Science.gov

Sample records for optimization-based bit allocation

  1. Suboptimal greedy power allocation schemes for discrete bit loading.

    PubMed

    Al-Hanafy, Waleed; Weiss, Stephan

    2013-01-01

    We consider low cost discrete bit loading based on greedy power allocation (GPA) under the constraints of total transmit power budget, target BER, and maximum permissible QAM modulation order. Compared to the standard GPA, which is optimal in terms of maximising the data throughput, three suboptimal schemes are proposed, which perform GPA on subsets of subchannels only. These subsets are created by considering the minimum SNR boundaries of QAM levels for a given target BER. We demonstrate how these schemes can significantly reduce the computational complexity required for power allocation, particularly in the case of a large number of subchannels. Two of the proposed algorithms can achieve near optimal performance including a transfer of residual power between subsets at the expense of a very small extra cost. By simulations, we show that the two near optimal schemes, while greatly reducing complexity, perform best in two separate and distinct SNR regions.

  2. Suboptimal Greedy Power Allocation Schemes for Discrete Bit Loading

    PubMed Central

    2013-01-01

    We consider low cost discrete bit loading based on greedy power allocation (GPA) under the constraints of total transmit power budget, target BER, and maximum permissible QAM modulation order. Compared to the standard GPA, which is optimal in terms of maximising the data throughput, three suboptimal schemes are proposed, which perform GPA on subsets of subchannels only. These subsets are created by considering the minimum SNR boundaries of QAM levels for a given target BER. We demonstrate how these schemes can significantly reduce the computational complexity required for power allocation, particularly in the case of a large number of subchannels. Two of the proposed algorithms can achieve near optimal performance including a transfer of residual power between subsets at the expense of a very small extra cost. By simulations, we show that the two near optimal schemes, while greatly reducing complexity, perform best in two separate and distinct SNR regions. PMID:24501578

  3. Bit-rate allocation for multiple video streams using a pricing-based mechanism.

    PubMed

    Tiwari, Mayank; Groves, Theodore; Cosman, Pamela

    2011-11-01

    We consider the problem of bit-rate allocation for multiple video users sharing a common transmission channel. Previously, overall quality of multiple users was improved by exploiting relative video complexity. Users with high-complexity video benefit at the expense of video quality reduction for other users with simpler videos. The quality of all users can be improved by collectively allocating the bit rate in a centralized fashion which requires sharing video information with a central controller. In this paper, we present an informationally decentralized bit-rate allocation for multiple users where a user only needs to inform his demand to an allocator. Each user separately calculates his bit-rate demand based on his video complexity and bit-rate price, where the bit-rate price is announced by the allocator. The allocator adjusts the bit-rate price for the next period based on the bit rate demanded by the users and the total available bit-rate supply. Simulation results show that all users improve their quality by the pricing-based decentralized bit-rate allocation method compared with their allocation when acting individually. The results of our proposed method are comparable to the centralized bit-rate allocation.

  4. Rate Distortion Analysis and Bit Allocation Scheme for Wavelet Lifting-Based Multiview Image Coding

    NASA Astrophysics Data System (ADS)

    Lasang, Pongsak; Kumwilaisak, Wuttipong

    2009-12-01

    This paper studies the distortion and the model-based bit allocation scheme of wavelet lifting-based multiview image coding. Redundancies among image views are removed by disparity-compensated wavelet lifting (DCWL). The distortion prediction of the low-pass and high-pass subbands of each image view from the DCWL process is analyzed. The derived distortion is used with different rate distortion models in the bit allocation of multiview images. Rate distortion models including power model, exponential model, and the proposed combining the power and exponential models are studied. The proposed rate distortion model exploits the accuracy of both power and exponential models in a wide range of target bit rates. Then, low-pass and high-pass subbands are compressed by SPIHT (Set Partitioning in Hierarchical Trees) with a bit allocation solution. We verify the derived distortion and the bit allocation with several sets of multiview images. The results show that the bit allocation solution based on the derived distortion and our bit allocation scheme provide closer results to those of the exhaustive search method in both allocated bits and peak-signal-to-noise ratio (PSNR). It also outperforms the uniform bit allocation and uniform bit allocation with normalized energy in the order of 1.7-2 and 0.3-1.4 dB, respectively.

  5. Proposed first-generation WSQ bit allocation procedure

    SciTech Connect

    Bradley, J.N.; Brislawn, C.M.

    1993-09-08

    The Wavelet/Scalar Quantization (WSQ) gray-scale fingerprint image compression algorithm involves a symmetric wavelet transform (SWT) image decomposition followed by uniform scalar quantization of each subband. The algorithm is adaptive insofar as the bin widths for the scalar quantizers are image-specific and are included in the compressed image format. Since the decoder requires only the actual bin width values -- but not the method by which they were computed -- the standard allows for future refinements of the WSQ algorithm by improving the method used to select the scalar quantizer bin widths. This report proposes a bit allocation procedure for use with the first-generation WSQ encoder. In previous work a specific formula is provided for the relative sizes of the scalar quantizer bin widths in terms of the variances of the SWT subbands. An explicit specification for the constant of proportionality, q, that determines the absolute bin widths was not given. The actual compression ratio produced by the WSQ algorithm will generally vary from image to image depending on the amount of coding gain obtained by the run-length and Huffman coding, stages of the algorithm, but testing performed by the FBI established that WSQ compression produces archival quality images at compression ratios of around 20 to 1. The bit allocation procedure described in this report possesses a control parameter, r, that can be set by the user to achieve a predetermined amount of lossy compression, effectively giving the user control over the amount of distortion introduced by quantization noise. The variability observed in final compression ratios is thus due only to differences in lossless coding gain from image to image, chiefly a result of the varying amounts of blank background surrounding the print area in the images. Experimental results are presented that demonstrate the proposed method`s effectiveness.

  6. A perceptual optimization of H.264/AVC bit allocation at the frame and macroblock levels

    NASA Astrophysics Data System (ADS)

    Hrarti, M.; Saadane, H.; Larabi, M.-C.; Tamtaoui, A.; Aboutajdine, D.

    2012-01-01

    In H.264/AVC rate control algorithm, the bit allocation process and the QP determination are not optimal. At frame layer, there is an implicit assumption considering that the video sequence is more or less stationary and consequently the neighbouring frames have similar characteristics. So, the target Bit-Rate for each frame is estimated using a straightforward process that allocates an equal bit budget for each frame regardless of its temporal and spatial complexities. This uniform allocation is surely not suited especially for all types of video sequences. The target bits determination at macroblock layer uses the MAD (Mean Absolute Difference) ratio as a complexity measure in order to promote interesting macroblocks, but this measure remains inefficient in handling macroblock characteristics. In a previous work we have proposed Rate-Quantization (R-Q) models for Intra and Inter frames used to deal with the QP determination shortcoming. In this paper, we look to overcome the limitation of the bit allocation process at the frame and the macroblock layers. At the frame level, we enhance the bit allocation process by exploiting frame complexity measures. Thereby, the target bit determination for P-frames is adjusted by combining two temporal measures: The first one is a motion ratio determined from actual bits used to encode previous frames. The second measure exploits both the difference between two consecutive frames and the histogram of this difference. At macroblock level, the visual saliency is used in the bit allocation process. The basic idea is to promote salient macroblocks. Hence, a saliency map, based on a Bottom-Up approach, is generated and a macroblock classification is performed. This classification is then used to accurately adjust UBitsH264 which represents the usual bit budget estimated by H.264/AVC bit allocation process. For salient macroblocks the adjustment leads to a bit budget which is always larger than UBitsH264. The extra bits added to

  7. Block-layer bit allocation for quality constrained video encoding based on constant perceptual quality

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Mou, Xuanqin; Hong, Wei; Zhang, Lei

    2013-02-01

    In lossy image/video encoding, there is a compromise between the number of bits (rate) and the extent of distortion. Bits need to be properly allocated to different sources, such as frames and macro blocks (MBs). Since the human eyes are more sensitive to the difference than the absolute value of signals, the MINMAX criterion suggests to minimizing the maximum distortion of the sources to limit quality fluctuation. There are many works aimed to such constant quality encoding, however, almost all of them focus on the frame layer bit allocation, and use PSNR as the quality index. We suggest that the bit allocation for MBs should also be constrained in the constant quality, and furthermore, perceptual quality indices should be used instead of PSNR. Based on this idea, we propose a multi-pass block-layer bit allocation scheme for quality constrained encoding. The experimental results show that the proposed method can achieve much better encoding performance. Keywords: Bit allocation, block-layer, perceptual quality, constant quality, quality constrained

  8. Efficient bit allocation using new intra and inter-frame modeling for H.264/AVC

    NASA Astrophysics Data System (ADS)

    Hrarti, Miryem; Saadane, Abdelhakim; Larabi, Mohamed-Chaker; Tamtaoui, Ahmed; Aboutajdine, Driss

    2012-01-01

    Rate control is a critical issue in H.264/AVC video coding standard because it suffers from some shortcomings that make the bit allocation process not optimal. This leads to a video quality that may vary significantly from frame to frame. Our aim is to enhance the rate control efficiency in H.264/AVC baseline profile by handling two of its defects: the initial quantization parameter (QP) estimation for Intra-Frames (I-Frames) and the target number of bits determination for Inter-Frames (P-Frames) encoding. First, we propose a Rate-Quantization (R-Q) model for the I-Frame constructed empirically after extensive experiments. The optimal initial QP calculation is based on both target bit-rate and I-Frame complexity. The I-Frame target bit-rate is derived from the global target bit-rate by using a new non-linear model. Secondly, we propose an enhancement of the bit allocation process by exploiting frame complexity measures. The target number of bits determination for P-Frames is adjusted by combining two temporal measures: the first is a motion ratio based on actual bits used to encode previous frames; the second measure exploits the difference between two consecutive frames and the histogram of this difference. The simulation results, carried out using the JM15.0 reference software and the JVT-O016 rate control algorithm, show that the right choice of initial QP for I-Frame and first P-Frame allows improvement of both the bit-rate and peak signal-to-noise ratio (PSNR). Finally, the Inter-Frame bit allocation process further improves the bit-rates while keeping the same PSNR improvement (up to +1.33 dB/+2 dB for QCIF/CIF resolutions). Moreover, this process reduces the buffer level variation leading to a more consistent quality of reconstructed videos.

  9. Stereoscopic Visual Attention-Based Regional Bit Allocation Optimization for Multiview Video Coding

    NASA Astrophysics Data System (ADS)

    Zhang, Yun; Jiang, Gangyi; Yu, Mei; Chen, Ken; Dai, Qionghai

    2010-12-01

    We propose a Stereoscopic Visual Attention- (SVA-) based regional bit allocation optimization for Multiview Video Coding (MVC) by the exploiting visual redundancies from human perceptions. We propose a novel SVA model, where multiple perceptual stimuli including depth, motion, intensity, color, and orientation contrast are utilized, to simulate the visual attention mechanisms of human visual system with stereoscopic perception. Then, a semantic region-of-interest (ROI) is extracted based on the saliency maps of SVA. Both objective and subjective evaluations of extracted ROIs indicated that the proposed SVA model based on ROI extraction scheme outperforms the schemes only using spatial or/and temporal visual attention clues. Finally, by using the extracted SVA-based ROIs, a regional bit allocation optimization scheme is presented to allocate more bits on SVA-based ROIs for high image quality and fewer bits on background regions for efficient compression purpose. Experimental results on MVC show that the proposed regional bit allocation algorithm can achieve over [InlineEquation not available: see fulltext.]% bit-rate saving while maintaining the subjective image quality. Meanwhile, the image quality of ROIs is improved by [InlineEquation not available: see fulltext.] dB at the cost of insensitive image quality degradation of the background image.

  10. A unified framework of unsupervised subjective optimized bit allocation for multiple video object coding

    NASA Astrophysics Data System (ADS)

    Chen, Zhenzhong; Han, Junwei; Ngan, King Ngi

    2005-10-01

    MPEG-4 treats a scene as a composition of several objects or so-called video object planes (VOPs) that are separately encoded and decoded. Such a flexible video coding framework makes it possible to code different video object with different distortion scale. It is necessary to analyze the priority of the video objects according to its semantic importance, intrinsic properties and psycho-visual characteristics such that the bit budget can be distributed properly to video objects to improve the perceptual quality of the compressed video. This paper aims to provide an automatic video object priority definition method based on object-level visual attention model and further propose an optimization framework for video object bit allocation. One significant contribution of this work is that the human visual system characteristics are incorporated into the video coding optimization process. Another advantage is that the priority of the video object can be obtained automatically instead of fixing weighting factors before encoding or relying on the user interactivity. To evaluate the performance of the proposed approach, we compare it with traditional verification model bit allocation and the optimal multiple video object bit allocation algorithms. Comparing with traditional bit allocation algorithms, the objective quality of the object with higher priority is significantly improved under this framework. These results demonstrate the usefulness of this unsupervised subjective quality lifting framework.

  11. Rate distortion optimal bit allocation methods for volumetric data using JPEG 2000.

    PubMed

    Kosheleva, Olga M; Usevitch, Bryan E; Cabrera, Sergio D; Vidal, Edward

    2006-08-01

    Computer modeling programs that generate three-dimensional (3-D) data on fine grids are capable of generating very large amounts of information. These data sets, as well as 3-D sensor/measured data sets, are prime candidates for the application of data compression algorithms. A very flexible and powerful compression algorithm for imagery data is the newly released JPEG 2000 standard. JPEG 2000 also has the capability to compress volumetric data, as described in Part 2 of the standard, by treating the 3-D data as separate slices. As a decoder standard, JPEG 2000 does not describe any specific method to allocate bits among the separate slices. This paper proposes two new bit allocation algorithms for accomplishing this task. The first procedure is rate distortion optimal (for mean squared error), and is conceptually similar to postcompression rate distortion optimization used for coding codeblocks within JPEG 2000. The disadvantage of this approach is its high computational complexity. The second bit allocation algorithm, here called the mixed model (MM) approach, mathematically models each slice's rate distortion curve using two distinct regions to get more accurate modeling at low bit rates. These two bit allocation algorithms are applied to a 3-D Meteorological data set. Test results show that the MM approach gives distortion results that are nearly identical to the optimal approach, while significantly reducing computational complexity.

  12. Bit allocation for dependent quantization with applications to multiresolution and MPEG video coders.

    PubMed

    Ramchandran, K; Ortega, A; Vetterli, M

    1994-01-01

    We address the problem of efficient bit allocation in a dependent coding environment. While optimal bit allocation for independently coded signal blocks has been studied in the literature, we extend these techniques to the more general temporally and spatially dependent coding scenarios. Of particular interest are the topical MPEG video coder and multiresolution coders. Our approach uses an operational rate-distortion (R-D) framework for arbitrary quantizer sets. We show how a certain monotonicity property of the dependent R-D curves can be exploited in formulating fast ways to obtain optimal and near-optimal solutions. We illustrate the application of this property in specifying intelligent pruning conditions to eliminate suboptimal operating points for the MPEG allocation problem, for which we also point out fast nearly-optimal heuristics. Additionally, we formulate an efficient allocation strategy for multiresolution coders, using the spatial pyramid coder as an example. We then extend this analysis to a spatio-temporal 3-D pyramidal coding scheme. We tackle the compatibility problem of optimizing full-resolution quality while simultaneously catering to subresolution bit rate or quality constraints. We show how to obtain fast solutions that provide nearly optimal (typically within 0.3 dB) full resolution quality while providing much better performance for the subresolution layer (typically 2-3 dB better than the full-resolution optimal solution).

  13. A perceptual-based approach to bit allocation for H.264 encoder

    NASA Astrophysics Data System (ADS)

    Ou, Tao-Sheng; Huang, Yi-Hsin; Chen, Homer H.

    2010-07-01

    Since the ultimate receivers of encoded video are human eyes, the characteristics of human visual system should be taken into consideration in the design of bit allocation to improve the perceptual video quality. In this paper, we incorporate the structural similarity index as a distortion metric and propose a novel rate-distortion model to characterize the relationship between rate and the structural similarity index. Based on the model, we develop an optimum bit allocation and rate control scheme for H.264 encoders. Experimental results show that up to 25% bitrate reduction over the JM reference software can be achieved. Subjective evaluation further confirms that the proposed scheme preserves more structural information and improves the perceptual quality of the encoded video.

  14. S-EMG signal compression based on domain transformation and spectral shape dynamic bit allocation

    PubMed Central

    2014-01-01

    Background Surface electromyographic (S-EMG) signal processing has been emerging in the past few years due to its non-invasive assessment of muscle function and structure and because of the fast growing rate of digital technology which brings about new solutions and applications. Factors such as sampling rate, quantization word length, number of channels and experiment duration can lead to a potentially large volume of data. Efficient transmission and/or storage of S-EMG signals are actually a research issue. That is the aim of this work. Methods This paper presents an algorithm for the data compression of surface electromyographic (S-EMG) signals recorded during isometric contractions protocol and during dynamic experimental protocols such as the cycling activity. The proposed algorithm is based on discrete wavelet transform to proceed spectral decomposition and de-correlation, on a dynamic bit allocation procedure to code the wavelets transformed coefficients, and on an entropy coding to minimize the remaining redundancy and to pack all data. The bit allocation scheme is based on mathematical decreasing spectral shape models, which indicates a shorter digital word length to code high frequency wavelets transformed coefficients. Four bit allocation spectral shape methods were implemented and compared: decreasing exponential spectral shape, decreasing linear spectral shape, decreasing square-root spectral shape and rotated hyperbolic tangent spectral shape. Results The proposed method is demonstrated and evaluated for an isometric protocol and for a dynamic protocol using a real S-EMG signal data bank. Objective performance evaluations metrics are presented. In addition, comparisons with other encoders proposed in scientific literature are shown. Conclusions The decreasing bit allocation shape applied to the quantized wavelet coefficients combined with arithmetic coding results is an efficient procedure. The performance comparisons of the proposed S-EMG data

  15. Application-oriented region of interest based image compression using bit-allocation optimization

    NASA Astrophysics Data System (ADS)

    Zhu, Yuanping

    2015-01-01

    Region of interest (ROI) based image compression can offer a high image-compression ratio along with high quality in the important regions of the image. For many applications, stable compression quality is required for both the ROIs and the images. However, image compression does not consider information specific to the application and cannot meet this requirement well. This paper proposes an application-oriented ROI-based image-compression method using bit-allocation optimization. Unlike typical methods that define bit-rate parameters empirically, the proposed method adjusts the bit-rate parameters adaptively to both images and ROIs. First, an application-dependent optimization model is constructed. The relationship between the compression parameters and the image content is learned from a training image set. Image redundancy is used to measure the compression capability of image content. Then, during compression, the global bit rate and the ROI bit rate are adjusted in the images and ROIs, respectively-supported by the application-dependent information in the optimization model. As a result, stable compression quality is assured in the applications. Experiments with two different applications showed that quality deviation in the reconstructed images decreased, verifying the effectiveness of the proposed method.

  16. Optimal bit allocation for fine-grained scalable video sequences in distributed streaming environments

    NASA Astrophysics Data System (ADS)

    Hsu, ChengHsin; Hefeeda, Mohamed

    2007-01-01

    We present optimal schemes for allocating bits of fine-grained scalable video sequences among multiple senders streaming to a single receiver. This allocation problem is critical in optimizing the perceived quality in peer-to-peer and distributed multi-server streaming environments. Senders in such environments are heterogeneous in their outgoing bandwidth and they hold different portions of the video stream. We formulate the allocation problem as an optimization problem, which is nonlinear in general. We use rate-distortion models in the formulation to achieve the minimum distortion in the rendered video, constrained by the outgoing bandwidth of senders, availability of video data at senders, and incoming bandwidth of receiver. We show how the adopted rate-distortion models transform the nonlinear problem to an integer linear programming (ILP) problem. We then design a simple rounding scheme that transforms the ILP problem to a linear programming (LP) one, which can be solved efficiently using common optimization techniques such as the Simplex method. We prove that our rounding scheme always produces a feasible solution, and the solution is within a negligible margin from the optimal solution. We also propose a new algorithm (FGSAssign) for the allocation problem that runs in O(n log n) steps, where n is the number of senders. We prove that FGSAssign is optimal. Because of its short running time, FGSAssign can be used in real time during the streaming session. Our experimental study validates our analytical analysis and shows the effectiveness of our allocation algorithm in improving the video quality.

  17. On dependent bit allocation for multiview image coding with depth-image-based rendering.

    PubMed

    Cheung, Gene; Velisavljević, Vladan; Ortega, Antonio

    2011-11-01

    The encoding of both texture and depth maps of multiview images, captured by a set of spatially correlated cameras, is important for any 3-D visual communication system based on depth-image-based rendering (DIBR). In this paper, we address the problem of efficient bit allocation among texture and depth maps of multiview images. More specifically, suppose we are given a coding tool to encode texture and depth maps at the encoder and a view-synthesis tool to construct intermediate views at the decoder using neighboring encoded texture and depth maps. Our goal is to determine how to best select captured views for encoding and distribute available bits among texture and depth maps of selected coded views, such that the visual distortion of desired constructed views is minimized. First, in order to obtain at the encoder a low complexity estimate of the visual quality of a large number of desired synthesized views, we derive a cubic distortion model based on basic DIBR properties, whose parameters are obtained using only a small number of viewpoint samples. Then, we demonstrate that the optimal selection of coded views and quantization levels for corresponding texture and depth maps is equivalent to the shortest path in a specially constructed 3-D trellis. Finally, we show that, using the assumptions of monotonicity in the predictor's quantization level and distance, suboptimal solutions can be efficiently pruned from the feasible space during solution search. Experiments show that our proposed efficient selection of coded views and quantization levels for corresponding texture and depth maps outperforms an alternative scheme using constant quantization levels for all maps (commonly used in video standard implementations) by up to 1.5 dB. Moreover, the complexity of our scheme can be reduced by at least 80% over the full solution search.

  18. A Novel Joint Power and Feedback Bit Allocation Interference Alignment Scheme for Wireless Sensor Networks

    PubMed Central

    Li, Shibao; He, Chang; Wang, Yixin; Zhang, Yang; Liu, Jianhang; Huang, Tingpei

    2017-01-01

    It is necessary to improve the energy efficiency of batteries in wireless sensor networks (WSNs). The multiple-input multiple-output (MIMO) technique has become an important means to ameliorate WSNs, and interference management is the core of improving energy efficiency. A promising approach is interference alignment (IA), which effectively reduces the interference and improves the throughput of a system in the MIMO interference channels. However, the IA scheme requires perfect channel state information (CSI) at all transceivers in practice, which results in considerable feedback overhead. Thus, limited IA feedback has attracted much attention. In this paper, we analyze the throughput loss of the K-user MIMO interference channels when each transmitter delivers multiple streams in one slot, and derives the upper-bound of the system interference leakage and throughput loss. Then, to reduce the interference leakage and throughput loss for the MIMO interference alignment with limited feedback, a joint power and feedback bit allocation optimization scheme is proposed. The simulation results show that, compared with the conventional schemes, the presented optimal scheme achieves less residual interference and better performance in the system throughput. PMID:28287434

  19. A Novel Joint Power and Feedback Bit Allocation Interference Alignment Scheme for Wireless Sensor Networks.

    PubMed

    Li, Shibao; He, Chang; Wang, Yixin; Zhang, Yang; Liu, Jianhang; Huang, Tingpei

    2017-03-10

    It is necessary to improve the energy efficiency of batteries in wireless sensor networks (WSNs). The multiple-input multiple-output (MIMO) technique has become an important means to ameliorate WSNs, and interference management is the core of improving energy efficiency. A promising approach is interference alignment (IA), which effectively reduces the interference and improves the throughput of a system in the MIMO interference channels. However, the IA scheme requires perfect channel state information (CSI) at all transceivers in practice, which results in considerable feedback overhead. Thus, limited IA feedback has attracted much attention. In this paper, we analyze the throughput loss of the K-user MIMO interference channels when each transmitter delivers multiple streams in one slot, and derives the upper-bound of the system interference leakage and throughput loss. Then, to reduce the interference leakage and throughput loss for the MIMO interference alignment with limited feedback, a joint power and feedback bit allocation optimization scheme is proposed. The simulation results show that, compared with the conventional schemes, the presented optimal scheme achieves less residual interference and better performance in the system throughput.

  20. Channel Allocation in Wireless Integrated Services Networks for Low-Bit-Rate Applications.

    DTIC Science & Technology

    1998-06-01

    allocation NT Number of sources of type T P State-transition probability matrix Q Infinitesimal generating matrix (of a continuos -time Markov chain ) RD...the smallest absolute value among the eigenvalues of the matrix MD’\\ where Mis the transition-rate matrix of an individual source Markov 115 chain ...algorithms are proposed. An analytical scheme to obtain the required (static) capacity for homogeneous sources based on their Markov- chain

  1. Drilling bit

    SciTech Connect

    Allam, F. M.

    1985-07-09

    A drilling bit comprising a drill body formed from a base portion and a crown portion having a plurality of cutting elements; the base and crown portions are interengaged by a connection portion. An external opening in the crown portion communicates with a core-receiving section in the connecting portion. A core milling assembly, comprising a pair of rotatable, frustum-shaped rotary members, is supported in the connecting section. Each rotary member carries a plurality of cutting elements. During drilling, a core is received in the core-receiving section, where it is milled by the rotation of the rotary members.

  2. Drag bit construction

    DOEpatents

    Hood, M.

    1986-02-11

    A mounting movable with respect to an adjacent hard face has a projecting drag bit adapted to engage the hard face. The drag bit is disposed for movement relative to the mounting by encounter of the drag bit with the hard face. That relative movement regulates a valve in a water passageway, preferably extending through the drag bit, to play a stream of water in the area of contact of the drag bit and the hard face and to prevent such water play when the drag bit is out of contact with the hard face. 4 figs.

  3. Drag bit construction

    DOEpatents

    Hood, Michael

    1986-01-01

    A mounting movable with respect to an adjacent hard face has a projecting drag bit adapted to engage the hard face. The drag bit is disposed for movement relative to the mounting by encounter of the drag bit with the hard face. That relative movement regulates a valve in a water passageway, preferably extending through the drag bit, to play a stream of water in the area of contact of the drag bit and the hard face and to prevent such water play when the drag bit is out of contact with the hard face.

  4. Broadband Integrated Transmittances (BITS)

    NASA Astrophysics Data System (ADS)

    Davis, Roger E.; Berrick, Stephen W.

    1995-02-01

    Broadband Integrated Transmittances (BITS) is an EOSAEL module that calculates transmittance for systems with broad spectral response. Path-integrated concentration data from COMBIC, other EOSAEL modules, or user models are used as input for BITS. The primary function of BITS is to provide rigorous transmittance calculations for broadband systems, replacing the Beer-Lambert law used in most obscuration models. To use BITS, the system detector, filters, optics, and source spectral functions must be defined. The spectral transmittances of the atmosphere and mass extinction coefficient spectral data for the obscurant are also required. The output consists of transmittance as a function of concentration length for Beer's law and band-integrated computation methods. The theory of the model, a description of the module organization, and an operations guide that provides input and output in EOSAEL format are provided in this user's guide. Example uses for BITS are also included.

  5. Double acting bit holder

    DOEpatents

    Morrell, Roger J.; Larson, David A.; Ruzzi, Peter L.

    1994-01-01

    A double acting bit holder that permits bits held in it to be resharpened during cutting action to increase energy efficiency by reducing the amount of small chips produced. The holder consist of: a stationary base portion capable of being fixed to a cutter head of an excavation machine and having an integral extension therefrom with a bore hole therethrough to accommodate a pin shaft; a movable portion coextensive with the base having a pin shaft integrally extending therefrom that is insertable in the bore hole of the base member to permit the moveable portion to rotate about the axis of the pin shaft; a recess in the movable portion of the holder to accommodate a shank of a bit; and a biased spring disposed in adjoining openings in the base and moveable portions of the holder to permit the moveable portion to pivot around the pin shaft during cutting action of a bit fixed in a turret to allow front, mid and back positions of the bit during cutting to lessen creation of small chip amounts and resharpen the bit during excavation use.

  6. Hey! A Tick Bit Me!

    MedlinePlus

    ... of the arachnid family, which also includes mites, spiders, and scorpions . A tick attaches itself to the ... MORE ON THIS TOPIC Hey! A Brown Recluse Spider Bit Me! Hey! A Bedbug Bit Me! Going ...

  7. Smart BIT/TSMD Integration

    DTIC Science & Technology

    1991-12-01

    integracion . Smart BIT/TSMD provides Rome Laboratory with a laboratory testbed to evaluate and assess the individual characteristics as well as the integration...returning its MIL-STD-1553B data tables and BIT status to normal (no fault) data. When the scenario requires sensory -caused faults, the UUT computer sets...uncorrelated faults. Information Enhanced BIT is a technique that uses additional sensory data to complement the standard BIT information. Sensory information

  8. Experience with stratapax drill bits

    SciTech Connect

    Thant, M.

    1984-02-01

    Polycrystalline Diamond Comocct (PDC) bits have been extensively used in oil field drilling for sometime. Major performance gains have been reported for use of these bits in oil based drilling fluids, operating on mud motors. This paper describes the experience in Sarawak and Sabah Shell Operations with PDC bits in water based drilling fluids and with rotary drilling. It represents the results of over 80 individual PDC bit runs incorporating over 30,000' of 8 1/2'' hole drilled with 4 types of PDC bits from 3 manufacturers, and over 14,000' of 12 1/4'' hole with 8 bit types from 4 manufacturers. The paper discusses the PDC bit runs made, the performance in relation to conventional tri-cone bits, the effects of conventional hydraulics on PDC bit performance and the design of the PDC bits in terms of cutter density and placement, number of nozzles and their placement, and construction methods. The outlook for future designs of PDC bit with respect to use in water base drilling fluids and on rotary drilling is presented. The experience presented can be applied to drilling operations in a wide variety of areas to optimise usage of PDC bits in water based drilling fluids and on rotary drilling. As a result of extensive testing within Sarawak and Sabah Shell operations, the use of 8 1/2'' PDC bits in water based drilling fluids on rotary drilling can now be considered a proven application when drilling both clastics and carbonates. Only modest success has been achieved in 12 1/4'' hole where tricone bit performance (Cost/ft) in generally softer clastic formations has proven more difficult to match with PDC bits.

  9. Robust relativistic bit commitment

    NASA Astrophysics Data System (ADS)

    Chakraborty, Kaushik; Chailloux, André; Leverrier, Anthony

    2016-12-01

    Relativistic cryptography exploits the fact that no information can travel faster than the speed of light in order to obtain security guarantees that cannot be achieved from the laws of quantum mechanics alone. Recently, Lunghi et al. [Phys. Rev. Lett. 115, 030502 (2015), 10.1103/PhysRevLett.115.030502] presented a bit-commitment scheme where each party uses two agents that exchange classical information in a synchronized fashion, and that is both hiding and binding. A caveat is that the commitment time is intrinsically limited by the spatial configuration of the players, and increasing this time requires the agents to exchange messages during the whole duration of the protocol. While such a solution remains computationally attractive, its practicality is severely limited in realistic settings since all communication must remain perfectly synchronized at all times. In this work, we introduce a robust protocol for relativistic bit commitment that tolerates failures of the classical communication network. This is done by adding a third agent to both parties. Our scheme provides a quadratic improvement in terms of expected sustain time compared with the original protocol, while retaining the same level of security.

  10. Optimizing journal bearing bit performance

    SciTech Connect

    Moerbe, O.E.; Evans, W.

    1986-10-01

    This article explains that continuous progress in the field of rock bit technology has produced many new designs and improved features in the tri-cone rock bits used today. Much of the research and advancements have centered around journal bearing systems, seals and lubricants leading to greatly extended bearing life. These improved bearing systems, incorporated into both tooth and insert-type bits, have not only increased the effective life of a rock bit, but have also allowed greater energy levels to be applied. This, in turn, has allowed for higher rates of penetration and lower costs per foot of hole drilled. Continuous improvements in journal bearing bits allowing them to run longer and harder have required similar advancements to be made in cutting structures. In tooth bit designs, these improvements have been basically limited to the areas of gauge protection and to application of hardfacing materials.

  11. Bits and Pieces

    NASA Technical Reports Server (NTRS)

    2006-01-01

    19 August 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the contact between an area of light-toned rock and an expanse of darker-toned materials on the floor of Coprates Chasma. Remnants -- bits and pieces -- of the light-toned material are scattered throughout the scene, indicating that this material once covered everything in this area. Coprates is one of several chasms that comprise the giant Valles Marineris trough system.

    Location near: 13.2oS, 61.8oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Autumn

  12. Drill bit assembly for releasably retaining a drill bit cutter

    DOEpatents

    Glowka, David A.; Raymond, David W.

    2002-01-01

    A drill bit assembly is provided for releasably retaining a polycrystalline diamond compact drill bit cutter. Two adjacent cavities formed in a drill bit body house, respectively, the disc-shaped drill bit cutter and a wedge-shaped cutter lock element with a removable fastener. The cutter lock element engages one flat surface of the cutter to retain the cutter in its cavity. The drill bit assembly thus enables the cutter to be locked against axial and/or rotational movement while still providing for easy removal of a worn or damaged cutter. The ability to adjust and replace cutters in the field reduces the effect of wear, helps maintains performance and improves drilling efficiency.

  13. Hey! A Gnat Bit Me!

    MedlinePlus

    ... Emergency Room? What Happens in the Operating Room? Hey! A Gnat Bit Me! KidsHealth > For Kids > Hey! A Gnat Bit Me! Print A A A ... For Kids For Parents MORE ON THIS TOPIC Hey! A Fire Ant Stung Me! Hey! A Flea ...

  14. Hey! A Bedbug Bit Me!

    MedlinePlus

    ... Emergency Room? What Happens in the Operating Room? Hey! A Bedbug Bit Me! KidsHealth > For Kids > Hey! A Bedbug Bit Me! Print A A A ... For Kids For Parents MORE ON THIS TOPIC Hey! A Bee Stung Me! Hey! A Scorpion Stung ...

  15. Experimental unconditionally secure bit commitment

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Cao, Yuan; Curty, Marcos; Liao, Sheng-Kai; Wang, Jian; Cui, Ke; Li, Yu-Huai; Lin, Ze-Hong; Sun, Qi-Chao; Li, Dong-Dong; Zhang, Hong-Fei; Zhao, Yong; Chen, Teng-Yun; Peng, Cheng-Zhi; Zhang, Qiang; Cabello, Adan; Pan, Jian-Wei

    2014-03-01

    Quantum physics allows unconditionally secure communication between parties that trust each other. However, when they do not trust each other such as in the bit commitment, quantum physics is not enough to guarantee security. Only when relativistic causality constraints combined, the unconditional secure bit commitment becomes feasible. Here we experimentally implement a quantum bit commitment with relativistic constraints that offers unconditional security. The commitment is made through quantum measurements in two quantum key distribution systems in which the results are transmitted via free-space optical communication to two agents separated with more than 20 km. Bits are successfully committed with less than 5 . 68 ×10-2 cheating probability. This provides an experimental proof of unconditional secure bit commitment and demonstrates the feasibility of relativistic quantum communication.

  16. Experimental Unconditionally Secure Bit Commitment

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Cao, Yuan; Curty, Marcos; Liao, Sheng-Kai; Wang, Jian; Cui, Ke; Li, Yu-Huai; Lin, Ze-Hong; Sun, Qi-Chao; Li, Dong-Dong; Zhang, Hong-Fei; Zhao, Yong; Chen, Teng-Yun; Peng, Cheng-Zhi; Zhang, Qiang; Cabello, Adán; Pan, Jian-Wei

    2014-01-01

    Quantum physics allows for unconditionally secure communication between parties that trust each other. However, when the parties do not trust each other such as in the bit commitment scenario, quantum physics is not enough to guarantee security unless extra assumptions are made. Unconditionally secure bit commitment only becomes feasible when quantum physics is combined with relativistic causality constraints. Here we experimentally implement a quantum bit commitment protocol with relativistic constraints that offers unconditional security. The commitment is made through quantum measurements in two quantum key distribution systems in which the results are transmitted via free-space optical communication to two agents separated with more than 20 km. The security of the protocol relies on the properties of quantum information and relativity theory. In each run of the experiment, a bit is successfully committed with less than 5.68×10-2 cheating probability. This demonstrates the experimental feasibility of quantum communication with relativistic constraints.

  17. Hey! A Louse Bit Me!

    MedlinePlus

    ... Hey! A Chigger Bit Me! Rashes: The Itchy Truth Contact Us Print Resources Send to a Friend ... The Nemours Foundation, iStock, Getty Images, Corbis, Veer, Science Photo Library, Science Source Images, Shutterstock, and Clipart. ...

  18. Optimal encryption of quantum bits

    SciTech Connect

    Boykin, P. Oscar; Roychowdhury, Vwani

    2003-04-01

    We show that 2n random classical bits are both necessary and sufficient for encrypting any unknown state of n quantum bits in an informationally secure manner. We also characterize the complete set of optimal protocols in terms of a set of unitary operations that comprise an orthonormal basis in a canonical inner product space. Moreover, a connection is made between quantum encryption and quantum teleportation that allows for a different proof of optimality of teleportation.

  19. String bit models for superstring

    SciTech Connect

    Bergman, O.; Thorn, C.B.

    1995-12-31

    The authors extend the model of string as a polymer of string bits to the case of superstring. They mainly concentrate on type II-B superstring, with some discussion of the obstacles presented by not II-B superstring, together with possible strategies for surmounting them. As with previous work on bosonic string work within the light-cone gauge. The bit model possesses a good deal less symmetry than the continuous string theory. For one thing, the bit model is formulated as a Galilei invariant theory in (D {minus} 2) + 1 dimensional space-time. This means that Poincare invariance is reduced to the Galilei subgroup in D {minus} 2 space dimensions. Naturally the supersymmetry present in the bit model is likewise dramatically reduced. Continuous string can arise in the bit models with the formation of infinitely long polymers of string bits. Under the right circumstances (at the critical dimension) these polymers can behave as string moving in D dimensional space-time enjoying the full N = 2 Poincare supersymmetric dynamics of type II-B superstring.

  20. String bit models for superstring

    SciTech Connect

    Bergman, O.; Thorn, C.B.

    1995-11-15

    We extend the model of string as a polymer of string bits to the case of superstring. We mainly concentrate on type II-B superstring, with some discussion of the obstacles presented by not II-B superstring, together with possible strategies for surmounting them. As with previous work on bosonic string we work within the light-cone gauge. The bit model possesses a good deal less symmetry than the continuous string theory. For one thing, the bit model is formulated as a Galilei-invariant theory in [({ital D}{minus}2)+1]-dimensional space-time. This means that Poincare invariance is reduced to the Galilei subgroup in {ital D}{minus}2 space dimensions. Naturally the supersymmetry present in the bit model is likewise dramatically reduced. Continuous string can arise in the bit models with the formation of infinitely long polymers of string bits. Under the right circumstances (at the critical dimension) these polymers can behave as string moving in {ital D}-dimensional space-time enjoying the full {ital N}=2 Poincare supersymmetric dynamics of type II-B superstring.

  1. Rock drill bit lubrication system

    SciTech Connect

    Johansson, C.

    1980-07-08

    A drill bit is described that includes a body part, a first chamber in said body part for containing a fluid lubricat under pressure higher than atmosphere during operation of the drill bit, at least one bit segment extending from said body part, a generally conical cutting element mounted on said bit segment and freely rotatable thereon thus forming a cutting element assembly, the improvement in combination therewith, wherein: said bit segment iclujdes an annular part having inner and outer circumferential bearing surfaces, said conical cutting element has corresponding bearing surfaces adjacent those of said annular part thereby forming two pairs of bearing surfaces defining first and second raceways, the second raceway being radially outward of the first raceway, said second raceway further includes a plurlaity of ball bearing elements distributed therein, this second raceway and ball bearing elements forming a locking bearing for retaining said conical cutting element coupled to said annular part of said bit segment, said cutting element assembly further comprising a plurality of rolling bearing elements distributed in said second raceway forming an inner bearing, and lubrication mens for lubricating said raceways and bearing elements therein.

  2. Combination bit for coking oven

    SciTech Connect

    Courmier, V.A.; Carnes, J.L.; Drost, R.

    1990-05-08

    This patent describes a apparatus for cutting coke from a generally cylindrical coking oven having a given diameter. It comprises: a cutting bit having a generally cylindrical body portion, a first set of cutting elements extending from the body portion and arranged for drilling a pilot hole which has a first relatively small diameter through the coke in the coking oven, wherein the first set of cutting elements comprises hydraulic jet nozzles extending in a direction 11{degrees} from parallel to a longitudinal axis of the body portion of the cutting bit in a first plane; the cutting bit also having a second set of cutting elements extending from the body portion and arranged for cutting a large hole which has a second relatively large diameter through the coke in the coking oven; manually operable control means mounted on the cutting bit for switching operability of the cutting bit from the first set of cutting elements to the second set of cutting elements, the control means being manually operably by a single workman upon removal of the cutting bit from the coking oven.

  3. Bit by bit: the Darwinian basis of life.

    PubMed

    Joyce, Gerald F

    2012-01-01

    All known examples of life belong to the same biology, but there is increasing enthusiasm among astronomers, astrobiologists, and synthetic biologists that other forms of life may soon be discovered or synthesized. This enthusiasm should be tempered by the fact that the probability for life to originate is not known. As a guiding principle in parsing potential examples of alternative life, one should ask: How many heritable "bits" of information are involved, and where did they come from? A genetic system that contains more bits than the number that were required to initiate its operation might reasonably be considered a new form of life.

  4. Bit storage and bit flip operations in an electromechanical oscillator.

    PubMed

    Mahboob, I; Yamaguchi, H

    2008-05-01

    The Parametron was first proposed as a logic-processing system almost 50 years ago. In this approach the two stable phases of an excited harmonic oscillator provide the basis for logic operations. Computer architectures based on LC oscillators were developed for this approach, but high power consumption and difficulties with integration meant that the Parametron was rendered obsolete by the transistor. Here we propose an approach to mechanical logic based on nanoelectromechanical systems that is a variation on the Parametron architecture and, as a first step towards a possible nanomechanical computer, we demonstrate both bit storage and bit flip operations.

  5. Introduction to the Mu-bit

    NASA Astrophysics Data System (ADS)

    Smarandache, Florentin; Christianto, V.

    2011-03-01

    Mu-bit is defined here as `multi-space bit'. It is different from the standard meaning of bit in conventional computation, because in Smarandache's multispace theory (also spelt multi-space) the bit is created simultaneously in many subspaces (that form together a multi-space). This new `bit' term is different from multi-valued-bit already known in computer technology, for example as MVLong. This new concept is also different from qu-bit from quantum computation terminology. We know that using quantum mechanics logic we could introduce new way of computation with `qubit' (quantum bit), but the logic remains Neumann. Now, from the viewpoint of m-valued multi-space logic, we introduce a new term: `mu-bit' (from `multi-space bit).

  6. A bit serial sequential circuit

    NASA Technical Reports Server (NTRS)

    Hu, S.; Whitaker, S.

    1990-01-01

    Normally a sequential circuit with n state variables consists of n unique hardware realizations, one for each state variable. All variables are processed in parallel. This paper introduces a new sequential circuit architecture that allows the state variables to be realized in a serial manner using only one next state logic circuit. The action of processing the state variables in a serial manner has never been addressed before. This paper presents a general design procedure for circuit construction and initialization. Utilizing pass transistors to form the combinational next state forming logic in synchronous sequential machines, a bit serial state machine can be realized with a single NMOS pass transistor network connected to shift registers. The bit serial state machine occupies less area than other realizations which perform parallel operations. Moreover, the logical circuit of the bit serial state machine can be modified by simply changing the circuit input matrix to develop an adaptive state machine.

  7. Research on optimization-based design

    NASA Technical Reports Server (NTRS)

    Balling, R. J.; Parkinson, A. R.; Free, J. C.

    1989-01-01

    Research on optimization-based design is discussed. Illustrative examples are given for cases involving continuous optimization with discrete variables and optimization with tolerances. Approximation of computationally expensive and noisy functions, electromechanical actuator/control system design using decomposition and application of knowledge-based systems and optimization for the design of a valve anti-cavitation device are among the topics covered.

  8. Optimization-based Dynamic Human Lifting Prediction

    DTIC Science & Technology

    2008-06-01

    Anith Mathai, Steve Beck,Timothy Marler , Jingzhou Yang, Jasbir S. Arora, Karim Abdel-Malek Virtual Soldier Research Program, Center for Computer Aided...Rahmatalla, S., Kim, J., Marler , T., Beck, S., Yang, J., busek, J., Arora, J.S., and Abdel-Malek, K. Optimization-based dynamic human walking prediction

  9. Hey! A Tarantula Bit Me!

    MedlinePlus

    ... leave you alone. Reviewed by: Elana Pearl Ben-Joseph, MD Date reviewed: September 2016 For Teens For Kids For Parents MORE ON THIS TOPIC Hey! A Fire Ant Stung Me! Hey! A Scorpion Stung Me! Hey! A Black Widow Spider Bit Me! Hey! A Brown Recluse ...

  10. Hey! A Louse Bit Me!

    MedlinePlus

    ... of a sesame seed, and are tan to gray in color. Lice need to suck a tiny bit of blood to survive, and they sometimes live on people's heads and lay eggs in the hair , on the back of the neck, or behind ...

  11. Cheat sensitive quantum bit commitment.

    PubMed

    Hardy, Lucien; Kent, Adrian

    2004-04-16

    We define cheat sensitive cryptographic protocols between mistrustful parties as protocols which guarantee that, if either cheats, the other has some nonzero probability of detecting the cheating. We describe an unconditionally secure cheat sensitive nonrelativistic bit commitment protocol which uses quantum information to implement a task which is classically impossible; we also describe a simple relativistic protocol.

  12. Hey! A Mosquito Bit Me!

    MedlinePlus

    ... What Happens in the Operating Room? Hey! A Mosquito Bit Me! KidsHealth > For Kids > Hey! A Mosquito ... español ¡Ay! ¡Me picó un mosquito! What's a Mosquito? A mosquito (say: mus-KEE-toe) is an ...

  13. Hey! A Mosquito Bit Me!

    MedlinePlus

    ... dientes Video: Getting an X-ray Hey! A Mosquito Bit Me! KidsHealth > For Kids > Hey! A Mosquito ... español ¡Ay! ¡Me picó un mosquito! What's a Mosquito? A mosquito (say: mus-KEE-toe) is an ...

  14. Optimization-based controller design for rotorcraft

    NASA Technical Reports Server (NTRS)

    Tsing, N.-K.; Fan, M. K. H.; Barlow, J.; Tits, A. L.; Tischler, M. B.

    1993-01-01

    An optimization-based methodology for linear control system design is outlined by considering the design of a controller for a UH-60 rotorcraft in hover. A wide range of design specifications is taken into account: internal stability, decoupling between longitudinal and lateral motions, handling qualities, and rejection of windgusts. These specifications are investigated while taking into account physical limitations in the swashplate displacements and rates of displacement. The methodology crucially relies on user-machine interaction for tradeoff exploration.

  15. Classification system adopted for fixed cutter bits

    SciTech Connect

    Winters, W.J.; Doiron, H.H.

    1988-01-01

    The drilling industry has begun adopting the 1987 International Association of Drilling Contractors' (IADC) method for classifying fixed cutter drill bits. By studying the classification codes on bit records and properly applying the new IADC fixed cutter dull grading system to recently run bits, the end-user should be able to improve the selection and usage of fixed cutter bits. Several users are developing databases for fixed cutter bits in an effort to relate field performance to some of the more prominent bit design characteristics.

  16. Region-of-interest determination and bit-rate conversion for H.264 video transcoding

    NASA Astrophysics Data System (ADS)

    Huang, Shu-Fen; Chen, Mei-Juan; Tai, Kuang-Han; Li, Mian-Shiuan

    2013-12-01

    This paper presents a video bit-rate transcoder for baseline profile in H.264/AVC standard to fit the available channel bandwidth for the client when transmitting video bit-streams via communication channels. To maintain visual quality for low bit-rate video efficiently, this study analyzes the decoded information in the transcoder and proposes a Bayesian theorem-based region-of-interest (ROI) determination algorithm. In addition, a curve fitting scheme is employed to find the models of video bit-rate conversion. The transcoded video will conform to the target bit-rate by re-quantization according to our proposed models. After integrating the ROI detection method and the bit-rate transcoding models, the ROI-based transcoder allocates more coding bits to ROI regions and reduces the complexity of the re-encoding procedure for non-ROI regions. Hence, it not only keeps the coding quality but improves the efficiency of the video transcoding for low target bit-rates and makes the real-time transcoding more practical. Experimental results show that the proposed framework gets significantly better visual quality.

  17. Stability of single skyrmionic bits

    PubMed Central

    Hagemeister, J.; Romming, N.; von Bergmann, K.; Vedmedenko, E. Y.; Wiesendanger, R.

    2015-01-01

    The switching between topologically distinct skyrmionic and ferromagnetic states has been proposed as a bit operation for information storage. While long lifetimes of the bits are required for data storage devices, the lifetimes of skyrmions have not been addressed so far. Here we show by means of atomistic Monte Carlo simulations that the field-dependent mean lifetimes of the skyrmionic and ferromagnetic states have a high asymmetry with respect to the critical magnetic field, at which these lifetimes are identical. According to our calculations, the main reason for the enhanced stability of skyrmions is a different field dependence of skyrmionic and ferromagnetic activation energies and a lower attempt frequency of skyrmions rather than the height of energy barriers. We use this knowledge to propose a procedure for the determination of effective material parameters and the quantification of the Monte Carlo timescale from the comparison of theoretical and experimental data. PMID:26465211

  18. Research on bit synchronization based on GNSS

    NASA Astrophysics Data System (ADS)

    Yu, Huanran; Liu, Yi-jun

    2017-05-01

    The signals transmitted by GPS satellites are divided into three components: carrier, pseudocode and data code. The processes of signal acquisition are acquisition, tracking, bit synchronization, frame synchronization, navigation message extraction, observation extraction and position speed calculation, among which bit synchronization is of greatest importance. The accuracy of bit synchronization and the shortening of bit synchronization time can help us to use satellite to realize positioning and acquire the information transmitted by satellite signals more accurately. Even under the condition of weak signal, how to improve bit synchronization performance is what we need to research. We adopt a method of polymorphic energy accumulation minima so as to find the bit synchronization point, as well as complete the computer simulation to conclude that under the condition of extremely weak signal power, this method still has superior synchronization performance, which can achieve high bit edge detection rate and the optimal bit error rate.

  19. 24-Hour Relativistic Bit Commitment

    NASA Astrophysics Data System (ADS)

    Verbanis, Ephanielle; Martin, Anthony; Houlmann, Raphaël; Boso, Gianluca; Bussières, Félix; Zbinden, Hugo

    2016-09-01

    Bit commitment is a fundamental cryptographic primitive in which a party wishes to commit a secret bit to another party. Perfect security between mistrustful parties is unfortunately impossible to achieve through the asynchronous exchange of classical and quantum messages. Perfect security can nonetheless be achieved if each party splits into two agents exchanging classical information at times and locations satisfying strict relativistic constraints. A relativistic multiround protocol to achieve this was previously proposed and used to implement a 2-millisecond commitment time. Much longer durations were initially thought to be insecure, but recent theoretical progress showed that this is not so. In this Letter, we report on the implementation of a 24-hour bit commitment solely based on timed high-speed optical communication and fast data processing, with all agents located within the city of Geneva. This duration is more than 6 orders of magnitude longer than before, and we argue that it could be extended to one year and allow much more flexibility on the locations of the agents. Our implementation offers a practical and viable solution for use in applications such as digital signatures, secure voting and honesty-preserving auctions.

  20. Development of PDC Bits for Downhole Motors

    SciTech Connect

    Karasawa, H.; Ohno, T.

    1995-01-01

    To develop polycrystalline hamond compact (PDC) bits of the full-face type which can be applied to downhole motor drilling, drilling tests for granite and two types of andesite were conducted using bits with 98.43 and 142.88 mm diameters. The bits successfully drilled these types of rock at rotary speeds from 300 to 400 rpm.

  1. Dynamic Channel Allocation

    DTIC Science & Technology

    2003-09-01

    7 1 . Fixed Channel Allocation (FCA) ........................................................7 2. Dynamic Channel ...19 7. CSMA/CD-Based Multiple Network Lines .....................................20 8. Hybrid Channel Allocation in Wireless Networks...28 1 . Channel Allocation

  2. BIT BY BIT: A Game Simulating Natural Language Processing in Computers

    ERIC Educational Resources Information Center

    Kato, Taichi; Arakawa, Chuichi

    2008-01-01

    BIT BY BIT is an encryption game that is designed to improve students' understanding of natural language processing in computers. Participants encode clear words into binary code using an encryption key and exchange them in the game. BIT BY BIT enables participants who do not understand the concept of binary numbers to perform the process of…

  3. BIT BY BIT: A Game Simulating Natural Language Processing in Computers

    ERIC Educational Resources Information Center

    Kato, Taichi; Arakawa, Chuichi

    2008-01-01

    BIT BY BIT is an encryption game that is designed to improve students' understanding of natural language processing in computers. Participants encode clear words into binary code using an encryption key and exchange them in the game. BIT BY BIT enables participants who do not understand the concept of binary numbers to perform the process of…

  4. Improved high-power TSP bits

    SciTech Connect

    Cohen, J.H.; Maurer, W.C.; Westcott, P.A.

    1994-12-31

    Four 3-in. (76.2-mm) diameter experimental bits utilizing large TSP cutters were manufactured in an attempt to develop improved hard rock drill bits. The bits were tested on a 2 3/8-in. (60.3-mm) downhole motor that operated at speeds up to 2,700 rpm and delivered up to 48 hp (36 kW). The TSP bits drilled Batesville marble at rates up to 550 ft/hr (168 m/hr) compared to 50 to 100 ft/hr (15 to 30 m/hr) for conventional roller cone bit drilling in this type of rock. The high penetration rates were achieved because the large cutters cut deep grooves in the rock and there was good clearance beneath the bits due to the large bit/rock standoff distance. None of the large cutters broke during the tests despite the severe drilling conditions and high power levels delivered to the bits, thus overcoming cutter breakage problems experienced with smaller TSP bits on earlier tests. The large cutter TSP bits were capable of operating at much higher power levels than the 48 hp (36 kW) delivered by the drilling motor, showing the need for improved high-power motors for use with these improved TSP bits.

  5. Bit-serial neuroprocessor architecture

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul (Inventor)

    2001-01-01

    A neuroprocessor architecture employs a combination of bit-serial and serial-parallel techniques for implementing the neurons of the neuroprocessor. The neuroprocessor architecture includes a neural module containing a pool of neurons, a global controller, a sigmoid activation ROM look-up-table, a plurality of neuron state registers, and a synaptic weight RAM. The neuroprocessor reduces the number of neurons required to perform the task by time multiplexing groups of neurons from a fixed pool of neurons to achieve the successive hidden layers of a recurrent network topology.

  6. Bit Threads and Holographic Entanglement

    NASA Astrophysics Data System (ADS)

    Freedman, Michael; Headrick, Matthew

    2017-05-01

    The Ryu-Takayanagi (RT) formula relates the entanglement entropy of a region in a holographic theory to the area of a corresponding bulk minimal surface. Using the max flow-min cut principle, a theorem from network theory, we rewrite the RT formula in a way that does not make reference to the minimal surface. Instead, we invoke the notion of a "flow", defined as a divergenceless norm-bounded vector field, or equivalently a set of Planck-thickness "bit threads". The entanglement entropy of a boundary region is given by the maximum flux out of it of any flow, or equivalently the maximum number of bit threads that can emanate from it. The threads thus represent entanglement between points on the boundary, and naturally implement the holographic principle. As we explain, this new picture clarifies several conceptual puzzles surrounding the RT formula. We give flow-based proofs of strong subadditivity and related properties; unlike the ones based on minimal surfaces, these proofs correspond in a transparent manner to the properties' information-theoretic meanings. We also briefly discuss certain technical advantages that the flows offer over minimal surfaces. In a mathematical appendix, we review the max flow-min cut theorem on networks and on Riemannian manifolds, and prove in the network case that the set of max flows varies Lipshitz continuously in the network parameters.

  7. Bit Threads and Holographic Entanglement

    NASA Astrophysics Data System (ADS)

    Freedman, Michael; Headrick, Matthew

    2016-11-01

    The Ryu-Takayanagi (RT) formula relates the entanglement entropy of a region in a holographic theory to the area of a corresponding bulk minimal surface. Using the max flow-min cut principle, a theorem from network theory, we rewrite the RT formula in a way that does not make reference to the minimal surface. Instead, we invoke the notion of a "flow", defined as a divergenceless norm-bounded vector field, or equivalently a set of Planck-thickness "bit threads". The entanglement entropy of a boundary region is given by the maximum flux out of it of any flow, or equivalently the maximum number of bit threads that can emanate from it. The threads thus represent entanglement between points on the boundary, and naturally implement the holographic principle. As we explain, this new picture clarifies several conceptual puzzles surrounding the RT formula. We give flow-based proofs of strong subadditivity and related properties; unlike the ones based on minimal surfaces, these proofs correspond in a transparent manner to the properties' information-theoretic meanings. We also briefly discuss certain technical advantages that the flows offer over minimal surfaces. In a mathematical appendix, we review the max flow-min cut theorem on networks and on Riemannian manifolds, and prove in the network case that the set of max flows varies Lipshitz continuously in the network parameters.

  8. Stability of single skyrmionic bits

    NASA Astrophysics Data System (ADS)

    Vedmedenko, Olena; Hagemeister, Julian; Romming, Niklas; von Bergmann, Kirsten; Wiesendanger, Roland

    The switching between topologically distinct skyrmionic and ferromagnetic states has been proposed as a bit operation for information storage. While long lifetimes of the bits are required for data storage devices, the lifetimes of skyrmions have not been addressed so far. Here we show by means of atomistic Monte Carlo simulations that the field-dependent mean lifetimes of the skyrmionic and ferromagnetic states have a high asymmetry with respect to the critical magnetic field, at which these lifetimes are identical. According to our calculations, the main reason for the enhanced stability of skyrmions is a different field dependence of skyrmionic and ferromagnetic activation energies and a lower attempt frequency of skyrmions rather than the height of energy barriers. We use this knowledge to propose a procedure for the determination of effective material parameters and the quantification of the Monte Carlo timescale from the comparison of theoretical and experimental data. Financial support from the DFG in the framework of the SFB668 is acknowledged.

  9. An Optimization-based Multi-level Asset Allocation Model for Collaborative Planning

    DTIC Science & Technology

    2011-06-01

    Collaborative Planning” Modeling and Simulation Experimentation, Metrics, and Analysis Collaboration, Shared Awareness, and Decision Making...modules that focused on the Future Operations (FOPS) cell’s planning activities and Current Operations’ (COPS) Risk Analysis . The FOPS Planning Module...planners would indeed be achievable to a specified degree of accuracy. Current Operations (COPS) Risk Analysis module was also implemented to assist COPS

  10. FastBit Reference Manual

    SciTech Connect

    Wu, Kesheng

    2007-08-02

    An index in a database system is a data structure that utilizes redundant information about the base data to speed up common searching and retrieval operations. Most commonly used indexes are variants of B-trees, such as B+-tree and B*-tree. FastBit implements a set of alternative indexes call compressed bitmap indexes. Compared with B-tree variants, these indexes provide very efficient searching and retrieval operations by sacrificing the efficiency of updating the indexes after the modification of an individual record. In addition to the well-known strengths of bitmap indexes, FastBit has a special strength stemming from the bitmap compression scheme used. The compression method is called the Word-Aligned Hybrid (WAH) code. It reduces the bitmap indexes to reasonable sizes and at the same time allows very efficient bitwise logical operations directly on the compressed bitmaps. Compared with the well-known compression methods such as LZ77 and Byte-aligned Bitmap code (BBC), WAH sacrifices some space efficiency for a significant improvement in operational efficiency. Since the bitwise logical operations are the most important operations needed to answer queries, using WAH compression has been shown to answer queries significantly faster than using other compression schemes. Theoretical analyses showed that WAH compressed bitmap indexes are optimal for one-dimensional range queries. Only the most efficient indexing schemes such as B+-tree and B*-tree have this optimality property. However, bitmap indexes are superior because they can efficiently answer multi-dimensional range queries by combining the answers to one-dimensional queries.

  11. Stinger Enhanced Drill Bits For EGS

    SciTech Connect

    Durrand, Christopher J.; Skeem, Marcus R.; Crockett, Ron B.; Hall, David R.

    2013-04-29

    The project objectives were to design, engineer, test, and commercialize a drill bit suitable for drilling in hard rock and high temperature environments (10,000 meters) likely to be encountered in drilling enhanced geothermal wells. The goal is provide a drill bit that can aid in the increased penetration rate of three times over conventional drilling. Novatek has sought to leverage its polycrystalline diamond technology and a new conical cutter shape, known as the Stinger®, for this purpose. Novatek has developed a fixed bladed bit, known as the JackBit®, populated with both shear cutter and Stingers that is currently being tested by major drilling companies for geothermal and oil and gas applications. The JackBit concept comprises a fixed bladed bit with a center indenter, referred to as the Jack. The JackBit has been extensively tested in the lab and in the field. The JackBit has been transferred to a major bit manufacturer and oil service company. Except for the attached published reports all other information is confidential.

  12. Mine roof drill bits that save money

    SciTech Connect

    Ford, L.M.

    1982-04-01

    Sandia National Laboratories, Albuquerque, NM, has developed advanced technology roof bolt drill bits which have demonstrated longer life, higher penetration rates at lower thrust and torque, and lower specific energy than conventional roof bolt drill bits. This is achieved through use of advanced technology cutting materials and novel bit body designs. These bits have received extensive laboratory and mine testing. Their performance has been evaluated and estimates of their value in reducing coal production costs have been made. The work was sponsored by the United States Department of Energy.

  13. FMO-based H.264 frame layer rate control for low bit rate video transmission

    NASA Astrophysics Data System (ADS)

    Cajote, Rhandley D.; Aramvith, Supavadee; Miyanaga, Yoshikazu

    2011-12-01

    The use of flexible macroblock ordering (FMO) in H.264/AVC improves error resiliency at the expense of reduced coding efficiency with added overhead bits for slice headers and signalling. The trade-off is most severe at low bit rates, where header bits occupy a significant portion of the total bit budget. To better manage the rate and improve coding efficiency, we propose enhancements to the H.264/AVC frame layer rate control, which take into consideration the effects of using FMO for video transmission. In this article, we propose a new header bits model, an enhanced frame complexity measure, a bit allocation and a quantization parameter adjustment scheme. Simulation results show that the proposed improvements achieve better visual quality compared with the JM 9.2 frame layer rate control with FMO enabled using a different number of slice groups. Using FMO as an error resilient tool with better rate management is suitable in applications that have limited bandwidth and in error prone environments such as video transmission for mobile terminals.

  14. REVERSIBLE N-BIT TO N-BIT INTEGER HAAR-LIKE TRANSFORMS

    SciTech Connect

    Duchaineau, M; Joy, K I; Senecal, J

    2004-02-14

    We introduce TLHaar, an n-bit to n-bit reversible transform similar to the Haar IntegerWavelet Transform (IWT). TLHaar uses lookup tables that approximate the Haar IWT, but reorder the coefficients so they fit into n bits. TLHaar is suited for lossless compression in fixed-width channels, such as digital video channels and graphics hardware frame buffers.

  15. Hey! A Brown Recluse Spider Bit Me!

    MedlinePlus

    ... putting them on. Reviewed by: Elana Pearl Ben-Joseph, MD Date reviewed: September 2016 For Teens For Kids For Parents MORE ON THIS TOPIC Hey! A Fire Ant Stung Me! Hey! A Tarantula Bit Me! Hey! A Scorpion Stung Me! Hey! A Black Widow Spider Bit Me! Contact Us Print Resources ...

  16. Efficient Bit-to-Symbol Likelihood Mappings

    NASA Technical Reports Server (NTRS)

    Moision, Bruce E.; Nakashima, Michael A.

    2010-01-01

    This innovation is an efficient algorithm designed to perform bit-to-symbol and symbol-to-bit likelihood mappings that represent a significant portion of the complexity of an error-correction code decoder for high-order constellations. Recent implementation of the algorithm in hardware has yielded an 8- percent reduction in overall area relative to the prior design.

  17. Drag blade bit with diamond cutting elements

    SciTech Connect

    Radtke, R. P.; Morris, W. V.

    1985-02-19

    A drag blade bit for connection on a drill string has a hollow body on which there are welded a plurality of cutting or drilling blades. The blades extend longitudinally and radially of the bit body and terminate in relatively flat, radially extending cutting edges. A plurality of cutters are positioned in and spaced along the cutting edges and consists of cylindrical sintered carbide inserts with polycrystalline diamond cutting elements mounted thereon. Hardfacing is provided on the cutting edges between the cutters and on the other surfaces of the blades and the bit body subject to abrasive wear. One or more nozzles are positioned in passages from the interior of the bit body for directing flow of drilling fluid for flushing cuttings from the well bore and for cooling the bit.

  18. Rotary drill bit with rotary cutters

    SciTech Connect

    Brandenstein, M.; Ernst, H.M.; Kunkel, H.; Olschewski, A.; Walter, L.

    1981-03-31

    A rotary drill bit is described that has a drill bit body and at least one trunnion projecting from the drill bit body and a rotary cutter supported on at least one pair of radial rolling bearings on the trunnion. The rolling elements of at least one bearing are guided on at last one axial end facing the drill bit body in an outer bearing race groove incorporated in the bore of the rotary cutter. The inner bearing groove is formed on the trunnion for the rolling elements of the radial roller bearing. A filling opening is provided for assembly of the rolling elements comprising a channel which extends through the drill bit body and trunnion and is essentially axially oriented having one terminal end adjacent the inner bearing race groove and at least one filler piece for sealing the opening. The filling opening is arranged to provide a common filling means for each radial bearing.

  19. Rotary drill bit with rotary cutters

    SciTech Connect

    Lachonius, L.

    1981-04-28

    A rotary drill bit is described having a drill bit body and at least one trunnion projecting from the drill bit body and a rotary cutter supported on at least one radial roller bearing on the trunnion. The rolling elements of the bearing are guided on at least one axial end facing the drill bit body in an outer bearing race groove incorporated in the bore of the rotary cutter. The inner bearing race groove is formed on the trunnion for the rolling elements of the radial roller bearing. At least one filling opening is provided which extends through the drill bit body and trunnion and is essentially axially oriented having one terminal end adjacent the inner bearing race groove and at least one pair of filler piece for sealing the opening. One of the filler pieces is made of an elastically compressible material.

  20. Rotary drill bit with rotary cutter

    SciTech Connect

    Brandenstein, M.; Kunkel, H.; Olschewski, A.; Walter, L.

    1981-03-17

    A rotary drill bit having a drill bit body and at least one trunnion projecting from the drill bit body and a rotary cutter supported on at least one radial roller bearing on the trunnion. The rolling elements of the bearing are guided on at least one axial end facing the drill bit body in an outer bearing race groove incorporated in the bore of the rotary cutter. The inner bearing race groove is formed on the trunnion for the rolling elements of the radial roller bearing. At least one filling opening is provided which extends through the drill bit body and trunnion and is essentially axially oriented having one terminal end adjacent the inner bearing race groove and at least one filler piece for sealing the opening.

  1. Manpower Allocation and Reporting

    NASA Technical Reports Server (NTRS)

    Merwarth, P. D.

    1983-01-01

    Interactive Manpower Allocation and Reporting System (MARS) helps planners make manpower allocation decisions. Includes provisions to enter overall constraints for projects and persons, assign individuals to projects, compute automatically overhead category, report on deviations from constraints, and generate manpower resource allocation reports.

  2. Bit error rate measurement above and below bit rate tracking threshold

    NASA Technical Reports Server (NTRS)

    Kobayaski, H. S.; Fowler, J.; Kurple, W. (Inventor)

    1978-01-01

    Bit error rate is measured by sending a pseudo-random noise (PRN) code test signal simulating digital data through digital equipment to be tested. An incoming signal representing the response of the equipment being tested, together with any added noise, is received and tracked by being compared with a locally generated PRN code. Once the locally generated PRN code matches the incoming signal a tracking lock is obtained. The incoming signal is then integrated and compared bit-by-bit against the locally generated PRN code and differences between bits being compared are counted as bit errors.

  3. Bit-string scattering theory

    SciTech Connect

    Noyes, H.P.

    1990-01-29

    We construct discrete space-time coordinates separated by the Lorentz-invariant intervals h/mc in space and h/mc{sup 2} in time using discrimination (XOR) between pairs of independently generated bit-strings; we prove that if this space is homogeneous and isotropic, it can have only 1, 2 or 3 spacial dimensions once we have related time to a global ordering operator. On this space we construct exact combinatorial expressions for free particle wave functions taking proper account of the interference between indistinguishable alternative paths created by the construction. Because the end-points of the paths are fixed, they specify completed processes; our wave functions are born collapsed''. A convenient way to represent this model is in terms of complex amplitudes whose squares give the probability for a particular set of observable processes to be completed. For distances much greater than h/mc and times much greater than h/mc{sup 2} our wave functions can be approximated by solutions of the free particle Dirac and Klein-Gordon equations. Using a eight-counter paradigm we relate this construction to scattering experiments involving four distinguishable particles, and indicate how this can be used to calculate electromagnetic and weak scattering processes. We derive a non-perturbative formula relating relativistic bound and resonant state energies to mass ratios and coupling constants, equivalent to our earlier derivation of the Bohr relativistic formula for hydrogen. Using the Fermi-Yang model of the pion as a relativistic bound state containing a nucleon-antinucleon pair, we find that (G{sub {pi}N}{sup 2}){sup 2} = (2m{sub N}/m{sub {pi}}){sup 2} {minus} 1. 21 refs., 1 fig.

  4. Add 16-bit processing to any computer

    SciTech Connect

    Fry, W.

    1983-01-01

    A zoom computer is a simple, fast, and friendly computer in a very small package. Zoom architecture provides an easy migration path from existing 8-bit computers to today's 16-bit and tomorrow's 32-bit designs. With zoom, the benefits of the VLSI technological explosion can be attained with your present peripherals-there is no need to purchase new peripherals because all your old applications run unhindered on zoom. And in addition to all your old applications, zoom offers a whole new world of processing power at your fingertips.

  5. BitPAl: a bit-parallel, general integer-scoring sequence alignment algorithm

    PubMed Central

    Loving, Joshua; Hernandez, Yozen; Benson, Gary

    2014-01-01

    Motivation: Mapping of high-throughput sequencing data and other bulk sequence comparison applications have motivated a search for high-efficiency sequence alignment algorithms. The bit-parallel approach represents individual cells in an alignment scoring matrix as bits in computer words and emulates the calculation of scores by a series of logic operations composed of AND, OR, XOR, complement, shift and addition. Bit-parallelism has been successfully applied to the longest common subsequence (LCS) and edit-distance problems, producing fast algorithms in practice. Results: We have developed BitPAl, a bit-parallel algorithm for general, integer-scoring global alignment. Integer-scoring schemes assign integer weights for match, mismatch and insertion/deletion. The BitPAl method uses structural properties in the relationship between adjacent scores in the scoring matrix to construct classes of efficient algorithms, each designed for a particular set of weights. In timed tests, we show that BitPAl runs 7–25 times faster than a standard iterative algorithm. Availability and implementation: Source code is freely available for download at http://lobstah.bu.edu/BitPAl/BitPAl.html. BitPAl is implemented in C and runs on all major operating systems. Contact: jloving@bu.edu or yhernand@bu.edu or gbenson@bu.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25075119

  6. 28-Bit serial word simulator/monitor

    NASA Technical Reports Server (NTRS)

    Durbin, J. W.

    1979-01-01

    Modular interface unit transfers data at high speeds along four channels. Device expedites variable-word-length communication between computers. Operation eases exchange of bit information by automatically reformatting coded input data and status information to match requirements of output.

  7. A Study of a Standard BIT Circuit.

    DTIC Science & Technology

    1977-02-01

    availability through improved fault detection and isolation techniques. The particular approach taken in this study involves the use of built-in-test (BIT...circuits at the replaceable unit level to facilitate fault detection and isolation .

  8. FastBit: Interactively Searching Massive Data

    SciTech Connect

    Wu, Kesheng; Ahern, Sean; Bethel, E. Wes; Chen, Jacqueline; Childs, Hank; Cormier-Michel, Estelle; Geddes, Cameron; Gu, Junmin; Hagen, Hans; Hamann, Bernd; Koegler, Wendy; Lauret, Jerome; Meredith, Jeremy; Messmer, Peter; Otoo, Ekow; Perevoztchikov, Victor; Poskanzer, Arthur; Prabhat,; Rubel, Oliver; Shoshani, Arie; Sim, Alexander; Stockinger, Kurt; Weber, Gunther; Zhang, Wei-Ming

    2009-06-23

    As scientific instruments and computer simulations produce more and more data, the task of locating the essential information to gain insight becomes increasingly difficult. FastBit is an efficient software tool to address this challenge. In this article, we present a summary of the key underlying technologies, namely bitmap compression, encoding, and binning. Together these techniques enable FastBit to answer structured (SQL) queries orders of magnitude faster than popular database systems. To illustrate how FastBit is used in applications, we present three examples involving a high-energy physics experiment, a combustion simulation, and an accelerator simulation. In each case, FastBit significantly reduces the response time and enables interactive exploration on terabytes of data.

  9. An optical ultrafast random bit generator

    NASA Astrophysics Data System (ADS)

    Kanter, Ido; Aviad, Yaara; Reidler, Igor; Cohen, Elad; Rosenbluh, Michael

    2010-01-01

    The generation of random bit sequences based on non-deterministic physical mechanisms is of paramount importance for cryptography and secure communications. High data rates also require extremely fast generation rates and robustness to external perturbations. Physical generators based on stochastic noise sources have been limited in bandwidth to ~100 Mbit s-1 generation rates. We present a physical random bit generator, based on a chaotic semiconductor laser, having time-delayed self-feedback, which operates reliably at rates up to 300 Gbit s-1. The method uses a high derivative of the digitized chaotic laser intensity and generates the random sequence by retaining a number of the least significant bits of the high derivative value. The method is insensitive to laser operational parameters and eliminates the necessity for all external constraints such as incommensurate sampling rates and laser external cavity round trip time. The randomness of long bit strings is verified by standard statistical tests.

  10. A practical quantum bit commitment protocol

    NASA Astrophysics Data System (ADS)

    Arash Sheikholeslam, S.; Aaron Gulliver, T.

    2012-01-01

    In this paper, we introduce a new quantum bit commitment protocol which is secure against entanglement attacks. A general cheating strategy is examined and shown to be practically ineffective against the proposed approach.

  11. Hey! A Brown Recluse Spider Bit Me!

    MedlinePlus

    ... in the Operating Room? Hey! A Brown Recluse Spider Bit Me! KidsHealth > For Kids > Hey! A Brown ... picó una reclusa parda! What's a Brown Recluse Spider? The brown recluse spider is one of the ...

  12. 28-Bit serial word simulator/monitor

    NASA Technical Reports Server (NTRS)

    Durbin, J. W.

    1979-01-01

    Modular interface unit transfers data at high speeds along four channels. Device expedites variable-word-length communication between computers. Operation eases exchange of bit information by automatically reformatting coded input data and status information to match requirements of output.

  13. FastBit: Interactively Searching Massive Data

    SciTech Connect

    Wu, K.; Ahern, Sean; Bethel, E Wes; Chen, Jackie; Childs, Hank; Cormier-Michel, E; Geddes, C.G.R.; Gu, J.; Hagen, H; Hamann, Bernd; Koegler, W.; Lauret, J.; Meredith, Jeremy S; Messmer, P; Otoo, E.; Perevoztchikov, V.; Poskanzer, A.; Prabhat,; Ruebel, O; Shoshani, A.; Sim, A.; Stockinger, K.; Weber, G.; Zhang, W.-M.

    2009-01-01

    FastBit is a bitmap indexing software that provides extremely efficient search operations over large datasets. FastBit contains three key innovations: (1) WAH compression is 10X faster than nearest competitor; (2) two-level indexes 3-5 times faster than one-level indexes; and (3) binning with OrBiC is 3-5 times faster than no binning for high-cardinality data.

  14. Diffusion bonding of Stratapax for drill bits

    SciTech Connect

    Middleton, J.N.; Finger, J.T.

    1983-01-01

    A process has been developed for the diffusion bonding of General Electric's Stratapax drill blanks to support studs for cutter assemblies in drill bits. The diffusion bonding process is described and bond strength test data are provided for a variety of materials. The extensive process details, provided in the Appendices, should be sufficient to enable others to successfully build diffusion-bonded drill bit cutter assemblies.

  15. Neural network implementation using bit streams.

    PubMed

    Patel, Nitish D; Nguang, Sing Kiong; Coghill, George G

    2007-09-01

    A new method for the parallel hardware implementation of artificial neural networks (ANNs) using digital techniques is presented. Signals are represented using uniformly weighted single-bit streams. Techniques for generating bit streams from analog or multibit inputs are also presented. This single-bit representation offers significant advantages over multibit representations since they mitigate the fan-in and fan-out issues which are typical to distributed systems. To process these bit streams using ANNs concepts, functional elements which perform summing, scaling, and squashing have been implemented. These elements are modular and have been designed such that they can be easily interconnected. Two new architectures which act as monotonically increasing differentiable nonlinear squashing functions have also been presented. Using these functional elements, a multilayer perceptron (MLP) can be easily constructed. Two examples successfully demonstrate the use of bit streams in the implementation of ANNs. Since every functional element is individually instantiated, the implementation is genuinely parallel. The results clearly show that this bit-stream technique is viable for the hardware implementation of a variety of distributed systems and for ANNs in particular.

  16. Proper bit design improves penetration rate in abrasive horizontal wells

    SciTech Connect

    Gentges, R.J. )

    1993-08-09

    Overall drilling penetration rates nearly tripled, and drill bit life nearly doubled compared to conventional bits when specially designed natural diamond and polycrystalline diamond compact (PDC) bits were used during a seven-well horizontal drilling program. The improvement in drilling performance from better-designed bits lowered drilling costs at ANR Pipeline Co.'s Reed City gas storage field in Michigan. Laboratory tests with scaled down bits used on abrasive cores helped determine the optimum design for drilling the gas storage wells. The laboratory test results and actual field data were used to develop a matrix-body natural diamond bit, which was later modified to become a matrix-body, blade-type polycrystalline diamond compact bit. This bit had excellent penetration rates and abrasion resistance. The paper describes the background to the project, bit selection, natural diamond bits, field results, new bit designs, and field results from the new design.

  17. Channel Allocation Options.

    ERIC Educational Resources Information Center

    Powers, Robert S.

    The Frequency Allocation Subcommittee of the Coordinating Committee for Cable Communication Systems, Institute of Electrical and Electronic Engineers, was formed to produce a background report on the general problems of frequency allocation and assignments in cable television. The present paper, based on the subcommittee's interim report,…

  18. Stochastic p -Bits for Invertible Logic

    NASA Astrophysics Data System (ADS)

    Camsari, Kerem Yunus; Faria, Rafatul; Sutton, Brian M.; Datta, Supriyo

    2017-07-01

    Conventional semiconductor-based logic and nanomagnet-based memory devices are built out of stable, deterministic units such as standard metal-oxide semiconductor transistors, or nanomagnets with energy barriers in excess of ≈40 - 60 kT . In this paper, we show that unstable, stochastic units, which we call "p -bits," can be interconnected to create robust correlations that implement precise Boolean functions with impressive accuracy, comparable to standard digital circuits. At the same time, they are invertible, a unique property that is absent in standard digital circuits. When operated in the direct mode, the input is clamped, and the network provides the correct output. In the inverted mode, the output is clamped, and the network fluctuates among all possible inputs that are consistent with that output. First, we present a detailed implementation of an invertible gate to bring out the key role of a single three-terminal transistorlike building block to enable the construction of correlated p -bit networks. The results for this specific, CMOS-assisted nanomagnet-based hardware implementation agree well with those from a universal model for p -bits, showing that p -bits need not be magnet based: any three-terminal tunable random bit generator should be suitable. We present a general algorithm for designing a Boltzmann machine (BM) with a symmetric connection matrix [J ] (Ji j=Jj i) that implements a given truth table with p -bits. The [J ] matrices are relatively sparse with a few unique weights for convenient hardware implementation. We then show how BM full adders can be interconnected in a partially directed manner (Ji j≠Jj i) to implement large logic operations such as 32-bit binary addition. Hundreds of stochastic p -bits get precisely correlated such that the correct answer out of 233 (≈8 ×1 09) possibilities can be extracted by looking at the statistical mode or majority vote of a number of time samples. With perfect directivity (Jj i=0 ) a small

  19. Nugget hardfacing toughens roller cone bits

    SciTech Connect

    1996-11-25

    A new hardfacing material made of pure sintered tungsten carbide nuggets has improved roller cone rock bit performance in extremely hard lithologies, increasing penetration rates and extending bit life through multiple formations. In a recent test run in the Shushufindi 95 wells in Ecuador, a Security DBS 9 7/8-in. MPSF IADC 117M (International Association of Drilling Contractors bit code) bit with this new hardfacing drilled out the float equipment, cement, and show and then 3,309 ft of hard formations. The bit drilled through the Orteguaza claystone/shale/sand and chert formations and then to total depth at 6,309 ft in the Tiyuyacu shale/sand. The 3,309-ft interval was drilled at an average penetration rate (ROP) of 52.5 ft/hr. The proprietary nugget material was tested according to the American Society for Testing Materials (ASTM) G65 wear test method, a standard industry method of measuring wear resistance. The nugget material had ASTM wear test resistance more than twice that of standard hardfacing from conventional tungsten carbide.

  20. The best bits in an iris code.

    PubMed

    Hollingsworth, Karen P; Bowyer, Kevin W; Flynn, Patrick J

    2009-06-01

    Iris biometric systems apply filters to iris images to extract information about iris texture. Daugman's approach maps the filter output to a binary iris code. The fractional Hamming distance between two iris codes is computed and decisions about the identity of a person are based on the computed distance. The fractional Hamming distance weights all bits in an iris code equally. However, not all the bits in an iris code are equally useful. Our research is the first to present experiments documenting that some bits are more consistent than others. Different regions of the iris are compared to evaluate their relative consistency, and contrary to some previous research, we find that the middle bands of the iris are more consistent than the inner bands. The inconsistent-bit phenomenon is evident across genders and different filter types. Possible causes of inconsistencies, such as segmentation, alignment issues, and different filters are investigated. The inconsistencies are largely due to the coarse quantization of the phase response. Masking iris code bits corresponding to complex filter responses near the axes of the complex plane improves the separation between the match and nonmatch Hamming distance distributions.

  1. Managing the Number of Tag Bits Transmitted in a Bit-Tracking RFID Collision Resolution Protocol

    PubMed Central

    Landaluce, Hugo; Perallos, Asier; Angulo, Ignacio

    2014-01-01

    Radio Frequency Identification (RFID) technology faces the problem of message collisions. The coexistence of tags sharing the communication channel degrades bandwidth, and increases the number of bits transmitted. The window methodology, which controls the number of bits transmitted by the tags, is applied to the collision tree (CT) protocol to solve the tag collision problem. The combination of this methodology with the bit-tracking technology, used in CT, improves the performance of the window and produces a new protocol which decreases the number of bits transmitted. The aim of this paper is to show how the CT bit-tracking protocol is influenced by the proposed window, and how the performance of the novel protocol improves under different conditions of the scenario. Therefore, we have performed a fair comparison of the CT protocol, which uses bit-tracking to identify the first collided bit, and the new proposed protocol with the window methodology. Simulations results show that the proposed window positively decreases the total number of bits that are transmitted by the tags, and outperforms the CT protocol latency in slow tag data rate scenarios. PMID:24406861

  2. Evaluations of bit sleeve and twisted-body bit designs for controlling roof bolter dust

    PubMed Central

    Beck, T.W.

    2015-01-01

    Drilling into coal mine roof strata to install roof bolts has the potential to release substantial quantities of respirable dust. Due to the proximity of drill holes to the breathing zone of roof bolting personnel, dust escaping the holes and avoiding capture by the dust collection system pose a potential respiratory health risk. Controls are available to complement the typical dry vacuum collection system and minimize harmful exposures during the initial phase of drilling. This paper examines the use of a bit sleeve in combination with a dust-hog-type bit to improve dust extraction during the critical initial phase of drilling. A twisted-body drill bit is also evaluated to determine the quantity of dust liberated in comparison with the dust-hog-type bit. Based on the results of our laboratory tests, the bit sleeve may reduce dust emissions by one-half during the initial phase of drilling before the drill bit is fully enclosed by the drill hole. Because collaring is responsible for the largest dust liberations, overall dust emission can also be substantially reduced. The use of a twisted-body bit has minimal improvement on dust capture compared with the commonly used dust-hog-type bit. PMID:26257435

  3. Friction of drill bits under Martian pressure

    NASA Astrophysics Data System (ADS)

    Zacny, K. A.; Cooper, G. A.

    2007-03-01

    Frictional behavior was investigated for two materials that are good candidates for Mars drill bits: Diamond Impregnated Segments and Polycrystalline Diamond Compacts (PDC). The bits were sliding against dry sandstone and basalt rocks under both Earth and Mars atmospheric pressures and also at temperatures ranging from subzero to over 400 °C. It was found that the friction coefficient dropped from approximately 0.16 to 0.1 as the pressure was lowered from the Earth's pressure to Mars' pressure, at room temperature. This is thought to be a result of the loss of weakly bound water on the sliding surfaces. Holding the pressure at 5 torr and increasing the temperature to approximately 200°C caused a sudden increase in the friction coefficient by approximately 50%. This is attributed to the loss of surface oxides. If no indication of the bit temperature is available, an increase in drilling torque could be misinterpreted as being caused by an increase in auger torque (due to accumulation of cuttings) rather than being the result of a loss of oxide layers due to elevated bit temperatures. An increase in rotational speed (to allow for clearing of cuttings) would then cause greater frictional heating and would increase the drilling torque further. Therefore it would be advisable to monitor the bit temperature or, if that is not possible, to include pauses in drilling to allow the heat to dissipate. Higher friction would also accelerate the wear of the drill bit and in turn reduce the depth of the hole.

  4. Quantum bit commitment under Gaussian constraints

    NASA Astrophysics Data System (ADS)

    Mandilara, Aikaterini; Cerf, Nicolas J.

    2012-06-01

    Quantum bit commitment has long been known to be impossible. Nevertheless, just as in the classical case, imposing certain constraints on the power of the parties may enable the construction of asymptotically secure protocols. Here, we introduce a quantum bit commitment protocol and prove that it is asymptotically secure if cheating is restricted to Gaussian operations. This protocol exploits continuous-variable quantum optical carriers, for which such a Gaussian constraint is experimentally relevant as the high optical nonlinearity needed to effect deterministic non-Gaussian cheating is inaccessible.

  5. Classical teleportation of a quantum Bit

    PubMed

    Cerf; Gisin; Massar

    2000-03-13

    Classical teleportation is defined as a scenario where the sender is given the classical description of an arbitrary quantum state while the receiver simulates any measurement on it. This scenario is shown to be achievable by transmitting only a few classical bits if the sender and receiver initially share local hidden variables. Specifically, a communication of 2.19 bits is sufficient on average for the classical teleportation of a qubit, when restricted to von Neumann measurements. The generalization to positive-operator-valued measurements is also discussed.

  6. Secure quantum bit commitment against empty promises

    SciTech Connect

    He Guangping

    2006-08-15

    The existence of unconditionally secure quantum bit commitment (QBC) is excluded by the Mayers-Lo-Chau no-go theorem. Here we look for the second-best: a QBC protocol that can defeat certain quantum attacks. By breaking the knowledge symmetry between the participants with quantum algorithm, a QBC protocol is proposed and is proven to be secure against a major kind of coherent attacks - the dummy attack, in which the participant makes an empty promise instead of committing to a specific bit. Therefore it surpasses previous QBC protocols which are secure against individual attacks only.

  7. Protected Polycrystalline Diamond Compact Bits For Hard Rock Drilling

    SciTech Connect

    Robert Lee Cardenas

    2000-10-31

    Two bits were designed. One bit was fabricated and tested at Terra-Tek's Drilling Research Laboratory. Fabrication of the second bit was not completed due to complications in fabrication and meeting scheduled test dates at the test facility. A conical bit was tested in a Carthage Marble (compressive strength 14,500 psi) and Sierra White Granite (compressive strength 28,200 psi). During the testing, Hydraulic Horsepower, Bit Weight, Rotation Rate, were varied for the Conical Bit, a Varel Tricone Bit and Varel PDC bit. The Conical Bi did cut rock at a reasonable rate in both rocks. Beneficial effects from the near and through cutter water nozzles were not evident in the marble due to test conditions and were not conclusive in the granite due to test conditions. At atmospheric drilling, the Conical Bit's penetration rate was as good as the standard PDC bit and better than the Tricone Bit. Torque requirements for the Conical Bit were higher than that required for the Standard Bits. Spudding the conical bit into the rock required some care to avoid overloading the nose cutters. The nose design should be evaluated to improve the bit's spudding characteristics.

  8. Highly accurate moving object detection in variable bit rate video-based traffic monitoring systems.

    PubMed

    Huang, Shih-Chia; Chen, Bo-Hao

    2013-12-01

    Automated motion detection, which segments moving objects from video streams, is the key technology of intelligent transportation systems for traffic management. Traffic surveillance systems use video communication over real-world networks with limited bandwidth, which frequently suffers because of either network congestion or unstable bandwidth. Evidence supporting these problems abounds in publications about wireless video communication. Thus, to effectively perform the arduous task of motion detection over a network with unstable bandwidth, a process by which bit-rate is allocated to match the available network bandwidth is necessitated. This process is accomplished by the rate control scheme. This paper presents a new motion detection approach that is based on the cerebellar-model-articulation-controller (CMAC) through artificial neural networks to completely and accurately detect moving objects in both high and low bit-rate video streams. The proposed approach is consisted of a probabilistic background generation (PBG) module and a moving object detection (MOD) module. To ensure that the properties of variable bit-rate video streams are accommodated, the proposed PBG module effectively produces a probabilistic background model through an unsupervised learning process over variable bit-rate video streams. Next, the MOD module, which is based on the CMAC network, completely and accurately detects moving objects in both low and high bit-rate video streams by implementing two procedures: 1) a block selection procedure and 2) an object detection procedure. The detection results show that our proposed approach is capable of performing with higher efficacy when compared with the results produced by other state-of-the-art approaches in variable bit-rate video streams over real-world limited bandwidth networks. Both qualitative and quantitative evaluations support this claim; for instance, the proposed approach achieves Similarity and F1 accuracy rates that are 76

  9. Hey! A Black Widow Spider Bit Me!

    MedlinePlus

    ... dientes Video: Getting an X-ray Hey! A Black Widow Spider Bit Me! KidsHealth > For Kids > Hey! A Black ... Me picó una araña viuda negra! What's a Black Widow Spider? The black widow spider is one of the ...

  10. Multiple bit differential detection of offset QPSK

    NASA Technical Reports Server (NTRS)

    Simon, M.

    2003-01-01

    Analogous to multiple symbol differential detection of quadrature phase-shift-keying, a multiple bit differential detection scheme is described for offset QPSK that also exhibits continuous improvement in performance with increasing observation interval. Being derived from maximum-likelihood (ML) considerations, the proposed scheme is purported to be the most power efficient scheme for such a modulation and detection method.

  11. 1 /N perturbations in superstring bit models

    NASA Astrophysics Data System (ADS)

    Thorn, Charles B.

    2016-03-01

    We develop the 1 /N expansion for stable string bit models, focusing on a model with bit creation operators carrying only transverse spinor indices a =1 ,…,s . At leading order (N =∞ ), this model produces a (discretized) light cone string with a "transverse space" of s Grassmann worldsheet fields. Higher orders in the 1 /N expansion are shown to be determined by the overlap of a single large closed chain (discretized string) with two smaller closed chains. In the models studied here, the overlap is not accompanied with operator insertions at the break/join point. Then, the requirement that the discretized overlap has a smooth continuum limit leads to the critical Grassmann "dimension" of s =24 . This "protostring," a Grassmann analog of the bosonic string, is unusual, because it has no large transverse dimensions. It is a string moving in one space dimension, and there are neither tachyons nor massless particles. The protostring, derived from our pure spinor string bit model, has 24 Grassmann dimensions, 16 of which could be bosonized to form 8 compactified bosonic dimensions, leaving 8 Grassmann dimensions—the worldsheet content of the superstring. If the transverse space of the protostring could be "decompactified," string bit models might provide an appealing and solid foundation for superstring theory.

  12. Nanomagnetic Bit Cells for MRAM Applications

    NASA Astrophysics Data System (ADS)

    Engel, Brad

    2007-03-01

    Magnetoresistive Random Access Memory (MRAM) combines magnetic tunnel junction devices with standard silicon-based microelectronics to obtain the combined attributes of non-volatility, high-speed operation, and unlimited read/write endurance not found in any other existing memory technology. The first MRAM product to market, Freescale's 4Mb MR2A16A, is built on 180 nm CMOS technology with magnetic bit cells of 300 nm minimum dimensions integrated in the upper layers of metal. At these dimensions, both the magnetic switching and magnetoresistive property distributions are governed by a combination of material and patterning variations. One of the keys to controlling these distributions and insuring manufacturability was the invention of the Toggle Write mode. This mode uses a balanced synthetic antiferromagnetic free layer combined with a phased write pulse sequence to achieve robust magnetic switching margin by eliminating the half-select disturb issue found in conventional approaches. Another crucial solution was the ability to deposit and pattern high-quality, high-TMR magnetic tunnel junctions with narrow bit-to-bit resistance variation, low defect density and long-term reliability. In this talk, I will present details of each of the above technology elements, the performance and bit cell reliability, and the scaling behavior to the reduced dimensions of advanced technology nodes.

  13. REVERSIBLE N-BIT TO N-BIT INTEGER HAAR-LIKE TRANSFORMS

    SciTech Connect

    Senecal, J G; Duchaineau, M A; Joy, K I

    2004-07-26

    We introduce TLHaar, an n-bit to n-bit reversible transform similar to the S-transform. TLHaar uses lookup tables that approximate the S-transform, but reorder the coefficients so they fit into n bits. TLHaar is suited for lossless compression in fixed-width channels, such as digital video channels and graphics hardware frame buffers. Tests indicate that when the incoming image data has lines or hard edges TLHaar coefficients compress better than S-transform coefficients. For other types of image data TLHaar coefficients compress up to 2.5% worse than those of the S-transform, depending on the data and the compression method used.

  14. Bit corruption correlation and autocorrelation in a stochastic binary nano-bit system

    NASA Astrophysics Data System (ADS)

    Sa-nguansin, Suchittra

    2014-10-01

    The corruption process of a binary nano-bit model resulting from an interaction with N stochastically-independent Brownian agents (BAs) is studied with the help of Monte-Carlo simulations and analytic continuum theory to investigate the data corruption process through the measurement of the spatial two-point correlation and the autocorrelation of bit corruption at the origin. By taking into account a more realistic correlation between bits, this work will contribute to the understanding of the soft error or the corruption of data stored in nano-scale devices.

  15. Frictional ignition with coal-mining bits. Information Circular/1990

    SciTech Connect

    Courtney, W.G.

    1990-01-01

    The publication reviews recent U.S. Bureau of Mines studies of frictional ignition of a methane-air environment by coal mining bits cutting into sandstone and the effectiveness of remedial techniques to reduce the likelihood of frictional ignition. Frictional ignition with a mining bit always involves a worn bit having a wear flat on the tip of the bit. The worn bit forms hot spots on the surface of the sandstone because of frictional abrasion. The hot spots then can ignite the methane-air environment. A small wear flat forms a small hot spot, which does not give ignition, while a large wear flat forms a large hot spot, which gives ignition. The likelihood of frictional ignition can be somewhat reduced by using a mushroom-shaped tungsten-carbide bit tip on the mining bit and by increasing the bit clearance angle; it can be significantly reduced by using a water spray nozzle in back of each bit.

  16. Iterative rate-distortion optimization of H.264 with constant bit rate constraint.

    PubMed

    An, Cheolhong; Nguyen, Truong Q

    2008-09-01

    In this paper, we apply the primal-dual decomposition and subgradient projection methods to solve the rate-distortion optimization problem with the constant bit rate constraint. The primal decomposition method enables spatial or temporal prediction dependency within a group of picture (GOP) to be processed in the master primal problem. As a result, we can apply the dual decomposition to minimize independently the Lagrangian cost of all the MBs using the reference software model of H.264. Furthermore, the optimal Lagrange multiplier lambda* is iteratively derived from the solution of the dual problem. As an example, we derive the optimal bit allocation condition with the consideration of temporal prediction dependency among the pictures. Experimental results show that the proposed method achieves better performance than the reference software model of H.264 with rate control.

  17. Bit-by-bit optical code scrambling technique for secure optical communication.

    PubMed

    Wang, Xu; Gao, Zhensen; Wang, Xuhua; Kataoka, Nobuyuki; Wada, Naoya

    2011-02-14

    We propose and demonstrate a novel bit-by-bit code scrambling technique based on time domain spectral phase encoding/decoding (SPE/SPD) scheme using only a single phase modulator to simultaneously generate and decode the code hopping sequence and DPSK data for secure optical communication application. In the experiment, 2.5-Gb/s DPSK data has been generated, decoded and securely transmitted over 34 km by scrambling five 8-chip, 20-Gchip/s Gold codes with prime-hop patterns. The proposed scheme can rapidly reconfigure the optical code hopping sequence bit-by-bit with the DPSK data, and thus it is very robust to conventional data rate energy detection and DPSK demodulation attack, exhibiting the potential to provide unconditional transmission security and realize even one-time pad.

  18. Bit-1 is an essential regulator of myogenic differentiation

    PubMed Central

    Griffiths, Genevieve S.; Doe, Jinger; Jijiwa, Mayumi; Van Ry, Pam; Cruz, Vivian; de la Vega, Michelle; Ramos, Joe W.; Burkin, Dean J.; Matter, Michelle L.

    2015-01-01

    Muscle differentiation requires a complex signaling cascade that leads to the production of multinucleated myofibers. Genes regulating the intrinsic mitochondrial apoptotic pathway also function in controlling cell differentiation. How such signaling pathways are regulated during differentiation is not fully understood. Bit-1 (also known as PTRH2) mutations in humans cause infantile-onset multisystem disease with muscle weakness. We demonstrate here that Bit-1 controls skeletal myogenesis through a caspase-mediated signaling pathway. Bit-1-null mice exhibit a myopathy with hypotrophic myofibers. Bit-1-null myoblasts prematurely express muscle-specific proteins. Similarly, knockdown of Bit-1 expression in C2C12 myoblasts promotes early differentiation, whereas overexpression delays differentiation. In wild-type mice, Bit-1 levels increase during differentiation. Bit-1-null myoblasts exhibited increased levels of caspase 9 and caspase 3 without increased apoptosis. Bit-1 re-expression partially rescued differentiation. In Bit-1-null muscle, Bcl-2 levels are reduced, suggesting that Bcl-2-mediated inhibition of caspase 9 and caspase 3 is decreased. Bcl-2 re-expression rescued Bit-1-mediated early differentiation in Bit-1-null myoblasts and C2C12 cells with knockdown of Bit-1 expression. These results support an unanticipated yet essential role for Bit-1 in controlling myogenesis through regulation of Bcl-2. PMID:25770104

  19. Antenna allocation in MIMO radar with widely separated antennas for multi-target detection.

    PubMed

    Gao, Hao; Wang, Jian; Jiang, Chunxiao; Zhang, Xudong

    2014-10-27

    In this paper, we explore a new resource called multi-target diversity to optimize the performance of multiple input multiple output (MIMO) radar with widely separated antennas for detecting multiple targets. In particular, we allocate antennas of the MIMO radar to probe different targets simultaneously in a flexible manner based on the performance metric of relative entropy. Two antenna allocation schemes are proposed. In the first scheme, each antenna is allocated to illuminate a proper target over the entire illumination time, so that the detection performance of each target is guaranteed. The problem is formulated as a minimum makespan scheduling problem in the combinatorial optimization framework. Antenna allocation is implemented through a branch-and-bound algorithm and an enhanced factor 2 algorithm. In the second scheme, called antenna-time allocation, each antenna is allocated to illuminate different targets with different illumination time. Both antenna allocation and time allocation are optimized based on illumination probabilities. Over a large range of transmitted power, target fluctuations and target numbers, both of the proposed antenna allocation schemes outperform the scheme without antenna allocation. Moreover, the antenna-time allocation scheme achieves a more robust detection performance than branch-and-bound algorithm and the enhanced factor 2 algorithm when the target number changes.

  20. Antenna Allocation in MIMO Radar with Widely Separated Antennas for Multi-Target Detection

    PubMed Central

    Gao, Hao; Wang, Jian; Jiang, Chunxiao; Zhang, Xudong

    2014-01-01

    In this paper, we explore a new resource called multi-target diversity to optimize the performance of multiple input multiple output (MIMO) radar with widely separated antennas for detecting multiple targets. In particular, we allocate antennas of the MIMO radar to probe different targets simultaneously in a flexible manner based on the performance metric of relative entropy. Two antenna allocation schemes are proposed. In the first scheme, each antenna is allocated to illuminate a proper target over the entire illumination time, so that the detection performance of each target is guaranteed. The problem is formulated as a minimum makespan scheduling problem in the combinatorial optimization framework. Antenna allocation is implemented through a branch-and-bound algorithm and an enhanced factor 2 algorithm. In the second scheme, called antenna-time allocation, each antenna is allocated to illuminate different targets with different illumination time. Both antenna allocation and time allocation are optimized based on illumination probabilities. Over a large range of transmitted power, target fluctuations and target numbers, both of the proposed antenna allocation schemes outperform the scheme without antenna allocation. Moreover, the antenna-time allocation scheme achieves a more robust detection performance than branch-and-bound algorithm and the enhanced factor 2 algorithm when the target number changes. PMID:25350505

  1. Proportional Borda allocations.

    PubMed

    Darmann, Andreas; Klamler, Christian

    2016-01-01

    In this paper we study the allocation of indivisible items among a group of agents, a problem which has received increased attention in recent years, especially in areas such as computer science and economics. A major fairness property in the fair division literature is proportionality, which is satisfied whenever each of the n agents receives at least [Formula: see text] of the value attached to the whole set of items. To simplify the determination of values of (sets of) items from ordinal rankings of the items, we use the Borda rule, a concept used extensively and well-known in voting theory. Although, in general, proportionality cannot be guaranteed, we show that, under certain assumptions, proportional allocations of indivisible items are possible and finding such allocations is computationally easy.

  2. Acquisition and Retaining Granular Samples via a Rotating Coring Bit

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Badescu, Mircea; Sherrit, Stewart

    2013-01-01

    This device takes advantage of the centrifugal forces that are generated when a coring bit is rotated, and a granular sample is entered into the bit while it is spinning, making it adhere to the internal wall of the bit, where it compacts itself into the wall of the bit. The bit can be specially designed to increase the effectiveness of regolith capturing while turning and penetrating the subsurface. The bit teeth can be oriented such that they direct the regolith toward the bit axis during the rotation of the bit. The bit can be designed with an internal flute that directs the regolith upward inside the bit. The use of both the teeth and flute can be implemented in the same bit. The bit can also be designed with an internal spiral into which the various particles wedge. In another implementation, the bit can be designed to collect regolith primarily from a specific depth. For that implementation, the bit can be designed such that when turning one way, the teeth guide the regolith outward of the bit and when turning in the opposite direction, the teeth will guide the regolith inward into the bit internal section. This mechanism can be implemented with or without an internal flute. The device is based on the use of a spinning coring bit (hollow interior) as a means of retaining granular sample, and the acquisition is done by inserting the bit into the subsurface of a regolith, soil, or powder. To demonstrate the concept, a commercial drill and a coring bit were used. The bit was turned and inserted into the soil that was contained in a bucket. While spinning the bit (at speeds of 600 to 700 RPM), the drill was lifted and the soil was retained inside the bit. To prove this point, the drill was turned horizontally, and the acquired soil was still inside the bit. The basic theory behind the process of retaining unconsolidated mass that can be acquired by the centrifugal forces of the bit is determined by noting that in order to stay inside the interior of the bit, the

  3. Blind One-Bit Compressive Sampling

    DTIC Science & Technology

    2013-01-17

    notation and recalling some background from convex analysis . For the d-dimensional Euclidean space Rd, the class of all lower semicontinuous convex...compressed sensing, Applied and Computational Harmonic Analysis , 27 (2009), pp. 265 – 274. [3] P. T. Boufounos and R. G. Baraniuk, 1-bit compressive sensing...Convergence analysis of the algorithm is presented. Our approach is to obtain a sequence of optimization problems by successively approximating the ℓ0

  4. NSC 800, 8-bit CMOS microprocessor

    NASA Technical Reports Server (NTRS)

    Suszko, S. F.

    1984-01-01

    The NSC 800 is an 8-bit CMOS microprocessor manufactured by National Semiconductor Corp., Santa Clara, California. The 8-bit microprocessor chip with 40-pad pin-terminals has eight address buffers (A8-A15), eight data address -- I/O buffers (AD(sub 0)-AD(sub 7)), six interrupt controls and sixteen timing controls with a chip clock generator and an 8-bit dynamic RAM refresh circuit. The 22 internal registers have the capability of addressing 64K bytes of memory and 256 I/O devices. The chip is fabricated on N-type (100) silicon using self-aligned polysilicon gates and local oxidation process technology. The chip interconnect consists of four levels: Aluminum, Polysi 2, Polysi 1, and P(+) and N(+) diffusions. The four levels, except for contact interface, are isolated by interlevel oxide. The chip is packaged in a 40-pin dual-in-line (DIP), side brazed, hermetically sealed, ceramic package with a metal lid. The operating voltage for the device is 5 V. It is available in three operating temperature ranges: 0 to +70 C, -40 to +85 C, and -55 to +125 C. Two devices were submitted for product evaluation by F. Stott, MTS, JPL Microprocessor Specialist. The devices were pencil-marked and photographed for identification.

  5. Junk basket, bit and reamer stabilizer

    SciTech Connect

    Garrett, W.R.

    1980-08-19

    A metal cup with an apertured bottom provides a junk basket. The cup is spindled on the pin of a drill bit, e.g., a tungsten carbide insert roller cone bit, the bottom edge being releasably clamped between the pin shoulder and the shoulder formed by the mouth of the box on the member forming the lower end of the drill stem, e.g., a roller reamer. The connection between the pin and box and cup form a rotary shouldered connection, the pin shoulder and/or box mouth being cut back providing a longer pin neck or shallower box to accommodate the cup. Every time the bit is removed from the stem, the interiorly upwardly flaring cup is automatically dumped. In a modification, especially for small diameter holes, in order to provide space for junk to move both up outside the cup and down into the cup, the box on the adjacent drill stem member can be fluted, e.g., with arcuate vertical section milled slots extending from above to below the rim of the cup to provide entrance for junk, so maximum exterior annulus space is left for upflow of junk; alternatively the cup aperture can be eccentric, so the space around the outside of the cup is large at one sector and the space around the box inside the cup is large at the opposite sector.

  6. Lathe tool bit and holder for machining fiberglass materials

    NASA Technical Reports Server (NTRS)

    Winn, L. E. (Inventor)

    1972-01-01

    A lathe tool and holder combination for machining resin impregnated fiberglass cloth laminates is described. The tool holder and tool bit combination is designed to accommodate a conventional carbide-tipped, round shank router bit as the cutting medium, and provides an infinite number of cutting angles in order to produce a true and smooth surface in the fiberglass material workpiece with every pass of the tool bit. The technique utilizes damaged router bits which ordinarily would be discarded.

  7. Method to manufacture bit patterned magnetic recording media

    DOEpatents

    Raeymaekers, Bart; Sinha, Dipen N

    2014-05-13

    A method to increase the storage density on magnetic recording media by physically separating the individual bits from each other with a non-magnetic medium (so-called bit patterned media). This allows the bits to be closely packed together without creating magnetic "cross-talk" between adjacent bits. In one embodiment, ferromagnetic particles are submerged in a resin solution, contained in a reservoir. The bottom of the reservoir is made of piezoelectric material.

  8. Laboratory and field testing of improved geothermal rock bits

    SciTech Connect

    Hendrickson, R.R.; Jones, A.H.; Winzenried, R.W.; Maish, A.B.

    1980-07-01

    The development and testing of 222 mm (8-3/4 inch) unsealed, insert type, medium hard formation, high-temperature bits are described. The new bits were fabricated by substituting improved materials in critical bit components. These materials were selected on bases of their high temperature properties, machinability, and heat treatment response. Program objectives required that both machining and heat treating could be accomplished with existing rock bit production equipment. Two types of experimental bits were subjected to laboratory air drilling tests at 250/sup 0/C (482/sup 0/F) in cast iron. These tests indicated field testing could be conducted without danger to the hole, and that bearing wear would be substantially reduced. Six additional experimental bits, and eight conventional bits were then subjected to air drilling a 240/sup 0/C (464/sup 0/F) in Francisan Graywacke at The Geysers, CA. The materials selected improved roller wear by 200%, friction-pin wear by 150%, and lug wear by 150%. Geysers drilling performances compared directly to conventional bits indicate that in-gage drilling life was increased by 70%. All bits at The Geysers are subjected to reaming out-of-gage hole prior to drilling. Under these conditions the experimental bits showed a 30% increase in usable hole over the conventional bits. These tests demonstrated a potential well cost reduction of 4 to 8%. Savings of 12% are considered possible with drilling procedures optimized for the experimental bits.

  9. High penetration rates and extended bit life through revolutionary hydraulic and mechanical design in PDC drill bit development

    SciTech Connect

    Taylor, M.R.; Murdock, A.D.; Evans, S.M.

    1996-12-31

    PDC drill bit developments have been made to achieve higher penetration rates and longer life, involving a compromise between open, light set, bits for speed and heavy set ones for durability. Developments are described which provided the benefits of both in a revolutionary hydraulic and mechanical design. The hydraulic design causes mud to flow first towards the bit Centre and then outwards. It was extensively flow tested using high speed photography to ensure that bit balling was prevented. It includes features to address bit whirl which were demonstrated in full scale laboratory testing to reduce the bit`s vibration level. The mechanical design maximizes open face volume, known to benefit penetration rate, by using very high blades. However, the heights attainable can be limited by the bit body`s mechanical strength. Steel was chosen to maximize blade strength and was coated with a newly developed hardfacing to improve erosion resistance. A program of fatigue testing assured adequate strength.

  10. High penetration rates and extended bit life through revolutionary hydraulic and mechanical design in PDC drill bit development

    SciTech Connect

    Taylor, M.R.; Murdock, A.D.; Evans, S.M.

    1999-03-01

    PDC drill bit developments have been made to achieve higher penetration rates and longer life, involving a compromise between open, light set, bits for speed, and heavy set ones for durability. Developments are described which provided the benefits of both in a revolutionary hydraulic and mechanical design. The hydraulic design causes mud to flow first towards the bit center and then outwards. It was extensively flow tested using high-speed photography to ensure that bit balling was prevented. It includes features to address bit whirl which were demonstrated in full scale laboratory testing to reduce the bit`s vibration level. The mechanical design maximizes open-face volume, known to benefit penetration rate, by using very high blades. However, the heights attainable can be limited by the bit body`s mechanical strength. Steel was chosen to maximize blade strength and was coated with a newly developed hardfacing to improve erosion resistance. A program of fatigue testing assured adequate strength.

  11. Approaches to Resource Allocation

    ERIC Educational Resources Information Center

    Dressel, Paul; Simon, Lou Anna Kimsey

    1976-01-01

    Various budgeting patterns and strategies are currently in use, each with its own particular strengths and weaknesses. Neither cost-benefit analysis nor cost-effectiveness analysis offers any better solution to the allocation problem than do the unsupported contentions of departments or the historical unit costs. An operable model that performs…

  12. Reversible n-Bit to n-Bit Integer Haar-Like Transforms

    SciTech Connect

    Senecal, J; Duchaineau, M; Joy, K I

    2003-11-03

    We introduce a wavelet-like transform similar to the Haar transform, but with the properties that it packs the results into the same number of bits as the original data, and is reversible. Our method, called TLHaar, uses table lookups to replace the averaging, differencing, and bit shifting performed in a Haar IntegerWavelet Transform (IWT). TLHaar maintains the same coefficient magnitude relationships for the low- and high-pass coefficients as true Haar, but reorders them to fit into the same number of bits as the input signal, thus eliminating the sign bit that is added to the Haar IWT output coefficients. Eliminating the sign bit avoids using extra memory and speeds the transform process. We tested TLHaar on a variety of image types, and when compared to the Haar IWT TLHaar is significantly faster. For image data with lines or hard edges TLHaar coefficients compress better than those of the Haar IWT. Due to its speed TLHaar is suitable for streaming hardware implementations with fixed data sizes, such as DVI channels.

  13. A novel bit-quad-based Euler number computing algorithm.

    PubMed

    Yao, Bin; He, Lifeng; Kang, Shiying; Chao, Yuyan; Zhao, Xiao

    2015-01-01

    The Euler number of a binary image is an important topological property in computer vision and pattern recognition. This paper proposes a novel bit-quad-based Euler number computing algorithm. Based on graph theory and analysis on bit-quad patterns, our algorithm only needs to count two bit-quad patterns. Moreover, by use of the information obtained during processing the previous bit-quad, the average number of pixels to be checked for processing a bit-quad is only 1.75. Experimental results demonstrated that our method outperforms significantly conventional Euler number computing algorithms.

  14. Detachable shoe plates for large diameter drill bits

    SciTech Connect

    Bardwell, A.E.

    1984-08-21

    Shoe members and drill shank members for large diameter cable drilling bits are provided with a tongue on one of the members that projects axially relative to the drill shank member and with an arcuate lip and projecting stop on the other of the members to trap the tongue and prevent radial movement of the shoe member in response to radially directed forces caused by the spinning of the bit in drilling operations. Such forces would impose shear stresses on the fastening members that extend through the shoe member and axially into the drill shank. Four embodiments are disclosed: a spudding bit, two star bits and a scow bit.

  15. Theoretical and subjective bit assignments in transform picture

    NASA Technical Reports Server (NTRS)

    Jones, H. W., Jr.

    1977-01-01

    It is shown that all combinations of symmetrical input distributions with difference distortion measures give a bit assignment rule identical to the well-known rule for a Gaussian input distribution with mean-square error. Published work is examined to show that the bit assignment rule is useful for transforms of full pictures, but subjective bit assignments for transform picture coding using small block sizes are significantly different from the theoretical bit assignment rule. An intuitive explanation is based on subjective design experience, and a subjectively obtained bit assignment rule is given.

  16. Resource Allocation Scheme in MIMO-OFDMA System for User's Different Data Throughput Requirements

    NASA Astrophysics Data System (ADS)

    Sann Maw, Maung; Sasase, Iwao

    In the subcarrier and power allocation schemes in Multi-Input Multi-Output and Orthogonal Frequency Division Multiple Access (MIMO-OFDMA) systems, only equal fairness among users has been considered and no scheme for proportional data rate fairness has been considered. In this paper, a subcarrier, bit and power allocation scheme is proposed to maximize the total throughput under the constraints of total power and proportional data rate fairness among users. In the proposed scheme, joint subchannel allocation and adaptive bit loading is firstly performed by using singular value decomposition (SVD) of channel matrix under the constraint of users' data throughput requirements, and then adaptive power loading is applied. Simulation results show that effective performance of the system has been improved as well as each throughput is proportionally distributed among users in MIMO-OFDMA systems.

  17. New Mechanisms of rock-bit wear in geothermal wells

    SciTech Connect

    Macini, Paolo

    1996-01-24

    This paper presents recent results of an investigation on failure mode and wear of rock-bits used to drill geothermal wells located in the area of Larderello (Italy). A new wear mechanism, conceived from drilling records and dull bit evaluation analysis, has been identified and a particular configuration of rock-bit has been developed and tested in order to reduce drilling costs. The role of high Bottom Hole Temperature (BHT) on rock-bit performances seems not yet very well understood: so far, only drillability and formation abrasiveness are generally considered to account for poor drilling performances. In this paper, the detrimental effects of high BHT on sealing and reservoir system of Friction Bearing Rock-bits (FBR) have been investigated, and a new bearing wear pattern for FBR's run in high BHT holes has been identified and further verified via laboratory inspections on dull bits. A novel interpretation of flat worn cutting structure has been derived from the above wear pattern, suggesting the design of a particular bit configuration. Test bits, designed in the light of the above criteria, have been prepared and field tested successfully. The paper reports the results of these tests, which yielded a new rock-bit application, today considered as a standad practice in Italian geothermal fields. This application suggests that the correct evaluation of rock-bit wear can help to improve the overall drilling performances and to minimize drilling problems through a better interpretation of the relationships amongst rock-bits, formation properties and downhole temperature.

  18. Computer Series, 81. Bits and Pieces, 33.

    ERIC Educational Resources Information Center

    Moore, John W., Ed.

    1987-01-01

    Provides a series of short articles about various uses of computers and courseware in teaching chemistry. Addresses topics such as a programming utility for animation, an organic synthesis program, a program for the allocation of organic qualitative analysis of unknowns, color images of molecules, and enhancing spreadsheet capabilities. (TW)

  19. New EEPROM concept for single bit operation

    NASA Astrophysics Data System (ADS)

    Raguet, J. R.; Laffont, R.; Bouchakour, R.; Bidal, V.; Regnier, A.; Mirabel, J. M.

    2008-10-01

    A new 0.56 μm 2 dual-gate EEPROM transistor is presented in this paper. To optimize the cell layout, a new model based on previous work has been developed. This concept allows single bit memory operations with high density; new cell programming conditions has been defined to optimize electrical behavior. Concept has been validated in an EEPROM standard technology from STMicroelectronics and allows a cell area reduction of above 50%. With appropriate potentials, the cell produces a programming window of 4 V. Moreover, this dual-gate transistor in static mode becomes an adjustable threshold voltage transistor which can be used in logic circuit or RFID applications.

  20. Multiple Leader Candidate and Competitive Position Allocation for Robust Formation against Member Robot Faults

    PubMed Central

    Kwon, Ji-Wook; Kim, Jin Hyo; Seo, Jiwon

    2015-01-01

    This paper proposes a Multiple Leader Candidate (MLC) structure and a Competitive Position Allocation (CPA) algorithm which can be applicable for various applications including environmental sensing. Unlike previous formation structures such as virtual-leader and actual-leader structures with position allocation including a rigid allocation and an optimization based allocation, the formation employing the proposed MLC structure and CPA algorithm is robust against the fault (or disappearance) of the member robots and reduces the entire cost. In the MLC structure, a leader of the entire system is chosen among leader candidate robots. The CPA algorithm is the decentralized position allocation algorithm that assigns the robots to the vertex of the formation via the competition of the adjacent robots. The numerical simulations and experimental results are included to show the feasibility and the performance of the multiple robot system employing the proposed MLC structure and the CPA algorithm. PMID:25954956

  1. Multiple Leader Candidate and Competitive Position Allocation for Robust Formation against Member Robot Faults.

    PubMed

    Kwon, Ji-Wook; Kim, Jin Hyo; Seo, Jiwon

    2015-05-06

    This paper proposes a Multiple Leader Candidate (MLC) structure and a Competitive Position Allocation (CPA) algorithm which can be applicable for various applications including environmental sensing. Unlike previous formation structures such as virtual-leader and actual-leader structures with position allocation including a rigid allocation and an optimization based allocation, the formation employing the proposed MLC structure and CPA algorithm is robust against the fault (or disappearance) of the member robots and reduces the entire cost. In the MLC structure, a leader of the entire system is chosen among leader candidate robots. The CPA algorithm is the decentralized position allocation algorithm that assigns the robots to the vertex of the formation via the competition of the adjacent robots. The numerical simulations and experimental results are included to show the feasibility and the performance of the multiple robot system employing the proposed MLC structure and the CPA algorithm.

  2. Constrained control allocation

    NASA Technical Reports Server (NTRS)

    Durham, Wayne C.

    1992-01-01

    This paper addresses the problem of the allocation of several flight controls to the generation of specified body-axis moments. The number of controls is greater than the number of moments being controlled, and the ranges of the controls are constrained to certain limits. The controls are assumed to be individually linear in their effect throughout their ranges of motion, and independent of one another in their effects. The geometries of the subset of the constrained controls and of its image in moment space are examined. A direct method of allocating these several controls is presented, that guarantees the maximum possible moment is generated within the constraints of the controls. The results are illustrated by an example problem involving three controls and two moments.

  3. Optimization and phenotype allocation.

    PubMed

    Jost, Jürgen; Wang, Ying

    2014-01-01

    We study the phenotype allocation problem for the stochastic evolution of a multitype population in a random environment. Our underlying model is a multitype Galton–Watson branching process in a random environment. In the multitype branching model, different types denote different phenotypes of offspring, and offspring distributions denote the allocation strategies. Two possible optimization targets are considered: the long-term growth rate of the population conditioned on nonextinction, and the extinction probability of the lineage. In a simple and biologically motivated case, we derive an explicit formula for the long-term growth rate using the random Perron–Frobenius theorem, and we give an approximation to the extinction probability by a method similar to that developed by Wilkinson. Then we obtain the optimal strategies that maximize the long-term growth rate or minimize the approximate extinction probability, respectively, in a numerical example. It turns out that different optimality criteria can lead to different strategies.

  4. Myrmics Memory Allocator

    SciTech Connect

    Lymperis, S.

    2011-09-23

    MMA is a stand-alone memory management system for MPI clusters. It implements a shared Partitioned Global Address Space, where multiple MPI processes request objects from the allocator and the latter provides them with system-wide unique memory addresses for each object. It provides applications with an intuitive way of managing the memory system in a unified way, thus enabling easier writing of irregular application code.

  5. Myrmics Memory Allocator

    SciTech Connect

    Lymperis, S.

    2011-09-23

    MMA is a stand-alone memory management system for MPI clusters. It implements a shared Partitioned Global Address Space, where multiple MPI processes request objects from the allocator and the latter provides them with system-wide unique memory addresses for each object. It provides applications with an intuitive way of managing the memory system in a unified way, thus enabling easier writing of irregular application code.

  6. Attention allocation before antisaccades.

    PubMed

    Klapetek, Anna; Jonikaitis, Donatas; Deubel, Heiner

    2016-01-01

    In the present study, we investigated the distribution of attention before antisaccades. We used a dual task paradigm, in which participants made prosaccades or antisaccades and discriminated the orientation of a visual probe shown at the saccade goal, the visual cue location (antisaccade condition), or a neutral location. Moreover, participants indicated whether they had made a correct antisaccade or an erroneous prosaccade. We observed that, while spatial attention in the prosaccade task was allocated only to the saccade goal, attention in the antisaccade task was allocated both to the cued location and to the antisaccade goal. This suggests parallel attentional selection of the cued and antisaccade locations. We further observed that in error trials--in which participants made an incorrect prosaccade instead of an antisaccade--spatial attention was biased towards the prosaccade goal. These erroneous prosaccades were mostly unnoticed and were often followed by corrective antisaccades with very short latencies (<100 ms). Data from error trials therefore provide further evidence for the parallel programming of the reflexive prosaccade to the cue and the antisaccade to the intended location. Taken together, our results suggest that attention allocation and saccade goal selection in the antisaccade task are mediated by a common competitive process.

  7. High fidelity adaptive vector quantization at very low bit rates for progressive transmission of radiographic images

    NASA Astrophysics Data System (ADS)

    Mitra, Sunanda; Yang, Shu Y.

    1999-01-01

    An adaptive vector quantizer (VQ) using a clustering technique known as adaptive fuzzy leader clustering (AFLC) that is similar in concept to deterministic annealing for VQ codebook design has been developed. This vector quantizer, AFLC-VQ, has been designed to vector quantize wavelet decomposed sub images with optimal bit allocation. The high- resolution sub images at each level have been statistically analyzed to conform to generalized Gaussian probability distributions by selecting the optimal number of filter taps. The adaptive characteristics of AFLC-VQ result from AFLC, an algorithm that uses self-organizing neural networks with fuzzy membership values of the input samples for upgrading the cluster centroids based on well known optimization criteria. By generating codebooks containing codewords of varying bits, AFLC-VQ is capable of compressing large color/monochrome medical images at extremely low bit rates (0.1 bpp and less) and yet yielding high fidelity reconstructed images. The quality of the reconstructed images formed by AFLC-VQ has been compared with JPEG and EZW, the standard and the well known wavelet based compression technique (using scalar quantization), respectively, in terms of statistical performance criteria as well as visual perception. AFLC-VQ exhibits much better performance than the above techniques. JPEG and EZW were chosen as comparative benchmarks since these have been used in radiographic image compression. The superior performance of AFLC-VQ over LBG-VQ has been reported in earlier papers.

  8. Object tracking based on bit-planes

    NASA Astrophysics Data System (ADS)

    Li, Na; Zhao, Xiangmo; Liu, Ying; Li, Daxiang; Wu, Shiqian; Zhao, Feng

    2016-01-01

    Visual object tracking is one of the most important components in computer vision. The main challenge for robust tracking is to handle illumination change, appearance modification, occlusion, motion blur, and pose variation. But in surveillance videos, factors such as low resolution, high levels of noise, and uneven illumination further increase the difficulty of tracking. To tackle this problem, an object tracking algorithm based on bit-planes is proposed. First, intensity and local binary pattern features represented by bit-planes are used to build two appearance models, respectively. Second, in the neighborhood of the estimated object location, a region that is most similar to the models is detected as the tracked object in the current frame. In the last step, the appearance models are updated with new tracking results in order to deal with environmental and object changes. Experimental results on several challenging video sequences demonstrate the superior performance of our tracker compared with six state-of-the-art tracking algorithms. Additionally, our tracker is more robust to low resolution, uneven illumination, and noisy video sequences.

  9. BitTorious: global controlled genomics data publication, research and archiving via BitTorrent extensions.

    PubMed

    Lee, Preston V; Dinu, Valentin

    2014-12-21

    Centralized silos of genomic data are architecturally easier to initially design, develop and deploy than distributed models. However, as interoperability pains in EHR/EMR, HIE and other collaboration-centric life sciences domains have taught us, the core challenge of networking genomics systems is not in the construction of individual silos, but the interoperability of those deployments in a manner embracing the heterogeneous needs, terms and infrastructure of collaborating parties. This article demonstrates the adaptation of BitTorrent to private collaboration networks in an authenticated, authorized and encrypted manner while retaining the same characteristics of standard BitTorrent. The BitTorious portal was sucessfully used to manage many concurrent domestic Bittorrent clients across the United States: exchanging genomics data payloads in excess of 500GiB using the uTorrent client software on Linux, OSX and Windows platforms. Individual nodes were sporadically interrupted to verify the resilience of the system to outages of a single client node as well as recovery of nodes resuming operation on intermittent Internet connections. The authorization-based extension of Bittorrent and accompanying BitTorious reference tracker and user management web portal provide a free, standards-based, general purpose and extensible data distribution system for large 'omics collaborations.

  10. Recent developments in polycrystalline diamond-drill-bit design

    SciTech Connect

    Huff, C.F.; Varnado, S.G.

    1980-05-01

    Development of design criteria for polycrystalline diamond compact (PDC) drill bits for use in severe environments (hard or fractured formations, hot and/or deep wells) is continuing. This effort consists of both analytical and experimental analyses. The experimental program includes single point tests of cutters, laboratory tests of full scale bits, and field tests of these designs. The results of laboratory tests at simulated downhole conditions utilizing new and worn bits are presented. Drilling at simulated downhole pressures was conducted in Mancos Shale and Carthage Marble. Comparisons are made between PDC bits and roller cone bits in drilling with borehole pressures up to 5000 psi (34.5 PMa) with oil and water based muds. The PDC bits drilled at rates up to 5 times as fast as roller bits in the shale. In the first field test, drilling rates approximately twice those achieved with conventional bits were achieved with a PDC bit. A second test demonstrated the value of these bits in correcting deviation and reaming.

  11. Progress in the Advanced Synthetic-Diamond Drill Bit Program

    SciTech Connect

    Glowka, D.A.; Dennis, T.; Le, Phi; Cohen, J.; Chow, J.

    1995-11-01

    Cooperative research is currently underway among five drill bit companies and Sandia National Laboratories to improve synthetic-diamond drill bits for hard-rock applications. This work, sponsored by the US Department of Energy and individual bit companies, is aimed at improving performance and bit life in harder rock than has previously been possible to drill effectively with synthetic-diamond drill bits. The goal is to extend to harder rocks the economic advantages seen in using synthetic-diamond drill bits in soft and medium rock formations. Four projects are being conducted under this research program. Each project is investigating a different area of synthetic diamond bit technology that builds on the current technology base and market interests of the individual companies involved. These projects include: optimization of the PDC claw cutter; optimization of the Track-Set PDC bit; advanced TSP bit development; and optimization of impregnated-diamond drill bits. This paper describes the progress made in each of these projects to date.

  12. Synaptic Tagging During Memory Allocation

    PubMed Central

    Rogerson, Thomas; Cai, Denise; Frank, Adam; Sano, Yoshitake; Shobe, Justin; Aranda, Manuel L.; Silva, Alcino J.

    2014-01-01

    There is now compelling evidence that the allocation of memory to specific neurons (neuronal allocation) and synapses (synaptic allocation) in a neurocircuit is not random and that instead specific mechanisms, such as increases in neuronal excitability and synaptic tagging and capture, determine the exact sites where memories are stored. We propose an integrated view of these processes, such that neuronal allocation, synaptic tagging and capture, spine clustering and metaplasticity reflect related aspects of memory allocation mechanisms. Importantly, the properties of these mechanisms suggest a set of rules that profoundly affect how memories are stored and recalled. PMID:24496410

  13. 50 CFR 660.323 - Pacific whiting allocations, allocation attainment, and inseason allocation reapportionment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Pacific whiting allocations, allocation attainment, and inseason allocation reapportionment. 660.323 Section 660.323 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED...

  14. Rearrangement and Grouping of Data Bits for Efficient Lossless Encoding

    NASA Astrophysics Data System (ADS)

    B, Ajitha Shenoy K.; Ajith, Meghana; Mantoor, Vinayak M.

    2017-01-01

    This paper describes the efficacy of rearranging and grouping of data bits. Lossless encoding techniques like Huffman Coding, Arithmetic Coding etc., works well on data which contains redundant information. The idea behind these techniques is to encode more frequently occurring symbols with less number of bits and more seldom occurring symbols with more number of bits. Most of the methods fail if there is a non-redundant data. We propose a method to re arrange and group data bits there by making the data redundant and then different lossless encoding techniques can be applied. In this paper we propose three different methods to rearrange the data bits, and efficient way of grouping them. This is first such attempt. We also justify the need of rearranging and grouping data bits for efficient lossless encoding.

  15. Development and testing of a Mudjet-augmented PDC bit.

    SciTech Connect

    Black, Alan; Chahine, Georges; Raymond, David Wayne; Matthews, Oliver; Grossman, James W.; Bertagnolli, Ken (US Synthetic); Vail, Michael

    2006-01-01

    This report describes a project to develop technology to integrate passively pulsating, cavitating nozzles within Polycrystalline Diamond Compact (PDC) bits for use with conventional rig pressures to improve the rock-cutting process in geothermal formations. The hydraulic horsepower on a conventional drill rig is significantly greater than that delivered to the rock through bit rotation. This project seeks to leverage this hydraulic resource to extend PDC bits to geothermal drilling.

  16. Single Abrikosov vortices as quantized information bits.

    PubMed

    Golod, T; Iovan, A; Krasnov, V M

    2015-10-12

    Superconducting digital devices can be advantageously used in future supercomputers because they can greatly reduce the dissipation power and increase the speed of operation. Non-volatile quantized states are ideal for the realization of classical Boolean logics. A quantized Abrikosov vortex represents the most compact magnetic object in superconductors, which can be utilized for creation of high-density digital cryoelectronics. In this work we provide a proof of concept for Abrikosov-vortex-based random access memory cell, in which a single vortex is used as an information bit. We demonstrate high-endurance write operation and two different ways of read-out using a spin valve or a Josephson junction. These memory cells are characterized by an infinite magnetoresistance between 0 and 1 states, a short access time, a scalability to nm sizes and an extremely low write energy. Non-volatility and perfect reproducibility are inherent for such a device due to the quantized nature of the vortex.

  17. Second quantization in bit-string physics

    NASA Technical Reports Server (NTRS)

    Noyes, H. Pierre

    1993-01-01

    Using a new fundamental theory based on bit-strings, a finite and discrete version of the solutions of the free one particle Dirac equation as segmented trajectories with steps of length h/mc along the forward and backward light cones executed at velocity +/- c are derived. Interpreting the statistical fluctuations which cause the bends in these segmented trajectories as emission and absorption of radiation, these solutions are analogous to a fermion propagator in a second quantized theory. This allows us to interpret the mass parameter in the step length as the physical mass of the free particle. The radiation in interaction with it has the usual harmonic oscillator structure of a second quantized theory. How these free particle masses can be generated gravitationally using the combinatorial hierarchy sequence (3,10,137,2(sup 127) + 136), and some of the predictive consequences are sketched.

  18. Quantum Bit Commitment with a Composite Evidence

    NASA Astrophysics Data System (ADS)

    Srikanth, R.

    2004-01-01

    Entanglement-based attacks, which are subtle and powerful, are usually believed to render quantum bit commitment insecure. We point out that the no-go argument leading to this view implicitly assumes the evidence-of-commitment to be a monolithic quantum system. We argue that more general evidence structures, allowing for a composite, hybrid (classical quantum) evidence, conduce to improved security. In particular, we present and prove the security of the following protocol Bob sends Alice an anonymous state. She inscribes her commitment b by measuring part of it in the + (for b = 0) or × (for b = 1) basis. She then communicates to him the (classical) measurement outcome Rx and the partmeasured anonymous state interpolated into other, randomly prepared qubits as her evidence-of-commitment.

  19. Tunable electromagnetic environment for superconducting quantum bits

    PubMed Central

    Jones, P. J.; Huhtamäki, J. A. M.; Salmilehto, J.; Tan, K. Y.; Möttönen, M.

    2013-01-01

    We introduce a setup which realises a tunable engineered environment for experiments in circuit quantum electrodynamics. We illustrate this concept with the specific example of a quantum bit, qubit, in a high-quality-factor cavity which is capacitively coupled to another cavity including a resistor. The temperature of the resistor, which acts as the dissipative environment, can be controlled in a well defined manner in order to provide a hot or cold environment for the qubit, as desired. Furthermore, introducing superconducting quantum interference devices (SQUIDs) into the cavity containing the resistor, provides control of the coupling strength between this artificial environment and the qubit. We demonstrate that our scheme allows us to couple strongly to the environment enabling rapid initialization of the system, and by subsequent tuning of the magnetic flux of the SQUIDs we may greatly reduce the resistor-qubit coupling, allowing the qubit to evolve unhindered. PMID:23759710

  20. Optimization-based multiple-point geostatistics: A sparse way

    NASA Astrophysics Data System (ADS)

    Kalantari, Sadegh; Abdollahifard, Mohammad Javad

    2016-10-01

    In multiple-point simulation the image should be synthesized consistent with the given training image and hard conditioning data. Existing sequential simulation methods usually lead to error accumulation which is hardly manageable in future steps. Optimization-based methods are capable of handling inconsistencies by iteratively refining the simulation grid. In this paper, the multiple-point stochastic simulation problem is formulated in an optimization-based framework using a sparse model. Sparse model allows each patch to be constructed as a superposition of a few atoms of a dictionary formed using training patterns, leading to a significant increase in the variability of the patches. To control the creativity of the model, a local histogram matching method is proposed. Furthermore, effective solutions are proposed for different issues arisen in multiple-point simulation. In order to handle hard conditioning data a weighted matching pursuit method is developed in this paper. Moreover, a simple and efficient thresholding method is developed which allows working with categorical variables. The experiments show that the proposed method produces acceptable realizations in terms of pattern reproduction, increases the variability of the realizations, and properly handles numerous conditioning data.

  1. PDC (polycrystalline diamond compact) bit research at Sandia National Laboratories

    SciTech Connect

    Finger, J.T.; Glowka, D.A.

    1989-06-01

    From the beginning of the geothermal development program, Sandia has performed and supported research into polycrystalline diamond compact (PDC) bits. These bits are attractive because they are intrinsically efficient in their cutting action (shearing, rather than crushing) and they have no moving parts (eliminating the problems of high-temperature lubricants, bearings, and seals.) This report is a summary description of the analytical and experimental work done by Sandia and our contractors. It describes analysis and laboratory tests of individual cutters and complete bits, as well as full-scale field tests of prototype and commercial bits. The report includes a bibliography of documents giving more detailed information on these topics. 26 refs.

  2. Quantum bit commitment with cheat sensitive binding and approximate sealing

    NASA Astrophysics Data System (ADS)

    Li, Yan-Bing; Xu, Sheng-Wei; Huang, Wei; Wan, Zong-Jie

    2015-04-01

    This paper proposes a cheat-sensitive quantum bit commitment scheme based on single photons, in which Alice commits a bit to Bob. Here, Bob’s probability of success at cheating as obtains the committed bit before the opening phase becomes close to \\frac{1}{2} (just like performing a guess) as the number of single photons used is increased. And if Alice alters her committed bit after the commitment phase, her cheating will be detected with a probability that becomes close to 1 as the number of single photons used is increased. The scheme is easy to realize with present day technology.

  3. The implementation of bit-parallelism for DNA sequence alignment

    NASA Astrophysics Data System (ADS)

    Setyorini; Kuspriyanto; Widyantoro, D. H.; Pancoro, A.

    2017-05-01

    Dynamic Programming (DP) remain the central algorithm of biological sequence alignment. Matching score computation is the most time-consuming process. Bit-parallelism is one of approximate string matching techniques that transform DP matrix cell unit processing into word unit (groups of cell). Bit-parallelism computate the scores column-wise. Adopting from word processing in computer system work, this technique promise reducing time in score computing process in DP matrix. In this paper, we implement bit-parallelism technique for DNA sequence alignment. Our bit-parallelism implementation have less time for score computational process but still need improvement for there construction process.

  4. Improved seal for geothermal drill bit. Final technical report

    SciTech Connect

    Evans, R.F.

    1984-07-06

    Each of the two field test bits showed some promise though their performances were less than commercially acceptable. The Ohio test bit ran just over 3000 feet where about 4000 is considered a good run but it was noted that a Varel bit of the same type having a standard O ring seal was completely worn out after 8-1/2 hours (1750 feet drilled). The Texas test bit had good seal-bearing life but was the wrong cutting structure type for the formation being drilled and the penetration rate was low.

  5. Computationally efficient control allocation

    NASA Technical Reports Server (NTRS)

    Durham, Wayne (Inventor)

    2001-01-01

    A computationally efficient method for calculating near-optimal solutions to the three-objective, linear control allocation problem is disclosed. The control allocation problem is that of distributing the effort of redundant control effectors to achieve some desired set of objectives. The problem is deemed linear if control effectiveness is affine with respect to the individual control effectors. The optimal solution is that which exploits the collective maximum capability of the effectors within their individual physical limits. Computational efficiency is measured by the number of floating-point operations required for solution. The method presented returned optimal solutions in more than 90% of the cases examined; non-optimal solutions returned by the method were typically much less than 1% different from optimal and the errors tended to become smaller than 0.01% as the number of controls was increased. The magnitude of the errors returned by the present method was much smaller than those that resulted from either pseudo inverse or cascaded generalized inverse solutions. The computational complexity of the method presented varied linearly with increasing numbers of controls; the number of required floating point operations increased from 5.5 i, to seven times faster than did the minimum-norm solution (the pseudoinverse), and at about the same rate as did the cascaded generalized inverse solution. The computational requirements of the method presented were much better than that of previously described facet-searching methods which increase in proportion to the square of the number of controls.

  6. BitPredator: A Discovery Algorithm for BitTorrent Initial Seeders and Peers

    SciTech Connect

    Borges, Raymond; Patton, Robert M; Kettani, Houssain; Masalmah, Yahya

    2011-01-01

    There is a large amount of illegal content being replicated through peer-to-peer (P2P) networks where BitTorrent is dominant; therefore, a framework to profile and police it is needed. The goal of this work is to explore the behavior of initial seeds and highly active peers to develop techniques to correctly identify them. We intend to establish a new methodology and software framework for profiling BitTorrent peers. This involves three steps: crawling torrent indexers for keywords in recently added torrents using Really Simple Syndication protocol (RSS), querying torrent trackers for peer list data and verifying Internet Protocol (IP) addresses from peer lists. We verify IPs using active monitoring methods. Peer behavior is evaluated and modeled using bitfield message responses. We also design a tool to profile worldwide file distribution by mapping IP-to-geolocation and linking to WHOIS server information in Google Earth.

  7. High density bit transition requirements versus the effects on BCH error correcting code. [bit synchronization

    NASA Technical Reports Server (NTRS)

    Ingels, F. M.; Schoggen, W. O.

    1982-01-01

    The design to achieve the required bit transition density for the Space Shuttle high rate multiplexes (HRM) data stream of the Space Laboratory Vehicle is reviewed. It contained a recommended circuit approach, specified the pseudo random (PN) sequence to be used and detailed the properties of the sequence. Calculations showing the probability of failing to meet the required transition density were included. A computer simulation of the data stream and PN cover sequence was provided. All worst case situations were simulated and the bit transition density exceeded that required. The Preliminary Design Review and the critical Design Review are documented. The Cover Sequence Generator (CSG) Encoder/Decoder design was constructed and demonstrated. The demonstrations were successful. All HRM and HRDM units incorporate the CSG encoder or CSG decoder as appropriate.

  8. 24-bit color image quantization for 8-bits color display based on Y-Cr-Cb

    NASA Astrophysics Data System (ADS)

    Chang, Long-Wen; Liu, Tsann-Shyong

    1993-10-01

    A new fast algorithm that can display true 24-bits color images of JPEG and MPEG on a 8 bits color display is described. Instead of generating a colormap in the R-G-B color space conventionally, we perform analysis of color images based on the Y-Cr-Cb color space. By using Bayes decision rule, the representative values for Y component are selected based on its histogram. Then, the representative values for Cr and Cb components are determined by their conditional histogram assuming Y. Finally, a fast lookup table that can generate R-G-B outputs for Y-Cr-Cb inputs without matrix transformation is addressed. The experimental results show that good-looking quality color quantization images can be achieved by our proposed algorithm.

  9. Popularity-aware rate allocation in multiview video

    NASA Astrophysics Data System (ADS)

    Fiandrotti, Attilio; Chakareski, Jacob; Frossard, Pascal

    2010-07-01

    We propose a framework for popularity-driven rate allocation in H.264/MVC-based multi-view video communications when the overall rate and the rate necessary for decoding each view are constrained in the delivery architecture. We formulate a rate allocation optimization problem that takes into account the popularity of each view among the client population and the rate-distortion characteristics of the multi-view sequence so that the performance of the system is maximized in terms of popularity-weighted average quality. We consider the cases where the global bit budget or the decoding rate of each view is constrained. We devise a simple ratevideo- quality model that accounts for the characteristics of interview prediction schemes typical of multi-view video. The video quality model is used for solving the rate allocation problem with the help of an interior point optimization method. We then show through experiments that the proposed rate allocation scheme clearly outperforms baseline solutions in terms of popularity-weighted video quality. In particular, we demonstrate that the joint knowledge of the rate-distortion characteristics of the video content, its coding dependencies, and the popularity factor of each view is key in achieving good coding performance in multi-view video systems.

  10. Experimental test of Landauer’s principle in single-bit operations on nanomagnetic memory bits

    PubMed Central

    Hong, Jeongmin; Lambson, Brian; Dhuey, Scott; Bokor, Jeffrey

    2016-01-01

    Minimizing energy dissipation has emerged as the key challenge in continuing to scale the performance of digital computers. The question of whether there exists a fundamental lower limit to the energy required for digital operations is therefore of great interest. A well-known theoretical result put forward by Landauer states that any irreversible single-bit operation on a physical memory element in contact with a heat bath at a temperature T requires at least kBT ln(2) of heat be dissipated from the memory into the environment, where kB is the Boltzmann constant. We report an experimental investigation of the intrinsic energy loss of an adiabatic single-bit reset operation using nanoscale magnetic memory bits, by far the most ubiquitous digital storage technology in use today. Through sensitive, high-precision magnetometry measurements, we observed that the amount of dissipated energy in this process is consistent (within 2 SDs of experimental uncertainty) with the Landauer limit. This result reinforces the connection between “information thermodynamics” and physical systems and also provides a foundation for the development of practical information processing technologies that approach the fundamental limit of energy dissipation. The significance of the result includes insightful direction for future development of information technology. PMID:26998519

  11. Organ allocation in lung transplant.

    PubMed

    Davis, Steven Q; Garrity, Edward R

    2007-11-01

    Since the first successful single-lung transplant in 1983 and double-lung transplant in 1986, thousands of patients have benefited from the procedures. Until 1995, allocation of donor lungs was based purely on time on the waiting list. In 1995, a 90-day credit was given to patients with idiopathic pulmonary fibrosis, while still maintaining allocation based on waiting list time. In 2005, the lung allocation score (LAS) was implemented, dramatically changing the way lungs are allocated. This article will explore the reasons for the creation of the LAS, the design of the score, early experience with transplant results under the new system, and further changes that may be made to the system of lung allocation. As surgical techniques and medical management evolve, so to will the management of potential donors and the allocation of their organs, with the aim of benefiting patients needing lung transplantation in the United States.

  12. An Optimization-based Atomistic-to-Continuum Coupling Method

    DOE PAGES

    Olson, Derek; Bochev, Pavel B.; Luskin, Mitchell; ...

    2014-08-21

    In this paper, we present a new optimization-based method for atomistic-to-continuum (AtC) coupling. The main idea is to cast the latter as a constrained optimization problem with virtual Dirichlet controls on the interfaces between the atomistic and continuum subdomains. The optimization objective is to minimize the error between the atomistic and continuum solutions on the overlap between the two subdomains, while the atomistic and continuum force balance equations provide the constraints. Separation, rather then blending of the atomistic and continuum problems, and their subsequent use as constraints in the optimization problem distinguishes our approach from the existing AtC formulations. Finally,more » we present and analyze the method in the context of a one-dimensional chain of atoms modeled using a linearized two-body potential with next-nearest neighbor interactions.« less

  13. Optimization-based interactive segmentation interface for multiregion problems.

    PubMed

    Baxter, John S H; Rajchl, Martin; Peters, Terry M; Chen, Elvis C S

    2016-04-01

    Interactive segmentation is becoming of increasing interest to the medical imaging community in that it combines the positive aspects of both manual and automated segmentation. However, general-purpose tools have been lacking in terms of segmenting multiple regions simultaneously with a high degree of coupling between groups of labels. Hierarchical max-flow segmentation has taken advantage of this coupling for individual applications, but until recently, these algorithms were constrained to a particular hierarchy and could not be considered general-purpose. In a generalized form, the hierarchy for any given segmentation problem is specified in run-time, allowing different hierarchies to be quickly explored. We present an interactive segmentation interface, which uses generalized hierarchical max-flow for optimization-based multiregion segmentation guided by user-defined seeds. Applications in cardiac and neonatal brain segmentation are given as example applications of its generality.

  14. An Optimization-based Atomistic-to-Continuum Coupling Method

    SciTech Connect

    Olson, Derek; Bochev, Pavel B.; Luskin, Mitchell; Shapeev, Alexander V.

    2014-08-21

    In this paper, we present a new optimization-based method for atomistic-to-continuum (AtC) coupling. The main idea is to cast the latter as a constrained optimization problem with virtual Dirichlet controls on the interfaces between the atomistic and continuum subdomains. The optimization objective is to minimize the error between the atomistic and continuum solutions on the overlap between the two subdomains, while the atomistic and continuum force balance equations provide the constraints. Separation, rather then blending of the atomistic and continuum problems, and their subsequent use as constraints in the optimization problem distinguishes our approach from the existing AtC formulations. Finally, we present and analyze the method in the context of a one-dimensional chain of atoms modeled using a linearized two-body potential with next-nearest neighbor interactions.

  15. An Optimality-Based Fully-Distributed Watershed Ecohydrological Model

    NASA Astrophysics Data System (ADS)

    Chen, L., Jr.

    2015-12-01

    Watershed ecohydrological models are essential tools to assess the impact of climate change and human activities on hydrological and ecological processes for watershed management. Existing models can be classified as empirically based model, quasi-mechanistic and mechanistic models. The empirically based and quasi-mechanistic models usually adopt empirical or quasi-empirical equations, which may be incapable of capturing non-stationary dynamics of target processes. Mechanistic models that are designed to represent process feedbacks may capture vegetation dynamics, but often have more demanding spatial and temporal parameterization requirements to represent vegetation physiological variables. In recent years, optimality based ecohydrological models have been proposed which have the advantage of reducing the need for model calibration by assuming critical aspects of system behavior. However, this work to date has been limited to plot scale that only considers one-dimensional exchange of soil moisture, carbon and nutrients in vegetation parameterization without lateral hydrological transport. Conceptual isolation of individual ecosystem patches from upslope and downslope flow paths compromises the ability to represent and test the relationships between hydrology and vegetation in mountainous and hilly terrain. This work presents an optimality-based watershed ecohydrological model, which incorporates lateral hydrological process influence on hydrological flow-path patterns that emerge from the optimality assumption. The model has been tested in the Walnut Gulch watershed and shows good agreement with observed temporal and spatial patterns of evapotranspiration (ET) and gross primary productivity (GPP). Spatial variability of ET and GPP produced by the model match spatial distribution of TWI, SCA, and slope well over the area. Compared with the one dimensional vegetation optimality model (VOM), we find that the distributed VOM (DisVOM) produces more reasonable spatial

  16. CAMAC based 4-channel 12-bit digitizer

    NASA Astrophysics Data System (ADS)

    Srivastava, Amit K.; Sharma, Atish; Raval, Tushar; Reddy, D. Chenna

    2010-02-01

    With the development in Fusion research a large number of diagnostics are being used to understand the complex behaviour of plasma. During discharge, several diagnostics demand high sampling rate and high bit resolution to acquire data for rapid changes in plasma parameters. For the requirements of such fast diagnostics, a 4-channel simultaneous sampling, high-speed, 12-bit CAMAC digitizer has been designed and developed which has several important features for application in CAMAC based nuclear instrumentation. The module has independent ADC per channel for simultaneous sampling and digitization, and 512 Ksamples RAM per channel for on-board storage. The digitizer has been designed for event based acquisition and the acquisition window gives post-trigger as well as pre-trigger (software selectable) data that is useful for analysis. It is a transient digitizer and can be operated either in pre/post trigger mode or in burst mode. The record mode and the active memory size are selected through software commands to satisfy the current application. The module can be used to acquire data at high sampling rate for short time discharge e.g. 512 ms at 1MSPS. The module can also be used for long time discharge at low sampling rate e.g. 512 seconds at 1KSPS. This paper describes the design of digitizer module, development of VHDL code for hardware logic, Graphical User Interface (GUI) and important features of module from application point of view. The digitizer has CPLD based hardware logic, which provides flexibility in configuring the module for different sampling rates and different pre/post trigger samples through GUI. The digitizer can be operated with either internal (for testing/acquisition) or external (synchronized acquisition) clock and trigger. The digitizer has differential inputs with bipolar input range ±5V and it is being used with sampling rate of 1 MSamples Per Second (MSPS) per channel but it also supports higher sampling rate up to 3MSPS per channel. A

  17. A novel bit-wise adaptable entropy coding technique

    NASA Technical Reports Server (NTRS)

    Kiely, A.; Klimesh, M.

    2001-01-01

    We present a novel entropy coding technique which is adaptable in that each bit to be encoded may have an associated probability esitmate which depends on previously encoded bits. The technique may have advantages over arithmetic coding. The technique can achieve arbitrarily small redundancy and admits a simple and fast decoder.

  18. Approximation of Bit Error Rates in Digital Communications

    DTIC Science & Technology

    2007-06-01

    and Technology Organisation DSTO—TN—0761 ABSTRACT This report investigates the estimation of bit error rates in digital communi- cations, motivated by...recent work in [6]. In the latter, bounds are used to construct estimates for bit error rates in the case of differentially coherent quadrature phase

  19. TriBITS (Tribal Build, Integrate, and Test System)

    SciTech Connect

    2013-05-16

    TriBITS is a configuration, build, test, and reporting system that uses the Kitware open-source CMake/CTest/CDash system. TriBITS contains a number of custom CMake/CTest scripts and python scripts that extend the functionality of the out-of-the-box CMake/CTest/CDash system.

  20. Drill Bit Tip on Mars Rover Curiosity, Side View

    NASA Image and Video Library

    2013-02-04

    The shape of the tip of the bit in the drill of NASA Mars rover Curiosity is apparent in this view recorded by the remote micro-imager in the rover ChemCam instrument on Mars. Jan. 29, 2012; the bit is about 0.6 inch 1.6 centimeters wide.

  1. Bit Error Rate of Coherent M-ary PSK

    NASA Technical Reports Server (NTRS)

    Lee, P. J.

    1985-01-01

    The bit error rate (BER) for the coherent detection of M-ary PSK signals with Gray code bit mapping is considered. A closed-form expression for the exact BER of M-ary PSK is presented. Tight upper and lower bounds on BER are also obtained for M-ary PSK with larger M.

  2. CMOS Bit-Stream Band-Pass Beamforming

    DTIC Science & Technology

    2016-03-31

    CMOS Bit-Stream Band-Pass Beamforming1 Michael P. Flynn and Jaehun Jeong Electrical Engineering and Computer Science University of Michigan Ann...M. P. Flynn , “An IF 8- Element 2-Beam Bit-Stream Band-Pass Beamformer," IEEE Radio Frequency Integrated Circuits Symposium (RFIC), June 2015. 2. M

  3. Bit-Wise Arithmetic Coding For Compression Of Data

    NASA Technical Reports Server (NTRS)

    Kiely, Aaron

    1996-01-01

    Bit-wise arithmetic coding is data-compression scheme intended especially for use with uniformly quantized data from source with Gaussian, Laplacian, or similar probability distribution function. Code words of fixed length, and bits treated as being independent. Scheme serves as means of progressive transmission or of overcoming buffer-overflow or rate constraint limitations sometimes arising when data compression used.

  4. Document Retrieval Using a Serial Bit String Search.

    ERIC Educational Resources Information Center

    Harding, Alan F.; And Others

    1983-01-01

    The experimental best match information retrieval system described is based on serial file organization. Documents and queries are characterized by fixed length bit strings (generated by automatic and manual methods) and character-by-character term match is preceeded by bit string search to eliminate documents which cannot satisfy query.…

  5. 8-, 16-, and 32-Bit Processors: Characteristics and Appropriate Applications.

    ERIC Educational Resources Information Center

    Williams, James G.

    1984-01-01

    Defines and describes the components and functions that constitute a microcomputer--bits, bytes, address register, cycle time, data path, and bus. Characteristics of 8-, 16-, and 32-bit machines are explained in detail, and microprocessor evolution, architecture, and implementation are discussed. Application characteristics or types for each bit…

  6. Report on ignitability testing of ''no-flow'' push bit

    SciTech Connect

    Witwer, K.S.

    1997-04-23

    Testing was done to determine if an ignition occurs during a sixty foot drop of a Universal Sampler onto a push-mode bit in a flammable gas environment. Ten drops each of the sampler using both a push-mode and rotary mode insert onto a push-mode bit were completed. No ignition occurred during any of the drops.

  7. Influence of 8-bit versus 11-bit digital displays on observer performance and visual search: a multi-center evaluation

    NASA Astrophysics Data System (ADS)

    Krupinski, Elizabeth A.; Siddiqui, Khan; Siegel, Eliot; Shrestha, Rasu; Grant, Edward; Roehrig, Hans; Fan, Jiahua

    2007-03-01

    Monochrome monitors typically display 8 bits of data (256 shades of gray) at one time. This study determined if monitors that can display a wider range of grayscale information (11-bit) can improve observer performance and decrease the use of window/level in detecting pulmonary nodules. Three sites participated using 8 and 11-bit displays from three manufacturers. At each site, six radiologists reviewed 100 DR chest images on both displays. There was no significant difference in ROC Az (F = 0.0374, p = 0.8491) as a function of 8 vs 11 bit-depth. Average Az across all observers with 8-bits was 0.8284 and with 11-bits was 0.8253. There was a significant difference in overall viewing time (F = 10.209, p = 0.0014) favoring the 11-bit displays. Window/level use did not differ significantly for the two types of displays. Eye position recording on a subset of images at one site showed that cumulative dwell times for each decision category were lower with the 11-bit than with the 8-bit display. T-tests for paired observations showed that the TP (t = 1.452, p = 0.1507), FN (t = 0.050, p = 0.9609) and FP (t = 0.042, p = 0.9676) were not statistically significant. The difference for the TN decisions was statistically significant (t = 1.926, p = 0.05). 8-bit displays will not impact negatively diagnostic accuracy, but using 11-bit displays may improve workflow efficiency.

  8. Research on allocation efficiency of the daisy chain allocation algorithm

    NASA Astrophysics Data System (ADS)

    Shi, Jingping; Zhang, Weiguo

    2013-03-01

    With the improvement of the aircraft performance in reliability, maneuverability and survivability, the number of the control effectors increases a lot. How to distribute the three-axis moments into the control surfaces reasonably becomes an important problem. Daisy chain method is simple and easy to be carried out in the design of the allocation system. But it can not solve the allocation problem for entire attainable moment subset. For the lateral-directional allocation problem, the allocation efficiency of the daisy chain can be directly measured by the area of its subset of attainable moments. Because of the non-linear allocation characteristic, the subset of attainable moments of daisy-chain method is a complex non-convex polygon, and it is difficult to solve directly. By analyzing the two-dimensional allocation problems with a "micro-element" idea, a numerical calculation algorithm is proposed to compute the area of the non-convex polygon. In order to improve the allocation efficiency of the algorithm, a genetic algorithm with the allocation efficiency chosen as the fitness function is proposed to find the best pseudo-inverse matrix.

  9. Gravitons, inflatons, twisted bits: A noncommutative bestiary

    NASA Astrophysics Data System (ADS)

    Pearson, John

    In this work, we examine ideas connected with the noncommutativity of spacetime and its realizations in string theory. Motivated by Matrix Theory and the AdS-CFT correspondence, we propose a survey of selected noncommutative objects, assessing their implications for inflation, gauge theory duals, and solvable backgrounds. Our initial pair of examples, related to the Myers effect, incorporate elements of so-called "giant graviton" behavior. In the first, the formation of an extended, supersymmetry-restoring domain wall from point-brane sources in a flux background is related to a nonperturbative process of brane-flux annihilation. In the second, we reexamine these phenomena from a cosmological vantage, investigating the prospect of slow-roll inflation in the noncommutative configuration space of multiple d-branes. For our third and final example, we turn to the solvable pp-wave background, outlining a combinatorial, permutation-based approach to string physics which interpolates between gauge theory and worldsheet methods. This "string bit" language will allow us to find exact agreement between Yang-Mills theory in the large R-charge sector and string field theory on the light cone, resolving some previous discrepancies in the literature.

  10. Single Abrikosov vortices as quantized information bits

    PubMed Central

    Golod, T.; Iovan, A.; Krasnov, V. M.

    2015-01-01

    Superconducting digital devices can be advantageously used in future supercomputers because they can greatly reduce the dissipation power and increase the speed of operation. Non-volatile quantized states are ideal for the realization of classical Boolean logics. A quantized Abrikosov vortex represents the most compact magnetic object in superconductors, which can be utilized for creation of high-density digital cryoelectronics. In this work we provide a proof of concept for Abrikosov-vortex-based random access memory cell, in which a single vortex is used as an information bit. We demonstrate high-endurance write operation and two different ways of read-out using a spin valve or a Josephson junction. These memory cells are characterized by an infinite magnetoresistance between 0 and 1 states, a short access time, a scalability to nm sizes and an extremely low write energy. Non-volatility and perfect reproducibility are inherent for such a device due to the quantized nature of the vortex. PMID:26456592

  11. Multiple-Bit Differential Detection of OQPSK

    NASA Technical Reports Server (NTRS)

    Simon, Marvin

    2005-01-01

    A multiple-bit differential-detection method has been proposed for the reception of radio signals modulated with offset quadrature phase-shift keying (offset QPSK or OQPSK). The method is also applicable to other spectrally efficient offset quadrature modulations. This method is based partly on the same principles as those of a multiple-symbol differential-detection method for M-ary QPSK, which includes QPSK (that is, non-offset QPSK) as a special case. That method was introduced more than a decade ago by the author of the present method as a means of improving performance relative to a traditional (two-symbol observation) differential-detection scheme. Instead of symbol-by-symbol detection, both that method and the present one are based on a concept of maximum-likelihood sequence estimation (MLSE). As applied to the modulations in question, MLSE involves consideration of (1) all possible binary data sequences that could have been received during an observation time of some number, N, of symbol periods and (2) selection of the sequence that yields the best match to the noise-corrupted signal received during that time. The performance of the prior method was shown to range from that of traditional differential detection for short observation times (small N) to that of ideal coherent detection (with differential encoding) for long observation times (large N).

  12. Continuous chain bit with downhole cycling capability

    DOEpatents

    Ritter, Don F.; St. Clair, Jack A.; Togami, Henry K.

    1983-01-01

    A continuous chain bit for hard rock drilling is capable of downhole cycling. A drill head assembly moves axially relative to a support body while the chain on the head assembly is held in position so that the bodily movement of the chain cycles the chain to present new composite links for drilling. A pair of spring fingers on opposite sides of the chain hold the chain against movement. The chain is held in tension by a spring-biased tensioning bar. A head at the working end of the chain supports the working links. The chain is centered by a reversing pawl and piston actuated by the pressure of the drilling mud. Detent pins lock the head assembly with respect to the support body and are also operated by the drilling mud pressure. A restricted nozzle with a divergent outlet sprays drilling mud into the cavity to remove debris. Indication of the centered position of the chain is provided by noting a low pressure reading indicating proper alignment of drilling mud slots on the links with the corresponding feed branches.

  13. Percolation of a bit-string model

    NASA Astrophysics Data System (ADS)

    Taneri, S.

    2005-10-01

    We investigate the effect of mutations on adaptability in a bit-string model of invading species in a random environment. The truncation-like fitness function depends on the Hamming distance between the optimal (wild)-type at each site and the invading species for a square lattice. We allow invasion if the relative fitness is above or equal to an adjustable threshold. We have also allowed for the decay and extinction of a species at a site that it has already invaded. We find that the invading species always percolates through regions of arbitrary size, for all threshold values, with a time parameter which depends on the threshold and the size in the absence of decay. If decay is introduced then there is a critical value of the threshold variable beyond which the invading species is confined. Radius of gyration and average population of a colony of mutants have a power-law dependence with time and relevant fractal dimensions are calculated for percolation.

  14. Computation of the bit error rate of coherent M-ary PSK with Gray code bit mapping

    NASA Technical Reports Server (NTRS)

    Lee, P. J.

    1986-01-01

    Efficient computation of the bit error rate (BER) for the coherent M-ary PSK signals with Gray code bit mapping is considered. A closed-form expression for the exact BER of 8-ary PSK is presented. Tight upper and lower bounds on BER are also obtained for M-ary PSK with larger M.

  15. Carbon allocation in forest ecosystems

    Treesearch

    Creighton M. Litton; James W. Raich; Michael G. Ryan

    2007-01-01

    Carbon allocation plays a critical role in forest ecosystem carbon cycling. We reviewed existing literature and compiled annual carbon budgets for forest ecosystems to test a series of hypotheses addressing the patterns, plasticity, and limits of three components of allocation: biomass, the amount of material present; flux, the flow of carbon to a component per unit...

  16. Modeling and analysis of stick-slip and bit bounce in oil well drillstrings equipped with drag bits

    NASA Astrophysics Data System (ADS)

    Kamel, Jasem M.; Yigit, Ahmet S.

    2014-12-01

    Rotary drilling systems equipped with drag bits or fixed cutter bits (also called PDC), used for drilling deep boreholes for the production and the exploration of oil and natural gas, often suffer from severe vibrations. These vibrations are detrimental to the bit and the drillstring causing different failures of equipment (e.g., twist-off, abrasive wear of tubulars, bit damage), and inefficiencies in the drilling operation (reduction of the rate of penetration (ROP)). Despite extensive research conducted in the last several decades, there is still a need to develop a consistent model that adequately captures all phenomena related to drillstring vibrations such as nonlinear cutting and friction forces at the bit/rock formation interface, drive system characteristics and coupling between various motions. In this work, a physically consistent nonlinear model for the axial and torsional motions of a rotating drillstring equipped with a drag bit is proposed. A more realistic cutting and contact model is used to represent bit/rock formation interaction at the bit. The dynamics of both drive systems for rotary and translational motions of the drillstring, including the hoisting system are also considered. In this model, the rotational and translational motions of the bit are obtained as a result of the overall dynamic behavior rather than prescribed functions or constants. The dynamic behavior predicted by the proposed model qualitatively agree well with field observations and published theoretical results. The effects of various operational parameters on the dynamic behavior are investigated with the objective of achieving a smooth and efficient drilling. The results show that with proper choice of operational parameters, it may be possible to minimize the effects of stick-slip and bit-bounce and increase the ROP. Therefore, it is expected that the results will help reduce the time spent in drilling process and costs incurred due to severe vibrations and consequent

  17. Calculation of the number of bits required for the estimation of the bit error ratio

    NASA Astrophysics Data System (ADS)

    Almeida, Álvaro J.; Silva, Nuno A.; Muga, Nelson J.; André, Paulo S.; Pinto, Armando N.

    2014-08-01

    We present a calculation of the required number of bits to be received in a system of communications in order to achieve a given level of confidence. The calculation assumes a binomial distribution function for the errors. The function is numerically evaluated and the results are compared with the ones obtained from Poissonian and Gaussian approximations. The performance in terms of the signal-to-noise ratio is also studied. We conclude that for higher number of errors in detection the use of approximations allows faster and more efficient calculations, without loss of accuracy.

  18. Resource Balancing Control Allocation

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Bodson, Marc

    2010-01-01

    Next generation aircraft with a large number of actuators will require advanced control allocation methods to compute the actuator commands needed to follow desired trajectories while respecting system constraints. Previously, algorithms were proposed to minimize the l1 or l2 norms of the tracking error and of the control effort. The paper discusses the alternative choice of using the l1 norm for minimization of the tracking error and a normalized l(infinity) norm, or sup norm, for minimization of the control effort. The algorithm computes the norm of the actuator deflections scaled by the actuator limits. Minimization of the control effort then translates into the minimization of the maximum actuator deflection as a percentage of its range of motion. The paper shows how the problem can be solved effectively by converting it into a linear program and solving it using a simplex algorithm. Properties of the algorithm are investigated through examples. In particular, the min-max criterion results in a type of resource balancing, where the resources are the control surfaces and the algorithm balances these resources to achieve the desired command. A study of the sensitivity of the algorithms to the data is presented, which shows that the normalized l(infinity) algorithm has the lowest sensitivity, although high sensitivities are observed whenever the limits of performance are reached.

  19. Theoretical Accuracy for ESTL Bit Error Rate Tests

    NASA Technical Reports Server (NTRS)

    Lansdowne, Chatwin

    1998-01-01

    "Bit error rate" [BER] for the purposes of this paper is the fraction of binary bits which are inverted by passage through a communication system. BER can be measured for a block of sample bits by comparing a received block with the transmitted block and counting the erroneous bits. Bit Error Rate [BER] tests are the most common type of test used by the ESTL for evaluating system-level performance. The resolution of the test is obvious: the measurement cannot be resolved more finely than 1/N, the number of bits tested. The tolerance is not. This paper examines the measurement accuracy of the bit error rate test. It is intended that this information will be useful in analyzing data taken in the ESTL. This paper is divided into four sections and follows a logically ordered presentation, with results developed before they are evaluated. However, first-time readers will derive the greatest benefit from this paper by skipping the lengthy section devoted to analysis, and treating it as reference material. The analysis performed in this paper is based on a Probability Density Function [PDF] which is developed with greater detail in a past paper, Theoretical Accuracy for ESTL Probability of Acquisition Tests, EV4-98-609.

  20. Resolution and bit depth: how much is enough?

    NASA Astrophysics Data System (ADS)

    Klassen, R. Victor; Janamanchi, Kalpana

    2000-06-01

    We describe results of experiments studying the tradeoff between resolution and bit depth. Images in the experiments were printed on a high resolution imagesetter, eliminating most, if not all, device effects. They were first converted from PostScript to antialiased rasters at one of a set of resolutions, then converted from 8 bit to n bits for some value of n less than 8. Before printing, they were converted back to 8 bits and scaled up to printer resolution, then halftoned for printing. We were measuring human response to a system that had a bandwidth bottleneck somewhere upstream of the printer, and sophisticated resampling and halftoning at the printer itself. The images, typical of those used for critical evaluation of hard copy, contained text, analytical test targets, synthetic graphics and pictorial images. We found bit depths and resolutions beyond which no further improvement was observed, typically somewhat higher limits than previously believed. We also compared methods of font hinting for antialiased text, and found that font hinting improves text only at one bit per pixel, degrading it at higher bit depths.

  1. Plunging when drilling: effect of using blunt drill bits.

    PubMed

    Alajmo, Giuseppe; Schlegel, Urs; Gueorguiev, Boyko; Matthys, Romano; Gautier, Emanuel

    2012-08-01

    Plunging when drilling can be a detrimental factor in patient care. There is, although, a general lack of information regarding the surgeon's performance in this skill. The aim of this study was to determine the effect that using sharp or blunt instruments had on the drill bit's soft tissue penetration, using a simulator. Surgeons taking part in an International Trauma Course were invited to participate. Two groups were defined: experienced and inexperienced surgeons. Twelve holes were drilled in the following order: 3 holes with a sharp drill bit in normal bone (SNB), 3 holes with a sharp drill bit in osteoporotic bone (SOB), 3 holes with a blunt drill bit in normal bone, and 3 holes with a blunt drill bit in osteoporotic bone. Mean values and Student t tests were used for statistical analysis. Thirty-seven surgeons participated, 20 experienced and 17 inexperienced surgeons. Mean plunging depths for SNB, SOB, blunt drill bit in normal bone, and blunt drill bit in osteoporotic bone were, respectively, 5.1, 5.4, 21.1, and 13.9 mm for experienced surgeons and 7.6, 7.7, 22, and 15.9 mm for inexperienced surgeons. Drilling with SNB and with SOB was statistically different, with inexperienced surgeons plunging 2.5 mm (P = 0.31) and 2.6 mm (P = 0.042) deeper, respectively. There was a difference (P < 0.001) between sharp and blunt drill bits in all drilling conditions for both the groups. Our study showed a significant difference in plunging depth when sharp or bunt drill bit was being used. Surgeons, regardless of their experience level, penetrate over 20 mm in normal bone and over 10 mm in osteoporotic bone.

  2. Power-efficient distributed resource allocation under goodput QoS constraints for heterogeneous networks

    NASA Astrophysics Data System (ADS)

    Andreotti, Riccardo; Del Fiorentino, Paolo; Giannetti, Filippo; Lottici, Vincenzo

    2016-12-01

    This work proposes a distributed resource allocation (RA) algorithm for packet bit-interleaved coded OFDM transmissions in the uplink of heterogeneous networks (HetNets), characterized by small cells deployed over a macrocell area and sharing the same band. Every user allocates its transmission resources, i.e., bits per active subcarrier, coding rate, and power per subcarrier, to minimize the power consumption while both guaranteeing a target quality of service (QoS) and accounting for the interference inflicted by other users transmitting over the same band. The QoS consists of the number of information bits delivered in error-free packets per unit of time, or goodput (GP), estimated at the transmitter by resorting to an efficient effective SNR mapping technique. First, the RA problem is solved in the point-to-point case, thus deriving an approximate yet accurate closed-form expression for the power allocation (PA). Then, the interference-limited HetNet case is examined, where the RA problem is described as a non-cooperative game, providing a solution in terms of generalized Nash equilibrium. Thanks to the closed-form of the PA, the solution analysis is based on the best response concept. Hence, sufficient conditions for existence and uniqueness of the solution are analytically derived, along with a distributed algorithm capable of reaching the game equilibrium.

  3. Unconditionally secure bit commitment by transmitting measurement outcomes.

    PubMed

    Kent, Adrian

    2012-09-28

    We propose a new unconditionally secure bit commitment scheme based on Minkowski causality and the properties of quantum information. The receiving party sends a number of randomly chosen Bennett-Brassard 1984 (BB84) qubits to the committer at a given point in space-time. The committer carries out measurements in one of the two BB84 bases, depending on the committed bit value, and transmits the outcomes securely at (or near) light speed in opposite directions to remote agents. These agents unveil the bit by returning the outcomes to adjacent agents of the receiver. The protocol's security relies only on simple properties of quantum information and the impossibility of superluminal signalling.

  4. Fitness Probability Distribution of Bit-Flip Mutation.

    PubMed

    Chicano, Francisco; Sutton, Andrew M; Whitley, L Darrell; Alba, Enrique

    2015-01-01

    Bit-flip mutation is a common mutation operator for evolutionary algorithms applied to optimize functions over binary strings. In this paper, we develop results from the theory of landscapes and Krawtchouk polynomials to exactly compute the probability distribution of fitness values of a binary string undergoing uniform bit-flip mutation. We prove that this probability distribution can be expressed as a polynomial in p, the probability of flipping each bit. We analyze these polynomials and provide closed-form expressions for an easy linear problem (Onemax), and an NP-hard problem, MAX-SAT. We also discuss a connection of the results with runtime analysis.

  5. Using Bit Errors To Diagnose Fiber-Optic Links

    NASA Technical Reports Server (NTRS)

    Bergman, L. A.; Hartmayer, R.; Marelid, S.

    1989-01-01

    Technique for diagnosis of fiber-optic digital communication link in local-area network of computers based on measurement of bit-error rates. Variable optical attenuator inserted in optical fiber to vary power of received signal. Bit-error rate depends on ratio of peak signal power to root-mean-square noise in receiver. For optimum measurements, one selects bit-error rate between 10 to negative 8th power and 10 to negative 4th power. Greater rates result in low accuracy in determination of signal-to-noise ratios, while lesser rates require impractically long measurement times.

  6. Using Bit Errors To Diagnose Fiber-Optic Links

    NASA Technical Reports Server (NTRS)

    Bergman, L. A.; Hartmayer, R.; Marelid, S.

    1989-01-01

    Technique for diagnosis of fiber-optic digital communication link in local-area network of computers based on measurement of bit-error rates. Variable optical attenuator inserted in optical fiber to vary power of received signal. Bit-error rate depends on ratio of peak signal power to root-mean-square noise in receiver. For optimum measurements, one selects bit-error rate between 10 to negative 8th power and 10 to negative 4th power. Greater rates result in low accuracy in determination of signal-to-noise ratios, while lesser rates require impractically long measurement times.

  7. Channel Estimation and Performance Analysis of One-Bit Massive MIMO Systems

    NASA Astrophysics Data System (ADS)

    Li, Yongzhi; Tao, Cheng; Seco-Granados, Gonzalo; Mezghani, Amine; Swindlehurst, A. Lee; Liu, Liu

    2017-08-01

    This paper considers channel estimation and system performance for the uplink of a single-cell massive multiple-input multiple-output (MIMO) system. Each receive antenna of the base station (BS) is assumed to be equipped with a pair of one-bit analog-to-digital converters (ADCs) to quantize the real and imaginary part of the received signal. We first propose an approach for channel estimation that is applicable for both flat and frequency-selective fading, based on the Bussgang decomposition that reformulates the nonlinear quantizer as a linear functionwith identical first- and second-order statistics. The resulting channel estimator outperforms previously proposed approaches across all SNRs. We then derive closed-form expressions for the achievable rate in flat fading channels assuming low SNR and a large number of users for the maximal ratio and zero forcing receivers that takes channel estimation error due to both noise and one-bit quantization into account. The closed-form expressions in turn allow us to obtain insight into important system design issues such as optimal resource allocation, maximal sum spectral efficiency, overall energy efficiency, and number of antennas. Numerical results are presented to verify our analytical results and demonstrate the benefit of optimizing system performance accordingly.

  8. Particle swarm optimization based space debris surveillance network scheduling

    NASA Astrophysics Data System (ADS)

    Jiang, Hai; Liu, Jing; Cheng, Hao-Wen; Zhang, Yao

    2017-02-01

    The increasing number of space debris has created an orbital debris environment that poses increasing impact risks to existing space systems and human space flights. For the safety of in-orbit spacecrafts, we should optimally schedule surveillance tasks for the existing facilities to allocate resources in a manner that most significantly improves the ability to predict and detect events involving affected spacecrafts. This paper analyzes two criteria that mainly affect the performance of a scheduling scheme and introduces an artificial intelligence algorithm into the scheduling of tasks of the space debris surveillance network. A new scheduling algorithm based on the particle swarm optimization algorithm is proposed, which can be implemented in two different ways: individual optimization and joint optimization. Numerical experiments with multiple facilities and objects are conducted based on the proposed algorithm, and simulation results have demonstrated the effectiveness of the proposed algorithm.

  9. Collaborative Resource Allocation

    NASA Technical Reports Server (NTRS)

    Wang, Yeou-Fang; Wax, Allan; Lam, Raymond; Baldwin, John; Borden, Chester

    2007-01-01

    Collaborative Resource Allocation Networking Environment (CRANE) Version 0.5 is a prototype created to prove the newest concept of using a distributed environment to schedule Deep Space Network (DSN) antenna times in a collaborative fashion. This program is for all space-flight and terrestrial science project users and DSN schedulers to perform scheduling activities and conflict resolution, both synchronously and asynchronously. Project schedulers can, for the first time, participate directly in scheduling their tracking times into the official DSN schedule, and negotiate directly with other projects in an integrated scheduling system. A master schedule covers long-range, mid-range, near-real-time, and real-time scheduling time frames all in one, rather than the current method of separate functions that are supported by different processes and tools. CRANE also provides private workspaces (both dynamic and static), data sharing, scenario management, user control, rapid messaging (based on Java Message Service), data/time synchronization, workflow management, notification (including emails), conflict checking, and a linkage to a schedule generation engine. The data structure with corresponding database design combines object trees with multiple associated mortal instances and relational database to provide unprecedented traceability and simplify the existing DSN XML schedule representation. These technologies are used to provide traceability, schedule negotiation, conflict resolution, and load forecasting from real-time operations to long-range loading analysis up to 20 years in the future. CRANE includes a database, a stored procedure layer, an agent-based middle tier, a Web service wrapper, a Windows Integrated Analysis Environment (IAE), a Java application, and a Web page interface.

  10. Zinc allocation and re-allocation in rice

    PubMed Central

    Stomph, Tjeerd Jan; Jiang, Wen; Van Der Putten, Peter E. L.; Struik, Paul C.

    2014-01-01

    Aims: Agronomy and breeding actively search for options to enhance cereal grain Zn density. Quantifying internal (re-)allocation of Zn as affected by soil and crop management or genotype is crucial. We present experiments supporting the development of a conceptual model of whole plant Zn allocation and re-allocation in rice. Methods: Two solution culture experiments using 70Zn applications at different times during crop development and an experiment on within-grain distribution of Zn are reported. In addition, results from two earlier published experiments are re-analyzed and re-interpreted. Results: A budget analysis showed that plant zinc accumulation during grain filling was larger than zinc allocation to the grains. Isotope data showed that zinc taken up during grain filling was only partly transported directly to the grains and partly allocated to the leaves. Zinc taken up during grain filling and allocated to the leaves replaced zinc re-allocated from leaves to grains. Within the grains, no major transport barrier was observed between vascular tissue and endosperm. At low tissue Zn concentrations, rice plants maintained concentrations of about 20 mg Zn kg−1 dry matter in leaf blades and reproductive tissues, but let Zn concentrations in stems, sheath, and roots drop below this level. When plant zinc concentrations increased, Zn levels in leaf blades and reproductive tissues only showed a moderate increase while Zn levels in stems, roots, and sheaths increased much more and in that order. Conclusions: In rice, the major barrier to enhanced zinc allocation towards grains is between stem and reproductive tissues. Enhancing root to shoot transfer will not contribute proportionally to grain zinc enhancement. PMID:24478788

  11. Resource allocation using risk analysis

    SciTech Connect

    Bott, T. F.; Eisenhawer, S. W.

    2003-01-01

    Allocating limited resources among competing priorities is an important problem in management. In this paper we describe an approach to resource allocation using risk as a metric. We call this approach the Logic-Evolved Decision (LED) approach because we use logic-models to generate an exhaustive set of competing options and to describe the often highly complex model used for evaluating the risk reduction achieved by different resource allocations among these options. The risk evaluation then proceeds using probabilistic or linguistic input data.

  12. Secure self-calibrating quantum random-bit generator

    SciTech Connect

    Fiorentino, M.; Santori, C.; Spillane, S. M.; Beausoleil, R. G.; Munro, W. J.

    2007-03-15

    Random-bit generators (RBGs) are key components of a variety of information processing applications ranging from simulations to cryptography. In particular, cryptographic systems require 'strong' RBGs that produce high-entropy bit sequences, but traditional software pseudo-RBGs have very low entropy content and therefore are relatively weak for cryptography. Hardware RBGs yield entropy from chaotic or quantum physical systems and therefore are expected to exhibit high entropy, but in current implementations their exact entropy content is unknown. Here we report a quantum random-bit generator (QRBG) that harvests entropy by measuring single-photon and entangled two-photon polarization states. We introduce and implement a quantum tomographic method to measure a lower bound on the 'min-entropy' of the system, and we employ this value to distill a truly random-bit sequence. This approach is secure: even if an attacker takes control of the source of optical states, a secure random sequence can be distilled.

  13. Adaptive bit truncation and compensation method for EZW image coding

    NASA Astrophysics Data System (ADS)

    Dai, Sheng-Kui; Zhu, Guangxi; Wang, Yao

    2003-09-01

    The embedded zero-tree wavelet algorithm (EZW) is widely adopted to compress wavelet coefficients of images with the property that the bits stream can be truncated and produced anywhere. The lower bit plane of the wavelet coefficents is verified to be less important than the higher bit plane. Therefore it can be truncated and not encoded. Based on experiments, a generalized function, which can provide a glancing guide for EZW encoder to intelligently decide the number of low bit plane to be truncated, is deduced in this paper. In the EZW decoder, a simple method is presented to compensate for the truncated wavelet coefficients, and finally it can surprisingly enhance the quality of reconstructed image and spend scarcely any additional cost at the same time.

  14. World Oil`s 1995 drill bit classifier

    SciTech Connect

    1995-09-01

    World Oil offers this comprehensive listing of major manufacturer`s drilling bits to aid drilling supervisors and engineers in field selection. While this listing has been published annually for several years, changes have been made in this year`s tables to reflect modern industry nomenclature. The tables are divided into six formation categories. Within these are listed most available drilling/coring bits by type and manufacturers. To use the listings, identify the formation to be drilled, decide which bit type is appropriate, i.e., roller, fixed cutter, steel tooth, insert, diamond, etc., and choose the manufacturer. Companies were asked to list bit data by: (1) new IADC code, (2) readily available sizes (special sizes are often available on request), (3) recommended WOB in lb/in. diameter, and (4) codes for special features and usage, a combination of new IADC and World Oil special codes, see Nomenclature.

  15. 26. photographer unknown 29 December 1937 FLOATING MOORING BIT INSTALLED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. photographer unknown 29 December 1937 FLOATING MOORING BIT INSTALLED IN LOCK SIDEWALL. - Bonneville Project, Navigation Lock No. 1, Oregon shore of Columbia River near first Powerhouse, Bonneville, Multnomah County, OR

  16. Experimental bit commitment based on quantum communication and special relativity.

    PubMed

    Lunghi, T; Kaniewski, J; Bussières, F; Houlmann, R; Tomamichel, M; Kent, A; Gisin, N; Wehner, S; Zbinden, H

    2013-11-01

    Bit commitment is a fundamental cryptographic primitive in which Bob wishes to commit a secret bit to Alice. Perfectly secure bit commitment between two mistrustful parties is impossible through asynchronous exchange of quantum information. Perfect security is however possible when Alice and Bob split into several agents exchanging classical and quantum information at times and locations suitably chosen to satisfy specific relativistic constraints. Here we report on an implementation of a bit commitment protocol using quantum communication and special relativity. Our protocol is based on [A. Kent, Phys. Rev. Lett. 109, 130501 (2012)] and has the advantage that it is practically feasible with arbitrary large separations between the agents in order to maximize the commitment time. By positioning agents in Geneva and Singapore, we obtain a commitment time of 15 ms. A security analysis considering experimental imperfections and finite statistics is presented.

  17. Test plan for: TSAP bit qualification: Temperature criteria

    SciTech Connect

    Ralston, G.L.

    1995-10-23

    This is the Test Plan for acquiring TSAP bit temperature performance data. Hanford Site waste tanks are currently being sampled by several methods. One of these, Rotary Mode Core Sampling (RMCS), uses a cutting bit/sample tube arrangement to obtain core samples of tank contents. Recent efforts to improve sample recovery have resulted in a new bit/sample tube design. Prior to field use, bit performance in two key areas needs to be tested. These areas are: penetration into steel plate, and a temperature rise as a function of downforce, rpm, and time. A performance test in the above two areas was conducted in August, 1995. Based on a review of that test activity, selected follow-on testing is planned to confirm data obtained in the temperature area. The results of both test activities will then be released as a single test report.

  18. Basin structure of optimization based state and parameter estimation.

    PubMed

    Schumann-Bischoff, Jan; Parlitz, Ulrich; Abarbanel, Henry D I; Kostuk, Mark; Rey, Daniel; Eldridge, Michael; Luther, Stefan

    2015-05-01

    Most data based state and parameter estimation methods require suitable initial values or guesses to achieve convergence to the desired solution, which typically is a global minimum of some cost function. Unfortunately, however, other stable solutions (e.g., local minima) may exist and provide suboptimal or even wrong estimates. Here, we demonstrate for a 9-dimensional Lorenz-96 model how to characterize the basin size of the global minimum when applying some particular optimization based estimation algorithm. We compare three different strategies for generating suitable initial guesses, and we investigate the dependence of the solution on the given trajectory segment (underlying the measured time series). To address the question of how many state variables have to be measured for optimal performance, different types of multivariate time series are considered consisting of 1, 2, or 3 variables. Based on these time series, the local observability of state variables and parameters of the Lorenz-96 model is investigated and confirmed using delay coordinates. This result is in good agreement with the observation that correct state and parameter estimation results are obtained if the optimization algorithm is initialized with initial guesses close to the true solution. In contrast, initialization with other exact solutions of the model equations (different from the true solution used to generate the time series) typically fails, i.e., the optimization procedure ends up in local minima different from the true solution. Initialization using random values in a box around the attractor exhibits success rates depending on the number of observables and the available time series (trajectory segment).

  19. Basin structure of optimization based state and parameter estimation

    NASA Astrophysics Data System (ADS)

    Schumann-Bischoff, Jan; Parlitz, Ulrich; Abarbanel, Henry D. I.; Kostuk, Mark; Rey, Daniel; Eldridge, Michael; Luther, Stefan

    2015-05-01

    Most data based state and parameter estimation methods require suitable initial values or guesses to achieve convergence to the desired solution, which typically is a global minimum of some cost function. Unfortunately, however, other stable solutions (e.g., local minima) may exist and provide suboptimal or even wrong estimates. Here, we demonstrate for a 9-dimensional Lorenz-96 model how to characterize the basin size of the global minimum when applying some particular optimization based estimation algorithm. We compare three different strategies for generating suitable initial guesses, and we investigate the dependence of the solution on the given trajectory segment (underlying the measured time series). To address the question of how many state variables have to be measured for optimal performance, different types of multivariate time series are considered consisting of 1, 2, or 3 variables. Based on these time series, the local observability of state variables and parameters of the Lorenz-96 model is investigated and confirmed using delay coordinates. This result is in good agreement with the observation that correct state and parameter estimation results are obtained if the optimization algorithm is initialized with initial guesses close to the true solution. In contrast, initialization with other exact solutions of the model equations (different from the true solution used to generate the time series) typically fails, i.e., the optimization procedure ends up in local minima different from the true solution. Initialization using random values in a box around the attractor exhibits success rates depending on the number of observables and the available time series (trajectory segment).

  20. Optimization Based Tumor Classification from Microarray Gene Expression Data

    PubMed Central

    Dagliyan, Onur; Uney-Yuksektepe, Fadime; Kavakli, I. Halil; Turkay, Metin

    2011-01-01

    Background An important use of data obtained from microarray measurements is the classification of tumor types with respect to genes that are either up or down regulated in specific cancer types. A number of algorithms have been proposed to obtain such classifications. These algorithms usually require parameter optimization to obtain accurate results depending on the type of data. Additionally, it is highly critical to find an optimal set of markers among those up or down regulated genes that can be clinically utilized to build assays for the diagnosis or to follow progression of specific cancer types. In this paper, we employ a mixed integer programming based classification algorithm named hyper-box enclosure method (HBE) for the classification of some cancer types with a minimal set of predictor genes. This optimization based method which is a user friendly and efficient classifier may allow the clinicians to diagnose and follow progression of certain cancer types. Methodology/Principal Findings We apply HBE algorithm to some well known data sets such as leukemia, prostate cancer, diffuse large B-cell lymphoma (DLBCL), small round blue cell tumors (SRBCT) to find some predictor genes that can be utilized for diagnosis and prognosis in a robust manner with a high accuracy. Our approach does not require any modification or parameter optimization for each data set. Additionally, information gain attribute evaluator, relief attribute evaluator and correlation-based feature selection methods are employed for the gene selection. The results are compared with those from other studies and biological roles of selected genes in corresponding cancer type are described. Conclusions/Significance The performance of our algorithm overall was better than the other algorithms reported in the literature and classifiers found in WEKA data-mining package. Since it does not require a parameter optimization and it performs consistently very high prediction rate on different type of

  1. Advanced DFM application for automated bit-line pattern dummy

    NASA Astrophysics Data System (ADS)

    Shin, Tae Hyun; Kim, Cheolkyun; Yang, Hyunjo; Bahr, Mohamed

    2016-03-01

    This paper presents an automated DFM solution to generate Bit Line Pattern Dummy (BLPD) for memory devices. Dummy shapes are aligned with memory functional bits to ensure uniform and reliable memory device. This paper will present a smarter approach that uses an analysis based technique for adding the dummy shapes that have different types according to the space available. Experimental results based on layout of Mobile dynamic random access memory (DRAM).

  2. Analog Correlator Based on One Bit Digital Correlator

    NASA Technical Reports Server (NTRS)

    Prokop, Norman (Inventor); Krasowski, Michael (Inventor)

    2017-01-01

    A two input time domain correlator may perform analog correlation. In order to achieve high throughput rates with reduced or minimal computational overhead, the input data streams may be hard limited through adaptive thresholding to yield two binary bit streams. Correlation may be achieved through the use of a Hamming distance calculation, where the distance between the two bit streams approximates the time delay that separates them. The resulting Hamming distance approximates the correlation time delay with high accuracy.

  3. 8-Bit Gray Scale Images of Fingerprint Image Groups

    National Institute of Standards and Technology Data Gateway

    NIST 8-Bit Gray Scale Images of Fingerprint Image Groups (Web, free access)   The NIST database of fingerprint images contains 2000 8-bit gray scale fingerprint image pairs. A newer version of the compression/decompression software on the CDROM can be found at the website http://www.nist.gov/itl/iad/ig/nigos.cfm as part of the NBIS package.

  4. Eight-Bit-Slice GaAs General Processor Circuit

    NASA Technical Reports Server (NTRS)

    Weissman, John; Gauthier, Robert V.

    1989-01-01

    Novel GaAs 8-bit slice enables quick and efficient implementation of variety of fast GaAs digital systems ranging from central processing units of computers to special-purpose processors for communications and signal-processing applications. With GaAs 8-bit slice, designers quickly configure and test hearts of many digital systems that demand fast complex arithmetic, fast and sufficient register storage, efficient multiplexing and routing of data words, and ease of control.

  5. Precise accounting of bit errors in floating-point computations

    NASA Astrophysics Data System (ADS)

    Schmalz, Mark S.

    2009-08-01

    Floating-point computation generates errors at the bit level through four processes, namely, overflow, underflow, truncation, and rounding. Overflow and underflow can be detected electronically, and represent systematic errors that are not of interest in this study. Truncation occurs during shifting toward the least-significant bit (herein called right-shifting), and rounding error occurs at the least significant bit. Such errors are not easy to track precisely using published means. Statistical error propagation theory typically yields conservative estimates that are grossly inadequate for deep computational cascades. Forward error analysis theory developed for image and signal processing or matrix operations can yield a more realistic typical case, but the error of the estimate tends to be high in relationship to the estimated error. In this paper, we discuss emerging technology for forward error analysis, which allows an algorithm designer to precisely estimate the output error of a given operation within a computational cascade, under a prespecified set of constraints on input error and computational precision. This technique, called bit accounting, precisely tracks the number of rounding and truncation errors in each bit position of interest to the algorithm designer. Because all errors associated with specific bit positions are tracked, and because integer addition only is involved in error estimation, the error of the estimate is zero. The technique of bit accounting is evaluated for its utility in image and signal processing. Complexity analysis emphasizes the relationship between the work and space estimates of the algorithm being analyzed, and its error estimation algorithm. Because of the significant overhead involved in error representation, it is shown that bit accounting is less useful for real-time error estimation, but is well suited to analysis in support of algorithm design.

  6. Automatic DFM methodology for bit line pattern dummy

    NASA Astrophysics Data System (ADS)

    Bahr, Mohamed

    2015-03-01

    This paper presents an automated DFM solution to generate Bit Line Pattern Dummy (BLPD) for memory chips. Dummy shapes are aligned with memory functional bits lines to ensure uniform and reliable memory device. This paper will present a smarter approach that uses an analysis based technique for adding the dummy fill shapes that have different types according to the space available. Experimental results based on layout of a memory test chip.

  7. Flow pattern changes improve roller cone bit performance

    SciTech Connect

    Huffstutler, A.D.

    1996-05-06

    Improving the flow pattern through and around roller cone bits has increased penetration rate and footage while dropping the cost per foot drilled. These changes to the flow area around the bit help clean the bit and borehole more efficiently. By eliminating the protruding nozzle bosses, increasing nozzle bore size, narrowing the width of the bit arm segments, and providing a convex spherical dome, flow trajectories have been improved. These altered flow trajectories have eliminated hydraulic dead spots commonly found around current roller cone rock bit configurations. Nozzles are directed significantly more inward, toward the well bore bottom and away from the edge of the borehole. The flow impacts the bottom of the hole where it is needed most. Further performance enhancement features include an angled ramp on the shirt-tail portion of the arm to aid in lifting the cuttings upward, away from the cones and the bearing seals. Changing contours of the bit arms in the nozzle and bearing areas also improves cleaning and prevents cuttings from packing off in the bearing seal area.

  8. Proper bit selection improves ROP in coiled tubing drilling

    SciTech Connect

    King, W.W. )

    1994-04-18

    Using the correct type of bit can improve the rate of penetration (ROP) and therefore the economics of coiled tubing drilling operations. Key factors, based on studies of the coiled tubing jobs to date, are that the drilling system must be analyzed as a whole system and that both the drill bit type and the formation compressive strength are critical components in this analysis. Once a candidate job has been qualified technically for drilling with coiled tubing, the job will have to be justified economically compared to conventional drilling. A key part of the economic analysis is predicting the ROP in each formation to be drilled to establish a drilling time curve. This prediction should be based on the key components of the system, including the following: hydraulics, motor capabilities, weight on bit (WOB), rock compressive strength, and bit type. This analysis should not base expected ROPs and offset wells drilled with conventional rigs and equipment. Furthermore, a small-diameter bit should not be selected simply by using the International Association of Drilling Contractor (IADC) codes of large-diameter bits used in offset wells. Coiled tubing drilling is described, then key factors in the selection are discussed.

  9. Sleep stage classification with low complexity and low bit rate.

    PubMed

    Virkkala, Jussi; Värri, Alpo; Hasan, Joel; Himanen, Sari-Leena; Müller, Kiti

    2009-01-01

    Standard sleep stage classification is based on visual analysis of central (usually also frontal and occipital) EEG, two-channel EOG, and submental EMG signals. The process is complex, using multiple electrodes, and is usually based on relatively high (200-500 Hz) sampling rates. Also at least 12 bit analog to digital conversion is recommended (with 16 bit storage) resulting in total bit rate of at least 12.8 kbit/s. This is not a problem for in-house laboratory sleep studies, but in the case of online wireless self-applicable ambulatory sleep studies, lower complexity and lower bit rates are preferred. In this study we further developed earlier single channel facial EMG/EOG/EEG-based automatic sleep stage classification. An algorithm with a simple decision tree separated 30 s epochs into wakefulness, SREM, S1/S2 and SWS using 18-45 Hz beta power and 0.5-6 Hz amplitude. Improvements included low complexity recursive digital filtering. We also evaluated the effects of a reduced sampling rate, reduced number of quantization steps and reduced dynamic range on the sleep data of 132 training and 131 testing subjects. With the studied algorithm, it was possible to reduce the sampling rate to 50 Hz (having a low pass filter at 90 Hz), and the dynamic range to 244 microV, with an 8 bit resolution resulting in a bit rate of 0.4 kbit/s. Facial electrodes and a low bit rate enables the use of smaller devices for sleep stage classification in home environments.

  10. Foldable Instrumented Bits for Ultrasonic/Sonic Penetrators

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Badescu, Mircea; Iskenderian, Theodore; Sherrit, Stewart; Bao, Xiaoqi; Linderman, Randel

    2010-01-01

    Long tool bits are undergoing development that can be stowed compactly until used as rock- or ground-penetrating probes actuated by ultrasonic/sonic mechanisms. These bits are designed to be folded or rolled into compact form for transport to exploration sites, where they are to be connected to their ultrasonic/ sonic actuation mechanisms and unfolded or unrolled to their full lengths for penetrating ground or rock to relatively large depths. These bits can be designed to acquire rock or soil samples and/or to be equipped with sensors for measuring properties of rock or soil in situ. These bits can also be designed to be withdrawn from the ground, restowed, and transported for reuse at different exploration sites. Apparatuses based on the concept of a probe actuated by an ultrasonic/sonic mechanism have been described in numerous prior NASA Tech Briefs articles, the most recent and relevant being "Ultrasonic/ Sonic Impacting Penetrators" (NPO-41666) NASA Tech Briefs, Vol. 32, No. 4 (April 2008), page 58. All of those apparatuses are variations on the basic theme of the earliest ones, denoted ultrasonic/sonic drill corers (USDCs). To recapitulate: An apparatus of this type includes a lightweight, low-power, piezoelectrically driven actuator in which ultrasonic and sonic vibrations are generated and coupled to a tool bit. The combination of ultrasonic and sonic vibrations gives rise to a hammering action (and a resulting chiseling action at the tip of the tool bit) that is more effective for drilling than is the microhammering action of ultrasonic vibrations alone. The hammering and chiseling actions are so effective that the size of the axial force needed to make the tool bit advance into soil, rock, or another material of interest is much smaller than in ordinary twist drilling, ordinary hammering, or ordinary steady pushing. Examples of properties that could be measured by use of an instrumented tool bit include electrical conductivity, permittivity, magnetic

  11. Rate allocation for spotlight SAR phase history data compression.

    PubMed

    Owens, J W; Marcellin, M W

    1999-01-01

    Complex phase history data in synthetic aperture radar (SAR) systems require extensive processing before useful images can be obtained. In spotlight mode SAR systems, useful images can be obtained by applying aperture weighting and inverse Fourier transform operations to SAR phase history data. In this paper, we are concerned with the compression of the complex phase history data obtained by a spotlight SAR system. We exploit knowledge of the aperture weighting function along with Fourier transform processing to attach a "gain" factor to each complex phase history data sample. This gain factor is then used to efficiently allocate bits to the phase history data during quantization. Performance evaluations are presented for this compression system relative to other existing SAR phase history data compression systems.

  12. Joint source-channel rate allocation in parallel channels.

    PubMed

    Pu, Lingling; Marcellin, Michael W; Djordjevic, Ivan; Vasic, Bane; Bilgin, Ali

    2007-08-01

    A fast rate-optimal rate allocation algorithm is proposed for parallel transmission of scalable images in multichannel systems. Scalable images are transmitted via fixed-length packets. The proposed algorithm selects a subchannel, as well as a channel code rate for each packet, based on the signal-to-noise ratios (SNRs) of the subchannels. The resulting scheme provides unequal error protection of source bits and significant gains are obtained over equal error protection schemes. An application of the proposed algorithm to JPEG2000 transmission shows the advantages of exploiting differences in SNRs between subchannels. Multiplexing of multiple sources is also considered, and additional gains are achieved by exploiting information diversity among the sources.

  13. Resource allocation in living organisms.

    PubMed

    Goelzer, Anne; Fromion, Vincent

    2017-08-15

    Quantitative prediction of resource allocation for living systems has been an intensive area of research in the field of biology. Resource allocation was initially investigated in higher organisms by using empirical mathematical models based on mass distribution. A challenge is now to go a step further by reconciling the cellular scale to the individual scale. In the present paper, we review the foundations of modelling of resource allocation, particularly at the cellular scale: from small macro-molecular models to genome-scale cellular models. We enlighten how the combination of omic measurements and computational advances together with systems biology has contributed to dramatic progresses in the current understanding and prediction of cellular resource allocation. Accurate genome-wide predictive methods of resource allocation based on the resource balance analysis (RBA) framework have been developed and ensure a good trade-off between the complexity/tractability and the prediction capability of the model. The RBA framework shows promise for a wide range of applications in metabolic engineering and synthetic biology, and for pursuing investigations of the design principles of cellular and multi-cellular organisms. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  14. Collective credit allocation in science.

    PubMed

    Shen, Hua-Wei; Barabási, Albert-László

    2014-08-26

    Collaboration among researchers is an essential component of the modern scientific enterprise, playing a particularly important role in multidisciplinary research. However, we continue to wrestle with allocating credit to the coauthors of publications with multiple authors, because the relative contribution of each author is difficult to determine. At the same time, the scientific community runs an informal field-dependent credit allocation process that assigns credit in a collective fashion to each work. Here we develop a credit allocation algorithm that captures the coauthors' contribution to a publication as perceived by the scientific community, reproducing the informal collective credit allocation of science. We validate the method by identifying the authors of Nobel-winning papers that are credited for the discovery, independent of their positions in the author list. The method can also compare the relative impact of researchers working in the same field, even if they did not publish together. The ability to accurately measure the relative credit of researchers could affect many aspects of credit allocation in science, potentially impacting hiring, funding, and promotion decisions.

  15. Collective credit allocation in science

    PubMed Central

    Shen, Hua-Wei; Barabási, Albert-László

    2014-01-01

    Collaboration among researchers is an essential component of the modern scientific enterprise, playing a particularly important role in multidisciplinary research. However, we continue to wrestle with allocating credit to the coauthors of publications with multiple authors, because the relative contribution of each author is difficult to determine. At the same time, the scientific community runs an informal field-dependent credit allocation process that assigns credit in a collective fashion to each work. Here we develop a credit allocation algorithm that captures the coauthors’ contribution to a publication as perceived by the scientific community, reproducing the informal collective credit allocation of science. We validate the method by identifying the authors of Nobel-winning papers that are credited for the discovery, independent of their positions in the author list. The method can also compare the relative impact of researchers working in the same field, even if they did not publish together. The ability to accurately measure the relative credit of researchers could affect many aspects of credit allocation in science, potentially impacting hiring, funding, and promotion decisions. PMID:25114238

  16. Bit-array alignment effect of perpendicular SOMA media

    NASA Astrophysics Data System (ADS)

    Xiao, Peiying; Yuan, Zhimin; Kuan Lee, Hwee; Guo, Guoxiao

    2006-08-01

    One effective way to overcome the superparamagnetic limit of magnetic recording system is to reduce the grain number per bit at given signal-to-noise ratio (SNR) level by using uniformed media grains. The self organized magnetic array (SOMA) is designed to have uniform grains with perfect grain array structure. It is believed that high enough SNR with small number of grains per bit can be acheived. But in the engineering application, the recorded bit on SOMA media may align with the regular array at different locations and angles due to non-grain synchronized writing, skew angle, and circular track. This induces the bit-array alignment effect and degrades system performance of SOMA media. In this paper, the micromagnetic simulation results show that the bit array alignment effect causes large level SNR fluctuation on the same media. The SOMA media is not preferred to be used in the conventional recording configuration. It is only suitable for the configuration of patterned media.

  17. Low-bit-rate subband image coding with matching pursuits

    NASA Astrophysics Data System (ADS)

    Rabiee, Hamid; Safavian, S. R.; Gardos, Thomas R.; Mirani, A. J.

    1998-01-01

    In this paper, a novel multiresolution algorithm for low bit-rate image compression is presented. High quality low bit-rate image compression is achieved by first decomposing the image into approximation and detail subimages with a shift-orthogonal multiresolution analysis. Then, at the coarsest resolution level, the coefficients of the transformation are encoded by an orthogonal matching pursuit algorithm with a wavelet packet dictionary. Our dictionary consists of convolutional splines of up to order two for the detail and approximation subbands. The intercorrelation between the various resolutions is then exploited by using the same bases from the dictionary to encode the coefficients of the finer resolution bands at the corresponding spatial locations. To further exploit the spatial correlation of the coefficients, the zero trees of wavelets (EZW) algorithm was used to identify the potential zero trees. The coefficients of the presentation are then quantized and arithmetic encoded at each resolution, and packed into a scalable bit stream structure. Our new algorithm is highly bit-rate scalable, and performs better than the segmentation based matching pursuit and EZW encoders at lower bit rates, based on subjective image quality and peak signal-to-noise ratio.

  18. Causes of wear of PDC bits and ways of improving their wear resistance

    NASA Astrophysics Data System (ADS)

    Timonin, VV; Smolentsev, AS; Shakhtorin, I. O.; Polushin, NI; Laptev, AI; Kushkhabiev, AS

    2017-02-01

    The scope of the paper encompasses basic factors that influence PDC bit efficiency. Feasible ways of eliminating the negatives are illustrated. The wash fluid flow in a standard bit is modeled, the resultant pattern of the bit washing is analyzed, and the recommendations are made on modification of the PDC bit design.

  19. Applicability and Limitations of Reliability Allocation Methods

    NASA Technical Reports Server (NTRS)

    Cruz, Jose A.

    2016-01-01

    Reliability allocation process may be described as the process of assigning reliability requirements to individual components within a system to attain the specified system reliability. For large systems, the allocation process is often performed at different stages of system design. The allocation process often begins at the conceptual stage. As the system design develops, more information about components and the operating environment becomes available, different allocation methods can be considered. Reliability allocation methods are usually divided into two categories: weighting factors and optimal reliability allocation. When properly applied, these methods can produce reasonable approximations. Reliability allocation techniques have limitations and implied assumptions that need to be understood by system engineers. Applying reliability allocation techniques without understanding their limitations and assumptions can produce unrealistic results. This report addresses weighting factors, optimal reliability allocation techniques, and identifies the applicability and limitations of each reliability allocation technique.

  20. Task allocation in a distributed computing system

    NASA Technical Reports Server (NTRS)

    Seward, Walter D.

    1987-01-01

    A conceptual framework is examined for task allocation in distributed systems. Application and computing system parameters critical to task allocation decision processes are discussed. Task allocation techniques are addressed which focus on achieving a balance in the load distribution among the system's processors. Equalization of computing load among the processing elements is the goal. Examples of system performance are presented for specific applications. Both static and dynamic allocation of tasks are considered and system performance is evaluated using different task allocation methodologies.

  1. Critique of a Hughes shuttle Ku-band data sampler/bit synchronizer

    NASA Technical Reports Server (NTRS)

    Holmes, J. K.

    1980-01-01

    An alternative bit synchronizer proposed for shuttle was analyzed in a noise-free environment by considering the basic operation of the loop via timing diagrams and by linearizing the bit synchronizer as an equivalent, continuous, phased-lock loop (PLL). The loop is composed of a high-frequency phase-frequency detector which is capable of detecting both phase and frequency errors and is used to track the clock, and a bit transition detector which attempts to track the transitions of the data bits. It was determined that the basic approach was a good design which, with proper implementation of the accumulator, up/down counter and logic should provide accurate mid-bit sampling with symmetric bits. However, when bit asymmetry occurs, the bit synchronizer can lock up with a large timing error, yet be quasi-stable (timing will not change unless the clock and bit sequence drift). This will result in incorrectly detecting some bits.

  2. Use of single-cutter data in the analysis of PDC bit designs

    SciTech Connect

    Glowka, D.A.

    1986-10-10

    A method is developed for predicting cutter forces, temperatures, and wear on PDC bits as well as integrated bit performance parameters such as weight-on-bit (WOB), drilling torque, and bit imbalance. A computer code called PDCWEAR has been developed to make this method available as a tool for general bit design. The method uses single-cutter data to provide a measure of rock drillability and employs theoretical considerations to account for interaction among closely spaced cutters on the bit. Experimental data are presented to establish the effects of cutter size and wearflat area on the forces that develop during rock cutting. Waterjet assistance is shown to significantly reduce cutting forces, thereby extending bit life and reducing WOB and torque requirements in hard rock. The effects of bit profile, cutter placement density, bit rotary speed, and wear mode on bit life and drilling performance are investigated. 21 refs., 34 figs., 4 tabs.

  3. Security bound of cheat sensitive quantum bit commitment

    PubMed Central

    He, Guang Ping

    2015-01-01

    Cheat sensitive quantum bit commitment (CSQBC) loosens the security requirement of quantum bit commitment (QBC), so that the existing impossibility proofs of unconditionally secure QBC can be evaded. But here we analyze the common features in all existing CSQBC protocols, and show that in any CSQBC having these features, the receiver can always learn a non-trivial amount of information on the sender's committed bit before it is unveiled, while his cheating can pass the security check with a probability not less than 50%. The sender's cheating is also studied. The optimal CSQBC protocols that can minimize the sum of the cheating probabilities of both parties are found to be trivial, as they are practically useless. We also discuss the possibility of building a fair protocol in which both parties can cheat with equal probabilities. PMID:25796977

  4. Bit-string methods for selective compound acquisition

    PubMed

    Rhodes; Willett; Dunbar; Humblet

    2000-03-01

    Selective compound acquisition programs need to ensure that the compounds that are chosen do not contain undesirable functionality. This is easy to achieve if a supplier is prepared to provide unambiguous structure representations for the compounds that they have available: this paper discusses selection techniques that can be used when a supplier is prepared to make available only fragment bit-string representations for the compounds in their catalog. Experiments with three databases and three types of bit-string show that a simple k-nearest-neighbor searching method provides a surprisingly effective, although far from perfect, way of selecting compounds when only bit-string representations are available. A second approach, based on the use of a fragment weighting scheme analogous to those used in substructural analysis studies, proved to be noticeably less effective in operation.

  5. Inexpensive programmable clock for a 12-bit computer

    NASA Technical Reports Server (NTRS)

    Vrancik, J. E.

    1972-01-01

    An inexpensive programmable clock was built for a digital PDP-12 computer. The instruction list includes skip on flag; clear the flag, clear the clock, and stop the clock; and preset the counter with the contents of the accumulator and start the clock. The clock counts at a rate determined by an external oscillator and causes an interrupt and sets a flag when a 12-bit overflow occurs. An overflow can occur after 1 to 4096 counts. The clock can be built for a total parts cost of less than $100 including power supply and I/O connector. Slight modification can be made to permit its use on larger machines (16 bit, 24 bit, etc.) and logic level shifting can be made to make it compatible with any computer.

  6. BitCube: A Bottom-Up Cubing Engineering

    NASA Astrophysics Data System (ADS)

    Ferro, Alfredo; Giugno, Rosalba; Puglisi, Piera Laura; Pulvirenti, Alfredo

    Enhancing on line analytical processing through efficient cube computation plays a key role in Data Warehouse management. Hashing, grouping and mining techniques are commonly used to improve cube pre-computation. BitCube, a fast cubing method which uses bitmaps as inverted indexes for grouping, is presented. It horizontally partitions data according to the values of one dimension and for each resulting fragment it performs grouping following bottom-up criteria. BitCube allows also partial materialization based on iceberg conditions to treat large datasets for which a full cube pre-computation is too expensive. Space requirement of bitmaps is optimized by applying an adaption of the WAH compression technique. Experimental analysis, on both synthetic and real datasets, shows that BitCube outperforms previous algorithms for full cube computation and results comparable on iceberg cubing.

  7. Can relativistic bit commitment lead to secure quantum oblivious transfer?

    NASA Astrophysics Data System (ADS)

    He, Guang Ping

    2015-05-01

    While unconditionally secure bit commitment (BC) is considered impossible within the quantum framework, it can be obtained under relativistic or experimental constraints. Here we study whether such BC can lead to secure quantum oblivious transfer (QOT). The answer is not completely negative. In one hand, we provide a detailed cheating strategy, showing that the "honest-but-curious adversaries" in some of the existing no-go proofs on QOT still apply even if secure BC is used, enabling the receiver to increase the average reliability of the decoded value of the transferred bit. On the other hand, it is also found that some other no-go proofs claiming that a dishonest receiver can always decode all transferred bits simultaneously with reliability 100% become invalid in this scenario, because their models of cryptographic protocols are too ideal to cover such a BC-based QOT.

  8. Security bound of cheat sensitive quantum bit commitment.

    PubMed

    He, Guang Ping

    2015-03-23

    Cheat sensitive quantum bit commitment (CSQBC) loosens the security requirement of quantum bit commitment (QBC), so that the existing impossibility proofs of unconditionally secure QBC can be evaded. But here we analyze the common features in all existing CSQBC protocols, and show that in any CSQBC having these features, the receiver can always learn a non-trivial amount of information on the sender's committed bit before it is unveiled, while his cheating can pass the security check with a probability not less than 50%. The sender's cheating is also studied. The optimal CSQBC protocols that can minimize the sum of the cheating probabilities of both parties are found to be trivial, as they are practically useless. We also discuss the possibility of building a fair protocol in which both parties can cheat with equal probabilities.

  9. Security bound of cheat sensitive quantum bit commitment

    NASA Astrophysics Data System (ADS)

    He, Guang Ping

    2015-03-01

    Cheat sensitive quantum bit commitment (CSQBC) loosens the security requirement of quantum bit commitment (QBC), so that the existing impossibility proofs of unconditionally secure QBC can be evaded. But here we analyze the common features in all existing CSQBC protocols, and show that in any CSQBC having these features, the receiver can always learn a non-trivial amount of information on the sender's committed bit before it is unveiled, while his cheating can pass the security check with a probability not less than 50%. The sender's cheating is also studied. The optimal CSQBC protocols that can minimize the sum of the cheating probabilities of both parties are found to be trivial, as they are practically useless. We also discuss the possibility of building a fair protocol in which both parties can cheat with equal probabilities.

  10. Influence of chemical treatment on the life of drill bits

    SciTech Connect

    Kantor, S.I.; Nimets, I.M.

    1983-03-01

    The quality of treatment of the bearing lug of a drill bit is most important in the life of a bit. Depth of carburized case, surface hardness of bearing path and shoulders, microstructure of the case, and mechanical properties of the core all determine the quality of the treatment. Optimum carbon content, mechanical properties, and influence of the carburized case microstructure on the contact strength are studied. At the Drogobych drill-bit plant, treatment of lugs is done on the OKB-2148 automatic line, by given cycle. The cycle is modified by this study; gas inlets, agitator fans, and buffer zones are added, to derive a higher quality lug. A few problems--carbon content of carbon-forming steel, brought into specification by a modified diffusion zone--are considered. Cutters are also treated. In general, then, the OKB-2148 line is recommended over the pack carburizing T-105 pit furnace.

  11. Distinct applications of MWD, weight on bit, and torque

    SciTech Connect

    Belaskie, J.P.; Dunn, M.D.; Choo, D.K.

    1993-06-01

    Recent enhancements to measurement-while-drilling (MWD) tools have increased drilling efficiency in directional wells on the North Slope of Alaska. With information provided by downhole weight on bit (WOB) and torque sensors, more timely and accurate decisions have been made, resulting in lower costs per foot. Specific applications of this technology include bit optimization, directional feedback, and drillstring-friction analysis. This paper discusses actual cases where the use of data from these downhole sensor has improved drilling performance. This information will benefit those interested in optimizing polycrystalline-diamond-compact (PDC) and rollercone bit runs, improving directional-drilling assembly predictability and performance, minimizing surface torques, and planning high-departure wells.

  12. 13 bits per incident photon optical communications demonstration

    NASA Astrophysics Data System (ADS)

    Farr, William H.; Choi, John M.; Moision, Bruce

    2013-03-01

    Minimizing the mass and power burden of a laser transceiver on a spacecraft for interplanetary optical communications links drives requires operation in a "photon starved" regime. The relevant performance metric in the photon starved regime is Photon Information Efficiency (PIE) with units of bits per photon. Measuring this performance at the detector plane of an optical communications receiver, prior art has achieved performance levels around one bit per incident photon using pulse position modulation (PPM). By combining a PPM modulator with greater than 75 dB extinction ratio with a tungsten silicide (WSi) superconducting nanowire detector with greater than 83% detection efficiency we have demonstrated an optical communications link at 13 bits per incident photon.

  13. Decision-fusion-based automated drill bit toolmark correlator

    NASA Astrophysics Data System (ADS)

    Jones, Brett C.; Press, Michael J.; Guerci, Joseph R.

    1999-02-01

    This paper describes a recent study conducted to investigate the reproducibility of toolmarks left by drill bits. This paper focuses on the automated analysis aspect of the study, and particularly the advantages of using decision fusion methods in the comparisons. To enable the study to encompass a large number of samples, existing technology was adapted to the task of automatically comparing the test impressions. Advanced forensic pattern recognition algorithms that had been developed for the comparison of ballistic evidence in the DRUGFIRETM system were modified for use in this test. The results of the decision fusion architecture closely matched those obtained by expert visual examination. The study, aided by the improved pattern recognition algorithm, showed that drill bit impressions do contain reproducible marks. In a blind test, the DRUGFIRE pattern recognition algorithm, enhanced with the decision fusion architecture, consistently identified the correct bit as the source of the test impressions.

  14. Development of optimization-based probabilistic earthquake scenarios for the city of Tehran

    NASA Astrophysics Data System (ADS)

    Zolfaghari, M. R.; Peyghaleh, E.

    2016-01-01

    This paper presents the methodology and practical example for the application of optimization process to select earthquake scenarios which best represent probabilistic earthquake hazard in a given region. The method is based on simulation of a large dataset of potential earthquakes, representing the long-term seismotectonic characteristics in a given region. The simulation process uses Monte-Carlo simulation and regional seismogenic source parameters to generate a synthetic earthquake catalogue consisting of a large number of earthquakes, each characterized with magnitude, location, focal depth and fault characteristics. Such catalogue provides full distributions of events in time, space and size; however, demands large computation power when is used for risk assessment, particularly when other sources of uncertainties are involved in the process. To reduce the number of selected earthquake scenarios, a mixed-integer linear program formulation is developed in this study. This approach results in reduced set of optimization-based probabilistic earthquake scenario, while maintaining shape of hazard curves and full probabilistic picture by minimizing the error between hazard curves driven by full and reduced sets of synthetic earthquake scenarios. To test the model, the regional seismotectonic and seismogenic characteristics of northern Iran are used to simulate a set of 10,000-year worth of events consisting of some 84,000 earthquakes. The optimization model is then performed multiple times with various input data, taking into account probabilistic seismic hazard for Tehran city as the main constrains. The sensitivity of the selected scenarios to the user-specified site/return period error-weight is also assessed. The methodology could enhance run time process for full probabilistic earthquake studies like seismic hazard and risk assessment. The reduced set is the representative of the contributions of all possible earthquakes; however, it requires far less

  15. Reading boundless error-free bits using a single photon

    NASA Astrophysics Data System (ADS)

    Guha, Saikat; Shapiro, Jeffrey H.

    2013-06-01

    We address the problem of how efficiently information can be encoded into and read out reliably from a passive reflective surface that encodes classical data by modulating the amplitude and phase of incident light. We show that nature imposes no fundamental upper limit to the number of bits that can be read per expended probe photon and demonstrate the quantum-information-theoretic trade-offs between the photon efficiency (bits per photon) and the encoding efficiency (bits per pixel) of optical reading. We show that with a coherent-state (ideal laser) source, an on-off (amplitude-modulation) pixel encoding, and shot-noise-limited direct detection (an overly optimistic model for commercial CD and DVD drives), the highest photon efficiency achievable in principle is about 0.5 bits read per transmitted photon. We then show that a coherent-state probe can read unlimited bits per photon when the receiver is allowed to make joint (inseparable) measurements on the reflected light from a large block of phase-modulated memory pixels. Finally, we show an example of a spatially entangled nonclassical light probe and a receiver design—constructible using a single-photon source, beam splitters, and single-photon detectors—that can in principle read any number of error-free bits of information. The probe is a single photon prepared in a uniform coherent superposition of multiple orthogonal spatial modes, i.e., a W state. The code and joint-detection receiver complexity required by a coherent-state transmitter to achieve comparable photon efficiency performance is shown to be much higher in comparison to that required by the W-state transceiver, although this advantage rapidly disappears with increasing loss in the system.

  16. Hanford coring bit temperature monitor development testing results report

    SciTech Connect

    Rey, D.

    1995-05-01

    Instrumentation which directly monitors the temperature of a coring bit used to retrieve core samples of high level nuclear waste stored in tanks at Hanford was developed at Sandia National Laboratories. Monitoring the temperature of the coring bit is desired to enhance the safety of the coring operations. A unique application of mature technologies was used to accomplish the measurement. This report documents the results of development testing performed at Sandia to assure the instrumentation will withstand the severe environments present in the waste tanks.

  17. Synthesis and evaluation of phase detectors for active bit synchronizers

    NASA Technical Reports Server (NTRS)

    Mcbride, A. L.

    1974-01-01

    Self-synchronizing digital data communication systems usually use active or phase-locked loop (PLL) bit synchronizers. The three main elements of PLL synchronizers are the phase detector, loop filter, and the voltage controlled oscillator. Of these three elements, phase detector synthesis is the main source of difficulty, particularly when the received signals are demodulated square-wave signals. A phase detector synthesis technique is reviewed that provides a physically realizable design for bit synchronizer phase detectors. The development is based upon nonlinear recursive estimation methods. The phase detector portion of the algorithm is isolated and analyzed.

  18. A low cost alternative to high performance PCM bit synchronizers

    NASA Technical Reports Server (NTRS)

    Deshong, Bruce

    1993-01-01

    The Code Converter/Clock Regenerator (CCCR) provides a low-cost alternative to high-performance Pulse Code Modulation (PCM) bit synchronizers in environments with a large Signal-to-Noise Ratio (SNR). In many applications, the CCCR can be used in place of PCM bit synchronizers at about one fifth the cost. The CCCR operates at rates from 10 bps to 2.5 Mbps and performs PCM code conversion and clock regeneration. The CCCR has been integrated into a stand-alone system configurable from one to six channels and has also been designed for use in VMEbus compatible systems.

  19. Multiple-bit-rate clock recovery circuit: theory

    NASA Astrophysics Data System (ADS)

    Kaplunenko, V.

    1999-11-01

    The multiple-bit-rate clock recovery circuit has been recently proposed as a part of the communications packet switch. All packets must be the same length and be preceded by the frequency header, which is a number of consecutive ones (return-to-zero mode). The header is compared with the internal clock, and the result is used to set output clock frequency. The clock rate is defined by a number of fluxons propagating in ring oscillator, which is a close circular Josephson transmission line. The theory gives a bit rate bandwidth as a function of internal clock frequency, header length and silence time (maximum number of consecutive zeros in the packet).

  20. Bit-wise arithmetic coding for data compression

    NASA Technical Reports Server (NTRS)

    Kiely, A. B.

    1994-01-01

    This article examines the problem of compressing a uniformly quantized independent and identically distributed (IID) source. We present a new compression technique, bit-wise arithmetic coding, that assigns fixed-length codewords to the quantizer output and uses arithmetic coding to compress the codewords, treating the codeword bits as independent. We examine the performance of this method and evaluate the overhead required when used block-adaptively. Simulation results are presented for Gaussian and Laplacian sources. This new technique could be used as the entropy coder in a transform or subband coding system.

  1. Demonstration of low-power bit-interleaving TDM PON.

    PubMed

    Van Praet, Christophe; Chow, Hungkei; Suvakovic, Dusan; Van Veen, Doutje; Dupas, Arnaud; Boislaigue, Roger; Farah, Robert; Lau, Man Fai; Galaro, Joseph; Qua, Gin; Anthapadmanabhan, N Prasanth; Torfs, Guy; Yin, Xin; Vetter, Peter

    2012-12-10

    A functional demonstration of bit-interleaving TDM downstream protocol for passive optical networks (Bi-PON) is reported. The proposed protocol presents a significant reduction in dynamic power consumption in the customer premise equipment over the conventional TDM protocol. It allows to select the relevant bits of all aggregated incoming data immediately after clock and data recovery (CDR) and, hence, allows subsequent hardware to run at much lower user rate. Comparison of experimental results of FPGA-based implementations of Bi-PON and XG-PON shows that more than 30x energy-savings in protocol processing is achievable.

  2. Development of a jet-assisted polycrystalline diamond drill bit

    SciTech Connect

    Pixton, D.S.; Hall, D.R.; Summers, D.A.; Gertsch, R.E.

    1997-12-31

    A preliminary investigation has been conducted to evaluate the technical feasibility and potential economic benefits of a new type of drill bit. This bit transmits both rotary and percussive drilling forces to the rock face, and augments this cutting action with high-pressure mud jets. Both the percussive drilling forces and the mud jets are generated down-hole by a mud-actuated hammer. Initial laboratory studies show that rate of penetration increases on the order of a factor of two over unaugmented rotary and/or percussive drilling rates are possible with jet-assistance.

  3. Micro-electromechanical memory bit based on magnetic repulsion

    NASA Astrophysics Data System (ADS)

    López-Suárez, Miquel; Neri, Igor

    2016-09-01

    A bistable micro-mechanical system based on magnetic repulsion is presented exploring its applicability as memory unit where the state of the bit is encoded in the rest position of a deflected cantilever. The non-linearity induced on the cantilever can be tuned through the magnetic interaction intensity between the cantilever magnet and the counter magnet in terms of geometrical parameters. A simple model provides a sound prediction of the behavior of the system. Finally, we measured the energy required to store a bit of information on the system that, for the considered protocols, is bounded by the energy barrier separating the two stable states.

  4. Administrators' Decisions about Resource Allocation

    ERIC Educational Resources Information Center

    Knight, William E.; Folkins, John W.; Hakel, Milton D.; Kennell, Richard P.

    2011-01-01

    Do academic administrators make decisions about resource allocation differently depending on the discipline receiving the funding? Does an administrator's academic identity influence these decisions? This study explored those questions with a sample of 1,690 academic administrators at doctoral-research universities. Participants used fictional…

  5. Regulating nutrient allocation in plants

    DOEpatents

    Udvardi, Michael; Yang, Jiading; Worley, Eric

    2014-12-09

    The invention provides coding and promoter sequences for a VS-1 and AP-2 gene, which affects the developmental process of senescence in plants. Vectors, transgenic plants, seeds, and host cells comprising heterologous VS-1 and AP-2 genes are also provided. Additionally provided are methods of altering nutrient allocation and composition in a plant using the VS-1 and AP-2 genes.

  6. The Discipline of Asset Allocation.

    ERIC Educational Resources Information Center

    Petzel, Todd E.

    2000-01-01

    Discussion of asset allocation for college/university endowment funds focuses on three levels of risk: (1) the absolute risk of the portfolio (usually leading to asset diversification); (2) the benchmark risk (usually comparison with peer institutions; and (3) personal career risk (which may incline managers toward maximizing short-term returns,…

  7. Administrators' Decisions about Resource Allocation

    ERIC Educational Resources Information Center

    Knight, William E.; Folkins, John W.; Hakel, Milton D.; Kennell, Richard P.

    2011-01-01

    Do academic administrators make decisions about resource allocation differently depending on the discipline receiving the funding? Does an administrator's academic identity influence these decisions? This study explored those questions with a sample of 1,690 academic administrators at doctoral-research universities. Participants used fictional…

  8. The Discipline of Asset Allocation.

    ERIC Educational Resources Information Center

    Petzel, Todd E.

    2000-01-01

    Discussion of asset allocation for college/university endowment funds focuses on three levels of risk: (1) the absolute risk of the portfolio (usually leading to asset diversification); (2) the benchmark risk (usually comparison with peer institutions; and (3) personal career risk (which may incline managers toward maximizing short-term returns,…

  9. Resource Allocation: A Participatory Process.

    ERIC Educational Resources Information Center

    Reid, Alban E.

    Whether a participatory process for resource allocation in a public community college setting occurs depends upon several key factors: (1) the leadership style of the institutional chief executive officer; (2) the administrative organizational structure of the institution; (3) the relationship which exists between and among members of the various…

  10. Task allocation among multiple intelligent robots

    NASA Technical Reports Server (NTRS)

    Gasser, L.; Bekey, G.

    1987-01-01

    Researchers describe the design of a decentralized mechanism for allocating assembly tasks in a multiple robot assembly workstation. Currently, the approach focuses on distributed allocation to explore its feasibility and its potential for adaptability to changing circumstances, rather than for optimizing throughput. Individual greedy robots make their own local allocation decisions using both dynamic allocation policies which propagate through a network of allocation goals, and local static and dynamic constraints describing which robots are elibible for which assembly tasks. Global coherence is achieved by proper weighting of allocation pressures propagating through the assembly plan. Deadlock avoidance and synchronization is achieved using periodic reassessments of local allocation decisions, ageing of allocation goals, and short-term allocation locks on goals.

  11. Radiation-hardened 16K-bit MNOS EAROM

    SciTech Connect

    Knoll, M.G.; Dellin, T.A.; Jones, R.V.

    1983-01-01

    A radiation-hardened silicon-gate CMOS/NMNOS 16K-bit EAROM has been designed, fabricated, and evaluated. This memory has been designed to be used as a ROM replacement in radiation-hardened microprocessor-based systems.

  12. New group demodulator for bandlimited and bit asynchronous FDMA signals

    NASA Astrophysics Data System (ADS)

    Kobayashi, K.; Kumagai, T.; Kato, S.

    1994-05-01

    The authors propose a group demodulator that employs the multisymbol chirp Fourier transform to demodulate pulse-shaped and time-asynchronous signals. Computer simulation results show that the bit error rate degradation of the proposed group demodulator at BER = 10(exp -3) is less than 0.3 dB with a 7 symbol chirp Fourier transform.

  13. Characterization of a 16-Bit Digitizer for Lidar Data Acquisition

    NASA Technical Reports Server (NTRS)

    Williamson, Cynthia K.; DeYoung, Russell J.

    2000-01-01

    A 6-MHz 16-bit waveform digitizer was evaluated for use in atmospheric differential absorption lidar (DIAL) measurements of ozone. The digitizer noise characteristics were evaluated, and actual ozone DIAL atmospheric returns were digitized. This digitizer could replace computer-automated measurement and control (CAMAC)-based commercial digitizers and improve voltage accuracy.

  14. Nonanalytic function generation routines for 16-bit microprocessors

    NASA Technical Reports Server (NTRS)

    Soeder, J. F.; Shaufl, M.

    1980-01-01

    Interpolation techniques for three types (univariate, bivariate, and map) of nonanalytic functions are described. These interpolation techniques are then implemented in scaled fraction arithmetic on a representative 16 bit microprocessor. A FORTRAN program is described that facilitates the scaling, documentation, and organization of data for use by these routines. Listings of all these programs are included in an appendix.

  15. Steganography forensics method for detecting least significant bit replacement attack

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofeng; Wei, Chengcheng; Han, Xiao

    2015-01-01

    We present an image forensics method to detect least significant bit replacement steganography attack. The proposed method provides fine-grained forensics features by using the hierarchical structure that combines pixels correlation and bit-planes correlation. This is achieved via bit-plane decomposition and difference matrices between the least significant bit-plane and each one of the others. Generated forensics features provide the susceptibility (changeability) that will be drastically altered when the cover image is embedded with data to form a stego image. We developed a statistical model based on the forensics features and used least square support vector machine as a classifier to distinguish stego images from cover images. Experimental results show that the proposed method provides the following advantages. (1) The detection rate is noticeably higher than that of some existing methods. (2) It has the expected stability. (3) It is robust for content-preserving manipulations, such as JPEG compression, adding noise, filtering, etc. (4) The proposed method provides satisfactory generalization capability.

  16. Optimization Approaches for Designing a Novel 4-Bit Reversible Comparator

    NASA Astrophysics Data System (ADS)

    Zhou, Ri-gui; Zhang, Man-qun; Wu, Qian; Li, Yan-cheng

    2013-02-01

    Reversible logic is a new rapidly developed research field in recent years, which has been receiving much attention for calculating with minimizing the energy consumption. This paper constructs a 4×4 new reversible gate called ZRQ gate to build quantum adder and subtraction. Meanwhile, a novel 1-bit reversible comparator by using the proposed ZRQC module on the basis of ZRQ gate is proposed as the minimum number of reversible gates and quantum costs. In addition, this paper presents a novel 4-bit reversible comparator based on the 1-bit reversible comparator. One of the vital important for optimizing reversible logic is to design reversible logic circuits with the minimum number of parameters. The proposed reversible comparators in this paper can obtain superiority in terms of the number of reversible gates, input constants, garbage outputs, unit delays and quantum costs compared with the existed circuits. Finally, MATLAB simulation software is used to test and verify the correctness of the proposed 4-bit reversible comparator.

  17. 16. STRUCTURAL DETAILS: CHANNEL, BIT & CLEAT, ANCHOR BOLTS & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. STRUCTURAL DETAILS: CHANNEL, BIT & CLEAT, ANCHOR BOLTS & PLATES FOR PIERS 4, 5, AND 6, DWG. NO. 97, 1-1/2" = 1', MADE BY A.F., JUNE 13, 1908 - Baltimore Inner Harbor, Pier 5, South of Pratt Street between Market Place & Concord Street, Baltimore, Independent City, MD

  18. A radiation-hardened 16/32-bit microprocessor

    SciTech Connect

    Hass, K.J.; Treece, R.K.; Giddings, A.E.

    1989-01-01

    A radiation-hardened 16/32-bit microprocessor has been fabricated and tested. Our initial evaluation has demonstrated that it is functional after a total gamma dose of 5Mrad(Si) and is immune to SEU from Krypton ions. 3 refs., 2 figs.

  19. Rock bit requires no flushing medium to maintain drilling speed

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Steel drill bit having terraces of teeth intersected by spiral grooves with teeth permits the boring of small holes through rock with low power. The cuttings are stored in a chamber behind the cutting head. Could be used as sampling device.

  20. Improved bit error rate estimation over experimental optical wireless channels

    NASA Astrophysics Data System (ADS)

    El Tabach, Mamdouh; Saoudi, Samir; Tortelier, Patrick; Bouchet, Olivier; Pyndiah, Ramesh

    2009-02-01

    As a part of the EU-FP7 R&D programme, the OMEGA project (hOME Gigabit Access) aims at bridging the gap between wireless terminals and wired backbone network in homes, providing high bit rate connectivity to users. Beside radio frequencies, the wireless links will use Optical Wireless (OW) communications. To guarantee high performance and quality of service in real-time, our system needs techniques to approximate the Bit Error Probability (BEP) with a reasonable training sequence. Traditionally, the BEP is approximated by the Bit Error Rate (BER) measured by counting the number of errors within a given sequence of bits. For small BERs, required sequences are huge and may prevent real-time estimation. In this paper, methods to estimate BER using Probability Density Function (PDF) estimation are presented. Two a posteriori techniques based on Parzen estimator or constrained Gram-Charlier series expansion are adapted and applied to OW communications. Aided by simulations, comparison is done over experimental optical channels. We show that, for different scenarios, such as optical multipath distortion or a well designed Code Division Multiple Access (CDMA) system, this approach outperforms the counting method and yields to better results with a relatively small training sequence.

  1. Critical Investigation of Wear Behaviour of WC Drill Bit Buttons

    NASA Astrophysics Data System (ADS)

    Gupta, Anurag; Chattopadhyaya, Somnath; Hloch, Sergej

    2013-01-01

    Mining and petroleum drill bits are subjected to highly abrasive rock and high-velocity fluids that cause severe wear and erosion in service. To augment the rate of penetration and minimize the cost per foot, such drill bits are subjected to increasing rotary speeds and weight. A rotary/percussive drill typically hits the rock 50 times per second with hydraulic impact pressure of about 170-200 bar and feed pressure of about 90-100 bar, while rotating at 75-200 rpm. The drill rig delivers a high-velocity flow of drilling fluid onto the rock surface to dislodge cuttings and cool the bit. The impingement of high-velocity drilling fluid with entrained cuttings accelerates the erosion rate of the bit. Also, high service temperature contributes to softening of the rock for increased penetration. Hence, there is a need to optimize the drilling process and balance the wear rate and penetration rate simultaneously. This paper presents an experimental scanning electron microscopy (SEM) study of electroplated (nickel-bonded) diamond drills for different wear modes.

  2. Design study of a low bit rate transmitter and simulator

    NASA Technical Reports Server (NTRS)

    Zusman, F. S.; Steen, P. J.

    1972-01-01

    The results achieved toward developing a baseline communications channel model for studying low bit rate telemetry transmissions from Venus Planetary Explorer spacecraft are presented. The overall communications systems model, discrete channel model, input signal generation, and signal acquisition model are discussed. Discrete Fourier transform considerations, sampling routines, and flow charts are included.

  3. Estimating Hardness from the USDC Tool-Bit Temperature Rise

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrit, Stewart

    2008-01-01

    A method of real-time quantification of the hardness of a rock or similar material involves measurement of the temperature, as a function of time, of the tool bit of an ultrasonic/sonic drill corer (USDC) that is being used to drill into the material. The method is based on the idea that, other things being about equal, the rate of rise of temperature and the maximum temperature reached during drilling increase with the hardness of the drilled material. In this method, the temperature is measured by means of a thermocouple embedded in the USDC tool bit near the drilling tip. The hardness of the drilled material can then be determined through correlation of the temperature-rise-versus-time data with time-dependent temperature rises determined in finite-element simulations of, and/or experiments on, drilling at various known rates of advance or known power levels through materials of known hardness. The figure presents an example of empirical temperature-versus-time data for a particular 3.6-mm USDC bit, driven at an average power somewhat below 40 W, drilling through materials of various hardness levels. The temperature readings from within a USDC tool bit can also be used for purposes other than estimating the hardness of the drilled material. For example, they can be especially useful as feedback to control the driving power to prevent thermal damage to the drilled material, the drill bit, or both. In the case of drilling through ice, the temperature readings could be used as a guide to maintaining sufficient drive power to prevent jamming of the drill by preventing refreezing of melted ice in contact with the drill.

  4. Loss-aware rate-distortion optimization for redundant picture allocation in H.264/AVC

    NASA Astrophysics Data System (ADS)

    Lee, Jinho; Cha, Jihun; Choi, Jin Soo; Choi, Haechul

    2010-02-01

    A redundant picture is one of the H.264/AVC tools for increasing error resiliency when video is delivered over error prone environments. We present a loss-aware redundant picture allocation method that determines whether the redundant picture is inserted for each primary coded picture or not. The determination is based on an error rate of transmission network and the distortion of decoded picture caused by the error. Simulation results showed that the proposed method alleviates the distortion and, thereby, it achieves higher quality of the decoded picture than the conventional methods, including the hierarchical redundant picture. In particular, the proposed method produces outstanding results at low bit rates; thus, the method is highly applicable to low bit-rate wireless video transmission.

  5. How to do random allocation (randomization).

    PubMed

    Kim, Jeehyoung; Shin, Wonshik

    2014-03-01

    To explain the concept and procedure of random allocation as used in a randomized controlled study. We explain the general concept of random allocation and demonstrate how to perform the procedure easily and how to report it in a paper.

  6. Peak-to-average power ratio mitigation and adaptive bit assignment in single-carrier frequency division multiplexing access via hierarchical modulation

    NASA Astrophysics Data System (ADS)

    Zhang, Lijia; Liu, Bo; Xin, Xiangjun; Wang, Yongjun

    2014-11-01

    A hierarchical modulation with multilevels is proposed for an optical single-carrier frequency division multiplexing access (SC-FDMA) system. It can mitigate the nonlinearity by reducing the peak-to-average power ratio (PAPR) of the SC-FDM signal. According to different optical signal-to-noise ratio requirements, the adaptive bit allocation can be implemented on different levels during hierarchical modulation. In the experiment, the PAPR of the hierarchical-modulated SC-FDM signal outperforms the conventional SC-FDM signal by 0.7 dB. Signals with 4- and 6-bit hierarchical modulation are successfully demodulated by the optical network unit with power penalties less than 0.2 and 0.45 dB, respectively.

  7. Algorithms for optimal redundancy allocation

    SciTech Connect

    Vandenkieboom, J.; Youngblood, R.

    1993-01-01

    Heuristic and exact methods for solving the redundancy allocation problem are compared to an approach based on genetic algorithms. The various methods are applied to the bridge problem, which has been used as a benchmark in earlier work on optimization methods. Comparisons are presented in terms of the best configuration found by each method, and the computation effort which was necessary in order to find it.

  8. Communication patterns and allocation strategies.

    SciTech Connect

    Leung, Vitus Joseph; Mache, Jens Wolfgang; Bunde, David P.

    2004-01-01

    Motivated by observations about job runtimes on the CPlant system, we use a trace-driven microsimulator to begin characterizing the performance of different classes of allocation algorithms on jobs with different communication patterns in space-shared parallel systems with mesh topology. We show that relative performance varies considerably with communication pattern. The Paging strategy using the Hilbert space-filling curve and the Best Fit heuristic performed best across several communication patterns.

  9. Minority Transportation Expenditure Allocation Model

    SciTech Connect

    Vyas, Anant D.; Santini, Danilo J.; Marik, Sheri K.

    1993-04-12

    MITRAM (Minority TRansportation expenditure Allocation Model) can project various transportation related attributes of minority (Black and Hispanic) and majority (white) populations. The model projects vehicle ownership, vehicle miles of travel, workers, new car and on-road fleet fuel economy, amount and share of household income spent on gasoline, and household expenditures on public transportation and taxis. MITRAM predicts reactions to sustained fuel price changes for up to 10 years after the change.

  10. BELOWGROUND NITROGEN UPTAKE AND ALLOCATION ...

    EPA Pesticide Factsheets

    Anthropogenic nitrogen inputs coupled with rising sea level complicate predictions of marsh stability. As marsh stability is a function of its vegetation, it is important to understand the mechanisms that drive community dynamics. Many studies have examined aboveground dynamics and nutrient cycling, but few have studied the belowground uptake and allocation of nitrogen. Literature suggests that D. spicata may dominate the marsh platform in nutrient-rich conditions, though the mechanism driving the vegetation shift is unclear. Our study examines belowground nutrient uptake and allocation underlying these patterns. To determine whether D. spicata is a more efficient scavenger of nutrients than S. alterniflora we performed a 15N pulse-chase experiment. Tracer was added to mesocosms growing D. spicata and S. alterniflora in monoculture. After the initial pulse, a subset of pots were sacrificed weekly and partitioned into detailed depth intervals for 15N analysis of several belowground pools: live coarse and fine roots, live rhizomes, dead organic matter, and bulk sediment. Comparisons between D. spicata and S. alterniflora uptake and allocation can explain mechanisms of competitive advantage and predictions of D. spicata dominance. Additionally, we used denitrification enzyme assays (DEA) and greenhouse gas slurries to quantify denitrification rates and potentials. Initial results suggest that the vegetation types support similar N-relevant microbial communities. Th

  11. 50 CFR 600.517 - Allocations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Allocations. 600.517 Section 600.517 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION... allocation. The burden of ascertaining and accurately transmitting current allocations and status of...

  12. 50 CFR 600.517 - Allocations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 10 2011-10-01 2011-10-01 false Allocations. 600.517 Section 600.517 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION... allocation. The burden of ascertaining and accurately transmitting current allocations and status of...

  13. 50 CFR 600.517 - Allocations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false Allocations. 600.517 Section 600.517 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION... allocation. The burden of ascertaining and accurately transmitting current allocations and status of...

  14. 24 CFR 945.203 - Allocation plan.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 4 2014-04-01 2014-04-01 false Allocation plan. 945.203 Section... FAMILIES Application and Approval Procedures § 945.203 Allocation plan. (a) Applicable terminology. (1) As used in this section, the terms “initial allocation plan” refers to the PHA's first submission of...

  15. 10 CFR 455.31 - Allocation formulas.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... DEPARTMENT OF ENERGY ENERGY CONSERVATION GRANT PROGRAMS FOR SCHOOLS AND HOSPITALS AND BUILDINGS OWNED BY... conservation measures, including renewable resource measures, for schools and hospitals, shall be allocated... percent of all amounts allocated in any grant program cycle. No State will be allocated more than...

  16. 42 CFR 457.228 - Cost allocation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 4 2011-10-01 2011-10-01 false Cost allocation. 457.228 Section 457.228 Public...; Reduction of Federal Medical Payments § 457.228 Cost allocation. A State plan must provide that the single or appropriate CHIP Agency will have an approved cost allocation plan on file with the Department...

  17. 42 CFR 433.34 - Cost allocation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 4 2011-10-01 2011-10-01 false Cost allocation. 433.34 Section 433.34 Public... Provisions § 433.34 Cost allocation. A State plan under Title XIX of the Social Security Act must provide that the single or appropriate Agency will have an approved cost allocation plan on file with...

  18. Teachers' Embodied Allocations in Instructional Interaction

    ERIC Educational Resources Information Center

    Kääntä, Leila

    2012-01-01

    This paper describes how teachers employ gaze, head nods and pointing gestures in allocating response turns to students in whole-class instructional interaction. Specifically, it focuses on examining teachers' embodied allocations--that is, turn-allocations produced (mostly) by embodied means--and the sequential positions in which they are…

  19. Rodent Cage Allocation | Center for Cancer Research

    Cancer.gov

    CCR Animal Cage Allocation Principles - 2017 Rodent cage allocations for each principal investigator (PI) are based on: Animal study design and justification BSC Recommendations Package for new tenure track or tenured investigator Average cage usage in previous fiscal years Note: The allocations largely reflect PI requirements for standard mouse caging.

  20. Efficient biased random bit generation for parallel processing

    SciTech Connect

    Slone, Dale M.

    1994-09-28

    A lattice gas automaton was implemented on a massively parallel machine (the BBN TC2000) and a vector supercomputer (the CRAY C90). The automaton models Burgers equation ρt + ρρx = vρxx in 1 dimension. The lattice gas evolves by advecting and colliding pseudo-particles on a 1-dimensional, periodic grid. The specific rules for colliding particles are stochastic in nature and require the generation of many billions of random numbers to create the random bits necessary for the lattice gas. The goal of the thesis was to speed up the process of generating the random bits and thereby lessen the computational bottleneck of the automaton.

  1. Finger Vein Recognition Based on a Personalized Best Bit Map

    PubMed Central

    Yang, Gongping; Xi, Xiaoming; Yin, Yilong

    2012-01-01

    Finger vein patterns have recently been recognized as an effective biometric identifier. In this paper, we propose a finger vein recognition method based on a personalized best bit map (PBBM). Our method is rooted in a local binary pattern based method and then inclined to use the best bits only for matching. We first present the concept of PBBM and the generating algorithm. Then we propose the finger vein recognition framework, which consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PBBM achieves not only better performance, but also high robustness and reliability. In addition, PBBM can be used as a general framework for binary pattern based recognition. PMID:22438735

  2. b.i.t. Bremerhaven: Thin Clients entlasten Schulen

    NASA Astrophysics Data System (ADS)

    Das Schulamt Bremerhaven zentralisiert die Verwaltungs-IT und schafft dadurch Freiräume für pädagogische und organisatorische Herausforderungen. Pflege und Support der neuen Infrastruktur übernimmt der Dienstleister b.i.t. Bremerhaven, die Thin Clients kommen vom Bremer Hersteller IGEL Technology. Ganztagsschulen, das 12-jährige Abitur, PISA, der Wegfall der Orientierungsstufe - deutsche Schulen müssen derzeit zahlreiche organisatorische und pädagogische Herausforderungen bewältigen. Um die neuen Strukturen umsetzen zu können, werden zusätzliche Ressourcen benötigt. Das Schulamt Bremerhaven hat gemeinsam mit dem Dienstleister b.i.t. Bremerhaven (Betrieb für Informationstechnologie) eine intelligente Lösung gefunden, wie sich die benötigten finanziellen Freiräume schaffen lassen.

  3. A 128K-bit CCD buffer memory system

    NASA Technical Reports Server (NTRS)

    Siemens, K. H.; Wallace, R. W.; Robinson, C. R.

    1976-01-01

    A prototype system was implemented to demonstrate that CCD's can be applied advantageously to the problem of low power digital storage and particularly to the problem of interfacing widely varying data rates. 8K-bit CCD shift register memories were used to construct a feasibility model 128K-bit buffer memory system. Peak power dissipation during a data transfer is less than 7 W., while idle power is approximately 5.4 W. The system features automatic data input synchronization with the recirculating CCD memory block start address. Descriptions are provided of both the buffer memory system and a custom tester that was used to exercise the memory. The testing procedures and testing results are discussed. Suggestions are provided for further development with regards to the utilization of advanced versions of CCD memory devices to both simplified and expanded memory system applications.

  4. Very low bit rate voice for packetized mobile applications

    SciTech Connect

    Knittle, C.D.; Malone, K.T. )

    1991-01-01

    This paper reports that transmitting digital voice via packetized mobile communications systems that employ relatively short packet lengths and narrow bandwidths often necessitates very low bit rate coding of the voice data. Sandia National Laboratories is currently developing an efficient voice coding system operating at 800 bits per second (bps). The coding scheme is a modified version of the 2400 bps NSA LPC-10e standard. The most significant modification to the LPC-10e scheme is the vector quantization of the line spectrum frequencies associated with the synthesis filters. An outline of a hardware implementation for the 800 bps coder is presented. The speech quality of the coder is generally good, although speaker recognition is not possible. Further research is being conducted to reduce the memory requirements and complexity of the vector quantizer, and to increase the quality of the reconstructed speech. This work may be of use dealing with nuclear materials.

  5. Very low bit rate voice for packetized mobile applications

    SciTech Connect

    Knittle, C.D.; Malone, K.T.

    1991-01-01

    Transmitting digital voice via packetized mobile communications systems that employ relatively short packet lengths and narrow bandwidths often necessitates very low bit rate coding of the voice data. Sandia National Laboratories is currently developing an efficient voice coding system operating at 800 bits per second (bps). The coding scheme is a modified version of the 2400 bps NSA LPC-10e standard. The most significant modification to the LPC-10e scheme is the vector quantization of the line spectrum frequencies associated with the synthesis filters. An outline of a hardware implementation for the 800 bps coder is presented. The speech quality of the coder is generally good, although speaker recognition is not possible. Further research is being conducted to reduce the memory requirements and complexity of the vector quantizer, and to increase the quality of the reconstructed speech. 4 refs., 2 figs., 3 tabs.

  6. Fully Distrustful Quantum Bit Commitment and Coin Flipping

    NASA Astrophysics Data System (ADS)

    Silman, J.; Chailloux, A.; Aharon, N.; Kerenidis, I.; Pironio, S.; Massar, S.

    2011-06-01

    In the distrustful quantum cryptography model the parties have conflicting interests and do not trust one another. Nevertheless, they trust the quantum devices in their labs. The aim of the device-independent approach to cryptography is to do away with the latter assumption, and, consequently, significantly increase security. It is an open question whether the scope of this approach also extends to protocols in the distrustful cryptography model, thereby rendering them “fully” distrustful. In this Letter, we show that for bit commitment—one of the most basic primitives within the model—the answer is positive. We present a device-independent (imperfect) bit-commitment protocol, where Alice’s and Bob’s cheating probabilities are ≃0.854 and (3)/(4), which we then use to construct a device-independent coin flipping protocol with bias ≲0.336.

  7. Simultaneous carburizing and boronizing of earth boring drill bits

    SciTech Connect

    Loos, P.J.

    1987-04-07

    A method is described of manufacturing an earth boring drill bit of the type having a bearing pin extending from a head section of the drill bit for rotatably mounting a cutter. The bearing pin has a seal region adjacent the base thereof and a primary friction bearing region extending outwardly therefrom. The method comprises: isolating and applying a pack carburizing mixture to the seal region of the bearing pin; applying a pack boronizing mixture to the remaining primary friction bearing region of the bearing pin; carburizing the seal region of the bearing pin by heating the bearing pin in a furnace at a time and temperature to produce a carburized case of selected depth while simultaneously boronizing the remaining primary friction bearing region to produce a boronized case of selected depth by heating the entire pin in the furnace in a single step operation.

  8. Finger vein recognition based on a personalized best bit map.

    PubMed

    Yang, Gongping; Xi, Xiaoming; Yin, Yilong

    2012-01-01

    Finger vein patterns have recently been recognized as an effective biometric identifier. In this paper, we propose a finger vein recognition method based on a personalized best bit map (PBBM). Our method is rooted in a local binary pattern based method and then inclined to use the best bits only for matching. We first present the concept of PBBM and the generating algorithm. Then we propose the finger vein recognition framework, which consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PBBM achieves not only better performance, but also high robustness and reliability. In addition, PBBM can be used as a general framework for binary pattern based recognition.

  9. Allocating Variability and Reserve Requirements (Presentation)

    SciTech Connect

    Kirby, B.; King, J.; Milligan, M.

    2011-10-01

    This presentation describes how you could conceivably allocate variability and reserve requirements, including how to allocate aggregation benefits. Conclusions of this presentation are: (1) Aggregation provides benefits because individual requirements are not 100% correlated; (2) Method needed to allocate reduced requirement among participants; (3) Differences between allocation results are subtle - (a) Not immediately obvious which method is 'better'; (b) Many are numerically 'correct', they sum to the physical requirement; (c) Many are not 'fair', Results depend on sub-aggregation and/or the order individuals are included; and (4) Vector allocation method is simple and fair.

  10. Small digital recording head has parallel bit channels, minimizes cross talk

    NASA Technical Reports Server (NTRS)

    Eller, E. E.; Laue, E. G.

    1964-01-01

    A small digital recording head consists of closely spaced parallel wires, imbedded in a ferrite block to concentrate the magnetic flux. Parallel-recorded information bits are converted into serial bits on moving magnetic tape and cross talk is suppressed.

  11. Development of a near-bit MWD system. Quarterly report, April 1994--June 1994

    SciTech Connect

    McDonald, W.J.; Pittard, G.T.

    1994-11-01

    Horizontal drilling utilized in the oil and gas fields has need of accurate directional placement and drilling conditions at the bit. The preliminary design of a drill bit with a measuring instrument/telemetry system attached is briefly described.

  12. Simplified 2-bit photonic digital-to-analog conversion unit based on polarization multiplexing

    NASA Astrophysics Data System (ADS)

    Zhang, Fangzheng; Gao, Bindong; Ge, Xiaozhong; Pan, Shilong

    2016-03-01

    A 2-bit photonic digital-to-analog conversion unit is proposed and demonstrated based on polarization multiplexing. The proposed 2-bit digital-to-analog converter (DAC) unit is realized by optical intensity weighting and summing, and its complexity is greatly reduced compared with the traditional 2-bit photonic DACs. Performance of the proposed 2-bit DAC unit is experimentally investigated. The established 2-bit DAC unit achieves a good linear transfer function, and the effective number of bits is calculated to be 1.3. Based on the proposed 2-bit DAC unit, two DAC structures with higher (>2) bit resolutions are proposed and discussed, and the system complexity is expected to be reduced by half by using the proposed technique.

  13. Write Channel Model for Bit-Patterned Media Recording

    NASA Astrophysics Data System (ADS)

    Iyengar, Aravind Raghava; Siegel, Paul H.; Wolf, Jack Keil

    2011-01-01

    We propose a new write channel model for bit-patterned media recording that reflects the data dependence of write synchronization errors. It is shown that this model accommodates both substitution-like errors and insertion-deletion errors whose statistics are determined by an underlying channel state process. We study information theoretic properties of the write channel model, including the capacity, symmetric information rate, Markov-1 rate and the zero-error capacity.

  14. Photon-number-resolving detector with 10 bits of resolution

    SciTech Connect

    Jiang, Leaf A.; Dauler, Eric A.; Chang, Joshua T

    2007-06-15

    A photon-number-resolving detector with single-photon resolution is described and demonstrated. It has 10 bits of resolution, does not require cryogenic cooling, and is sensitive to near ir wavelengths. This performance is achieved by flood illuminating a 32x32 element In{sub x}Ga{sub 1-x}AsP Geiger-mode avalanche photodiode array that has an integrated counter and digital readout circuit behind each pixel.

  15. Spin Quantum Bit with Ferromagnetic Contacts for Circuit QED

    SciTech Connect

    Cottet, Audrey; Kontos, Takis

    2010-10-15

    We theoretically propose a scheme for a spin quantum bit based on a double quantum dot contacted to ferromagnetic elements. Interface exchange effects enable an all electric manipulation of the spin and a switchable strong coupling to a superconducting coplanar waveguide cavity. Our setup does not rely on any specific band structure and can in principle be realized with many different types of nanoconductors. This allows us to envision on-chip single spin manipulation and readout using cavity QED techniques.

  16. Bit-Oriented Quantum Public Key Probabilistic Encryption Schemes

    NASA Astrophysics Data System (ADS)

    Zheng, Shihui; Gu, Lize; Xiao, Da

    2014-01-01

    Quantum public-key encryption system provides information confidentiality using quantum mechanics. In this paper, two bit-oriented public key probabilistic encryption schemes are constructed based on a new randomizing method combined with single-qubit rotation. They are strong enough to resist forward search attack and have private key secrecy. Moreover, the ciphertext expansion of the second scheme is low and the number of public key qubits used to encrypt is small under the condition that decryption error is negligible.

  17. Spin quantum bit with ferromagnetic contacts for circuit QED.

    PubMed

    Cottet, Audrey; Kontos, Takis

    2010-10-15

    We theoretically propose a scheme for a spin quantum bit based on a double quantum dot contacted to ferromagnetic elements. Interface exchange effects enable an all electric manipulation of the spin and a switchable strong coupling to a superconducting coplanar waveguide cavity. Our setup does not rely on any specific band structure and can in principle be realized with many different types of nanoconductors. This allows us to envision on-chip single spin manipulation and readout using cavity QED techniques.

  18. High performance 14-bit pipelined redundant signed digit ADC

    NASA Astrophysics Data System (ADS)

    Narula, Swina; Pandey, Sujata

    2016-03-01

    A novel architecture of a pipelined redundant-signed-digit analog to digital converter (RSD-ADC) is presented featuring a high signal to noise ratio (SNR), spurious free dynamic range (SFDR) and signal to noise plus distortion (SNDR) with efficient background correction logic. The proposed ADC architecture shows high accuracy with a high speed circuit and efficient utilization of the hardware. This paper demonstrates the functionality of the digital correction logic of 14-bit pipelined ADC at each 1.5 bit/stage. This prototype of ADC architecture accounts for capacitor mismatch, comparator offset and finite Op-Amp gain error in the MDAC (residue amplification circuit) stages. With the proposed architecture of ADC, SNDR obtained is 85.89 dB, SNR is 85.9 dB and SFDR obtained is 102.8 dB at the sample rate of 100 MHz. This novel architecture of digital correction logic is transparent to the overall system, which is demonstrated by using 14-bit pipelined ADC. After a latency of 14 clocks, digital output will be available at every clock pulse. To describe the circuit behavior of the ADC, VHDL and MATLAB programs are used. The proposed architecture is also capable of reducing the digital hardware. Silicon area is also the complexity of the design.

  19. Multi-bit biomemory consisting of recombinant protein variants, azurin.

    PubMed

    Yagati, Ajay Kumar; Kim, Sang-Uk; Min, Junhong; Choi, Jeong-Woo

    2009-01-01

    In this study a protein-based multi-bit biomemory device consisting of recombinant azurin with its cysteine residue modified by site-directed mutagenesis method has been developed. The recombinant azurin was directly immobilized on four different gold (Au) electrodes patterned on a single silicon substrate. Using cyclic voltammetry (CV), chronoamperometry (CA) and open circuit potential amperometry (OCPA) methods the memory function of the fabricated biodevice was validated. The charge transfer occurs between protein molecules and Au electrode enables a bi-stable electrical conductivity allowing the system to be used as a digital memory device. Data storage is achieved by applying redox potentials which are within the range of 200mV. Oxidation and open circuit potentials with current sensing were used for writing and reading operations respectively. Applying oxidation potentials in different combinations to each Au electrodes, multi-bit information was stored in to the azurin molecules. Finally, the switching robustness and reliability of the proposed device has been examined. The results suggest that the proposed device has a function of memory and can be used for the construction of nano-scale multi-bit information storage device.

  20. Color encoding for gamut extension and bit-depth extension

    NASA Astrophysics Data System (ADS)

    Zeng, Huanzhao

    2005-02-01

    Monitor oriented RGB color spaces (e.g. sRGB) are widely applied for digital image representation for the simplicity in displaying images on monitor displays. However, the physical gamut limits its ability to encode colors accurately for color images that are not limited to the display RGB gamut. To extend the encoding gamut, non-physical RGB primaries may be used to define the color space, or the RGB tone ranges may be extended beyond the physical range. An out-of-gamut color has at least one of the R, G, and B channels that are smaller than 0 or higher than 100%. Instead of using wide-gamut RGB primaries for gamut expansion, we may extend the tone ranges to expand the encoding gamut. Negative tone values and tone values over 100% are allowed. Methods to efficiently and accurately encode out-of-gamut colors are discussed in this paper. Interpretation bits are added to interpret the range of color values or to encode color values with a higher bit-depth. The interpretation bits of R, G, and B primaries can be packed and stored in an alpha channel in some image formats (e.g. TIFF) or stored in a data tag (e.g. in JEPG format). If a color image does not have colors that are out of a regular RGB gamut, a regular program (e.g. Photoshop) is able to manipulate the data correctly.

  1. Application of morphological bit planes in retinal blood vessel extraction.

    PubMed

    Fraz, M M; Basit, A; Barman, S A

    2013-04-01

    The appearance of the retinal blood vessels is an important diagnostic indicator of various clinical disorders of the eye and the body. Retinal blood vessels have been shown to provide evidence in terms of change in diameter, branching angles, or tortuosity, as a result of ophthalmic disease. This paper reports the development for an automated method for segmentation of blood vessels in retinal images. A unique combination of methods for retinal blood vessel skeleton detection and multidirectional morphological bit plane slicing is presented to extract the blood vessels from the color retinal images. The skeleton of main vessels is extracted by the application of directional differential operators and then evaluation of combination of derivative signs and average derivative values. Mathematical morphology has been materialized as a proficient technique for quantifying the retinal vasculature in ocular fundus images. A multidirectional top-hat operator with rotating structuring elements is used to emphasize the vessels in a particular direction, and information is extracted using bit plane slicing. An iterative region growing method is applied to integrate the main skeleton and the images resulting from bit plane slicing of vessel direction-dependent morphological filters. The approach is tested on two publicly available databases DRIVE and STARE. Average accuracy achieved by the proposed method is 0.9423 for both the databases with significant values of sensitivity and specificity also; the algorithm outperforms the second human observer in terms of precision of segmented vessel tree.

  2. Design and Demonstration of a 30 GHz 16-bit Superconductor RSFQ Microprocessor

    DTIC Science & Technology

    2015-03-10

    world’s first successful design, fabrication, and demonstration of correct operation of a 20 GHz 8x8-bit parallel carry-save RSFQ multiplier with...bit parallel carry-save RSFQ multiplier with ~6K JJs, a 16-bit sparse-tree wave-pipelined RSFQ adder with ~10K JJs, and partial operation of an 8...Fujimaki, M. Dorojevets. 20-GHz 8 x 8-bit Parallel Carry-Save Pipelined RSFQ Multiplier, IEEE Transactions on Applied Superconductivity, (06 2013

  3. Computer-Aided Design for Built-In-Test (CADBIT) - BIT Library. Volume 2

    DTIC Science & Technology

    1989-10-01

    description including introduction, automated procedure, data base, menus, CAD and BIT survey , and recommendati,ns. Volume II contains a description...applications were also surveyed to determine standards required for the CAD-BI I module implemen- tation and to establish requirements for and define...I include Menus, the CAD-BIT Feasibility Demonstration. BIT and CAD workstation surveys and Standards Recommendations, SLART-BIT Appli- cations, and a

  4. Resource allocation using constraint propagation

    NASA Technical Reports Server (NTRS)

    Rogers, John S.

    1990-01-01

    The concept of constraint propagation was discussed. Performance increases are possible with careful application of these constraint mechanisms. The degree of performance increase is related to the interdependence of the different activities resource usage. Although this method of applying constraints to activities and resources is often beneficial, it is obvious that this is no panacea cure for the computational woes that are experienced by dynamic resource allocation and scheduling problems. A combined effort for execution optimization in all areas of the system during development and the selection of the appropriate development environment is still the best method of producing an efficient system.

  5. Design of 1-bit and 2-bit magnitude comparators using electro-optic effect in Mach-Zehnder interferometers

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh; Bisht, Ashish; Singh, Gurdeep; Choudhary, Kuldeep; Raina, K. K.; Amphawan, Angela

    2015-12-01

    The Mach-Zehnder interferometer (MZI) structures collectively show powerful capability in switching an input optical signal to a desired output port from a collection of output ports. Hence, it is possible to construct complex optical combinational digital circuits using the electro-optic effect constituting MZI structure as a basic building block. Optical switches have been designed for 1-bit and 2-bit magnitude comparators based on electro-optic effect using Mach-Zehnder interferometers. The paper constitutes a mathematical description of the proposed device and thereafter simulation using MATLAB. Analysis of some factors influencing the performances of proposed device has been discussed properly. The study is verified using beam propagation method.

  6. Allocation of speech in conversation.

    PubMed

    Simon, Carsta; Baum, William M

    2017-03-01

    In a replication and extension of Conger and Killeen's (1974) widely cited demonstration of matching in conversations, we evaluated nine participants' allocation of speech and gaze to two conversational partners. German speakers participated in two 90-min sessions in which confederates uttered approval on independent variable-interval schedules. In one of the sessions, confederates uttered approval contingent upon and contiguous with eye contact whereas in the other session approval was uttered independent of the participant's gaze. Several measures of participants' verbal behavior were taken, including relative duration and rate of speech and gaze. These were compared to confederates' relative rate of approval and relative duration and rate of talk. The generalized matching equation was fitted to the various relations between participants' behavior and confederates' behavior. Conger and Killeen's results were not replicated; participants' response allocation did not show a systematic relation to the confederates' relative rate of approval. The strongest relations were to overall talk, rather than approval. In both conditions, the participant talked more to the confederate who talked less-inverse or antimatching. Participants' gaze showed the same inverse relation to the confederates' talk. Requiring gaze to be directed toward a confederate for delivery of approval made no difference in the results. The absence of a difference combined with prior research suggests that matching or antimatching in conversations is more likely due to induction than to reinforcement.

  7. Oncological resource allocation in Germany.

    PubMed

    Hartmann, Michael; Kath, Roland; Gundermann, Christin

    2008-03-01

    Oncology is a resource-intensive medical discipline where, so far, effectiveness rather than efficiency of a treatment has stood in the foreground. The aim of our study was, therefore, to determine the resource allocation and to assess the efficiency of oncology in Germany for the period of 2002-2004. With the aid of the official German Health Report, the expenditures for health in 2004 and the gain in years of life according to ICD 10 disease categories were analyzed. Based on the incremental costs and years of life gained, the cost calculation per year of life gained was made. Malignant neoplasms appear in 5th place in health expenditures at a cost of 15 billion 1. With costs per year of life gained of 140,750 1, malignant neoplasms range ahead of respiratory diseases (52,500 1)digestive diseases (27,455 1), and injuries (14,538 1). Costs involving malignant neoplasm per year of life gained range between 39,000 1(malignancies of the lip, oral cavity, and the pharynx), and 126,000 1(digestive organ cancer). In Germany, oncology incurs higher costs per year of life gained as compared to several other diseases. Also, in malignant neoplasm considerable differences can be observed regarding resource allocation and efficiency. (c) 2008 S. Karger AG, Basel.

  8. Constrained Allocation Flux Balance Analysis

    PubMed Central

    Mori, Matteo; Hwa, Terence; Martin, Olivier C.

    2016-01-01

    New experimental results on bacterial growth inspire a novel top-down approach to study cell metabolism, combining mass balance and proteomic constraints to extend and complement Flux Balance Analysis. We introduce here Constrained Allocation Flux Balance Analysis, CAFBA, in which the biosynthetic costs associated to growth are accounted for in an effective way through a single additional genome-wide constraint. Its roots lie in the experimentally observed pattern of proteome allocation for metabolic functions, allowing to bridge regulation and metabolism in a transparent way under the principle of growth-rate maximization. We provide a simple method to solve CAFBA efficiently and propose an “ensemble averaging” procedure to account for unknown protein costs. Applying this approach to modeling E. coli metabolism, we find that, as the growth rate increases, CAFBA solutions cross over from respiratory, growth-yield maximizing states (preferred at slow growth) to fermentative states with carbon overflow (preferred at fast growth). In addition, CAFBA allows for quantitatively accurate predictions on the rate of acetate excretion and growth yield based on only 3 parameters determined by empirical growth laws. PMID:27355325

  9. Subjective audio quality evaluation of embedded-optimization-based distortion precompensation algorithms.

    PubMed

    Defraene, Bruno; van Waterschoot, Toon; Diehl, Moritz; Moonen, Marc

    2016-07-01

    Subjective audio quality evaluation experiments have been conducted to assess the performance of embedded-optimization-based precompensation algorithms for mitigating perceptible linear and nonlinear distortion in audio signals. It is concluded with statistical significance that the perceived audio quality is improved by applying an embedded-optimization-based precompensation algorithm, both in case (i) nonlinear distortion and (ii) a combination of linear and nonlinear distortion is present. Moreover, a significant positive correlation is reported between the collected subjective and objective PEAQ audio quality scores, supporting the validity of using PEAQ to predict the impact of linear and nonlinear distortion on the perceived audio quality.

  10. 10 CFR 217.53 - Types of allocation orders.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Types of allocation orders. 217.53 Section 217.53 Energy DEPARTMENT OF ENERGY OIL ENERGY PRIORITIES AND ALLOCATIONS SYSTEM Allocation Actions § 217.53 Types of allocation orders. There are three types of allocation orders available for communicating allocation...

  11. Universality and clustering in {bold 1+1} dimensional superstring-bit models

    SciTech Connect

    Bergman, O.; Thorn, C.B.

    1996-03-01

    We construct a 1+1 dimensional superstring-bit model for {ital D}=3 type IIB superstring. This low dimension model escapes the problems encountered in higher dimension models: (1) It possesses full Galilean supersymmetry. (2) For noninteracting polymers of bits, the exactly soluble linear superpotential describing bit interactions is in a large universality class of superpotentials which includes ones bounded at spatial infinity. (3) The latter are used to construct a superstring-bit model with the clustering properties needed to define an {ital S} matrix for closed polymers of superstring bits. {copyright} {ital 1996 The American Physical Society.}

  12. Universality and clustering in 1 + 1 dimensional superstring-bit models

    SciTech Connect

    Bergman, O.; Thorn, C.B.

    1996-03-01

    We construct a 1+1 dimensional superstring-bit model for D=3 Type IIB superstring. This low dimension model escapes the problem encountered in higher dimension models: (1) It possesses full Galilean supersymmetry; (2) For noninteracting Polymers of bits, the exactly soluble linear superpotential describing bit interactions is in a large universality class of superpotentials which includes ones bounded at spatial infinity; (3) The latter are used to construct a superstring-bit model with the clustering properties needed to define an S-matrix for closed polymers of superstring-bits.

  13. Dynamic and balanced capacity allocation scheme with uniform bandwidth for OFDM-PON systems

    NASA Astrophysics Data System (ADS)

    Lei, Cheng; Chen, Hongwei; Chen, Minghua; Yu, Ying; Guo, Qiang; Yang, Sigang; Xie, Shizhong

    2015-03-01

    As the bitrate of orthogonal frequency division multiplexing passive optical network (OFDM-PON) system is continuously increasing, how to effectively allocate the system bandwidth among the huge number of optical network units (ONUs) is one of the key problems before OFDM-PON can be practical deployed. Unlike traditional bandwidth allocation scheme, in this paper, the transmission performance of single ONU is for the first time taken into consideration and optimized. To reduce the manufacturing complexity and fully utilize the processing ability of the receivers, the system bandwidth is equally distributed to the ONUs. Bit loading is used to allocate the total transmission capacity, and power loading is used to guarantee the ONUs have balanced transmission performance even if they operate at different bitrate. In this way, a dynamic and balanced capacity allocation scheme with uniform bandwidth for OFDM-PON systems can be realized. At last, an experimental system is established to verify the feasibility of the proposed scheme, and the influence that the scheme brings to the whole system is also analyzed.

  14. Power allocation strategies to minimize energy consumption in wireless body area networks.

    PubMed

    Kailas, Aravind

    2011-01-01

    The wide scale deployment of wireless body area networks (WBANs) hinges on designing energy efficient communication protocols to support the reliable communication as well as to prolong the network lifetime. Cooperative communications, a relatively new idea in wireless communications, offers the benefits of multi-antenna systems, thereby improving the link reliability and boosting energy efficiency. In this short paper, the advantages of resorting to cooperative communications for WBANs in terms of minimized energy consumption are investigated. Adopting an energy model that encompasses energy consumptions in the transmitter and receiver circuits, and transmitting energy per bit, it is seen that cooperative transmission can improve energy efficiency of the wireless network. In particular, the problem of optimal power allocation is studied with the constraint of targeted outage probability. Two strategies of power allocation are considered: power allocation with and without posture state information. Using analysis and simulation-based results, two key points are demonstrated: (i) allocating power to the on-body sensors making use of the posture information can reduce the total energy consumption of the WBAN; and (ii) when the channel condition is good, it is better to recruit less relays for cooperation to enhance energy efficiency.

  15. Artificial intelligent techniques for optimizing water allocation in a reservoir watershed

    NASA Astrophysics Data System (ADS)

    Chang, Fi-John; Chang, Li-Chiu; Wang, Yu-Chung

    2014-05-01

    This study proposes a systematical water allocation scheme that integrates system analysis with artificial intelligence techniques for reservoir operation in consideration of the great uncertainty upon hydrometeorology for mitigating droughts impacts on public and irrigation sectors. The AI techniques mainly include a genetic algorithm and adaptive-network based fuzzy inference system (ANFIS). We first derive evaluation diagrams through systematic interactive evaluations on long-term hydrological data to provide a clear simulation perspective of all possible drought conditions tagged with their corresponding water shortages; then search the optimal reservoir operating histogram using genetic algorithm (GA) based on given demands and hydrological conditions that can be recognized as the optimal base of input-output training patterns for modelling; and finally build a suitable water allocation scheme through constructing an adaptive neuro-fuzzy inference system (ANFIS) model with a learning of the mechanism between designed inputs (water discount rates and hydrological conditions) and outputs (two scenarios: simulated and optimized water deficiency levels). The effectiveness of the proposed approach is tested on the operation of the Shihmen Reservoir in northern Taiwan for the first paddy crop in the study area to assess the water allocation mechanism during drought periods. We demonstrate that the proposed water allocation scheme significantly and substantially avails water managers of reliably determining a suitable discount rate on water supply for both irrigation and public sectors, and thus can reduce the drought risk and the compensation amount induced by making restrictions on agricultural use water.

  16. Critique of the Hughes Aircraft shuttle Ku band leading edge bit synchronizer

    NASA Technical Reports Server (NTRS)

    Holmes, J. K.

    1980-01-01

    A bit synchronizer is analyzed via timing diagrams in a noise-free environment. It is believed that this new bit synchronizer will track the rising edge of the data bits with 25% asymmetry and up to a 90 deg phase shift between the received clock and data bit timing. In addition, the data bits will be demodulated correctly. It is not true that phase shifts larger than 90 deg will necessarily be corrected by this bit synchronizer. However, the specifications currently require the loop to operate over only a + or - 75 deg phase shift between the received data stream leading edges and the bit synchronizer leading edges; consequently, there should be no problem.

  17. Multi-bit quantum random number generation by measuring positions of arrival photons

    SciTech Connect

    Yan, Qiurong; Zhao, Baosheng; Liao, Qinghong; Zhou, Nanrun

    2014-10-15

    We report upon the realization of a novel multi-bit optical quantum random number generator by continuously measuring the arrival positions of photon emitted from a LED using MCP-based WSA photon counting imaging detector. A spatial encoding method is proposed to extract multi-bits random number from the position coordinates of each detected photon. The randomness of bits sequence relies on the intrinsic randomness of the quantum physical processes of photonic emission and subsequent photoelectric conversion. A prototype has been built and the random bit generation rate could reach 8 Mbit/s, with random bit generation efficiency of 16 bits per detected photon. FPGA implementation of Huffman coding is proposed to reduce the bias of raw extracted random bits. The random numbers passed all tests for physical random number generator.

  18. Chaotic laser based physical random bit streaming system with a computer application interface

    NASA Astrophysics Data System (ADS)

    Shinohara, Susumu; Arai, Kenichi; Davis, Peter; Sunada, Satoshi; Harayama, Takahisa

    2017-03-01

    We demonstrate a random bit streaming system that uses a chaotic laser as its physical entropy source. By performing real-time bit manipulation for bias reduction, we were able to provide the memory of a personal computer with a constant supply of ready-to-use physical random bits at a throughput of up to 4 Gbps. We pay special attention to the end-to-end entropy source model describing how the entropy from physical sources is converted into bit entropy. We confirmed the statistical quality of the generated random bits by revealing the pass rate of the NIST SP800-22 test suite to be 65 % to 75 %, which is commonly considered acceptable for a reliable random bit generator. We also confirmed the stable operation of our random bit steaming system with long-term bias monitoring.

  19. Multi-bit quantum random number generation by measuring positions of arrival photons

    NASA Astrophysics Data System (ADS)

    Yan, Qiurong; Zhao, Baosheng; Liao, Qinghong; Zhou, Nanrun

    2014-10-01

    We report upon the realization of a novel multi-bit optical quantum random number generator by continuously measuring the arrival positions of photon emitted from a LED using MCP-based WSA photon counting imaging detector. A spatial encoding method is proposed to extract multi-bits random number from the position coordinates of each detected photon. The randomness of bits sequence relies on the intrinsic randomness of the quantum physical processes of photonic emission and subsequent photoelectric conversion. A prototype has been built and the random bit generation rate could reach 8 Mbit/s, with random bit generation efficiency of 16 bits per detected photon. FPGA implementation of Huffman coding is proposed to reduce the bias of raw extracted random bits. The random numbers passed all tests for physical random number generator.

  20. 32 bit digital optical computer - A hardware update

    NASA Technical Reports Server (NTRS)

    Guilfoyle, Peter S.; Carter, James A., III; Stone, Richard V.; Pape, Dennis R.

    1990-01-01

    Such state-of-the-art devices as multielement linear laser diode arrays, multichannel acoustooptic modulators, optical relays, and avalanche photodiode arrays, are presently applied to the implementation of a 32-bit supercomputer's general-purpose optical central processing architecture. Shannon's theorem, Morozov's control operator method (in conjunction with combinatorial arithmetic), and DeMorgan's law have been used to design an architecture whose 100 MHz clock renders it fully competitive with emerging planar-semiconductor technology. Attention is given to the architecture's multichannel Bragg cells, thermal design and RF crosstalk considerations, and the first and second anamorphic relay legs.

  1. Design of high-bit-rate coherent communication links

    NASA Astrophysics Data System (ADS)

    Konyshev, V. A.; Leonov, A. V.; Nanii, O. E.; Novikov, A. G.; Treshchikov, V. N.; Ubaydullaev, R. R.

    2016-12-01

    We report an analysis of the problems encountered in the design of modern high-bit-rate coherent communication links. A phenomenological communication link model is described, which is suitable for solving applied tasks of the network design with nonlinear effects taken into account. We propose an engineering approach to the design that is based on the use of fundamental nonlinearity coefficients calculated in advance for the experimental configurations of communication links. An experimental method is presented for calculating the nonlinearity coefficient of communication links. It is shown that the proposed approach allows one to successfully meet the challenges in designing communication networks.

  2. Floating-point function generation routines for 16-bit microcomputers

    NASA Technical Reports Server (NTRS)

    Mackin, M. A.; Soeder, J. F.

    1984-01-01

    Several computer subroutines have been developed that interpolate three types of nonanalytic functions: univariate, bivariate, and map. The routines use data in floating-point form. However, because they are written for use on a 16-bit Intel 8086 system with an 8087 mathematical coprocessor, they execute as fast as routines using data in scaled integer form. Although all of the routines are written in assembly language, they have been implemented in a modular fashion so as to facilitate their use with high-level languages.

  3. Fast computational scheme of image compression for 32-bit microprocessors

    NASA Technical Reports Server (NTRS)

    Kasperovich, Leonid

    1994-01-01

    This paper presents a new computational scheme of image compression based on the discrete cosine transform (DCT), underlying JPEG and MPEG International Standards. The algorithm for the 2-d DCT computation uses integer operations (register shifts and additions / subtractions only); its computational complexity is about 8 additions per image pixel. As a meaningful example of an on-board image compression application we consider the software implementation of the algorithm for the Mars Rover (Marsokhod, in Russian) imaging system being developed as a part of Mars-96 International Space Project. It's shown that fast software solution for 32-bit microprocessors may compete with the DCT-based image compression hardware.

  4. Simplified quantum bit commitment using single photon nonlocality

    NASA Astrophysics Data System (ADS)

    He, Guang Ping

    2014-10-01

    We simplified our previously proposed quantum bit commitment (QBC) protocol based on the Mach-Zehnder interferometer, by replacing symmetric beam splitters with asymmetric ones. It eliminates the need for random sending time of the photons; thus, the feasibility and efficiency are both improved. The protocol is immune to the cheating strategy in the Mayers-Lo-Chau no-go theorem of unconditionally secure QBC, because the density matrices of the committed states do not satisfy a crucial condition on which the no-go theorem holds.

  5. Cryptographic Properties of the Hidden Weighted Bit Function

    DTIC Science & Technology

    2013-12-23

    40 and revisited by D. Knuth in Vol. 4 of The Art of Computer Programming, is a function that seems to be the simplest one with exponential Binary...SUPPLEMENTARY NOTES 14. ABSTRACT The hidden weighted bit function (HWBF), introduced by R. Bryant in IEEE Trans. Comp. 40 and revisited by D. Knuth in...but has a VLSI implementation with low area-time complexity [2]. In [19], Knuth reproved Bryant’s theorem stating that the HWBF has a large BDD size

  6. All-optical pseudorandom bit sequences generator based on TOADs

    NASA Astrophysics Data System (ADS)

    Sun, Zhenchao; Wang, Zhi; Wu, Chongqing; Wang, Fu; Li, Qiang

    2016-03-01

    A scheme for all-optical pseudorandom bit sequences (PRBS) generator is demonstrated with optical logic gate 'XNOR' and all-optical wavelength converter based on cascaded Tera-Hertz Optical Asymmetric Demultiplexer (TOADs). Its feasibility is verified by generation of return-to-zero on-off keying (RZ-OOK) 263-1 PRBS at the speed of 1 Gb/s with 10% duty radio. The high randomness of ultra-long cycle PRBS is validated by successfully passing the standard benchmark test.

  7. Reduction method with system analysis for multiobjective optimization-based design

    NASA Technical Reports Server (NTRS)

    Azarm, S.; Sobieszczanski-Sobieski, J.

    1993-01-01

    An approach for reducing the number of variables and constraints, which is combined with System Analysis Equations (SAE), for multiobjective optimization-based design is presented. In order to develop a simplified analysis model, the SAE is computed outside an optimization loop and then approximated for use by an operator. Two examples are presented to demonstrate the approach.

  8. A method for investigating system matrix properties in optimization-based CT reconstruction

    NASA Astrophysics Data System (ADS)

    Rose, Sean D.; Sidky, Emil Y.; Pan, Xiaochuan

    2016-04-01

    Optimization-based iterative reconstruction methods have shown much promise for a variety of applications in X-ray computed tomography (CT). In these reconstruction methods, the X-ray measurement is modeled as a linear mapping from a finite-dimensional image space to a finite dimensional data-space. This mapping is dependent on a number of factors including the basis functions used for image representation1 and the method by which the matrix representing this mapping is generated.2 Understanding the properties of this linear mapping and how it depends on our choice of parameters is fundamental to optimization-based reconstruction. In this work, we confine our attention to a pixel basis and propose a method to investigate the effect of pixel size in optimization-based reconstruction. The proposed method provides insight into the tradeoff between higher resolution image representation and matrix conditioning. We demonstrate this method for a particular breast CT system geometry. We find that the images obtained from accurate solution of a least squares reconstruction optimization problem have high sensitivity to pixel size within certain regimes. We propose two methods by which this sensitivity can be reduced and demonstrate their efficacy. Our results indicate that the choice of pixel size in optimization-based reconstruction can have great impact on the quality of the reconstructed image, and that understanding the properties of the linear mapping modeling the X-ray measurement can help guide us with this choice.

  9. Investigation of optimization-based reconstruction with an image-total-variation constraint in PET

    NASA Astrophysics Data System (ADS)

    Zhang, Zheng; Ye, Jinghan; Chen, Buxin; Perkins, Amy E.; Rose, Sean; Sidky, Emil Y.; Kao, Chien-Min; Xia, Dan; Tung, Chi-Hua; Pan, Xiaochuan

    2016-08-01

    Interest remains in reconstruction-algorithm research and development for possible improvement of image quality in current PET imaging and for enabling innovative PET systems to enhance existing, and facilitate new, preclinical and clinical applications. Optimization-based image reconstruction has been demonstrated in recent years of potential utility for CT imaging applications. In this work, we investigate tailoring the optimization-based techniques to image reconstruction for PET systems with standard and non-standard scan configurations. Specifically, given an image-total-variation (TV) constraint, we investigated how the selection of different data divergences and associated parameters impacts the optimization-based reconstruction of PET images. The reconstruction robustness was explored also with respect to different data conditions and activity up-takes of practical relevance. A study was conducted particularly for image reconstruction from data collected by use of a PET configuration with sparsely populated detectors. Overall, the study demonstrates the robustness of the TV-constrained, optimization-based reconstruction for considerably different data conditions in PET imaging, as well as its potential to enable PET configurations with reduced numbers of detectors. Insights gained in the study may be exploited for developing algorithms for PET-image reconstruction and for enabling PET-configuration design of practical usefulness in preclinical and clinical applications.

  10. Nodal Analysis Optimization Based on the Use of Virtual Current Sources: A Powerful New Pedagogical Method

    ERIC Educational Resources Information Center

    Chatzarakis, G. E.

    2009-01-01

    This paper presents a new pedagogical method for nodal analysis optimization based on the use of virtual current sources, applicable to any linear electric circuit (LEC), regardless of its complexity. The proposed method leads to straightforward solutions, mostly arrived at by inspection. Furthermore, the method is easily adapted to computer…

  11. Nodal Analysis Optimization Based on the Use of Virtual Current Sources: A Powerful New Pedagogical Method

    ERIC Educational Resources Information Center

    Chatzarakis, G. E.

    2009-01-01

    This paper presents a new pedagogical method for nodal analysis optimization based on the use of virtual current sources, applicable to any linear electric circuit (LEC), regardless of its complexity. The proposed method leads to straightforward solutions, mostly arrived at by inspection. Furthermore, the method is easily adapted to computer…

  12. Nominal and robust stability regions of optimization-based PID controllers.

    PubMed

    Ou, Linlin; Zhang, Weidong; Gu, Danying

    2006-07-01

    In recent decades, several optimization-based methods have been developed for the proportional-integral-derivative (PID) controller design, and the common feature of these methods is that the controller has only one adjustable parameter. To keep the closed-loop systems stable is an essential requirement for the optimization-based PID controllers. In almost all these methods, however, no exact stability region for the single adjustable parameter was sketched. In this paper, using the proposed analytical procedure based on the dual-locus diagram technique, explicit stability regions of the optimization-based PID controllers are derived for stable, integrating, and unstable processes with time delay in the nominal and perturbed cases, respectively. It is revealed that the proposed analytical procedure is effective for the determination of the nominal and robust stability regions and it offers simplicity and ease of mathematical calculations over other available stability analysis methods. The results in this paper provide some insight into the tuning of the optimization-based PID controllers.

  13. Computational models and resource allocation for supercomputers

    NASA Technical Reports Server (NTRS)

    Mauney, Jon; Agrawal, Dharma P.; Harcourt, Edwin A.; Choe, Young K.; Kim, Sukil

    1989-01-01

    There are several different architectures used in supercomputers, with differing computational models. These different models present a variety of resource allocation problems that must be solved. The computational needs of a program must be cast in terms of the computational model supported by the supercomputer, and this must be done in a way that makes effective use of the machine's resources. This is the resource allocation problem. The computational models of available supercomputers and the associated resource allocation techniques are surveyed. It is shown that many problems and solutions appear repeatedly in very different computing environments. Some case studies are presented, showing concrete computational models and the allocation strategies used.

  14. Dual lookup table algorithm: an enhanced method of displaying 16-bit gray-scale images on 8-bit RGB graphic systems.

    PubMed

    Gillespy, T; Rowberg, A H

    1994-02-01

    Most digital radiologic images have an extended contrast range of 9 to 13 bits, and are stored in memory and disk as 16-bit integers. Consequently, it is difficult to view such images on computers with 8-bit red-green-blue (RGB) graphic systems. Two approaches have traditionally been used: (1) perform a one-time conversion of the 16-bit image data to 8-bit gray-scale data, and then adjust the brightness and contrast of the image by manipulating the color palette (palette animation); and (2) use a software lookup table to interactively convert the 16-bit image data to 8-bit gray-scale values with different window width and window level parameters. The first method can adjust image appearance in real time, but some image features may not be visible because of the lack of access to the full contrast range of the image and any region of interest measurements may be inaccurate. The second method allows "windowing" and "leveling" through the full contrast range of the image, but there is a delay after each adjustment that some users may find objectionable. We describe a method that combines palette animation and the software lookup table conversion method that optimizes the changes in image contrast and brightness on computers with standard 8-bit RGB graphic hardware--the dual lookup table algorithm. This algorithm links changes in the window/level control to changes in image contrast and brightness via palette animation.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Need for liquid-crystal display monitors having the capability of rendering higher than 8 bits in display-bit depth.

    PubMed

    Hiwasa, Takeshi; Morishita, Junji; Hatanaka, Shiro; Ohki, Masafumi; Toyofuku, Fukai; Higashida, Yoshiharu

    2009-01-01

    Our purpose in this study was to examine the potential usefulness of liquid-crystal display (LCD) monitors having the capability of rendering higher than 8 bits in display-bit depth. An LCD monitor having the capability of rendering 8, 10, and 12 bits was used. It was calibrated to the grayscale standard display function with a maximum luminance of 450 cd/m(2) and a minimum of 0.75 cd/m(2). For examining the grayscale resolution reported by ten observers, various simple test patterns having two different combinations of luminance in 8, 10, and 12 bits were randomly displayed on the LCD monitor. These patterns were placed on different uniform background luminance levels, such as 0, 50, and 100%, for maximum luminance. All observers participating in this study distinguished a smaller difference in luminance than one gray level in 8 bits irrespective of background luminance levels. As a result of the adaptation processes of the human visual system, observers distinguished a smaller difference in luminance as the luminance level of the test pattern was closer to the background. The smallest difference in luminance that observers distinguished was four gray levels in 12 bits, i.e., one gray level in 10 bits. Considering the results obtained by use of simple test patterns, medical images should ideally be displayed on LCD monitors having 10 bits or greater so that low-contrast objects with small differences in luminance can be detected and for providing a smooth gradation of grayscale.

  16. Rapid programmable/code-length-variable, time-domain bit-by-bit code shifting for high-speed secure optical communication.

    PubMed

    Gao, Zhensen; Dai, Bo; Wang, Xu; Kataoka, Nobuyuki; Wada, Naoya

    2011-05-01

    We propose and experimentally demonstrate a time-domain bit-by-bit code-shifting scheme that can rapidly program ultralong, code-length variable optical code by using only a dispersive element and a high-speed phase modulator for improving information security. The proposed scheme operates in the bit overlap regime and could eliminate the vulnerability of extracting the code by analyzing the fine structure of the time-domain spectral phase encoded signal. It is also intrinsically immune to eavesdropping via conventional power detection and differential-phase-shift-keying (DPSK) demodulation attacks. With this scheme, 10 Gbits/s of return-to-zero-DPSK data secured by bit-by-bit code shifting using up to 1024 chip optical code patterns have been transmitted over 49 km error free. The proposed scheme exhibits the potential for high-data-rate secure optical communication and to realize even one time pad.

  17. Bit-plane-based lossless depth-map coding

    NASA Astrophysics Data System (ADS)

    Kim, Kyung Yong; Park, Gwang Hoon; Suh, Doug Young

    2010-06-01

    This work proposes an efficient bit-plane-based lossless depth-map coding method for an MPEG 3-D video coding scheme. This method uses the distinctive image characteristics between bit planes of the depth map. In the simulations, the performances of the proposed coding method are compared with those of the conventional lossless coding methods, i.e., JPEG-LS, JPEG-2000, and H.264/AVC, in terms of the intra- and also intercoding modes. In intracoding mode, the proposed method achieves the highest compression ratios as 14.28:1 on average. JPEG-LS, JPEG2000, H.264/AVC (CAVLC), and H.264/AVC (CABAC) obtain the compression ratios as 9.74:1, 7.68:1, 9.13:1, and 10.97:1, respectively. In intercoding mode, the proposed method also accomplishes the highest compression ratios as 28.91:1 on average. However, H.264/AVC (CAVLC) and H.264/AVC (CABAC) obtain the compression ratios as 19.82:1 and 23.45:1, respectively.

  18. Extending Landauer's Bound from Bit Erasure to Arbitrary Computation

    NASA Astrophysics Data System (ADS)

    Wolpert, David

    Recent analyses have calculated the minimal thermodynamic work required to perform any computation π whose output is independent of its input, e.g., bit erasure. First I extend these analyses to calculate the work required even if the output of π depends on its input. Next I show that if a physical computer C implementing a computation π will be re-used, then the work required depends only on the dynamics of the logical variables under π, independent of the physical details of C. This establishes a formal identity between the thermodynamics of (re-usable) computers and theoretical computer science. To illustrate this identity, I prove that the minimal work required to compute a bit string σ on a (physical) Turing machine M is kB Tln (2) [ Kolmogorov complexity(σ) + log (Bernoulli measure of the set of strings that compute σ) + log(halting probability of M) ] . I also prove that uncertainty about the distribution over inputs to the computer increases the minimal work required to run the computer. I end by using these results to relate the free energy flux incident on an organism / robot / biosphere to the maximal amount of computation that the organism / robot / biosphere can do per unit time.

  19. Approximate Minimum Bit Error Rate Equalization for Fading Channels

    NASA Astrophysics Data System (ADS)

    Kovacs, Lorant; Levendovszky, Janos; Olah, Andras; Treplan, Gergely

    2010-12-01

    A novel channel equalizer algorithm is introduced for wireless communication systems to combat channel distortions resulting from multipath propagation. The novel algorithm is based on minimizing the bit error rate (BER) using a fast approximation of its gradient with respect to the equalizer coefficients. This approximation is obtained by estimating the exponential summation in the gradient with only some carefully chosen dominant terms. The paper derives an algorithm to calculate these dominant terms in real-time. Summing only these dominant terms provides a highly accurate approximation of the true gradient. Combined with a fast adaptive channel state estimator, the new equalization algorithm yields better performance than the traditional zero forcing (ZF) or minimum mean square error (MMSE) equalizers. The performance of the new method is tested by simulations performed on standard wireless channels. From the performance analysis one can infer that the new equalizer is capable of efficient channel equalization and maintaining a relatively low bit error probability in the case of channels corrupted by frequency selectivity. Hence, the new algorithm can contribute to ensuring QoS communication over highly distorted channels.

  20. Reexamination of quantum bit commitment: The possible and the impossible

    SciTech Connect

    D'Ariano, Giacomo Mauro; Kretschmann, Dennis; Schlingemann, Dirk; Werner, Reinhard F.

    2007-09-15

    Bit commitment protocols whose security is based on the laws of quantum mechanics alone are generally held to be impossible. We give a strengthened and explicit proof of this result. We extend its scope to a much larger variety of protocols, which may have an arbitrary number of rounds, in which both classical and quantum information is exchanged, and which may include aborts and resets. Moreover, we do not consider the receiver to be bound to a fixed 'honest' strategy, so that 'anonymous state protocols', which were recently suggested as a possible way to beat the known no-go results, are also covered. We show that any concealing protocol allows the sender to find a cheating strategy, which is universal in the sense that it works against any strategy of the receiver. Moreover, if the concealing property holds only approximately, the cheat goes undetected with a high probability, which we explicitly estimate. The proof uses an explicit formalization of general two-party protocols, which is applicable to more general situations, and an estimate about the continuity of the Stinespring dilation of a general quantum channel. The result also provides a natural characterization of protocols that fall outside the standard setting of unlimited available technology and thus may allow secure bit commitment. We present such a protocol whose security, perhaps surprisingly, relies on decoherence in the receiver's laboratory.

  1. Statistical mechanics analysis of thresholding 1-bit compressed sensing

    NASA Astrophysics Data System (ADS)

    Xu, Yingying; Kabashima, Yoshiyuki

    2016-08-01

    The one-bit compressed sensing framework aims to reconstruct a sparse signal by only using the sign information of its linear measurements. To compensate for the loss of scale information, past studies in the area have proposed recovering the signal by imposing an additional constraint on the l 2-norm of the signal. Recently, an alternative strategy that captures scale information by introducing a threshold parameter to the quantization process was advanced. In this paper, we analyze the typical behavior of thresholding 1-bit compressed sensing utilizing the replica method of statistical mechanics, so as to gain an insight for properly setting the threshold value. Our result shows that fixing the threshold at a constant value yields better performance than varying it randomly when the constant is optimally tuned, statistically. Unfortunately, the optimal threshold value depends on the statistical properties of the target signal, which may not be known in advance. In order to handle this inconvenience, we develop a heuristic that adaptively tunes the threshold parameter based on the frequency of positive (or negative) values in the binary outputs. Numerical experiments show that the heuristic exhibits satisfactory performance while incurring low computational cost.

  2. Learning may need only a few bits of synaptic precision

    NASA Astrophysics Data System (ADS)

    Baldassi, Carlo; Gerace, Federica; Lucibello, Carlo; Saglietti, Luca; Zecchina, Riccardo

    2016-05-01

    Learning in neural networks poses peculiar challenges when using discretized rather then continuous synaptic states. The choice of discrete synapses is motivated by biological reasoning and experiments, and possibly by hardware implementation considerations as well. In this paper we extend a previous large deviations analysis which unveiled the existence of peculiar dense regions in the space of synaptic states which accounts for the possibility of learning efficiently in networks with binary synapses. We extend the analysis to synapses with multiple states and generally more plausible biological features. The results clearly indicate that the overall qualitative picture is unchanged with respect to the binary case, and very robust to variation of the details of the model. We also provide quantitative results which suggest that the advantages of increasing the synaptic precision (i.e., the number of internal synaptic states) rapidly vanish after the first few bits, and therefore that, for practical applications, only few bits may be needed for near-optimal performance, consistent with recent biological findings. Finally, we demonstrate how the theoretical analysis can be exploited to design efficient algorithmic search strategies.

  3. Adaptive de-blocking filter for low bit rate applications

    NASA Astrophysics Data System (ADS)

    Jin, Xin; Zhu, Guangxi

    2006-01-01

    In block-based video compression technology, blocking artifacts are obvious because of the luminance and chrominance discontinuities which are caused by block-based discrete cosine transform (DCT) and motion compensation. As a kind of solution, an in-loop filter has been successfully used in H.264 adapting to quantization parameter and video content. In this paper, blocking artifacts distribution properties are analyzed carefully to reflect the blocking effect more accurately in the low bit rate applications. Two important parameters, named blocking severity and pixel variation, are defined to describe the boundary strength and the gradient of the samples across the edge respectively. Through series of statistical data retrieval and analysis for these parameters using multiple representative video sequences, a novel blocking artifacts distribution model is concluded. Based on this distribution model, an improved filter is proposed to H.264 with novel strength determination rule and different alpha model. Comparing with H.264 anchor results, the proposed de-blocking filter shows better performance especially in subjective aspect, which could be widely used in low bit rate applications.

  4. [Malaria epidemiology in Bitlis from 1998 to 2008].

    PubMed

    Sahin, Ibrahim Halil; Zeyrek, Fadile Yıldız; Aydın, Mehmet Fatih; Öntürk, Hatice; Basank, Mikail

    2012-01-01

    Malaria is still an important public health problem both in Turkey and the world. In this investigation, the records of patients with malaria that had been detected by the Health Directorship of Bitlis between 1998 and 2008 were examined. The retrospective study was performed on data from the Provincial Health Directory. During this 11-year period, a total of 86,951 blood samples were taken by active and pasive surveillance. Thin and thick blood smears stained with Giemsa were examined by immersion objective under microscope. A total of 659 (0.75%) malaria cases were detected. Of these cases, 368 (55.84%) were male and 291 (44.16%) female. It was also observed that the positive cases were found mostly between 1998-2000 and showed an increase between May-September and an important decrease from 2001. Out of the 659 cases of malaria, 599 (90.9%) cases were indigenous, 60 (9.1%) cases were imported and in all cases the determinant was Plasmodium vivax. It is hoped that, with this study, the data will contribute to the epidemiology of malaria and its prevention in Bitlis.

  5. A 32-bit Ultrafast Parallel Correlator using Resonant Tunneling Devices

    NASA Technical Reports Server (NTRS)

    Kulkarni, Shriram; Mazumder, Pinaki; Haddad, George I.

    1995-01-01

    An ultrafast 32-bit pipeline correlator has been implemented using resonant tunneling diodes (RTD) and hetero-junction bipolar transistors (HBT). The negative differential resistance (NDR) characteristics of RTD's is the basis of logic gates with the self-latching property that eliminates pipeline area and delay overheads which limit throughput in conventional technologies. The circuit topology also allows threshold logic functions such as minority/majority to be implemented in a compact manner resulting in reduction of the overall complexity and delay of arbitrary logic circuits. The parallel correlator is an essential component in code division multi-access (CDMA) transceivers used for the continuous calculation of correlation between an incoming data stream and a PN sequence. Simulation results show that a nano-pipelined correlator can provide and effective throughput of one 32-bit correlation every 100 picoseconds, using minimal hardware, with a power dissipation of 1.5 watts. RTD plus HBT based logic gates have been fabricated and the RTD plus HBT based correlator is compared with state of the art complementary metal oxide semiconductor (CMOS) implementations.

  6. Constant time worker thread allocation via configuration caching

    DOEpatents

    Eichenberger, Alexandre E; O'Brien, John K. P.

    2014-11-04

    Mechanisms are provided for allocating threads for execution of a parallel region of code. A request for allocation of worker threads to execute the parallel region of code is received from a master thread. Cached thread allocation information identifying prior thread allocations that have been performed for the master thread are accessed. Worker threads are allocated to the master thread based on the cached thread allocation information. The parallel region of code is executed using the allocated worker threads.

  7. 75 FR 18016 - Notice of Allocation Availability (NOAA) Inviting Applications for the CY 2010 Allocation Round...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-08

    ... Community Development Financial Institutions Fund Notice of Allocation Availability (NOAA) Inviting...: Notice of Allocation Availability (NOAA) Inviting Applications for the CY 2010 Allocation Round of the... page, investor letters and organizational charts) in electronic form (see Section IV.D. of this...

  8. Bit-1 Mediates Integrin-dependent Cell Survival through Activation of the NFκB Pathway*

    PubMed Central

    Griffiths, Genevieve S.; Grundl, Melanie; Leychenko, Anna; Reiter, Silke; Young-Robbins, Shirley S.; Sulzmaier, Florian J.; Caliva, Maisel J.; Ramos, Joe W.; Matter, Michelle L.

    2011-01-01

    Loss of properly regulated cell death and cell survival pathways can contribute to the development of cancer and cancer metastasis. Cell survival signals are modulated by many different receptors, including integrins. Bit-1 is an effector of anoikis (cell death due to loss of attachment) in suspended cells. The anoikis function of Bit-1 can be counteracted by integrin-mediated cell attachment. Here, we explored integrin regulation of Bit-1 in adherent cells. We show that knockdown of endogenous Bit-1 in adherent cells decreased cell survival and re-expression of Bit-1 abrogated this effect. Furthermore, reduction of Bit-1 promoted both staurosporine and serum-deprivation induced apoptosis. Indeed knockdown of Bit-1 in these cells led to increased apoptosis as determined by caspase-3 activation and positive TUNEL staining. Bit-1 expression protected cells from apoptosis by increasing phospho-IκB levels and subsequently bcl-2 gene transcription. Protection from apoptosis under serum-free conditions correlated with bcl-2 transcription and Bcl-2 protein expression. Finally, Bit-1-mediated regulation of bcl-2 was dependent on focal adhesion kinase, PI3K, and AKT. Thus, we have elucidated an integrin-controlled pathway in which Bit-1 is, in part, responsible for the survival effects of cell-ECM interactions. PMID:21383007

  9. Improved Iris Recognition through Fusion of Hamming Distance and Fragile Bit Distance.

    PubMed

    Hollingsworth, Karen P; Bowyer, Kevin W; Flynn, Patrick J

    2011-12-01

    The most common iris biometric algorithm represents the texture of an iris using a binary iris code. Not all bits in an iris code are equally consistent. A bit is deemed fragile if its value changes across iris codes created from different images of the same iris. Previous research has shown that iris recognition performance can be improved by masking these fragile bits. Rather than ignoring fragile bits completely, we consider what beneficial information can be obtained from the fragile bits. We find that the locations of fragile bits tend to be consistent across different iris codes of the same eye. We present a metric, called the fragile bit distance, which quantitatively measures the coincidence of the fragile bit patterns in two iris codes. We find that score fusion of fragile bit distance and Hamming distance works better for recognition than Hamming distance alone. To our knowledge, this is the first and only work to use the coincidence of fragile bit locations to improve the accuracy of matches.

  10. Application of Metal Implant 16-Bit Imaging: New Technique in Radiotherapy.

    PubMed

    Xin-Ye, Ni; Liugang, Gao; Mingming, Fang; Tao, Lin

    2017-04-01

    This study aimed to evaluate the computed tomography number and the variation of dose distribution based on 12-bit, 16-bit, and revised 16-bit images while the metal bars were inserted. The phantoms containing stainless steel, titanium alloy, and aluminum bar were scanned with computed tomography. These images were reconstructed with 12-bit and 16-bit imaging technologies. The "cupping artifacts" computed tomography value of the metal object revised by Matlab software was called the revised 16-bit image. The computed tomography values of these metal materials were analyzed. Two radiotherapy treatment plans were designed using the treatment plan system: (1) gantry was of 0° irradiation field and (2) gantry was of 90° and 270° for 2 opposed irradiation fields. The dose profile and dose-volume histogram of a structure of interest were analyzed in various images. The analysis was based on the radiotherapy plan differences between 3 different imaging techniques (12-bit imaging, 16-bit imaging, and revised 16-bit imaging technologies). For low-density metal object (computed tomography value <3071 Hounsfield unit, HU), the radiotherapy plan results were consistent based on 3 different imaging techniques. For high-density metal object (computed tomography value >3071 HU), the difference in radiotherapy plan results was obvious. The dose of 12-bit was 15.9% higher than revised 16-bit on average for the downstream of titanium rod. For stainless steel, this number reached up to 42.7%. A 16-bit imaging technology of metal implants can distinguish the computed tomography value of different metal materials. Furthermore, the revised 16-bit imaging technology can improve the dose computational accuracy of radiotherapy plan with high-density metal implants.

  11. Rethinking Reinforcement: Allocation, Induction, and Contingency

    ERIC Educational Resources Information Center

    Baum, William M.

    2012-01-01

    The concept of reinforcement is at least incomplete and almost certainly incorrect. An alternative way of organizing our understanding of behavior may be built around three concepts: "allocation," "induction," and "correlation." Allocation is the measure of behavior and captures the centrality of choice: All behavior entails choice and consists of…

  12. 10 CFR 490.503 - Credit allocation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Credit allocation. 490.503 Section 490.503 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle... described in section 490.507 of this part, DOE shall allocate one credit for each alternative fueled vehicle...

  13. 10 CFR 490.503 - Credit allocation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Credit allocation. 490.503 Section 490.503 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle... described in section 490.507 of this part, DOE shall allocate one credit for each alternative fueled vehicle...

  14. 10 CFR 490.503 - Credit allocation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Credit allocation. 490.503 Section 490.503 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle... described in section 490.507 of this part, DOE shall allocate one credit for each alternative fueled vehicle...

  15. 10 CFR 490.503 - Credit allocation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Credit allocation. 490.503 Section 490.503 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle... described in section 490.507 of this part, DOE shall allocate one credit for each alternative fueled vehicle...

  16. 10 CFR 490.503 - Credit allocation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Credit allocation. 490.503 Section 490.503 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle... described in section 490.507 of this part, DOE shall allocate one credit for each alternative fueled vehicle...

  17. 39 CFR 3060.12 - Asset allocation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Asset allocation. 3060.12 Section 3060.12 Postal... COMPETITIVE PRODUCTS ENTERPRISE § 3060.12 Asset allocation. Within 6 months of January 23, 2009, and for each fiscal year thereafter, the Postal Service will develop the net assets of the theoretical competitive...

  18. 39 CFR 3060.12 - Asset allocation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 39 Postal Service 1 2011-07-01 2011-07-01 false Asset allocation. 3060.12 Section 3060.12 Postal... COMPETITIVE PRODUCTS ENTERPRISE § 3060.12 Asset allocation. Within 6 months of January 23, 2009, and for each fiscal year thereafter, the Postal Service will develop the net assets of the theoretical competitive...

  19. 50 CFR 660.55 - Allocations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., directed open access, and recreational fisheries) will be established biennially or annually using the... in paragraph (c)(1) of this section, separate allocations for the limited entry and open access... allocations for groundfish trawl and nontrawl (limited entry fixed gear, open access, and recreational...

  20. 50 CFR 660.55 - Allocations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., directed open access, and recreational fisheries) will be established biennially or annually using the... in paragraph (c)(1) of this section, separate allocations for the limited entry and open access... allocations for groundfish trawl and nontrawl (limited entry fixed gear, open access, and recreational...

  1. How to Do Random Allocation (Randomization)

    PubMed Central

    Shin, Wonshik

    2014-01-01

    Purpose To explain the concept and procedure of random allocation as used in a randomized controlled study. Methods We explain the general concept of random allocation and demonstrate how to perform the procedure easily and how to report it in a paper. PMID:24605197

  2. A Time Allocation Study of University Faculty

    ERIC Educational Resources Information Center

    Link, Albert N.; Swann, Christopher A.; Bozeman, Barry

    2008-01-01

    Many previous time allocation studies treat work as a single activity and examine trade-offs between work and other activities. This paper investigates the at-work allocation of time among teaching, research, grant writing and service by science and engineering faculty at top US research universities. We focus on the relationship between tenure…

  3. 23 CFR 1240.15 - Allocations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Allocations. 1240.15 Section 1240.15 Highways NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION AND FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GUIDELINES SAFETY INCENTIVE GRANTS FOR USE OF SEAT BELTS-ALLOCATIONS BASED ON SEAT BELT USE...

  4. 23 CFR 1240.15 - Allocations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Allocations. 1240.15 Section 1240.15 Highways NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION AND FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GUIDELINES SAFETY INCENTIVE GRANTS FOR USE OF SEAT BELTS-ALLOCATIONS BASED ON SEAT BELT USE...

  5. 48 CFR 5452.249 - Allocation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 7 2011-10-01 2011-10-01 false Allocation. 5452.249 Section 5452.249 Federal Acquisition Regulations System DEFENSE LOGISTICS AGENCY, DEPARTMENT OF DEFENSE SOLICITATION PROVISIONS AND CONTRACT CLAUSES Texts of Provisions and Clauses 5452.249 Allocation. The Defense...

  6. 24 CFR 92.50 - Formula allocation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Congress appropriates less than $1.5 billion of HOME funds, $335,000 is substituted for $500,000. (4) The... Development HOME INVESTMENT PARTNERSHIPS PROGRAM Allocation Formula § 92.50 Formula allocation. (a... factors. The first and sixth factors are weighted 0.1; the other four factors are weighted 0.2....

  7. Resource Allocation in Public Research Universities

    ERIC Educational Resources Information Center

    Santos, Jose L.

    2007-01-01

    The purpose of this study was to conduct an econometric analysis of internal resource allocation. Two theories are used for this study of resource allocation in public research universities, and these are: (1) Theory of the Firm; and (2) Resource Dependence Theory. This study used the American Association of Universities Data Exchange (AAUDE)…

  8. 45 CFR 98.55 - Cost allocation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Cost allocation. 98.55 Section 98.55 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Use of Child Care and Development Funds § 98.55 Cost allocation. (a) The Lead Agency and...

  9. 45 CFR 98.55 - Cost allocation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 1 2013-10-01 2013-10-01 false Cost allocation. 98.55 Section 98.55 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Use of Child Care and Development Funds § 98.55 Cost allocation. (a) The Lead Agency and...

  10. 45 CFR 98.55 - Cost allocation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 1 2014-10-01 2014-10-01 false Cost allocation. 98.55 Section 98.55 Public Welfare Department of Health and Human Services GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Use of Child Care and Development Funds § 98.55 Cost allocation. (a) The Lead Agency and...

  11. 45 CFR 98.55 - Cost allocation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 1 2012-10-01 2012-10-01 false Cost allocation. 98.55 Section 98.55 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Use of Child Care and Development Funds § 98.55 Cost allocation. (a) The Lead Agency and...

  12. 45 CFR 98.55 - Cost allocation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 1 2011-10-01 2011-10-01 false Cost allocation. 98.55 Section 98.55 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Use of Child Care and Development Funds § 98.55 Cost allocation. (a) The Lead Agency and...

  13. Resource Allocation: Ration, Fashion, or Innovashun?

    ERIC Educational Resources Information Center

    Lourens, Roy

    1986-01-01

    Resource allocation is a key factor in promoting or retarding innovation. In a restrictive economic climate, it is easy to use resource allocation for decremental rationing and to stifle innovative thinking. The technique can also be used to ensure that the institution's human resources are encouraged to identify opportunities for innovation. (MSE)

  14. 42 CFR 457.228 - Cost allocation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Cost allocation. 457.228 Section 457.228 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... or appropriate CHIP Agency will have an approved cost allocation plan on file with the Department in...

  15. Acquisitions Allocations: Fairness, Equity and Bundled Pricing.

    ERIC Educational Resources Information Center

    Packer, Donna

    2001-01-01

    Examined the effect of an interdisciplinary Web-based citation database with full text, the ProQuest Research Library, on the Western State University library's acquisitions allocation plan. Used list price of full-text journals to calculate increases in acquisitions funding. A list of articles discussing formula allocation is appended.…

  16. 50 CFR 600.517 - Allocations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Allocations. 600.517 Section 600.517 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS Foreign Fishing § 600.517 Allocations. The Secretary...

  17. 42 CFR 24.2 - Allocation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Allocation. 24.2 Section 24.2 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES PERSONNEL SENIOR BIOMEDICAL RESEARCH SERVICE § 24.2 Allocation. (a) The Secretary, within the number authorized in the PHS Act, shall determine...

  18. 42 CFR 24.2 - Allocation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Allocation. 24.2 Section 24.2 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES PERSONNEL SENIOR BIOMEDICAL RESEARCH SERVICE § 24.2 Allocation. (a) The Secretary, within the number authorized in the PHS Act, shall determine...

  19. 42 CFR 24.2 - Allocation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Allocation. 24.2 Section 24.2 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES PERSONNEL SENIOR BIOMEDICAL RESEARCH SERVICE § 24.2 Allocation. (a) The Secretary, within the number authorized in the PHS Act, shall determine...

  20. 42 CFR 24.2 - Allocation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Allocation. 24.2 Section 24.2 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES PERSONNEL SENIOR BIOMEDICAL RESEARCH SERVICE § 24.2 Allocation. (a) The Secretary, within the number authorized in the PHS Act, shall determine...

  1. 42 CFR 24.2 - Allocation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Allocation. 24.2 Section 24.2 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES PERSONNEL SENIOR BIOMEDICAL RESEARCH SERVICE § 24.2 Allocation. (a) The Secretary, within the number authorized in the PHS Act, shall determine...

  2. 48 CFR 5452.249 - Allocation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 7 2014-10-01 2014-10-01 false Allocation. 5452.249 Section 5452.249 Federal Acquisition Regulations System DEFENSE LOGISTICS AGENCY, DEPARTMENT OF DEFENSE SOLICITATION PROVISIONS AND CONTRACT CLAUSES Texts of Provisions and Clauses 5452.249 Allocation. The Defense...

  3. MACT: A Manageable Minimization Allocation System

    PubMed Central

    Cui, Yan; Bu, Huaien; Liao, Shizhong

    2014-01-01

    Background. Minimization is a case allocation method for randomized controlled trials (RCT). Evidence suggests that the minimization method achieves balanced groups with respect to numbers and participant characteristics, and can incorporate more prognostic factors compared to other randomization methods. Although several automatic allocation systems exist (e.g., randoWeb, and MagMin), the minimization method is still difficult to implement, and RCTs seldom employ minimization. Therefore, we developed the minimization allocation controlled trials (MACT) system, a generic manageable minimization allocation system. System Outline. The MACT system implements minimization allocation by Web and email. It has a unified interface that manages trials, participants, and allocation. It simultaneously supports multitrials, multicenters, multigrouping, multiple prognostic factors, and multilevels. Methods. Unlike previous systems, MACT utilizes an optimized database that greatly improves manageability. Simulations and Results. MACT was assessed in a series of experiments and evaluations. Relative to simple randomization, minimization produces better balance among groups and similar unpredictability. Applications. MACT has been employed in two RCTs that lasted three years. During this period, MACT steadily and simultaneously satisfied the requirements of the trial. Conclusions. MACT is a manageable, easy-to-use case allocation system. Its outstanding features are attracting more RCTs to use the minimization allocation method. PMID:24701251

  4. Projected 1998-99 Cost Allocation Summary.

    ERIC Educational Resources Information Center

    Chin, Edward

    Designed for use in calculating the distribution of state aid to colleges in the Wisconsin Technical College System (WTCS) and in preparing financial and enrollment reports, this document provides a summary of projected cost allocations for the WTCS for 1998-99, derived from data submitted by the colleges on cost allocation schedules. Following a…

  5. Projected 1999-2000 Cost Allocation Summary.

    ERIC Educational Resources Information Center

    Wisconsin Technical Coll. System Board, Madison.

    Information contained in this summary was derived from data submitted by Wisconsin technical colleges on their 1999-2000 projected cost allocation schedules. Cost allocation information is used to calculate the distribution of state aids to each college, and prepare financial and enrollment reports including state statistical summaries and reports…

  6. Rethinking Reinforcement: Allocation, Induction, and Contingency

    ERIC Educational Resources Information Center

    Baum, William M.

    2012-01-01

    The concept of reinforcement is at least incomplete and almost certainly incorrect. An alternative way of organizing our understanding of behavior may be built around three concepts: "allocation," "induction," and "correlation." Allocation is the measure of behavior and captures the centrality of choice: All behavior entails choice and consists of…

  7. Thematic Mapper data for forest resource allocation

    NASA Technical Reports Server (NTRS)

    Zeff, Ilene S.; Merry, Carolyn J.

    1993-01-01

    A technique for classifying a Landsat Thematic Mapper image was demonstrated on the Wayne National Forest of southeastern Ohio. The classified image was integrated into a geographic information system database, and prescriptive forest land use allocation models were developed using the techniques of cartographic modeling. Timber harvest sites and accompanying haul roads were allocated.

  8. Inferential Aspects of Adaptive Allocation Rules.

    ERIC Educational Resources Information Center

    Berry, Donald A.

    In clinical trials, adaptive allocation means that the therapies assigned to the next patient or patients depend on the results obtained thus far in the trial. Although many adaptive allocation procedures have been proposed for clinical trials, few have actually used adaptive assignment, largely because classical frequentist measures of inference…

  9. 50 CFR 600.517 - Allocations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false Allocations. 600.517 Section 600.517 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS Foreign Fishing § 600.517 Allocations. The...

  10. 50 CFR 660.320 - Allocations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Indian fishery, is divided into limited entry and open access fisheries. Separate allocations for the limited entry and open access fisheries will be established biennially or annually for certain species and... excluding set asides for recreational or tribal Indian fisheries) minus the allocation to the open...

  11. Asymmetric programming: a highly reliable metadata allocation strategy for MLC NAND flash memory-based sensor systems.

    PubMed

    Huang, Min; Liu, Zhaoqing; Qiao, Liyan

    2014-10-10

    While the NAND flash memory is widely used as the storage medium in modern sensor systems, the aggressive shrinking of process geometry and an increase in the number of bits stored in each memory cell will inevitably degrade the reliability of NAND flash memory. In particular, it's critical to enhance metadata reliability, which occupies only a small portion of the storage space, but maintains the critical information of the file system and the address translations of the storage system. Metadata damage will cause the system to crash or a large amount of data to be lost. This paper presents Asymmetric Programming, a highly reliable metadata allocation strategy for MLC NAND flash memory storage systems. Our technique exploits for the first time the property of the multi-page architecture of MLC NAND flash memory to improve the reliability of metadata. The basic idea is to keep metadata in most significant bit (MSB) pages which are more reliable than least significant bit (LSB) pages. Thus, we can achieve relatively low bit error rates for metadata. Based on this idea, we propose two strategies to optimize address mapping and garbage collection. We have implemented Asymmetric Programming on a real hardware platform. The experimental results show that Asymmetric Programming can achieve a reduction in the number of page errors of up to 99.05% with the baseline error correction scheme.

  12. Asymmetric Programming: A Highly Reliable Metadata Allocation Strategy for MLC NAND Flash Memory-Based Sensor Systems

    PubMed Central

    Huang, Min; Liu, Zhaoqing; Qiao, Liyan

    2014-01-01

    While the NAND flash memory is widely used as the storage medium in modern sensor systems, the aggressive shrinking of process geometry and an increase in the number of bits stored in each memory cell will inevitably degrade the reliability of NAND flash memory. In particular, it's critical to enhance metadata reliability, which occupies only a small portion of the storage space, but maintains the critical information of the file system and the address translations of the storage system. Metadata damage will cause the system to crash or a large amount of data to be lost. This paper presents Asymmetric Programming, a highly reliable metadata allocation strategy for MLC NAND flash memory storage systems. Our technique exploits for the first time the property of the multi-page architecture of MLC NAND flash memory to improve the reliability of metadata. The basic idea is to keep metadata in most significant bit (MSB) pages which are more reliable than least significant bit (LSB) pages. Thus, we can achieve relatively low bit error rates for metadata. Based on this idea, we propose two strategies to optimize address mapping and garbage collection. We have implemented Asymmetric Programming on a real hardware platform. The experimental results show that Asymmetric Programming can achieve a reduction in the number of page errors of up to 99.05% with the baseline error correction scheme. PMID:25310473

  13. Are outcome-adaptive allocation trials ethical?

    PubMed

    Hey, Spencer Phillips; Kimmelman, Jonathan

    2015-04-01

    Randomization is firmly established as a cornerstone of clinical trial methodology. Yet, the ethics of randomization continues to generate controversy. The default, and most efficient, allocation scheme randomizes patients equally (1:1) across all arms of study. However, many randomized trials are using outcome-adaptive allocation schemes, which dynamically adjust the allocation ratio in favor of the better performing treatment arm. Advocates of outcome-adaptive allocation contend that it better accommodates clinical equipoise and promotes informed consent, since such trials limit patient-subject exposure to sub-optimal care. In this essay, we argue that this purported ethical advantage of outcome-adaptive allocation does not stand up to careful scrutiny in the setting of two-armed studies and/or early-phase research.

  14. Carbon allocation and accumulation in conifers

    SciTech Connect

    Gower, S.T.; Isebrands, J.G.; Sheriff, D.W.

    1995-07-01

    Forests cover approximately 33% of the land surface of the earth, yet they are responsible for 65% of the annual carbon (C) accumulated by all terrestrial biomes. In general, total C content and net primary production rates are greater for forests than for other biomes, but C budgets differ greatly among forests. Despite several decades of research on forest C budgets, there is still an incomplete understanding of the factors controlling C allocation. Yet, if we are to understand how changing global events such as land use, climate change, atmospheric N deposition, ozone, and elevated atmospheric CO{sub 2} affect the global C budget, a mechanistic understanding of C assimilation, partitioning, and allocation is necessary. The objective of this chapter is to review the major factors that influence C allocation and accumulation in conifer trees and forests. In keeping with the theme of this book, we will focus primarily on evergreen conifers. However, even among evergreen conifers, leaf, canopy, and stand-level C and nutrient allocation patterns differ, often as a function of leaf development and longevity. The terminology related to C allocation literature is often inconsistent, confusing and inadequate for understanding and integrating past and current research. For example, terms often used synonymously to describe C flow or movement include translocation, transport, distribution, allocation, partitioning, apportionment, and biomass allocation. A common terminology is needed because different terms have different meanings to readers. In this paper we use C allocation, partitioning, and accumulation according to the definitions of Dickson and Isebrands (1993). Partitioning is the process of C flow into and among different chemical, storage, and transport pools. Allocation is the distribution of C to different plant parts within the plant (i.e., source to sink). Accumulation is the end product of the process of C allocation.

  15. Control Allocation with Load Balancing

    NASA Technical Reports Server (NTRS)

    Bodson, Marc; Frost, Susan A.

    2009-01-01

    Next generation aircraft with a large number of actuators will require advanced control allocation methods to compute the actuator commands needed to follow desired trajectories while respecting system constraints. Previously, algorithms were proposed to minimize the l1 or l2 norms of the tracking error and of the actuator deflections. The paper discusses the alternative choice of the l(infinity) norm, or sup norm. Minimization of the control effort translates into the minimization of the maximum actuator deflection (min-max optimization). The paper shows how the problem can be solved effectively by converting it into a linear program and solving it using a simplex algorithm. Properties of the algorithm are also investigated through examples. In particular, the min-max criterion results in a type of load balancing, where the load is th desired command and the algorithm balances this load among various actuators. The solution using the l(infinity) norm also results in better robustness to failures and to lower sensitivity to nonlinearities in illustrative examples.

  16. Credit allocation for research institutes

    NASA Astrophysics Data System (ADS)

    Wang, J.-P.; Guo, Q.; Yang, K.; Han, J.-T.; Liu, J.-G.

    2017-05-01

    It is a challenging work to assess research performance of multiple institutes. Considering that it is unfair to average the credit to the institutes which is in the different order from a paper, in this paper, we present a credit allocation method (CAM) with a weighted order coefficient for multiple institutes. The results for the APS dataset with 18987 institutes show that top-ranked institutes obtained by the CAM method correspond to well-known universities or research labs with high reputation in physics. Moreover, we evaluate the performance of the CAM method when citation links are added or rewired randomly quantified by the Kendall's Tau and Jaccard index. The experimental results indicate that the CAM method has better performance in robustness compared with the total number of citations (TC) method and Shen's method. Finally, we give the first 20 Chinese universities in physics obtained by the CAM method. However, this method is valid for any other branch of sciences, not just for physics. The proposed method also provides universities and policy makers an effective tool to quantify and balance the academic performance of university.

  17. Measuring morbidity for resource allocation.

    PubMed Central

    Mays, N

    1987-01-01

    The RAWP (Resource Allocation Working Party) report used population weightings based on standardised mortality ratios (SMRs) as a proxy measure of differences in morbidity (and therefore in the need for health care resources) that existed between geographical areas after allowing for the age and sex structure of their populations. The adequacy of SMRs as a proxy for morbidity has aroused controversy, particularly from RAWP losers in London, and is one of the main themes of the National Health Service Management Board's current review of RAWP. Critics have argued, firstly, that the nature of the relation between morbidity and mortality is unknown; and, secondly, that SMRs are incomplete because they fail to take account of the effect of social deprivation on the need for health care. As a result several alternative proxies for morbidity based on social indicators have been proposed. One of their principal drawbacks is that their use is justified by their relation to measures of use of services known to be affected by the prevailing level of supply. Furthermore, the evidence suggests that mortality data actually correlate quite well with the available measures of both morbidity and social deprivation. But without access to comprehensive morbidity data the SMR debate is bound to remain inconclusive. As measures of health need, however, SMRs have the twin merits of being (a) independent of supply, and (b) more direct measures of health state than social indicators. PMID:3117312

  18. Time allocation of disabled individuals.

    PubMed

    Pagán, Ricardo

    2013-05-01

    Although some studies have analysed the disability phenomenon and its effect on, for example, labour force participation, wages, job satisfaction, or the use of disability pension, the empirical evidence on how disability steals time (e.g. hours of work) from individuals is very scarce. This article examines how disabled individuals allocate their time to daily activities as compared to their non-disabled counterparts. Using time diary information from the Spanish Time Use Survey (last quarter of 2002 and the first three quarters of 2003), we estimate the determinants of time (minutes per day) spent on four aggregate categories (market work, household production, tertiary activities and leisure) for a sample of 27,687 non-disabled and 5250 disabled individuals and decompose the observed time differential by using the Oaxaca-Blinder methodology. The results show that disabled individuals devote less time to market work (especially females), and more time to household production (e.g. cooking, cleaning, child care), tertiary activities (e.g., sleeping, personal care, medical treatment) and leisure activities. We also find a significant effect of age on the time spent on daily activities and important differences by gender and disability status. The results are consistent with the hypothesis that disability steals time, and reiterate the fact that more public policies are needed to balance working life and health concerns among disabled individuals.

  19. Complex Noise-Bits and Large-Scale Instantaneous Parallel Operations with Low Complexity

    NASA Astrophysics Data System (ADS)

    Wen, He; Kish, Laszlo B.; Klappenecker, Andreas

    We introduce the complex noise-bit as information carrier, which requires noise signals in two parallel wires instead of the single-wire representations of noise-based logic discussed so far. The immediate advantage of this new scheme is that, when we use random telegraph waves as noise carrier, the superposition of the first 2N integer numbers (obtained by the Achilles heel operation) yields nonzero values. We introduce basic instantaneous operations, with O(20) time and hardware complexity, including bit-value measurements in product states, single-bit and two-bit noise-gates (universality exists) that can instantaneously operate over large superpositions with full parallelism. We envision the possibility of implementing instantaneously running quantum algorithms on classical computers while using similar number of classical bits as the number of quantum bits emulated without the necessity of error corrections. Mathematical analysis and proofs are given.

  20. Security of quantum bit string commitment depends on the information measure.

    PubMed

    Buhrman, Harry; Christandl, Matthias; Hayden, Patrick; Lo, Hoi-Kwong; Wehner, Stephanie

    2006-12-22

    Unconditionally secure nonrelativistic bit commitment is known to be impossible in both the classical and the quantum world. However, when committing to a string of n bits at once, how far can we stretch the quantum limits? In this Letter, we introduce a framework of quantum schemes where Alice commits a string of n bits to Bob, in such a way that she can only cheat on a bits and Bob can learn at most b bits of information before the reveal phase. Our results are twofold: we show by an explicit construction that in the traditional approach, where the reveal and guess probabilities form the security criteria, no good schemes can exist: a + b is at least n. If, however, we use a more liberal criterion of security, the accessible information, we construct schemes where a = 4log2(n) + O(1) and b = 4, which is impossible classically. Our findings significantly extend known no-go results for quantum bit commitment.

  1. Avalanche and bit independence characteristics of double random phase encoding in the Fourier and Fresnel domains.

    PubMed

    Moon, Inkyu; Yi, Faliu; Lee, Yeon H; Javidi, Bahram

    2014-05-01

    In this work, we evaluate the avalanche effect and bit independence properties of the double random phase encoding (DRPE) algorithm in the Fourier and Fresnel domains. Experimental results show that DRPE has excellent bit independence characteristics in both the Fourier and Fresnel domains. However, DRPE achieves better avalanche effect results in the Fresnel domain than in the Fourier domain. DRPE gives especially poor avalanche effect results in the Fourier domain when only one bit is changed in the plaintext or in the encryption key. Despite this, DRPE shows satisfactory avalanche effect results in the Fresnel domain when any other number of bits changes in the plaintext or in the encryption key. To the best of our knowledge, this is the first report on the avalanche effect and bit independence behaviors of optical encryption approaches for bit units.

  2. Sub-threshold 10T SRAM bit cell with read/write XY selection

    NASA Astrophysics Data System (ADS)

    Feki, Anis; Allard, Bruno; Turgis, David; Lafont, Jean-Christophe; Drissi, Faress Tissafi; Abouzeid, Fady; Haendler, Sebastien

    2015-04-01

    New SRAM bit cell architectures have been proposed recently as solutions to the limitations of the six-transistor (6T) SRAM bit cell in term of minimum supply voltage, VDDMIN. There is no demonstrated bit cell as superior under ultra-low supply voltage like the 6T bit cell at nominal voltage. Main limitations concern first the ratio between the read current and the standby current at the lowest operating voltage, second the bit cell robustness to perturbations and third the data sensing sensitivity, among other but minor limitations. The paper presents two proposals of ten-transistor (10T) Ultra-Low-Voltage bit cell for 0.3 V operation and processed in 28 nm LP CMOS bulk. Simulation results are compared to experimental results to demonstrate a satisfying operation at Ultra-Low supply voltage.

  3. 49 CFR 33.54 - Elements of an allocation order.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false Elements of an allocation order. 33.54 Section 33.54 Transportation Office of the Secretary of Transportation TRANSPORTATION PRIORITIES AND ALLOCATION SYSTEM Allocation Actions § 33.54 Elements of an allocation order. Each allocation order must include: (a...

  4. 10 CFR 217.54 - Elements of an allocation order.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Elements of an allocation order. 217.54 Section 217.54 Energy DEPARTMENT OF ENERGY OIL ENERGY PRIORITIES AND ALLOCATIONS SYSTEM Allocation Actions § 217.54 Elements of an allocation order. Each allocation order must include: (a) A detailed description of the...

  5. 10 CFR 217.54 - Elements of an allocation order.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Elements of an allocation order. 217.54 Section 217.54 Energy DEPARTMENT OF ENERGY OIL ENERGY PRIORITIES AND ALLOCATIONS SYSTEM Allocation Actions § 217.54 Elements of an allocation order. Each allocation order must include: (a) A detailed description of the...

  6. 49 CFR 33.54 - Elements of an allocation order.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false Elements of an allocation order. 33.54 Section 33.54 Transportation Office of the Secretary of Transportation TRANSPORTATION PRIORITIES AND ALLOCATION SYSTEM Allocation Actions § 33.54 Elements of an allocation order. Each allocation order must include: (a...

  7. 49 CFR 33.54 - Elements of an allocation order.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false Elements of an allocation order. 33.54 Section 33.54 Transportation Office of the Secretary of Transportation TRANSPORTATION PRIORITIES AND ALLOCATION SYSTEM Allocation Actions § 33.54 Elements of an allocation order. Each allocation order must include: (a...

  8. 10 CFR 217.54 - Elements of an allocation order.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Elements of an allocation order. 217.54 Section 217.54 Energy DEPARTMENT OF ENERGY OIL ENERGY PRIORITIES AND ALLOCATIONS SYSTEM Allocation Actions § 217.54 Elements of an allocation order. Each allocation order must include: (a) A detailed description of the...

  9. Development and Testing of a Jet Assisted Polycrystalline Diamond Drilling Bit. Phase II Development Efforts

    SciTech Connect

    David S. Pixton

    1999-09-20

    Phase II efforts to develop a jet-assisted rotary-percussion drill bit are discussed. Key developments under this contract include: (1) a design for a more robust polycrystalline diamond drag cutter; (2) a new drilling mechanism which improves penetration and life of cutters; and (3) a means of creating a high-pressure mud jet inside of a percussion drill bit. Field tests of the new drill bit and the new robust cutter are forthcoming.

  10. Performance test of different 3.5 mm drill bits and consequences for orthopaedic surgery.

    PubMed

    Clement, Hans; Zopf, Christoph; Brandner, Markus; Tesch, Norbert P; Vallant, Rudolf; Puchwein, Paul

    2015-12-01

    Drilling of bones in orthopaedic and trauma surgery is a common procedure. There are yet no recommendations about which drill bits/coating should be preferred and when to change a used drill bit. In preliminary studies typical "drilling patterns" of surgeons concerning used spindle speed and feeding force were recorded. Different feeding forces were tested and abrasion was analysed using magnification and a scanning electron microscope (SEM). Acquired data were used for programming a friction stir welding machine (FSWM). Four drill bits (a default AISI 440A, a HSS, an AISI 440B and a Zirconium-oxide drill bit) were analysed for abrasive wear after 20/40/60 machine-guided and hand-driven drilled holes. Additionally different drill coatings [diamond-like carbon/grafitic (DLC), titanium nitride/carbide (Ti-N)] were tested. The mean applied feeding force by surgeons was 45 ± 15.6 Newton (N). HSS bits were still usable after 51 drill holes. Both coated AISI 440A bits showed considerable breakouts of the main cutting edge after 20 hand-driven drilled holes. The coated HSS bit showed very low abrasive wear. The non-coated AISI 440B bit had a similar durability to the HSS bits. The ZrO2 dental drill bit excelled its competitors (no considerable abrasive wear at >100 holes). If the default AISI 440A drill bit cannot be checked by 20-30× magnification after surgery, it should be replaced after 20 hand-driven drilled holes. Low price coated HSS bits could be a powerful alternative.

  11. Heat Generation During Bone Drilling: A Comparison Between Industrial and Orthopaedic Drill Bits.

    PubMed

    Hein, Christopher; Inceoglu, Serkan; Juma, David; Zuckerman, Lee

    2017-02-01

    Cortical bone drilling for preparation of screw placement is common in multiple surgical fields. The heat generated while drilling may reach thresholds high enough to cause osteonecrosis. This can compromise implant stability. Orthopaedic drill bits are several orders more expensive than their similarly sized, publicly available industrial counterparts. We hypothesize that an industrial bit will generate less heat during drilling, and the bits will not generate more heat after multiple cortical passes. We compared 4 4.0 mm orthopaedic and 1 3.97 mm industrial drill bits. Three types of each bit were drilled into porcine femoral cortices 20 times. The temperature of the bone was measured with thermocouple transducers. The heat generated during the first 5 drill cycles for each bit was compared to the last 5 cycles. These data were analyzed with analysis of covariance. The industrial drill bit generated the smallest mean increase in temperature (2.8 ± 0.29°C) P < 0.0001. No significant difference was identified comparing the first 5 cortices drilled to the last 5 cortices drilled for each bit. The P-values are as follows: Bosch (P = 0.73), Emerge (P = 0.09), Smith & Nephew (P = 0.08), Stryker (P = 0.086), and Synthes (P = 0.16). The industrial bit generated less heat during drilling than its orthopaedic counterparts. The bits maintained their performance after 20 drill cycles. Consideration should be given by manufacturers to design differences that may contribute to a more efficient cutting bit. Further investigation into the reuse of these drill bits may be warranted, as our data suggest their efficiency is maintained after multiple uses.

  12. Design and operation of mechanical and hydraulic bit releases. Technical report

    SciTech Connect

    Peterson, M.N.A.

    1984-02-01

    The Deep Sea Drilling Project Technical Report documents the history, incentives and development details of the bit release technology used aboard the GLOMAR CHALLENGER. Descriptions of the most current models and operational guidelines for both the earlier Mechanical Bit Release (MBR) and the later Hydraulic Bit Release (HBR) are included. Operational deployments of both systems are summarized. Appendices are included with certain significant engineering calculations and machine drawings.

  13. BIT/External Test Figures of Merit and Demonstration Techniques

    DTIC Science & Technology

    1979-12-01

    reliability is, the greater the complexity and correspond- ingly the greater the capability. The BIT/ETE capability is further subdivided into the...following subsections discuss the application of the time line analysim technique for the associated FOMs. 69 i’ ’’i,,, •,,,.*5 5. 1. 2. 1. Anlysis Method for...4 ba @C CC O as a 6Ma* 4 4 f* 4 0ý 𔃺aO Q 0 Ip p 𔃾~ ~~~~~ IN-’., C~f r C ~ on t 10n a.. e**~* 3* 0J a eq 0W. 0ww e Pe. 3b ~0 00 1ý 0 F. 40 £ý & oo

  14. Quantum random bit generation using stimulated Raman scattering.

    PubMed

    Bustard, Philip J; Moffatt, Doug; Lausten, Rune; Wu, Guorong; Walmsley, Ian A; Sussman, Benjamin J

    2011-12-05

    Random number sequences are a critical resource in a wide variety of information systems, including applications in cryptography, simulation, and data sampling. We introduce a quantum random number generator based on the phase measurement of Stokes light generated by amplification of zero-point vacuum fluctuations using stimulated Raman scattering. This is an example of quantum noise amplification using the most noise-free process possible: near unitary quantum evolution. The use of phase offers robustness to classical pump noise and the ability to generate multiple bits per measurement. The Stokes light is generated with high intensity and as a result, fast detectors with high signal-to-noise ratios can be used for measurement, eliminating the need for single-photon sensitive devices. The demonstrated implementation uses optical phonons in bulk diamond.

  15. The Application of Bit Slice Design to Digital Image Processing.

    DTIC Science & Technology

    1986-09-01

    AM2910 INSTR H#E ;continue RESULTINO MICROWORD: 0043 3FOF FOIE (X-1) CO IMENTS: Bits L15-47 declare the source registers to be in the pipeline...3FFF CO24 ;PUSH ADO. ON STACK, LO CTR w/02 0101 Oe4F 3F03 F14E ;MEMORY -) R4 0102 0043 3FOF FOIE ;RI-4 -, RI 0103 084F 3FO3 F13E ;MEMORY - R3 0101t 0043...3FOF F34E ;R3*R9 -> R4 .O S 0043 3FCF F21E ;R1-2 - RI S0105 084F 3F03 F13E ;MEMORY -, R3 0107 0043 3FCF F34E ;R3 R4 -) R4 0108 0043 3F0F FOIE ;RI4

  16. Measurements of Aperture Averaging on Bit-Error-Rate

    NASA Technical Reports Server (NTRS)

    Bastin, Gary L.; Andrews, Larry C.; Phillips, Ronald L.; Nelson, Richard A.; Ferrell, Bobby A.; Borbath, Michael R.; Galus, Darren J.; Chin, Peter G.; Harris, William G.; Marin, Jose A.; hide

    2005-01-01

    We report on measurements made at the Shuttle Landing Facility (SLF) runway at Kennedy Space Center of receiver aperture averaging effects on a propagating optical Gaussian beam wave over a propagation path of 1,000 in. A commercially available instrument with both transmit and receive apertures was used to transmit a modulated laser beam operating at 1550 nm through a transmit aperture of 2.54 cm. An identical model of the same instrument was used as a receiver with a single aperture that was varied in size up to 20 cm to measure the effect of receiver aperture averaging on Bit Error Rate. Simultaneous measurements were also made with a scintillometer instrument and local weather station instruments to characterize atmospheric conditions along the propagation path during the experiments.

  17. Optical refractive synchronization: bit error rate analysis and measurement

    NASA Astrophysics Data System (ADS)

    Palmer, James R.

    1999-11-01

    The direction of this paper is to describe the analytical tools and measurement techniques used at SilkRoad to evaluate the optical and electrical signals used in Optical Refractive Synchronization for transporting SONET signals across the transmission fiber. Fundamentally, the direction of this paper is to provide an outline of how SilkRoad, Inc., transports a multiplicity of SONET signals across a distance of fiber > 100 Km without amplification or regeneration of the optical signal, i.e., one laser over one fiber. Test and measurement data are presented to reflect how the SilkRoad technique of Optical Refractive Synchronization is employed to provide a zero bit error rate for transmission of multiple OC-12 and OC-48 SONET signals that are sent over a fiber optical cable which is > 100Km. The recovery and transformation modules are described for the modification and transportation of these SONET signals.

  18. Bit-Serial Adder Based on Quantum Dots

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Toomarian, Nikzad; Modarress, Katayoon; Spotnitz, Mathew

    2003-01-01

    A proposed integrated circuit based on quantum-dot cellular automata (QCA) would function as a bit-serial adder. This circuit would serve as a prototype building block for demonstrating the feasibility of quantum-dots computing and for the further development of increasingly complex and increasingly capable quantum-dots computing circuits. QCA-based bit-serial adders would be especially useful in that they would enable the development of highly parallel and systolic processors for implementing fast Fourier, cosine, Hartley, and wavelet transforms. The proposed circuit would complement the QCA-based circuits described in "Implementing Permutation Matrices by Use of Quantum Dots" (NPO-20801), NASA Tech Briefs, Vol. 25, No. 10 (October 2001), page 42 and "Compact Interconnection Networks Based on Quantum Dots" (NPO-20855), which appears elsewhere in this issue. Those articles described the limitations of very-large-scale-integrated (VLSI) circuitry and the major potential advantage afforded by QCA. To recapitulate: In a VLSI circuit, signal paths that are required not to interact with each other must not cross in the same plane. In contrast, for reasons too complex to describe in the limited space available for this article, suitably designed and operated QCA-based signal paths that are required not to interact with each other can nevertheless be allowed to cross each other in the same plane without adverse effect. In principle, this characteristic could be exploited to design compact, coplanar, simple (relative to VLSI) QCA-based networks to implement complex, advanced interconnection schemes. To enable a meaningful description of the proposed bit-serial adder, it is necessary to further recapitulate the description of a quantum-dot cellular automation from the first-mentioned prior article: A quantum-dot cellular automaton contains four quantum dots positioned at the corners of a square cell. The cell contains two extra mobile electrons that can tunnel (in the

  19. Retractable tool bit having latch type catch mechanism

    NASA Astrophysics Data System (ADS)

    Voellmer, George

    1993-01-01

    A retractable tool bit assembly for a tool such as an allen key is presented. The assembly includes one or more spring loaded nestable or telescoping tubular sections together with a catch mechanism for capturing and holding the tool in its retracted position. The catch mechanism consists of a latch mechanism located in a base section and which engages a conically shaped tool head located at the inner end of the tool. The tool head adjoins an eccentric oval type neck portion which extends to a rear lip of the tool head. The latch mechanism releases when the ovular neck portion rotates about the catch members upon actuation of a rotary tool drive motor. When released, all the telescoping sections and the tool extends fully outward to a use position.

  20. Novel Parity-Preserving Designs of Reversible 4-Bit Comparator

    NASA Astrophysics Data System (ADS)

    Qi, Xue-mei; Chen, Fu-long; Wang, Hong-tao; Sun, Yun-xiang; Guo, Liang-min

    2014-04-01

    Reversible logic has attracted much attention in recent years especially when the calculation with minimum energy consumption is considered. This paper presents two novel approaches for designing reversible 4-bit comparator based on parity-preserving gates, which can detect any fault that affects no more than a single logic signal. In order to construct the comparator, three variable EX-OR gate (TVG), comparator gate (CPG), four variable EX-OR gate block (FVGB) and comparator gate block (CPGB) are designed, and they are parity-preserving and reversible. Their quantum equivalent implementations are also proposed. The design of two comparator circuits is completed by using existing reversible gates and the above new reversible circuits. All these comparators have been modeled and verified in Verilog hardware description language (Verilog HDL). The Quartus II simulation results indicate that their circuits' logic structures are correct. The comparative results are presented in terms of quantum cost, delay and garbage outputs.

  1. Bit-string physics: A novel theory of everything

    SciTech Connect

    Noyes, H.P.

    1994-08-01

    We encode the quantum numbers of the standard model of quarks and leptons using constructed bitstrings of length 256. These label a grouting universe of bit-strings of growing length that eventually construct a finite and discrete space-time with reasonable cosmological properties. Coupling constants and mass ratios, computed from closure under XOR and a statistical hypothesis, using only {h_bar}, c and m{sub p} to fix our units of mass, length and time in terms of standard (meterkilogram-second) metrology, agree with the first four to seven significant figures of accepted experimental results. Finite and discrete conservation laws and commutation relations insure the essential characteristics of relativistic quantum mechanics, including particle-antiparticle pair creation. The correspondence limit in (free space) Maxwell electromagnetism and Einstein gravitation is consistent with the Feynman-Dyson-Tanimura ``proof.``

  2. Retractable tool bit having latch type catch mechanism

    NASA Technical Reports Server (NTRS)

    Voellmer, George (Inventor)

    1993-01-01

    A retractable tool bit assembly for a tool such as an allen key is presented. The assembly includes one or more spring loaded nestable or telescoping tubular sections together with a catch mechanism for capturing and holding the tool in its retracted position. The catch mechanism consists of a latch mechanism located in a base section and which engages a conically shaped tool head located at the inner end of the tool. The tool head adjoins an eccentric oval type neck portion which extends to a rear lip of the tool head. The latch mechanism releases when the ovular neck portion rotates about the catch members upon actuation of a rotary tool drive motor. When released, all the telescoping sections and the tool extends fully outward to a use position.

  3. A one-bit approach for image registration

    NASA Astrophysics Data System (ADS)

    Nguyen, An Hung; Pickering, Mark; Lambert, Andrew

    2015-02-01

    Motion estimation or optic flow computation for automatic navigation and obstacle avoidance programs running on Unmanned Aerial Vehicles (UAVs) is a challenging task. These challenges come from the requirements of real-time processing speed and small light-weight image processing hardware with very limited resources (especially memory space) embedded on the UAVs. Solutions towards both simplifying computation and saving hardware resources have recently received much interest. This paper presents an approach for image registration using binary images which addresses these two requirements. This approach uses translational information between two corresponding patches of binary images to estimate global motion. These low bit-resolution images require a very small amount of memory space to store them and allow simple logic operations such as XOR and AND to be used instead of more complex computations such as subtractions and multiplications.

  4. Postprocessing for very low bit-rate video compression.

    PubMed

    Apostolopoulos, J G; Jayant, N S

    1999-01-01

    This paper presents a novel postprocessing algorithm developed specifically for very low bit-rate MC-DCT video coders operating at low spatial resolution, postprocessing is intricate in this situation because the low sampling rate (as compared to the image feature size) makes it very easy to overfilter, producing excessive blurring. The proposed algorithm uses pixel-by-pixel processing to identify and reduce both blocking artifacts and mosquito noise while attempting to preserve the sharpness and naturalness of the reconstructed video signal and minimize the system complexity. Experimental results show that the algorithm successfully reduces artifacts in a 16 kb/s scene-adaptive coder for video signals sampled at 80 x 112 pixels per frame and 5-10 frames/s. Furthermore, the portability of the proposed algorithm to other block-DCT based compression systems is shown by applying it, without modification, to successfully post-process a JPEG-compressed image.

  5. Optimization-based image reconstruction with artifact reduction in C-arm CBCT

    NASA Astrophysics Data System (ADS)

    Xia, Dan; Langan, David A.; Solomon, Stephen B.; Zhang, Zheng; Chen, Buxin; Lai, Hao; Sidky, Emil Y.; Pan, Xiaochuan

    2016-10-01

    We investigate an optimization-based reconstruction, with an emphasis on image-artifact reduction, from data collected in C-arm cone-beam computed tomography (CBCT) employed in image-guided interventional procedures. In the study, an image to be reconstructed is formulated as a solution to a convex optimization program in which a weighted data divergence is minimized subject to a constraint on the image total variation (TV); a data-derivative fidelity is introduced in the program specifically for effectively suppressing dominant, low-frequency data artifact caused by, e.g. data truncation; and the Chambolle-Pock (CP) algorithm is tailored to reconstruct an image through solving the program. Like any other reconstructions, the optimization-based reconstruction considered depends upon numerous parameters. We elucidate the parameters, illustrate their determination, and demonstrate their impact on the reconstruction. The optimization-based reconstruction, when applied to data collected from swine and patient subjects, yields images with visibly reduced artifacts in contrast to the reference reconstruction, and it also appears to exhibit a high degree of robustness against distinctively different anatomies of imaged subjects and scanning conditions of clinical significance. Knowledge and insights gained in the study may be exploited for aiding in the design of practical reconstructions of truly clinical-application utility.

  6. Artifact reduction in short-scan CBCT by use of optimization-based reconstruction

    NASA Astrophysics Data System (ADS)

    Zhang, Zheng; Han, Xiao; Pearson, Erik; Pelizzari, Charles; Sidky, Emil Y.; Pan, Xiaochuan

    2016-05-01

    Increasing interest in optimization-based reconstruction in research on, and applications of, cone-beam computed tomography (CBCT) exists because it has been shown to have to potential to reduce artifacts observed in reconstructions obtained with the Feldkamp-Davis-Kress (FDK) algorithm (or its variants), which is used extensively for image reconstruction in current CBCT applications. In this work, we carried out a study on optimization-based reconstruction for possible reduction of artifacts in FDK reconstruction specifically from short-scan CBCT data. The investigation includes a set of optimization programs such as the image-total-variation (TV)-constrained data-divergency minimization, data-weighting matrices such as the Parker weighting matrix, and objects of practical interest for demonstrating and assessing the degree of artifact reduction. Results of investigative work reveal that appropriately designed optimization-based reconstruction, including the image-TV-constrained reconstruction, can reduce significant artifacts observed in FDK reconstruction in CBCT with a short-scan configuration.

  7. Field drilling tests on improved geothermal unsealed roller-cone bits. Final report

    SciTech Connect

    Hendrickson, R.R.; Jones, A.H.; Winzenried, R.W.; Maish, A.B.

    1980-05-01

    The development and field testing of a 222 mm (8-3/4 inch) unsealed, insert type, medium hard formation, high-temperature bit are described. Increased performance was gained by substituting improved materials in critical bit components. These materials were selected on bases of their high temperature properties, machinability and heat treatment response. Program objectives required that both machining and heat treating could be accomplished with existing rock bit production equipment. Six of the experimental bits were subjected to air drilling at 240/sup 0/C (460/sup 0/F) in Franciscan graywacke at the Geysers (California). Performances compared directly to conventional bits indicate that in-gage drilling time was increased by 70%. All bits at the Geysers are subjected to reaming out-of-gage hole prior to drilling. Under these conditions the experimental bits showed a 30% increase in usable hole drilled, compared with the conventional bits. The materials selected improved roller wear by 200%, friction per wear by 150%, and lug wear by 150%. These tests indicate a potential well cost savings of 4 to 8%. Savings of 12% are considered possible with drilling procedures optimized for the experimental bits.

  8. Handbook of operation and maintenance instructions for Model 5208A bit synchronizer unit

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Electrical/mechanical characteristics, operation, theory of operation, parts list, and electrical diagrams for the model 5208A bit synchronizer unit are provided. The unit is capable of performing the functions of bit synchronization and signal conditioning on demodulated wave trains containing amplitude, frequency, and phase distortions, as well as additive noise. Operating frequencies in the 1 to 27 MHz bit rate range are accommodated through the use of discrete frequency plug-in subunits. The unit provides 0 and 180 degree clocks and either a single signal hard decision, or a three bit quantized soft decision data output.

  9. Design and verification of a bit error rate tester in Altera FPGA for optical link developments

    NASA Astrophysics Data System (ADS)

    Cao, T.; Chang, J.; Gong, D.; Liu, C.; Liu, T.; Xiang, A.; Ye, J.

    2010-12-01

    This paper presents a custom bit error rate (BER) tester implementation in an Altera Stratix II GX signal integrity development kit. This BER tester deploys a parallel to serial pseudo random bit sequence (PRBS) generator, a bit and link status error detector and an error logging FIFO. The auto-correlation pattern enables receiver synchronization without specifying protocol at the physical layer. The error logging FIFO records both bit error data and link operation events. The tester's BER and data acquisition functions are utilized in a proton test of a 5 Gbps serializer. Experimental and data analysis results are discussed.

  10. 14-bit pipeline-SAR ADC for image sensor readout circuits

    NASA Astrophysics Data System (ADS)

    Wang, Gengyun; Peng, Can; Liu, Tianzhao; Ma, Cheng; Ding, Ning; Chang, Yuchun

    2015-03-01

    A two stage 14bit pipeline-SAR analog-to-digital converter includes a 5.5bit zero-crossing MDAC and a 9bit asynchronous SAR ADC for image sensor readout circuits built in 0.18um CMOS process is described with low power dissipation as well as small chip area. In this design, we employ comparators instead of high gain and high bandwidth amplifier, which consumes as low as 20mW of power to achieve the sampling rate of 40MSps and 14bit resolution.

  11. Two-bit quantum random number generator based on photon-number-resolving detection

    NASA Astrophysics Data System (ADS)

    Jian, Yi; Ren, Min; Wu, E.; Wu, Guang; Zeng, Heping

    2011-07-01

    Here we present a new fast two-bit quantum random number generator based on the intrinsic randomness of the quantum physical phenomenon of photon statistics of coherent light source. Two-bit random numbers were generated according to the number of detected photons in each light pulse by a photon-number-resolving detector. Poissonian photon statistics of the coherent light source guaranteed the complete randomness of the bit sequences. Multi-bit true random numbers were generated for the first time based on the multi-photon events from a coherent light source.

  12. Parameter allocation of parallel array bistable stochastic resonance and its application in communication systems

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Wang, You-Guo; Zhai, Qi-Qing; Liu, Jin

    2016-10-01

    In this paper, we propose a parameter allocation scheme in a parallel array bistable stochastic resonance-based communication system (P-BSR-CS) to improve the performance of weak binary pulse amplitude modulated (BPAM) signal transmissions. The optimal parameter allocation policy of the P-BSR-CS is provided to minimize the bit error rate (BER) and maximize the channel capacity (CC) under the adiabatic approximation condition. On this basis, we further derive the best parameter selection theorem in realistic communication scenarios via variable transformation. Specifically, the P-BSR structure design not only brings the robustness of parameter selection optimization, where the optimal parameter pair is not fixed but variable in quite a wide range, but also produces outstanding system performance. Theoretical analysis and simulation results indicate that in the P-BSR-CS the proposed parameter allocation scheme yields considerable performance improvement, particularly in very low signal-to-noise ratio (SNR) environments. Project supported by the National Natural Science Foundation of China (Grant No. 61179027), the Qinglan Project of Jiangsu Province of China (Grant No. QL06212006), and the University Postgraduate Research and Innovation Project of Jiangsu Province (Grant Nos. KYLX15_0829, KYLX15_0831).

  13. Interactive Land-Use Optimization Using Laguerre Voronoi Diagram with Dynamic Generating Point Allocation

    NASA Astrophysics Data System (ADS)

    Chaidee, S.; Pakawanwong, P.; Suppakitpaisarn, V.; Teerasawat, P.

    2017-09-01

    In this work, we devise an efficient method for the land-use optimization problem based on Laguerre Voronoi diagram. Previous Voronoi diagram-based methods are more efficient and more suitable for interactive design than discrete optimization-based method, but, in many cases, their outputs do not satisfy area constraints. To cope with the problem, we propose a force-directed graph drawing algorithm, which automatically allocates generating points of Voronoi diagram to appropriate positions. Then, we construct a Laguerre Voronoi diagram based on these generating points, use linear programs to adjust each cell, and reconstruct the diagram based on the adjustment. We adopt the proposed method to the practical case study of Chiang Mai University's allocated land for a mixed-use complex. For this case study, compared to other Voronoi diagram-based method, we decrease the land allocation error by 62.557 %. Although our computation time is larger than the previous Voronoi-diagram-based method, it is still suitable for interactive design.

  14. The anoikis effector Bit1 displays tumor suppressive function in lung cancer cells.

    PubMed

    Yao, Xin; Jennings, Scott; Ireland, Shubha Kale; Pham, Tri; Temple, Brandi; Davis, Mya; Chen, Renwei; Davenport, Ian; Biliran, Hector

    2014-01-01

    The mitochondrial Bit1 (Bcl-2 inhibitor of transcription 1) protein is a part of an apoptotic pathway that is uniquely regulated by integrin-mediated attachment. As an anoikis effector, Bit1 is released into the cytoplasm following loss of cell attachment and induces a caspase-independent form of apoptosis. Considering that anoikis resistance is a critical determinant of transformation, we hypothesized that cancer cells may circumvent the Bit1 apoptotic pathway to attain anchorage-independence and tumorigenic potential. Here, we provide the first evidence of the tumor suppressive effect of Bit1 through a mechanism involving anoikis induction in human lung adenocarcinoma derived A549 cells. Restitution of Bit1 in anoikis resistant A549 cells is sufficient to induce detachment induced-apoptosis despite defect in caspase activation and impairs their anchorage-independent growth. Conversely, stable downregulation of Bit1 in these cells significantly enhances their anoikis resistance and anchorage-independent growth. The Bit1 knockdown cells exhibit significantly enhanced tumorigenecity in vivo. It has been previously shown that the nuclear TLE1 corepressor is a putative oncogene in lung cancer, and we show here that TLE1 blocks Bit1 mediated anoikis in part by sequestering the pro-apoptotic partner of Bit1, the Amino-terminal Enhancer of Split (AES) protein, in the nucleus. Taken together, these findings suggest a tumor suppressive role of the caspase-independent anoikis effector Bit1 in lung cancer. Consistent with its role as a tumor suppressor, we have found that Bit1 is downregulated in human non-small cell lung cancer (NSCLC) tissues.

  15. Spatial Allocator for air quality modeling

    EPA Pesticide Factsheets

    The Spatial Allocator is a set of tools that helps users manipulate and generate data files related to emissions and air quality modeling without requiring the use of a commercial Geographic Information System.

  16. Optimal dynamic bandwidth allocation for complex networks

    NASA Astrophysics Data System (ADS)

    Jiang, Zhong-Yuan; Liang, Man-Gui; Li, Qian; Guo, Dong-Chao

    2013-03-01

    Traffic capacity of one network strongly depends on the link’s bandwidth allocation strategy. In previous bandwidth allocation mechanisms, once one link’s bandwidth is allocated, it will be fixed throughout the overall traffic transmission process. However, the traffic load of every link changes from time to time. In this paper, with finite total bandwidth resource of the network, we propose to dynamically allocate the total bandwidth resource in which each link’s bandwidth is proportional to the queue length of the output buffer of the link per time step. With plenty of data packets in the network, the traffic handling ability of all links of the network achieves full utilization. The theoretical analysis and the extensive simulation results on complex networks are consistent. This work is valuable for network service providers to improve network performance or to do reasonable network design efficiently.

  17. Fund allocation using capacitated vehicle routing problem

    NASA Astrophysics Data System (ADS)

    Mamat, Nur Jumaadzan Zaleha; Jaaman, Saiful Hafizah; Ahmad, Rokiah Rozita; Darus, Maslina

    2014-09-01

    In investment fund allocation, it is unwise for an investor to distribute his fund into several assets simultaneously due to economic reasons. One solution is to allocate the fund into a particular asset at a time in a sequence that will either maximize returns or minimize risks depending on the investor's objective. The vehicle routing problem (VRP) provides an avenue to this issue. VRP answers the question on how to efficiently use the available fleet of vehicles to meet a given service demand, subjected to a set of operational requirements. This paper proposes an idea of using capacitated vehicle routing problem (CVRP) to optimize investment fund allocation by employing data of selected stocks in the FTSE Bursa Malaysia. Results suggest that CRVP can be applied to solve the issue of investment fund allocation and increase the investor's profit.

  18. 15 CFR 923.110 - Allocation formula.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OCEAN AND COASTAL RESOURCE MANAGEMENT COASTAL ZONE MANAGEMENT PROGRAM REGULATIONS Allocation of Section 306 Program Administration... to any coastal state for the purpose of administering that state's management program, if the...

  19. Allocation of Scarce Resources: Some Problems

    PubMed Central

    Secundy, Marian G.

    1981-01-01

    This paper presents an overview of current philosophical perspectives and societal trends in relation to allocation of scarce resources. An analysis and comparative assessment of various positions of current philosophers, theologians, and bioethicists is provided. Currently proposed cost containment measures at the federal level require that black health professionals particularly pay attention to these proposals specifically as related to allocation of resources. The ways in which cost containment and/ or modification of resource allocation will affect health care delivery, specifically for the black community, must be carefully examined. This article may suggest some approaches for individual and group response to the continuing dialogue and to the allocation process itself. The equitable distribution of health care, particularly scarce new technologies, will be one of the greatest problems facing society in the next 20 years. PMID:7265284

  20. Adaptive resource allocation for efficient patient scheduling.

    PubMed

    Vermeulen, Ivan B; Bohte, Sander M; Elkhuizen, Sylvia G; Lameris, Han; Bakker, Piet J M; La Poutré, Han

    2009-05-01

    Efficient scheduling of patient appointments on expensive resources is a complex and dynamic task. A resource is typically used by several patient groups. To service these groups, resource capacity is often allocated per group, explicitly or implicitly. Importantly, due to fluctuations in demand, for the most efficient use of resources this allocation must be flexible. We present an adaptive approach to automatic optimization of resource calendars. In our approach, the allocation of capacity to different patient groups is flexible and adaptive to the current and expected future situation. We additionally present an approach to determine optimal resource openings hours on a larger time frame. Our model and its parameter values are based on extensive case analysis at the Academic Medical Hospital Amsterdam. We have implemented a comprehensive computer simulation of the application case. Simulation experiments show that our approach of adaptive capacity allocation improves the performance of scheduling patients groups with different attributes and makes efficient use of resource capacity.

  1. CDC Allocates $184 Million for Zika Protection

    MedlinePlus

    ... fullstory_162694.html CDC Allocates $184 Million for Zika Protection Funds are earmarked for states, territories, local ... million has been earmarked to protect Americans against Zika virus infection, the U.S. Centers for Disease Control ...

  2. 20 CFR 631.82 - Substate allocation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... THE JOB TRAINING PARTNERSHIP ACT Disaster Relief Employment Assistance § 631.82 Substate allocation. (a) Not less than 80 percent of the grant funds available to any Governor under § 631.81 of this part...

  3. Allocation of Resources in an Information System

    ERIC Educational Resources Information Center

    Bookstein, Abraham

    1974-01-01

    Considers the problem of allocation resources among various locations in an information system where phases of a process are carried out. Approach taken combines queueing theory and dynamic programming. (JB)

  4. Allocating petroleum products during oil supply disruptions.

    PubMed

    Bezdek, R H; Taylor, W B

    1981-06-19

    Four options for allocating a long-term, severe shortfall of petroleum imports are analyzed: oil price and allocation controls, coupon gasoline rationing, variable gasoline tax and rebate, and no oil price controls with partial rebates. Each of these options is evaluated in terms of four criteria: microeconomic effects, macroeconomic effects, equity, and practical problems. The implications of this analysis for energy contingency planning are discussed.

  5. Optimality versus stability in water resource allocation.

    PubMed

    Read, Laura; Madani, Kaveh; Inanloo, Bahareh

    2014-01-15

    Water allocation is a growing concern in a developing world where limited resources like fresh water are in greater demand by more parties. Negotiations over allocations often involve multiple groups with disparate social, economic, and political status and needs, who are seeking a management solution for a wide range of demands. Optimization techniques for identifying the Pareto-optimal (social planner solution) to multi-criteria multi-participant problems are commonly implemented, although often reaching agreement for this solution is difficult. In negotiations with multiple-decision makers, parties who base decisions on individual rationality may find the social planner solution to be unfair, thus creating a need to evaluate the willingness to cooperate and practicality of a cooperative allocation solution, i.e., the solution's stability. This paper suggests seeking solutions for multi-participant resource allocation problems through an economics-based power index allocation method. This method can inform on allocation schemes that quantify a party's willingness to participate in a negotiation rather than opt for no agreement. Through comparison of the suggested method with a range of distance-based multi-criteria decision making rules, namely, least squares, MAXIMIN, MINIMAX, and compromise programming, this paper shows that optimality and stability can produce different allocation solutions. The mismatch between the socially-optimal alternative and the most stable alternative can potentially result in parties leaving the negotiation as they may be too dissatisfied with their resource share. This finding has important policy implications as it justifies why stakeholders may not accept the socially optimal solution in practice, and underlies the necessity of considering stability where it may be more appropriate to give up an unstable Pareto-optimal solution for an inferior stable one. Authors suggest assessing the stability of an allocation solution as an

  6. Development of a method for predicting the performance and wear of PDC (polycrystalline diamond compact) drill bits

    SciTech Connect

    Glowka, D.A.

    1987-09-01

    A method is developed for predicting cutter forces, temperatures, and wear on PDC bits as well as integrated bit performance parameters such as weight-on-bit, drilling torque, and bit imbalance. A computer code called PDCWEAR has been developed to make this method available as a tool for general bit design and analysis. The method uses single-cutter data to provide a measure of rock drillability and employs theoretical considerations to account for interaction among closely spaced cutters on the bit. Experimental data are presented to establish the effects of cutter size and wearflat area on the forces that develop during rock cutting. Waterjet assistance is shown to significantly reduce cutting forces, thereby potentially extending bit life and reducing weight-on-bit and torque requirements in hard rock. The effects of several other design and operating parameters on bit life and drilling performance are also investigated.

  7. Advances in liver transplantation allocation systems

    PubMed Central

    Schilsky, Michael L; Moini, Maryam

    2016-01-01

    With the growing number of patients in need of liver transplantation, there is a need for adopting new and modifying existing allocation policies that prioritize patients for liver transplantation. Policy should ensure fair allocation that is reproducible and strongly predictive of best pre and post transplant outcomes while taking into account the natural history of the potential recipients liver disease and its complications. There is wide acceptance for allocation policies based on urgency in which the sickest patients on the waiting list with the highest risk of mortality receive priority. Model for end-stage liver disease and Child-Turcotte-Pugh scoring system, the two most universally applicable systems are used in urgency-based prioritization. However, other factors must be considered to achieve optimal allocation. Factors affecting pre-transplant patient survival and the quality of the donor organ also affect outcome. The optimal system should have allocation prioritization that accounts for both urgency and transplant outcome. We reviewed past and current liver allocation systems with the aim of generating further discussion about improvement of current policies. PMID:26973389

  8. Advances in liver transplantation allocation systems.

    PubMed

    Schilsky, Michael L; Moini, Maryam

    2016-03-14

    With the growing number of patients in need of liver transplantation, there is a need for adopting new and modifying existing allocation policies that prioritize patients for liver transplantation. Policy should ensure fair allocation that is reproducible and strongly predictive of best pre and post transplant outcomes while taking into account the natural history of the potential recipients liver disease and its complications. There is wide acceptance for allocation policies based on urgency in which the sickest patients on the waiting list with the highest risk of mortality receive priority. Model for end-stage liver disease and Child-Turcotte-Pugh scoring system, the two most universally applicable systems are used in urgency-based prioritization. However, other factors must be considered to achieve optimal allocation. Factors affecting pre-transplant patient survival and the quality of the donor organ also affect outcome. The optimal system should have allocation prioritization that accounts for both urgency and transplant outcome. We reviewed past and current liver allocation systems with the aim of generating further discussion about improvement of current policies.

  9. Local Fiscal Allocation for Public Health Departments.

    PubMed

    McCullough, J Mac; Leider, Jonathon P; Riley, William J

    2015-12-01

    We examined the percentage of local government taxes ("fiscal allocation") dedicated to local health departments on a national level, as well as correlates of local investment in public health. Using the most recent data available--the 2008 National Association of City and County Health Officials Profile survey and the 2007 U.S. Census Bureau Census of Local Governments-generalized linear regression models examined associations between fiscal allocation and local health department setting, governance, finance, and service provision. Models were stratified by the extent of long-term debt for the jurisdiction. Analyses were performed in 2014. Average fiscal allocation for public health was 3.31% of total local taxes. In multivariate regressions, per capita expenditures, having a local board of health and public health service provision were associated with higher fiscal allocation. Stratified models showed that local board of health and local health department taxing authority were associated with fiscal allocation in low and high long-term debt areas, respectively. The proportion of all local taxes allocated to local public health is related to local health department expenditures, service provision, and governance. These relationships depend upon the extent of long-term debt in the jurisdiction. Copyright © 2015 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  10. Allocation of authority in European health policy.

    PubMed

    Adolph, Christopher; Greer, Scott L; Massard da Fonseca, Elize

    2012-11-01

    Although many study the effects of different allocations of health policy authority, few ask why countries assign responsibility over different policies as they do. We test two broad theories: fiscal federalism, which predicts rational governments will concentrate information-intensive operations at lower levels, and redistributive and regulatory functions at higher levels; and "politicized federalism", which suggests a combination of systematic and historically idiosyncratic political variables interfere with efficient allocation of authority. Drawing on the WHO Health in Transition country profiles, we present new data on the allocation of responsibility for key health care policy tasks (implementation, provision, finance, regulation, and framework legislation) and policy areas (primary, secondary and tertiary care, public health and pharmaceuticals) in the 27 EU member states and Switzerland. We use a Bayesian multinomial mixed logit model to analyze how different countries arrive at different allocations of authority over each task and area of health policy, and find the allocation of powers broadly follows fiscal federalism. Responsibility for pharmaceuticals, framework legislation, and most finance lodges at the highest levels of government, acute and primary care in the regions, and provision at the local and regional levels. Where allocation does not follow fiscal federalism, it appears to reflect ethnic divisions, the population of states and regions, the presence of mountainous terrain, and the timing of region creation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Seismic Investigations of the Zagros-Bitlis Thrust Zone

    NASA Astrophysics Data System (ADS)

    Gritto, R.; Sibol, M.; Caron, P.; Quigley, K.; Ghalib, H.; Chen, Y.

    2009-05-01

    We present results of crustal studies obtained with seismic data from the Northern Iraq Seismic Network (NISN). NISN has operated 10 broadband stations in north-eastern Iraq since late 2005. At present, over 800 GB of seismic waveform data have been analyzed. The aim of the present study is to derive models of the local and regional crustal structure of north and north-eastern Iraq, including the northern extension of the Zagros collision zone. This goal is, in part, achieved by estimating local and regional seismic velocity models using receiver function- and surface wave dispersion analyses and to use these velocity models to obtain accurate hypocenter locations and event focal mechanisms. Our analysis of hypocenter locations produces a clear picture of the seismicity associated with the tectonics of the region. The largest seismicity rate is confined to the active northern section of the Zagros thrust zone, while it decreases towards the southern end, before the intensity increases in the Bandar Abbas region again. Additionally, the rift zones in the Read Sea and the Gulf of Aden are clearly demarked by high seismicity rates. Our analysis of waveform data indicates clear propagation paths from the west or south-west across the Arabian shield as well as from the north and east into NISN. Phases including Pn, Pg, Sn, Lg, as well as LR are clearly observed on these seismograms. In contrast, blockage or attenuation of Pg and Sg-wave energy is observed for propagation paths across the Zagros-Bitlis zone from the south, while Pn and Sn phases are not affected. These findings are in support of earlier tectonic models that suggested the existence of multiple parallel listric faults splitting off the main Zagros fault zone in east-west direction. These faults appear to attenuate the crustal phases while the refracted phases, propagating across the mantle lid, remain unaffected. We will present surface wave analysis in support of these findings, indicating multi

  12. Engineering Dissipation to Generate Entanglement Between Remote Superconducting Quantum Bits

    NASA Astrophysics Data System (ADS)

    Schwartz, Mollie Elisheva

    Superconducting quantum circuits provide a promising avenue for scalable quantum computation and simulation. Their chief advantage is that, unlike physical atoms or electrons, these ''artificial atoms'' can be designed with nearly-arbitrarily large coupling to one another and to their electromagnetic environment. This strong coupling allows for fast quantum bit (qubit) operations, and for efficient readout. However, strong coupling comes at a price: a qubit that is strongly coupled to its environment is also strongly susceptible to losses and dissipation, as coherent information leaks from the quantum system under study into inaccessible ''bath'' modes. Extensive work in the field is dedicated to engineering away these losses to the extent possible, and to using error correction to undo the effects of losses that are unavoidable. This dissertation explores an alternate approach to dissipation: we study avenues by which dissipation itself can be used to generate, rather than destroy, quantum resources. We do so specifically in the context of quantum entanglement, one of the most important and most counter-intuitive aspects of quantum mechanics. Entanglement generation and stabilization is critical to most non-trivial implementations of quantum computing and quantum simulation, as it is the property that distinguishes a multi-qubit quantum system from a string of classical bits. The ability to harness dissipation to generate, purify, and stabilize entanglement is therefore highly desirable. We begin with an overview of quantum dissipation and measurement, followed by an introduction to entanglement and to the superconducting quantum information architecture. We then discuss three sets of experiments that highlight and explore the powerful uses of dissipation in quantum systems. First, we use an entangling measurement to probabilistically generate entanglement between two qubits separated by more than one meter of ordinary cable. This represents the first achievement

  13. NOAO/IRAF's ``Save The Bits'' - A Pragmatic Data Archive

    NASA Astrophysics Data System (ADS)

    Seaman, Rob

    Archival data has been pivotal to astronomy throughout history. Without Tycho's carefully recorded observations, Kepler's insight into the elliptical nature of the orbits of the planets would not have been possible. In our lifetime, the Palomar Sky Survey has been scrutinized daily for four decades by thousands of pairs of eyes. However, for a variety of reasons ground-based optical observatories have been late-comers, by and large, to the archiving of digital images. The era of the CCD has been one of data diaspora. Many of the impediments to creating an archive are peripheral to any archive's principal mission of saving the information for future generations. There is a moral imperative to do at least this much. Modern computer networks now provide the tools to build an image archive that is pragmatic both in terms of programming effort and cost. The NOAO ``Save The Bits'' archive described is now nightly (and daily) automatically archiving the raw data from a half dozen Kitt Peak telescopes via the ICE (IRAF Control Environment) data acquisition software. As images are acquired at each telescope using IRAF/ICE, a unique identifying string constructed from the telescope name, the date, and the UT of the observation is edited into each image header. The IRAF wfits task translates the images to FITS from within the ICE postprocessing script. A print spooler ( e.g. , Unix lpr / lpd ) provides a secure mechanism for transferring the FITS files across the network to a central archive server where they are queued for processing. The data from several telescopes are multiplexed onto a single archive medium ( e.g. , exabyte). As the FITS files are processed by the queue software, each is now stamped with a running sequence number and the resulting FITS header is appended to a catalog file, cross-referenced to the archive tape index. To promote efficient I/O, the individual images are concatenated into FITS Image Extension tape files several tens of Megabytes in size. A

  14. Allocation Games: Addressing the Ill-Posed Nature of Allocation in Life-Cycle Inventories.

    PubMed

    Hanes, Rebecca J; Cruze, Nathan B; Goel, Prem K; Bakshi, Bhavik R

    2015-07-07

    Allocation is required when a life cycle contains multi-functional processes. One approach to allocation is to partition the embodied resources in proportion to a criterion, such as product mass or cost. Many practitioners apply multiple partitioning criteria to avoid choosing one arbitrarily. However, life cycle results from different allocation methods frequently contradict each other, making it difficult or impossible for the practitioner to draw any meaningful conclusions from the study. Using the matrix notation for life-cycle inventory data, we show that an inventory that requires allocation leads to an ill-posed problem: an inventory based on allocation is one of an infinite number of inventories that are highly dependent upon allocation methods. This insight is applied to comparative life-cycle assessment (LCA), in which products with the same function but different life cycles are compared. Recently, there have been several studies that applied multiple allocation methods and found that different products were preferred under different methods. We develop the Comprehensive Allocation Investigation Strategy (CAIS) to examine any given inventory under all possible allocation decisions, enabling us to detect comparisons that are not robust to allocation, even when the comparison appears robust under conventional partitioning methods. While CAIS does not solve the ill-posed problem, it provides a systematic way to parametrize and examine the effects of partitioning allocation. The practical usefulness of this approach is demonstrated with two case studies. The first compares ethanol produced from corn stover hydrolysis, corn stover gasification, and corn grain fermentation. This comparison was not robust to allocation. The second case study compares 1,3-propanediol (PDO) produced from fossil fuels and from biomass, which was found to be a robust comparison.

  15. Development of a Tool Condition Monitoring System for Impregnated Diamond Bits in Rock Drilling Applications

    NASA Astrophysics Data System (ADS)

    Perez, Santiago; Karakus, Murat; Pellet, Frederic

    2017-05-01

    The great success and widespread use of impregnated diamond (ID) bits are due to their self-sharpening mechanism, which consists of a constant renewal of diamonds acting at the cutting face as the bit wears out. It is therefore important to keep this mechanism acting throughout the lifespan of the bit. Nonetheless, such a mechanism can be altered by the blunting of the bit that ultimately leads to a less than optimal drilling performance. For this reason, this paper aims at investigating the applicability of artificial intelligence-based techniques in order to monitor tool condition of ID bits, i.e. sharp or blunt, under laboratory conditions. Accordingly, topologically invariant tests are carried out with sharp and blunt bits conditions while recording acoustic emissions (AE) and measuring-while-drilling variables. The combined output of acoustic emission root-mean-square value (AErms), depth of cut ( d), torque (tob) and weight-on-bit (wob) is then utilized to create two approaches in order to predict the wear state condition of the bits. One approach is based on the combination of the aforementioned variables and another on the specific energy of drilling. The two different approaches are assessed for classification performance with various pattern recognition algorithms, such as simple trees, support vector machines, k-nearest neighbour, boosted trees and artificial neural networks. In general, Acceptable pattern recognition rates were obtained, although the subset composed by AErms and tob excels due to the high classification performances rates and fewer input variables.

  16. Least Reliable Bits Coding (LRBC) for high data rate satellite communications

    NASA Astrophysics Data System (ADS)

    Vanderaar, Mark; Wagner, Paul; Budinger, James

    1992-02-01

    An analysis and discussion of a bandwidth efficient multi-level/multi-stage block coded modulation technique called Least Reliable Bits Coding (LRBC) is presented. LRBC uses simple multi-level component codes that provide increased error protection on increasingly unreliable modulated bits in order to maintain an overall high code rate that increases spectral efficiency. Further, soft-decision multi-stage decoding is used to make decisions on unprotected bits through corrections made on more protected bits. Using analytical expressions and tight performance bounds it is shown that LRBC can achieve increased spectral efficiency and maintain equivalent or better power efficiency compared to that of Binary Phase Shift Keying (BPSK). Bit error rates (BER) vs. channel bit energy with Additive White Gaussian Noise (AWGN) are given for a set of LRB Reed-Solomon (RS) encoded 8PSK modulation formats with an ensemble rate of 8/9. All formats exhibit a spectral efficiency of 2.67 = (log2(8))(8/9) information bps/Hz. Bit by bit coded and uncoded error probabilities with soft-decision information are determined. These are traded with with code rate to determine parameters that achieve good performance. The relative simplicity of Galois field algebra vs. the Viterbi algorithm and the availability of high speed commercial Very Large Scale Integration (VLSI) for block codes indicates that LRBC using block codes is a desirable method for high data rate implementations.

  17. Precious bits: frame synchronization in Jet Propulsion Laboratory's Advanced Multi-Mission Operations System (AMMOS)

    NASA Technical Reports Server (NTRS)

    Wilson, E.

    2001-01-01

    The Jet Propulsion Laboratory's (JPL) Advanced Multi-Mission Operations System (AMMOS) system processes data received from deep-space spacecraft, where error rates are high, bit rates are low, and every bit is precious. Frame synchronization and data extraction as performed by AMMOS enhanced data acquisition and reliability for maximum data return and validity.

  18. The effect of drill bit, pin, and wire tip design on drilling.

    PubMed

    Fincham, Bryce M; Jaeblon, Todd

    2011-09-01

    Successful penetration of bone is dependent on several factors, including bone quality, drill bit and pin design, and drilling technique. Wires are also used in bone drilling, and the tip configuration can affect the efficiency of bone penetration. Incorrect use of drill bits, pins, and wires may result in complications such as thermal necrosis and hardware breakage.

  19. Designing the ejector pellet impact drill bit for hard and tough rock drilling

    NASA Astrophysics Data System (ADS)

    Kovalyov, A. V.; Ryabchikov, S. Ya; Isaev, Ye D.; Aliev, F. R.; Gorbenko, M. V.; Strelnikova, A. B.

    2015-02-01

    There are many types of ejector pellet impact drill bit providing impact rock drilling. Basic types of drill strings have been regarded, the essential requirements for the most efficient facilities to drill hard and tough rocks are formulated. With regard to these requirements, the ejector pellet impact drill bit design appropriate for operating under given conditions has been proposed

  20. Purpose-built PDC bit successfully drills 7-in liner equipment and formation: An integrated solution

    SciTech Connect

    Puennel, J.G.A.; Huppertz, A.; Huizing, J.

    1996-12-31

    Historically, drilling out the 7-in, liner equipment has been a time consuming operation with a limited success ratio. The success of the operation is highly dependent on the type of drill bit employed. Tungsten carbide mills and mill tooth rock bits required from 7.5 to 11.5 hours respectively to drill the pack-off bushings, landing collar, shoe track and shoe. Rates of penetration dropped dramatically when drilling the float equipment. While conventional PDC bits have drilled the liner equipment successfully (averaging 9.7 hours), severe bit damage invariably prevented them from continuing to drill the formation at cost-effective penetration rates. This paper describes the integrated development and application of an IADC M433 Class PDC bit, which was designed specifically to drill out the 7-in. liner equipment and continue drilling the formation at satisfactory penetration rates. The development was the result of a joint investigation There the operator and bit/liner manufacturers shared their expertise in solving a drilling problem, The heavy-set bit was developed following drill-off tests conducted to investigate the drillability of the 7-in. liner equipment. Key features of the new bit and its application onshore The Netherlands will be presented and analyzed.

  1. Least Reliable Bits Coding (LRBC) for high data rate satellite communications

    NASA Technical Reports Server (NTRS)

    Vanderaar, Mark; Wagner, Paul; Budinger, James

    1992-01-01

    An analysis and discussion of a bandwidth efficient multi-level/multi-stage block coded modulation technique called Least Reliable Bits Coding (LRBC) is presented. LRBC uses simple multi-level component codes that provide increased error protection on increasingly unreliable modulated bits in order to maintain an overall high code rate that increases spectral efficiency. Further, soft-decision multi-stage decoding is used to make decisions on unprotected bits through corrections made on more protected bits. Using analytical expressions and tight performance bounds it is shown that LRBC can achieve increased spectral efficiency and maintain equivalent or better power efficiency compared to that of Binary Phase Shift Keying (BPSK). Bit error rates (BER) vs. channel bit energy with Additive White Gaussian Noise (AWGN) are given for a set of LRB Reed-Solomon (RS) encoded 8PSK modulation formats with an ensemble rate of 8/9. All formats exhibit a spectral efficiency of 2.67 = (log2(8))(8/9) information bps/Hz. Bit by bit coded and uncoded error probabilities with soft-decision information are determined. These are traded with with code rate to determine parameters that achieve good performance. The relative simplicity of Galois field algebra vs. the Viterbi algorithm and the availability of high speed commercial Very Large Scale Integration (VLSI) for block codes indicates that LRBC using block codes is a desirable method for high data rate implementations.

  2. Towards the generation of random bits at terahertz rates based on a chaotic semiconductor laser

    NASA Astrophysics Data System (ADS)

    Kanter, Ido; Aviad, Yaara; Reidler, Igor; Cohen, Elad; Rosenbluh, Michael

    2010-06-01

    Random bit generators (RBGs) are important in many aspects of statistical physics and crucial in Monte-Carlo simulations, stochastic modeling and quantum cryptography. The quality of a RBG is measured by the unpredictability of the bit string it produces and the speed at which the truly random bits can be generated. Deterministic algorithms generate pseudo-random numbers at high data rates as they are only limited by electronic hardware speed, but their unpredictability is limited by the very nature of their deterministic origin. It is widely accepted that the core of any true RBG must be an intrinsically non-deterministic physical process, e.g. measuring thermal noise from a resistor. Owing to low signal levels, such systems are highly susceptible to bias, introduced by amplification, and to small nonrandom external perturbations resulting in a limited generation rate, typically less than 100M bit/s. We present a physical random bit generator, based on a chaotic semiconductor laser, having delayed optical feedback, which operates reliably at rates up to 300Gbit/s. The method uses a high derivative of the digitized chaotic laser intensity and generates the random sequence by retaining a number of the least significant bits of the high derivative value. The method is insensitive to laser operational parameters and eliminates the necessity for all external constraints such as incommensurate sampling rates and laser external cavity round trip time. The randomness of long bit strings is verified by standard statistical tests.

  3. High power laser-mechanical drilling bit and methods of use

    DOEpatents

    Grubb, Daryl L.; Kolachalam, Sharath K.; Faircloth, Brian O.; Rinzler, Charles C.; Allen, Erik C.; Underwood, Lance D.; Zediker, Mark S.

    2017-02-07

    An apparatus with a high power laser-mechanical bit for use with a laser drilling system and a method for advancing a borehole. The laser-mechanical bit has a beam path and mechanical removal devices that provide for the removal of laser-affected rock to advance a borehole.

  4. 77 FR 51825 - Certain Drill Bits and Products Containing Same; Determination To Review an Initial Determination...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-27

    ... COMMISSION Certain Drill Bits and Products Containing Same; Determination To Review an Initial Determination... importation of certain drill bits and products containing the same by reason of infringement of certain claims....A. of Santiago, Chile; Diamantina Christensen Trading Inc. of Panama; and Intermountain...

  5. Thermodynamic Analysis and Optimization Based on Exergy Flow for a Two-Staged Pulse Tube Refrigerator

    DTIC Science & Technology

    2010-01-01

    includes flow conductance, heat transfer effectiveness, and conduction heat transfer parameters for regenerators in both stages. It is assumed that...performance of the refrigerator. The effects of the allocation of the values of flow conductance and ineffectiveness parameters in the regenerators ...irreversibility in the regenerators , is developed and discussed. KEYWORDS: Exergy analysis, Multi-stage, Cryocoolers, Pulse tubes, Irreversibility 113

  6. Multi-bit binary decoder based on Belousov-Zhabotinsky reaction

    NASA Astrophysics Data System (ADS)

    Sun, Ming-Zhu; Zhao, Xin

    2013-03-01

    It is known that Belousov-Zhabotinsky (BZ) reaction can be applied to chemical computation, e.g., image processing, computational geometry, logical computation, and so on. In the field of logical computation, some basic logic gates and basic combinational logic circuits, such as adder, counter, memory cell, have already been implemented in simulations or in chemical experiments. In this paper, we focus on another important combinational logic circuit, binary decoder. Integrating AND gate and NOT gate, we first design and implement a one-bit binary decoder through numerical simulation. Then we show that one-bit decoder can be extended to design two-bit, three-bit, or even higher bit binary decoders by a cascade method. The simulation results demonstrate the effectiveness of these devices. The chemical realization of decoders can guide the construction of more sophisticated functions based on BZ reaction; meanwhile, the cascade method can facilitate the design of other combinational logic circuits.

  7. Drilling of bone: a robust automatic method for the detection of drill bit break-through.

    PubMed

    Ong, F R; Bouazza-Marouf, K

    1998-01-01

    The aim of this investigation is to devise a robust detection method for drill bit break-through when drilling into long bones using an automated drilling system that is associated with mechatronic assisted surgery. This investigation looks into the effects of system compliance and inherent drilling force fluctuation on the profiles of drilling force, drilling force, drilling between successive samples and drill bit rotational speed. It is shown that these effects have significant influences on the bone drilling related profiles and thus on the detection of drill bit break-through. A robust method, based on a Kalman filter, has been proposed. Using a modified Kalman filter, it is possible to convert the profiles of drilling force difference between successive samples and/or the drill bit rotational speed into easily recognizable and more consistent profiles, allowing a robust and repeatable detection of drill bit break-through.

  8. Multi-bit binary decoder based on Belousov-Zhabotinsky reaction.

    PubMed

    Sun, Ming-Zhu; Zhao, Xin

    2013-03-21

    It is known that Belousov-Zhabotinsky (BZ) reaction can be applied to chemical computation, e.g., image processing, computational geometry, logical computation, and so on. In the field of logical computation, some basic logic gates and basic combinational logic circuits, such as adder, counter, memory cell, have already been implemented in simulations or in chemical experiments. In this paper, we focus on another important combinational logic circuit, binary decoder. Integrating AND gate and NOT gate, we first design and implement a one-bit binary decoder through numerical simulation. Then we show that one-bit decoder can be extended to design two-bit, three-bit, or even higher bit binary decoders by a cascade method. The simulation results demonstrate the effectiveness of these devices. The chemical realization of decoders can guide the construction of more sophisticated functions based on BZ reaction; meanwhile, the cascade method can facilitate the design of other combinational logic circuits.

  9. An 18-bit high performance audio σ-Δ D/A converter

    NASA Astrophysics Data System (ADS)

    Hao, Zhang; Xiaowei, Huang; Yan, Han; Cheung, Ray C.; Xiaoxia, Han; Hao, Wang; Guo, Liang

    2010-07-01

    A multi-bit quantized high performance sigma-delta (σ-Δ) audio DAC is presented. Compared to its single-bit counterpart, the multi-bit quantization offers many advantages, such as simpler σ-Δ modulator circuit, lower clock frequency and smaller spurious tones. With the data weighted average (DWA) mismatch shaping algorithm, element mismatch errors induced by multi-bit quantization can be pushed out of the signal band, hence the noise floor inside the signal band is greatly lowered. To cope with the crosstalk between digital and analog circuits, every analog component is surrounded by a guard ring, which is an innovative attempt. The 18-bit DAC with the above techniques, which is implemented in a 0.18 μm mixed-signal CMOS process, occupies a core area of 1.86 mm2. The measured dynamic range (DR) and peak SNDR are 96 dB and 88 dB, respectively.

  10. Tree structure-based bit-to-symbol mapping for multidimensional modulation format

    NASA Astrophysics Data System (ADS)

    Zhaoxi, Li; Yujuan, Si; Guijun, Hu

    2017-06-01

    Bit-to-symbol mapping is one of the key issues in multidimensional modulation. In an effort to resolve this issue, a tree structure based bit-to-symbol mapping scheme is proposed. By constructing a tree structure of constellation points, any neighboring constellation points become nearest-neighbor constellation points with minimum Euclidean distance, which in turn, changes the bit-to-symbol mapping problem in multidimensional signal modulation from random to orderly. Then, through the orderly distribution of labels, the minimum Hamming distance between the nearest neighboring constellation points is ensured, eventually achieving bit-to-symbol mapping optimization for multidimensional signals. Simulation analysis indicates that, compared with random search mapping, tree mapping can effectively improve the bit error rate performance of multidimensional signal modulation without multiple searching, reducing the computational cost.

  11. Changes realized from extended bit-depth and metal artifact reduction in CT

    SciTech Connect

    Glide-Hurst, C.; Chen, D.; Zhong, H.; Chetty, I. J.

    2013-06-15

    Purpose: High-Z material in computed tomography (CT) yields metal artifacts that degrade image quality and may cause substantial errors in dose calculation. This study couples a metal artifact reduction (MAR) algorithm with enhanced 16-bit depth (vs standard 12-bit) to quantify potential gains in image quality and dosimetry. Methods: Extended CT to electron density (CT-ED) curves were derived from a tissue characterization phantom with titanium and stainless steel inserts scanned at 90-140 kVp for 12- and 16-bit reconstructions. MAR was applied to sinogram data (Brilliance BigBore CT scanner, Philips Healthcare, v.3.5). Monte Carlo simulation (MC-SIM) was performed on a simulated double hip prostheses case (Cerrobend rods embedded in a pelvic phantom) using BEAMnrc/Dosxyz (400 000 0000 histories, 6X, 10 Multiplication-Sign 10 cm{sup 2} beam traversing Cerrobend rod). A phantom study was also conducted using a stainless steel rod embedded in solid water, and dosimetric verification was performed with Gafchromic film analysis (absolute difference and gamma analysis, 2% dose and 2 mm distance to agreement) for plans calculated with Anisotropic Analytic Algorithm (AAA, Eclipse v11.0) to elucidate changes between 12- and 16-bit data. Three patients (bony metastases to the femur and humerus, and a prostate cancer case) with metal implants were reconstructed using both bit depths, with dose calculated using AAA and derived CT-ED curves. Planar dose distributions were assessed via matrix analyses and using gamma criteria of 2%/2 mm. Results: For 12-bit images, CT numbers for titanium and stainless steel saturated at 3071 Hounsfield units (HU), whereas for 16-bit depth, mean CT numbers were much larger (e.g., titanium and stainless steel yielded HU of 8066.5 {+-} 56.6 and 13 588.5 {+-} 198.8 for 16-bit uncorrected scans at 120 kVp, respectively). MC-SIM was well-matched between 12- and 16-bit images except downstream of the Cerrobend rod, where 16-bit dose was {approx}6

  12. Analysis of an optimization-based atomistic-to-continuum coupling method for point defects

    DOE PAGES

    Olson, Derek; Shapeev, Alexander V.; Bochev, Pavel B.; ...

    2015-11-16

    Here, we formulate and analyze an optimization-based Atomistic-to-Continuum (AtC) coupling method for problems with point defects. Application of a potential-based atomistic model near the defect core enables accurate simulation of the defect. Away from the core, where site energies become nearly independent of the lattice position, the method switches to a more efficient continuum model. The two models are merged by minimizing the mismatch of their states on an overlap region, subject to the atomistic and continuum force balance equations acting independently in their domains. We prove that the optimization problem is well-posed and establish error estimates.

  13. Analysis of an optimization-based atomistic-to-continuum coupling method for point defects

    SciTech Connect

    Olson, Derek; Shapeev, Alexander V.; Bochev, Pavel B.; Luskin, Mitchell

    2015-11-16

    Here, we formulate and analyze an optimization-based Atomistic-to-Continuum (AtC) coupling method for problems with point defects. Application of a potential-based atomistic model near the defect core enables accurate simulation of the defect. Away from the core, where site energies become nearly independent of the lattice position, the method switches to a more efficient continuum model. The two models are merged by minimizing the mismatch of their states on an overlap region, subject to the atomistic and continuum force balance equations acting independently in their domains. We prove that the optimization problem is well-posed and establish error estimates.

  14. Optimization-based calculation of optical nonlinear processes in a micro-resonator.

    PubMed

    Klemens, Guy; Fainman, Yeshaiahu

    2006-10-16

    We present a new method of calculating the performance of nonlinear processes in a resonator. An optimization-based approach, conceptually similar to techniques used in nonlinear circuit analysis, is formulated and used to find the wave magnitudes that satisfy all of the boundary conditions and account for nonlinear optical effects. Unlike previous solution methods, this technique is applicable to any nonlinear process (second-order, third-order, etc.) and multiple coupled resonators, maintains the phase relations between the waves, and is exact. Examples are given for second-order nonlinear processes in a one-dimensional resonator.

  15. Simple bit-string model for lineage branching

    NASA Astrophysics Data System (ADS)

    de Oliveira, P. M. C.; Sá Martins, J. S.; Stauffer, D.; Moss de Oliveira, S.

    2004-11-01

    We introduce a population dynamics model, where individual genomes are represented by bit strings. Selection is described by death probabilities which depend on these genomes, and new individuals continuously replace the ones that die, keeping the population constant. An offspring has the same genome as its (randomly chosen) parent, except for a small amount of (also random) mutations. Chance may thus generate a newborn with a genome that is better than that of its parent, and the newborn will have a smaller death probability. When this happens, this individual is a would-be founder of a new lineage. A new lineage is considered created if the number of its live descendants grows above a certain previously defined threshold. The time evolution of populations evolving under these rules is followed by computer simulations and the probability densities of lineage duration and size, among others, are computed. These densities show a scale-free behavior, in accordance with some conjectures in paleoevolution, and suggesting a simple mechanism as explanation for the ubiquity of these power laws.

  16. Low complexity 1D IDCT for 16-bit parallel architectures

    NASA Astrophysics Data System (ADS)

    Bivolarski, Lazar

    2007-09-01

    This paper shows that using the Loeffler, Ligtenberg, and Moschytz factorization of 8-point IDCT [2] one-dimensional (1-D) algorithm as a fast approximation of the Discrete Cosine Transform (DCT) and using only 16 bit numbers, it is possible to create in an IEEE 1180-1990 compliant and multiplierless algorithm with low computational complexity. This algorithm as characterized by its structure is efficiently implemented on parallel high performance architectures as well as due to its low complexity is sufficient for wide range of other architectures. Additional constraint on this work was the requirement of compliance with the existing MPEG standards. The hardware implementation complexity and low resources where also part of the design criteria for this algorithm. This implementation is also compliant with the precision requirements described in MPEG IDCT precision specification ISO/IEC 23002-1. Complexity analysis is performed as an extension to the simple measure of shifts and adds for the multiplierless algorithm as additional operations are included in the complexity measure to better describe the actual transform implementation complexity.

  17. Transnational exchange of scientific data: The ``Bits of Power'' report

    NASA Astrophysics Data System (ADS)

    Berry, R. Stephen

    1998-07-01

    In 1994, the U.S. National Committee for the Committee on Data for Science and Technology (CODATA), organized under the Commission on Physical Sciences, Mathematics and Applications of the National Research Council established the Committee on Issues in the Transborder Flow of Scientific Data. The purpose of this Committee was to examine the current state of global access to scientific data, to identify strengths, problems and challenges confronting scientists now, or likely to arise in the next few years, and to make recommendations on building the strengths and ameliorating or avoiding the problems. The Committee's report appeared as the book Bits of Power: Issues in Global Access to Scientific Data (National Academy Press, Washington, D.C., 1997). This presentation is a brief summary of that report, particularly as it pertains to atomic and molecular data. The context is necessarily the evolution toward increasing electronic acquisition, archiving and distribution of scientific data. Thus the central issues were divided into the technological infrastructure, the issues for the sciences and scientists in the various disciplines, the economic aspects and the legal issues. For purposes of this study, the sciences fell naturally into four groups: the laboratory physical sciences, the biological sciences, the earth sciences and the astronomical and planetary sciences. Some of the substantive scientific aspects are specific to particular groups of sciences, but the matters of infrastructure, economic questions and legal issues apply, for the most part, to all the sciences.

  18. High Bit-Depth Medical Image Compression with HEVC.

    PubMed

    Parikh, Saurin; Ruiz, Damian; Kalva, Hari; Fernandez-Escribano, Gerardo; Adzic, Velibor

    2017-01-27

    Efficient storing and retrieval of medical images has direct impact on reducing costs and improving access in cloud based health care services. JPEG 2000 is currently the commonly used compression format for medical images shared using the DICOM standard. However, new formats such as HEVC can provide better compression efficiency compared to JPEG 2000. Furthermore, JPEG 2000 is not suitable for efficiently storing image series and 3D imagery. Using HEVC, a single format can support all forms of medical images. This paper presents the use of HEVC for diagnostically acceptable medical image compression, focusing on compression efficiency compared to JPEG 2000. Diagnostically acceptable lossy compression and complexity of high bit-depth medical image compression are studied. Based on an established medically acceptable compression range for JPEG 2000, this paper establishes acceptable HEVC compression range for medical imaging applications. Experimental results show that using HEVC can increase the compression performance, compared to JPEG 2000, by over 54%. Along with this, new method for reducing computational complexity of HEVC encoding for medical images is proposed. Results show that HEVC intra encoding complexity can be reduced by over 55% with negligible increase in file size.

  19. A short impossibility proof of quantum bit commitment

    NASA Astrophysics Data System (ADS)

    Chiribella, Giulio; D'Ariano, Giacomo Mauro; Perinotti, Paolo; Schlingemann, Dirk; Werner, Reinhard

    2013-06-01

    Bit commitment protocols, whose security is based on the laws of quantum mechanics alone, are generally held to be impossible on the basis of a concealment-bindingness tradeoff (Lo and Chau, 1997 [1], Mayers, 1997 [2]). A strengthened and explicit impossibility proof has been given in D'Ariano et al. (2007) [3] in the Heisenberg picture and in a C*-algebraic framework, considering all conceivable protocols in which both classical and quantum information is exchanged. In the present Letter we provide a new impossibility proof in the Schrödinger picture, greatly simplifying the classification of protocols and strategies using the mathematical formulation in terms of quantum combs (Chiribella et al., 2008 [4]), with each single-party strategy represented by a conditioned comb. We prove that assuming a stronger notion of concealment-for each classical communication history, not in average-allows Alice's cheat to pass also the worst-case Bob's test. The present approach allows us to restate the concealment-bindingness tradeoff in terms of the continuity of dilations of probabilistic quantum combs with the metric given by the comb discriminability-distance.

  20. Thermally induced magnetic switching in bit-patterned media

    NASA Astrophysics Data System (ADS)

    Pfau, B.; Günther, C. M.; Hauet, T.; Eisebitt, S.; Hellwig, O.

    2017-07-01

    We have studied the thermal variation of the switching field of magnetic islands at room temperature. A model bit-pattern media composed of an assembly of islands with 80 nm width was fabricated by sputter deposition onto a pre-patterned substrate. Using direct magnetic-contrast imaging of the islands under applied field, we extract the switching probabilities of individual islands. Based on an analytical model for the thermally activated switching of the islands, we are able to determine the intrinsic magnetic anisotropy of each island and, consequentially, a distribution of anisotropies for the island ensemble investigated. In the distribution, we identify a separated group of islands with a particularly small anisotropy. We attribute this group to islands containing misaligned grains triggering the magnetic reversal. At room temperature and slow field sweep rates, the observed thermal broadening of the switching-field distribution is small compared to the intrinsic broadening. However, we illustrate that thermal fluctuations play a crucial role at high sweep rates by extrapolating our results to technological relevant regimes.