana
2018-05-01
Integrated Multi-Trophic Aquaculture (IMTA) is a polyculture with several biotas maintained in it to optimize waste recycling as a food source. The interaction between phytoplankton and nitrogen as waste in fish cultivation including ammonia, nitrite, and nitrate studied in the form of mathematical models. The form model is non-linear systems of differential equations with the four variables. The analytical analysis was used to study the dynamic behavior of this model. Local stability analysis is performed at the equilibrium point with the first step linearized model by using Taylor series, then determined the Jacobian matrix. If all eigenvalues have negative real parts, then the equilibrium of the system is locally asymptotic stable. Some numerical simulations were also demonstrated to verify our analytical result.
NASA Astrophysics Data System (ADS)
Giuliani, Matteo; Mason, Emanuele; Castelletti, Andrea; Pianosi, Francesca
2014-05-01
The optimal operation of water resources systems is a wide and challenging problem due to non-linearities in the model and the objectives, high dimensional state-control space, and strong uncertainties in the hydroclimatic regimes. The application of classical optimization techniques (e.g., SDP, Q-learning, gradient descent-based algorithms) is strongly limited by the dimensionality of the system and by the presence of multiple, conflicting objectives. This study presents a novel approach which combines Direct Policy Search (DPS) and Multi-Objective Evolutionary Algorithms (MOEAs) to solve high-dimensional state and control space problems involving multiple objectives. DPS, also known as parameterization-simulation-optimization in the water resources literature, is a simulation-based approach where the reservoir operating policy is first parameterized within a given family of functions and, then, the parameters optimized with respect to the objectives of the management problem. The selection of a suitable class of functions to which the operating policy belong to is a key step, as it might restrict the search for the optimal policy to a subspace of the decision space that does not include the optimal solution. In the water reservoir literature, a number of classes have been proposed. However, many of these rules are based largely on empirical or experimental successes and they were designed mostly via simulation and for single-purpose reservoirs. In a multi-objective context similar rules can not easily inferred from the experience and the use of universal function approximators is generally preferred. In this work, we comparatively analyze two among the most common universal approximators: artificial neural networks (ANN) and radial basis functions (RBF) under different problem settings to estimate their scalability and flexibility in dealing with more and more complex problems. The multi-purpose HoaBinh water reservoir in Vietnam, accounting for hydropower production and flood control, is used as a case study. Preliminary results show that the RBF policy parametrization is more effective than the ANN one. In particular, the approximated Pareto front obtained with RBF control policies successfully explores the full tradeoff space between the two conflicting objectives, while most of the ANN solutions results to be Pareto-dominated by the RBF ones.
Ray, Chad A; Patel, Vimal; Shih, Judy; Macaraeg, Chris; Wu, Yuling; Thway, Theingi; Ma, Mark; Lee, Jean W; Desilva, Binodh
2009-02-20
Developing a process that generates robust immunoassays that can be used to support studies with tight timelines is a common challenge for bioanalytical laboratories. Design of experiments (DOEs) is a tool that has been used by many industries for the purpose of optimizing processes. The approach is capable of identifying critical factors and their interactions with a minimal number of experiments. The challenge for implementing this tool in the bioanalytical laboratory is to develop a user-friendly approach that scientists can understand and apply. We have successfully addressed these challenges by eliminating the screening design, introducing automation, and applying a simple mathematical approach for the output parameter. A modified central composite design (CCD) was applied to three ligand binding assays. The intra-plate factors selected were coating, detection antibody concentration, and streptavidin-HRP concentrations. The inter-plate factors included incubation times for each step. The objective was to maximize the logS/B (S/B) of the low standard to the blank. The maximum desirable conditions were determined using JMP 7.0. To verify the validity of the predictions, the logS/B prediction was compared against the observed logS/B during pre-study validation experiments. The three assays were optimized using the multi-factorial DOE. The total error for all three methods was less than 20% which indicated method robustness. DOE identified interactions in one of the methods. The model predictions for logS/B were within 25% of the observed pre-study validation values for all methods tested. The comparison between the CCD and hybrid screening design yielded comparable parameter estimates. The user-friendly design enables effective application of multi-factorial DOE to optimize ligand binding assays for therapeutic proteins. The approach allows for identification of interactions between factors, consistency in optimal parameter determination, and reduced method development time.
A Globally Optimal Particle Tracking Technique for Stereo Imaging Velocimetry Experiments
NASA Technical Reports Server (NTRS)
McDowell, Mark
2008-01-01
An important phase of any Stereo Imaging Velocimetry experiment is particle tracking. Particle tracking seeks to identify and characterize the motion of individual particles entrained in a fluid or air experiment. We analyze a cylindrical chamber filled with water and seeded with density-matched particles. In every four-frame sequence, we identify a particle track by assigning a unique track label for each camera image. The conventional approach to particle tracking is to use an exhaustive tree-search method utilizing greedy algorithms to reduce search times. However, these types of algorithms are not optimal due to a cascade effect of incorrect decisions upon adjacent tracks. We examine the use of a guided evolutionary neural net with simulated annealing to arrive at a globally optimal assignment of tracks. The net is guided both by the minimization of the search space through the use of prior limiting assumptions about valid tracks and by a strategy which seeks to avoid high-energy intermediate states which can trap the net in a local minimum. A stochastic search algorithm is used in place of back-propagation of error to further reduce the chance of being trapped in an energy well. Global optimization is achieved by minimizing an objective function, which includes both track smoothness and particle-image utilization parameters. In this paper we describe our model and present our experimental results. We compare our results with a nonoptimizing, predictive tracker and obtain an average increase in valid track yield of 27 percent
On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment
Alonso-Mora, Javier; Samaranayake, Samitha; Wallar, Alex; Frazzoli, Emilio; Rus, Daniela
2017-01-01
Ride-sharing services are transforming urban mobility by providing timely and convenient transportation to anybody, anywhere, and anytime. These services present enormous potential for positive societal impacts with respect to pollution, energy consumption, congestion, etc. Current mathematical models, however, do not fully address the potential of ride-sharing. Recently, a large-scale study highlighted some of the benefits of car pooling but was limited to static routes with two riders per vehicle (optimally) or three (with heuristics). We present a more general mathematical model for real-time high-capacity ride-sharing that (i) scales to large numbers of passengers and trips and (ii) dynamically generates optimal routes with respect to online demand and vehicle locations. The algorithm starts from a greedy assignment and improves it through a constrained optimization, quickly returning solutions of good quality and converging to the optimal assignment over time. We quantify experimentally the tradeoff between fleet size, capacity, waiting time, travel delay, and operational costs for low- to medium-capacity vehicles, such as taxis and van shuttles. The algorithm is validated with ∼3 million rides extracted from the New York City taxicab public dataset. Our experimental study considers ride-sharing with rider capacity of up to 10 simultaneous passengers per vehicle. The algorithm applies to fleets of autonomous vehicles and also incorporates rebalancing of idling vehicles to areas of high demand. This framework is general and can be used for many real-time multivehicle, multitask assignment problems. PMID:28049820
On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment.
Alonso-Mora, Javier; Samaranayake, Samitha; Wallar, Alex; Frazzoli, Emilio; Rus, Daniela
2017-01-17
Ride-sharing services are transforming urban mobility by providing timely and convenient transportation to anybody, anywhere, and anytime. These services present enormous potential for positive societal impacts with respect to pollution, energy consumption, congestion, etc. Current mathematical models, however, do not fully address the potential of ride-sharing. Recently, a large-scale study highlighted some of the benefits of car pooling but was limited to static routes with two riders per vehicle (optimally) or three (with heuristics). We present a more general mathematical model for real-time high-capacity ride-sharing that (i) scales to large numbers of passengers and trips and (ii) dynamically generates optimal routes with respect to online demand and vehicle locations. The algorithm starts from a greedy assignment and improves it through a constrained optimization, quickly returning solutions of good quality and converging to the optimal assignment over time. We quantify experimentally the tradeoff between fleet size, capacity, waiting time, travel delay, and operational costs for low- to medium-capacity vehicles, such as taxis and van shuttles. The algorithm is validated with ∼3 million rides extracted from the New York City taxicab public dataset. Our experimental study considers ride-sharing with rider capacity of up to 10 simultaneous passengers per vehicle. The algorithm applies to fleets of autonomous vehicles and also incorporates rebalancing of idling vehicles to areas of high demand. This framework is general and can be used for many real-time multivehicle, multitask assignment problems.
Multi-Objective Optimization for Speed and Stability of a Sony AIBO Gait
2007-09-01
MULTI-OBJECTIVE OPTIMIZATION FOR SPEED AND STABILITY OF A SONY AIBO GAIT THESIS Christopher A. Patterson, Second Lieutenant, USAF AFIT/GCS...07-17 MULTI-OBJECTIVE OPTIMIZATION FOR SPEED AND STABILITY OF A SONY AIBO GAIT THESIS Presented to the Faculty Department of...MULTI-OBJECTIVE OPTIMIZATION FOR SPEED AND STABILITY OF A SONY AIBO GAIT Christopher A. Patterson, BS Second Lieutenant, USAF
NASA Astrophysics Data System (ADS)
Liu, Hongcheng; Dong, Peng; Xing, Lei
2017-08-01
{{\\ell }2,1} -minimization-based sparse optimization was employed to solve the beam angle optimization (BAO) in intensity-modulated radiation therapy (IMRT) planning. The technique approximates the exact BAO formulation with efficiently computable convex surrogates, leading to plans that are inferior to those attainable with recently proposed gradient-based greedy schemes. In this paper, we alleviate/reduce the nontrivial inconsistencies between the {{\\ell }2,1} -based formulations and the exact BAO model by proposing a new sparse optimization framework based on the most recent developments in group variable selection. We propose the incorporation of the group-folded concave penalty (gFCP) as a substitution to the {{\\ell }2,1} -minimization framework. The new formulation is then solved by a variation of an existing gradient method. The performance of the proposed scheme is evaluated by both plan quality and the computational efficiency using three IMRT cases: a coplanar prostate case, a coplanar head-and-neck case, and a noncoplanar liver case. Involved in the evaluation are two alternative schemes: the {{\\ell }2,1} -minimization approach and the gradient norm method (GNM). The gFCP-based scheme outperforms both counterpart approaches. In particular, gFCP generates better plans than those obtained using the {{\\ell }2,1} -minimization for all three cases with a comparable computation time. As compared to the GNM, the gFCP improves both the plan quality and computational efficiency. The proposed gFCP-based scheme provides a promising framework for BAO and promises to improve both planning time and plan quality.
Liu, Hongcheng; Dong, Peng; Xing, Lei
2017-07-20
[Formula: see text]-minimization-based sparse optimization was employed to solve the beam angle optimization (BAO) in intensity-modulated radiation therapy (IMRT) planning. The technique approximates the exact BAO formulation with efficiently computable convex surrogates, leading to plans that are inferior to those attainable with recently proposed gradient-based greedy schemes. In this paper, we alleviate/reduce the nontrivial inconsistencies between the [Formula: see text]-based formulations and the exact BAO model by proposing a new sparse optimization framework based on the most recent developments in group variable selection. We propose the incorporation of the group-folded concave penalty (gFCP) as a substitution to the [Formula: see text]-minimization framework. The new formulation is then solved by a variation of an existing gradient method. The performance of the proposed scheme is evaluated by both plan quality and the computational efficiency using three IMRT cases: a coplanar prostate case, a coplanar head-and-neck case, and a noncoplanar liver case. Involved in the evaluation are two alternative schemes: the [Formula: see text]-minimization approach and the gradient norm method (GNM). The gFCP-based scheme outperforms both counterpart approaches. In particular, gFCP generates better plans than those obtained using the [Formula: see text]-minimization for all three cases with a comparable computation time. As compared to the GNM, the gFCP improves both the plan quality and computational efficiency. The proposed gFCP-based scheme provides a promising framework for BAO and promises to improve both planning time and plan quality.
Lipiäinen, Tiina; Pessi, Jenni; Movahedi, Parisa; Koivistoinen, Juha; Kurki, Lauri; Tenhunen, Mari; Yliruusi, Jouko; Juppo, Anne M; Heikkonen, Jukka; Pahikkala, Tapio; Strachan, Clare J
2018-04-03
Raman spectroscopy is widely used for quantitative pharmaceutical analysis, but a common obstacle to its use is sample fluorescence masking the Raman signal. Time-gating provides an instrument-based method for rejecting fluorescence through temporal resolution of the spectral signal and allows Raman spectra of fluorescent materials to be obtained. An additional practical advantage is that analysis is possible in ambient lighting. This study assesses the efficacy of time-gated Raman spectroscopy for the quantitative measurement of fluorescent pharmaceuticals. Time-gated Raman spectroscopy with a 128 × (2) × 4 CMOS SPAD detector was applied for quantitative analysis of ternary mixtures of solid-state forms of the model drug, piroxicam (PRX). Partial least-squares (PLS) regression allowed quantification, with Raman-active time domain selection (based on visual inspection) improving performance. Model performance was further improved by using kernel-based regularized least-squares (RLS) regression with greedy feature selection in which the data use in both the Raman shift and time dimensions was statistically optimized. Overall, time-gated Raman spectroscopy, especially with optimized data analysis in both the spectral and time dimensions, shows potential for sensitive and relatively routine quantitative analysis of photoluminescent pharmaceuticals during drug development and manufacturing.
An improved exploratory search technique for pure integer linear programming problems
NASA Technical Reports Server (NTRS)
Fogle, F. R.
1990-01-01
The development is documented of a heuristic method for the solution of pure integer linear programming problems. The procedure draws its methodology from the ideas of Hooke and Jeeves type 1 and 2 exploratory searches, greedy procedures, and neighborhood searches. It uses an efficient rounding method to obtain its first feasible integer point from the optimal continuous solution obtained via the simplex method. Since this method is based entirely on simple addition or subtraction of one to each variable of a point in n-space and the subsequent comparison of candidate solutions to a given set of constraints, it facilitates significant complexity improvements over existing techniques. It also obtains the same optimal solution found by the branch-and-bound technique in 44 of 45 small to moderate size test problems. Two example problems are worked in detail to show the inner workings of the method. Furthermore, using an established weighted scheme for comparing computational effort involved in an algorithm, a comparison of this algorithm is made to the more established and rigorous branch-and-bound method. A computer implementation of the procedure, in PC compatible Pascal, is also presented and discussed.
Prostate Dose Escalation by Innovative Inverse Planning-Driven IMRT
2006-11-01
fLJ and at each step, we find the minimizer u,\\ of J’. The Euler-Lagrange equation for the regularized J’ functional is u- div ( 1 Vu )= f E S1,2A...GD, Agazaryan N, Solberg TD . 2003. The effects of tumor motion on planning and delivery of respiratory-gated IMRT. Med Phys 30:1052-1066. Jaffray DA...modulated) radiation therapy: a review. Phys Med Biol 51 :R403-425. Wink NM, McNitt-Gray MF, Solberg TD . 2005. Optimization of multi-slice helical
Classification of Focal and Non Focal Epileptic Seizures Using Multi-Features and SVM Classifier.
Sriraam, N; Raghu, S
2017-09-02
Identifying epileptogenic zones prior to surgery is an essential and crucial step in treating patients having pharmacoresistant focal epilepsy. Electroencephalogram (EEG) is a significant measurement benchmark to assess patients suffering from epilepsy. This paper investigates the application of multi-features derived from different domains to recognize the focal and non focal epileptic seizures obtained from pharmacoresistant focal epilepsy patients from Bern Barcelona database. From the dataset, five different classification tasks were formed. Total 26 features were extracted from focal and non focal EEG. Significant features were selected using Wilcoxon rank sum test by setting p-value (p < 0.05) and z-score (-1.96 > z > 1.96) at 95% significance interval. Hypothesis was made that the effect of removing outliers improves the classification accuracy. Turkey's range test was adopted for pruning outliers from feature set. Finally, 21 features were classified using optimized support vector machine (SVM) classifier with 10-fold cross validation. Bayesian optimization technique was adopted to minimize the cross-validation loss. From the simulation results, it was inferred that the highest sensitivity, specificity, and classification accuracy of 94.56%, 89.74%, and 92.15% achieved respectively and found to be better than the state-of-the-art approaches. Further, it was observed that the classification accuracy improved from 80.2% with outliers to 92.15% without outliers. The classifier performance metrics ensures the suitability of the proposed multi-features with optimized SVM classifier. It can be concluded that the proposed approach can be applied for recognition of focal EEG signals to localize epileptogenic zones.
2007-01-01
multi-disciplinary optimization with uncertainty. Robust optimization and sensitivity analysis is usually used when an optimization model has...formulation is introduced in Section 2.3. We briefly discuss several definitions used in the sensitivity analysis in Section 2.4. Following in...2.5. 2.4 SENSITIVITY ANALYSIS In this section, we discuss several definitions used in Chapter 5 for Multi-Objective Sensitivity Analysis . Inner
Intervention in gene regulatory networks with maximal phenotype alteration.
Yousefi, Mohammadmahdi R; Dougherty, Edward R
2013-07-15
A basic issue for translational genomics is to model gene interaction via gene regulatory networks (GRNs) and thereby provide an informatics environment to study the effects of intervention (say, via drugs) and to derive effective intervention strategies. Taking the view that the phenotype is characterized by the long-run behavior (steady-state distribution) of the network, we desire interventions to optimally move the probability mass from undesirable to desirable states Heretofore, two external control approaches have been taken to shift the steady-state mass of a GRN: (i) use a user-defined cost function for which desirable shift of the steady-state mass is a by-product and (ii) use heuristics to design a greedy algorithm. Neither approach provides an optimal control policy relative to long-run behavior. We use a linear programming approach to optimally shift the steady-state mass from undesirable to desirable states, i.e. optimization is directly based on the amount of shift and therefore must outperform previously proposed methods. Moreover, the same basic linear programming structure is used for both unconstrained and constrained optimization, where in the latter case, constraints on the optimization limit the amount of mass that may be shifted to 'ambiguous' states, these being states that are not directly undesirable relative to the pathology of interest but which bear some perceived risk. We apply the method to probabilistic Boolean networks, but the theory applies to any Markovian GRN. Supplementary materials, including the simulation results, MATLAB source code and description of suboptimal methods are available at http://gsp.tamu.edu/Publications/supplementary/yousefi13b. edward@ece.tamu.edu Supplementary data are available at Bioinformatics online.
Automatic 3D kidney segmentation based on shape constrained GC-OAAM
NASA Astrophysics Data System (ADS)
Chen, Xinjian; Summers, Ronald M.; Yao, Jianhua
2011-03-01
The kidney can be classified into three main tissue types: renal cortex, renal medulla and renal pelvis (or collecting system). Dysfunction of different renal tissue types may cause different kidney diseases. Therefore, accurate and efficient segmentation of kidney into different tissue types plays a very important role in clinical research. In this paper, we propose an automatic 3D kidney segmentation method which segments the kidney into the three different tissue types: renal cortex, medulla and pelvis. The proposed method synergistically combines active appearance model (AAM), live wire (LW) and graph cut (GC) methods, GC-OAAM for short. Our method consists of two main steps. First, a pseudo 3D segmentation method is employed for kidney initialization in which the segmentation is performed slice-by-slice via a multi-object oriented active appearance model (OAAM) method. An improved iterative model refinement algorithm is proposed for the AAM optimization, which synergistically combines the AAM and LW method. Multi-object strategy is applied to help the object initialization. The 3D model constraints are applied to the initialization result. Second, the object shape information generated from the initialization step is integrated into the GC cost computation. A multi-label GC method is used to segment the kidney into cortex, medulla and pelvis. The proposed method was tested on 19 clinical arterial phase CT data sets. The preliminary results showed the feasibility and efficiency of the proposed method.
Surface Modified Particles By Multi-Step Addition And Process For The Preparation Thereof
Cook, Ronald Lee; Elliott, Brian John; Luebben, Silvia DeVito; Myers, Andrew William; Smith, Bryan Matthew
2006-01-17
The present invention relates to a new class of surface modified particles and to a multi-step surface modification process for the preparation of the same. The multi-step surface functionalization process involves two or more reactions to produce particles that are compatible with various host systems and/or to provide the particles with particular chemical reactivities. The initial step comprises the attachment of a small organic compound to the surface of the inorganic particle. The subsequent steps attach additional compounds to the previously attached organic compounds through organic linking groups.
Wireless Sensor Network Optimization: Multi-Objective Paradigm.
Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad
2015-07-20
Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks.
Vakalis, Stergios; Patuzzi, Francesco; Baratieri, Marco
2016-04-01
Modeling can be a powerful tool for designing and optimizing gasification systems. Modeling applications for small scale/fixed bed biomass gasifiers have been interesting due to their increased commercial practices. Fixed bed gasifiers are characterized by a wide range of operational conditions and are multi-zoned processes. The reactants are distributed in different phases and the products from each zone influence the following process steps and thus the composition of the final products. The present study aims to improve the conventional 'Black-Box' thermodynamic modeling by means of developing multiple intermediate 'boxes' that calculate two phase (solid-vapor) equilibriums in small scale gasifiers. Therefore the model is named ''Multi-Box''. Experimental data from a small scale gasifier have been used for the validation of the model. The returned results are significantly closer with the actual case study measurements in comparison to single-stage thermodynamic modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.
Singh, Sonal
2013-01-01
Background: Regulatory decision-making involves assessment of risks and benefits of medications at the time of approval or when relevant safety concerns arise with a medication. The Analytic Hierarchy Process (AHP) facilitates decision-making in complex situations involving tradeoffs by considering risks and benefits of alternatives. The AHP allows a more structured method of synthesizing and understanding evidence in the context of importance assigned to outcomes. Our objective is to evaluate the use of an AHP in a simulated committee setting selecting oral medications for type 2 diabetes. Methods: This study protocol describes the AHP in five sequential steps using a small group of diabetes experts representing various clinical disciplines. The first step will involve defining the goal of the decision and developing the AHP model. In the next step, we will collect information about how well alternatives are expected to fulfill the decision criteria. In the third step, we will compare the ability of the alternatives to fulfill the criteria and judge the importance of eight criteria relative to the decision goal of the optimal medication choice for type 2 diabetes. We will use pairwise comparisons to sequentially compare the pairs of alternative options regarding their ability to fulfill the criteria. In the fourth step, the scales created in the third step will be combined to create a summary score indicating how well the alternatives met the decision goal. The resulting scores will be expressed as percentages and will indicate the alternative medications' relative abilities to fulfill the decision goal. The fifth step will consist of sensitivity analyses to explore the effects of changing the estimates. We will also conduct a cognitive interview and process evaluation. Discussion: Multi-criteria decision analysis using the AHP will aid, support and enhance the ability of decision makers to make evidence-based informed decisions consistent with their values and preferences. PMID:24555077
Maruthur, Nisa M; Joy, Susan; Dolan, James; Segal, Jodi B; Shihab, Hasan M; Singh, Sonal
2013-01-01
Regulatory decision-making involves assessment of risks and benefits of medications at the time of approval or when relevant safety concerns arise with a medication. The Analytic Hierarchy Process (AHP) facilitates decision-making in complex situations involving tradeoffs by considering risks and benefits of alternatives. The AHP allows a more structured method of synthesizing and understanding evidence in the context of importance assigned to outcomes. Our objective is to evaluate the use of an AHP in a simulated committee setting selecting oral medications for type 2 diabetes. This study protocol describes the AHP in five sequential steps using a small group of diabetes experts representing various clinical disciplines. The first step will involve defining the goal of the decision and developing the AHP model. In the next step, we will collect information about how well alternatives are expected to fulfill the decision criteria. In the third step, we will compare the ability of the alternatives to fulfill the criteria and judge the importance of eight criteria relative to the decision goal of the optimal medication choice for type 2 diabetes. We will use pairwise comparisons to sequentially compare the pairs of alternative options regarding their ability to fulfill the criteria. In the fourth step, the scales created in the third step will be combined to create a summary score indicating how well the alternatives met the decision goal. The resulting scores will be expressed as percentages and will indicate the alternative medications' relative abilities to fulfill the decision goal. The fifth step will consist of sensitivity analyses to explore the effects of changing the estimates. We will also conduct a cognitive interview and process evaluation. Multi-criteria decision analysis using the AHP will aid, support and enhance the ability of decision makers to make evidence-based informed decisions consistent with their values and preferences.
JIGSAW: Joint Inhomogeneity estimation via Global Segment Assembly for Water-fat separation.
Lu, Wenmiao; Lu, Yi
2011-07-01
Water-fat separation in magnetic resonance imaging (MRI) is of great clinical importance, and the key to uniform water-fat separation lies in field map estimation. This work deals with three-point field map estimation, in which water and fat are modelled as two single-peak spectral lines, and field inhomogeneities shift the spectrum by an unknown amount. Due to the simplified spectrum modelling, there exists inherent ambiguity in forming field maps from multiple locally feasible field map values at each pixel. To resolve such ambiguity, spatial smoothness of field maps has been incorporated as a constraint of an optimization problem. However, there are two issues: the optimization problem is computationally intractable and even when it is solved exactly, it does not always separate water and fat images. Hence, robust field map estimation remains challenging in many clinically important imaging scenarios. This paper proposes a novel field map estimation technique called JIGSAW. It extends a loopy belief propagation (BP) algorithm to obtain an approximate solution to the optimization problem. The solution produces locally smooth segments and avoids error propagation associated with greedy methods. The locally smooth segments are then assembled into a globally consistent field map by exploiting the periodicity of the feasible field map values. In vivo results demonstrate that JIGSAW outperforms existing techniques and produces correct water-fat separation in challenging imaging scenarios.
Wang, Huilin; Wang, Mingjun; Tan, Hao; Li, Yuan; Zhang, Ziding; Song, Jiangning
2014-01-01
X-ray crystallography is the primary approach to solve the three-dimensional structure of a protein. However, a major bottleneck of this method is the failure of multi-step experimental procedures to yield diffraction-quality crystals, including sequence cloning, protein material production, purification, crystallization and ultimately, structural determination. Accordingly, prediction of the propensity of a protein to successfully undergo these experimental procedures based on the protein sequence may help narrow down laborious experimental efforts and facilitate target selection. A number of bioinformatics methods based on protein sequence information have been developed for this purpose. However, our knowledge on the important determinants of propensity for a protein sequence to produce high diffraction-quality crystals remains largely incomplete. In practice, most of the existing methods display poorer performance when evaluated on larger and updated datasets. To address this problem, we constructed an up-to-date dataset as the benchmark, and subsequently developed a new approach termed 'PredPPCrys' using the support vector machine (SVM). Using a comprehensive set of multifaceted sequence-derived features in combination with a novel multi-step feature selection strategy, we identified and characterized the relative importance and contribution of each feature type to the prediction performance of five individual experimental steps required for successful crystallization. The resulting optimal candidate features were used as inputs to build the first-level SVM predictor (PredPPCrys I). Next, prediction outputs of PredPPCrys I were used as the input to build second-level SVM classifiers (PredPPCrys II), which led to significantly enhanced prediction performance. Benchmarking experiments indicated that our PredPPCrys method outperforms most existing procedures on both up-to-date and previous datasets. In addition, the predicted crystallization targets of currently non-crystallizable proteins were provided as compendium data, which are anticipated to facilitate target selection and design for the worldwide structural genomics consortium. PredPPCrys is freely available at http://www.structbioinfor.org/PredPPCrys.
Landmine detection using two-tapped joint orthogonal matching pursuits
NASA Astrophysics Data System (ADS)
Goldberg, Sean; Glenn, Taylor; Wilson, Joseph N.; Gader, Paul D.
2012-06-01
Joint Orthogonal Matching Pursuits (JOMP) is used here in the context of landmine detection using data obtained from an electromagnetic induction (EMI) sensor. The response from an object containing metal can be decomposed into a discrete spectrum of relaxation frequencies (DSRF) from which we construct a dictionary. A greedy iterative algorithm is proposed for computing successive residuals of a signal by subtracting away the highest matching dictionary element at each step. The nal condence of a particular signal is a combination of the reciprocal of this residual and the mean of the complex component. A two-tap approach comparing signals on opposite sides of the geometric location of the sensor is examined and found to produce better classication. It is found that using only a single pursuit does a comparable job, reducing complexity and allowing for real-time implementation in automated target recognition systems. JOMP is particularly highlighted in comparison with a previous EMI detection algorithm known as String Match.
A KLM-circuit model of a multi-layer transducer for acoustic bladder volume measurements.
Merks, E J W; Borsboom, J M G; Bom, N; van der Steen, A F W; de Jong, N
2006-12-22
In a preceding study a new technique to non-invasively measure the bladder volume on the basis of non-linear wave propagation was validated. It was shown that the harmonic level generated at the posterior bladder wall increases for larger bladder volumes. A dedicated transducer is needed to further verify and implement this approach. This transducer must be capable of both transmission of high-pressure waves at fundamental frequency and reception of up to the third harmonic. For this purpose, a multi-layer transducer was constructed using a single element PZT transducer for transmission and a PVDF top-layer for reception. To determine feasibility of the multi-layer concept for bladder volume measurements, and to ensure optimal performance, an equivalent mathematical model on the basis of KLM-circuit modeling was generated. This model was obtained in two subsequent steps. Firstly, the PZT transducer was modeled without PVDF-layer attached by means of matching the model with the measured electrical input impedance. It was validated using pulse-echo measurements. Secondly, the model was extended with the PVDF-layer. The total model was validated by considering the PVDF-layer as a hydrophone on the PZT transducer surface and comparing the measured and simulated PVDF responses on a wave transmitted by the PZT transducer. The obtained results indicated that a valid model for the multi-layer transducer was constructed. The model showed feasibility of the multi-layer concept for bladder volume measurements. It also allowed for further optimization with respect to electrical matching and transmit waveform. Additionally, the model demonstrated the effect of mechanical loading of the PVDF-layer on the PZT transducer.
Improved multi-objective ant colony optimization algorithm and its application in complex reasoning
NASA Astrophysics Data System (ADS)
Wang, Xinqing; Zhao, Yang; Wang, Dong; Zhu, Huijie; Zhang, Qing
2013-09-01
The problem of fault reasoning has aroused great concern in scientific and engineering fields. However, fault investigation and reasoning of complex system is not a simple reasoning decision-making problem. It has become a typical multi-constraint and multi-objective reticulate optimization decision-making problem under many influencing factors and constraints. So far, little research has been carried out in this field. This paper transforms the fault reasoning problem of complex system into a paths-searching problem starting from known symptoms to fault causes. Three optimization objectives are considered simultaneously: maximum probability of average fault, maximum average importance, and minimum average complexity of test. Under the constraints of both known symptoms and the causal relationship among different components, a multi-objective optimization mathematical model is set up, taking minimizing cost of fault reasoning as the target function. Since the problem is non-deterministic polynomial-hard(NP-hard), a modified multi-objective ant colony algorithm is proposed, in which a reachability matrix is set up to constrain the feasible search nodes of the ants and a new pseudo-random-proportional rule and a pheromone adjustment mechinism are constructed to balance conflicts between the optimization objectives. At last, a Pareto optimal set is acquired. Evaluation functions based on validity and tendency of reasoning paths are defined to optimize noninferior set, through which the final fault causes can be identified according to decision-making demands, thus realize fault reasoning of the multi-constraint and multi-objective complex system. Reasoning results demonstrate that the improved multi-objective ant colony optimization(IMACO) can realize reasoning and locating fault positions precisely by solving the multi-objective fault diagnosis model, which provides a new method to solve the problem of multi-constraint and multi-objective fault diagnosis and reasoning of complex system.
Nemati, Mahdieh; Santos, Abel
2018-01-01
Herein, we present an innovative strategy for optimizing hierarchical structures of nanoporous anodic alumina (NAA) to advance their optical sensing performance toward multi-analyte biosensing. This approach is based on the fabrication of multilayered NAA and the formation of differential effective medium of their structure by controlling three fabrication parameters (i.e., anodization steps, anodization time, and pore widening time). The rationale of the proposed concept is that interferometric bilayered NAA (BL-NAA), which features two layers of different pore diameters, can provide distinct reflectometric interference spectroscopy (RIfS) signatures for each layer within the NAA structure and can therefore potentially be used for multi-point biosensing. This paper presents the structural fabrication of layered NAA structures, and the optimization and evaluation of their RIfS optical sensing performance through changes in the effective optical thickness (EOT) using quercetin as a model molecule. The bilayered or funnel-like NAA structures were designed with the aim of characterizing the sensitivity of both layers of quercetin molecules using RIfS and exploring the potential of these photonic structures, featuring different pore diameters, for simultaneous size-exclusion and multi-analyte optical biosensing. The sensing performance of the prepared NAA platforms was examined by real-time screening of binding reactions between human serum albumin (HSA)-modified NAA (i.e., sensing element) and quercetin (i.e., analyte). BL-NAAs display a complex optical interference spectrum, which can be resolved by fast Fourier transform (FFT) to monitor the EOT changes, where three distinctive peaks were revealed corresponding to the top, bottom, and total layer within the BL-NAA structures. The spectral shifts of these three characteristic peaks were used as sensing signals to monitor the binding events in each NAA pore in real-time upon exposure to different concentrations of quercetin. The multi-point sensing performance of BL-NAAs was determined for each pore layer, with an average sensitivity and low limit of detection of 600 nm (mg mL−1)−1 and 0.14 mg mL−1, respectively. BL-NAAs photonic structures have the capability to be used as platforms for multi-point RIfS sensing of biomolecules that can be further extended for simultaneous size-exclusion separation and multi-analyte sensing using these bilayered nanostructures. PMID:29415436
NASA Astrophysics Data System (ADS)
Lee, Yujin; You, Eun-Ah; Ha, Young-Geun
2018-07-01
Despite the considerable demand for bioinspired superhydrophobic surfaces with highly transparent, self-cleaning, and self-healable properties, a facile and scalable fabrication method for multifunctional superhydrophobic films with strong chemical networks has rarely been established. Here, we report a rationally designed facile one-step construction of covalently networked, transparent, self-cleaning, and self-healable superhydrophobic films via a one-step preparation and single-reaction process of multi-components. As coating materials for achieving the one-step fabrication of multifunctional superhydrophobic films, we included two different sizes of Al2O3 nanoparticles for hierarchical micro/nano dual-scale structures and transparent films, fluoroalkylsilane for both low surface energy and covalent binding functions, and aluminum nitrate for aluminum oxide networked films. On the basis of stability tests for the robust film composition, the optimized, covalently linked superhydrophobic composite films with a high water contact angle (>160°) and low sliding angle (<1°) showed excellent thermal stability (up to 400 °C), transparency (≈80%), self-healing, self-cleaning, and waterproof abilities. Therefore, the rationally designed, covalently networked superhydrophobic composite films, fabricated via a one-step solution-based process, can be further utilized for various optical and optoelectronic applications.
Gobi, K Vengatajalabathy; Matsumoto, Kiyoshi; Toko, Kiyoshi; Ikezaki, Hidekazu; Miura, Norio
2007-04-01
This paper describes the fabrication and sensing characteristics of a self-assembled monolayer (SAM)-based surface plasmon resonance (SPR) immunosensor for detection of benzaldehyde (BZ). The functional sensing surface was fabricated by the immobilization of a benzaldehyde-ovalbumin conjugate (BZ-OVA) on Au-thiolate SAMs containing carboxyl end groups. Covalent binding of BZ-OVA on SAM was found to be dependent on the composition of the base SAM, and it is improved very much with the use of a mixed monolayer strategy. Based on SPR angle measurements, the functional sensor surface is established as a compact monolayer of BZ-OVA bound on the mixed SAM. The BZ-OVA-bound sensor surface undergoes immunoaffinity binding with anti-benzaldehyde antibody (BZ-Ab) selectively. An indirect inhibition immunoassay principle has been applied, in which analyte benzaldehyde solution was incubated with an optimal concentration of BZ-Ab for 5 min and injected over the sensor chip. Analyte benzaldehyde undergoes immunoreaction with BZ-Ab and makes it inactive for binding to BZ-OVA on the sensor chip. As a result, the SPR angle response decreases with an increase in the concentration of benzaldehyde. The fabricated immunosensor demonstrates a low detection limit (LDL) of 50 ppt (pg mL(-1)) with a response time of 5 min. Antibodies bound to the sensor chip during an immunoassay could be detached by a brief exposure to acidic pepsin. With this surface regeneration, reusability of the same sensor chip for as many as 30 determination cycles has been established. Sensitivity has been enhanced further with the application of an additional single-step multi-sandwich immunoassay step, in which the BZ-Ab bound to the sensor chip was treated with a mixture of biotin-labeled secondary antibody, streptavidin and biotin-bovine serum albumin (Bio-BSA) conjugate. With this approach, the SPR sensor signal increased by ca. 12 times and the low detection limit improved to 5 ppt with a total response time of no more than ca. 10 min. Figure A single-step multi-sandwich immunoassay step increases SPR sensor signal by ca. 12 times affording a low detection limit for benzaldehyde of 5 ppt.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalaria, P. C., E-mail: parth.kalaria@partner.kit.edu; Avramidis, K. A.; Franck, J.
High frequency (>230 GHz) megawatt-class gyrotrons are planned as RF sources for electron cyclotron resonance heating and current drive in DEMOnstration fusion power plants (DEMOs). In this paper, for the first time, a feasibility study of a 236 GHz DEMO gyrotron is presented by considering all relevant design goals and the possible technical limitations. A mode-selection procedure is proposed in order to satisfy the multi-frequency and frequency-step tunability requirements. An effective systematic design approach for the optimal design of a gradually tapered cavity is presented. The RF-behavior of the proposed cavity is verified rigorously, supporting 920 kW of stable output power withmore » an interaction efficiency of 36% including the considerations of realistic beam parameters.« less
Integral-geometry characterization of photobiomodulation effects on retinal vessel morphology
Barbosa, Marconi; Natoli, Riccardo; Valter, Kriztina; Provis, Jan; Maddess, Ted
2014-01-01
The morphological characterization of quasi-planar structures represented by gray-scale images is challenging when object identification is sub-optimal due to registration artifacts. We propose two alternative procedures that enhances object identification in the integral-geometry morphological image analysis (MIA) framework. The first variant streamlines the framework by introducing an active contours segmentation process whose time step is recycled as a multi-scale parameter. In the second variant, we used the refined object identification produced in the first variant to perform the standard MIA with exact dilation radius as multi-scale parameter. Using this enhanced MIA we quantify the extent of vaso-obliteration in oxygen-induced retinopathic vascular growth, the preventative effect (by photobiomodulation) of exposure during tissue development to near-infrared light (NIR, 670 nm), and the lack of adverse effects due to exposure to NIR light. PMID:25071966
Brower, Kevin P; Ryakala, Venkat K; Bird, Ryan; Godawat, Rahul; Riske, Frank J; Konstantinov, Konstantin; Warikoo, Veena; Gamble, Jean
2014-01-01
Downstream sample purification for quality attribute analysis is a significant bottleneck in process development for non-antibody biologics. Multi-step chromatography process train purifications are typically required prior to many critical analytical tests. This prerequisite leads to limited throughput, long lead times to obtain purified product, and significant resource requirements. In this work, immunoaffinity purification technology has been leveraged to achieve single-step affinity purification of two different enzyme biotherapeutics (Fabrazyme® [agalsidase beta] and Enzyme 2) with polyclonal and monoclonal antibodies, respectively, as ligands. Target molecules were rapidly isolated from cell culture harvest in sufficient purity to enable analysis of critical quality attributes (CQAs). Most importantly, this is the first study that demonstrates the application of predictive analytics techniques to predict critical quality attributes of a commercial biologic. The data obtained using the affinity columns were used to generate appropriate models to predict quality attributes that would be obtained after traditional multi-step purification trains. These models empower process development decision-making with drug substance-equivalent product quality information without generation of actual drug substance. Optimization was performed to ensure maximum target recovery and minimal target protein degradation. The methodologies developed for Fabrazyme were successfully reapplied for Enzyme 2, indicating platform opportunities. The impact of the technology is significant, including reductions in time and personnel requirements, rapid product purification, and substantially increased throughput. Applications are discussed, including upstream and downstream process development support to achieve the principles of Quality by Design (QbD) as well as integration with bioprocesses as a process analytical technology (PAT). © 2014 American Institute of Chemical Engineers.
NASA Astrophysics Data System (ADS)
Lin, Lianghua; Liu, Zhiyi; Ying, Puyou; Liu, Meng
2015-12-01
Multi-step heat treatment effectively enhances the stress corrosion cracking (SCC) resistance but usually degrades the mechanical properties of Al-Zn-Mg-Cu alloys. With the aim to enhance SCC resistance as well as strength of Al-Zn-Mg-Cu alloys, we have optimized the process parameters during two-step aging of Al-6.1Zn-2.8Mg-1.9Cu alloy by Taguchi's L9 orthogonal array. In this work, analysis of variance (ANOVA) was performed to find out the significant heat treatment parameters. The slow strain rate testing combined with scanning electron microscope and transmission electron microscope was employed to study the SCC behaviors of Al-Zn-Mg-Cu alloy. Results showed that the contour map produced by ANOVA offered a reliable reference for selection of optimum heat treatment parameters. By using this method, a desired combination of mechanical performances and SCC resistance was obtained.
Video Completion in Digital Stabilization Task Using Pseudo-Panoramic Technique
NASA Astrophysics Data System (ADS)
Favorskaya, M. N.; Buryachenko, V. V.; Zotin, A. G.; Pakhirka, A. I.
2017-05-01
Video completion is a necessary stage after stabilization of a non-stationary video sequence, if it is desirable to make the resolution of the stabilized frames equalled the resolution of the original frames. Usually the cropped stabilized frames lose 10-20% of area that means the worse visibility of the reconstructed scenes. The extension of a view of field may appear due to the pan-tilt-zoom unwanted camera movement. Our approach deals with a preparing of pseudo-panoramic key frame during a stabilization stage as a pre-processing step for the following inpainting. It is based on a multi-layered representation of each frame including the background and objects, moving differently. The proposed algorithm involves four steps, such as the background completion, local motion inpainting, local warping, and seamless blending. Our experiments show that a necessity of a seamless stitching occurs often than a local warping step. Therefore, a seamless blending was investigated in details including four main categories, such as feathering-based, pyramid-based, gradient-based, and optimal seam-based blending.
Wireless Sensor Network Optimization: Multi-Objective Paradigm
Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad
2015-01-01
Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks. PMID:26205271
SU-E-T-478: Sliding Window Multi-Criteria IMRT Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craft, D; Papp, D; Unkelbach, J
2014-06-01
Purpose: To demonstrate a method for what-you-see-is-what-you-get multi-criteria Pareto surface navigation for step and shoot IMRT treatment planning. Methods: We show mathematically how multiple sliding window treatment plans can be averaged to yield a single plan whose dose distribution is the dosimetric average of the averaged plans. This is incorporated into the Pareto surface navigation based approach to treatment planning in such a way that as the user navigates the surface, the plans he/she is viewing are ready to be delivered (i.e. there is no extra ‘segment the plans’ step that often leads to unacceptable plan degradation in step andmore » shoot Pareto surface navigation). We also describe how the technique can be applied to VMAT. Briefly, sliding window VMAT plans are created such that MLC leaves paint out fluence maps every 15 degrees or so. These fluence map leaf trajectories are averaged in the same way the static beam IMRT ones are. Results: We show mathematically that fluence maps are exactly averaged using our leaf sweep averaging algorithm. Leaf transmission and output factor corrections effects, which are ignored in this work, can lead to small errors in terms of the dose distributions not being exactly averaged even though the fluence maps are. However, our demonstrations show that the dose distributions are almost exactly averaged as well. We demonstrate the technique both for IMRT and VMAT. Conclusions: By turning to sliding window delivery, we show that the problem of losing plan fidelity during the conversion of an idealized fluence map plan into a deliverable plan is remedied. This will allow for multicriteria optimization that avoids the pitfall that the planning has to be redone after the conversion into MLC segments due to plan quality decline. David Craft partially funded by RaySearch Laboratories.« less
Holistic approach for overlay and edge placement error to meet the 5nm technology node requirements
NASA Astrophysics Data System (ADS)
Mulkens, Jan; Slachter, Bram; Kubis, Michael; Tel, Wim; Hinnen, Paul; Maslow, Mark; Dillen, Harm; Ma, Eric; Chou, Kevin; Liu, Xuedong; Ren, Weiming; Hu, Xuerang; Wang, Fei; Liu, Kevin
2018-03-01
In this paper, we discuss the metrology methods and error budget that describe the edge placement error (EPE). EPE quantifies the pattern fidelity of a device structure made in a multi-patterning scheme. Here the pattern is the result of a sequence of lithography and etching steps, and consequently the contour of the final pattern contains error sources of the different process steps. EPE is computed by combining optical and ebeam metrology data. We show that high NA optical scatterometer can be used to densely measure in device CD and overlay errors. Large field e-beam system enables massive CD metrology which is used to characterize the local CD error. Local CD distribution needs to be characterized beyond 6 sigma, and requires high throughput e-beam system. We present in this paper the first images of a multi-beam e-beam inspection system. We discuss our holistic patterning optimization approach to understand and minimize the EPE of the final pattern. As a use case, we evaluated a 5-nm logic patterning process based on Self-Aligned-QuadruplePatterning (SAQP) using ArF lithography, combined with line cut exposures using EUV lithography.
Improvements on a privacy-protection algorithm for DNA sequences with generalization lattices.
Li, Guang; Wang, Yadong; Su, Xiaohong
2012-10-01
When developing personal DNA databases, there must be an appropriate guarantee of anonymity, which means that the data cannot be related back to individuals. DNA lattice anonymization (DNALA) is a successful method for making personal DNA sequences anonymous. However, it uses time-consuming multiple sequence alignment and a low-accuracy greedy clustering algorithm. Furthermore, DNALA is not an online algorithm, and so it cannot quickly return results when the database is updated. This study improves the DNALA method. Specifically, we replaced the multiple sequence alignment in DNALA with global pairwise sequence alignment to save time, and we designed a hybrid clustering algorithm comprised of a maximum weight matching (MWM)-based algorithm and an online algorithm. The MWM-based algorithm is more accurate than the greedy algorithm in DNALA and has the same time complexity. The online algorithm can process data quickly when the database is updated. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Prediction based Greedy Perimeter Stateless Routing Protocol for Vehicular Self-organizing Network
NASA Astrophysics Data System (ADS)
Wang, Chunlin; Fan, Quanrun; Chen, Xiaolin; Xu, Wanjin
2018-03-01
PGPSR (Prediction based Greedy Perimeter Stateless Routing) is based on and extended the GPSR protocol to adapt to the high speed mobility of the vehicle auto organization network (VANET) and the changes in the network topology. GPSR is used in the VANET network environment, the network loss rate and throughput are not ideal, even cannot work. Aiming at the problems of the GPSR, the proposed PGPSR routing protocol, it redefines the hello and query packet structure, in the structure of the new node speed and direction information, which received the next update before you can take advantage of its speed and direction to predict the position of node and new network topology, select the right the next hop routing and path. Secondly, the update of the outdated node information of the neighbor’s table is deleted in time. The simulation experiment shows the performance of PGPSR is better than that of GPSR.
NASA Astrophysics Data System (ADS)
Lin, Geng; Guan, Jian; Feng, Huibin
2018-06-01
The positive influence dominating set problem is a variant of the minimum dominating set problem, and has lots of applications in social networks. It is NP-hard, and receives more and more attention. Various methods have been proposed to solve the positive influence dominating set problem. However, most of the existing work focused on greedy algorithms, and the solution quality needs to be improved. In this paper, we formulate the minimum positive influence dominating set problem as an integer linear programming (ILP), and propose an ILP based memetic algorithm (ILPMA) for solving the problem. The ILPMA integrates a greedy randomized adaptive construction procedure, a crossover operator, a repair operator, and a tabu search procedure. The performance of ILPMA is validated on nine real-world social networks with nodes up to 36,692. The results show that ILPMA significantly improves the solution quality, and is robust.
Craving, longing, denial, and the dangers of change: clinical manifestations of greed.
Waska, Robert
2002-08-01
Greed is the unrelenting and unrealistic search for all the good an object has to offer and, via identification, all the good one can produce and provide. In phantasy, and sometimes in the patient's early developmental environment, the object and the ego demand more from each other than either have to give. Some patients cannot contain their urge to possess all and to be all, so it becomes a part of the interpersonal and psychological relationship with the analyst rather quickly. These patients feel something is owed to them, and they demand to be fed immediately. Other patients try and hide these greedy phantasies by being the opposite of greedy. They strive to be independent and charitable, while having great conflict over deeper desires to be dependent and in possession of an idealized giving object, an all-providing breast. Case material was used to explore these ideas.
No place to hide: when shame causes proselfs to cooperate.
Declerck, Carolyn Henriette; Boone, Christophe; Kiyonari, Toko
2014-01-01
Shame is considered a social emotion with action tendencies that elicit socially beneficial behavior. Yet, unlike other social emotions, prior experimental studies do not indicate that incidental shame boosts prosocial behavior. Based on the affect as information theory, we hypothesize that incidental feelings of shame can increase cooperation, but only for self-interested individuals, and only in a context where shame is relevant with regards to its action tendency. To test this hypothesis, cooperation levels are compared between a simultaneous prisoner's dilemma (where "defect" may result from multiple motives) and a sequential prisoner's dilemma (where "second player defect" is the result of intentional greediness). As hypothesized, shame positively affected proselfs in a sequential prisoner's dilemma. Hence ashamed proselfs become inclined to cooperate when they believe they have no way to hide their greediness, and not necessarily because they want to make up for earlier wrong-doing.
Path Finding for Maximum Value of Information in Multi-Modal Underwater Wireless Sensor Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gjanci, Petrika; Petrioli, Chiara; Basagni, Stefano
Here, we consider underwater multi-modal wireless sensor networks (UWSNs) suitable for applications on submarine surveillance and monitoring, where nodes offload data to a mobile autonomous underwater vehicle (AUV) via optical technology, and coordinate using acoustic communication. Sensed data are associated with a value, decaying in time. In this scenario, we address the problem of finding the path of the AUV so that the Value of Information (VoI) of the data delivered to a sink on the surface is maximized. We define a Greedy and Adaptive AUV Path-finding (GAAP) heuristic that drives the AUV to collect data from nodes depending onmore » the VoI of their data. For benchmarking the performance of AUV path-finding heuristics, we define an integer linear programming (ILP) formulation that accurately models the considered scenario, deriving a path that drives the AUV to collect and deliver data with the maximum VoI. In our experiments GAAP consistently delivers more than 80 percent of the theoretical maximum VoI determined by the ILP model. We also compare the performance of GAAP with that of other strategies for driving the AUV among sensing nodes, namely, random paths, TSP-based paths and a “lawn mower”-like strategy. Our results show that GAAP always outperforms every other heuristic in terms of delivered VoI, also obtaining higher energy efficiency.« less
Path Finding for Maximum Value of Information in Multi-Modal Underwater Wireless Sensor Networks
Gjanci, Petrika; Petrioli, Chiara; Basagni, Stefano; ...
2017-05-19
Here, we consider underwater multi-modal wireless sensor networks (UWSNs) suitable for applications on submarine surveillance and monitoring, where nodes offload data to a mobile autonomous underwater vehicle (AUV) via optical technology, and coordinate using acoustic communication. Sensed data are associated with a value, decaying in time. In this scenario, we address the problem of finding the path of the AUV so that the Value of Information (VoI) of the data delivered to a sink on the surface is maximized. We define a Greedy and Adaptive AUV Path-finding (GAAP) heuristic that drives the AUV to collect data from nodes depending onmore » the VoI of their data. For benchmarking the performance of AUV path-finding heuristics, we define an integer linear programming (ILP) formulation that accurately models the considered scenario, deriving a path that drives the AUV to collect and deliver data with the maximum VoI. In our experiments GAAP consistently delivers more than 80 percent of the theoretical maximum VoI determined by the ILP model. We also compare the performance of GAAP with that of other strategies for driving the AUV among sensing nodes, namely, random paths, TSP-based paths and a “lawn mower”-like strategy. Our results show that GAAP always outperforms every other heuristic in terms of delivered VoI, also obtaining higher energy efficiency.« less
Yin, Jun; Yang, Yuwang; Wang, Lei
2016-04-01
Joint design of compressed sensing (CS) and network coding (NC) has been demonstrated to provide a new data gathering paradigm for multi-hop wireless sensor networks (WSNs). By exploiting the correlation of the network sensed data, a variety of data gathering schemes based on NC and CS (Compressed Data Gathering--CDG) have been proposed. However, these schemes assume that the sparsity of the network sensed data is constant and the value of the sparsity is known before starting each data gathering epoch, thus they ignore the variation of the data observed by the WSNs which are deployed in practical circumstances. In this paper, we present a complete design of the feedback CDG scheme where the sink node adaptively queries those interested nodes to acquire an appropriate number of measurements. The adaptive measurement-formation procedure and its termination rules are proposed and analyzed in detail. Moreover, in order to minimize the number of overall transmissions in the formation procedure of each measurement, we have developed a NP-complete model (Maximum Leaf Nodes Minimum Steiner Nodes--MLMS) and realized a scalable greedy algorithm to solve the problem. Experimental results show that the proposed measurement-formation method outperforms previous schemes, and experiments on both datasets from ocean temperature and practical network deployment also prove the effectiveness of our proposed feedback CDG scheme.
Neural Correlates of Temporal Credit Assignment in the Parietal Lobe
Eisenberg, Ian; Gottlieb, Jacqueline
2014-01-01
Empirical studies of decision making have typically assumed that value learning is governed by time, such that a reward prediction error arising at a specific time triggers temporally-discounted learning for all preceding actions. However, in natural behavior, goals must be acquired through multiple actions, and each action can have different significance for the final outcome. As is recognized in computational research, carrying out multi-step actions requires the use of credit assignment mechanisms that focus learning on specific steps, but little is known about the neural correlates of these mechanisms. To investigate this question we recorded neurons in the monkey lateral intraparietal area (LIP) during a serial decision task where two consecutive eye movement decisions led to a final reward. The underlying decision trees were structured such that the two decisions had different relationships with the final reward, and the optimal strategy was to learn based on the final reward at one of the steps (the “F” step) but ignore changes in this reward at the remaining step (the “I” step). In two distinct contexts, the F step was either the first or the second in the sequence, controlling for effects of temporal discounting. We show that LIP neurons had the strongest value learning and strongest post-decision responses during the transition after the F step regardless of the serial position of this step. Thus, the neurons encode correlates of temporal credit assignment mechanisms that allocate learning to specific steps independently of temporal discounting. PMID:24523935
Optimization of x-ray capillary optics for mammography
NASA Astrophysics Data System (ADS)
Ross, Richard E.; Bradford, Carla D.; Peppler, Walter W.
2002-05-01
The purpose of this study is to develop a full-field digital mammography system utilizing capillary optics. Specific aims are to identify optic properties that affect image quality and to optimize those properties in the design of a multi-element capillary array. It has been shown that polycapillary optics significantly improve mammographic image quality through increased resolution and reduced x-ray scatter. For practical clinical application much larger multi-element optics will be required. This study quantified the contributing factors to the multi-element optic MTF and investigated methods to determine optimal parameters for a practical design. Individual and a prototype multi-element array of linearly tapered optics with a common focal point were investigated. A conventional (MO/MO) mammography tube and computed radiography system were used. The system and optic MTF were measured using the angled slit method with a slit camera (10 micron slit). MTF measurements were performed with both stationary and scanned optics. Contributions to MTF included: distortion within individual optics, misalignment between optics, capillary channel size, and vibration. Measurement techniques used to identify and quantify the contributions to optic MTF included a phantom chosen specifically for polycapillary optics. This phantom provided a method for assessing the coherence among capillaries within an optic as well as the relative alignment of the optics within the array. In addition, modifications to the scanning procedure allowed for the isolation and quantification of several contributors to the system MTF. Specifically, measurements were made using a stationary optic, a scanning optic, and an optic placed at multiple locations within the imaged field of view. These techniques yielded the optic MTF, the degradation of MTF due to loss of coherence within the optic, and the degradation of MTF due to vibration of the scanning mechanism. Distortion within individual optics was, typically, quite small. However, MTF degradation resulting from twist was significant in some optics. MTF degradation due to misalignment was relatively large in the prototype triad. Modeling found that misalignment up to 50 microns reduced MTF by less than 10 percent up to 3 cycles/mm. Channel diameters of 52 microns and 85 microns reduced MTF by 9 percent to 20 percent at 5 cycles/mm and provided an optimal tradeoff between transmission and MTF. Vibration was identified as a significant degradation to MTF but can easily reduced with simple modifications. In spite of some reduced optic MTF values, system MTF has always been significantly improved - in some cases almost by the magnification ratio. These results allow for accurate modeling of optic performance and optimization of design parameters. This study demonstrates that a multi-element array can be produced with nearly optimal properties. A large area array suitable for clinical trial is feasible and is the next step in this program.
Multi-step routes of capuchin monkeys in a laser pointer traveling salesman task.
Howard, Allison M; Fragaszy, Dorothy M
2014-09-01
Prior studies have claimed that nonhuman primates plan their routes multiple steps in advance. However, a recent reexamination of multi-step route planning in nonhuman primates indicated that there is no evidence for planning more than one step ahead. We tested multi-step route planning in capuchin monkeys using a pointing device to "travel" to distal targets while stationary. This device enabled us to determine whether capuchins distinguish the spatial relationship between goals and themselves and spatial relationships between goals and the laser dot, allocentrically. In Experiment 1, two subjects were presented with identical food items in Near-Far (one item nearer to subject) and Equidistant (both items equidistant from subject) conditions with a laser dot visible between the items. Subjects moved the laser dot to the items using a joystick. In the Near-Far condition, one subject demonstrated a bias for items closest to self but the other subject chose efficiently. In the second experiment, subjects retrieved three food items in similar Near-Far and Equidistant arrangements. Both subjects preferred food items nearest the laser dot and showed no evidence of multi-step route planning. We conclude that these capuchins do not make choices on the basis of multi-step look ahead strategies. © 2014 Wiley Periodicals, Inc.
Petascale computation of multi-physics seismic simulations
NASA Astrophysics Data System (ADS)
Gabriel, Alice-Agnes; Madden, Elizabeth H.; Ulrich, Thomas; Wollherr, Stephanie; Duru, Kenneth C.
2017-04-01
Capturing the observed complexity of earthquake sources in concurrence with seismic wave propagation simulations is an inherently multi-scale, multi-physics problem. In this presentation, we present simulations of earthquake scenarios resolving high-detail dynamic rupture evolution and high frequency ground motion. The simulations combine a multitude of representations of model complexity; such as non-linear fault friction, thermal and fluid effects, heterogeneous fault stress and fault strength initial conditions, fault curvature and roughness, on- and off-fault non-elastic failure to capture dynamic rupture behavior at the source; and seismic wave attenuation, 3D subsurface structure and bathymetry impacting seismic wave propagation. Performing such scenarios at the necessary spatio-temporal resolution requires highly optimized and massively parallel simulation tools which can efficiently exploit HPC facilities. Our up to multi-PetaFLOP simulations are performed with SeisSol (www.seissol.org), an open-source software package based on an ADER-Discontinuous Galerkin (DG) scheme solving the seismic wave equations in velocity-stress formulation in elastic, viscoelastic, and viscoplastic media with high-order accuracy in time and space. Our flux-based implementation of frictional failure remains free of spurious oscillations. Tetrahedral unstructured meshes allow for complicated model geometry. SeisSol has been optimized on all software levels, including: assembler-level DG kernels which obtain 50% peak performance on some of the largest supercomputers worldwide; an overlapping MPI-OpenMP parallelization shadowing the multiphysics computations; usage of local time stepping; parallel input and output schemes and direct interfaces to community standard data formats. All these factors enable aim to minimise the time-to-solution. The results presented highlight the fact that modern numerical methods and hardware-aware optimization for modern supercomputers are essential to further our understanding of earthquake source physics and complement both physic-based ground motion research and empirical approaches in seismic hazard analysis. Lastly, we will conclude with an outlook on future exascale ADER-DG solvers for seismological applications.
Multi-level systems modeling and optimization for novel aircraft
NASA Astrophysics Data System (ADS)
Subramanian, Shreyas Vathul
This research combines the disciplines of system-of-systems (SoS) modeling, platform-based design, optimization and evolving design spaces to achieve a novel capability for designing solutions to key aeronautical mission challenges. A central innovation in this approach is the confluence of multi-level modeling (from sub-systems to the aircraft system to aeronautical system-of-systems) in a way that coordinates the appropriate problem formulations at each level and enables parametric search in design libraries for solutions that satisfy level-specific objectives. The work here addresses the topic of SoS optimization and discusses problem formulation, solution strategy, the need for new algorithms that address special features of this problem type, and also demonstrates these concepts using two example application problems - a surveillance UAV swarm problem, and the design of noise optimal aircraft and approach procedures. This topic is critical since most new capabilities in aeronautics will be provided not just by a single air vehicle, but by aeronautical Systems of Systems (SoS). At the same time, many new aircraft concepts are pressing the boundaries of cyber-physical complexity through the myriad of dynamic and adaptive sub-systems that are rising up the TRL (Technology Readiness Level) scale. This compositional approach is envisioned to be active at three levels: validated sub-systems are integrated to form conceptual aircraft, which are further connected with others to perform a challenging mission capability at the SoS level. While these multiple levels represent layers of physical abstraction, each discipline is associated with tools of varying fidelity forming strata of 'analysis abstraction'. Further, the design (composition) will be guided by a suitable hierarchical complexity metric formulated for the management of complexity in both the problem (as part of the generative procedure and selection of fidelity level) and the product (i.e., is the mission best achieved via a large collection of interacting simple systems, or a relatively few highly capable, complex air vehicles). The vastly unexplored area of optimization in evolving design spaces will be studied and incorporated into the SoS optimization framework. We envision a framework that resembles a multi-level, mult-fidelity, multi-disciplinary assemblage of optimization problems. The challenge is not simply one of scaling up to a new level (the SoS), but recognizing that the aircraft sub-systems and the integrated vehicle are now intensely cyber-physical, with hardware and software components interacting in complex ways that give rise to new and improved capabilities. The work presented here is a step closer to modeling the information flow that exists in realistic SoS optimization problems between sub-contractors, contractors and the SoS architect.
Tahmasebi, Zeinab; Davarani, Saied Saeed Hosseiny; Asgharinezhad, Ali Akbar
2016-10-28
In this work, a novel microextraction technique using molecularly imprinted polymer-coated multi-walled carbon nanotubes (MIP-MWCNTs) in electromembrane extraction (EME) procedure is described. The method in combination with HPLC-UV was utilized to determine naproxen, as an acidic model drug, in urine, plasma and wastewater samples. For this purpose, MIP-MWCNTs were placed in the pores of polypropylene hollow fiber. The MIP-MWCNTs-EME method has the advantages of high selectivity and cleanup of MIP along with high enrichment ability of the EME in a single step extraction. Continuing with the research, optimization of the factors affecting the migration of naproxen from sample solutions to MIP-MWCNTs sites and then into the lumen of hollow fiber was explored. Under the optimized conditions, the limit of detection (LOD) of the developed method was calculated to be 0.3μgL -1 . All relative standard deviations (RSDs) were lower than 3%. Linearity of the method was obtained within the range of 1-1000μgL -1 with the coefficient of determination (r 2 ) being higher than 0.999. Under the optimized conditions, an extraction recovery of 66% was obtained, which corresponded to a preconcentration factor of 88. Finally, the developed method was satisfactorily used to determine naproxen in urine, plasma and wastewater samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Discovery of multi-ring basins - Gestalt perception in planetary science
NASA Technical Reports Server (NTRS)
Hartmann, W. K.
1981-01-01
Early selenographers resolved individual structural components of multi-ring basin systems but missed the underlying large-scale multi-ring basin patterns. The recognition of multi-ring basins as a general class of planetary features can be divided into five steps. Gilbert (1893) took a first step in recognizing radial 'sculpture' around the Imbrium basin system. Several writers through the 1940's rediscovered the radial sculpture and extended this concept by describing concentric rings around several circular maria. Some reminiscences are given about the fourth step - discovery of the Orientale basin and other basin systems by rectified lunar photography at the University of Arizona in 1961-62. Multi-ring basins remained a lunar phenomenon until the fifth step - discovery of similar systems of features on other planets, such as Mars (1972), Mercury (1974), and possibly Callisto and Ganymede (1979). This sequence is an example of gestalt recognition whose implications for scientific research are discussed.
NASA Astrophysics Data System (ADS)
Chen, Shiyu; Li, Haiyang; Baoyin, Hexi
2018-06-01
This paper investigates a method for optimizing multi-rendezvous low-thrust trajectories using indirect methods. An efficient technique, labeled costate transforming, is proposed to optimize multiple trajectory legs simultaneously rather than optimizing each trajectory leg individually. Complex inner-point constraints and a large number of free variables are one main challenge in optimizing multi-leg transfers via shooting algorithms. Such a difficulty is reduced by first optimizing each trajectory leg individually. The results may be, next, utilized as an initial guess in the simultaneous optimization of multiple trajectory legs. In this paper, the limitations of similar techniques in previous research is surpassed and a homotopic approach is employed to improve the convergence efficiency of the shooting process in multi-rendezvous low-thrust trajectory optimization. Numerical examples demonstrate that newly introduced techniques are valid and efficient.
DOT National Transportation Integrated Search
2016-09-01
We consider the problem of subspace clustering: given points that lie on or near the union of many low-dimensional linear subspaces, recover the subspaces. To this end, one first identifies sets of points close to the same subspace and uses the sets ...
Mdluli, Thembi; Buzzard, Gregery T; Rundell, Ann E
2015-09-01
This model-based design of experiments (MBDOE) method determines the input magnitudes of an experimental stimuli to apply and the associated measurements that should be taken to optimally constrain the uncertain dynamics of a biological system under study. The ideal global solution for this experiment design problem is generally computationally intractable because of parametric uncertainties in the mathematical model of the biological system. Others have addressed this issue by limiting the solution to a local estimate of the model parameters. Here we present an approach that is independent of the local parameter constraint. This approach is made computationally efficient and tractable by the use of: (1) sparse grid interpolation that approximates the biological system dynamics, (2) representative parameters that uniformly represent the data-consistent dynamical space, and (3) probability weights of the represented experimentally distinguishable dynamics. Our approach identifies data-consistent representative parameters using sparse grid interpolants, constructs the optimal input sequence from a greedy search, and defines the associated optimal measurements using a scenario tree. We explore the optimality of this MBDOE algorithm using a 3-dimensional Hes1 model and a 19-dimensional T-cell receptor model. The 19-dimensional T-cell model also demonstrates the MBDOE algorithm's scalability to higher dimensions. In both cases, the dynamical uncertainty region that bounds the trajectories of the target system states were reduced by as much as 86% and 99% respectively after completing the designed experiments in silico. Our results suggest that for resolving dynamical uncertainty, the ability to design an input sequence paired with its associated measurements is particularly important when limited by the number of measurements.
Mdluli, Thembi; Buzzard, Gregery T.; Rundell, Ann E.
2015-01-01
This model-based design of experiments (MBDOE) method determines the input magnitudes of an experimental stimuli to apply and the associated measurements that should be taken to optimally constrain the uncertain dynamics of a biological system under study. The ideal global solution for this experiment design problem is generally computationally intractable because of parametric uncertainties in the mathematical model of the biological system. Others have addressed this issue by limiting the solution to a local estimate of the model parameters. Here we present an approach that is independent of the local parameter constraint. This approach is made computationally efficient and tractable by the use of: (1) sparse grid interpolation that approximates the biological system dynamics, (2) representative parameters that uniformly represent the data-consistent dynamical space, and (3) probability weights of the represented experimentally distinguishable dynamics. Our approach identifies data-consistent representative parameters using sparse grid interpolants, constructs the optimal input sequence from a greedy search, and defines the associated optimal measurements using a scenario tree. We explore the optimality of this MBDOE algorithm using a 3-dimensional Hes1 model and a 19-dimensional T-cell receptor model. The 19-dimensional T-cell model also demonstrates the MBDOE algorithm’s scalability to higher dimensions. In both cases, the dynamical uncertainty region that bounds the trajectories of the target system states were reduced by as much as 86% and 99% respectively after completing the designed experiments in silico. Our results suggest that for resolving dynamical uncertainty, the ability to design an input sequence paired with its associated measurements is particularly important when limited by the number of measurements. PMID:26379275
An Automatic Medium to High Fidelity Low-Thrust Global Trajectory Toolchain; EMTG-GMAT
NASA Technical Reports Server (NTRS)
Beeson, Ryne T.; Englander, Jacob A.; Hughes, Steven P.; Schadegg, Maximillian
2015-01-01
Solving the global optimization, low-thrust, multiple-flyby interplanetary trajectory problem with high-fidelity dynamical models requires an unreasonable amount of computational resources. A better approach, and one that is demonstrated in this paper, is a multi-step process whereby the solution of the aforementioned problem is solved at a lower-fidelity and this solution is used as an initial guess for a higher-fidelity solver. The framework presented in this work uses two tools developed by NASA Goddard Space Flight Center: the Evolutionary Mission Trajectory Generator (EMTG) and the General Mission Analysis Tool (GMAT). EMTG is a medium to medium-high fidelity low-thrust interplanetary global optimization solver, which now has the capability to automatically generate GMAT script files for seeding a high-fidelity solution using GMAT's local optimization capabilities. A discussion of the dynamical models as well as thruster and power modeling for both EMTG and GMAT are given in this paper. Current capabilities are demonstrated with examples that highlight the toolchains ability to efficiently solve the difficult low-thrust global optimization problem with little human intervention.
Systems design of transformation toughened blast-resistant naval hull steels
NASA Astrophysics Data System (ADS)
Saha, Arup
A systems approach to computational materials design has demonstrated a new class of ultratough, weldable secondary hardened plate steels combining new levels of strength and toughness while meeting processability requirements. A first prototype alloy has achieved property goals motivated by projected naval hull applications requiring extreme fracture toughness (Cv > 85 ft-lbs (115 J) corresponding to KId > 200 ksi.in1/2 (220 MPa.m1/2)) at strength levels of 150--180 ksi (1034--1241 MPa) yield strength in weldable, formable plate steels. A theoretical design concept was explored integrating the mechanism of precipitated nickel-stabilized dispersed austenite for transformation toughening in an alloy strengthened by combined precipitation of M2C carbides and BCC copper both at an optimal ˜3nm particle size for efficient strengthening. This concept was adapted to plate steel design by employing a mixed bainitic/martensitic matrix microstructure produced by air-cooling after solution-treatment and constraining the composition to low carbon content for weldability. With optimized levels of copper and M2C carbide formers based on a quantitative strength model, a required alloy nickel content of 6.5 wt% was predicted for optimal austenite stability for transformation toughening at the desired strength level of 160 ksi (1100 MPa) yield strength. A relatively high Cu level of 3.65 wt% was employed to allow a carbon limit of 0.05 wt% for good weldability. Hardness and tensile tests conducted on the designed prototype confirmed predicted precipitation strengthening behavior in quench and tempered material. Multi-step tempering conditions were employed to achieve the optimal austenite stability resulting in significant increase of impact toughness to 130 ft-lb (176 J) at a strength level of 160 ksi (1100 MPa). Comparison with the baseline toughness-strength combination determined by isochronal tempering studies indicates a transformation toughening increment of 60% in Charpy energy. Predicted Cu particle number densities and the heterogeneous nucleation of optimal stability high Ni 5 nm austenite on nanometer-scale copper precipitates in the multi-step tempered samples was confirmed using three-dimensional atom probe microscopy. Charpy impact tests and fractography demonstrate ductile fracture with C v > 90 ft-lbs (122 J) down to -40°C, with a substantial toughness peak at 25°C consistent with designed transformation toughening behavior. The properties demonstrated in this first prototype represent a substantial advance over existing naval hull steels.
NASA Astrophysics Data System (ADS)
Meyer-Plath, Asmus; Beckert, Fabian; Tölle, Folke J.; Sturm, Heinz; Mülhaupt, Rolf
2016-02-01
A process was developed for graphite particle exfoliation in water to stably dispersed multi-layer graphene. It uses electrohydraulic shockwaves and the functionalizing effect of solution plasma discharges in water. The discharges were excited by 100 ns high voltage pulsing of graphite particle chains that bridge an electrode gap. The underwater discharges allow simultaneous exfoliation and chemical functionalization of graphite particles to partially oxidized multi-layer graphene. Exfoliation is caused by shockwaves that result from rapid evaporation of carbon and water to plasma-excited gas species. Depending on discharge energy and locus of ignition, the shockwaves cause stirring, erosion, exfoliation and/or expansion of graphite flakes. The process was optimized to produce long-term stable aqueous dispersions of multi-layer graphene from graphite in a single process step without requiring addition of intercalants, surfactants, binders or special solvents. A setup was developed that allows continuous production of aqueous dispersions of flake size-selected multi-layer graphenes. Due to the well-preserved sp2-carbon structure, thin films made from the dispersed graphene exhibited high electrical conductivity. Underwater plasma discharge processing exhibits high innovation potential for morphological and chemical modifications of carbonaceous materials and surfaces, especially for the generation of stable dispersions of two-dimensional, layered materials.
A stable and accurate partitioned algorithm for conjugate heat transfer
NASA Astrophysics Data System (ADS)
Meng, F.; Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W.
2017-09-01
We describe a new partitioned approach for solving conjugate heat transfer (CHT) problems where the governing temperature equations in different material domains are time-stepped in an implicit manner, but where the interface coupling is explicit. The new approach, called the CHAMP scheme (Conjugate Heat transfer Advanced Multi-domain Partitioned), is based on a discretization of the interface coupling conditions using a generalized Robin (mixed) condition. The weights in the Robin condition are determined from the optimization of a condition derived from a local stability analysis of the coupling scheme. The interface treatment combines ideas from optimized-Schwarz methods for domain-decomposition problems together with the interface jump conditions and additional compatibility jump conditions derived from the governing equations. For many problems (i.e. for a wide range of material properties, grid-spacings and time-steps) the CHAMP algorithm is stable and second-order accurate using no sub-time-step iterations (i.e. a single implicit solve of the temperature equation in each domain). In extreme cases (e.g. very fine grids with very large time-steps) it may be necessary to perform one or more sub-iterations. Each sub-iteration generally increases the range of stability substantially and thus one sub-iteration is likely sufficient for the vast majority of practical problems. The CHAMP algorithm is developed first for a model problem and analyzed using normal-mode theory. The theory provides a mechanism for choosing optimal parameters in the mixed interface condition. A comparison is made to the classical Dirichlet-Neumann (DN) method and, where applicable, to the optimized-Schwarz (OS) domain-decomposition method. For problems with different thermal conductivities and diffusivities, the CHAMP algorithm outperforms the DN scheme. For domain-decomposition problems with uniform conductivities and diffusivities, the CHAMP algorithm performs better than the typical OS scheme with one grid-cell overlap. The CHAMP scheme is also developed for general curvilinear grids and CHT examples are presented using composite overset grids that confirm the theory and demonstrate the effectiveness of the approach.
On the Design of Smart Parking Networks in the Smart Cities: An Optimal Sensor Placement Model
Bagula, Antoine; Castelli, Lorenzo; Zennaro, Marco
2015-01-01
Smart parking is a typical IoT application that can benefit from advances in sensor, actuator and RFID technologies to provide many services to its users and parking owners of a smart city. This paper considers a smart parking infrastructure where sensors are laid down on the parking spots to detect car presence and RFID readers are embedded into parking gates to identify cars and help in the billing of the smart parking. Both types of devices are endowed with wired and wireless communication capabilities for reporting to a gateway where the situation recognition is performed. The sensor devices are tasked to play one of the three roles: (1) slave sensor nodes located on the parking spot to detect car presence/absence; (2) master nodes located at one of the edges of a parking lot to detect presence and collect the sensor readings from the slave nodes; and (3) repeater sensor nodes, also called “anchor” nodes, located strategically at specific locations in the parking lot to increase the coverage and connectivity of the wireless sensor network. While slave and master nodes are placed based on geographic constraints, the optimal placement of the relay/anchor sensor nodes in smart parking is an important parameter upon which the cost and efficiency of the parking system depends. We formulate the optimal placement of sensors in smart parking as an integer linear programming multi-objective problem optimizing the sensor network engineering efficiency in terms of coverage and lifetime maximization, as well as its economic gain in terms of the number of sensors deployed for a specific coverage and lifetime. We propose an exact solution to the node placement problem using single-step and two-step solutions implemented in the Mosel language based on the Xpress-MPsuite of libraries. Experimental results reveal the relative efficiency of the single-step compared to the two-step model on different performance parameters. These results are consolidated by simulation results, which reveal that our solution outperforms a random placement in terms of both energy consumption, delay and throughput achieved by a smart parking network. PMID:26134104
On the Design of Smart Parking Networks in the Smart Cities: An Optimal Sensor Placement Model.
Bagula, Antoine; Castelli, Lorenzo; Zennaro, Marco
2015-06-30
Smart parking is a typical IoT application that can benefit from advances in sensor, actuator and RFID technologies to provide many services to its users and parking owners of a smart city. This paper considers a smart parking infrastructure where sensors are laid down on the parking spots to detect car presence and RFID readers are embedded into parking gates to identify cars and help in the billing of the smart parking. Both types of devices are endowed with wired and wireless communication capabilities for reporting to a gateway where the situation recognition is performed. The sensor devices are tasked to play one of the three roles: (1) slave sensor nodes located on the parking spot to detect car presence/absence; (2) master nodes located at one of the edges of a parking lot to detect presence and collect the sensor readings from the slave nodes; and (3) repeater sensor nodes, also called "anchor" nodes, located strategically at specific locations in the parking lot to increase the coverage and connectivity of the wireless sensor network. While slave and master nodes are placed based on geographic constraints, the optimal placement of the relay/anchor sensor nodes in smart parking is an important parameter upon which the cost and efficiency of the parking system depends. We formulate the optimal placement of sensors in smart parking as an integer linear programming multi-objective problem optimizing the sensor network engineering efficiency in terms of coverage and lifetime maximization, as well as its economic gain in terms of the number of sensors deployed for a specific coverage and lifetime. We propose an exact solution to the node placement problem using single-step and two-step solutions implemented in the Mosel language based on the Xpress-MPsuite of libraries. Experimental results reveal the relative efficiency of the single-step compared to the two-step model on different performance parameters. These results are consolidated by simulation results, which reveal that our solution outperforms a random placement in terms of both energy consumption, delay and throughput achieved by a smart parking network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghobadi, Kimia; Ghaffari, Hamid R.; Aleman, Dionne M.
2013-09-15
Purpose: The purpose of this work is to advance the two-step approach for Gamma Knife{sup ®} Perfexion™ (PFX) optimization to account for dose homogeneity and overlap between the planning target volume (PTV) and organs-at-risk (OARs).Methods: In the first step, a geometry-based algorithm is used to quickly select isocentre locations while explicitly accounting for PTV-OARs overlaps. In this approach, the PTV is divided into subvolumes based on the PTV-OARs overlaps and the distance of voxels to the overlaps. Only a few isocentres are selected in the overlap volume, and a higher number of isocentres are carefully selected among voxels that aremore » immediately close to the overlap volume. In the second step, a convex optimization is solved to find the optimal combination of collimator sizes and their radiation duration for each isocentre location.Results: This two-step approach is tested on seven clinical cases (comprising 11 targets) for which the authors assess coverage, OARs dose, and homogeneity index and relate these parameters to the overlap fraction for each case. In terms of coverage, the mean V{sub 99} for the gross target volume (GTV) was 99.8% while the V{sub 95} for the PTV averaged at 94.6%, thus satisfying the clinical objectives of 99% for GTV and 95% for PTV, respectively. The mean relative dose to the brainstem was 87.7% of the prescription dose (with maximum 108%), while on average, 11.3% of the PTV overlapped with the brainstem. The mean beam-on time per fraction per dose was 8.6 min with calibration dose rate of 3.5 Gy/min, and the computational time averaged at 205 min. Compared with previous work involving single-fraction radiosurgery, the resulting plans were more homogeneous with average homogeneity index of 1.18 compared to 1.47.Conclusions: PFX treatment plans with homogeneous dose distribution can be achieved by inverse planning using geometric isocentre selection and mathematical modeling and optimization techniques. The quality of the obtained treatment plans are clinically satisfactory while the homogeneity index is improved compared to conventional PFX plans.« less
A stable and accurate partitioned algorithm for conjugate heat transfer
Meng, F.; Banks, J. W.; Henshaw, W. D.; ...
2017-04-25
We describe a new partitioned approach for solving conjugate heat transfer (CHT) problems where the governing temperature equations in different material domains are time-stepped in a implicit manner, but where the interface coupling is explicit. The new approach, called the CHAMP scheme (Conjugate Heat transfer Advanced Multi-domain Partitioned), is based on a discretization of the interface coupling conditions using a generalized Robin (mixed) condition. The weights in the Robin condition are determined from the optimization of a condition derived from a local stability analysis of the coupling scheme. The interface treatment combines ideas from optimized-Schwarz methods for domain-decomposition problems togethermore » with the interface jump conditions and additional compatibility jump conditions derived from the governing equations. For many problems (i.e. for a wide range of material properties, grid-spacings and time-steps) the CHAMP algorithm is stable and second-order accurate using no sub-time-step iterations (i.e. a single implicit solve of the temperature equation in each domain). In extreme cases (e.g. very fine grids with very large time-steps) it may be necessary to perform one or more sub-iterations. Each sub-iteration generally increases the range of stability substantially and thus one sub-iteration is likely sufficient for the vast majority of practical problems. The CHAMP algorithm is developed first for a model problem and analyzed using normal-mode the- ory. The theory provides a mechanism for choosing optimal parameters in the mixed interface condition. A comparison is made to the classical Dirichlet-Neumann (DN) method and, where applicable, to the optimized- Schwarz (OS) domain-decomposition method. For problems with different thermal conductivities and dif- fusivities, the CHAMP algorithm outperforms the DN scheme. For domain-decomposition problems with uniform conductivities and diffusivities, the CHAMP algorithm performs better than the typical OS scheme with one grid-cell overlap. Lastly, the CHAMP scheme is also developed for general curvilinear grids and CHT ex- amples are presented using composite overset grids that confirm the theory and demonstrate the effectiveness of the approach.« less
Motunrayo Ibrahim, Fausat
2013-01-01
Gardening is a worthwhile adventure which engenders health op-timization. Yet, a dearth of evidences that highlights motivations to engage in gardening exists. This study examined willingness to engage in gardening and its correlates, including some socio-psychological, health related and socio-demographic variables. In this cross-sectional survey, 508 copies of a structured questionnaire were randomly self administered among a group of civil servants of Oyo State, Nigeria. Multi-item measures were used to assess variables. Step wise multiple regression analysis was used to identify predictors of willingness to engage in gar-dening Results: Simple percentile analysis shows that 71.1% of respondents do not own a garden. Results of step wise multiple regression analysis indicate that descriptive norm of gardening is a good predictor, social support for gardening is better while gardening self efficacy is the best predictor of willingness to engage in gardening (P< 0.001). Health consciousness, gardening response efficacy, education and age are not predictors of this willingness (P> 0.05). Results of t-test and ANOVA respectively shows that gender is not associated with this willingness (P> 0.05), but marital status is (P< 0.05). Socio-psychological characteristics and being married are very rele-vant in motivations to engage in gardening. The nexus between gardening and health optimization appears to be highly obscured in this population.
Impact of user influence on information multi-step communication in a micro-blog
NASA Astrophysics Data System (ADS)
Wu, Yue; Hu, Yong; He, Xiao-Hai; Deng, Ken
2014-06-01
User influence is generally considered as one of the most critical factors that affect information cascading spreading. Based on this common assumption, this paper proposes a theoretical model to examine user influence on the information multi-step communication in a micro-blog. The multi-steps of information communication are divided into first-step and non-first-step, and user influence is classified into five dimensions. Actual data from the Sina micro-blog is collected to construct the model by means of an approach based on structural equations that uses the Partial Least Squares (PLS) technique. Our experimental results indicate that the dimensions of the number of fans and their authority significantly impact the information of first-step communication. Leader rank has a positive impact on both first-step and non-first-step communication. Moreover, global centrality and weight of friends are positively related to the information non-first-step communication, but authority is found to have much less relation to it.
NASA Astrophysics Data System (ADS)
Liu, Wen P.; Armand, Mehran; Otake, Yoshito; Taylor, Russell H.
2011-03-01
Percutaneous femoroplasty [1], or femoral bone augmentation, is a prospective alternative treatment for reducing the risk of fracture in patients with severe osteoporosis. We are developing a surgical robotics system that will assist orthopaedic surgeons in planning and performing a patient-specific, augmentation of the femur with bone cement. This collaborative project, sponsored by the National Institutes of Health (NIH), has been the topic of previous publications [2],[3] from our group. This paper presents modifications to the pose recovery of a fluoroscope tracking (FTRAC) fiducial during our process of 2D/3D registration of X-ray intraoperative images to preoperative CT data. We show improved automata of the initial pose estimation as well as lower projection errors with the advent of a multiimage pose optimization step.
NASA Astrophysics Data System (ADS)
Negi, Deepchand Singh; Pattamatta, Arvind
2015-04-01
The present study deals with shape optimization of dimples on the target surface in multi-jet impingement heat transfer. Bezier polynomial formulation is incorporated to generate profile shapes for the dimple profile generation and a multi-objective optimization is performed. The optimized dimple shape exhibits higher local Nusselt number values compared to the reference hemispherical dimpled plate optimized shape which can be used to alleviate local temperature hot spots on target surface.
NASA Astrophysics Data System (ADS)
Chiariotti, P.; Martarelli, M.; Revel, G. M.
2017-12-01
A novel non-destructive testing procedure for delamination detection based on the exploitation of the simultaneous time and spatial sampling provided by Continuous Scanning Laser Doppler Vibrometry (CSLDV) and the feature extraction capability of Multi-Level wavelet-based processing is presented in this paper. The processing procedure consists in a multi-step approach. Once the optimal mother-wavelet is selected as the one maximizing the Energy to Shannon Entropy Ratio criterion among the mother-wavelet space, a pruning operation aiming at identifying the best combination of nodes inside the full-binary tree given by Wavelet Packet Decomposition (WPD) is performed. The pruning algorithm exploits, in double step way, a measure of the randomness of the point pattern distribution on the damage map space with an analysis of the energy concentration of the wavelet coefficients on those nodes provided by the first pruning operation. A combination of the point pattern distributions provided by each node of the ensemble node set from the pruning algorithm allows for setting a Damage Reliability Index associated to the final damage map. The effectiveness of the whole approach is proven on both simulated and real test cases. A sensitivity analysis related to the influence of noise on the CSLDV signal provided to the algorithm is also discussed, showing that the processing developed is robust enough to measurement noise. The method is promising: damages are well identified on different materials and for different damage-structure varieties.
NASA Astrophysics Data System (ADS)
Hu, K. M.; Li, Hua
2018-07-01
A novel technique for the multi-parameter optimization of distributed piezoelectric actuators is presented in this paper. The proposed method is designed to improve the performance of multi-mode vibration control in cylindrical shells. The optimization parameters of actuator patch configuration include position, size, and tilt angle. The modal control force of tilted orthotropic piezoelectric actuators is derived and the multi-parameter cylindrical shell optimization model is established. The linear quadratic energy index is employed as the optimization criterion. A geometric constraint is proposed to prevent overlap between tilted actuators, which is plugged into a genetic algorithm to search the optimal configuration parameters. A simply-supported closed cylindrical shell with two actuators serves as a case study. The vibration control efficiencies of various parameter sets are evaluated via frequency response and transient response simulations. The results show that the linear quadratic energy indexes of position and size optimization decreased by 14.0% compared to position optimization; those of position and tilt angle optimization decreased by 16.8%; and those of position, size, and tilt angle optimization decreased by 25.9%. It indicates that, adding configuration optimization parameters is an efficient approach to improving the vibration control performance of piezoelectric actuators on shells.
Parameterized data-driven fuzzy model based optimal control of a semi-batch reactor.
Kamesh, Reddi; Rani, K Yamuna
2016-09-01
A parameterized data-driven fuzzy (PDDF) model structure is proposed for semi-batch processes, and its application for optimal control is illustrated. The orthonormally parameterized input trajectories, initial states and process parameters are the inputs to the model, which predicts the output trajectories in terms of Fourier coefficients. Fuzzy rules are formulated based on the signs of a linear data-driven model, while the defuzzification step incorporates a linear regression model to shift the domain from input to output domain. The fuzzy model is employed to formulate an optimal control problem for single rate as well as multi-rate systems. Simulation study on a multivariable semi-batch reactor system reveals that the proposed PDDF modeling approach is capable of capturing the nonlinear and time-varying behavior inherent in the semi-batch system fairly accurately, and the results of operating trajectory optimization using the proposed model are found to be comparable to the results obtained using the exact first principles model, and are also found to be comparable to or better than parameterized data-driven artificial neural network model based optimization results. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Luo, Qiankun; Wu, Jianfeng; Yang, Yun; Qian, Jiazhong; Wu, Jichun
2014-11-01
This study develops a new probabilistic multi-objective fast harmony search algorithm (PMOFHS) for optimal design of groundwater remediation systems under uncertainty associated with the hydraulic conductivity (K) of aquifers. The PMOFHS integrates the previously developed deterministic multi-objective optimization method, namely multi-objective fast harmony search algorithm (MOFHS) with a probabilistic sorting technique to search for Pareto-optimal solutions to multi-objective optimization problems in a noisy hydrogeological environment arising from insufficient K data. The PMOFHS is then coupled with the commonly used flow and transport codes, MODFLOW and MT3DMS, to identify the optimal design of groundwater remediation systems for a two-dimensional hypothetical test problem and a three-dimensional Indiana field application involving two objectives: (i) minimization of the total remediation cost through the engineering planning horizon, and (ii) minimization of the mass remaining in the aquifer at the end of the operational period, whereby the pump-and-treat (PAT) technology is used to clean up contaminated groundwater. Also, Monte Carlo (MC) analysis is employed to evaluate the effectiveness of the proposed methodology. Comprehensive analysis indicates that the proposed PMOFHS can find Pareto-optimal solutions with low variability and high reliability and is a potentially effective tool for optimizing multi-objective groundwater remediation problems under uncertainty.
NASA Astrophysics Data System (ADS)
Ayadi, Omar; Felfel, Houssem; Masmoudi, Faouzi
2017-07-01
The current manufacturing environment has changed from traditional single-plant to multi-site supply chain where multiple plants are serving customer demands. In this article, a tactical multi-objective, multi-period, multi-product, multi-site supply-chain planning problem is proposed. A corresponding optimization model aiming to simultaneously minimize the total cost, maximize product quality and maximize the customer satisfaction demand level is developed. The proposed solution approach yields to a front of Pareto-optimal solutions that represents the trade-offs among the different objectives. Subsequently, the analytic hierarchy process method is applied to select the best Pareto-optimal solution according to the preferences of the decision maker. The robustness of the solutions and the proposed approach are discussed based on a sensitivity analysis and an application to a real case from the textile and apparel industry.
NASA Astrophysics Data System (ADS)
Lohn, Stefan B.; Dong, Xin; Carminati, Federico
2012-12-01
Chip-Multiprocessors are going to support massive parallelism by many additional physical and logical cores. Improving performance can no longer be obtained by increasing clock-frequency because the technical limits are almost reached. Instead, parallel execution must be used to gain performance. Resources like main memory, the cache hierarchy, bandwidth of the memory bus or links between cores and sockets are not going to be improved as fast. Hence, parallelism can only result into performance gains if the memory usage is optimized and the communication between threads is minimized. Besides concurrent programming has become a domain for experts. Implementing multi-threading is error prone and labor-intensive. A full reimplementation of the whole AliRoot source-code is unaffordable. This paper describes the effort to evaluate the adaption of AliRoot to the needs of multi-threading and to provide the capability of parallel processing by using a semi-automatic source-to-source transformation to address the problems as described before and to provide a straight-forward way of parallelization with almost no interference between threads. This makes the approach simple and reduces the required manual changes in the code. In a first step, unconditional thread-safety will be introduced to bring the original sequential and thread unaware source-code into the position of utilizing multi-threading. Afterwards further investigations have to be performed to point out candidates of classes that are useful to share amongst threads. Then in a second step, the transformation has to change the code to share these classes and finally to verify if there are anymore invalid interferences between threads.
Fereidoon, Majid; Koch, Manfred
2018-07-15
Agriculture is one of the environmental/economic sectors that may adversely be affected by climate change, especially, in already nowadays water-scarce regions, like the Middle East. One way to cope with future changes in absolute as well as seasonal (irrigation) water amounts can be the adaptation of the agricultural crop pattern in a region, i.e. by planting crops which still provide high yields and so economic benefits to farmers under such varying climate conditions. To do this properly, the whole cascade starting from climate change, effects on hydrology and surface water availability, subsequent effects on crop yield, agricultural areas available, and, finally, economic value of a multi-crop cultivation pattern must be known. To that avail, a complex coupled simulation-optimization tool SWAT-LINGO-MODSIM-PSO (SLMP) has been developed here and used to find the future optimum cultivation area of crops for the maximization of the economic benefits in five irrigation-fed agricultural plains in the south of the Karkheh River Basin (KRB) southwest Iran. Starting with the SWAT distributed hydrological model, the KR-streamflow as well as the inflow into the Karkheh-reservoir, as the major storage of irrigation water, is calibrated and validated, based on 1985-2004 observed discharge data. In the subsequent step, the SWAT-predicted streamflow is fed into the MODSIM river basin Decision Support System to simulate and optimize the water allocation between different water users (agricultural, environmental, municipal and industrial) under standard operating policy (SOP) rules. The final step is the maximization of the economic benefit in the five agricultural plains through constrained PSO (particle swarm optimization) by adjusting the cultivation areas (decision variables) of different crops (wheat, barley, maize and "others"), taking into account their specific prizes and optimal crop yields under water deficiency, with the latter computed in the LINGO-sub-optimization module embedded in the SLMP-tool. For the optimization of the agricultural benefits in the KRB in the near future (2038-2060), quantile-mapping (QM) bias-corrected downscaled predictors for daily precipitation and temperatures of the HadGEM2-ES GCM-model under RCP4.5- and RCP8.5-emission scenarios are used as climate drivers in the streamflow- and crop yield simulations of the SWAT-model, leading to corresponding changes in the final outcome (economic benefit) of the SLMP-tool. In fact, whereas for the historical period (1985-2004) a total annual benefit of 94.2 million US$ for all multi-crop areas in KRB is computed, there is a decrease to 88.3 million US$ and 72.1 million US$ for RCP4.5 and RCP8.5, respectively, in the near future (2038-2060) prediction period. In fact, this future income decrease is due to a substantial shift from cultivation areas devoted nowadays to high-price wheat and barley in the winter season to low-price maize-covered areas in the future summers, owing to a future seasonal change of SWAT-predicted irrigation water available, i.e. less in the winter and more in the summer. Copyright © 2018 Elsevier B.V. All rights reserved.
Cook, Ronald Lee; Elliott, Brian John; Luebben, Silvia DeVito; Myers, Andrew William; Smith, Bryan Matthew
2005-05-03
A new class of surface modified particles and a multi-step Michael-type addition surface modification process for the preparation of the same is provided. The multi-step Michael-type addition surface modification process involves two or more reactions to compatibilize particles with various host systems and/or to provide the particles with particular chemical reactivities. The initial step comprises the attachment of a small organic compound to the surface of the inorganic particle. The subsequent steps attach additional compounds to the previously attached organic compounds through reactive organic linking groups. Specifically, these reactive groups are activated carbon—carbon pi bonds and carbon and non-carbon nucleophiles that react via Michael or Michael-type additions.
Design and multi-physics optimization of rotary MRF brakes
NASA Astrophysics Data System (ADS)
Topcu, Okan; Taşcıoğlu, Yiğit; Konukseven, Erhan İlhan
2018-03-01
Particle swarm optimization (PSO) is a popular method to solve the optimization problems. However, calculations for each particle will be excessive when the number of particles and complexity of the problem increases. As a result, the execution speed will be too slow to achieve the optimized solution. Thus, this paper proposes an automated design and optimization method for rotary MRF brakes and similar multi-physics problems. A modified PSO algorithm is developed for solving multi-physics engineering optimization problems. The difference between the proposed method and the conventional PSO is to split up the original single population into several subpopulations according to the division of labor. The distribution of tasks and the transfer of information to the next party have been inspired by behaviors of a hunting party. Simulation results show that the proposed modified PSO algorithm can overcome the problem of heavy computational burden of multi-physics problems while improving the accuracy. Wire type, MR fluid type, magnetic core material, and ideal current inputs have been determined by the optimization process. To the best of the authors' knowledge, this multi-physics approach is novel for optimizing rotary MRF brakes and the developed PSO algorithm is capable of solving other multi-physics engineering optimization problems. The proposed method has showed both better performance compared to the conventional PSO and also has provided small, lightweight, high impedance rotary MRF brake designs.
Optimization of airport security lanes
NASA Astrophysics Data System (ADS)
Chen, Lin
2018-05-01
Current airport security management system is widely implemented all around the world to ensure the safety of passengers, but it might not be an optimum one. This paper aims to seek a better security system, which can maximize security while minimize inconvenience to passengers. Firstly, we apply Petri net model to analyze the steps where the main bottlenecks lie. Based on average tokens and time transition, the most time-consuming steps of security process can be found, including inspection of passengers' identification and documents, preparing belongings to be scanned and the process for retrieving belongings back. Then, we develop a queuing model to figure out factors affecting those time-consuming steps. As for future improvement, the effective measures which can be taken include transferring current system as single-queuing and multi-served, intelligently predicting the number of security checkpoints supposed to be opened, building up green biological convenient lanes. Furthermore, to test the theoretical results, we apply some data to stimulate the model. And the stimulation results are consistent with what we have got through modeling. Finally, we apply our queuing model to a multi-cultural background. The result suggests that by quantifying and modifying the variance in wait time, the model can be applied to individuals with various habits customs and habits. Generally speaking, our paper considers multiple affecting factors, employs several models and does plenty of calculations, which is practical and reliable for handling in reality. In addition, with more precise data available, we can further test and improve our models.
NASA Astrophysics Data System (ADS)
Badrzadeh, Honey; Sarukkalige, Ranjan; Jayawardena, A. W.
2013-12-01
Discrete wavelet transform was applied to decomposed ANN and ANFIS inputs.Novel approach of WNF with subtractive clustering applied for flow forecasting.Forecasting was performed in 1-5 step ahead, using multi-variate inputs.Forecasting accuracy of peak values and longer lead-time significantly improved.
Tag-Based Social Image Search: Toward Relevant and Diverse Results
NASA Astrophysics Data System (ADS)
Yang, Kuiyuan; Wang, Meng; Hua, Xian-Sheng; Zhang, Hong-Jiang
Recent years have witnessed a great success of social media websites. Tag-based image search is an important approach to access the image content of interest on these websites. However, the existing ranking methods for tag-based image search frequently return results that are irrelevant or lack of diversity. This chapter presents a diverse relevance ranking scheme which simultaneously takes relevance and diversity into account by exploring the content of images and their associated tags. First, it estimates the relevance scores of images with respect to the query term based on both visual information of images and semantic information of associated tags. Then semantic similarities of social images are estimated based on their tags. Based on the relevance scores and the similarities, the ranking list is generated by a greedy ordering algorithm which optimizes Average Diverse Precision (ADP), a novel measure that is extended from the conventional Average Precision (AP). Comprehensive experiments and user studies demonstrate the effectiveness of the approach.
NASA Astrophysics Data System (ADS)
Bilionis, I.; Koutsourelakis, P. S.
2012-05-01
The present paper proposes an adaptive biasing potential technique for the computation of free energy landscapes. It is motivated by statistical learning arguments and unifies the tasks of biasing the molecular dynamics to escape free energy wells and estimating the free energy function, under the same objective of minimizing the Kullback-Leibler divergence between appropriately selected densities. It offers rigorous convergence diagnostics even though history dependent, non-Markovian dynamics are employed. It makes use of a greedy optimization scheme in order to obtain sparse representations of the free energy function which can be particularly useful in multidimensional cases. It employs embarrassingly parallelizable sampling schemes that are based on adaptive Sequential Monte Carlo and can be readily coupled with legacy molecular dynamics simulators. The sequential nature of the learning and sampling scheme enables the efficient calculation of free energy functions parametrized by the temperature. The characteristics and capabilities of the proposed method are demonstrated in three numerical examples.
Johnson, Jason K.; Oyen, Diane Adele; Chertkov, Michael; ...
2016-12-01
Inference and learning of graphical models are both well-studied problems in statistics and machine learning that have found many applications in science and engineering. However, exact inference is intractable in general graphical models, which suggests the problem of seeking the best approximation to a collection of random variables within some tractable family of graphical models. In this paper, we focus on the class of planar Ising models, for which exact inference is tractable using techniques of statistical physics. Based on these techniques and recent methods for planarity testing and planar embedding, we propose a greedy algorithm for learning the bestmore » planar Ising model to approximate an arbitrary collection of binary random variables (possibly from sample data). Given the set of all pairwise correlations among variables, we select a planar graph and optimal planar Ising model defined on this graph to best approximate that set of correlations. Finally, we demonstrate our method in simulations and for two applications: modeling senate voting records and identifying geo-chemical depth trends from Mars rover data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Jason K.; Oyen, Diane Adele; Chertkov, Michael
Inference and learning of graphical models are both well-studied problems in statistics and machine learning that have found many applications in science and engineering. However, exact inference is intractable in general graphical models, which suggests the problem of seeking the best approximation to a collection of random variables within some tractable family of graphical models. In this paper, we focus on the class of planar Ising models, for which exact inference is tractable using techniques of statistical physics. Based on these techniques and recent methods for planarity testing and planar embedding, we propose a greedy algorithm for learning the bestmore » planar Ising model to approximate an arbitrary collection of binary random variables (possibly from sample data). Given the set of all pairwise correlations among variables, we select a planar graph and optimal planar Ising model defined on this graph to best approximate that set of correlations. Finally, we demonstrate our method in simulations and for two applications: modeling senate voting records and identifying geo-chemical depth trends from Mars rover data.« less
Design of Clinical Support Systems Using Integrated Genetic Algorithm and Support Vector Machine
NASA Astrophysics Data System (ADS)
Chen, Yung-Fu; Huang, Yung-Fa; Jiang, Xiaoyi; Hsu, Yuan-Nian; Lin, Hsuan-Hung
Clinical decision support system (CDSS) provides knowledge and specific information for clinicians to enhance diagnostic efficiency and improving healthcare quality. An appropriate CDSS can highly elevate patient safety, improve healthcare quality, and increase cost-effectiveness. Support vector machine (SVM) is believed to be superior to traditional statistical and neural network classifiers. However, it is critical to determine suitable combination of SVM parameters regarding classification performance. Genetic algorithm (GA) can find optimal solution within an acceptable time, and is faster than greedy algorithm with exhaustive searching strategy. By taking the advantage of GA in quickly selecting the salient features and adjusting SVM parameters, a method using integrated GA and SVM (IGS), which is different from the traditional method with GA used for feature selection and SVM for classification, was used to design CDSSs for prediction of successful ventilation weaning, diagnosis of patients with severe obstructive sleep apnea, and discrimination of different cell types form Pap smear. The results show that IGS is better than methods using SVM alone or linear discriminator.
Assessment of metal ion concentration in water with structured feature selection.
Naula, Pekka; Airola, Antti; Pihlasalo, Sari; Montoya Perez, Ileana; Salakoski, Tapio; Pahikkala, Tapio
2017-10-01
We propose a cost-effective system for the determination of metal ion concentration in water, addressing a central issue in water resources management. The system combines novel luminometric label array technology with a machine learning algorithm that selects a minimal number of array reagents (modulators) and liquid sample dilutions, such that enable accurate quantification. The algorithm is able to identify the optimal modulators and sample dilutions leading to cost reductions since less manual labour and resources are needed. Inferring the ion detector involves a unique type of a structured feature selection problem, which we formalize in this paper. We propose a novel Cartesian greedy forward feature selection algorithm for solving the problem. The novel algorithm was evaluated in the concentration assessment of five metal ions and the performance was compared to two known feature selection approaches. The results demonstrate that the proposed system can assist in lowering the costs with minimal loss in accuracy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dimension reduction and multiscaling law through source extraction
NASA Astrophysics Data System (ADS)
Capobianco, Enrico
2003-04-01
Through the empirical analysis of financial return generating processes one may find features that are common to other research fields, such as internet data from network traffic, physiological studies about human heart beat, speech and sleep recorded time series, geophysics signals, just to mention well-known cases of study. In particular, long range dependence, intermittency, heteroscedasticity are clearly appearing, and consequently power laws and multi-scaling behavior result typical signatures of either the spectral or the time correlation diagnostics. We study these features and the dynamics underlying financial volatility, which can respectively be detected and inferred from high frequency realizations of stock index returns, and show that they vary according to the resolution levels used for both the analysis and the synthesis of the available information. Discovering whether the volatility dynamics are subject to changes in scaling regimes requires the consideration of a model embedding scale-dependent information packets, thus accounting for possible heterogeneous activity occurring in financial markets. Independent component analysis result to be an important tool for reducing the dimension of the problem and calibrating greedy approximation techniques aimed to learn the structure of the underlying volatility.
NASA Astrophysics Data System (ADS)
Olyazadeh, Roya; van Westen, Cees; Bakker, Wim H.; Aye, Zar Chi; Jaboyedoff, Michel; Derron, Marc-Henri
2014-05-01
Natural hazard risk management requires decision making in several stages. Decision making on alternatives for risk reduction planning starts with an intelligence phase for recognition of the decision problems and identifying the objectives. Development of the alternatives and assigning the variable by decision makers to each alternative are employed to the design phase. Final phase evaluates the optimal choice by comparing the alternatives, defining indicators, assigning a weight to each and ranking them. This process is referred to as Multi-Criteria Decision Making analysis (MCDM), Multi-Criteria Evaluation (MCE) or Multi-Criteria Analysis (MCA). In the framework of the ongoing 7th Framework Program "CHANGES" (2011-2014, Grant Agreement No. 263953) of the European Commission, a Spatial Decision Support System is under development, that has the aim to analyse changes in hydro-meteorological risk and provide support to selecting the best risk reduction alternative. This paper describes the module for Multi-Criteria Decision Making analysis (MCDM) that incorporates monetary and non-monetary criteria in the analysis of the optimal alternative. The MCDM module consists of several components. The first step is to define criteria (or Indicators) which are subdivided into disadvantages (criteria that indicate the difficulty for implementing the risk reduction strategy, also referred to as Costs) and advantages (criteria that indicate the favorability, also referred to as benefits). In the next step the stakeholders can use the developed web-based tool for prioritizing criteria and decision matrix. Public participation plays a role in decision making and this is also planned through the use of a mobile web-version where the general local public can indicate their agreement on the proposed alternatives. The application is being tested through a case study related to risk reduction of a mountainous valley in the Alps affected by flooding. Four alternatives are evaluated in this case study namely: construction of defense structures, relocation, implementation of an early warning system and spatial planning regulations. Some of the criteria are determined partly in other modules of the CHANGES SDSS, such as the costs for implementation, the risk reduction in monetary values, and societal risk. Other criteria, which could be environmental, economic, cultural, perception in nature, are defined by different stakeholders such as local authorities, expert organizations, private sector, and local public. In the next step, the stakeholders weight the importance of the criteria by pairwise comparison and visualize the decision matrix, which is a matrix based on criteria versus alternatives values. Finally alternatives are ranked by Analytic Hierarchy Process (AHP) method. We expect that this approach will help the decision makers to ease their works and reduce their costs, because the process is more transparent, more accurate and involves a group decision. In that way there will be more confidence in the overall decision making process. Keywords: MCDM, Analytic Hierarchy Process (AHP), SDSS, Natural Hazard Risk Management
NASA Astrophysics Data System (ADS)
Cheng, Xiao; Feng, Lei; Zhou, Fanqin; Wei, Lei; Yu, Peng; Li, Wenjing
2018-02-01
With the rapid development of the smart grid, the data aggregation point (AP) in the neighborhood area network (NAN) is becoming increasingly important for forwarding the information between the home area network and wide area network. Due to limited budget, it is unable to use one-single access technology to meet the ongoing requirements on AP coverage. This paper first introduces the wired and wireless hybrid access network with the integration of long-term evolution (LTE) and passive optical network (PON) system for NAN, which allows a good trade-off among cost, flexibility, and reliability. Then, based on the already existing wireless LTE network, an AP association optimization model is proposed to make the PON serve as many APs as possible, considering both the economic efficiency and network reliability. Moreover, since the features of the constraints and variables of this NP-hard problem, a hybrid intelligent optimization algorithm is proposed, which is achieved by the mixture of the genetic, ant colony and dynamic greedy algorithm. By comparing with other published methods, simulation results verify the performance of the proposed method in improving the AP coverage and the performance of the proposed algorithm in terms of convergence.
NASA Astrophysics Data System (ADS)
Liu, Jingfa; Song, Beibei; Liu, Zhaoxia; Huang, Weibo; Sun, Yuanyuan; Liu, Wenjie
2013-11-01
Protein structure prediction (PSP) is a classical NP-hard problem in computational biology. The energy-landscape paving (ELP) method is a class of heuristic global optimization algorithm, and has been successfully applied to solving many optimization problems with complex energy landscapes in the continuous space. By putting forward a new update mechanism of the histogram function in ELP and incorporating the generation of initial conformation based on the greedy strategy and the neighborhood search strategy based on pull moves into ELP, an improved energy-landscape paving (ELP+) method is put forward. Twelve general benchmark instances are first tested on both two-dimensional and three-dimensional (3D) face-centered-cubic (fcc) hydrophobic-hydrophilic (HP) lattice models. The lowest energies by ELP+ are as good as or better than those of other methods in the literature for all instances. Then, five sets of larger-scale instances, denoted by S, R, F90, F180, and CASP target instances on the 3D FCC HP lattice model are tested. The proposed algorithm finds lower energies than those by the five other methods in literature. Not unexpectedly, this is particularly pronounced for the longer sequences considered. Computational results show that ELP+ is an effective method for PSP on the fcc HP lattice model.
SU-F-R-10: Selecting the Optimal Solution for Multi-Objective Radiomics Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Z; Folkert, M; Wang, J
2016-06-15
Purpose: To develop an evidential reasoning approach for selecting the optimal solution from a Pareto solution set obtained by a multi-objective radiomics model for predicting distant failure in lung SBRT. Methods: In the multi-objective radiomics model, both sensitivity and specificity are considered as the objective functions simultaneously. A Pareto solution set with many feasible solutions will be resulted from the multi-objective optimization. In this work, an optimal solution Selection methodology for Multi-Objective radiomics Learning model using the Evidential Reasoning approach (SMOLER) was proposed to select the optimal solution from the Pareto solution set. The proposed SMOLER method used the evidentialmore » reasoning approach to calculate the utility of each solution based on pre-set optimal solution selection rules. The solution with the highest utility was chosen as the optimal solution. In SMOLER, an optimal learning model coupled with clonal selection algorithm was used to optimize model parameters. In this study, PET, CT image features and clinical parameters were utilized for predicting distant failure in lung SBRT. Results: Total 126 solution sets were generated by adjusting predictive model parameters. Each Pareto set contains 100 feasible solutions. The solution selected by SMOLER within each Pareto set was compared to the manually selected optimal solution. Five-cross-validation was used to evaluate the optimal solution selection accuracy of SMOLER. The selection accuracies for five folds were 80.00%, 69.23%, 84.00%, 84.00%, 80.00%, respectively. Conclusion: An optimal solution selection methodology for multi-objective radiomics learning model using the evidential reasoning approach (SMOLER) was proposed. Experimental results show that the optimal solution can be found in approximately 80% cases.« less
NASA Astrophysics Data System (ADS)
Berger, Lukas; Kleinheinz, Konstantin; Attili, Antonio; Bisetti, Fabrizio; Pitsch, Heinz; Mueller, Michael E.
2018-05-01
Modelling unclosed terms in partial differential equations typically involves two steps: First, a set of known quantities needs to be specified as input parameters for a model, and second, a specific functional form needs to be defined to model the unclosed terms by the input parameters. Both steps involve a certain modelling error, with the former known as the irreducible error and the latter referred to as the functional error. Typically, only the total modelling error, which is the sum of functional and irreducible error, is assessed, but the concept of the optimal estimator enables the separate analysis of the total and the irreducible errors, yielding a systematic modelling error decomposition. In this work, attention is paid to the techniques themselves required for the practical computation of irreducible errors. Typically, histograms are used for optimal estimator analyses, but this technique is found to add a non-negligible spurious contribution to the irreducible error if models with multiple input parameters are assessed. Thus, the error decomposition of an optimal estimator analysis becomes inaccurate, and misleading conclusions concerning modelling errors may be drawn. In this work, numerically accurate techniques for optimal estimator analyses are identified and a suitable evaluation of irreducible errors is presented. Four different computational techniques are considered: a histogram technique, artificial neural networks, multivariate adaptive regression splines, and an additive model based on a kernel method. For multiple input parameter models, only artificial neural networks and multivariate adaptive regression splines are found to yield satisfactorily accurate results. Beyond a certain number of input parameters, the assessment of models in an optimal estimator analysis even becomes practically infeasible if histograms are used. The optimal estimator analysis in this paper is applied to modelling the filtered soot intermittency in large eddy simulations using a dataset of a direct numerical simulation of a non-premixed sooting turbulent flame.
Multi-Constraint Multi-Variable Optimization of Source-Driven Nuclear Systems
NASA Astrophysics Data System (ADS)
Watkins, Edward Francis
1995-01-01
A novel approach to the search for optimal designs of source-driven nuclear systems is investigated. Such systems include radiation shields, fusion reactor blankets and various neutron spectrum-shaping assemblies. The novel approach involves the replacement of the steepest-descents optimization algorithm incorporated in the code SWAN by a significantly more general and efficient sequential quadratic programming optimization algorithm provided by the code NPSOL. The resulting SWAN/NPSOL code system can be applied to more general, multi-variable, multi-constraint shield optimization problems. The constraints it accounts for may include simple bounds on variables, linear constraints, and smooth nonlinear constraints. It may also be applied to unconstrained, bound-constrained and linearly constrained optimization. The shield optimization capabilities of the SWAN/NPSOL code system is tested and verified in a variety of optimization problems: dose minimization at constant cost, cost minimization at constant dose, and multiple-nonlinear constraint optimization. The replacement of the optimization part of SWAN with NPSOL is found feasible and leads to a very substantial improvement in the complexity of optimization problems which can be efficiently handled.
Coupled Low-thrust Trajectory and System Optimization via Multi-Objective Hybrid Optimal Control
NASA Technical Reports Server (NTRS)
Vavrina, Matthew A.; Englander, Jacob Aldo; Ghosh, Alexander R.
2015-01-01
The optimization of low-thrust trajectories is tightly coupled with the spacecraft hardware. Trading trajectory characteristics with system parameters ton identify viable solutions and determine mission sensitivities across discrete hardware configurations is labor intensive. Local independent optimization runs can sample the design space, but a global exploration that resolves the relationships between the system variables across multiple objectives enables a full mapping of the optimal solution space. A multi-objective, hybrid optimal control algorithm is formulated using a multi-objective genetic algorithm as an outer loop systems optimizer around a global trajectory optimizer. The coupled problem is solved simultaneously to generate Pareto-optimal solutions in a single execution. The automated approach is demonstrated on two boulder return missions.
Wang, Degeng
2008-01-01
Discrepancy between the abundance of cognate protein and RNA molecules is frequently observed. A theoretical understanding of this discrepancy remains elusive, and it is frequently described as surprises and/or technical difficulties in the literature. Protein and RNA represent different steps of the multi-stepped cellular genetic information flow process, in which they are dynamically produced and degraded. This paper explores a comparison with a similar process in computers - multi-step information flow from storage level to the execution level. Functional similarities can be found in almost every facet of the retrieval process. Firstly, common architecture is shared, as the ribonome (RNA space) and the proteome (protein space) are functionally similar to the computer primary memory and the computer cache memory respectively. Secondly, the retrieval process functions, in both systems, to support the operation of dynamic networks – biochemical regulatory networks in cells and, in computers, the virtual networks (of CPU instructions) that the CPU travels through while executing computer programs. Moreover, many regulatory techniques are implemented in computers at each step of the information retrieval process, with a goal of optimizing system performance. Cellular counterparts can be easily identified for these regulatory techniques. In other words, this comparative study attempted to utilize theoretical insight from computer system design principles as catalysis to sketch an integrative view of the gene expression process, that is, how it functions to ensure efficient operation of the overall cellular regulatory network. In context of this bird’s-eye view, discrepancy between protein and RNA abundance became a logical observation one would expect. It was suggested that this discrepancy, when interpreted in the context of system operation, serves as a potential source of information to decipher regulatory logics underneath biochemical network operation. PMID:18757239
Wang, Degeng
2008-12-01
Discrepancy between the abundance of cognate protein and RNA molecules is frequently observed. A theoretical understanding of this discrepancy remains elusive, and it is frequently described as surprises and/or technical difficulties in the literature. Protein and RNA represent different steps of the multi-stepped cellular genetic information flow process, in which they are dynamically produced and degraded. This paper explores a comparison with a similar process in computers-multi-step information flow from storage level to the execution level. Functional similarities can be found in almost every facet of the retrieval process. Firstly, common architecture is shared, as the ribonome (RNA space) and the proteome (protein space) are functionally similar to the computer primary memory and the computer cache memory, respectively. Secondly, the retrieval process functions, in both systems, to support the operation of dynamic networks-biochemical regulatory networks in cells and, in computers, the virtual networks (of CPU instructions) that the CPU travels through while executing computer programs. Moreover, many regulatory techniques are implemented in computers at each step of the information retrieval process, with a goal of optimizing system performance. Cellular counterparts can be easily identified for these regulatory techniques. In other words, this comparative study attempted to utilize theoretical insight from computer system design principles as catalysis to sketch an integrative view of the gene expression process, that is, how it functions to ensure efficient operation of the overall cellular regulatory network. In context of this bird's-eye view, discrepancy between protein and RNA abundance became a logical observation one would expect. It was suggested that this discrepancy, when interpreted in the context of system operation, serves as a potential source of information to decipher regulatory logics underneath biochemical network operation.
EIT image regularization by a new Multi-Objective Simulated Annealing algorithm.
Castro Martins, Thiago; Sales Guerra Tsuzuki, Marcos
2015-01-01
Multi-Objective Optimization can be used to produce regularized Electrical Impedance Tomography (EIT) images where the weight of the regularization term is not known a priori. This paper proposes a novel Multi-Objective Optimization algorithm based on Simulated Annealing tailored for EIT image reconstruction. Images are reconstructed from experimental data and compared with images from other Multi and Single Objective optimization methods. A significant performance enhancement from traditional techniques can be inferred from the results.
Optimized swimmer tracking system based on a novel multi-related-targets approach
NASA Astrophysics Data System (ADS)
Benarab, D.; Napoléon, T.; Alfalou, A.; Verney, A.; Hellard, P.
2017-02-01
Robust tracking is a crucial step in automatic swimmer evaluation from video sequences. We designed a robust swimmer tracking system using a new multi-related-targets approach. The main idea is to consider the swimmer as a bloc of connected subtargets that advance at the same speed. If one of the subtargets is partially or totally occluded, it can be localized by knowing the position of the others. In this paper, we first introduce the two-dimensional direct linear transformation technique that we used to calibrate the videos. Then, we present the classical tracking approach based on dynamic fusion. Next, we highlight the main contribution of our work, which is the multi-related-targets tracking approach. This approach, the classical head-only approach and the ground truth are then compared, through testing on a database of high-level swimmers in training, national and international competitions (French National Championships, Limoges 2015, and World Championships, Kazan 2015). Tracking percentage and the accuracy of the instantaneous speed are evaluated and the findings show that our new appraoach is significantly more accurate than the classical approach.
Preliminary Work for Examining the Scalability of Reinforcement Learning
NASA Technical Reports Server (NTRS)
Clouse, Jeff
1998-01-01
Researchers began studying automated agents that learn to perform multiple-step tasks early in the history of artificial intelligence (Samuel, 1963; Samuel, 1967; Waterman, 1970; Fikes, Hart & Nilsonn, 1972). Multiple-step tasks are tasks that can only be solved via a sequence of decisions, such as control problems, robotics problems, classic problem-solving, and game-playing. The objective of agents attempting to learn such tasks is to use the resources they have available in order to become more proficient at the tasks. In particular, each agent attempts to develop a good policy, a mapping from states to actions, that allows it to select actions that optimize a measure of its performance on the task; for example, reducing the number of steps necessary to complete the task successfully. Our study focuses on reinforcement learning, a set of learning techniques where the learner performs trial-and-error experiments in the task and adapts its policy based on the outcome of those experiments. Much of the work in reinforcement learning has focused on a particular, simple representation, where every problem state is represented explicitly in a table, and associated with each state are the actions that can be chosen in that state. A major advantage of this table lookup representation is that one can prove that certain reinforcement learning techniques will develop an optimal policy for the current task. The drawback is that the representation limits the application of reinforcement learning to multiple-step tasks with relatively small state-spaces. There has been a little theoretical work that proves that convergence to optimal solutions can be obtained when using generalization structures, but the structures are quite simple. The theory says little about complex structures, such as multi-layer, feedforward artificial neural networks (Rumelhart & McClelland, 1986), but empirical results indicate that the use of reinforcement learning with such structures is promising. These empirical results make no theoretical claims, nor compare the policies produced to optimal policies. A goal of our work is to be able to make the comparison between an optimal policy and one stored in an artificial neural network. A difficulty of performing such a study is finding a multiple-step task that is small enough that one can find an optimal policy using table lookup, yet large enough that, for practical purposes, an artificial neural network is really required. We have identified a limited form of the game OTHELLO as satisfying these requirements. The work we report here is in the very preliminary stages of research, but this paper provides background for the problem being studied and a description of our initial approach to examining the problem. In the remainder of this paper, we first describe reinforcement learning in more detail. Next, we present the game OTHELLO. Finally we argue that a restricted form of the game meets the requirements of our study, and describe our preliminary approach to finding an optimal solution to the problem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhalla, Aditya; Fasahati, Peyman; Particka, Chrislyn A.
2018-05-17
When applied to recalcitrant lignocellulosic feedstocks, multi-stage pretreatments can provide more processing flexibility to optimize or balance process outcomes such as increasing delignification, preserving hemicellulose, and maximizing enzymatic hydrolysis yields. We previously reported that adding an alkaline pre-extraction step to a copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment process resulted in improved sugar yields, but the process still utilized relatively high chemical inputs (catalyst and H2O2) and enzyme loadings. We hypothesized that by increasing the temperature of the alkaline pre-extraction step in water or ethanol, we could reduce the inputs required during Cu-AHP pretreatment and enzymatic hydrolysis without significant loss inmore » sugar yield. We also performed technoeconomic analysis to determine if ethanol or water was the more cost-effective solvent during alkaline pre-extraction and if the expense associated with increasing the temperature was economically justified.« less
Design of multi-modal obstruction to control tonal fan noise using modulation principles
NASA Astrophysics Data System (ADS)
Gérard, Anthony; Moreau, Stéphane; Berry, Alain; Masson, Patrice
2015-11-01
The approach presented in this paper uses a combination of obstructions in the upstream flow of subsonic axial fans with B blades to destructively interfere with the primary tonal noise at the blade passage frequency. The first step of the proposed experimental method consists in identifying the independent radiation of B - 1 and B lobed obstructions at the control microphones. During this identification step, rotating obstructions allow for the frequencies of primary and secondary tonal noise to be slightly shifted in the spectrum due to modulation principles. The magnitude of the secondary tonal noise generated by each obstruction can be adjusted by varying the size of the lobes of the obstruction, and the phase of the secondary tonal noise is related to the angular position of the obstruction. The control obstructions are then optimized by combining the B - 1 and B lobed obstructions to significantly reduce the acoustic power at blade passage frequency.
Multiagent pursuit-evasion games: Algorithms and experiments
NASA Astrophysics Data System (ADS)
Kim, Hyounjin
Deployment of intelligent agents has been made possible through advances in control software, microprocessors, sensor/actuator technology, communication technology, and artificial intelligence. Intelligent agents now play important roles in many applications where human operation is too dangerous or inefficient. There is little doubt that the world of the future will be filled with intelligent robotic agents employed to autonomously perform tasks, or embedded in systems all around us, extending our capabilities to perceive, reason and act, and replacing human efforts. There are numerous real-world applications in which a single autonomous agent is not suitable and multiple agents are required. However, after years of active research in multi-agent systems, current technology is still far from achieving many of these real-world applications. Here, we consider the problem of deploying a team of unmanned ground vehicles (UGV) and unmanned aerial vehicles (UAV) to pursue a second team of UGV evaders while concurrently building a map in an unknown environment. This pursuit-evasion game encompasses many of the challenging issues that arise in operations using intelligent multi-agent systems. We cast the problem in a probabilistic game theoretic framework and consider two computationally feasible pursuit policies: greedy and global-max. We also formulate this probabilistic pursuit-evasion game as a partially observable Markov decision process and employ a policy search algorithm to obtain a good pursuit policy from a restricted class of policies. The estimated value of this policy is guaranteed to be uniformly close to the optimal value in the given policy class under mild conditions. To implement this scenario on real UAVs and UGVs, we propose a distributed hierarchical hybrid system architecture which emphasizes the autonomy of each agent yet allows for coordinated team efforts. We then describe our implementation on a fleet of UGVs and UAVs, detailing components such as high level pursuit policy computation, inter-agent communication, navigation, sensing, and regulation. We present both simulation and experimental results on real pursuit-evasion games between our fleet of UAVs and UGVs and evaluate the pursuit policies, relating expected capture times to the speed and intelligence of the evaders and the sensing capabilities of the pursuers. The architecture and algorithmsis described in this dissertation are general enough to be applied to many real-world applications.
Shadowing effects on multi-step Langmuir probe array on HL-2A tokamak
NASA Astrophysics Data System (ADS)
Ke, R.; Xu, M.; Nie, L.; Gao, Z.; Wu, Y.; Yuan, B.; Chen, J.; Song, X.; Yan, L.; Duan, X.
2018-05-01
Multi-step Langmuir probe arrays have been designed and installed on the HL-2A tokamak [1]–[2] to study the turbulent transport in the edge plasma, especially for the measurement of poloidal momentum flux, Reynolds stress Rs. However, except the probe tips on the top step, all other tips on lower steps are shadowed by graphite skeleton. It is necessary to estimate the shadowing effects on equilibrium and fluctuation measurement. In this paper, comparison of shadowed tips to unshadowed ones is presented. The results show that shadowing can strongly reduce the ion and electron effective collection area. However, its effect is negligible for the turbulence intensity and coherence measurement, confirming that the multi-step LP array is proper for the turbulent transport measurement.
Research on connection structure of aluminumbody bus using multi-objective topology optimization
NASA Astrophysics Data System (ADS)
Peng, Q.; Ni, X.; Han, F.; Rhaman, K.; Ulianov, C.; Fang, X.
2018-01-01
For connecting Aluminum Alloy bus body aluminum components often occur the problem of failure, a new aluminum alloy connection structure is designed based on multi-objective topology optimization method. Determining the shape of the outer contour of the connection structure with topography optimization, establishing a topology optimization model of connections based on SIMP density interpolation method, going on multi-objective topology optimization, and improving the design of the connecting piece according to the optimization results. The results show that the quality of the aluminum alloy connector after topology optimization is reduced by 18%, and the first six natural frequencies are improved and the strength performance and stiffness performance are obviously improved.
NASA Astrophysics Data System (ADS)
Chu, J.; Zhang, C.; Fu, G.; Li, Y.; Zhou, H.
2015-08-01
This study investigates the effectiveness of a sensitivity-informed method for multi-objective operation of reservoir systems, which uses global sensitivity analysis as a screening tool to reduce computational demands. Sobol's method is used to screen insensitive decision variables and guide the formulation of the optimization problems with a significantly reduced number of decision variables. This sensitivity-informed method dramatically reduces the computational demands required for attaining high-quality approximations of optimal trade-off relationships between conflicting design objectives. The search results obtained from the reduced complexity multi-objective reservoir operation problems are then used to pre-condition the full search of the original optimization problem. In two case studies, the Dahuofang reservoir and the inter-basin multi-reservoir system in Liaoning province, China, sensitivity analysis results show that reservoir performance is strongly controlled by a small proportion of decision variables. Sensitivity-informed dimension reduction and pre-conditioning are evaluated in their ability to improve the efficiency and effectiveness of multi-objective evolutionary optimization. Overall, this study illustrates the efficiency and effectiveness of the sensitivity-informed method and the use of global sensitivity analysis to inform dimension reduction of optimization problems when solving complex multi-objective reservoir operation problems.
NASA Astrophysics Data System (ADS)
Zheng, Y.; Chen, J.
2017-09-01
A modified multi-objective particle swarm optimization method is proposed for obtaining Pareto-optimal solutions effectively. Different from traditional multi-objective particle swarm optimization methods, Kriging meta-models and the trapezoid index are introduced and integrated with the traditional one. Kriging meta-models are built to match expensive or black-box functions. By applying Kriging meta-models, function evaluation numbers are decreased and the boundary Pareto-optimal solutions are identified rapidly. For bi-objective optimization problems, the trapezoid index is calculated as the sum of the trapezoid's area formed by the Pareto-optimal solutions and one objective axis. It can serve as a measure whether the Pareto-optimal solutions converge to the Pareto front. Illustrative examples indicate that to obtain Pareto-optimal solutions, the method proposed needs fewer function evaluations than the traditional multi-objective particle swarm optimization method and the non-dominated sorting genetic algorithm II method, and both the accuracy and the computational efficiency are improved. The proposed method is also applied to the design of a deepwater composite riser example in which the structural performances are calculated by numerical analysis. The design aim was to enhance the tension strength and minimize the cost. Under the buckling constraint, the optimal trade-off of tensile strength and material volume is obtained. The results demonstrated that the proposed method can effectively deal with multi-objective optimizations with black-box functions.
Stages in Learning Motor Synergies: A View Based on the Equilibrium-Point Hypothesis
Latash, Mark L.
2009-01-01
This review describes a novel view on stages in motor learning based on recent developments of the notion of synergies, the uncontrolled manifold hypothesis, and the equilibrium-point hypothesis (referent configuration) that allow to merge these notions into a single scheme of motor control. The principle of abundance and the principle of minimal final action form the foundation for analyses of natural motor actions performed by redundant sets of elements. Two main stages of motor learning are introduced corresponding to (1) discovery and strengthening of motor synergies stabilizing salient performance variable(s), and (2) their weakening when other aspects of motor performance are optimized. The first stage may be viewed as consisting of two steps, the elaboration of an adequate referent configuration trajectory and the elaboration of multi-joint (multi-muscle) synergies stabilizing the referent configuration trajectory. Both steps are expected to lead to more variance in the space of elemental variables that is compatible with a desired time profile of the salient performance variable (“good variability”). Adjusting control to other aspects of performance during the second stage (for example, esthetics, energy expenditure, time, fatigue, etc.) may lead to a drop in the “good variability”. Experimental support for the suggested scheme is reviewed. PMID:20060610
Stages in learning motor synergies: a view based on the equilibrium-point hypothesis.
Latash, Mark L
2010-10-01
This review describes a novel view on stages in motor learning based on recent developments of the notion of synergies, the uncontrolled manifold hypothesis, and the equilibrium-point hypothesis (referent configuration) that allow to merge these notions into a single scheme of motor control. The principle of abundance and the principle of minimal final action form the foundation for analyses of natural motor actions performed by redundant sets of elements. Two main stages of motor learning are introduced corresponding to (1) discovery and strengthening of motor synergies stabilizing salient performance variable(s) and (2) their weakening when other aspects of motor performance are optimized. The first stage may be viewed as consisting of two steps, the elaboration of an adequate referent configuration trajectory and the elaboration of multi-joint (multi-muscle) synergies stabilizing the referent configuration trajectory. Both steps are expected to lead to more variance in the space of elemental variables that is compatible with a desired time profile of the salient performance variable ("good variability"). Adjusting control to other aspects of performance during the second stage (for example, esthetics, energy expenditure, time, fatigue, etc.) may lead to a drop in the "good variability". Experimental support for the suggested scheme is reviewed. Copyright © 2009 Elsevier B.V. All rights reserved.
The Inventor-Investor Conundrum
ERIC Educational Resources Information Center
Hobbs, Francis
2006-01-01
The complexities of developing a business based on a novel product may appear insurmountable. Stereotypical convention suggests that there are two major players: polarized inventors and "greedy" investors. Surely there is a way of aligning the inventor-investor relationship into something positive for both parties? In this paper Francis…
ERIC Educational Resources Information Center
Beardsley, Theodore S., Jr.
1973-01-01
Special issue as a tribute to Dr. Arnold Reichenberger, well-known Hispanist, who has served as chairman of the Department of Romance Languages at Pennsylvania State University, University Park, Pennsylvania. (DS)