Sample records for optimization-based decision support

  1. A simulation-optimization-based decision support tool for mitigating traffic congestion.

    DOT National Transportation Integrated Search

    2009-12-01

    "Traffic congestion has grown considerably in the United States over the past twenty years. In this paper, we develop : a robust decision support tool based on simulation optimization to evaluate and recommend congestion-mitigation : strategies to tr...

  2. Development of transportation asset management decision support tools : final report.

    DOT National Transportation Integrated Search

    2017-08-09

    This study developed a web-based prototype decision support platform to demonstrate the benefits of transportation asset management in monitoring asset performance, supporting asset funding decisions, planning budget tradeoffs, and optimizing resourc...

  3. Some Results of Weak Anticipative Concept Applied in Simulation Based Decision Support in Enterprise

    NASA Astrophysics Data System (ADS)

    Kljajić, Miroljub; Kofjač, Davorin; Kljajić Borštnar, Mirjana; Škraba, Andrej

    2010-11-01

    The simulation models are used as for decision support and learning in enterprises and in schools. Tree cases of successful applications demonstrate usefulness of weak anticipative information. Job shop scheduling production with makespan criterion presents a real case customized flexible furniture production optimization. The genetic algorithm for job shop scheduling optimization is presented. Simulation based inventory control for products with stochastic lead time and demand describes inventory optimization for products with stochastic lead time and demand. Dynamic programming and fuzzy control algorithms reduce the total cost without producing stock-outs in most cases. Values of decision making information based on simulation were discussed too. All two cases will be discussed from optimization, modeling and learning point of view.

  4. A Swarm Optimization approach for clinical knowledge mining.

    PubMed

    Christopher, J Jabez; Nehemiah, H Khanna; Kannan, A

    2015-10-01

    Rule-based classification is a typical data mining task that is being used in several medical diagnosis and decision support systems. The rules stored in the rule base have an impact on classification efficiency. Rule sets that are extracted with data mining tools and techniques are optimized using heuristic or meta-heuristic approaches in order to improve the quality of the rule base. In this work, a meta-heuristic approach called Wind-driven Swarm Optimization (WSO) is used. The uniqueness of this work lies in the biological inspiration that underlies the algorithm. WSO uses Jval, a new metric, to evaluate the efficiency of a rule-based classifier. Rules are extracted from decision trees. WSO is used to obtain different permutations and combinations of rules whereby the optimal ruleset that satisfies the requirement of the developer is used for predicting the test data. The performance of various extensions of decision trees, namely, RIPPER, PART, FURIA and Decision Tables are analyzed. The efficiency of WSO is also compared with the traditional Particle Swarm Optimization. Experiments were carried out with six benchmark medical datasets. The traditional C4.5 algorithm yields 62.89% accuracy with 43 rules for liver disorders dataset where as WSO yields 64.60% with 19 rules. For Heart disease dataset, C4.5 is 68.64% accurate with 98 rules where as WSO is 77.8% accurate with 34 rules. The normalized standard deviation for accuracy of PSO and WSO are 0.5921 and 0.5846 respectively. WSO provides accurate and concise rulesets. PSO yields results similar to that of WSO but the novelty of WSO lies in its biological motivation and it is customization for rule base optimization. The trade-off between the prediction accuracy and the size of the rule base is optimized during the design and development of rule-based clinical decision support system. The efficiency of a decision support system relies on the content of the rule base and classification accuracy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Simulation-based planning for theater air warfare

    NASA Astrophysics Data System (ADS)

    Popken, Douglas A.; Cox, Louis A., Jr.

    2004-08-01

    Planning for Theatre Air Warfare can be represented as a hierarchy of decisions. At the top level, surviving airframes must be assigned to roles (e.g., Air Defense, Counter Air, Close Air Support, and AAF Suppression) in each time period in response to changing enemy air defense capabilities, remaining targets, and roles of opposing aircraft. At the middle level, aircraft are allocated to specific targets to support their assigned roles. At the lowest level, routing and engagement decisions are made for individual missions. The decisions at each level form a set of time-sequenced Courses of Action taken by opposing forces. This paper introduces a set of simulation-based optimization heuristics operating within this planning hierarchy to optimize allocations of aircraft. The algorithms estimate distributions for stochastic outcomes of the pairs of Red/Blue decisions. Rather than using traditional stochastic dynamic programming to determine optimal strategies, we use an innovative combination of heuristics, simulation-optimization, and mathematical programming. Blue decisions are guided by a stochastic hill-climbing search algorithm while Red decisions are found by optimizing over a continuous representation of the decision space. Stochastic outcomes are then provided by fast, Lanchester-type attrition simulations. This paper summarizes preliminary results from top and middle level models.

  6. Building Better Decision-Support by Using Knowledge Discovery.

    ERIC Educational Resources Information Center

    Jurisica, Igor

    2000-01-01

    Discusses knowledge-based decision-support systems that use artificial intelligence approaches. Addresses the issue of how to create an effective case-based reasoning system for complex and evolving domains, focusing on automated methods for system optimization and domain knowledge evolution that can supplement knowledge acquired from domain…

  7. An EGR performance evaluation and decision-making approach based on grey theory and grey entropy analysis

    PubMed Central

    2018-01-01

    Exhaust gas recirculation (EGR) is one of the main methods of reducing NOX emissions and has been widely used in marine diesel engines. This paper proposes an optimized comprehensive assessment method based on multi-objective grey situation decision theory, grey relation theory and grey entropy analysis to evaluate the performance and optimize rate determination of EGR, which currently lack clear theoretical guidance. First, multi-objective grey situation decision theory is used to establish the initial decision-making model according to the main EGR parameters. The optimal compromise between diesel engine combustion and emission performance is transformed into a decision-making target weight problem. After establishing the initial model and considering the characteristics of EGR under different conditions, an optimized target weight algorithm based on grey relation theory and grey entropy analysis is applied to generate the comprehensive evaluation and decision-making model. Finally, the proposed method is successfully applied to a TBD234V12 turbocharged diesel engine, and the results clearly illustrate the feasibility of the proposed method for providing theoretical support and a reference for further EGR optimization. PMID:29377956

  8. An EGR performance evaluation and decision-making approach based on grey theory and grey entropy analysis.

    PubMed

    Zu, Xianghuan; Yang, Chuanlei; Wang, Hechun; Wang, Yinyan

    2018-01-01

    Exhaust gas recirculation (EGR) is one of the main methods of reducing NOX emissions and has been widely used in marine diesel engines. This paper proposes an optimized comprehensive assessment method based on multi-objective grey situation decision theory, grey relation theory and grey entropy analysis to evaluate the performance and optimize rate determination of EGR, which currently lack clear theoretical guidance. First, multi-objective grey situation decision theory is used to establish the initial decision-making model according to the main EGR parameters. The optimal compromise between diesel engine combustion and emission performance is transformed into a decision-making target weight problem. After establishing the initial model and considering the characteristics of EGR under different conditions, an optimized target weight algorithm based on grey relation theory and grey entropy analysis is applied to generate the comprehensive evaluation and decision-making model. Finally, the proposed method is successfully applied to a TBD234V12 turbocharged diesel engine, and the results clearly illustrate the feasibility of the proposed method for providing theoretical support and a reference for further EGR optimization.

  9. A Decision Support Model and Tool to Assist Financial Decision-Making in Universities

    ERIC Educational Resources Information Center

    Bhayat, Imtiaz; Manuguerra, Maurizio; Baldock, Clive

    2015-01-01

    In this paper, a model and tool is proposed to assist universities and other mission-based organisations to ascertain systematically the optimal portfolio of projects, in any year, meeting the organisations risk tolerances and available funds. The model and tool presented build on previous work on university operations and decision support systems…

  10. Performance evaluation of the machine learning algorithms used in inference mechanism of a medical decision support system.

    PubMed

    Bal, Mert; Amasyali, M Fatih; Sever, Hayri; Kose, Guven; Demirhan, Ayse

    2014-01-01

    The importance of the decision support systems is increasingly supporting the decision making process in cases of uncertainty and the lack of information and they are widely used in various fields like engineering, finance, medicine, and so forth, Medical decision support systems help the healthcare personnel to select optimal method during the treatment of the patients. Decision support systems are intelligent software systems that support decision makers on their decisions. The design of decision support systems consists of four main subjects called inference mechanism, knowledge-base, explanation module, and active memory. Inference mechanism constitutes the basis of decision support systems. There are various methods that can be used in these mechanisms approaches. Some of these methods are decision trees, artificial neural networks, statistical methods, rule-based methods, and so forth. In decision support systems, those methods can be used separately or a hybrid system, and also combination of those methods. In this study, synthetic data with 10, 100, 1000, and 2000 records have been produced to reflect the probabilities on the ALARM network. The accuracy of 11 machine learning methods for the inference mechanism of medical decision support system is compared on various data sets.

  11. History matching through dynamic decision-making

    PubMed Central

    Maschio, Célio; Santos, Antonio Alberto; Schiozer, Denis; Rocha, Anderson

    2017-01-01

    History matching is the process of modifying the uncertain attributes of a reservoir model to reproduce the real reservoir performance. It is a classical reservoir engineering problem and plays an important role in reservoir management since the resulting models are used to support decisions in other tasks such as economic analysis and production strategy. This work introduces a dynamic decision-making optimization framework for history matching problems in which new models are generated based on, and guided by, the dynamic analysis of the data of available solutions. The optimization framework follows a ‘learning-from-data’ approach, and includes two optimizer components that use machine learning techniques, such as unsupervised learning and statistical analysis, to uncover patterns of input attributes that lead to good output responses. These patterns are used to support the decision-making process while generating new, and better, history matched solutions. The proposed framework is applied to a benchmark model (UNISIM-I-H) based on the Namorado field in Brazil. Results show the potential the dynamic decision-making optimization framework has for improving the quality of history matching solutions using a substantial smaller number of simulations when compared with a previous work on the same benchmark. PMID:28582413

  12. OPTIMIZING USABILITY OF AN ECONOMIC DECISION SUPPORT TOOL: PROTOTYPE OF THE EQUIPT TOOL.

    PubMed

    Cheung, Kei Long; Hiligsmann, Mickaël; Präger, Maximilian; Jones, Teresa; Józwiak-Hagymásy, Judit; Muñoz, Celia; Lester-George, Adam; Pokhrel, Subhash; López-Nicolás, Ángel; Trapero-Bertran, Marta; Evers, Silvia M A A; de Vries, Hein

    2018-01-01

    Economic decision-support tools can provide valuable information for tobacco control stakeholders, but their usability may impact the adoption of such tools. This study aims to illustrate a mixed-method usability evaluation of an economic decision-support tool for tobacco control, using the EQUIPT ROI tool prototype as a case study. A cross-sectional mixed methods design was used, including a heuristic evaluation, a thinking aloud approach, and a questionnaire testing and exploring the usability of the Return of Investment tool. A total of sixty-six users evaluated the tool (thinking aloud) and completed the questionnaire. For the heuristic evaluation, four experts evaluated the interface. In total twenty-one percent of the respondents perceived good usability. A total of 118 usability problems were identified, from which twenty-six problems were categorized as most severe, indicating high priority to fix them before implementation. Combining user-based and expert-based evaluation methods is recommended as these were shown to identify unique usability problems. The evaluation provides input to optimize usability of a decision-support tool, and may serve as a vantage point for other developers to conduct usability evaluations to refine similar tools before wide-scale implementation. Such studies could reduce implementation gaps by optimizing usability, enhancing in turn the research impact of such interventions.

  13. The Integrated Medical Model - A Risk Assessment and Decision Support Tool for Human Space Flight Missions

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Minard, Charles G.; Saile, Lynn; FreiredeCarvalho, Mary; Myers, Jerry; Walton, Marlei; Butler, Douglas; Lopez, Vilma

    2010-01-01

    The Integrated Medical Model (IMM) is a decision support tool that is useful to space flight mission planners and medical system designers in assessing risks and optimizing medical systems. The IMM employs an evidence-based, probabilistic risk assessment (PRA) approach within the operational constraints of space flight.

  14. Multi-criteria multi-stakeholder decision analysis using a fuzzy-stochastic approach for hydrosystem management

    NASA Astrophysics Data System (ADS)

    Subagadis, Y. H.; Schütze, N.; Grundmann, J.

    2014-09-01

    The conventional methods used to solve multi-criteria multi-stakeholder problems are less strongly formulated, as they normally incorporate only homogeneous information at a time and suggest aggregating objectives of different decision-makers avoiding water-society interactions. In this contribution, Multi-Criteria Group Decision Analysis (MCGDA) using a fuzzy-stochastic approach has been proposed to rank a set of alternatives in water management decisions incorporating heterogeneous information under uncertainty. The decision making framework takes hydrologically, environmentally, and socio-economically motivated conflicting objectives into consideration. The criteria related to the performance of the physical system are optimized using multi-criteria simulation-based optimization, and fuzzy linguistic quantifiers have been used to evaluate subjective criteria and to assess stakeholders' degree of optimism. The proposed methodology is applied to find effective and robust intervention strategies for the management of a coastal hydrosystem affected by saltwater intrusion due to excessive groundwater extraction for irrigated agriculture and municipal use. Preliminary results show that the MCGDA based on a fuzzy-stochastic approach gives useful support for robust decision-making and is sensitive to the decision makers' degree of optimism.

  15. A decision support system using analytical hierarchy process (AHP) for the optimal environmental reclamation of an open-pit mine

    NASA Astrophysics Data System (ADS)

    Bascetin, A.

    2007-04-01

    The selection of an optimal reclamation method is one of the most important factors in open-pit design and production planning. It also affects economic considerations in open-pit design as a function of plan location and depth. Furthermore, the selection is a complex multi-person, multi-criteria decision problem. The group decision-making process can be improved by applying a systematic and logical approach to assess the priorities based on the inputs of several specialists from different functional areas within the mine company. The analytical hierarchy process (AHP) can be very useful in involving several decision makers with different conflicting objectives to arrive at a consensus decision. In this paper, the selection of an optimal reclamation method using an AHP-based model was evaluated for coal production in an open-pit coal mine located at Seyitomer region in Turkey. The use of the proposed model indicates that it can be applied to improve the group decision making in selecting a reclamation method that satisfies optimal specifications. Also, it is found that the decision process is systematic and using the proposed model can reduce the time taken to select a optimal method.

  16. Information support for decision making on dispatching control of water distribution in irrigation

    NASA Astrophysics Data System (ADS)

    Yurchenko, I. F.

    2018-05-01

    The research has been carried out on developing the technique of supporting decision making for on-line control, operational management of water allocation for the interfarm irrigation projects basing on the analytical patterns of dispatcher control. This technique provides an increase of labour productivity as well as higher management quality due to the improved level of automation, as well as decision making optimization taking into account diagnostics of the issues, solutions classification, information being required to the decision makers.

  17. Design for sustainability of industrial symbiosis based on emergy and multi-objective particle swarm optimization.

    PubMed

    Ren, Jingzheng; Liang, Hanwei; Dong, Liang; Sun, Lu; Gao, Zhiqiu

    2016-08-15

    Industrial symbiosis provides novel and practical pathway to the design for the sustainability. Decision support tool for its verification is necessary for practitioners and policy makers, while to date, quantitative research is limited. The objective of this work is to present an innovative approach for supporting decision-making in the design for the sustainability with the implementation of industrial symbiosis in chemical complex. Through incorporating the emergy theory, the model is formulated as a multi-objective approach that can optimize both the economic benefit and sustainable performance of the integrated industrial system. A set of emergy based evaluation index are designed. Multi-objective Particle Swarm Algorithm is proposed to solve the model, and the decision-makers are allowed to choose the suitable solutions form the Pareto solutions. An illustrative case has been studied by the proposed method, a few of compromises between high profitability and high sustainability can be obtained for the decision-makers/stakeholders to make decision. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Shared decision-making and decision support: their role in obstetrics and gynecology.

    PubMed

    Tucker Edmonds, Brownsyne

    2014-12-01

    To discuss the role for shared decision-making in obstetrics/gynecology and to review evidence on the impact of decision aids on reproductive health decision-making. Among the 155 studies included in a 2014 Cochrane review of decision aids, 31 (29%) addressed reproductive health decisions. Although the majority did not show evidence of an effect on treatment choice, there was a greater uptake of mammography in selected groups of women exposed to decision aids compared with usual care; and a statistically significant reduction in the uptake of hormone replacement therapy among detailed decision aid users compared with simple decision aid users. Studies also found an effect on patient-centered outcomes of care, such as medication adherence, quality-of-life measures, and anxiety scores. In maternity care, only decision analysis tools affected final treatment choice, and patient-directed aids yielded no difference in planned mode of birth after cesarean. There is untapped potential for obstetricians/gynecologists to optimize decision support for reproductive health decisions. Given the limited evidence-base guiding practice, the preference-sensitive nature of reproductive health decisions, and the increase in policy efforts and financial incentives to optimize patients' satisfaction, it is increasingly important for obstetricians/gynecologists to appreciate the role of shared decision-making and decision support in providing patient-centered reproductive healthcare.

  19. Heuristic-based information acquisition and decision making among pilots.

    PubMed

    Wiggins, Mark W; Bollwerk, Sandra

    2006-01-01

    This research was designed to examine the impact of heuristic-based approaches to the acquisition of task-related information on the selection of an optimal alternative during simulated in-flight decision making. The work integrated features of naturalistic and normative decision making and strategies of information acquisition within a computer-based, decision support framework. The study comprised two phases, the first of which involved familiarizing pilots with three different heuristic-based strategies of information acquisition: frequency, elimination by aspects, and majority of confirming decisions. The second stage enabled participants to choose one of the three strategies of information acquisition to resolve a fourth (choice) scenario. The results indicated that task-oriented experience, rather than the information acquisition strategies, predicted the selection of the optimal alternative. It was also evident that of the three strategies available, the elimination by aspects information acquisition strategy was preferred by most participants. It was concluded that task-oriented experience, rather than the process of information acquisition, predicted task accuracy during the decision-making task. It was also concluded that pilots have a preference for one particular approach to information acquisition. Applications of outcomes of this research include the development of decision support systems that adapt to the information-processing capabilities and preferences of users.

  20. Research on Bidding Decision-making of International Public-Private Partnership Projects

    NASA Astrophysics Data System (ADS)

    Hu, Zhen Yu; Zhang, Shui Bo; Liu, Xin Yan

    2018-06-01

    In order to select the optimal quasi-bidding project for an investment enterprise, a bidding decision-making model for international PPP projects was established in this paper. Firstly, the literature frequency statistics method was adopted to screen out the bidding decision-making indexes, and accordingly the bidding decision-making index system for international PPP projects was constructed. Then, the group decision-making characteristic root method, the entropy weight method, and the optimization model based on least square method were used to set the decision-making index weights. The optimal quasi-bidding project was thus determined by calculating the consistent effect measure of each decision-making index value and the comprehensive effect measure of each quasi-bidding project. Finally, the bidding decision-making model for international PPP projects was further illustrated by a hypothetical case. This model can effectively serve as a theoretical foundation and technical support for the bidding decision-making of international PPP projects.

  1. System design and improvement of an emergency department using Simulation-Based Multi-Objective Optimization

    NASA Astrophysics Data System (ADS)

    Goienetxea Uriarte, A.; Ruiz Zúñiga, E.; Urenda Moris, M.; Ng, A. H. C.

    2015-05-01

    Discrete Event Simulation (DES) is nowadays widely used to support decision makers in system analysis and improvement. However, the use of simulation for improving stochastic logistic processes is not common among healthcare providers. The process of improving healthcare systems involves the necessity to deal with trade-off optimal solutions that take into consideration a multiple number of variables and objectives. Complementing DES with Multi-Objective Optimization (SMO) creates a superior base for finding these solutions and in consequence, facilitates the decision-making process. This paper presents how SMO has been applied for system improvement analysis in a Swedish Emergency Department (ED). A significant number of input variables, constraints and objectives were considered when defining the optimization problem. As a result of the project, the decision makers were provided with a range of optimal solutions which reduces considerably the length of stay and waiting times for the ED patients. SMO has proved to be an appropriate technique to support healthcare system design and improvement processes. A key factor for the success of this project has been the involvement and engagement of the stakeholders during the whole process.

  2. Volatile decision dynamics: experiments, stochastic description, intermittency control and traffic optimization

    NASA Astrophysics Data System (ADS)

    Helbing, Dirk; Schönhof, Martin; Kern, Daniel

    2002-06-01

    The coordinated and efficient distribution of limited resources by individual decisions is a fundamental, unsolved problem. When individuals compete for road capacities, time, space, money, goods, etc, they normally make decisions based on aggregate rather than complete information, such as TV news or stock market indices. In related experiments, we have observed a volatile decision dynamics and far-from-optimal payoff distributions. We have also identified methods of information presentation that can considerably improve the overall performance of the system. In order to determine optimal strategies of decision guidance by means of user-specific recommendations, a stochastic behavioural description is developed. These strategies manage to increase the adaptibility to changing conditions and to reduce the deviation from the time-dependent user equilibrium, thereby enhancing the average and individual payoffs. Hence, our guidance strategies can increase the performance of all users by reducing overreaction and stabilizing the decision dynamics. These results are highly significant for predicting decision behaviour, for reaching optimal behavioural distributions by decision support systems and for information service providers. One of the promising fields of application is traffic optimization.

  3. OPTIMIZING BMP PLACEMENT AT WATERSHED-SCALE USING SUSTAIN

    EPA Science Inventory

    Watershed and stormwater managers need modeling tools to evaluate alternative plans for environmental quality restoration and protection needs in urban and developing areas. A watershed-scale decision-support system, based on cost optimization, provides an essential tool to suppo...

  4. Processing Technology Selection for Municipal Sewage Treatment Based on a Multi-Objective Decision Model under Uncertainty.

    PubMed

    Chen, Xudong; Xu, Zhongwen; Yao, Liming; Ma, Ning

    2018-03-05

    This study considers the two factors of environmental protection and economic benefits to address municipal sewage treatment. Based on considerations regarding the sewage treatment plant construction site, processing technology, capital investment, operation costs, water pollutant emissions, water quality and other indicators, we establish a general multi-objective decision model for optimizing municipal sewage treatment plant construction. Using the construction of a sewage treatment plant in a suburb of Chengdu as an example, this paper tests the general model of multi-objective decision-making for the sewage treatment plant construction by implementing a genetic algorithm. The results show the applicability and effectiveness of the multi-objective decision model for the sewage treatment plant. This paper provides decision and technical support for the optimization of municipal sewage treatment.

  5. The Use of the Integrated Medical Model for Forecasting and Mitigating Medical Risks for a Near-Earth Asteroid Mission

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Saile, Lynn; Freire de Carvalho, Mary; Myers, Jerry; Walton, Marlei; Butler, Douglas; Lopez, Vilma

    2011-01-01

    Introduction The Integrated Medical Model (IMM) is a decision support tool that is useful to space flight mission managers and medical system designers in assessing risks and optimizing medical systems. The IMM employs an evidence-based, probabilistic risk assessment (PRA) approach within the operational constraints of space flight. Methods Stochastic computational methods are used to forecast probability distributions of medical events, crew health metrics, medical resource utilization, and probability estimates of medical evacuation and loss of crew life. The IMM can also optimize medical kits within the constraints of mass and volume for specified missions. The IMM was used to forecast medical evacuation and loss of crew life probabilities, as well as crew health metrics for a near-earth asteroid (NEA) mission. An optimized medical kit for this mission was proposed based on the IMM simulation. Discussion The IMM can provide information to the space program regarding medical risks, including crew medical impairment, medical evacuation and loss of crew life. This information is valuable to mission managers and the space medicine community in assessing risk and developing mitigation strategies. Exploration missions such as NEA missions will have significant mass and volume constraints applied to the medical system. Appropriate allocation of medical resources will be critical to mission success. The IMM capability of optimizing medical systems based on specific crew and mission profiles will be advantageous to medical system designers. Conclusion The IMM is a decision support tool that can provide estimates of the impact of medical events on human space flight missions, such as crew impairment, evacuation, and loss of crew life. It can be used to support the development of mitigation strategies and to propose optimized medical systems for specified space flight missions. Learning Objectives The audience will learn how an evidence-based decision support tool can be used to help assess risk, develop mitigation strategies, and optimize medical systems for exploration space flight missions.

  6. Integrated Watershed Management using the Watershed Management Optimization Support Tool (WMOST)

    EPA Science Inventory

    Integrated watershed management is an effective planning strategy to balance tradeoffs between competing water uses within a watershed. WMOST is an Excel-based decision tool to aid planners in making cost effective decisions that meet water quantity and quality regulations. WMOST...

  7. Optimal decision making modeling for copper-matte Peirce-Smith converting process by means of data mining

    NASA Astrophysics Data System (ADS)

    Song, Yanpo; Peng, Xiaoqi; Tang, Ying; Hu, Zhikun

    2013-07-01

    To improve the operation level of copper converter, the approach to optimal decision making modeling for coppermatte converting process based on data mining is studied: in view of the characteristics of the process data, such as containing noise, small sample size and so on, a new robust improved ANN (artificial neural network) modeling method is proposed; taking into account the application purpose of decision making model, three new evaluation indexes named support, confidence and relative confidence are proposed; using real production data and the methods mentioned above, optimal decision making model for blowing time of S1 period (the 1st slag producing period) are developed. Simulation results show that this model can significantly improve the converting quality of S1 period, increase the optimal probability from about 70% to about 85%.

  8. Design and implementation of intelligent electronic warfare decision making algorithm

    NASA Astrophysics Data System (ADS)

    Peng, Hsin-Hsien; Chen, Chang-Kuo; Hsueh, Chi-Shun

    2017-05-01

    Electromagnetic signals and the requirements of timely response have been a rapid growth in modern electronic warfare. Although jammers are limited resources, it is possible to achieve the best electronic warfare efficiency by tactical decisions. This paper proposes the intelligent electronic warfare decision support system. In this work, we develop a novel hybrid algorithm, Digital Pheromone Particle Swarm Optimization, based on Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and Shuffled Frog Leaping Algorithm (SFLA). We use PSO to solve the problem and combine the concept of pheromones in ACO to accumulate more useful information in spatial solving process and speed up finding the optimal solution. The proposed algorithm finds the optimal solution in reasonable computation time by using the method of matrix conversion in SFLA. The results indicated that jammer allocation was more effective. The system based on the hybrid algorithm provides electronic warfare commanders with critical information to assist commanders in effectively managing the complex electromagnetic battlefield.

  9. Decision Support for Resilient Communities: EPA’s Watershed Management Optimization Support Tool

    EPA Science Inventory

    The U.S. EPA Atlantic Ecology Division is releasing version 3 of the Watershed Management Optimization Support Tool (WMOST v3) in February 2018. WMOST is a decision-support tool that facilitates integrated water resources management (IWRM) by communities and watershed organizati...

  10. Multi-objective optimization of riparian buffer networks; valuing present and future benefits

    EPA Science Inventory

    Multi-objective optimization has emerged as a popular approach to support water resources planning and management. This approach provides decision-makers with a suite of management options which are generated based on metrics that represent different social, economic, and environ...

  11. Watershed Management Optimization Support Tool v3

    EPA Science Inventory

    The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that facilitates integrated water management at the local or small watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed context that is, accou...

  12. Watershed Management Optimization Support Tool (WMOST) v3: User Guide

    EPA Science Inventory

    The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that facilitates integrated water management at the local or small watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed context that is, accou...

  13. Watershed Management Optimization Support Tool (WMOST) v3: Theoretical Documentation

    EPA Science Inventory

    The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that facilitates integrated water management at the local or small watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed context, accounting fo...

  14. Watershed Management Optimization Support Tool (WMOST) v2: Theoretical Documentation

    EPA Science Inventory

    The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that evaluates the relative cost-effectiveness of management practices at the local or watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed c...

  15. The benefit of using additional hydrological information from earth observations and reanalysis data on water allocation decisions in irrigation districts

    NASA Astrophysics Data System (ADS)

    Kaune, Alexander; López, Patricia; Werner, Micha; de Fraiture, Charlotte

    2017-04-01

    Hydrological information on water availability and demand is vital for sound water allocation decisions in irrigation districts, particularly in times of water scarcity. However, sub-optimal water allocation decisions are often taken with incomplete hydrological information, which may lead to agricultural production loss. In this study we evaluate the benefit of additional hydrological information from earth observations and reanalysis data in supporting decisions in irrigation districts. Current water allocation decisions were emulated through heuristic operational rules for water scarce and water abundant conditions in the selected irrigation districts. The Dynamic Water Balance Model based on the Budyko framework was forced with precipitation datasets from interpolated ground measurements, remote sensing and reanalysis data, to determine the water availability for irrigation. Irrigation demands were estimated based on estimates of potential evapotranspiration and coefficient for crops grown, adjusted with the interpolated precipitation data. Decisions made using both current and additional hydrological information were evaluated through the rate at which sub-optimal decisions were made. The decisions made using an amended set of decision rules that benefit from additional information on demand in the districts were also evaluated. Results show that sub-optimal decisions can be reduced in the planning phase through improved estimates of water availability. Where there are reliable observations of water availability through gauging stations, the benefit of the improved precipitation data is found in the improved estimates of demand, equally leading to a reduction of sub-optimal decisions.

  16. An integrated strategy of knowledge application for optimal e-health implementation: A multi-method study protocol

    PubMed Central

    Gagnon, Marie-Pierre; Légaré, France; Fortin, Jean-Paul; Lamothe, Lise; Labrecque, Michel; Duplantie, Julie

    2008-01-01

    Background E-health is increasingly valued for supporting: 1) access to quality health care services for all citizens; 2) information flow and exchange; 3) integrated health care services and 4) interprofessional collaboration. Nevertheless, several questions remain on the factors allowing an optimal integration of e-health in health care policies, organisations and practices. An evidence-based integrated strategy would maximise the efficacy and efficiency of e-health implementation. However, decisions regarding e-health applications are usually not evidence-based, which can lead to a sub-optimal use of these technologies. This study aims at understanding factors influencing the application of scientific knowledge for an optimal implementation of e-health in the health care system. Methods A three-year multi-method study is being conducted in the Province of Quebec (Canada). Decision-making at each decisional level (political, organisational and clinical) are analysed based on specific approaches. At the political level, critical incidents analysis is being used. This method will identify how decisions regarding the implementation of e-health could be influenced or not by scientific knowledge. Then, interviews with key-decision-makers will look at how knowledge was actually used to support their decisions, and what factors influenced its use. At the organisational level, e-health projects are being analysed as case studies in order to explore the use of scientific knowledge to support decision-making during the implementation of the technology. Interviews with promoters, managers and clinicians will be carried out in order to identify factors influencing the production and application of scientific knowledge. At the clinical level, questionnaires are being distributed to clinicians involved in e-health projects in order to analyse factors influencing knowledge application in their decision-making. Finally, a triangulation of the results will be done using mixed methodologies to allow a transversal analysis of the results at each of the decisional levels. Results This study will identify factors influencing the use of scientific evidence and other types of knowledge by decision-makers involved in planning, financing, implementing and evaluating e-health projects. Conclusion These results will be highly relevant to inform decision-makers who wish to optimise the implementation of e-health in the Quebec health care system. This study is extremely relevant given the context of major transformations in the health care system where e-health becomes a must. PMID:18435853

  17. Optimization of monitoring networks based on uncertainty quantification of model predictions of contaminant transport

    NASA Astrophysics Data System (ADS)

    Vesselinov, V. V.; Harp, D.

    2010-12-01

    The process of decision making to protect groundwater resources requires a detailed estimation of uncertainties in model predictions. Various uncertainties associated with modeling a natural system, such as: (1) measurement and computational errors; (2) uncertainties in the conceptual model and model-parameter estimates; (3) simplifications in model setup and numerical representation of governing processes, contribute to the uncertainties in the model predictions. Due to this combination of factors, the sources of predictive uncertainties are generally difficult to quantify individually. Decision support related to optimal design of monitoring networks requires (1) detailed analyses of existing uncertainties related to model predictions of groundwater flow and contaminant transport, (2) optimization of the proposed monitoring network locations in terms of their efficiency to detect contaminants and provide early warning. We apply existing and newly-proposed methods to quantify predictive uncertainties and to optimize well locations. An important aspect of the analysis is the application of newly-developed optimization technique based on coupling of Particle Swarm and Levenberg-Marquardt optimization methods which proved to be robust and computationally efficient. These techniques and algorithms are bundled in a software package called MADS. MADS (Model Analyses for Decision Support) is an object-oriented code that is capable of performing various types of model analyses and supporting model-based decision making. The code can be executed under different computational modes, which include (1) sensitivity analyses (global and local), (2) Monte Carlo analysis, (3) model calibration, (4) parameter estimation, (5) uncertainty quantification, and (6) model selection. The code can be externally coupled with any existing model simulator through integrated modules that read/write input and output files using a set of template and instruction files (consistent with the PEST I/O protocol). MADS can also be internally coupled with a series of built-in analytical simulators. MADS provides functionality to work directly with existing control files developed for the code PEST (Doherty 2009). To perform the computational modes mentioned above, the code utilizes (1) advanced Latin-Hypercube sampling techniques (including Improved Distributed Sampling), (2) various gradient-based Levenberg-Marquardt optimization methods, (3) advanced global optimization methods (including Particle Swarm Optimization), and (4) a selection of alternative objective functions. The code has been successfully applied to perform various model analyses related to environmental management of real contamination sites. Examples include source identification problems, quantification of uncertainty, model calibration, and optimization of monitoring networks. The methodology and software codes are demonstrated using synthetic and real case studies where monitoring networks are optimized taking into account the uncertainty in model predictions of contaminant transport.

  18. The Integrated Medical Model: A Risk Assessment and Decision Support Tool for Human Space Flight Missions

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric L.; Minard, Charles; FreiredeCarvalho, Mary H.; Walton, Marlei E.; Myers, Jerry G., Jr.; Saile, Lynn G.; Lopez, Vilma; Butler, Douglas J.; Johnson-Throop, Kathy A.

    2011-01-01

    This slide presentation reviews the Integrated Medical Model (IMM) and its use as a risk assessment and decision support tool for human space flight missions. The IMM is an integrated, quantified, evidence-based decision support tool useful to NASA crew health and mission planners. It is intended to assist in optimizing crew health, safety and mission success within the constraints of the space flight environment for in-flight operations. It uses ISS data to assist in planning for the Exploration Program and it is not intended to assist in post flight research. The IMM was used to update Probability Risk Assessment (PRA) for the purpose of updating forecasts for the conditions requiring evacuation (EVAC) or Loss of Crew Life (LOC) for the ISS. The IMM validation approach includes comparison with actual events and involves both qualitative and quantitaive approaches. The results of these comparisons are reviewed. Another use of the IMM is to optimize the medical kits taking into consideration the specific mission and the crew profile. An example of the use of the IMM to optimize the medical kits is reviewed.

  19. Watershed Management Optimization Support Tool (WMOST) v2: User Manual and Case Studies

    EPA Science Inventory

    The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that evaluates the relative cost-effectiveness of management practices at the local or watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed c...

  20. Designing Computerized Decision Support That Works for Clinicians and Families

    PubMed Central

    Fiks, Alexander G.

    2011-01-01

    Evidence-based decision-making is central to the practice of pediatrics. Clinical trials and other biomedical research provide a foundation for this process, and practice guidelines, drawing from their results, inform the optimal management of an increasing number of childhood health problems. However, many clinicians fail to adhere to guidelines. Clinical decision support delivered using health information technology, often in the form of electronic health records, provides a tool to deliver evidence-based information to the point of care and has the potential to overcome barriers to evidence-based practice. An increasing literature now informs how these systems should be designed and implemented to most effectively improve outcomes in pediatrics. Through the examples of computerized physician order entry, as well as the impact of alerts at the point of care on immunization rates, the delivery of evidence-based asthma care, and the follow-up of children with attention deficit hyperactivity disorder, the following review addresses strategies for success in using these tools. The following review argues that, as decision support evolves, the clinician should no longer be the sole target of information and alerts. Through the Internet and other technologies, families are increasingly seeking health information and gathering input to guide health decisions. By enlisting clinical decision support systems to deliver evidence-based information to both clinicians and families, help families express their preferences and goals, and connect families to the medical home, clinical decision support may ultimately be most effective in improving outcomes. PMID:21315295

  1. Pricing and reimbursement frameworks in Central Eastern Europe: a decision tool to support choices.

    PubMed

    Kolasa, Katarzyna; Kalo, Zoltan; Hornby, Edward

    2015-02-01

    Given limited financial resources in the Central Eastern European (CEE) region, challenges in obtaining access to innovative medical technologies are formidable. The objective of this research was to develop a decision tree that supports decision makers and drug manufacturers from CEE region in their search for optimal innovative pricing and reimbursement scheme (IPRSs). A systematic literature review was performed to search for published IPRSs, and then ten experts from the CEE region were interviewed to ascertain their opinions on these schemes. In total, 33 articles representing 46 unique IPRSs were analyzed. Based on our literature review and subsequent expert input, key decision nodes and branches of the decision tree were developed. The results indicate that outcome-based schemes are better suited to deal with uncertainties surrounding cost effectiveness, while non-outcome-based schemes are more appropriate for pricing and budget impact challenges.

  2. Advanced Information Technology in Simulation Based Life Cycle Design

    NASA Technical Reports Server (NTRS)

    Renaud, John E.

    2003-01-01

    In this research a Collaborative Optimization (CO) approach for multidisciplinary systems design is used to develop a decision based design framework for non-deterministic optimization. To date CO strategies have been developed for use in application to deterministic systems design problems. In this research the decision based design (DBD) framework proposed by Hazelrigg is modified for use in a collaborative optimization framework. The Hazelrigg framework as originally proposed provides a single level optimization strategy that combines engineering decisions with business decisions in a single level optimization. By transforming this framework for use in collaborative optimization one can decompose the business and engineering decision making processes. In the new multilevel framework of Decision Based Collaborative Optimization (DBCO) the business decisions are made at the system level. These business decisions result in a set of engineering performance targets that disciplinary engineering design teams seek to satisfy as part of subspace optimizations. The Decision Based Collaborative Optimization framework more accurately models the existing relationship between business and engineering in multidisciplinary systems design.

  3. Optimization-based decision support to assist in logistics planning for hospital evacuations.

    PubMed

    Glick, Roger; Bish, Douglas R; Agca, Esra

    2013-01-01

    The evacuation of the hospital is a very complex process and evacuation planning is an important part of a hospital's emergency management plan. There are numerous factors that affect the evacuation plan including the nature of threat, availability of resources and staff the characteristics of the evacuee population, and risk to patients and staff. The safety and health of patients is of fundamental importance, but safely moving patients to alternative care facilities while under threat is a very challenging task. This article describes the logistical issues and complexities involved in planning and execution of hospital evacuations. Furthermore, this article provides examples of how optimization-based decision support tools can help evacuation planners to better plan for complex evacuations by providing real-world solutions to various evacuation scenarios.

  4. Cross-sectoral optimization and visualization of transformation processes in urban water infrastructures in rural areas.

    PubMed

    Baron, S; Kaufmann Alves, I; Schmitt, T G; Schöffel, S; Schwank, J

    2015-01-01

    Predicted demographic, climatic and socio-economic changes will require adaptations of existing water supply and wastewater disposal systems. Especially in rural areas, these new challenges will affect the functionality of the present systems. This paper presents a joint interdisciplinary research project with the objective of developing an innovative software-based optimization and decision support system for the implementation of long-term transformations of existing infrastructures of water supply, wastewater and energy. The concept of the decision support and optimization tool is described and visualization methods for the presentation of results are illustrated. The model is tested in a rural case study region in the Southwest of Germany. A transformation strategy for a decentralized wastewater treatment concept and its visualization are presented for a model village.

  5. Measurement-based care for refractory depression: a clinical decision support model for clinical research and practice.

    PubMed

    Trivedi, Madhukar H; Daly, Ella J

    2007-05-01

    Despite years of antidepressant drug development and patient and provider education, suboptimal medication dosing and duration of exposure resulting in incomplete remission of symptoms remains the norm in the treatment of depression. Additionally, since no one treatment is effective for all patients, optimal implementation focusing on the measurement of symptoms, side effects, and function is essential to determine effective sequential treatment approaches. There is a need for a paradigm shift in how clinical decision making is incorporated into clinical practice and for a move away from the trial-and-error approach that currently determines the "next best" treatment. This paper describes how our experience with the Texas Medication Algorithm Project (TMAP) and the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) trial has confirmed the need for easy-to-use clinical support systems to ensure fidelity to guidelines. To further enhance guideline fidelity, we have developed an electronic decision support system that provides critical feedback and guidance at the point of patient care. We believe that a measurement-based care (MBC) approach is essential to any decision support system, allowing physicians to individualize and adapt decisions about patient care based on symptom progress, tolerability of medication, and dose optimization. We also believe that successful integration of sequential algorithms with MBC into real-world clinics will facilitate change that will endure and improve patient outcomes. Although we use major depression to illustrate our approach, the issues addressed are applicable to other chronic psychiatric conditions including comorbid depression and substance use disorder as well as other medical illnesses.

  6. Measurement-Based Care for Refractory Depression: A Clinical Decision Support Model for Clinical Research and Practice

    PubMed Central

    Trivedi, Madhukar H.; Daly, Ella J.

    2009-01-01

    Despite years of antidepressant drug development and patient and provider education, suboptimal medication dosing and duration of exposure resulting in incomplete remission of symptoms remains the norm in the treatment of depression. Additionally, since no one treatment is effective for all patients, optimal implementation focusing on the measurement of symptoms, side effects, and function is essential to determine effective sequential treatment approaches. There is a need for a paradigm shift in how clinical decision making is incorporated into clinical practice and for a move away from the trial-and-error approach that currently determines the “next best” treatment. This paper describes how our experience with the Texas Medication Algorithm Project (TMAP) and the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) trial has confirmed the need for easy-to-use clinical support systems to ensure fidelity to guidelines. To further enhance guideline fidelity, we have developed an electronic decision support system that provides critical feedback and guidance at the point of patient care. We believe that a measurement-based care (MBC) approach is essential to any decision support system, allowing physicians to individualize and adapt decisions about patient care based on symptom progress, tolerability of medication, and dose optimization. We also believe that successful integration of sequential algorithms with MBC into real-world clinics will facilitate change that will endure and improve patient outcomes. Although we use major depression to illustrate our approach, the issues addressed are applicable to other chronic psychiatric conditions including comorbid depression and substance use disorder as well as other medical illnesses. PMID:17320312

  7. A Decision Support System for Solving Multiple Criteria Optimization Problems

    ERIC Educational Resources Information Center

    Filatovas, Ernestas; Kurasova, Olga

    2011-01-01

    In this paper, multiple criteria optimization has been investigated. A new decision support system (DSS) has been developed for interactive solving of multiple criteria optimization problems (MOPs). The weighted-sum (WS) approach is implemented to solve the MOPs. The MOPs are solved by selecting different weight coefficient values for the criteria…

  8. A Bayesian model averaging method for the derivation of reservoir operating rules

    NASA Astrophysics Data System (ADS)

    Zhang, Jingwen; Liu, Pan; Wang, Hao; Lei, Xiaohui; Zhou, Yanlai

    2015-09-01

    Because the intrinsic dynamics among optimal decision making, inflow processes and reservoir characteristics are complex, functional forms of reservoir operating rules are always determined subjectively. As a result, the uncertainty of selecting form and/or model involved in reservoir operating rules must be analyzed and evaluated. In this study, we analyze the uncertainty of reservoir operating rules using the Bayesian model averaging (BMA) model. Three popular operating rules, namely piecewise linear regression, surface fitting and a least-squares support vector machine, are established based on the optimal deterministic reservoir operation. These individual models provide three-member decisions for the BMA combination, enabling the 90% release interval to be estimated by the Markov Chain Monte Carlo simulation. A case study of China's the Baise reservoir shows that: (1) the optimal deterministic reservoir operation, superior to any reservoir operating rules, is used as the samples to derive the rules; (2) the least-squares support vector machine model is more effective than both piecewise linear regression and surface fitting; (3) BMA outperforms any individual model of operating rules based on the optimal trajectories. It is revealed that the proposed model can reduce the uncertainty of operating rules, which is of great potential benefit in evaluating the confidence interval of decisions.

  9. SUSTAIN – A Framework for Placement of Best Management Practices in Urban Watersheds to Protect Water Quality

    EPA Science Inventory

    Watershed and stormwater managers need modeling tools to evaluate alternative plans for water quality management and flow abatement techniques in urban and developing areas. A watershed-scale, decision-support framework that is based on cost optimization is needed to support gov...

  10. EEG feature selection method based on decision tree.

    PubMed

    Duan, Lijuan; Ge, Hui; Ma, Wei; Miao, Jun

    2015-01-01

    This paper aims to solve automated feature selection problem in brain computer interface (BCI). In order to automate feature selection process, we proposed a novel EEG feature selection method based on decision tree (DT). During the electroencephalogram (EEG) signal processing, a feature extraction method based on principle component analysis (PCA) was used, and the selection process based on decision tree was performed by searching the feature space and automatically selecting optimal features. Considering that EEG signals are a series of non-linear signals, a generalized linear classifier named support vector machine (SVM) was chosen. In order to test the validity of the proposed method, we applied the EEG feature selection method based on decision tree to BCI Competition II datasets Ia, and the experiment showed encouraging results.

  11. Uncertainty analysis for effluent trading planning using a Bayesian estimation-based simulation-optimization modeling approach.

    PubMed

    Zhang, J L; Li, Y P; Huang, G H; Baetz, B W; Liu, J

    2017-06-01

    In this study, a Bayesian estimation-based simulation-optimization modeling approach (BESMA) is developed for identifying effluent trading strategies. BESMA incorporates nutrient fate modeling with soil and water assessment tool (SWAT), Bayesian estimation, and probabilistic-possibilistic interval programming with fuzzy random coefficients (PPI-FRC) within a general framework. Based on the water quality protocols provided by SWAT, posterior distributions of parameters can be analyzed through Bayesian estimation; stochastic characteristic of nutrient loading can be investigated which provides the inputs for the decision making. PPI-FRC can address multiple uncertainties in the form of intervals with fuzzy random boundaries and the associated system risk through incorporating the concept of possibility and necessity measures. The possibility and necessity measures are suitable for optimistic and pessimistic decision making, respectively. BESMA is applied to a real case of effluent trading planning in the Xiangxihe watershed, China. A number of decision alternatives can be obtained under different trading ratios and treatment rates. The results can not only facilitate identification of optimal effluent-trading schemes, but also gain insight into the effects of trading ratio and treatment rate on decision making. The results also reveal that decision maker's preference towards risk would affect decision alternatives on trading scheme as well as system benefit. Compared with the conventional optimization methods, it is proved that BESMA is advantageous in (i) dealing with multiple uncertainties associated with randomness and fuzziness in effluent-trading planning within a multi-source, multi-reach and multi-period context; (ii) reflecting uncertainties existing in nutrient transport behaviors to improve the accuracy in water quality prediction; and (iii) supporting pessimistic and optimistic decision making for effluent trading as well as promoting diversity of decision alternatives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Clinical errors that can occur in the treatment decision-making process in psychotherapy.

    PubMed

    Park, Jake; Goode, Jonathan; Tompkins, Kelley A; Swift, Joshua K

    2016-09-01

    Clinical errors occur in the psychotherapy decision-making process whenever a less-than-optimal treatment or approach is chosen when working with clients. A less-than-optimal approach may be one that a client is unwilling to try or fully invest in based on his/her expectations and preferences, or one that may have little chance of success based on contraindications and/or limited research support. The doctor knows best and the independent choice models are two decision-making models that are frequently used within psychology, but both are associated with an increased likelihood of errors in the treatment decision-making process. In particular, these models fail to integrate all three components of the definition of evidence-based practice in psychology (American Psychological Association, 2006). In this article we describe both models and provide examples of clinical errors that can occur in each. We then introduce the shared decision-making model as an alternative that is less prone to clinical errors. PsycINFO Database Record (c) 2016 APA, all rights reserved

  13. Optimizing Perioperative Decision Making: Improved Information for Clinical Workflow Planning

    PubMed Central

    Doebbeling, Bradley N.; Burton, Matthew M.; Wiebke, Eric A.; Miller, Spencer; Baxter, Laurence; Miller, Donald; Alvarez, Jorge; Pekny, Joseph

    2012-01-01

    Perioperative care is complex and involves multiple interconnected subsystems. Delayed starts, prolonged cases and overtime are common. Surgical procedures account for 40–70% of hospital revenues and 30–40% of total costs. Most planning and scheduling in healthcare is done without modern planning tools, which have potential for improving access by assisting in operations planning support. We identified key planning scenarios of interest to perioperative leaders, in order to examine the feasibility of applying combinatorial optimization software solving some of those planning issues in the operative setting. Perioperative leaders desire a broad range of tools for planning and assessing alternate solutions. Our modeled solutions generated feasible solutions that varied as expected, based on resource and policy assumptions and found better utilization of scarce resources. Combinatorial optimization modeling can effectively evaluate alternatives to support key decisions for planning clinical workflow and improving care efficiency and satisfaction. PMID:23304284

  14. Optimizing perioperative decision making: improved information for clinical workflow planning.

    PubMed

    Doebbeling, Bradley N; Burton, Matthew M; Wiebke, Eric A; Miller, Spencer; Baxter, Laurence; Miller, Donald; Alvarez, Jorge; Pekny, Joseph

    2012-01-01

    Perioperative care is complex and involves multiple interconnected subsystems. Delayed starts, prolonged cases and overtime are common. Surgical procedures account for 40-70% of hospital revenues and 30-40% of total costs. Most planning and scheduling in healthcare is done without modern planning tools, which have potential for improving access by assisting in operations planning support. We identified key planning scenarios of interest to perioperative leaders, in order to examine the feasibility of applying combinatorial optimization software solving some of those planning issues in the operative setting. Perioperative leaders desire a broad range of tools for planning and assessing alternate solutions. Our modeled solutions generated feasible solutions that varied as expected, based on resource and policy assumptions and found better utilization of scarce resources. Combinatorial optimization modeling can effectively evaluate alternatives to support key decisions for planning clinical workflow and improving care efficiency and satisfaction.

  15. Multi-objective decision-making model based on CBM for an aircraft fleet

    NASA Astrophysics Data System (ADS)

    Luo, Bin; Lin, Lin

    2018-04-01

    Modern production management patterns, in which multi-unit (e.g., a fleet of aircrafts) are managed in a holistic manner, have brought new challenges for multi-unit maintenance decision making. To schedule a good maintenance plan, not only does the individual machine maintenance have to be considered, but also the maintenance of the other individuals have to be taken into account. Since most condition-based maintenance researches for aircraft focused on solely reducing maintenance cost or maximizing the availability of single aircraft, as well as considering that seldom researches concentrated on both the two objectives: minimizing cost and maximizing the availability of a fleet (total number of available aircraft in fleet), a multi-objective decision-making model based on condition-based maintenance concentrated both on the above two objectives is established. Furthermore, in consideration of the decision maker may prefer providing the final optimal result in the form of discrete intervals instead of a set of points (non-dominated solutions) in real decision-making problem, a novel multi-objective optimization method based on support vector regression is proposed to solve the above multi-objective decision-making model. Finally, a case study regarding a fleet is conducted, with the results proving that the approach efficiently generates outcomes that meet the schedule requirements.

  16. Web-based health services and clinical decision support.

    PubMed

    Jegelevicius, Darius; Marozas, Vaidotas; Lukosevicius, Arunas; Patasius, Martynas

    2004-01-01

    The purpose of this study was the development of a Web-based e-health service for comprehensive assistance and clinical decision support. The service structure consists of a Web server, a PHP-based Web interface linked to a clinical SQL database, Java applets for interactive manipulation and visualization of signals and a Matlab server linked with signal and data processing algorithms implemented by Matlab programs. The service ensures diagnostic signal- and image analysis-sbased clinical decision support. By using the discussed methodology, a pilot service for pathology specialists for automatic calculation of the proliferation index has been developed. Physicians use a simple Web interface for uploading the pictures under investigation to the server; subsequently a Java applet interface is used for outlining the region of interest and, after processing on the server, the requested proliferation index value is calculated. There is also an "expert corner", where experts can submit their index estimates and comments on particular images, which is especially important for system developers. These expert evaluations are used for optimization and verification of automatic analysis algorithms. Decision support trials have been conducted for ECG and ophthalmology ultrasonic investigations of intraocular tumor differentiation. Data mining algorithms have been applied and decision support trees constructed. These services are under implementation by a Web-based system too. The study has shown that the Web-based structure ensures more effective, flexible and accessible services compared with standalone programs and is very convenient for biomedical engineers and physicians, especially in the development phase.

  17. Decision support tool to assess importance of transportation facilities.

    DOT National Transportation Integrated Search

    2008-01-01

    Assessing the importance of transportation facilities is an increasingly growing topic of interest to federal and state transportation agencies. This work proposes an optimization based model that uses concepts and techniques of complex networks scie...

  18. Rule-based optimization and multicriteria decision support for packaging a truck chassis

    NASA Astrophysics Data System (ADS)

    Berger, Martin; Lindroth, Peter; Welke, Richard

    2017-06-01

    Trucks are highly individualized products where exchangeable parts are flexibly combined to suit different customer requirements, this leading to a great complexity in product development. Therefore, an optimization approach based on constraint programming is proposed for automatically packaging parts of a truck chassis by following packaging rules expressed as constraints. A multicriteria decision support system is developed where a database of truck layouts is computed, among which interactive navigation then can be performed. The work has been performed in cooperation with Volvo Group Trucks Technology (GTT), from which specific rules have been used. Several scenarios are described where the methods developed can be successfully applied and lead to less time-consuming manual work, fewer mistakes, and greater flexibility in configuring trucks. A numerical evaluation is also presented showing the efficiency and practical relevance of the methods, which are implemented in a software tool.

  19. Lessons learned from implementing service-oriented clinical decision support at four sites: A qualitative study.

    PubMed

    Wright, Adam; Sittig, Dean F; Ash, Joan S; Erickson, Jessica L; Hickman, Trang T; Paterno, Marilyn; Gebhardt, Eric; McMullen, Carmit; Tsurikova, Ruslana; Dixon, Brian E; Fraser, Greg; Simonaitis, Linas; Sonnenberg, Frank A; Middleton, Blackford

    2015-11-01

    To identify challenges, lessons learned and best practices for service-oriented clinical decision support, based on the results of the Clinical Decision Support Consortium, a multi-site study which developed, implemented and evaluated clinical decision support services in a diverse range of electronic health records. Ethnographic investigation using the rapid assessment process, a procedure for agile qualitative data collection and analysis, including clinical observation, system demonstrations and analysis and 91 interviews. We identified challenges and lessons learned in eight dimensions: (1) hardware and software computing infrastructure, (2) clinical content, (3) human-computer interface, (4) people, (5) workflow and communication, (6) internal organizational policies, procedures, environment and culture, (7) external rules, regulations, and pressures and (8) system measurement and monitoring. Key challenges included performance issues (particularly related to data retrieval), differences in terminologies used across sites, workflow variability and the need for a legal framework. Based on the challenges and lessons learned, we identified eight best practices for developers and implementers of service-oriented clinical decision support: (1) optimize performance, or make asynchronous calls, (2) be liberal in what you accept (particularly for terminology), (3) foster clinical transparency, (4) develop a legal framework, (5) support a flexible front-end, (6) dedicate human resources, (7) support peer-to-peer communication, (8) improve standards. The Clinical Decision Support Consortium successfully developed a clinical decision support service and implemented it in four different electronic health records and four diverse clinical sites; however, the process was arduous. The lessons identified by the Consortium may be useful for other developers and implementers of clinical decision support services. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Heuristics in Managing Complex Clinical Decision Tasks in Experts’ Decision Making

    PubMed Central

    Islam, Roosan; Weir, Charlene; Del Fiol, Guilherme

    2016-01-01

    Background Clinical decision support is a tool to help experts make optimal and efficient decisions. However, little is known about the high level of abstractions in the thinking process for the experts. Objective The objective of the study is to understand how clinicians manage complexity while dealing with complex clinical decision tasks. Method After approval from the Institutional Review Board (IRB), three clinical experts were interviewed the transcripts from these interviews were analyzed. Results We found five broad categories of strategies by experts for managing complex clinical decision tasks: decision conflict, mental projection, decision trade-offs, managing uncertainty and generating rule of thumb. Conclusion Complexity is created by decision conflicts, mental projection, limited options and treatment uncertainty. Experts cope with complexity in a variety of ways, including using efficient and fast decision strategies to simplify complex decision tasks, mentally simulating outcomes and focusing on only the most relevant information. Application Understanding complex decision making processes can help design allocation based on the complexity of task for clinical decision support design. PMID:27275019

  1. Heuristics in Managing Complex Clinical Decision Tasks in Experts' Decision Making.

    PubMed

    Islam, Roosan; Weir, Charlene; Del Fiol, Guilherme

    2014-09-01

    Clinical decision support is a tool to help experts make optimal and efficient decisions. However, little is known about the high level of abstractions in the thinking process for the experts. The objective of the study is to understand how clinicians manage complexity while dealing with complex clinical decision tasks. After approval from the Institutional Review Board (IRB), three clinical experts were interviewed the transcripts from these interviews were analyzed. We found five broad categories of strategies by experts for managing complex clinical decision tasks: decision conflict, mental projection, decision trade-offs, managing uncertainty and generating rule of thumb. Complexity is created by decision conflicts, mental projection, limited options and treatment uncertainty. Experts cope with complexity in a variety of ways, including using efficient and fast decision strategies to simplify complex decision tasks, mentally simulating outcomes and focusing on only the most relevant information. Understanding complex decision making processes can help design allocation based on the complexity of task for clinical decision support design.

  2. Nurses' Clinical Decision Making on Adopting a Wound Clinical Decision Support System.

    PubMed

    Khong, Peck Chui Betty; Hoi, Shu Yin; Holroyd, Eleanor; Wang, Wenru

    2015-07-01

    Healthcare information technology systems are considered the ideal tool to inculcate evidence-based nursing practices. The wound clinical decision support system was built locally to support nurses to manage pressure ulcer wounds in their daily practice. However, its adoption rate is not optimal. The study's objective was to discover the concepts that informed the RNs' decisions to adopt the wound clinical decision support system as an evidence-based technology in their nursing practice. This was an exploratory, descriptive, and qualitative design using face-to-face interviews, individual interviews, and active participatory observation. A purposive, theoretical sample of 14 RNs was recruited from one of the largest public tertiary hospitals in Singapore after obtaining ethics approval. After consenting, the nurses were interviewed and observed separately. Recruitment stopped when data saturation was reached. All transcribed interview data underwent a concurrent thematic analysis, whereas observational data were content analyzed independently and subsequently triangulated with the interview data. Eight emerging themes were identified, namely, use of the wound clinical decision support system, beliefs in the wound clinical decision support system, influences of the workplace culture, extent of the benefits, professional control over nursing practices, use of knowledge, gut feelings, and emotions (fear, doubt, and frustration). These themes represented the nurses' mental outlook as they made decisions on adopting the wound clinical decision support system in light of the complexities of their roles and workloads. This research has provided insight on the nurses' thoughts regarding their decision to interact with the computer environment in a Singapore context. It captured the nurses' complex thoughts when deciding whether to adopt or reject information technology as they practice in a clinical setting.

  3. Optimal Medical Equipment Maintenance Service Proposal Decision Support System combining Activity Based Costing (ABC) and the Analytic Hierarchy Process (AHP).

    PubMed

    da Rocha, Leticia; Sloane, Elliot; M Bassani, Jose

    2005-01-01

    This study describes a framework to support the choice of the maintenance service (in-house or third party contract) for each category of medical equipment based on: a) the real medical equipment maintenance management system currently used by the biomedical engineering group of the public health system of the Universidade Estadual de Campinas located in Brazil to control the medical equipment maintenance service, b) the Activity Based Costing (ABC) method, and c) the Analytic Hierarchy Process (AHP) method. Results show the cost and performance related to each type of maintenance service. Decision-makers can use these results to evaluate possible strategies for the categories of equipment.

  4. Optimal policy for value-based decision-making.

    PubMed

    Tajima, Satohiro; Drugowitsch, Jan; Pouget, Alexandre

    2016-08-18

    For decades now, normative theories of perceptual decisions, and their implementation as drift diffusion models, have driven and significantly improved our understanding of human and animal behaviour and the underlying neural processes. While similar processes seem to govern value-based decisions, we still lack the theoretical understanding of why this ought to be the case. Here, we show that, similar to perceptual decisions, drift diffusion models implement the optimal strategy for value-based decisions. Such optimal decisions require the models' decision boundaries to collapse over time, and to depend on the a priori knowledge about reward contingencies. Diffusion models only implement the optimal strategy under specific task assumptions, and cease to be optimal once we start relaxing these assumptions, by, for example, using non-linear utility functions. Our findings thus provide the much-needed theory for value-based decisions, explain the apparent similarity to perceptual decisions, and predict conditions under which this similarity should break down.

  5. Optimal policy for value-based decision-making

    PubMed Central

    Tajima, Satohiro; Drugowitsch, Jan; Pouget, Alexandre

    2016-01-01

    For decades now, normative theories of perceptual decisions, and their implementation as drift diffusion models, have driven and significantly improved our understanding of human and animal behaviour and the underlying neural processes. While similar processes seem to govern value-based decisions, we still lack the theoretical understanding of why this ought to be the case. Here, we show that, similar to perceptual decisions, drift diffusion models implement the optimal strategy for value-based decisions. Such optimal decisions require the models' decision boundaries to collapse over time, and to depend on the a priori knowledge about reward contingencies. Diffusion models only implement the optimal strategy under specific task assumptions, and cease to be optimal once we start relaxing these assumptions, by, for example, using non-linear utility functions. Our findings thus provide the much-needed theory for value-based decisions, explain the apparent similarity to perceptual decisions, and predict conditions under which this similarity should break down. PMID:27535638

  6. Collaboration pathway(s) using new tools for optimizing operational climate monitoring from space

    NASA Astrophysics Data System (ADS)

    Helmuth, Douglas B.; Selva, Daniel; Dwyer, Morgan M.

    2014-10-01

    Consistently collecting the earth's climate signatures remains a priority for world governments and international scientific organizations. Architecting a solution requires transforming scientific missions into an optimized robust `operational' constellation that addresses the needs of decision makers, scientific investigators and global users for trusted data. The application of new tools offers pathways for global architecture collaboration. Recent (2014) rulebased decision engine modeling runs that targeted optimizing the intended NPOESS architecture, becomes a surrogate for global operational climate monitoring architecture(s). This rule-based systems tools provide valuable insight for Global climate architectures, through the comparison and evaluation of alternatives considered and the exhaustive range of trade space explored. A representative optimization of Global ECV's (essential climate variables) climate monitoring architecture(s) is explored and described in some detail with thoughts on appropriate rule-based valuations. The optimization tools(s) suggest and support global collaboration pathways and hopefully elicit responses from the audience and climate science shareholders.

  7. Dairy cow culling strategies: making economical culling decisions.

    PubMed

    Lehenbauer, T W; Oltjen, J W

    1998-01-01

    The purpose of this report was to examine important economic elements of culling decisions, to review progress in development of culling decision support systems, and to discern some of the potentially rewarding areas for future research on culling models. Culling decisions have an important influence on the economic performance of the dairy but are often made in a nonprogrammed fashion and based partly on the intuition of the decision maker. The computer technology that is available for dairy herd management has made feasible the use of economic models to support culling decisions. Financial components--including profit, cash flow, and risk--are major economic factors affecting culling decisions. Culling strategies are further influenced by short-term fluctuations in cow numbers as well as by planned herd expansion. Changes in herd size affect the opportunity cost for postponed replacement and may alter the relevance of optimization strategies that assume a fixed herd size. Improvements in model components related to biological factors affecting future cow performance, including milk production, reproductive status, and mastitis, appear to offer the greatest economic potential for enhancing culling decision support systems. The ultimate value of any culling decision support system for developing economic culling strategies will be determined by its results under field conditions.

  8. A decision-analytic approach to the optimal allocation of resources for endangered species consultation

    USGS Publications Warehouse

    Converse, Sarah J.; Shelley, Kevin J.; Morey, Steve; Chan, Jeffrey; LaTier, Andrea; Scafidi, Carolyn; Crouse, Deborah T.; Runge, Michael C.

    2011-01-01

    The resources available to support conservation work, whether time or money, are limited. Decision makers need methods to help them identify the optimal allocation of limited resources to meet conservation goals, and decision analysis is uniquely suited to assist with the development of such methods. In recent years, a number of case studies have been described that examine optimal conservation decisions under fiscal constraints; here we develop methods to look at other types of constraints, including limited staff and regulatory deadlines. In the US, Section Seven consultation, an important component of protection under the federal Endangered Species Act, requires that federal agencies overseeing projects consult with federal biologists to avoid jeopardizing species. A benefit of consultation is negotiation of project modifications that lessen impacts on species, so staff time allocated to consultation supports conservation. However, some offices have experienced declining staff, potentially reducing the efficacy of consultation. This is true of the US Fish and Wildlife Service's Washington Fish and Wildlife Office (WFWO) and its consultation work on federally-threatened bull trout (Salvelinus confluentus). To improve effectiveness, WFWO managers needed a tool to help allocate this work to maximize conservation benefits. We used a decision-analytic approach to score projects based on the value of staff time investment, and then identified an optimal decision rule for how scored projects would be allocated across bins, where projects in different bins received different time investments. We found that, given current staff, the optimal decision rule placed 80% of informal consultations (those where expected effects are beneficial, insignificant, or discountable) in a short bin where they would be completed without negotiating changes. The remaining 20% would be placed in a long bin, warranting an investment of seven days, including time for negotiation. For formal consultations (those where expected effects are significant), 82% of projects would be placed in a long bin, with an average time investment of 15. days. The WFWO is using this decision-support tool to help allocate staff time. Because workload allocation decisions are iterative, we describe a monitoring plan designed to increase the tool's efficacy over time. This work has general application beyond Section Seven consultation, in that it provides a framework for efficient investment of staff time in conservation when such time is limited and when regulatory deadlines prevent an unconstrained approach. ?? 2010.

  9. Decision-support models for empiric antibiotic selection in Gram-negative bloodstream infections.

    PubMed

    MacFadden, D R; Coburn, B; Shah, N; Robicsek, A; Savage, R; Elligsen, M; Daneman, N

    2018-04-25

    Early empiric antibiotic therapy in patients can improve clinical outcomes in Gram-negative bacteraemia. However, the widespread prevalence of antibiotic-resistant pathogens compromises our ability to provide adequate therapy while minimizing use of broad antibiotics. We sought to determine whether readily available electronic medical record data could be used to develop predictive models for decision support in Gram-negative bacteraemia. We performed a multi-centre cohort study, in Canada and the USA, of hospitalized patients with Gram-negative bloodstream infection from April 2010 to March 2015. We analysed multivariable models for prediction of antibiotic susceptibility at two empiric windows: Gram-stain-guided and pathogen-guided treatment. Decision-support models for empiric antibiotic selection were developed based on three clinical decision thresholds of acceptable adequate coverage (80%, 90% and 95%). A total of 1832 patients with Gram-negative bacteraemia were evaluated. Multivariable models showed good discrimination across countries and at both Gram-stain-guided (12 models, areas under the curve (AUCs) 0.68-0.89, optimism-corrected AUCs 0.63-0.85) and pathogen-guided (12 models, AUCs 0.75-0.98, optimism-corrected AUCs 0.64-0.95) windows. Compared to antibiogram-guided therapy, decision-support models of antibiotic selection incorporating individual patient characteristics and prior culture results have the potential to increase use of narrower-spectrum antibiotics (in up to 78% of patients) while reducing inadequate therapy. Multivariable models using readily available epidemiologic factors can be used to predict antimicrobial susceptibility in infecting pathogens with reasonable discriminatory ability. Implementation of sequential predictive models for real-time individualized empiric antibiotic decision-making has the potential to both optimize adequate coverage for patients while minimizing overuse of broad-spectrum antibiotics, and therefore requires further prospective evaluation. Readily available epidemiologic risk factors can be used to predict susceptibility of Gram-negative organisms among patients with bacteraemia, using automated decision-making models. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  10. U.S. EPA's Watershed Management Research Activities

    EPA Science Inventory

    Watershed and stormwater managers need modeling tools to evaluate alternative plans for environmental quality restoration and protection needs in urban and developing areas. A watershed-scale decision-support system, based on cost optimization, provides an essential tool to suppo...

  11. Optimal operating rules definition in complex water resource systems combining fuzzy logic, expert criteria and stochastic programming

    NASA Astrophysics Data System (ADS)

    Macian-Sorribes, Hector; Pulido-Velazquez, Manuel

    2016-04-01

    This contribution presents a methodology for defining optimal seasonal operating rules in multireservoir systems coupling expert criteria and stochastic optimization. Both sources of information are combined using fuzzy logic. The structure of the operating rules is defined based on expert criteria, via a joint expert-technician framework consisting in a series of meetings, workshops and surveys carried out between reservoir managers and modelers. As a result, the decision-making process used by managers can be assessed and expressed using fuzzy logic: fuzzy rule-based systems are employed to represent the operating rules and fuzzy regression procedures are used for forecasting future inflows. Once done that, a stochastic optimization algorithm can be used to define optimal decisions and transform them into fuzzy rules. Finally, the optimal fuzzy rules and the inflow prediction scheme are combined into a Decision Support System for making seasonal forecasts and simulate the effect of different alternatives in response to the initial system state and the foreseen inflows. The approach presented has been applied to the Jucar River Basin (Spain). Reservoir managers explained how the system is operated, taking into account the reservoirs' states at the beginning of the irrigation season and the inflows previewed during that season. According to the information given by them, the Jucar River Basin operating policies were expressed via two fuzzy rule-based (FRB) systems that estimate the amount of water to be allocated to the users and how the reservoir storages should be balanced to guarantee those deliveries. A stochastic optimization model using Stochastic Dual Dynamic Programming (SDDP) was developed to define optimal decisions, which are transformed into optimal operating rules embedding them into the two FRBs previously created. As a benchmark, historical records are used to develop alternative operating rules. A fuzzy linear regression procedure was employed to foresee future inflows depending on present and past hydrological and meteorological variables actually used by the reservoir managers to define likely inflow scenarios. A Decision Support System (DSS) was created coupling the FRB systems and the inflow prediction scheme in order to give the user a set of possible optimal releases in response to the reservoir states at the beginning of the irrigation season and the fuzzy inflow projections made using hydrological and meteorological information. The results show that the optimal DSS created using the FRB operating policies are able to increase the amount of water allocated to the users in 20 to 50 Mm3 per irrigation season with respect to the current policies. Consequently, the mechanism used to define optimal operating rules and transform them into a DSS is able to increase the water deliveries in the Jucar River Basin, combining expert criteria and optimization algorithms in an efficient way. This study has been partially supported by the IMPADAPT project (CGL2013-48424-C2-1-R) with Spanish MINECO (Ministerio de Economía y Competitividad) and FEDER funds. It also has received funding from the European Union's Horizon 2020 research and innovation programme under the IMPREX project (grant agreement no: 641.811).

  12. Optimal two-stage dynamic treatment regimes from a classification perspective with censored survival data.

    PubMed

    Hager, Rebecca; Tsiatis, Anastasios A; Davidian, Marie

    2018-05-18

    Clinicians often make multiple treatment decisions at key points over the course of a patient's disease. A dynamic treatment regime is a sequence of decision rules, each mapping a patient's observed history to the set of available, feasible treatment options at each decision point, and thus formalizes this process. An optimal regime is one leading to the most beneficial outcome on average if used to select treatment for the patient population. We propose a method for estimation of an optimal regime involving two decision points when the outcome of interest is a censored survival time, which is based on maximizing a locally efficient, doubly robust, augmented inverse probability weighted estimator for average outcome over a class of regimes. By casting this optimization as a classification problem, we exploit well-studied classification techniques such as support vector machines to characterize the class of regimes and facilitate implementation via a backward iterative algorithm. Simulation studies of performance and application of the method to data from a sequential, multiple assignment randomized clinical trial in acute leukemia are presented. © 2018, The International Biometric Society.

  13. Bayesian Decision Support for Adaptive Lung Treatments

    NASA Astrophysics Data System (ADS)

    McShan, Daniel; Luo, Yi; Schipper, Matt; TenHaken, Randall

    2014-03-01

    Purpose: A Bayesian Decision Network will be demonstrated to provide clinical decision support for adaptive lung response-driven treatment management based on evidence that physiologic metrics may correlate better with individual patient response than traditional (population-based) dose and volume-based metrics. Further, there is evidence that information obtained during the course of radiation therapy may further improve response predictions. Methods: Clinical factors were gathered for 58 patients including planned mean lung dose, and the bio-markers IL-8 and TGF-β1 obtained prior to treatment and two weeks into treatment along with complication outcomes for these patients. A Bayesian Decision Network was constructed using Netica 5.0.2 from Norsys linking these clinical factors to obtain a prediction of radiation induced lung disese (RILD) complication. A decision node was added to the network to provide a plan adaption recommendation based on the trade-off between the RILD prediction and complexity of replanning. A utility node provides the weighting cost between the competing factors. Results: The decision node predictions were optimized against the data for the 58 cases. With this decision network solution, one can consider the decision result for a new patient with specific findings to obtain a recommendation to adaptively modify the originally planned treatment course. Conclusions: A Bayesian approach allows handling and propagating probabilistic data in a logical and principled manner. Decision networks provide the further ability to provide utility-based trade-offs, reflecting non-medical but practical cost/benefit analysis. The network demonstrated illustrates the basic concept, but many other factors may affect these decisions and work on building better models are being designed and tested. Acknowledgement: Supported by NIH-P01-CA59827

  14. Computational Support for Technology- Investment Decisions

    NASA Technical Reports Server (NTRS)

    Adumitroaie, Virgil; Hua, Hook; Lincoln, William; Block, Gary; Mrozinski, Joseph; Shelton, Kacie; Weisbin, Charles; Elfes, Alberto; Smith, Jeffrey

    2007-01-01

    Strategic Assessment of Risk and Technology (START) is a user-friendly computer program that assists human managers in making decisions regarding research-and-development investment portfolios in the presence of uncertainties and of non-technological constraints that include budgetary and time limits, restrictions related to infrastructure, and programmatic and institutional priorities. START facilitates quantitative analysis of technologies, capabilities, missions, scenarios and programs, and thereby enables the selection and scheduling of value-optimal development efforts. START incorporates features that, variously, perform or support a unique combination of functions, most of which are not systematically performed or supported by prior decision- support software. These functions include the following: Optimal portfolio selection using an expected-utility-based assessment of capabilities and technologies; Temporal investment recommendations; Distinctions between enhancing and enabling capabilities; Analysis of partial funding for enhancing capabilities; and Sensitivity and uncertainty analysis. START can run on almost any computing hardware, within Linux and related operating systems that include Mac OS X versions 10.3 and later, and can run in Windows under the Cygwin environment. START can be distributed in binary code form. START calls, as external libraries, several open-source software packages. Output is in Excel (.xls) file format.

  15. Decision Support Model for Optimal Management of Coastal Gate

    NASA Astrophysics Data System (ADS)

    Ditthakit, Pakorn; Chittaladakorn, Suwatana

    2010-05-01

    The coastal areas are intensely settled by human beings owing to their fertility of natural resources. However, at present those areas are facing with water scarcity problems: inadequate water and poor water quality as a result of saltwater intrusion and inappropriate land-use management. To solve these problems, several measures have been exploited. The coastal gate construction is a structural measure widely performed in several countries. This manner requires the plan for suitably operating coastal gates. Coastal gate operation is a complicated task and usually concerns with the management of multiple purposes, which are generally conflicted one another. This paper delineates the methodology and used theories for developing decision support modeling for coastal gate operation scheduling. The developed model was based on coupling simulation and optimization model. The weighting optimization technique based on Differential Evolution (DE) was selected herein for solving multiple objective problems. The hydrodynamic and water quality models were repeatedly invoked during searching the optimal gate operations. In addition, two forecasting models:- Auto Regressive model (AR model) and Harmonic Analysis model (HA model) were applied for forecasting water levels and tide levels, respectively. To demonstrate the applicability of the developed model, it was applied to plan the operations for hypothetical system of Pak Phanang coastal gate system, located in Nakhon Si Thammarat province, southern part of Thailand. It was found that the proposed model could satisfyingly assist decision-makers for operating coastal gates under various environmental, ecological and hydraulic conditions.

  16. [Diagnosis and the technology for optimizing the medical support of a troop unit].

    PubMed

    Korshever, N G; Polkovov, S V; Lavrinenko, O V; Krupnov, P A; Anastasov, K N

    2000-05-01

    The work is devoted to investigation of the system of military unit medical support with the use of principles and states of organizational diagnosis; development of the method allowing to assess its functional activity; and determination of optimization trends. Basing on the conducted organizational diagnosis and expert inquiry the informative criteria were determined which characterize the stages of functioning of the military unit medical support system. To evaluate the success of military unit medical support the complex multi-criteria pattern was developed and algorithm of this process optimization was substantiated. Using the results obtained, particularly realization of principles and states of decision taking theory in machine program it is possible to solve more complex problem of comparison between any number of military units: to dispose them according to priority decrease; to select the programmed number of the best and worst; to determine the trends of activity optimization in corresponding medical service personnel.

  17. Decision Making and Reward in Frontal Cortex

    PubMed Central

    Kennerley, Steven W.; Walton, Mark E.

    2011-01-01

    Patients with damage to the prefrontal cortex (PFC)—especially the ventral and medial parts of PFC—often show a marked inability to make choices that meet their needs and goals. These decision-making impairments often reflect both a deficit in learning concerning the consequences of a choice, as well as deficits in the ability to adapt future choices based on experienced value of the current choice. Thus, areas of PFC must support some value computations that are necessary for optimal choice. However, recent frameworks of decision making have highlighted that optimal and adaptive decision making does not simply rest on a single computation, but a number of different value computations may be necessary. Using this framework as a guide, we summarize evidence from both lesion studies and single-neuron physiology for the representation of different value computations across PFC areas. PMID:21534649

  18. A Decision Support System For The Real-Time Allocation Of The Water Resource Of The Tarim River Basin, China

    NASA Astrophysics Data System (ADS)

    Wei, J.; Wang, G.; Liu, R.

    2008-12-01

    The Tarim River Basin is the longest inland river in China. Due to water scarcity, ecologically-fragile is becoming a significant constraint to sustainable development in this region. To effectively manage the limited water resources for ecological purposes and for conventional water utilization purposes, a real-time water resources allocation Decision Support System (DSS) has been developed. Based on workflows of the water resources regulations and comprehensive analysis of the efficiency and feasibility of water management strategies, the DSS includes information systems that perform data acquisition, management and visualization, and model systems that perform hydrological forecast, water demand prediction, flow routing simulation and water resources optimization of the hydrological and water utilization process. An optimization and process control strategy is employed to dynamically allocate the water resources among the different stakeholders. The competitive targets and constraints are taken into considered by multi-objective optimization and with different priorities. The DSS of the Tarim River Basin has been developed and been successfully utilized to support the water resources management of the Tarim River Basin since 2005.

  19. A web-based Decision Support System for the optimal management of construction and demolition waste.

    PubMed

    Banias, G; Achillas, Ch; Vlachokostas, Ch; Moussiopoulos, N; Papaioannou, I

    2011-12-01

    Wastes from construction activities constitute nowadays the largest by quantity fraction of solid wastes in urban areas. In addition, it is widely accepted that the particular waste stream contains hazardous materials, such as insulating materials, plastic frames of doors, windows, etc. Their uncontrolled disposal result to long-term pollution costs, resource overuse and wasted energy. Within the framework of the DEWAM project, a web-based Decision Support System (DSS) application - namely DeconRCM - has been developed, aiming towards the identification of the optimal construction and demolition waste (CDW) management strategy that minimises end-of-life costs and maximises the recovery of salvaged building materials. This paper addresses both technical and functional structure of the developed web-based application. The web-based DSS provides an accurate estimation of the generated CDW quantities of twenty-one different waste streams (e.g. concrete, bricks, glass, etc.) for four different types of buildings (residential, office, commercial and industrial). With the use of mathematical programming, the DeconRCM provides also the user with the optimal end-of-life management alternative, taking into consideration both economic and environmental criteria. The DSS's capabilities are illustrated through a real world case study of a typical five floor apartment building in Thessaloniki, Greece. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Automated diagnosis of coronary artery disease based on data mining and fuzzy modeling.

    PubMed

    Tsipouras, Markos G; Exarchos, Themis P; Fotiadis, Dimitrios I; Kotsia, Anna P; Vakalis, Konstantinos V; Naka, Katerina K; Michalis, Lampros K

    2008-07-01

    A fuzzy rule-based decision support system (DSS) is presented for the diagnosis of coronary artery disease (CAD). The system is automatically generated from an initial annotated dataset, using a four stage methodology: 1) induction of a decision tree from the data; 2) extraction of a set of rules from the decision tree, in disjunctive normal form and formulation of a crisp model; 3) transformation of the crisp set of rules into a fuzzy model; and 4) optimization of the parameters of the fuzzy model. The dataset used for the DSS generation and evaluation consists of 199 subjects, each one characterized by 19 features, including demographic and history data, as well as laboratory examinations. Tenfold cross validation is employed, and the average sensitivity and specificity obtained is 62% and 54%, respectively, using the set of rules extracted from the decision tree (first and second stages), while the average sensitivity and specificity increase to 80% and 65%, respectively, when the fuzzification and optimization stages are used. The system offers several advantages since it is automatically generated, it provides CAD diagnosis based on easily and noninvasively acquired features, and is able to provide interpretation for the decisions made.

  1. A water management decision support system contributing to sustainability

    NASA Astrophysics Data System (ADS)

    Horváth, Klaudia; van Esch, Bart; Baayen, Jorn; Pothof, Ivo; Talsma, Jan; van Heeringen, Klaas-Jan

    2017-04-01

    Deltares and Eindhoven University of Technology are developing a new decision support system (DSS) for regional water authorities. In order to maintain water levels in the Dutch polder system, water should be drained and pumped out from the polders to the sea. The time and amount of pumping depends on the current sea level, the water level in the polder, the weather forecast and the electricity price forecast and possibly local renewable power production. This is a multivariable optimisation problem, where the goal is to keep the water level in the polder within certain bounds. By optimizing the operation of the pumps the energy usage and costs can be reduced, hence the operation of the regional water authorities can be more sustainable, while also anticipating on increasing share of renewables in the energy mix in a cost-effective way. The decision support system, based on Delft-FEWS as operational data-integration platform, is running an optimization model built in RTC-Tools 2, which is performing real-time optimization in order to calculate the pumping strategy. It is taking into account the present and future circumstances. As being the core of the real time decision support system, RTC-Tools 2 fulfils the key requirements to a DSS: it is fast, robust and always finds the optimal solution. These properties are associated with convex optimization. In such problems the global optimum can always be found. The challenge in the development is to maintain the convex formulation of all the non-linear components in the system, i.e. open channels, hydraulic structures, and pumps. The system is introduced through 4 pilot projects, one of which is a pilot of the Dutch Water Authority Rivierenland. This is a typical Dutch polder system: several polders are drained to the main water system, the Linge. The water from the Linge can be released to the main rivers that are subject to tidal fluctuations. In case of low tide, water can be released via the gates. In case of high tide, water should be pumped. The goal of the pilot is to make the operation of the regional water authority more sustainable and cost-efficient. Sustainability can be achieved by minimizing the CO2 production trough minimizing the energy used for pumping. This work is showing the functionalities of the new decision support system, using RTC-Tools 2, through the example of a pilot project.

  2. Using health technology assessment to support optimal use of technologies in current practice: the challenge of "disinvestment".

    PubMed

    Henshall, Chris; Schuller, Tara; Mardhani-Bayne, Logan

    2012-07-01

    Health systems face rising patient expectations and economic pressures; decision makers seek to enhance efficiency to improve access to appropriate care. There is international interest in the role of HTA to support decisions to optimize use of established technologies, particularly in "disinvesting" from low-benefit uses. This study summarizes main points from an HTAi Policy Forum meeting on this topic, drawing on presentations, discussions among attendees, and an advance background paper. Optimization involves assessment or re-assessment of a technology, a decision on optimal use, and decision implementation. This may occur within a routine process to improve safety and quality and create "headroom" for new technologies, or ad hoc in response to financial constraints. The term "disinvestment" is not always helpful in describing these processes. HTA contributes to optimization, but there is scope to increase its role in many systems. Stakeholders may have strong views on access to technology, and stakeholder involvement is essential. Optimization faces challenges including loss aversion and entitlement, stakeholder inertia and entrenchment, heterogeneity in patient outcomes, and the need to demonstrate convincingly absence of benefit. While basic HTA principles remain applicable, methodological developments are needed better to support optimization. These include mechanisms for candidate technology identification and prioritization, enhanced collection and analysis of routine data, and clinician engagement. To maximize value to decision makers, HTA should consider implementation strategies and barriers. Improving optimization processes calls for a coordinated approach, and actions are identified for system leaders, HTA and other health organizations, and industry.

  3. Mean-variance portfolio analysis data for optimizing community-based photovoltaic investment.

    PubMed

    Shakouri, Mahmoud; Lee, Hyun Woo

    2016-03-01

    The amount of electricity generated by Photovoltaic (PV) systems is affected by factors such as shading, building orientation and roof slope. To increase electricity generation and reduce volatility in generation of PV systems, a portfolio of PV systems can be made which takes advantages of the potential synergy among neighboring buildings. This paper contains data supporting the research article entitled: PACPIM: new decision-support model of optimized portfolio analysis for community-based photovoltaic investment [1]. We present a set of data relating to physical properties of 24 houses in Oregon, USA, along with simulated hourly electricity data for the installed PV systems. The developed Matlab code to construct optimized portfolios is also provided in . The application of these files can be generalized to variety of communities interested in investing on PV systems.

  4. Performance improvement of 64-QAM coherent optical communication system by optimizing symbol decision boundary based on support vector machine

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Zhang, Junfeng; Gao, Mingyi; Shen, Gangxiang

    2018-03-01

    High-order modulation signals are suited for high-capacity communication systems because of their high spectral efficiency, but they are more vulnerable to various impairments. For the signals that experience degradation, when symbol points overlap on the constellation diagram, the original linear decision boundary cannot be used to distinguish the classification of symbol. Therefore, it is advantageous to create an optimum symbol decision boundary for the degraded signals. In this work, we experimentally demonstrated the 64-quadrature-amplitude modulation (64-QAM) coherent optical communication system using support-vector machine (SVM) decision boundary algorithm to create the optimum symbol decision boundary for improving the system performance. We investigated the influence of various impairments on the 64-QAM coherent optical communication systems, such as the impairments caused by modulator nonlinearity, phase skew between in-phase (I) arm and quadrature-phase (Q) arm of the modulator, fiber Kerr nonlinearity and amplified spontaneous emission (ASE) noise. We measured the bit-error-ratio (BER) performance of 75-Gb/s 64-QAM signals in the back-to-back and 50-km transmission. By using SVM to optimize symbol decision boundary, the impairments caused by I/Q phase skew of the modulator, fiber Kerr nonlinearity and ASE noise are greatly mitigated.

  5. Information theory-based decision support system for integrated design of multivariable hydrometric networks

    NASA Astrophysics Data System (ADS)

    Keum, Jongho; Coulibaly, Paulin

    2017-07-01

    Adequate and accurate hydrologic information from optimal hydrometric networks is an essential part of effective water resources management. Although the key hydrologic processes in the water cycle are interconnected, hydrometric networks (e.g., streamflow, precipitation, groundwater level) have been routinely designed individually. A decision support framework is proposed for integrated design of multivariable hydrometric networks. The proposed method is applied to design optimal precipitation and streamflow networks simultaneously. The epsilon-dominance hierarchical Bayesian optimization algorithm was combined with Shannon entropy of information theory to design and evaluate hydrometric networks. Specifically, the joint entropy from the combined networks was maximized to provide the most information, and the total correlation was minimized to reduce redundant information. To further optimize the efficiency between the networks, they were designed by maximizing the conditional entropy of the streamflow network given the information of the precipitation network. Compared to the traditional individual variable design approach, the integrated multivariable design method was able to determine more efficient optimal networks by avoiding the redundant stations. Additionally, four quantization cases were compared to evaluate their effects on the entropy calculations and the determination of the optimal networks. The evaluation results indicate that the quantization methods should be selected after careful consideration for each design problem since the station rankings and the optimal networks can change accordingly.

  6. Two-Stage Fracturing Wastewater Management in Shale Gas Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaodong; Sun, Alexander Y.; Duncan, Ian J.

    Here, management of shale gas wastewater treatment, disposal, and reuse has become a significant environmental challenge, driven by an ongoing boom in development of U.S. shale gas reservoirs. Systems-analysis based decision support is helpful for effective management of wastewater, and provision of cost-effective decision alternatives from a whole-system perspective. Uncertainties are inherent in many modeling parameters, affecting the generated decisions. In order to effectively deal with the recourse issue in decision making, in this work a two-stage stochastic fracturing wastewater management model, named TSWM, is developed to provide decision support for wastewater management planning in shale plays. Using the TSWMmore » model, probabilistic and nonprobabilistic uncertainties are effectively handled. The TSWM model provides flexibility in generating shale gas wastewater management strategies, in which the first-stage decision predefined by decision makers before uncertainties are unfolded is corrected in the second stage to achieve the whole-system’s optimality. Application of the TSWM model to a comprehensive synthetic example demonstrates its practical applicability and feasibility. Optimal results are generated for allowable wastewater quantities, excess wastewater, and capacity expansions of hazardous wastewater treatment plants to achieve the minimized total system cost. The obtained interval solutions encompass both optimistic and conservative decisions. Trade-offs between economic and environmental objectives are made depending on decision makers’ knowledge and judgment, as well as site-specific information. In conclusion, the proposed model is helpful in forming informed decisions for wastewater management associated with shale gas development.« less

  7. Two-Stage Fracturing Wastewater Management in Shale Gas Development

    DOE PAGES

    Zhang, Xiaodong; Sun, Alexander Y.; Duncan, Ian J.; ...

    2017-01-19

    Here, management of shale gas wastewater treatment, disposal, and reuse has become a significant environmental challenge, driven by an ongoing boom in development of U.S. shale gas reservoirs. Systems-analysis based decision support is helpful for effective management of wastewater, and provision of cost-effective decision alternatives from a whole-system perspective. Uncertainties are inherent in many modeling parameters, affecting the generated decisions. In order to effectively deal with the recourse issue in decision making, in this work a two-stage stochastic fracturing wastewater management model, named TSWM, is developed to provide decision support for wastewater management planning in shale plays. Using the TSWMmore » model, probabilistic and nonprobabilistic uncertainties are effectively handled. The TSWM model provides flexibility in generating shale gas wastewater management strategies, in which the first-stage decision predefined by decision makers before uncertainties are unfolded is corrected in the second stage to achieve the whole-system’s optimality. Application of the TSWM model to a comprehensive synthetic example demonstrates its practical applicability and feasibility. Optimal results are generated for allowable wastewater quantities, excess wastewater, and capacity expansions of hazardous wastewater treatment plants to achieve the minimized total system cost. The obtained interval solutions encompass both optimistic and conservative decisions. Trade-offs between economic and environmental objectives are made depending on decision makers’ knowledge and judgment, as well as site-specific information. In conclusion, the proposed model is helpful in forming informed decisions for wastewater management associated with shale gas development.« less

  8. Nonstationary decision model for flood risk decision scaling

    NASA Astrophysics Data System (ADS)

    Spence, Caitlin M.; Brown, Casey M.

    2016-11-01

    Hydroclimatic stationarity is increasingly questioned as a default assumption in flood risk management (FRM), but successor methods are not yet established. Some potential successors depend on estimates of future flood quantiles, but methods for estimating future design storms are subject to high levels of uncertainty. Here we apply a Nonstationary Decision Model (NDM) to flood risk planning within the decision scaling framework. The NDM combines a nonstationary probability distribution of annual peak flow with optimal selection of flood management alternatives using robustness measures. The NDM incorporates structural and nonstructural FRM interventions and valuation of flows supporting ecosystem services to calculate expected cost of a given FRM strategy. A search for the minimum-cost strategy under incrementally varied representative scenarios extending across the plausible range of flood trend and value of the natural flow regime discovers candidate FRM strategies that are evaluated and compared through a decision scaling analysis (DSA). The DSA selects a management strategy that is optimal or close to optimal across the broadest range of scenarios or across the set of scenarios deemed most likely to occur according to estimates of future flood hazard. We illustrate the decision framework using a stylized example flood management decision based on the Iowa City flood management system, which has experienced recent unprecedented high flow episodes. The DSA indicates a preference for combining infrastructural and nonstructural adaptation measures to manage flood risk and makes clear that options-based approaches cannot be assumed to be "no" or "low regret."

  9. Efficient boundary hunting via vector quantization

    NASA Astrophysics Data System (ADS)

    Diamantini, Claudia; Panti, Maurizio

    2001-03-01

    A great amount of information about a classification problem is contained in those instances falling near the decision boundary. This intuition dates back to the earliest studies in pattern recognition, and in the more recent adaptive approaches to the so called boundary hunting, such as the work of Aha et alii on Instance Based Learning and the work of Vapnik et alii on Support Vector Machines. The last work is of particular interest, since theoretical and experimental results ensure the accuracy of boundary reconstruction. However, its optimization approach has heavy computational and memory requirements, which limits its application on huge amounts of data. In the paper we describe an alternative approach to boundary hunting based on adaptive labeled quantization architectures. The adaptation is performed by a stochastic gradient algorithm for the minimization of the error probability. Error probability minimization guarantees the accurate approximation of the optimal decision boundary, while the use of a stochastic gradient algorithm defines an efficient method to reach such approximation. In the paper comparisons to Support Vector Machines are considered.

  10. Toward a multi-objective decision support framework to support regulations of unconventional oil and gas development

    NASA Astrophysics Data System (ADS)

    Alongi, M.; Howard, C.; Kasprzyk, J. R.; Ryan, J. N.

    2015-12-01

    Unconventional oil and gas development (UOGD) using hydraulic fracturing and horizontal drilling has recently fostered an unprecedented acceleration in energy development. Regulations seek to protect environmental quality of areas surrounding UOGD, while maintaining economic benefits. One such regulation is a setback distance, which dictates the minimum proximity between an oil and gas well and an object such as a residential or commercial building, property line, or water source. In general, most setback regulations have been strongly politically motivated without a clear scientific basis for understanding the relationship between the setback distance and various performance outcomes. This presentation discusses a new decision support framework for setback regulations, as part of a large NSF-funded sustainability research network (SRN) on UOGD. The goal of the decision support framework is to integrate a wide array of scientific information from the SRN into a coherent framework that can help inform policy regarding UOGD. The decision support framework employs multiobjective evolutionary algorithm (MOEA) optimization coupled with simulation models of air quality and other performance-based outcomes on UOGD. The result of the MOEA optimization runs are quantitative tradeoff curves among different objectives. For example, one such curve could demonstrate air pollution concentrations versus estimates of energy development profits, for different levels of setback distance. Our results will also inform policy-relevant discussions surrounding UOGD such as comparing single- and multi-well pads, as well as regulations on the density of well development over a spatial area.

  11. GIS-based spatial decision support system for grain logistics management

    NASA Astrophysics Data System (ADS)

    Zhen, Tong; Ge, Hongyi; Jiang, Yuying; Che, Yi

    2010-07-01

    Grain logistics is the important component of the social logistics, which can be attributed to frequent circulation and the great quantity. At present time, there is no modern grain logistics distribution management system, and the logistics cost is the high. Geographic Information Systems (GIS) have been widely used for spatial data manipulation and model operations and provide effective decision support through its spatial database management capabilities and cartographic visualization. In the present paper, a spatial decision support system (SDSS) is proposed to support policy makers and to reduce the cost of grain logistics. The system is composed of two major components: grain logistics goods tracking model and vehicle routing problem optimization model and also allows incorporation of data coming from external sources. The proposed system is an effective tool to manage grain logistics in order to increase the speed of grain logistics and reduce the grain circulation cost.

  12. Advanced Intelligent System Application to Load Forecasting and Control for Hybrid Electric Bus

    NASA Technical Reports Server (NTRS)

    Momoh, James; Chattopadhyay, Deb; Elfayoumy, Mahmoud

    1996-01-01

    The primary motivation for this research emanates from providing a decision support system to the electric bus operators in the municipal and urban localities which will guide the operators to maintain an optimal compromise among the noise level, pollution level, fuel usage etc. This study is backed up by our previous studies on study of battery characteristics, permanent magnet DC motor studies and electric traction motor size studies completed in the first year. The operator of the Hybrid Electric Car must determine optimal power management schedule to meet a given load demand for different weather and road conditions. The decision support system for the bus operator comprises three sub-tasks viz. forecast of the electrical load for the route to be traversed divided into specified time periods (few minutes); deriving an optimal 'plan' or 'preschedule' based on the load forecast for the entire time-horizon (i.e., for all time periods) ahead of time; and finally employing corrective control action to monitor and modify the optimal plan in real-time. A fully connected artificial neural network (ANN) model is developed for forecasting the kW requirement for hybrid electric bus based on inputs like climatic conditions, passenger load, road inclination, etc. The ANN model is trained using back-propagation algorithm employing improved optimization techniques like projected Lagrangian technique. The pre-scheduler is based on a Goal-Programming (GP) optimization model with noise, pollution and fuel usage as the three objectives. GP has the capability of analyzing the trade-off among the conflicting objectives and arriving at the optimal activity levels, e.g., throttle settings. The corrective control action or the third sub-task is formulated as an optimal control model with inputs from the real-time data base as well as the GP model to minimize the error (or deviation) from the optimal plan. These three activities linked with the ANN forecaster proving the output to the GP model which in turn produces the pre-schedule of the optimal control model. Some preliminary results based on a hypothetical test case will be presented for the load forecasting module. The computer codes for the three modules will be made available fe adoption by bus operating agencies. Sample results will be provided using these models. The software will be a useful tool for supporting the control systems for the Electric Bus project of NASA.

  13. Watershed Management Optimization Support Tool (WMOST) Workshop.

    EPA Science Inventory

    EPA's Watershed Management Optimization Support Tool (WMOST) version 2 is a decision support tool designed to facilitate integrated water management by communities at the small watershed scale. WMOST allows users to look across management options in stormwater (including green i...

  14. Optimal data systems: the future of clinical predictions and decision support.

    PubMed

    Celi, Leo A; Csete, Marie; Stone, David

    2014-10-01

    The purpose of the review is to describe the evolving concept and role of data as it relates to clinical predictions and decision-making. Critical care medicine is, as an especially data-rich specialty, becoming acutely cognizant not only of its historic deficits in data utilization but also of its enormous potential for capturing, mining, and leveraging such data into well-designed decision support modalities as well as the formulation of robust best practices. Modern electronic medical records create an opportunity to design complete and functional data systems that can support clinical care to a degree never seen before. Such systems are often referred to as 'data-driven,' but a better term is 'optimal data systems' (ODS). Here we discuss basic features of an ODS and its benefits, including the potential to transform clinical prediction and decision support.

  15. Design Optimization of Gas Generator Hybrid Propulsion Boosters

    NASA Technical Reports Server (NTRS)

    Weldon, Vincent; Phillips, Dwight; Fink, Larry

    1990-01-01

    A methodology used in support of a study for NASA/MSFC to optimize the design of gas generator hybrid propulsion booster for uprating the National Space Transportation System (NSTS) is presented. The objective was to compare alternative configurations for this booster approach, optimizing each candidate concept on different bases, in order to develop data for a trade table on which a final decision was based. The methodology is capable of processing a large number of independent and dependent variables, adjusting the overall subsystems characteristics to arrive at a best compromise integrated design to meet various specific optimization criteria subject to selected constraints. For each system considered, a detailed weight statement was generated along with preliminary cost and reliability estimates.

  16. Goal-oriented Site Characterization in Hydrogeological Applications: An Overview

    NASA Astrophysics Data System (ADS)

    Nowak, W.; de Barros, F.; Rubin, Y.

    2011-12-01

    In this study, we address the importance of goal-oriented site characterization. Given the multiple sources of uncertainty in hydrogeological applications, information needs of modeling, prediction and decision support should be satisfied with efficient and rational field campaigns. In this work, we provide an overview of an optimal sampling design framework based on Bayesian decision theory, statistical parameter inference and Bayesian model averaging. It optimizes the field sampling campaign around decisions on environmental performance metrics (e.g., risk, arrival times, etc.) while accounting for parametric and model uncertainty in the geostatistical characterization, in forcing terms, and measurement error. The appealing aspects of the framework lie on its goal-oriented character and that it is directly linked to the confidence in a specified decision. We illustrate how these concepts could be applied in a human health risk problem where uncertainty from both hydrogeological and health parameters are accounted.

  17. Implementation of marine spatial planning in shellfish aquaculture management: modeling studies in a Norwegian fjord.

    PubMed

    Filgueira, Ramon; Grant, Jon; Strand, Øivind

    2014-06-01

    Shellfish carrying capacity is determined by the interaction of a cultured species with its ecosystem, which is strongly influenced by hydrodynamics. Water circulation controls the exchange of matter between farms and the adjacent areas, which in turn establishes the nutrient supply that supports phytoplankton populations. The complexity of water circulation makes necessary the use of hydrodynamic models with detailed spatial resolution in carrying capacity estimations. This detailed spatial resolution also allows for the study of processes that depend on specific spatial arrangements, e.g., the most suitable location to place farms, which is crucial for marine spatial planning, and consequently for decision support systems. In the present study, a fully spatial physical-biogeochemical model has been combined with scenario building and optimization techniques as a proof of concept of the use of ecosystem modeling as an objective tool to inform marine spatial planning. The object of this exercise was to generate objective knowledge based on an ecosystem approach to establish new mussel aquaculture areas in a Norwegian fjord. Scenario building was used to determine the best location of a pump that can be used to bring nutrient-rich deep waters to the euphotic layer, increasing primary production, and consequently, carrying capacity for mussel cultivation. In addition, an optimization tool, parameter estimation (PEST), was applied to the optimal location and mussel standing stock biomass that maximize production, according to a preestablished carrying capacity criterion. Optimization tools allow us to make rational and transparent decisions to solve a well-defined question, decisions that are essential for policy makers. The outcomes of combining ecosystem models with scenario building and optimization facilitate planning based on an ecosystem approach, highlighting the capabilities of ecosystem modeling as a tool for marine spatial planning.

  18. Parameter Estimation of Computationally Expensive Watershed Models Through Efficient Multi-objective Optimization and Interactive Decision Analytics

    NASA Astrophysics Data System (ADS)

    Akhtar, Taimoor; Shoemaker, Christine

    2016-04-01

    Watershed model calibration is inherently a multi-criteria problem. Conflicting trade-offs exist between different quantifiable calibration criterions indicating the non-existence of a single optimal parameterization. Hence, many experts prefer a manual approach to calibration where the inherent multi-objective nature of the calibration problem is addressed through an interactive, subjective, time-intensive and complex decision making process. Multi-objective optimization can be used to efficiently identify multiple plausible calibration alternatives and assist calibration experts during the parameter estimation process. However, there are key challenges to the use of multi objective optimization in the parameter estimation process which include: 1) multi-objective optimization usually requires many model simulations, which is difficult for complex simulation models that are computationally expensive; and 2) selection of one from numerous calibration alternatives provided by multi-objective optimization is non-trivial. This study proposes a "Hybrid Automatic Manual Strategy" (HAMS) for watershed model calibration to specifically address the above-mentioned challenges. HAMS employs a 3-stage framework for parameter estimation. Stage 1 incorporates the use of an efficient surrogate multi-objective algorithm, GOMORS, for identification of numerous calibration alternatives within a limited simulation evaluation budget. The novelty of HAMS is embedded in Stages 2 and 3 where an interactive visual and metric based analytics framework is available as a decision support tool to choose a single calibration from the numerous alternatives identified in Stage 1. Stage 2 of HAMS provides a goodness-of-fit measure / metric based interactive framework for identification of a small subset (typically less than 10) of meaningful and diverse set of calibration alternatives from the numerous alternatives obtained in Stage 1. Stage 3 incorporates the use of an interactive visual analytics framework for decision support in selection of one parameter combination from the alternatives identified in Stage 2. HAMS is applied for calibration of flow parameters of a SWAT model, (Soil and Water Assessment Tool) designed to simulate flow in the Cannonsville watershed in upstate New York. Results from the application of HAMS to Cannonsville indicate that efficient multi-objective optimization and interactive visual and metric based analytics can bridge the gap between the effective use of both automatic and manual strategies for parameter estimation of computationally expensive watershed models.

  19. The design of aircraft using the decision support problem technique

    NASA Technical Reports Server (NTRS)

    Mistree, Farrokh; Marinopoulos, Stergios; Jackson, David M.; Shupe, Jon A.

    1988-01-01

    The Decision Support Problem Technique for unified design, manufacturing and maintenance is being developed at the Systems Design Laboratory at the University of Houston. This involves the development of a domain-independent method (and the associated software) that can be used to process domain-dependent information and thereby provide support for human judgment. In a computer assisted environment, this support is provided in the form of optimal solutions to Decision Support Problems.

  20. A miniature ultrasonic actuator-control system for plant stem diameter micro-variation measurements

    USDA-ARS?s Scientific Manuscript database

    Measurements of micro-variations in plant stem diameter are potentially useful to optimize irrigation decision support systems that are based on plant physiological responses. However, for this technology to be suitable for field applications, problems associated with stem softness and micro variati...

  1. Distributed decision-making in electric power system transmission maintenance scheduling using multi-agent systems (MAS)

    NASA Astrophysics Data System (ADS)

    Zhang, Zhong

    In this work, motivated by the need to coordinate transmission maintenance scheduling among a multiplicity of self-interested entities in restructured power industry, a distributed decision support framework based on multiagent negotiation systems (MANS) is developed. An innovative risk-based transmission maintenance optimization procedure is introduced. Several models for linking condition monitoring information to the equipment's instantaneous failure probability are presented, which enable quantitative evaluation of the effectiveness of maintenance activities in terms of system cumulative risk reduction. Methodologies of statistical processing, equipment deterioration evaluation and time-dependent failure probability calculation are also described. A novel framework capable of facilitating distributed decision-making through multiagent negotiation is developed. A multiagent negotiation model is developed and illustrated that accounts for uncertainty and enables social rationality. Some issues of multiagent negotiation convergence and scalability are discussed. The relationships between agent-based negotiation and auction systems are also identified. A four-step MAS design methodology for constructing multiagent systems for power system applications is presented. A generic multiagent negotiation system, capable of inter-agent communication and distributed decision support through inter-agent negotiations, is implemented. A multiagent system framework for facilitating the automated integration of condition monitoring information and maintenance scheduling for power transformers is developed. Simulations of multiagent negotiation-based maintenance scheduling among several independent utilities are provided. It is shown to be a viable alternative solution paradigm to the traditional centralized optimization approach in today's deregulated environment. This multiagent system framework not only facilitates the decision-making among competing power system entities, but also provides a tool to use in studying competitive industry relative to monopolistic industry.

  2. Evaluation of the Effectiveness of Stormwater Decision Support Tools for Infrastructure Selection and the Barriers to Implementation

    NASA Astrophysics Data System (ADS)

    Spahr, K.; Hogue, T. S.

    2016-12-01

    Selecting the most appropriate green, gray, and / or hybrid system for stormwater treatment and conveyance can prove challenging to decision markers across all scales, from site managers to large municipalities. To help streamline the selection process, a multi-disciplinary team of academics and professionals is developing an industry standard for selecting and evaluating the most appropriate stormwater management technology for different regions. To make the tool more robust and comprehensive, life-cycle cost assessment and optimization modules will be included to evaluate non-monetized and ecosystem benefits of selected technologies. Initial work includes surveying advisory board members based in cities that use existing decision support tools in their infrastructure planning process. These surveys will qualify the decisions currently being made and identify challenges within the current planning process across a range of hydroclimatic regions and city size. Analysis of social and other non-technical barriers to adoption of the existing tools is also being performed, with identification of regional differences and institutional challenges. Surveys will also gage the regional appropriateness of certain stormwater technologies based off experiences in implementing stormwater treatment and conveyance plans. In additional to compiling qualitative data on existing decision support tools, a technical review of components of the decision support tool used will be performed. Gaps in each tool's analysis, like the lack of certain critical functionalities, will be identified and ease of use will be evaluated. Conclusions drawn from both the qualitative and quantitative analyses will be used to inform the development of the new decision support tool and its eventual dissemination.

  3. Mean-variance portfolio analysis data for optimizing community-based photovoltaic investment

    PubMed Central

    Shakouri, Mahmoud; Lee, Hyun Woo

    2016-01-01

    The amount of electricity generated by Photovoltaic (PV) systems is affected by factors such as shading, building orientation and roof slope. To increase electricity generation and reduce volatility in generation of PV systems, a portfolio of PV systems can be made which takes advantages of the potential synergy among neighboring buildings. This paper contains data supporting the research article entitled: PACPIM: new decision-support model of optimized portfolio analysis for community-based photovoltaic investment [1]. We present a set of data relating to physical properties of 24 houses in Oregon, USA, along with simulated hourly electricity data for the installed PV systems. The developed Matlab code to construct optimized portfolios is also provided in Supplementary materials. The application of these files can be generalized to variety of communities interested in investing on PV systems. PMID:26937458

  4. Demand driven decision support for efficient water resources allocation in irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Schuetze, Niels; Grießbach, Ulrike Ulrike; Röhm, Patric; Stange, Peter; Wagner, Michael; Seidel, Sabine; Werisch, Stefan; Barfus, Klemens

    2014-05-01

    Due to climate change, extreme weather conditions, such as longer dry spells in the summer months, may have an increasing impact on the agriculture in Saxony (Eastern Germany). For this reason, and, additionally, declining amounts of rainfall during the growing season the use of irrigation will be more important in future in Eastern Germany. To cope with this higher demand of water, a new decision support framework is developed which focuses on an integrated management of both irrigation water supply and demand. For modeling the regional water demand, local (and site-specific) water demand functions are used which are derived from the optimized agronomic response at farms scale. To account for climate variability the agronomic response is represented by stochastic crop water production functions (SCWPF) which provide the estimated yield subject to the minimum amount of irrigation water. These functions take into account the different soil types, crops and stochastically generated climate scenarios. By applying mathematical interpolation and optimization techniques, the SCWPF's are used to compute the water demand considering different constraints, for instance variable and fix costs or the producer price. This generic approach enables the computation for both multiple crops at farm scale as well as of the aggregated response to water pricing at a regional scale for full and deficit irrigation systems. Within the SAPHIR (SAxonian Platform for High Performance Irrigation) project a prototype of a decision support system is developed which helps to evaluate combined water supply and demand management policies for an effective and efficient utilization of water in order to meet future demands. The prototype is implemented as a web-based decision support system and it is based on a service-oriented geo-database architecture.

  5. Using ILOG OPL-CPLEX and ILOG Optimization Decision Manager (ODM) to Develop Better Models

    NASA Astrophysics Data System (ADS)

    2008-10-01

    This session will provide an in-depth overview on building state-of-the-art decision support applications and models. You will learn how to harness the full power of the ILOG OPL-CPLEX-ODM Development System (ODMS) to develop optimization models and decision support applications that solve complex problems ranging from near real-time scheduling to long-term strategic planning. We will demonstrate how to use ILOG's Open Programming Language (OPL) to quickly model problems solved by ILOG CPLEX, and how to use ILOG ODM to gain further insight about the model. By the end of the session, attendees will understand how to take advantage of the powerful combination of ILOG OPL (to describe an optimization model) and ILOG ODM (to understand the relationships between data, decision variables and constraints).

  6. On Developing a Taxonomy for Multidisciplinary Design Optimization: A Decision-Based Perspective

    NASA Technical Reports Server (NTRS)

    Lewis, Kemper; Mistree, Farrokh

    1995-01-01

    In this paper, we approach MDO from a Decision-Based Design (DBD) perspective and explore classification schemes for designing complex systems and processes. Specifically, we focus on decisions, which are only a small portion of the Decision Support Problem (DSP) Technique, our implementation of DBD. We map coupled nonhierarchical and hierarchical representations from the DSP Technique into the Balling-Sobieski (B-S) framework (Balling and Sobieszczanski-Sobieski, 1994), and integrate domain-independent linguistic terms to complete our taxonomy. Application of DSPs to the design of complex, multidisciplinary systems include passenger aircraft, ships, damage tolerant structural and mechanical systems, and thermal energy systems. In this paper we show that Balling-Sobieski framework is consistent with that of the Decision Support Problem Technique through the use of linguistic entities to describe the same type of formulations. We show that the underlying linguistics of the solution approaches are the same and can be coalesced into a homogeneous framework with which to base the research, application, and technology MDO upon. We introduce, in the Balling-Sobieski framework, examples of multidisciplinary design, namely, aircraft, damage tolerant structural and mechanical systems, and thermal energy systems.

  7. Decision Support Systems for Launch and Range Operations Using Jess

    NASA Technical Reports Server (NTRS)

    Thirumalainambi, Rajkumar

    2007-01-01

    The virtual test bed for launch and range operations developed at NASA Ames Research Center consists of various independent expert systems advising on weather effects, toxic gas dispersions and human health risk assessment during space-flight operations. An individual dedicated server supports each expert system and the master system gather information from the dedicated servers to support the launch decision-making process. Since the test bed is based on the web system, reducing network traffic and optimizing the knowledge base is critical to its success of real-time or near real-time operations. Jess, a fast rule engine and powerful scripting environment developed at Sandia National Laboratory has been adopted to build the expert systems providing robustness and scalability. Jess also supports XML representation of knowledge base with forward and backward chaining inference mechanism. Facts added - to working memory during run-time operations facilitates analyses of multiple scenarios. Knowledge base can be distributed with one inference engine performing the inference process. This paper discusses details of the knowledge base and inference engine using Jess for a launch and range virtual test bed.

  8. Use of microcomputers for planning and managing silviculture habitat relationships.

    Treesearch

    B.G. Marcot; R.S. McNay; R.E. Page

    1988-01-01

    Microcomputers aid in monitoring, modeling, and decision support for integrating objectives of silviculture and wildlife habitat management. Spreadsheets, data bases, statistics, and graphics programs are described for use in monitoring. Stand growth models, modeling languages, area and geobased information systems, and optimization models are discussed for use in...

  9. An Intelligent Tutoring System for Classifying Students into Instructional Treatments with Mastery Scores. Research Report 94-15.

    ERIC Educational Resources Information Center

    Vos, Hans J.

    As part of a project formulating optimal rules for decision making in computer assisted instructional systems in which the computer is used as a decision support tool, an approach that simultaneously optimizes classification of students into two treatments, each followed by a mastery decision, is presented using the framework of Bayesian decision…

  10. SU-E-J-04: A Data-Driven, Response-Based, Multi-Criteria Decision Support System for Personalized Lung Radiation Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Y; McShan, D; Schipper, M

    2014-06-01

    Purpose: To develop a decision support tool to predict a patient's potential overall survival (OS) and radiation induced toxicity (RIT) based on clinical factors and responses during the course of radiotherapy, and suggest appropriate radiation dose adjustments to improve therapeutic effect. Methods: Important relationships between a patient's basic information and their clinical features before and during the radiation treatment are identified from historical clinical data by using statistical learning and data mining approaches. During each treatment period, a data analysis (DA) module predicts radiotherapy features such as time to local progression (TTLP), time to distant metastases (TTDM), radiation toxicity tomore » different organs, etc., under possible future treatment plans based on patient specifics or responses. An information fusion (IF) module estimates intervals for a patient's OS and the probabilities of RIT from a treatment plan by integrating the outcomes of module DA. A decision making (DM) module calculates “satisfaction” with the predicted radiation outcome based on trade-offs between OS and RIT, and finds the best treatment plan for the next time period via multi-criteria optimization. Results: Using physical and biological data from 130 lung cancer patients as our test bed, we were able to train and implement the 3 modules of our decision support tool. Examples demonstrate how it can help predict a new patient's potential OS and RIT with different radiation dose plans along with how these combinations change with dose, thus presenting a range of satisfaction/utility for use in individualized decision support. Conclusion: Although the decision support tool is currently developed from a small patient sample size, it shows the potential for the improvement of each patient's satisfaction in personalized radiation therapy. The radiation treatment outcome prediction and decision making model needs to be evaluated with more patients and demonstrated for use in radiation treatments for other cancers. P01-CA59827;R01CA142840.« less

  11. Acquisition and production of skilled behavior in dynamic decision-making tasks

    NASA Technical Reports Server (NTRS)

    Kirlik, Alex

    1993-01-01

    Summaries of the four projects completed during the performance of this research are included. The four projects described are: Perceptual Augmentation Aiding for Situation Assessment, Perceptual Augmentation Aiding for Dynamic Decision-Making and Control, Action Advisory Aiding for Dynamic Decision-Making and Control, and Display Design to Support Time-Constrained Route Optimization. Papers based on each of these projects are currently in preparation. The theoretical framework upon which the first three projects are based, Ecological Task Analysis, was also developed during the performance of this research, and is described in a previous report. A project concerned with modeling strategies in human control of a dynamic system was also completed during the performance of this research.

  12. Health Care Decision Support System for the Pediatric Emeregency Department Management.

    PubMed

    Ben Othman, Sarah; Hammadi, Slim; Quilliot, Alain; Martinot, Alain; Renard, Jean-Marie

    2015-01-01

    Health organization management is facing a high amount of complexity due to the inherent dynamics of the processes and the distributed organization of hospitals. It is therefore necessary for health care institutions to focus on this issue in order to deal with patients' requirements and satisfy their needs. The main objective of this study is to develop and implement a Decision Support System which can help physicians to better manage their organization, to anticipate the overcrowding feature, and to establish avoidance proposals for it. This work is a part of HOST project (Hospital: Optimization, Simulation, and Crowding Avoidance) of the French National Research Agency (ANR). It aims to optimize the functioning of the Pediatric Emergency Department characterized by stochastic arrivals of patients which leads to its overcrowding and services overload. Our study is a set of tools to smooth out patient flows, enhance care quality and minimize long waiting times and costs due to resources allocation. So we defined a decision aided tool based on Multi-agent Systems where actors negotiate and cooperate under some constraints in a dynamic environment. These entities which can be either physical agents representing real actors in the health care institution or software agents allowing the implementation of optimizing tools, cooperate to satisfy the demands of patients while respecting emergency degrees. This paper is concerned with agents' negotiation. It proposes a new approach for multi-skill tasks scheduling based on interactions between agents.

  13. Design optimization of gas generator hybrid propulsion boosters

    NASA Technical Reports Server (NTRS)

    Weldon, Vincent; Phillips, Dwight U.; Fink, Lawrence E.

    1990-01-01

    A methodology used in support of a contract study for NASA/MSFC to optimize the design of gas generator hybrid propulsion booster for uprating the National Space Transportation System (NSTS) is presented. The objective was to compare alternative configurations for this booster approach, optimizing each candidate concept on different bases, in order to develop data for a trade table on which a final decision was based. The methodology is capable of processing a large number of independent and dependent variables, adjusting the overall subsystems characteristics to arrive at a best compromise integrated design to meet various specified optimization criteria subject to selected constraints. For each system considered, a detailed weight statement was generated along with preliminary cost and reliability estimates.

  14. Contingency Contractor Optimization Phase 3 Sustainment Software Design Document - Contingency Contractor Optimization Tool - Prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durfee, Justin David; Frazier, Christopher Rawls; Bandlow, Alisa

    This document describes the final software design of the Contingency Contractor Optimization Tool - Prototype. Its purpose is to provide the overall architecture of the software and the logic behind this architecture. Documentation for the individual classes is provided in the application Javadoc. The Contingency Contractor Optimization project is intended to address Department of Defense mandates by delivering a centralized strategic planning tool that allows senior decision makers to quickly and accurately assess the impacts, risks, and mitigation strategies associated with utilizing contract support. The Contingency Contractor Optimization Tool - Prototype was developed in Phase 3 of the OSD ATLmore » Contingency Contractor Optimization project to support strategic planning for contingency contractors. The planning tool uses a model to optimize the Total Force mix by minimizing the combined total costs for selected mission scenarios. The model optimizes the match of personnel types (military, DoD civilian, and contractors) and capabilities to meet mission requirements as effectively as possible, based on risk, cost, and other requirements.« less

  15. Multicriteria Selection of Optimal Location of TCSC in a Competitive Energy Market

    NASA Astrophysics Data System (ADS)

    Alomoush, Muwaffaq I.

    2010-05-01

    The paper investigates selection of the best location of thyristor-controlled series compensator (TCSC) in a transmission system from many candidate locations in a competitive energy market such that the TCSC causes a net valuable impact on congestion management outcome, transmission utilization, transmission losses, voltage stability, degree of fulfillment of spot market contracts, and system security. The problem is treated as a multicriteria decision-making process such that the candidate locations of TCSC are the alternatives and the conflicting objectives are the outcomes of the dispatch process, which may have different importance weights. The paper proposes some performance indices that the dispatch decision-making entity can use to measure market dispatch outcomes of each alternative. Based on agreed-upon preferences, the measures presented may help the decision maker compare and rank dispatch scenarios to ultimately decide which location is the optimal one. To solve the multicriteria decision, we use the preference ranking organization method for enrichment evaluations (PROMETHEE), which is a multicriteria decision support method that can handle complex conflicting-objective decision-making processes.

  16. Decision support system for drinking water management

    NASA Astrophysics Data System (ADS)

    Janža, M.

    2012-04-01

    The problems in drinking water management are complex and often solutions must be reached under strict time constrains. This is especially distinct in case of environmental accidents in the catchment areas of the wells that are used for drinking water supply. The beneficial tools that can help decision makers and make program of activities more efficient are decision support systems (DSS). In general they are defined as computer-based support systems that help decision makers utilize data and models to solve unstructured problems. The presented DSS was developed in the frame of INCOME project which is focused on the long-term stable and safe drinking water supply in Ljubljana. The two main water resources Ljubljana polje and Barje alluvial aquifers are characterized by a strong interconnection of surface and groundwater, high vulnerability, high velocities of groundwater flow and pollutant transport. In case of sudden pollution, reactions should be very fast to avoid serious impact to the water supply. In the area high pressures arising from urbanization, industry, traffic, agriculture and old environmental burdens. The aim of the developed DSS is to optimize the activities in cases of emergency water management and to optimize the administrative work regarding the activities that can improve groundwater quality status. The DSS is an interactive computer system that utilizes data base, hydrological modelling, and experts' and stakeholders' knowledge. It consists of three components, tackling the different abovementioned issues in water management. The first one utilizes the work on identification, cleaning up and restoration of illegal dumpsites that are a serious threat to the qualitative status of groundwater. The other two components utilize the predictive capability of the hydrological model and scenario analysis. The user interacts with the system by a graphical interface that guides the user step-by-step to the recommended remedial measures. Consequently, the acquisition of information to support the water management's decisions is simplified and faster, thus contributing to more efficient water management and a safer supply of drinking water.

  17. DisTeam: A decision support tool for surgical team selection

    PubMed Central

    Ebadi, Ashkan; Tighe, Patrick J.; Zhang, Lei; Rashidi, Parisa

    2018-01-01

    Objective Surgical service providers play a crucial role in the healthcare system. Amongst all the influencing factors, surgical team selection might affect the patients’ outcome significantly. The performance of a surgical team not only can depend on the individual members, but it can also depend on the synergy among team members, and could possibly influence patient outcome such as surgical complications. In this paper, we propose a tool for facilitating decision making in surgical team selection based on considering history of the surgical team, as well as the specific characteristics of each patient. Methods DisTeam (a decision support tool for surgical team selection) is a metaheuristic framework for objective evaluation of surgical teams and finding the optimal team for a given patient, in terms of number of complications. It identifies a ranked list of surgical teams personalized for each patient, based on prior performance of the surgical teams. DisTeam takes into account the surgical complications associated with teams and their members, their teamwork history, as well as patient’s specific characteristics such as age, body mass index (BMI) and Charlson comorbidity index score. Results We tested DisTeam using intra-operative data from 6065 unique orthopedic surgery cases. Our results suggest high effectiveness of the proposed system in a health-care setting. The proposed framework converges quickly to the optimal solution and provides two sets of answers: a) The best surgical team over all the generations, and b) The best population which consists of different teams that can be used as an alternative solution. This increases the flexibility of the system as a complementary decision support tool. Conclusion DisTeam is a decision support tool for assisting in surgical team selection. It can facilitate the job of scheduling personnel in the hospital which involves an overwhelming number of factors pertaining to patients, individual team members, and team dynamics and can be used to compose patient-personalized surgical teams with minimum (potential) surgical complications. PMID:28363285

  18. DisTeam: A decision support tool for surgical team selection.

    PubMed

    Ebadi, Ashkan; Tighe, Patrick J; Zhang, Lei; Rashidi, Parisa

    2017-02-01

    Surgical service providers play a crucial role in the healthcare system. Amongst all the influencing factors, surgical team selection might affect the patients' outcome significantly. The performance of a surgical team not only can depend on the individual members, but it can also depend on the synergy among team members, and could possibly influence patient outcome such as surgical complications. In this paper, we propose a tool for facilitating decision making in surgical team selection based on considering history of the surgical team, as well as the specific characteristics of each patient. DisTeam (a decision support tool for surgical team selection) is a metaheuristic framework for objective evaluation of surgical teams and finding the optimal team for a given patient, in terms of number of complications. It identifies a ranked list of surgical teams personalized for each patient, based on prior performance of the surgical teams. DisTeam takes into account the surgical complications associated with teams and their members, their teamwork history, as well as patient's specific characteristics such as age, body mass index (BMI) and Charlson comorbidity index score. We tested DisTeam using intra-operative data from 6065 unique orthopedic surgery cases. Our results suggest high effectiveness of the proposed system in a health-care setting. The proposed framework converges quickly to the optimal solution and provides two sets of answers: a) The best surgical team over all the generations, and b) The best population which consists of different teams that can be used as an alternative solution. This increases the flexibility of the system as a complementary decision support tool. DisTeam is a decision support tool for assisting in surgical team selection. It can facilitate the job of scheduling personnel in the hospital which involves an overwhelming number of factors pertaining to patients, individual team members, and team dynamics and can be used to compose patient-personalized surgical teams with minimum (potential) surgical complications. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Medium- and long-term electric power demand forecasting based on the big data of smart city

    NASA Astrophysics Data System (ADS)

    Wei, Zhanmeng; Li, Xiyuan; Li, Xizhong; Hu, Qinghe; Zhang, Haiyang; Cui, Pengjie

    2017-08-01

    Based on the smart city, this paper proposed a new electric power demand forecasting model, which integrates external data such as meteorological information, geographic information, population information, enterprise information and economic information into the big database, and uses an improved algorithm to analyse the electric power demand and provide decision support for decision makers. The data mining technology is used to synthesize kinds of information, and the information of electric power customers is analysed optimally. The scientific forecasting is made based on the trend of electricity demand, and a smart city in north-eastern China is taken as a sample.

  20. Optimal multisensory decision-making in a reaction-time task.

    PubMed

    Drugowitsch, Jan; DeAngelis, Gregory C; Klier, Eliana M; Angelaki, Dora E; Pouget, Alexandre

    2014-06-14

    Humans and animals can integrate sensory evidence from various sources to make decisions in a statistically near-optimal manner, provided that the stimulus presentation time is fixed across trials. Little is known about whether optimality is preserved when subjects can choose when to make a decision (reaction-time task), nor when sensory inputs have time-varying reliability. Using a reaction-time version of a visual/vestibular heading discrimination task, we show that behavior is clearly sub-optimal when quantified with traditional optimality metrics that ignore reaction times. We created a computational model that accumulates evidence optimally across both cues and time, and trades off accuracy with decision speed. This model quantitatively explains subjects's choices and reaction times, supporting the hypothesis that subjects do, in fact, accumulate evidence optimally over time and across sensory modalities, even when the reaction time is under the subject's control.

  1. A service oriented approach for guidelines-based clinical decision support using BPMN.

    PubMed

    Rodriguez-Loya, Salvador; Aziz, Ayesha; Chatwin, Chris

    2014-01-01

    Evidence-based medical practice requires that clinical guidelines need to be documented in such a way that they represent a clinical workflow in its most accessible form. In order to optimize clinical processes to improve clinical outcomes, we propose a Service Oriented Architecture (SOA) based approach for implementing clinical guidelines that can be accessed from an Electronic Health Record (EHR) application with a Web Services enabled communication mechanism with the Enterprise Service Bus. We have used Business Process Modelling Notation (BPMN) for modelling and presenting the clinical pathway in the form of a workflow. The aim of this study is to produce spontaneous alerts in the healthcare workflow in the diagnosis of Chronic Obstructive Pulmonary Disease (COPD). The use of BPMN as a tool to automate clinical guidelines has not been previously employed for providing Clinical Decision Support (CDS).

  2. AQUATOOL, a generalized decision-support system for water-resources planning and operational management

    NASA Astrophysics Data System (ADS)

    Andreu, J.; Capilla, J.; Sanchís, E.

    1996-04-01

    This paper describes a generic decision-support system (DSS) which was originally designed for the planning stage of dicision-making associated with complex river basins. Subsequently, it was expanded to incorporate modules relating to the operational stage of decision-making. Computer-assisted design modules allow any complex water-resource system to be represented in graphical form, giving access to geographically referenced databases and knowledge bases. The modelling capability includes basin simulation and optimization modules, an aquifer flow modelling module and two modules for risk assessment. The Segura and Tagus river basins have been used as case studies in the development and validation phases. The value of this DSS is demonstrated by the fact that both River Basin Agencies currently use a version for the efficient management of their water resources.

  3. Evaluating a Clinical Decision Support Interface for End-of-Life Nurse Care.

    PubMed

    Febretti, Alessandro; Stifter, Janet; Keenan, Gail M; Lopez, Karen D; Johnson, Andrew; Wilkie, Diana J

    2014-01-01

    Clinical Decision Support Systems (CDSS) are tools that assist healthcare personnel in the decision-making process for patient care. Although CDSSs have been successfully deployed in the clinical setting to assist physicians, few CDSS have been targeted at professional nurses, the largest group of health providers. We present our experience in designing and testing a CDSS interface embedded within a nurse care planning and documentation tool. We developed four prototypes based on different CDSS feature designs, and tested them in simulated end-of-life patient handoff sessions with a group of 40 nurse clinicians. We show how our prototypes directed nurses towards an optimal care decision that was rarely performed in unassisted practice. We also discuss the effect of CDSS layout and interface navigation in a nurse's acceptance of suggested actions. These findings provide insights into effective nursing CDSS design that are generalizable to care scenarios different than end-of-life.

  4. Real-Time Optimal Flood Control Decision Making and Risk Propagation Under Multiple Uncertainties

    NASA Astrophysics Data System (ADS)

    Zhu, Feilin; Zhong, Ping-An; Sun, Yimeng; Yeh, William W.-G.

    2017-12-01

    Multiple uncertainties exist in the optimal flood control decision-making process, presenting risks involving flood control decisions. This paper defines the main steps in optimal flood control decision making that constitute the Forecast-Optimization-Decision Making (FODM) chain. We propose a framework for supporting optimal flood control decision making under multiple uncertainties and evaluate risk propagation along the FODM chain from a holistic perspective. To deal with uncertainties, we employ stochastic models at each link of the FODM chain. We generate synthetic ensemble flood forecasts via the martingale model of forecast evolution. We then establish a multiobjective stochastic programming with recourse model for optimal flood control operation. The Pareto front under uncertainty is derived via the constraint method coupled with a two-step process. We propose a novel SMAA-TOPSIS model for stochastic multicriteria decision making. Then we propose the risk assessment model, the risk of decision-making errors and rank uncertainty degree to quantify the risk propagation process along the FODM chain. We conduct numerical experiments to investigate the effects of flood forecast uncertainty on optimal flood control decision making and risk propagation. We apply the proposed methodology to a flood control system in the Daduhe River basin in China. The results indicate that the proposed method can provide valuable risk information in each link of the FODM chain and enable risk-informed decisions with higher reliability.

  5. Study on Web-Based Tool for Regional Agriculture Industry Structure Optimization Using Ajax

    NASA Astrophysics Data System (ADS)

    Huang, Xiaodong; Zhu, Yeping

    According to the research status of regional agriculture industry structure adjustment information system and the current development of information technology, this paper takes web-based regional agriculture industry structure optimization tool as research target. This paper introduces Ajax technology and related application frameworks to build an auxiliary toolkit of decision support system for agricultural policy maker and economy researcher. The toolkit includes a “one page” style component of regional agriculture industry structure optimization which provides agile arguments setting method that enables applying sensitivity analysis and usage of data and comparative advantage analysis result, and a component that can solve the linear programming model and its dual problem by simplex method.

  6. The use of predictive models to optimize risk of decisions.

    PubMed

    Baranyi, József; Buss da Silva, Nathália

    2017-01-02

    The purpose of this paper is to set up a mathematical framework that risk assessors and regulators could use to quantify the "riskiness" of a particular recommendation (choice/decision). The mathematical theory introduced here can be used for decision support systems. We point out that efficient use of predictive models in decision making for food microbiology needs to consider three major points: (1) the uncertainty and variability of the used information based on which the decision is to be made; (2) the validity of the predictive models aiding the assessor; and (3) the cost generated by the difference between the a-priory choice and the a-posteriori outcome. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Design of decision support interventions for medication prescribing.

    PubMed

    Horsky, Jan; Phansalkar, Shobha; Desai, Amrita; Bell, Douglas; Middleton, Blackford

    2013-06-01

    Describe optimal design attributes of clinical decision support (CDS) interventions for medication prescribing, emphasizing perceptual, cognitive and functional characteristics that improve human-computer interaction (HCI) and patient safety. Findings from published reports on success, failures and lessons learned during implementation of CDS systems were reviewed and interpreted with regard to HCI and software usability principles. We then formulated design recommendations for CDS alerts that would reduce unnecessary workflow interruptions and allow clinicians to make informed decisions quickly, accurately and without extraneous cognitive and interactive effort. Excessive alerting that tends to distract clinicians rather than provide effective CDS can be reduced by designing only high severity alerts as interruptive dialog boxes and less severe warnings without explicit response requirement, by curating system knowledge bases to suppress warnings with low clinical utility and by integrating contextual patient data into the decision logic. Recommended design principles include parsimonious and consistent use of color and language, minimalist approach to the layout of information and controls, the use of font attributes to convey hierarchy and visual prominence of important data over supporting information, the inclusion of relevant patient data in the context of the alert and allowing clinicians to respond with one or two clicks. Although HCI and usability principles are well established and robust, CDS and EHR system interfaces rarely conform to the best known design conventions and are seldom conceived and designed well enough to be truly versatile and dependable tools. These relatively novel interventions still require careful monitoring, research and analysis of its track record to mature. Clarity and specificity of alert content and optimal perceptual and cognitive attributes, for example, are essential for providing effective decision support to clinicians. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Clinic-Based Mobile Health Decision Support to Enhance Adult Epilepsy Self-Management: An Intervention Mapping Approach.

    PubMed

    Shegog, Ross; Begley, Charles E

    2017-01-01

    Epilepsy is a neurological disorder involving recurrent seizures. It affects approximately 5 million people in the U.S. To optimize their quality of life people with epilepsy are encouraged to engage in self-management (S-M) behaviors. These include managing their treatment (e.g., adhering to anti-seizure medication and clinical visit schedules), managing their seizures (e.g., responding to seizure episodes), managing their safety (e.g., monitoring and avoiding environmental seizure triggers), and managing their co-morbid conditions (e.g., anxiety, depression). The clinic-based Management Information Decision Support Epilepsy Tool (MINDSET) is a decision-support system founded on theory and empirical evidence. It is designed to increase awareness by adult patients (≥18 years) and their health-care provider regarding the patient's epilepsy S-M behaviors, facilitate communication during the clinic visit to prioritize S-M goals and strategies commensurate with the patient's needs, and increase the patient's self-efficacy to achieve those goals. The purpose of this paper is to describe the application of intervention mapping (IM) to develop, implement, and formatively evaluate the clinic-based MINDSET prototype and in developing implementation and evaluation plans. Deliverables comprised a logic model of the problem (IM Step 1); matrices of program objectives (IM Step 2); a program planning document comprising scope, sequence, theory-based methods, and practical strategies (IM Step 3); a functional MINDSET program prototype (IM Step 4); plans for implementation (IM Step 5); and evaluation (IM Step 6). IM provided a logical and systematic approach to developing and evaluating clinic-based decision support toward epilepsy S-M.

  9. Automatically updating predictive modeling workflows support decision-making in drug design.

    PubMed

    Muegge, Ingo; Bentzien, Jörg; Mukherjee, Prasenjit; Hughes, Robert O

    2016-09-01

    Using predictive models for early decision-making in drug discovery has become standard practice. We suggest that model building needs to be automated with minimum input and low technical maintenance requirements. Models perform best when tailored to answering specific compound optimization related questions. If qualitative answers are required, 2-bin classification models are preferred. Integrating predictive modeling results with structural information stimulates better decision making. For in silico models supporting rapid structure-activity relationship cycles the performance deteriorates within weeks. Frequent automated updates of predictive models ensure best predictions. Consensus between multiple modeling approaches increases the prediction confidence. Combining qualified and nonqualified data optimally uses all available information. Dose predictions provide a holistic alternative to multiple individual property predictions for reaching complex decisions.

  10. A conceptual evolutionary aseismic decision support framework for hospitals

    NASA Astrophysics Data System (ADS)

    Hu, Yufeng; Dargush, Gary F.; Shao, Xiaoyun

    2012-12-01

    In this paper, aconceptual evolutionary framework for aseismic decision support for hospitalsthat attempts to integrate a range of engineering and sociotechnical models is presented. Genetic algorithms are applied to find the optimal decision sets. A case study is completed to demonstrate how the frameworkmay applytoa specific hospital.The simulations show that the proposed evolutionary decision support framework is able to discover robust policy sets in either uncertain or fixed environments. The framework also qualitatively identifies some of the characteristicbehavior of the critical care organization. Thus, by utilizing the proposedframework, the decision makers are able to make more informed decisions, especially toenhance the seismic safety of the hospitals.

  11. Constrained optimization via simulation models for new product innovation

    NASA Astrophysics Data System (ADS)

    Pujowidianto, Nugroho A.

    2017-11-01

    We consider the problem of constrained optimization where the decision makers aim to optimize the primary performance measure while constraining the secondary performance measures. This paper provides a brief overview of stochastically constrained optimization via discrete event simulation. Most review papers tend to be methodology-based. This review attempts to be problem-based as decision makers may have already decided on the problem formulation. We consider constrained optimization models as there are usually constraints on secondary performance measures as trade-off in new product development. It starts by laying out different possible methods and the reasons using constrained optimization via simulation models. It is then followed by the review of different simulation optimization approach to address constrained optimization depending on the number of decision variables, the type of constraints, and the risk preferences of the decision makers in handling uncertainties.

  12. Neural signatures of experience-based improvements in deterministic decision-making.

    PubMed

    Tremel, Joshua J; Laurent, Patryk A; Wolk, David A; Wheeler, Mark E; Fiez, Julie A

    2016-12-15

    Feedback about our choices is a crucial part of how we gather information and learn from our environment. It provides key information about decision experiences that can be used to optimize future choices. However, our understanding of the processes through which feedback translates into improved decision-making is lacking. Using neuroimaging (fMRI) and cognitive models of decision-making and learning, we examined the influence of feedback on multiple aspects of decision processes across learning. Subjects learned correct choices to a set of 50 word pairs across eight repetitions of a concurrent discrimination task. Behavioral measures were then analyzed with both a drift-diffusion model and a reinforcement learning model. Parameter values from each were then used as fMRI regressors to identify regions whose activity fluctuates with specific cognitive processes described by the models. The patterns of intersecting neural effects across models support two main inferences about the influence of feedback on decision-making. First, frontal, anterior insular, fusiform, and caudate nucleus regions behave like performance monitors, reflecting errors in performance predictions that signal the need for changes in control over decision-making. Second, temporoparietal, supplementary motor, and putamen regions behave like mnemonic storage sites, reflecting differences in learned item values that inform optimal decision choices. As information about optimal choices is accrued, these neural systems dynamically adjust, likely shifting the burden of decision processing from controlled performance monitoring to bottom-up, stimulus-driven choice selection. Collectively, the results provide a detailed perspective on the fundamental ability to use past experiences to improve future decisions. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Neural signatures of experience-based improvements in deterministic decision-making

    PubMed Central

    Tremel, Joshua J.; Laurent, Patryk A.; Wolk, David A.; Wheeler, Mark E.; Fiez, Julie A.

    2016-01-01

    Feedback about our choices is a crucial part of how we gather information and learn from our environment. It provides key information about decision experiences that can be used to optimize future choices. However, our understanding of the processes through which feedback translates into improved decision-making is lacking. Using neuroimaging (fMRI) and cognitive models of decision-making and learning, we examined the influence of feedback on multiple aspects of decision processes across learning. Subjects learned correct choices to a set of 50 word pairs across eight repetitions of a concurrent discrimination task. Behavioral measures were then analyzed with both a drift-diffusion model and a reinforcement learning model. Parameter values from each were then used as fMRI regressors to identify regions whose activity fluctuates with specific cognitive processes described by the models. The patterns of intersecting neural effects across models support two main inferences about the influence of feedback on decision-making. First, frontal, anterior insular, fusiform, and caudate nucleus regions behave like performance monitors, reflecting errors in performance predictions that signal the need for changes in control over decision-making. Second, temporoparietal, supplementary motor, and putamen regions behave like mnemonic storage sites, reflecting differences in learned item values that inform optimal decision choices. As information about optimal choices is accrued, these neural systems dynamically adjust, likely shifting the burden of decision processing from controlled performance monitoring to bottom-up, stimulus-driven choice selection. Collectively, the results provide a detailed perspective on the fundamental ability to use past experiences to improve future decisions. PMID:27523644

  14. Structural optimization: Status and promise

    NASA Astrophysics Data System (ADS)

    Kamat, Manohar P.

    Chapters contained in this book include fundamental concepts of optimum design, mathematical programming methods for constrained optimization, function approximations, approximate reanalysis methods, dual mathematical programming methods for constrained optimization, a generalized optimality criteria method, and a tutorial and survey of multicriteria optimization in engineering. Also included are chapters on the compromise decision support problem and the adaptive linear programming algorithm, sensitivity analyses of discrete and distributed systems, the design sensitivity analysis of nonlinear structures, optimization by decomposition, mixed elements in shape sensitivity analysis of structures based on local criteria, and optimization of stiffened cylindrical shells subjected to destabilizing loads. Other chapters are on applications to fixed-wing aircraft and spacecraft, integrated optimum structural and control design, modeling concurrency in the design of composite structures, and tools for structural optimization. (No individual items are abstracted in this volume)

  15. Implicit knowledge of visual uncertainty guides decisions with asymmetric outcomes.

    PubMed

    Whiteley, Louise; Sahani, Maneesh

    2008-03-06

    Perception is an "inverse problem," in which the state of the world must be inferred from the sensory neural activity that results. However, this inference is both ill-posed (Helmholtz, 1856; Marr, 1982) and corrupted by noise (Green & Swets, 1989), requiring the brain to compute perceptual beliefs under conditions of uncertainty. Here we show that human observers performing a simple visual choice task under an externally imposed loss function approach the optimal strategy, as defined by Bayesian probability and decision theory (Berger, 1985; Cox, 1961). In concert with earlier work, this suggests that observers possess a model of their internal uncertainty and can utilize this model in the neural computations that underlie their behavior (Knill & Pouget, 2004). In our experiment, optimal behavior requires that observers integrate the loss function with an estimate of their internal uncertainty rather than simply requiring that they use a modal estimate of the uncertain stimulus. Crucially, they approach optimal behavior even when denied the opportunity to learn adaptive decision strategies based on immediate feedback. Our data thus support the idea that flexible representations of uncertainty are pre-existing, widespread, and can be propagated to decision-making areas of the brain.

  16. Interactive Genetic Algorithm - An Adaptive and Interactive Decision Support Framework for Design of Optimal Groundwater Monitoring Plans

    NASA Astrophysics Data System (ADS)

    Babbar-Sebens, M.; Minsker, B. S.

    2006-12-01

    In the water resources management field, decision making encompasses many kinds of engineering, social, and economic constraints and objectives. Representing all of these problem dependant criteria through models (analytical or numerical) and various formulations (e.g., objectives, constraints, etc.) within an optimization- simulation system can be a very non-trivial issue. Most models and formulations utilized for discerning desirable traits in a solution can only approximate the decision maker's (DM) true preference criteria, and they often fail to consider important qualitative and incomputable phenomena related to the management problem. In our research, we have proposed novel decision support frameworks that allow DMs to actively participate in the optimization process. The DMs explicitly indicate their true preferences based on their subjective criteria and the results of various simulation models and formulations. The feedback from the DMs is then used to guide the search process towards solutions that are "all-rounders" from the perspective of the DM. The two main research questions explored in this work are: a) Does interaction between the optimization algorithm and a DM assist the system in searching for groundwater monitoring designs that are robust from the DM's perspective?, and b) How can an interactive search process be made more effective when human factors, such as human fatigue and cognitive learning processes, affect the performance of the algorithm? The application of these frameworks on a real-world groundwater long-term monitoring (LTM) case study in Michigan highlighted the following salient advantages: a) in contrast to the non-interactive optimization methodology, the proposed interactive frameworks were able to identify low cost monitoring designs whose interpolation maps respected the expected spatial distribution of the contaminants, b) for many same-cost designs, the interactive methodologies were able to propose multiple alternatives that met the DM's preference criteria, therefore allowing the expert to select among several strong candidate designs depending on her/his LTM budget, c) two of the methodologies - Case-Based Micro Interactive Genetic Algorithm (CBMIGA) and Interactive Genetic Algorithm with Mixed Initiative Interaction (IGAMII) - were also able to assist in controlling human fatigue and adapt to the DM's learning process.

  17. Ranking of Business Process Simulation Software Tools with DEX/QQ Hierarchical Decision Model.

    PubMed

    Damij, Nadja; Boškoski, Pavle; Bohanec, Marko; Mileva Boshkoska, Biljana

    2016-01-01

    The omnipresent need for optimisation requires constant improvements of companies' business processes (BPs). Minimising the risk of inappropriate BP being implemented is usually performed by simulating the newly developed BP under various initial conditions and "what-if" scenarios. An effectual business process simulations software (BPSS) is a prerequisite for accurate analysis of an BP. Characterisation of an BPSS tool is a challenging task due to the complex selection criteria that includes quality of visual aspects, simulation capabilities, statistical facilities, quality reporting etc. Under such circumstances, making an optimal decision is challenging. Therefore, various decision support models are employed aiding the BPSS tool selection. The currently established decision support models are either proprietary or comprise only a limited subset of criteria, which affects their accuracy. Addressing this issue, this paper proposes a new hierarchical decision support model for ranking of BPSS based on their technical characteristics by employing DEX and qualitative to quantitative (QQ) methodology. Consequently, the decision expert feeds the required information in a systematic and user friendly manner. There are three significant contributions of the proposed approach. Firstly, the proposed hierarchical model is easily extendible for adding new criteria in the hierarchical structure. Secondly, a fully operational decision support system (DSS) tool that implements the proposed hierarchical model is presented. Finally, the effectiveness of the proposed hierarchical model is assessed by comparing the resulting rankings of BPSS with respect to currently available results.

  18. TreePOD: Sensitivity-Aware Selection of Pareto-Optimal Decision Trees.

    PubMed

    Muhlbacher, Thomas; Linhardt, Lorenz; Moller, Torsten; Piringer, Harald

    2018-01-01

    Balancing accuracy gains with other objectives such as interpretability is a key challenge when building decision trees. However, this process is difficult to automate because it involves know-how about the domain as well as the purpose of the model. This paper presents TreePOD, a new approach for sensitivity-aware model selection along trade-offs. TreePOD is based on exploring a large set of candidate trees generated by sampling the parameters of tree construction algorithms. Based on this set, visualizations of quantitative and qualitative tree aspects provide a comprehensive overview of possible tree characteristics. Along trade-offs between two objectives, TreePOD provides efficient selection guidance by focusing on Pareto-optimal tree candidates. TreePOD also conveys the sensitivities of tree characteristics on variations of selected parameters by extending the tree generation process with a full-factorial sampling. We demonstrate how TreePOD supports a variety of tasks involved in decision tree selection and describe its integration in a holistic workflow for building and selecting decision trees. For evaluation, we illustrate a case study for predicting critical power grid states, and we report qualitative feedback from domain experts in the energy sector. This feedback suggests that TreePOD enables users with and without statistical background a confident and efficient identification of suitable decision trees.

  19. Parameter selection for and implementation of a web-based decision-support tool to predict extubation outcome in premature infants.

    PubMed

    Mueller, Martina; Wagner, Carol L; Annibale, David J; Knapp, Rebecca G; Hulsey, Thomas C; Almeida, Jonas S

    2006-03-01

    Approximately 30% of intubated preterm infants with respiratory distress syndrome (RDS) will fail attempted extubation, requiring reintubation and mechanical ventilation. Although ventilator technology and monitoring of premature infants have improved over time, optimal extubation remains challenging. Furthermore, extubation decisions for premature infants require complex informational processing, techniques implicitly learned through clinical practice. Computer-aided decision-support tools would benefit inexperienced clinicians, especially during peak neonatal intensive care unit (NICU) census. A five-step procedure was developed to identify predictive variables. Clinical expert (CE) thought processes comprised one model. Variables from that model were used to develop two mathematical models for the decision-support tool: an artificial neural network (ANN) and a multivariate logistic regression model (MLR). The ranking of the variables in the three models was compared using the Wilcoxon Signed Rank Test. The best performing model was used in a web-based decision-support tool with a user interface implemented in Hypertext Markup Language (HTML) and the mathematical model employing the ANN. CEs identified 51 potentially predictive variables for extubation decisions for an infant on mechanical ventilation. Comparisons of the three models showed a significant difference between the ANN and the CE (p = 0.0006). Of the original 51 potentially predictive variables, the 13 most predictive variables were used to develop an ANN as a web-based decision-tool. The ANN processes user-provided data and returns the prediction 0-1 score and a novelty index. The user then selects the most appropriate threshold for categorizing the prediction as a success or failure. Furthermore, the novelty index, indicating the similarity of the test case to the training case, allows the user to assess the confidence level of the prediction with regard to how much the new data differ from the data originally used for the development of the prediction tool. State-of-the-art, machine-learning methods can be employed for the development of sophisticated tools to aid clinicians' decisions. We identified numerous variables considered relevant for extubation decisions for mechanically ventilated premature infants with RDS. We then developed a web-based decision-support tool for clinicians which can be made widely available and potentially improve patient care world wide.

  20. Review of experimental studies in social psychology of small groups when an optimal choice exists and application to operating room management decision-making.

    PubMed

    Prahl, Andrew; Dexter, Franklin; Braun, Michael T; Van Swol, Lyn

    2013-11-01

    Because operating room (OR) management decisions with optimal choices are made with ubiquitous biases, decisions are improved with decision-support systems. We reviewed experimental social-psychology studies to explore what an OR leader can do when working with stakeholders lacking interest in learning the OR management science but expressing opinions about decisions, nonetheless. We considered shared information to include the rules-of-thumb (heuristics) that make intuitive sense and often seem "close enough" (e.g., staffing is planned based on the average workload). We considered unshared information to include the relevant mathematics (e.g., staffing calculations). Multiple studies have shown that group discussions focus more on shared than unshared information. Quality decisions are more likely when all group participants share knowledge (e.g., have taken a course in OR management science). Several biases in OR management are caused by humans' limited abilities to estimate tails of probability distributions in their heads. Groups are more susceptible to analogous biases than are educated individuals. Since optimal solutions are not demonstrable without groups sharing common language, only with education of most group members can a knowledgeable individual influence the group. The appropriate model of decision-making is autocratic, with information obtained from stakeholders. Although such decisions are good quality, the leaders often are disliked and the decisions considered unjust. In conclusion, leaders will find the most success if they do not bring OR management operational decisions to groups, but instead act autocratically while obtaining necessary information in 1:1 conversations. The only known route for the leader making such decisions to be considered likable and for the decisions to be considered fair is through colleagues and subordinates learning the management science.

  1. Personalizing Drug Selection Using Advanced Clinical Decision Support

    PubMed Central

    Pestian, John; Spencer, Malik; Matykiewicz, Pawel; Zhang, Kejian; Vinks, Alexander A.; Glauser, Tracy

    2009-01-01

    This article describes the process of developing an advanced pharmacogenetics clinical decision support at one of the United States’ leading pediatric academic medical centers. This system, called CHRISTINE, combines clinical and genetic data to identify the optimal drug therapy when treating patients with epilepsy or Attention Deficit Hyperactivity Disorder. In the discussion a description of clinical decision support systems is provided, along with an overview of neurocognitive computing and how it is applied in this setting. PMID:19898682

  2. The European Association of Preventive Cardiology Exercise Prescription in Everyday Practice and Rehabilitative Training (EXPERT) tool: A digital training and decision support system for optimized exercise prescription in cardiovascular disease. Concept, definitions and construction methodology.

    PubMed

    Hansen, Dominique; Dendale, Paul; Coninx, Karin; Vanhees, Luc; Piepoli, Massimo F; Niebauer, Josef; Cornelissen, Veronique; Pedretti, Roberto; Geurts, Eva; Ruiz, Gustavo R; Corrà, Ugo; Schmid, Jean-Paul; Greco, Eugenio; Davos, Constantinos H; Edelmann, Frank; Abreu, Ana; Rauch, Bernhard; Ambrosetti, Marco; Braga, Simona S; Barna, Olga; Beckers, Paul; Bussotti, Maurizio; Fagard, Robert; Faggiano, Pompilio; Garcia-Porrero, Esteban; Kouidi, Evangelia; Lamotte, Michel; Neunhäuserer, Daniel; Reibis, Rona; Spruit, Martijn A; Stettler, Christoph; Takken, Tim; Tonoli, Cajsa; Vigorito, Carlo; Völler, Heinz; Doherty, Patrick

    2017-07-01

    Background Exercise rehabilitation is highly recommended by current guidelines on prevention of cardiovascular disease, but its implementation is still poor. Many clinicians experience difficulties in prescribing exercise in the presence of different concomitant cardiovascular diseases and risk factors within the same patient. It was aimed to develop a digital training and decision support system for exercise prescription in cardiovascular disease patients in clinical practice: the European Association of Preventive Cardiology Exercise Prescription in Everyday Practice and Rehabilitative Training (EXPERT) tool. Methods EXPERT working group members were requested to define (a) diagnostic criteria for specific cardiovascular diseases, cardiovascular disease risk factors, and other chronic non-cardiovascular conditions, (b) primary goals of exercise intervention, (c) disease-specific prescription of exercise training (intensity, frequency, volume, type, session and programme duration), and (d) exercise training safety advices. The impact of exercise tolerance, common cardiovascular medications and adverse events during exercise testing were further taken into account for optimized exercise prescription. Results Exercise training recommendations and safety advices were formulated for 10 cardiovascular diseases, five cardiovascular disease risk factors (type 1 and 2 diabetes, obesity, hypertension, hypercholesterolaemia), and three common chronic non-cardiovascular conditions (lung and renal failure and sarcopaenia), but also accounted for baseline exercise tolerance, common cardiovascular medications and occurrence of adverse events during exercise testing. An algorithm, supported by an interactive tool, was constructed based on these data. This training and decision support system automatically provides an exercise prescription according to the variables provided. Conclusion This digital training and decision support system may contribute in overcoming barriers in exercise implementation in common cardiovascular diseases.

  3. Design of an Aircrew Scheduling Decision Aid for the 6916th Electronic Security Squadron.

    DTIC Science & Technology

    1987-06-01

    Security Classification) Design of an Aircrew Scheduling Decision Aid for the 6916th Electronic Security Squadron 12. PERSONAL AUTHOR(S) Thomas J. Kopf...Because of the great number of possible scheduling alternatives, it is difficult to find an optimal solution to-the scheduling problem. Additionally...changes to the original schedule make it even more difficult to find an optimal solution. The emergence of capable microcompu- ters, decision support

  4. Applying Mathematical Optimization Methods to an ACT-R Instance-Based Learning Model.

    PubMed

    Said, Nadia; Engelhart, Michael; Kirches, Christian; Körkel, Stefan; Holt, Daniel V

    2016-01-01

    Computational models of cognition provide an interface to connect advanced mathematical tools and methods to empirically supported theories of behavior in psychology, cognitive science, and neuroscience. In this article, we consider a computational model of instance-based learning, implemented in the ACT-R cognitive architecture. We propose an approach for obtaining mathematical reformulations of such cognitive models that improve their computational tractability. For the well-established Sugar Factory dynamic decision making task, we conduct a simulation study to analyze central model parameters. We show how mathematical optimization techniques can be applied to efficiently identify optimal parameter values with respect to different optimization goals. Beyond these methodological contributions, our analysis reveals the sensitivity of this particular task with respect to initial settings and yields new insights into how average human performance deviates from potential optimal performance. We conclude by discussing possible extensions of our approach as well as future steps towards applying more powerful derivative-based optimization methods.

  5. The Integrated Medical Model

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Minard, Charles; Saile, Lynn; Freiere deCarvalho, Mary; Myers, Jerry; Walton, Marlei; Butler, Douglas; Iyengar, Sriram; Johnson-Throop, Kathy; Baumann, David

    2010-01-01

    The goals of the Integrated Medical Model (IMM) are to develop an integrated, quantified, evidence-based decision support tool useful to crew health and mission planners and to help align science, technology, and operational activities intended to optimize crew health, safety, and mission success. Presentation slides address scope and approach, beneficiaries of IMM capabilities, history, risk components, conceptual models, development steps, and the evidence base. Space adaptation syndrome is used to demonstrate the model's capabilities.

  6. A decision support system for delivering optimal quality peach and tomato

    NASA Technical Reports Server (NTRS)

    Thai, C. N.; Pease, J. N.; Shewfelt, R. L.

    1990-01-01

    Several studies have indicated that color and firmness are the two quality attributes most important to consumers in making purchasing decisions of fresh peaches and tomatoes. However, at present, retail produce managers do not have the proper information for handling fresh produce so it has the most appealing color and firmness when it reaches the consumer. This information should help them predict the consumer color and firmness perception and preference for produce from various storage conditions. Since 1987, for 'Redglobe' peach and 'Sunny' tomato, we have been generating information about their physical quality attributes (firmness and color) and their corresponding consumer sensory scores. This article reports on our current progress toward the goal of integrating such information into a model-based decision support system for retail level managers in handling fresh peaches and tomatoes.

  7. United States Air Force Graduate Student Summer Support Program (1987). Program Management Report.

    DTIC Science & Technology

    1987-12-01

    were briefed on the benefits and research opportunities of the SFRP. The targeted groups within the University community were faculty of the...Effects on Fine Mary C. Robinson Motor Skill and Decoding Tasks 78 Design of a Mechanism to Control Wind Filiberto Santiago Tunnel Turbulence 79 Low...Systems 81 The Integration of Decision Support Jon A. Shupe Problems into Feature Modeling Based Design 89 r 0 82 Optimal Control of the Wing

  8. C-learning: A new classification framework to estimate optimal dynamic treatment regimes.

    PubMed

    Zhang, Baqun; Zhang, Min

    2017-12-11

    A dynamic treatment regime is a sequence of decision rules, each corresponding to a decision point, that determine that next treatment based on each individual's own available characteristics and treatment history up to that point. We show that identifying the optimal dynamic treatment regime can be recast as a sequential optimization problem and propose a direct sequential optimization method to estimate the optimal treatment regimes. In particular, at each decision point, the optimization is equivalent to sequentially minimizing a weighted expected misclassification error. Based on this classification perspective, we propose a powerful and flexible C-learning algorithm to learn the optimal dynamic treatment regimes backward sequentially from the last stage until the first stage. C-learning is a direct optimization method that directly targets optimizing decision rules by exploiting powerful optimization/classification techniques and it allows incorporation of patient's characteristics and treatment history to improve performance, hence enjoying advantages of both the traditional outcome regression-based methods (Q- and A-learning) and the more recent direct optimization methods. The superior performance and flexibility of the proposed methods are illustrated through extensive simulation studies. © 2017, The International Biometric Society.

  9. Rational risk-based decision support for drinking water well managers by optimized monitoring designs

    NASA Astrophysics Data System (ADS)

    Enzenhöfer, R.; Geiges, A.; Nowak, W.

    2011-12-01

    Advection-based well-head protection zones are commonly used to manage the contamination risk of drinking water wells. Considering the insufficient knowledge about hazards and transport properties within the catchment, current Water Safety Plans recommend that catchment managers and stakeholders know, control and monitor all possible hazards within the catchments and perform rational risk-based decisions. Our goal is to supply catchment managers with the required probabilistic risk information, and to generate tools that allow for optimal and rational allocation of resources between improved monitoring versus extended safety margins and risk mitigation measures. To support risk managers with the indispensable information, we address the epistemic uncertainty of advective-dispersive solute transport and well vulnerability (Enzenhoefer et al., 2011) within a stochastic simulation framework. Our framework can separate between uncertainty of contaminant location and actual dilution of peak concentrations by resolving heterogeneity with high-resolution Monte-Carlo simulation. To keep computational costs low, we solve the reverse temporal moment transport equation. Only in post-processing, we recover the time-dependent solute breakthrough curves and the deduced well vulnerability criteria from temporal moments by non-linear optimization. Our first step towards optimal risk management is optimal positioning of sampling locations and optimal choice of data types to reduce best the epistemic prediction uncertainty for well-head delineation, using the cross-bred Likelihood Uncertainty Estimator (CLUE, Leube et al., 2011) for optimal sampling design. Better monitoring leads to more reliable and realistic protection zones and thus helps catchment managers to better justify smaller, yet conservative safety margins. In order to allow an optimal choice in sampling strategies, we compare the trade-off in monitoring versus the delineation costs by accounting for ill-delineated fractions of protection zones. Within an illustrative simplified 2D synthetic test case, we demonstrate our concept, involving synthetic transmissivity and head measurements for conditioning. We demonstrate the worth of optimally collected data in the context of protection zone delineation by assessing the reduced areal demand of delineated area at user-specified risk acceptance level. Results indicate that, thanks to optimally collected data, risk-aware delineation can be made at low to moderate additional costs compared to conventional delineation strategies.

  10. Postoptimality analysis in the selection of technology portfolios

    NASA Technical Reports Server (NTRS)

    Adumitroaie, Virgil; Shelton, Kacie; Elfes, Alberto; Weisbin, Charles R.

    2006-01-01

    This paper describes an approach for qualifying optimal technology portfolios obtained with a multi-attribute decision support system. The goal is twofold: to gauge the degree of confidence in the optimal solution and to provide the decision-maker with an array of viable selection alternatives, which take into account input uncertainties and possibly satisfy non-technical constraints.

  11. Decision Support from Genetic Algorithms for Ship Collision Avoidance Route Planning and Alerts

    NASA Astrophysics Data System (ADS)

    Tsou, Ming-Cheng; Kao, Sheng-Long; Su, Chien-Min

    When an officer of the watch (OOW) faces complicated marine traffic, a suitable decision support tool could be employed in support of collision avoidance decisions, to reduce the burden and greatly improve the safety of marine traffic. Decisions on routes to avoid collisions could also consider economy as well as safety. Through simulating the biological evolution model, this research adopts the genetic algorithm used in artificial intelligence to find a theoretically safety-critical recommendation for the shortest route of collision avoidance from an economic viewpoint, combining the international regulations for preventing collisions at sea (COLREGS) and the safety domain of a ship. Based on this recommendation, an optimal safe avoidance turning angle, navigation restoration time and navigational restoration angle will also be provided. A Geographic Information System (GIS) will be used as the platform for display and operation. In order to achieve advance notice of alerts and due preparation for collision avoidance, a Vessel Traffic Services (VTS) operator and the OOW can use this system as a reference to assess collision avoidance at present location.

  12. Decision Support System for Coastal Protection Layout Design (DSS4CPD) Using Genetic Algorithm (ga) and Multicriteria Analysis (mca)

    NASA Astrophysics Data System (ADS)

    Jinchai, Phinai; Chittaladakorn, Suwatana

    This research has its objective to develop the decision support system on GIS to be used in the coastal erosion protection management. The developed model in this research is called Decision Support System for Coastal Protection Layout Design (DSS4CPD). It has created both for systematic protection and solution measures to the problem by using Genetic Algorithm (GA) and Multicriteria Analysis (MCA) for finding the coastal structure layout optimal solution. In this research, three types of coastal structures were used as structure alternatives for the layout, which are seawall, breakwater, and groin. The coastal area in Nakornsrithammaraj, Thailand was used as the case study. The studied result has found the appropriate position of coastal structures considering the suitable rock size relied on the wave energy, and the appropriate coastal structure position based on the wave breaking line. Using GA and MCA in DSS4CPD, it found the best layout in this project. This DSS4CPD will be used by the authorized decision makers to find the most suitable erosion problem solution.

  13. Improving the performance of surgery-based clinical pathways: a simulation-optimization approach.

    PubMed

    Ozcan, Yasar A; Tànfani, Elena; Testi, Angela

    2017-03-01

    This paper aims to improve the performance of clinical processes using clinical pathways (CPs). The specific goal of this research is to develop a decision support tool, based on a simulation-optimization approach, which identify the proper adjustment and alignment of resources to achieve better performance for both the patients and the health-care facility. When multiple perspectives are present in a decision problem, critical issues arise and often require the balancing of goals. In our approach, meeting patients' clinical needs in a timely manner, and to avoid worsening of clinical conditions, we assess the level of appropriate resources. The simulation-optimization model seeks and evaluates alternative resource configurations aimed at balancing the two main objectives-meeting patient needs and optimal utilization of beds and operating rooms.Using primary data collected at a Department of Surgery of a public hospital located in Genoa, Italy. The simulation-optimization modelling approach in this study has been applied to evaluate the thyroid surgical treatment together with the other surgery-based CPs. The low rate of bed utilization and the long elective waiting lists of the specialty under study indicates that the wards were oversized while the operating room capacity was the bottleneck of the system. The model enables hospital managers determine which objective has to be given priority, as well as the corresponding opportunity costs.

  14. The application of Firefly algorithm in an Adaptive Emergency Evacuation Centre Management (AEECM) for dynamic relocation of flood victims

    NASA Astrophysics Data System (ADS)

    ChePa, Noraziah; Hashim, Nor Laily; Yusof, Yuhanis; Hussain, Azham

    2016-08-01

    Flood evacuation centre is defined as a temporary location or area of people from disaster particularly flood as a rescue or precautionary measure. Gazetted evacuation centres are normally located at secure places which have small chances from being drowned by flood. However, due to extreme flood several evacuation centres in Kelantan were unexpectedly drowned. Currently, there is no study done on proposing a decision support aid to reallocate victims and resources of the evacuation centre when the situation getting worsens. Therefore, this study proposes a decision aid model to be utilized in realizing an adaptive emergency evacuation centre management system. This study undergoes two main phases; development of algorithm and models, and development of a web-based and mobile app. The proposed model operates using Firefly multi-objective optimization algorithm that creates an optimal schedule for the relocation of victims and resources for an evacuation centre. The proposed decision aid model and the adaptive system can be applied in supporting the National Security Council's respond mechanisms for handling disaster management level II (State level) especially in providing better management of the flood evacuating centres.

  15. Identifying Cost-Effective Water Resources Management Strategies: Watershed Management Optimization Support Tool (WMOST)

    EPA Science Inventory

    The Watershed Management Optimization Support Tool (WMOST) is a public-domain software application designed to aid decision makers with integrated water resources management. The tool allows water resource managers and planners to screen a wide-range of management practices for c...

  16. Watershed Management Optimization Support Tool (WMOST) v1: Theoretical Documentation

    EPA Science Inventory

    The Watershed Management Optimization Support Tool (WMOST) is a screening model that is spatially lumped with options for a daily or monthly time step. It is specifically focused on modeling the effect of management decisions on the watershed. The model considers water flows and ...

  17. Development of a computer-based clinical decision support tool for selecting appropriate rehabilitation interventions for injured workers.

    PubMed

    Gross, Douglas P; Zhang, Jing; Steenstra, Ivan; Barnsley, Susan; Haws, Calvin; Amell, Tyler; McIntosh, Greg; Cooper, Juliette; Zaiane, Osmar

    2013-12-01

    To develop a classification algorithm and accompanying computer-based clinical decision support tool to help categorize injured workers toward optimal rehabilitation interventions based on unique worker characteristics. Population-based historical cohort design. Data were extracted from a Canadian provincial workers' compensation database on all claimants undergoing work assessment between December 2009 and January 2011. Data were available on: (1) numerous personal, clinical, occupational, and social variables; (2) type of rehabilitation undertaken; and (3) outcomes following rehabilitation (receiving time loss benefits or undergoing repeat programs). Machine learning, concerned with the design of algorithms to discriminate between classes based on empirical data, was the foundation of our approach to build a classification system with multiple independent and dependent variables. The population included 8,611 unique claimants. Subjects were predominantly employed (85 %) males (64 %) with diagnoses of sprain/strain (44 %). Baseline clinician classification accuracy was high (ROC = 0.86) for selecting programs that lead to successful return-to-work. Classification performance for machine learning techniques outperformed the clinician baseline classification (ROC = 0.94). The final classifiers were multifactorial and included the variables: injury duration, occupation, job attachment status, work status, modified work availability, pain intensity rating, self-rated occupational disability, and 9 items from the SF-36 Health Survey. The use of machine learning classification techniques appears to have resulted in classification performance better than clinician decision-making. The final algorithm has been integrated into a computer-based clinical decision support tool that requires additional validation in a clinical sample.

  18. Cluster-randomized, controlled trial of computer-based decision support for selecting long-term anti-thrombotic therapy after acute ischaemic stroke.

    PubMed

    Weir, C J; Lees, K R; MacWalter, R S; Muir, K W; Wallesch, C-W; McLelland, E V; Hendry, A

    2003-02-01

    Identifying the appropriate long-term anti-thrombotic therapy following acute ischaemic stroke is a challenging area in which computer-based decision support may provide assistance. To evaluate the influence on prescribing practice of a computer-based decision support system (CDSS) that provided patient-specific estimates of the expected ischaemic and haemorrhagic vascular event rates under each potential anti-thrombotic therapy. Cluster-randomized controlled trial. We recruited patients who presented for a first investigation of ischaemic stroke or TIA symptoms, excluding those with a poor prognosis or major contraindication to anticoagulation. After observation of routine prescribing practice (6 months) in each hospital, centres were randomized for 6 months to either control (routine practice observed) or intervention (practice observed while the CDSS provided patient-specific information). We compared, between control and intervention centres, the risk reduction (estimated by the CDSS) in ischaemic and haemorrhagic vascular events achieved by long-term anti-thrombotic therapy, and the proportions of subjects prescribed the optimal therapy identified by the CDSS. Sixteen hospitals recruited 1952 subjects. When the CDSS provided information, the mean relative risk reduction attained by prescribing increased by 2.7 percentage units (95%CI -0.3 to 5.7) and the odds ratio for the optimal therapy being prescribed was 1.32 (0.83 to 1.80). Some 55% (5/9) of clinicians believed the CDSS had influenced their prescribing. Cluster-randomized trials provide excellent frameworks for evaluating novel clinical management methods. Our CDSS was feasible to implement and acceptable to clinicians, but did not substantially influence prescribing practice for anti-thrombotic drugs after acute ischaemic stroke.

  19. Spatial decision supporting for winter wheat irrigation and fertilizer optimizing in North China Plain

    NASA Astrophysics Data System (ADS)

    Yang, Xiaodong; Yang, Hao; Dong, Yansheng; Yu, Haiyang

    2014-11-01

    Production management of winter wheat is more complicated than other crops since its growth period is covered all four seasons and growth environment is very complex with frozen injury, drought, insect or disease injury and others. In traditional irrigation and fertilizer management, agricultural technicians or farmers mainly make decision based on phenology, planting experience to carry out artificial fertilizer and irrigation management. For example, wheat needs more nitrogen fertilizer in jointing and booting stage by experience, then when the wheat grow to the two growth periods, the farmer will fertilize to the wheat whether it needs or not. We developed a spatial decision support system for optimizing irrigation and fertilizer measures based on WebGIS, which monitoring winter wheat growth and soil moisture content by combining a crop model, remote sensing data and wireless sensors data, then reasoning professional management schedule from expert knowledge warehouse. This system is developed by ArcIMS, IDL in server-side and JQuery, Google Maps API, ASP.NET in client-side. All computing tasks are run on server-side, such as computing 11 normal vegetable indexes (NDVI/ NDWI/ NDWI2/ NRI/ NSI/ WI/ G_SWIR/ G_SWIR2/ SPSI/ TVDI/ VSWI) and custom VI of remote sensing image by IDL; while real-time building map configuration file and generating thematic map by ArcIMS.

  20. A web-based tool to support shared decision making for people with a psychotic disorder: randomized controlled trial and process evaluation.

    PubMed

    van der Krieke, Lian; Emerencia, Ando C; Boonstra, Nynke; Wunderink, Lex; de Jonge, Peter; Sytema, Sjoerd

    2013-10-07

    Mental health policy makers encourage the development of electronic decision aids to increase patient participation in medical decision making. Evidence is needed to determine whether these decision aids are helpful in clinical practice and whether they lead to increased patient involvement and better outcomes. This study reports the outcome of a randomized controlled trial and process evaluation of a Web-based intervention to facilitate shared decision making for people with psychotic disorders. The study was carried out in a Dutch mental health institution. Patients were recruited from 2 outpatient teams for patients with psychosis (N=250). Patients in the intervention condition (n=124) were provided an account to access a Web-based information and decision tool aimed to support patients in acquiring an overview of their needs and appropriate treatment options provided by their mental health care organization. Patients were given the opportunity to use the Web-based tool either on their own (at their home computer or at a computer of the service) or with the support of an assistant. Patients in the control group received care as usual (n=126). Half of the patients in the sample were patients experiencing a first episode of psychosis; the other half were patients with a chronic psychosis. Primary outcome was patient-perceived involvement in medical decision making, measured with the Combined Outcome Measure for Risk Communication and Treatment Decision-making Effectiveness (COMRADE). Process evaluation consisted of questionnaire-based surveys, open interviews, and researcher observation. In all, 73 patients completed the follow-up measurement and were included in the final analysis (response rate 29.2%). More than one-third (48/124, 38.7%) of the patients who were provided access to the Web-based decision aid used it, and most used its full functionality. No differences were found between the intervention and control conditions on perceived involvement in medical decision making (COMRADE satisfaction with communication: F1,68=0.422, P=.52; COMRADE confidence in decision: F1,67=0.086, P=.77). In addition, results of the process evaluation suggest that the intervention did not optimally fit in with routine practice of the participating teams. The development of electronic decision aids to facilitate shared medical decision making is encouraged and many people with a psychotic disorder can work with them. This holds for both first-episode patients and long-term care patients, although the latter group might need more assistance. However, results of this paper could not support the assumption that the use of electronic decision aids increases patient involvement in medical decision making. This may be because of weak implementation of the study protocol and a low response rate.

  1. Assessment, design and control strategy development of a fuel cell hybrid electric vehicle for CSU's EcoCAR

    NASA Astrophysics Data System (ADS)

    Fox, Matthew D.

    Advanced automotive technology assessment and powertrain design are increasingly performed through modeling, simulation, and optimization. But technology assessments usually target many competing criteria making any individual optimization challenging and arbitrary. Further, independent design simulations and optimizations take considerable time to execute, and design constraints and objectives change throughout the design process. Changes in design considerations usually require re-processing of simulations and more time. In this thesis, these challenges are confronted through CSU's participation in the EcoCAR2 hybrid vehicle design competition. The complexity of the competition's design objectives leveraged development of a decision support system tool to aid in multi-criteria decision making across technologies and to perform powertrain optimization. To make the decision support system interactive, and bypass the problem of long simulation times, a new approach was taken. The result of this research is CSU's architecture selection and component sizing, which optimizes a composite objective function representing the competition score. The selected architecture is an electric vehicle with an onboard range extending hydrogen fuel cell system. The vehicle has a 145kW traction motor, 18.9kWh of lithium ion battery, a 15kW fuel cell system, and 5kg of hydrogen storage capacity. Finally, a control strategy was developed that improves the vehicles performance throughout the driving range under variable driving conditions. In conclusion, the design process used in this research is reviewed and evaluated against other common design methodologies. I conclude, through the highlighted case studies, that the approach is more comprehensive than other popular design methodologies and is likely to lead to a higher quality product. The upfront modeling work and decision support system formulation will pay off in superior and timely knowledge transfer and more informed design decisions. The hypothesis is supported by the three case studies examined in this thesis.

  2. Organic Versus Contractor Logistics Support For Depot-Level Repair: Factors That Drive Sub-Optimal Decisions

    DTIC Science & Technology

    2016-02-16

    Considerations in Using CLS or Organic Support Break-Even Analysis in the Decision Process When a business decision is made in an ideal environment, all costs...Line B). The break-even point (Point C) is the production quantity where the advantage moves to a different cost curve. For a business decision...the Services to provide regular reporting to them on contractor versus organic workload and money .1415 In sum, there are laws that mandate 50/50

  3. A framework for designing and analyzing binary decision-making strategies in cellular systems†

    PubMed Central

    Porter, Joshua R.; Andrews, Burton W.; Iglesias, Pablo A.

    2015-01-01

    Cells make many binary (all-or-nothing) decisions based on noisy signals gathered from their environment and processed through noisy decision-making pathways. Reducing the effect of noise to improve the fidelity of decision-making comes at the expense of increased complexity, creating a tradeoff between performance and metabolic cost. We present a framework based on rate distortion theory, a branch of information theory, to quantify this tradeoff and design binary decision-making strategies that balance low cost and accuracy in optimal ways. With this framework, we show that several observed behaviors of binary decision-making systems, including random strategies, hysteresis, and irreversibility, are optimal in an information-theoretic sense for various situations. This framework can also be used to quantify the goals around which a decision-making system is optimized and to evaluate the optimality of cellular decision-making systems by a fundamental information-theoretic criterion. As proof of concept, we use the framework to quantify the goals of the externally triggered apoptosis pathway. PMID:22370552

  4. Emergency physicians' attitudes and preferences regarding computed tomography, radiation exposure, and imaging decision support.

    PubMed

    Griffey, Richard T; Jeffe, Donna B; Bailey, Thomas

    2014-07-01

    Although computerized decision support for imaging is often recommended for optimizing computed tomography (CT) use, no studies have evaluated emergency physicians' (EPs') preferences regarding computerized decision support in the emergency department (ED). In this needs assessment, the authors sought to determine if EPs view overutilization as a problem, if they want decision support, and if so, the kinds of support they prefer. A 42-item, Web-based survey of EPs was developed and used to measure EPs' attitudes, preferences, and knowledge. Key contacts at local EDs sent letters describing the study to their physicians. Exploratory principal components analysis (PCA) was used to determine the underlying factor structure of multi-item scales, Cronbach's alpha was used to measure internal consistency of items on a scale, Spearman correlations were used to describe bivariate associations, and multivariable linear regression analysis was used to identify variables independently associated with physician interest in decision support. Of 235 surveys sent, 155 (66%) EPs responded. Five factors emerged from the PCA. EPs felt that: 1) CT overutilization is a problem in the ED (α = 0.75); 2) a patient's cumulative CT study count affects decisions of whether and what type of imaging study to order only some of the time (α = 0.75); 3) knowledge that a patient has had prior CT imaging for the same indication makes EPs less likely to order a CT (α = 0.42); 4) concerns about malpractice, patient satisfaction, or insistence on CTs affect CT ordering decisions (α = 0.62); and 5) EPs want decision support before ordering CTs (α = 0.85). Performance on knowledge questions was poor, with only 18% to 39% correctly responding to each of the three multiple-choice items about effective radiation doses of chest radiograph and single-pass abdominopelvic CT, as well as estimated increased risk of cancer from a 10-mSv exposure. Although EPs wanted information on patients' cumulative exposures, they feel inadequately familiar with this information to make use of it clinically. If provided with patients' cumulative radiation exposures from CT, 87% of EPs said that they would use this information to discuss imaging options with their patients. In the multiple regression model, which included all variables associated with interest in decision support at p < 0.10 in bivariate tests, items independently associated with EPs' greater interest in all types of decision support proposed included lower total knowledge scores, greater frequency that cumulative CT study count affects EP's decision to order CTs, and greater agreement that overutilization of CT is a problem and that awareness of multiple prior CTs for a given indication affects CT ordering decisions. Emergency physicians view overutilization of CT scans as a problem with potential for improvement in the ED and would like to have more information to discuss risks with their patients. EPs are interested in all types of imaging decision support proposed to help optimize imaging ordering in the ED and to reduce radiation to their patients. Findings reveal several opportunities that could potentially affect CT utilization. © 2014 by the Society for Academic Emergency Medicine.

  5. Emergency Physicians’ Attitudes and Preferences Regarding Computed Tomography, Radiation Exposure, and Imaging Decision Support

    PubMed Central

    Griffey, Richard T.; Jeffe, Donna B.; Bailey, Thomas

    2014-01-01

    Objectives Although computerized decision support for imaging is often recommended for optimizing computed tomography (CT) use, no studies have evaluated emergency physicians’ (EPs’) preferences regarding computerized decision support in the emergency department (ED). In this needs assessment, the authors sought to determine if EPs view overutilization as a problem, if they want decision support, and if so, the kinds of support they prefer. Methods A 42-item, Web-based survey of EPs was developed and used to measure EPs’ attitudes, preferences, and knowledge. Key contacts at local EDs sent letters describing the study to their physicians. Exploratory principal components analysis (PCA) was used to determine the underlying factor structure of multi-item scales, Cronbach’s alpha was used to measure internal consistency of items on a scale, Spearman correlations were used to describe bivariate associations, and multivariable linear regression analysis was used to identify variables independently associated with physician interest in decision support. Results Of 235 surveys sent, 155 (66%) EPs responded. Five factors emerged from the PCA. EPs felt that: 1) CT overutilization is a problem in the ED (α = 0.75); 2) a patient’s cumulative CT study count affects decisions of whether and what type of imaging study to order only some of the time (α = 0.75); 3) knowledge that a patient has had prior CT imaging for the same indication makes EPs less likely to order a CT (α = 0.42); 4) concerns about malpractice, patient satisfaction, or insistence on CTs affect CT ordering decisions (α = 0.62); and 5) EPs want decision support before ordering CTs (α = 0.85). Performance on knowledge questions was poor, with only 18% to 39% correctly responding to each of the three multiple-choice items about effective radiation doses of chest radiograph and single-pass abdominopelvic CT, as well as estimated increased risk of cancer from a 10-mSv exposure. Although EPs wanted information on patients’ cumulative exposures, they feel inadequately familiar with this information to make use of it clinically. If provided with patients’ cumulative radiation exposures from CT, 87% of EPs said that they would use this information to discuss imaging options with their patients. In the multiple regression model, which included all variables associated with interest in decision support at p < 0.10 in bivariate tests, items independently associated with EPs’ greater interest in all types of decision support proposed included lower total knowledge scores, greater frequency that cumulative CT study count affects EP’s decision to order CTs, and greater agreement that overutilization of CT is a problem and that awareness of multiple prior CTs for a given indication affects CT ordering decisions. Conclusions Emergency physicians view overutilization of CT scans as a problem with potential for improvement in the ED and would like to have more information to discuss risks with their patients. EPs are interested in all types of imaging decision support proposed to help optimize imaging ordering in the ED and to reduce radiation to their patients. Findings reveal several opportunities that could potentially affect CT utilization. PMID:25125272

  6. The influence of dispositional optimism on decision regret to undergo major breast reconstructive surgery.

    PubMed

    Zhong, Toni; Bagher, Shaghayegh; Jindal, Kunaal; Zeng, Delong; O'Neill, Anne C; MacAdam, Sheina; Butler, Kate; Hofer, Stefan O P; Pusic, Andrea; Metcalfe, Kelly A

    2013-12-01

    It is not known if optimism influences regret following major reconstructive breast surgery. We examined the relationship between dispositional optimism, major complications and decision regret in patients undergoing microsurgical breast reconstruction. A consecutive series of 290 patients were surveyed. Independent variables were: (1) dispositional optimism and (2) major complications. The primary outcome was Decision Regret. A multivariate regression analysis determined the relationship between the independent variables, confounders and decision regret. Of the 181 respondents, 63% reported no regret after breast reconstruction, 26% had mild regret, and 11% moderate to severe regret. Major complications did not have a significant effect on decision regret, and the impact of dispositional optimism was not significant in Caucasian women. There was a significant effect in non-Caucasian women with less optimism who had significantly higher levels of mild regret 1.36 (CI 1.02-1.97) and moderate to severe regret 1.64 (CI 1.0-93.87). This is the first paper to identify a subgroup of non-Caucasian patients with low dispositional optimism who may be at risk for developing regret after microsurgical breast reconstruction. Possible strategies to ameliorate regret may involve addressing cultural and language barriers, setting realistic expectations, and providing more support during the pre-operative decision-making phase. © 2013 Wiley Periodicals, Inc.

  7. Simulation-optimization model for production planning in the blood supply chain.

    PubMed

    Osorio, Andres F; Brailsford, Sally C; Smith, Honora K; Forero-Matiz, Sonia P; Camacho-Rodríguez, Bernardo A

    2017-12-01

    Production planning in the blood supply chain is a challenging task. Many complex factors such as uncertain supply and demand, blood group proportions, shelf life constraints and different collection and production methods have to be taken into account, and thus advanced methodologies are required for decision making. This paper presents an integrated simulation-optimization model to support both strategic and operational decisions in production planning. Discrete-event simulation is used to represent the flows through the supply chain, incorporating collection, production, storing and distribution. On the other hand, an integer linear optimization model running over a rolling planning horizon is used to support daily decisions, such as the required number of donors, collection methods and production planning. This approach is evaluated using real data from a blood center in Colombia. The results show that, using the proposed model, key indicators such as shortages, outdated units, donors required and cost are improved.

  8. A hybrid modeling system designed to support decision making in the optimization of extrusion of inhomogeneous materials

    NASA Astrophysics Data System (ADS)

    Kryuchkov, D. I.; Zalazinsky, A. G.

    2017-12-01

    Mathematical models and a hybrid modeling system are developed for the implementation of the experimental-calculation method for the engineering analysis and optimization of the plastic deformation of inhomogeneous materials with the purpose of improving metal-forming processes and machines. The created software solution integrates Abaqus/CAE, a subroutine for mathematical data processing, with the use of Python libraries and the knowledge base. Practical application of the software solution is exemplified by modeling the process of extrusion of a bimetallic billet. The results of the engineering analysis and optimization of the extrusion process are shown, the material damage being monitored.

  9. An ArcGIS decision support tool for artificial reefs site selection (ArcGIS ARSS)

    NASA Astrophysics Data System (ADS)

    Stylianou, Stavros; Zodiatis, George

    2017-04-01

    Although the use and benefits of artificial reefs, both socio-economic and environmental, have been recognized with research and national development programmes worldwide their development is rarely subjected to a rigorous site selection process and the majority of the projects use the traditional (non-GIS) approach, based on trial and error mode. Recent studies have shown that the use of Geographic Information Systems, unlike to traditional methods, for the identification of suitable areas for artificial reefs siting seems to offer a number of distinct advantages minimizing possible errors, time and cost. A decision support tool (DSS) has been developed based on the existing knowledge, the multi-criteria decision analysis techniques and the GIS approach used in previous studies in order to help the stakeholders to identify the optimal locations for artificial reefs deployment on the basis of the physical, biological, oceanographic and socio-economic features of the sites. The tool provides to the users the ability to produce a final report with the results and suitability maps. The ArcGIS ARSS support tool runs within the existing ArcMap 10.2.x environment and for the development the VB .NET high level programming language has been used along with ArcObjects 10.2.x. Two local-scale case studies were conducted in order to test the application of the tool focusing on artificial reef siting. The results obtained from the case studies have shown that the tool can be successfully integrated within the site selection process in order to select objectively the optimal site for artificial reefs deployment.

  10. Development of a 2nd Generation Decision Support Tool to Optimize Resource and Energy Recovery for Municipal Solid Waste

    EPA Science Inventory

    In 2012, EPA’s Office of Research and Development released the MSW decision support tool (MSW-DST) to help identify strategies for more sustainable MSW management. Depending upon local infrastructure, energy grid mix, population density, and waste composition and quantity, the m...

  11. The Integrated Medical Model: A Risk Assessment and Decision Support Tool for Space Flight Medical Systems

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Minard, Charles; Saile, Lynn; deCarvalho, Mary Freire; Myers, Jerry; Walton, Marlei; Butler, Douglas; Iyengar, Sriram; Johnson-Throop, Kathy; Baumann, David

    2009-01-01

    The Integrated Medical Model (IMM) is a decision support tool that is useful to mission planners and medical system designers in assessing risks and designing medical systems for space flight missions. The IMM provides an evidence based approach for optimizing medical resources and minimizing risks within space flight operational constraints. The mathematical relationships among mission and crew profiles, medical condition incidence data, in-flight medical resources, potential crew functional impairments, and clinical end-states are established to determine probable mission outcomes. Stochastic computational methods are used to forecast probability distributions of crew health and medical resource utilization, as well as estimates of medical evacuation and loss of crew life. The IMM has been used in support of the International Space Station (ISS) medical kit redesign, the medical component of the ISS Probabilistic Risk Assessment, and the development of the Constellation Medical Conditions List. The IMM also will be used to refine medical requirements for the Constellation program. The IMM outputs for ISS and Constellation design reference missions will be presented to demonstrate the potential of the IMM in assessing risks, planning missions, and designing medical systems. The implementation of the IMM verification and validation plan will be reviewed. Additional planned capabilities of the IMM, including optimization techniques and the inclusion of a mission timeline, will be discussed. Given the space flight constraints of mass, volume, and crew medical training, the IMM is a valuable risk assessment and decision support tool for medical system design and mission planning.

  12. Ranking of Business Process Simulation Software Tools with DEX/QQ Hierarchical Decision Model

    PubMed Central

    2016-01-01

    The omnipresent need for optimisation requires constant improvements of companies’ business processes (BPs). Minimising the risk of inappropriate BP being implemented is usually performed by simulating the newly developed BP under various initial conditions and “what-if” scenarios. An effectual business process simulations software (BPSS) is a prerequisite for accurate analysis of an BP. Characterisation of an BPSS tool is a challenging task due to the complex selection criteria that includes quality of visual aspects, simulation capabilities, statistical facilities, quality reporting etc. Under such circumstances, making an optimal decision is challenging. Therefore, various decision support models are employed aiding the BPSS tool selection. The currently established decision support models are either proprietary or comprise only a limited subset of criteria, which affects their accuracy. Addressing this issue, this paper proposes a new hierarchical decision support model for ranking of BPSS based on their technical characteristics by employing DEX and qualitative to quantitative (QQ) methodology. Consequently, the decision expert feeds the required information in a systematic and user friendly manner. There are three significant contributions of the proposed approach. Firstly, the proposed hierarchical model is easily extendible for adding new criteria in the hierarchical structure. Secondly, a fully operational decision support system (DSS) tool that implements the proposed hierarchical model is presented. Finally, the effectiveness of the proposed hierarchical model is assessed by comparing the resulting rankings of BPSS with respect to currently available results. PMID:26871694

  13. A work-centered cognitively based architecture for decision support: the work-centered infomediary layer (WIL) model

    NASA Astrophysics Data System (ADS)

    Zachary, Wayne; Eggleston, Robert; Donmoyer, Jason; Schremmer, Serge

    2003-09-01

    Decision-making is strongly shaped and influenced by the work context in which decisions are embedded. This suggests that decision support needs to be anchored by a model (implicit or explicit) of the work process, in contrast to traditional approaches that anchor decision support to either context free decision models (e.g., utility theory) or to detailed models of the external (e.g., battlespace) environment. An architecture for cognitively-based, work centered decision support called the Work-centered Informediary Layer (WIL) is presented. WIL separates decision support into three overall processes that build and dynamically maintain an explicit context model, use the context model to identify opportunities for decision support and tailor generic decision-support strategies to the current context and offer them to the system-user/decision-maker. The generic decision support strategies include such things as activity/attention aiding, decision process structuring, work performance support (selective, contextual automation), explanation/ elaboration, infosphere data retrieval, and what if/action-projection and visualization. A WIL-based application is a work-centered decision support layer that provides active support without intent inferencing, and that is cognitively based without requiring classical cognitive task analyses. Example WIL applications are detailed and discussed.

  14. An evolutionary algorithm technique for intelligence, surveillance, and reconnaissance plan optimization

    NASA Astrophysics Data System (ADS)

    Langton, John T.; Caroli, Joseph A.; Rosenberg, Brad

    2008-04-01

    To support an Effects Based Approach to Operations (EBAO), Intelligence, Surveillance, and Reconnaissance (ISR) planners must optimize collection plans within an evolving battlespace. A need exists for a decision support tool that allows ISR planners to rapidly generate and rehearse high-performing ISR plans that balance multiple objectives and constraints to address dynamic collection requirements for assessment. To meet this need we have designed an evolutionary algorithm (EA)-based "Integrated ISR Plan Analysis and Rehearsal System" (I2PARS) to support Effects-based Assessment (EBA). I2PARS supports ISR mission planning and dynamic replanning to coordinate assets and optimize their routes, allocation and tasking. It uses an evolutionary algorithm to address the large parametric space of route-finding problems which is sometimes discontinuous in the ISR domain because of conflicting objectives such as minimizing asset utilization yet maximizing ISR coverage. EAs are uniquely suited for generating solutions in dynamic environments and also allow user feedback. They are therefore ideal for "streaming optimization" and dynamic replanning of ISR mission plans. I2PARS uses the Non-dominated Sorting Genetic Algorithm (NSGA-II) to automatically generate a diverse set of high performing collection plans given multiple objectives, constraints, and assets. Intended end users of I2PARS include ISR planners in the Combined Air Operations Centers and Joint Intelligence Centers. Here we show the feasibility of applying the NSGA-II algorithm and EAs in general to the ISR planning domain. Unique genetic representations and operators for optimization within the ISR domain are presented along with multi-objective optimization criteria for ISR planning. Promising results of the I2PARS architecture design, early software prototype, and limited domain testing of the new algorithm are discussed. We also present plans for future research and development, as well as technology transition goals.

  15. A decision support system for real-time hydropower scheduling in a competitive power market environment

    NASA Astrophysics Data System (ADS)

    Shawwash, Ziad Khaled Elias

    2000-10-01

    The electricity supply market is rapidly changing from a monopolistic to a competitive environment. Being able to operate their system of reservoirs and generating facilities to get maximum benefits out of existing assets and resources is important to the British Columbia Hydro Authority (B.C. Hydro). A decision support system has been developed to help B.C. Hydro operate their system in an optimal way. The system is operational and is one of the tools that are currently used by the B.C. Hydro system operations engineers to determine optimal schedules that meet the hourly domestic load and also maximize the value B.C. Hydro obtains from spot transactions in the Western U.S. and Alberta electricity markets. This dissertation describes the development and implementation of the decision support system in production mode. The decision support system consists of six components: the input data preparation routines, the graphical user interface (GUI), the communication protocols, the hydraulic simulation model, the optimization model, and the results display software. A major part of this work involved the development and implementation of a practical and detailed large-scale optimization model that determines the optimal tradeoff between the long-term value of water and the returns from spot trading transactions in real-time operations. The postmortem-testing phase showed that the gains in value from using the model accounted for 0.25% to 1.0% of the revenues obtained. The financial returns from using the decision support system greatly outweigh the costs of building it. Other benefits are the savings in the time needed to prepare the generation and trading schedules. The system operations engineers now can use the time saved to focus on other important aspects of their job. The operators are currently experimenting with the system in production mode, and are gradually gaining confidence that the advice it provides is accurate, reliable and sensible. The main lesson learned from developing and implementing the system was that there is no alternative to working very closely with the intended end-users of the system, and with the people who have deep knowledge, experience and understanding of how the system is and should be operated.

  16. Analytic method for evaluating players' decisions in team sports: Applications to the soccer goalkeeper.

    PubMed

    Lamas, Leonardo; Drezner, Rene; Otranto, Guilherme; Barrera, Junior

    2018-01-01

    The aim of this study was to define a method for evaluating a player's decisions during a game based on the success probability of his actions and for analyzing the player strategy inferred from game actions. There were developed formal definitions of i) the stochastic process of player decisions in game situations and ii) the inference process of player strategy based on his game decisions. The method was applied to the context of soccer goalkeepers. A model of goalkeeper positioning, with geometric parameters and solutions to optimize his position based on the ball position and trajectory, was developed. The model was tested with a sample of 65 professional goalkeepers (28.8 ± 4.1 years old) playing for their national teams in 2010 and 2014 World Cups. The goalkeeper's decisions were compared to decisions from a large dataset of other goalkeepers, defining the probability of success in each game circumstance. There were assessed i) performance in a defined set of classes of game plays; ii) entropy of goalkeepers' decisions; and iii) the effect of goalkeepers' positioning updates on the outcome (save or goal). Goalkeepers' decisions were similar to the ones with the lowest probability of goal on the dataset. Goalkeepers' entropy varied between 24% and 71% of the maximum possible entropy. Positioning dynamics in the instants that preceded the shot indicated that, in goals and saves, goalkeepers optimized their position before the shot in 21.87% and 83.33% of the situations, respectively. These results validate a method to discriminate successful performance. In conclusion, this method enables a more precise assessment of a player's decision-making ability by consulting a representative dataset of equivalent actions to define the probability of his success. Therefore, it supports the evaluation of the player's decision separately from his technical skill execution, which overcomes the scientific challenge of discriminating the evaluation of a player's decision performance from the action result.

  17. Analytic method for evaluating players’ decisions in team sports: Applications to the soccer goalkeeper

    PubMed Central

    Drezner, Rene; Otranto, Guilherme; Barrera, Junior

    2018-01-01

    The aim of this study was to define a method for evaluating a player’s decisions during a game based on the success probability of his actions and for analyzing the player strategy inferred from game actions. There were developed formal definitions of i) the stochastic process of player decisions in game situations and ii) the inference process of player strategy based on his game decisions. The method was applied to the context of soccer goalkeepers. A model of goalkeeper positioning, with geometric parameters and solutions to optimize his position based on the ball position and trajectory, was developed. The model was tested with a sample of 65 professional goalkeepers (28.8 ± 4.1 years old) playing for their national teams in 2010 and 2014 World Cups. The goalkeeper’s decisions were compared to decisions from a large dataset of other goalkeepers, defining the probability of success in each game circumstance. There were assessed i) performance in a defined set of classes of game plays; ii) entropy of goalkeepers’ decisions; and iii) the effect of goalkeepers’ positioning updates on the outcome (save or goal). Goalkeepers’ decisions were similar to the ones with the lowest probability of goal on the dataset. Goalkeepers’ entropy varied between 24% and 71% of the maximum possible entropy. Positioning dynamics in the instants that preceded the shot indicated that, in goals and saves, goalkeepers optimized their position before the shot in 21.87% and 83.33% of the situations, respectively. These results validate a method to discriminate successful performance. In conclusion, this method enables a more precise assessment of a player’s decision-making ability by consulting a representative dataset of equivalent actions to define the probability of his success. Therefore, it supports the evaluation of the player’s decision separately from his technical skill execution, which overcomes the scientific challenge of discriminating the evaluation of a player’s decision performance from the action result. PMID:29408923

  18. Watershed Management Optimization Support Tool (WMOST) ...

    EPA Pesticide Factsheets

    EPA's Watershed Management Optimization Support Tool (WMOST) version 2 is a decision support tool designed to facilitate integrated water management by communities at the small watershed scale. WMOST allows users to look across management options in stormwater (including green infrastructure), wastewater, drinking water, and land conservation programs to find the least cost solutions. The pdf version of these presentations accompany the recorded webinar with closed captions to be posted on the WMOST web page. The webinar was recorded at the time a training workshop took place for EPA's Watershed Management Optimization Support Tool (WMOST, v2).

  19. Case-based ethics instruction: the influence of contextual and individual factors in case content on ethical decision-making.

    PubMed

    Bagdasarov, Zhanna; Thiel, Chase E; Johnson, James F; Connelly, Shane; Harkrider, Lauren N; Devenport, Lynn D; Mumford, Michael D

    2013-09-01

    Cases have been employed across multiple disciplines, including ethics education, as effective pedagogical tools. However, the benefit of case-based learning in the ethics domain varies across cases, suggesting that not all cases are equal in terms of pedagogical value. Indeed, case content appears to influence the extent to which cases promote learning and transfer. Consistent with this argument, the current study explored the influences of contextual and personal factors embedded in case content on ethical decision-making. Cases were manipulated to include a clear description of the social context and the goals of the characters involved. Results indicated that social context, specifically the description of an autonomy-supportive environment, facilitated execution of sense making processes and resulted in greater decision ethicality. Implications for designing optimal cases and case-based training programs are discussed.

  20. A novel medical information management and decision model for uncertain demand optimization.

    PubMed

    Bi, Ya

    2015-01-01

    Accurately planning the procurement volume is an effective measure for controlling the medicine inventory cost. Due to uncertain demand it is difficult to make accurate decision on procurement volume. As to the biomedicine sensitive to time and season demand, the uncertain demand fitted by the fuzzy mathematics method is obviously better than general random distribution functions. To establish a novel medical information management and decision model for uncertain demand optimization. A novel optimal management and decision model under uncertain demand has been presented based on fuzzy mathematics and a new comprehensive improved particle swarm algorithm. The optimal management and decision model can effectively reduce the medicine inventory cost. The proposed improved particle swarm optimization is a simple and effective algorithm to improve the Fuzzy interference and hence effectively reduce the calculation complexity of the optimal management and decision model. Therefore the new model can be used for accurate decision on procurement volume under uncertain demand.

  1. Systems identification and the adaptive management of waterfowl in the United States

    USGS Publications Warehouse

    Williams, B.K.; Nichols, J.D.

    2001-01-01

    Waterfowl management in the United States is one of the more visible conservation success stories in the United States. It is authorized and supported by appropriate legislative authorities, based on large-scale monitoring programs, and widely accepted by the public. The process is one of only a limited number of large-scale examples of effective collaboration between research and management, integrating scientific information with management in a coherent framework for regulatory decision-making. However, harvest management continues to face some serious technical problems, many of which focus on sequential identification of the resource system in a context of optimal decision-making. The objective of this paper is to provide a theoretical foundation of adaptive harvest management, the approach currently in use in the United States for regulatory decision-making. We lay out the legal and institutional framework for adaptive harvest management and provide a formal description of regulatory decision-making in terms of adaptive optimization. We discuss some technical and institutional challenges in applying adaptive harvest management and focus specifically on methods of estimating resource states for linear resource systems.

  2. Stochastic search, optimization and regression with energy applications

    NASA Astrophysics Data System (ADS)

    Hannah, Lauren A.

    Designing clean energy systems will be an important task over the next few decades. One of the major roadblocks is a lack of mathematical tools to economically evaluate those energy systems. However, solutions to these mathematical problems are also of interest to the operations research and statistical communities in general. This thesis studies three problems that are of interest to the energy community itself or provide support for solution methods: R&D portfolio optimization, nonparametric regression and stochastic search with an observable state variable. First, we consider the one stage R&D portfolio optimization problem to avoid the sequential decision process associated with the multi-stage. The one stage problem is still difficult because of a non-convex, combinatorial decision space and a non-convex objective function. We propose a heuristic solution method that uses marginal project values---which depend on the selected portfolio---to create a linear objective function. In conjunction with the 0-1 decision space, this new problem can be solved as a knapsack linear program. This method scales well to large decision spaces. We also propose an alternate, provably convergent algorithm that does not exploit problem structure. These methods are compared on a solid oxide fuel cell R&D portfolio problem. Next, we propose Dirichlet Process mixtures of Generalized Linear Models (DPGLM), a new method of nonparametric regression that accommodates continuous and categorical inputs, and responses that can be modeled by a generalized linear model. We prove conditions for the asymptotic unbiasedness of the DP-GLM regression mean function estimate. We also give examples for when those conditions hold, including models for compactly supported continuous distributions and a model with continuous covariates and categorical response. We empirically analyze the properties of the DP-GLM and why it provides better results than existing Dirichlet process mixture regression models. We evaluate DP-GLM on several data sets, comparing it to modern methods of nonparametric regression like CART, Bayesian trees and Gaussian processes. Compared to existing techniques, the DP-GLM provides a single model (and corresponding inference algorithms) that performs well in many regression settings. Finally, we study convex stochastic search problems where a noisy objective function value is observed after a decision is made. There are many stochastic search problems whose behavior depends on an exogenous state variable which affects the shape of the objective function. Currently, there is no general purpose algorithm to solve this class of problems. We use nonparametric density estimation to take observations from the joint state-outcome distribution and use them to infer the optimal decision for a given query state. We propose two solution methods that depend on the problem characteristics: function-based and gradient-based optimization. We examine two weighting schemes, kernel-based weights and Dirichlet process-based weights, for use with the solution methods. The weights and solution methods are tested on a synthetic multi-product newsvendor problem and the hour-ahead wind commitment problem. Our results show that in some cases Dirichlet process weights offer substantial benefits over kernel based weights and more generally that nonparametric estimation methods provide good solutions to otherwise intractable problems.

  3. A Framework for Final Drive Simultaneous Failure Diagnosis Based on Fuzzy Entropy and Sparse Bayesian Extreme Learning Machine

    PubMed Central

    Ye, Qing; Pan, Hao; Liu, Changhua

    2015-01-01

    This research proposes a novel framework of final drive simultaneous failure diagnosis containing feature extraction, training paired diagnostic models, generating decision threshold, and recognizing simultaneous failure modes. In feature extraction module, adopt wavelet package transform and fuzzy entropy to reduce noise interference and extract representative features of failure mode. Use single failure sample to construct probability classifiers based on paired sparse Bayesian extreme learning machine which is trained only by single failure modes and have high generalization and sparsity of sparse Bayesian learning approach. To generate optimal decision threshold which can convert probability output obtained from classifiers into final simultaneous failure modes, this research proposes using samples containing both single and simultaneous failure modes and Grid search method which is superior to traditional techniques in global optimization. Compared with other frequently used diagnostic approaches based on support vector machine and probability neural networks, experiment results based on F 1-measure value verify that the diagnostic accuracy and efficiency of the proposed framework which are crucial for simultaneous failure diagnosis are superior to the existing approach. PMID:25722717

  4. Using an ecosystem service decision support tool to support ridge to reef management: An example of sediment reduction in west Maui, Hawaii

    NASA Astrophysics Data System (ADS)

    Falinski, K. A.; Oleson, K.; Htun, H.; Kappel, C.; Lecky, J.; Rowe, C.; Selkoe, K.; White, C.

    2016-12-01

    Faced with anthropogenic stressors and declining coral reef states, managers concerned with restoration and resilience of coral reefs are increasingly recognizing the need to take a ridge-to-reef, ecosystem-based approach. An ecosystem services framing can help managers move towards these goals, helping to illustrate trade-offs and opportunities of management actions in terms of their impacts on society. We describe a research program building a spatial ecosystem services-based decision-support tool, and being applied to guide ridge-to-reef management in a NOAA priority site in West Maui. We use multiple modeling methods to link biophysical processes to ecosystem services and their spatial flows and social values in an integrating platform. Modeled services include water availability, sediment retention, nutrient retention and carbon sequestration on land. A coral reef ecosystem service model is under development to capture the linkages between terrestrial and coastal ecosystem services. Valuation studies are underway to quantify the implications for human well-being. The tool integrates techniques from decision science to facilitate decision making. We use the sediment retention model to illustrate the types of analyses the tool can support. The case study explores the tradeoffs between road rehabilitation costs and sediment export avoided. We couple the sediment and cost models with trade-off analysis to identify optimal distributed solutions that are most cost-effective in reducing erosion, and then use those models to estimate sediment exposure to coral reefs. We find that cooperation between land owners reveals opportunities for maximizing the benefits of fixing roads and minimizes costs. This research forms the building blocks of an ecosystem service decision support tool that we intend to continue to test and apply in other Pacific Island settings.

  5. Data collection and information presentation for optimal decision making by clinical managers--the Autocontrol Project.

    PubMed Central

    Grant, A. M.; Richard, Y.; Deland, E.; Després, N.; de Lorenzi, F.; Dagenais, A.; Buteau, M.

    1997-01-01

    The Autocontrol methodology has been developed in order to support the optimisation of decision-making and the use of resources in the context of a clinical unit. The theoretical basis relates to quality assurance and information systems and is influenced by management and cognitive research in the health domain. The methodology uses population rather than individual decision making and because of its dynamic feedback design promises to have rapid and profound effect on practice. Most importantly the health care professional is the principle user of the Autocontrol system. In this methodology we distinguish three types of evidence necessary for practice change: practice based or internal evidence, best evidence derived from the literature or external evidence concerning the practice in question, and process based evidence on how to optimise the process of practice change. The software used by the system is of the executive decision support type which facilitates interrogation of large databases. The Autocontrol system is designed to interrogate the data of the patient medical record however the latter often lacks data on concomitant resource use and this must be supplemented. This paper reviews the Autocontrol methodology and gives examples from current studies. PMID:9357733

  6. Data collection and information presentation for optimal decision making by clinical managers--the Autocontrol Project.

    PubMed

    Grant, A M; Richard, Y; Deland, E; Després, N; de Lorenzi, F; Dagenais, A; Buteau, M

    1997-01-01

    The Autocontrol methodology has been developed in order to support the optimisation of decision-making and the use of resources in the context of a clinical unit. The theoretical basis relates to quality assurance and information systems and is influenced by management and cognitive research in the health domain. The methodology uses population rather than individual decision making and because of its dynamic feedback design promises to have rapid and profound effect on practice. Most importantly the health care professional is the principle user of the Autocontrol system. In this methodology we distinguish three types of evidence necessary for practice change: practice based or internal evidence, best evidence derived from the literature or external evidence concerning the practice in question, and process based evidence on how to optimise the process of practice change. The software used by the system is of the executive decision support type which facilitates interrogation of large databases. The Autocontrol system is designed to interrogate the data of the patient medical record however the latter often lacks data on concomitant resource use and this must be supplemented. This paper reviews the Autocontrol methodology and gives examples from current studies.

  7. [Development and clinical evaluation of an anesthesia information management system].

    PubMed

    Feng, Jing-yi; Chen, Hua; Zhu, Sheng-mei

    2010-09-21

    To study the design, implementation and clinical evaluation of an anesthesia information management system. To record, process and store peri-operative patient data automatically, all kinds of bedside monitoring equipments are connected into the system based on information integrating technology; after a statistical analysis of those patient data by data mining technology, patient status can be evaluated automatically based on risk prediction standard and decision support system, and then anesthetist could perform reasonable and safe clinical processes; with clinical processes electronically recorded, standard record tables could be generated, and clinical workflow is optimized, as well. With the system, kinds of patient data could be collected, stored, analyzed and archived, kinds of anesthesia documents could be generated, and patient status could be evaluated to support clinic decision. The anesthesia information management system is useful for improving anesthesia quality, decreasing risk of patient and clinician, and aiding to provide clinical proof.

  8. Knowledge Translation and Barriers to Imaging Optimization in the Emergency Department: A Research Agenda.

    PubMed

    Probst, Marc A; Dayan, Peter S; Raja, Ali S; Slovis, Benjamin H; Yadav, Kabir; Lam, Samuel H; Shapiro, Jason S; Farris, Coreen; Babcock, Charlene I; Griffey, Richard T; Robey, Thomas E; Fortin, Emily M; Johnson, Jamlik O; Chong, Suzanne T; Davenport, Moira; Grigat, Daniel W; Lang, Eddy L

    2015-12-01

    Researchers have attempted to optimize imaging utilization by describing which clinical variables are more predictive of acute disease and, conversely, what combination of variables can obviate the need for imaging. These results are then used to develop evidence-based clinical pathways, clinical decision instruments, and clinical practice guidelines. Despite the validation of these results in subsequent studies, with some demonstrating improved outcomes, their actual use is often limited. This article outlines a research agenda to promote the dissemination and implementation (also known as knowledge translation) of evidence-based interventions for emergency department (ED) imaging, i.e., clinical pathways, clinical decision instruments, and clinical practice guidelines. We convened a multidisciplinary group of stakeholders and held online and telephone discussions over a 6-month period culminating in an in-person meeting at the 2015 Academic Emergency Medicine consensus conference. We identified the following four overarching research questions: 1) what determinants (barriers and facilitators) influence emergency physicians' use of evidence-based interventions when ordering imaging in the ED; 2) what implementation strategies at the institutional level can improve the use of evidence-based interventions for ED imaging; 3) what interventions at the health care policy level can facilitate the adoption of evidence-based interventions for ED imaging; and 4) how can health information technology, including electronic health records, clinical decision support, and health information exchanges, be used to increase awareness, use, and adherence to evidence-based interventions for ED imaging? Advancing research that addresses these questions will provide valuable information as to how we can use evidence-based interventions to optimize imaging utilization and ultimately improve patient care. © 2015 by the Society for Academic Emergency Medicine.

  9. Multi-objective optimization of solid waste flows: environmentally sustainable strategies for municipalities.

    PubMed

    Minciardi, Riccardo; Paolucci, Massimo; Robba, Michela; Sacile, Roberto

    2008-11-01

    An approach to sustainable municipal solid waste (MSW) management is presented, with the aim of supporting the decision on the optimal flows of solid waste sent to landfill, recycling and different types of treatment plants, whose sizes are also decision variables. This problem is modeled with a non-linear, multi-objective formulation. Specifically, four objectives to be minimized have been taken into account, which are related to economic costs, unrecycled waste, sanitary landfill disposal and environmental impact (incinerator emissions). An interactive reference point procedure has been developed to support decision making; these methods are considered appropriate for multi-objective decision problems in environmental applications. In addition, interactive methods are generally preferred by decision makers as they can be directly involved in the various steps of the decision process. Some results deriving from the application of the proposed procedure are presented. The application of the procedure is exemplified by considering the interaction with two different decision makers who are assumed to be in charge of planning the MSW system in the municipality of Genova (Italy).

  10. Factors affecting evidence-based decision making in local health departments.

    PubMed

    Sosnowy, Collette D; Weiss, Linda J; Maylahn, Christopher M; Pirani, Sylvia J; Katagiri, Nancy J

    2013-12-01

    Data indicating the extent to which evidence-based decision making (EBDM) is used in local health departments (LHDs) are limited. This study aims to determine use of decision-making processes by New York State LHD leaders and upper-level staff and identify facilitators and barriers to the use of EBDM in LHDs. The New York Public Health Practice-Based Research Network implemented a mixed-methods study in 31 LHDs. There were 20 individual interviews; five small-group interviews (two or three participants each); and two focus groups (eight participants each) conducted with people who had decision-making authority. Information was obtained about each person's background and position, decision-making responsibilities, how decisions are made within their LHD, knowledge and experience with EBDM, use of each step of the EBDM process, and barriers and facilitators to EBDM implementation. Data were collected from June to November 2010 and analyzed in 2011. Overall, participants supported EBDM and expressed a desire to increase their department's use of it. Although most people understood the concept, a relatively small number had substantial expertise and experience with its practice. Many indicated that they applied EBDM unevenly. Factors associated with use of EBDM included strong leadership; workforce capacity (number and skills); resources; funding and program mandates; political support; and access to data and program models suitable to community conditions. EBDM is used inconsistently in LHDs in New York. Despite knowledge and interest among LHD leadership, the LHD capacity, resources, appropriate programming, and other issues serve as impediments to EBDM and optimal implementation of evidence-based strategies. Published by Elsevier Inc.

  11. Clinical Decision Support Systems (CDSS) for preventive management of COPD patients.

    PubMed

    Velickovski, Filip; Ceccaroni, Luigi; Roca, Josep; Burgos, Felip; Galdiz, Juan B; Marina, Nuria; Lluch-Ariet, Magí

    2014-11-28

    The use of information and communication technologies to manage chronic diseases allows the application of integrated care pathways, and the optimization and standardization of care processes. Decision support tools can assist in the adherence to best-practice medicine in critical decision points during the execution of a care pathway. The objectives are to design, develop, and assess a clinical decision support system (CDSS) offering a suite of services for the early detection and assessment of chronic obstructive pulmonary disease (COPD), which can be easily integrated into a healthcare providers' work-flow. The software architecture model for the CDSS, interoperable clinical-knowledge representation, and inference engine were designed and implemented to form a base CDSS framework. The CDSS functionalities were iteratively developed through requirement-adjustment/development/validation cycles using enterprise-grade software-engineering methodologies and technologies. Within each cycle, clinical-knowledge acquisition was performed by a health-informatics engineer and a clinical-expert team. A suite of decision-support web services for (i) COPD early detection and diagnosis, (ii) spirometry quality-control support, (iii) patient stratification, was deployed in a secured environment on-line. The CDSS diagnostic performance was assessed using a validation set of 323 cases with 90% specificity, and 96% sensitivity. Web services were integrated in existing health information system platforms. Specialized decision support can be offered as a complementary service to existing policies of integrated care for chronic-disease management. The CDSS was able to issue recommendations that have a high degree of accuracy to support COPD case-finding. Integration into healthcare providers' work-flow can be achieved seamlessly through the use of a modular design and service-oriented architecture that connect to existing health information systems.

  12. Clinical Decision Support Systems (CDSS) for preventive management of COPD patients

    PubMed Central

    2014-01-01

    Background The use of information and communication technologies to manage chronic diseases allows the application of integrated care pathways, and the optimization and standardization of care processes. Decision support tools can assist in the adherence to best-practice medicine in critical decision points during the execution of a care pathway. Objectives The objectives are to design, develop, and assess a clinical decision support system (CDSS) offering a suite of services for the early detection and assessment of chronic obstructive pulmonary disease (COPD), which can be easily integrated into a healthcare providers' work-flow. Methods The software architecture model for the CDSS, interoperable clinical-knowledge representation, and inference engine were designed and implemented to form a base CDSS framework. The CDSS functionalities were iteratively developed through requirement-adjustment/development/validation cycles using enterprise-grade software-engineering methodologies and technologies. Within each cycle, clinical-knowledge acquisition was performed by a health-informatics engineer and a clinical-expert team. Results A suite of decision-support web services for (i) COPD early detection and diagnosis, (ii) spirometry quality-control support, (iii) patient stratification, was deployed in a secured environment on-line. The CDSS diagnostic performance was assessed using a validation set of 323 cases with 90% specificity, and 96% sensitivity. Web services were integrated in existing health information system platforms. Conclusions Specialized decision support can be offered as a complementary service to existing policies of integrated care for chronic-disease management. The CDSS was able to issue recommendations that have a high degree of accuracy to support COPD case-finding. Integration into healthcare providers' work-flow can be achieved seamlessly through the use of a modular design and service-oriented architecture that connect to existing health information systems. PMID:25471545

  13. Using a Decision Support System to Optimize Production of Agricultural Crop Residue Biofeedstock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed L. Hoskinson; Ronald C. Rope; Raymond K. Fink

    2007-04-01

    For several years the Idaho National Laboratory (INL) has been developing a Decision Support System for Agriculture (DSS4Ag) which determines the economically optimum recipe of various fertilizers to apply at each site in a field to produce a crop, based on the existing soil fertility at each site, as well as historic production information and current prices of fertilizers and the forecast market price of the crop at harvest, for growing a crop such as wheat, potatoes, corn, or cotton. In support of the growing interest in agricultural crop residues as a bioenergy feedstock, we have extended the capability ofmore » the DSS4Ag to develop a variable-rate fertilizer recipe for the simultaneous economically optimum production of both grain and straw, and have been conducting field research to test this new DSS4Ag. In this paper we report the results of two years of field research testing and enhancing the DSS4Ag’s ability to economically optimize the fertilization for the simultaneous production of both grain and its straw, where the straw is an agricultural crop residue that can be used as a biofeedstock.« less

  14. Influence of Men's Personality and Social Support on Treatment Decision-Making for Localized Prostate Cancer.

    PubMed

    Reamer, Elyse; Yang, Felix; Holmes-Rovner, Margaret; Liu, Joe; Xu, Jinping

    2017-01-01

    Optimal treatment for localized prostate cancer (LPC) is controversial. We assessed the effects of personality, specialists seen, and involvement of spouse, family, or friends on treatment decision/decision-making qualities. We surveyed a population-based sample of men ≤ 75 years with newly diagnosed LPC about treatment choice, reasons for the choice, decision-making difficulty, satisfaction, and regret. Of 160 men (71 black, 89 white), with a mean age of 61 (±7.3) years, 59% chose surgery, 31% chose radiation, and 10% chose active surveillance (AS)/watchful waiting (WW). Adjusting for age, race, comorbidity, tumor risk level, and treatment status, men who consulted friends during decision-making were more likely to choose curative treatment (radiation or surgery) than WW/AS (OR = 11.1, p < 0.01; 8.7, p < 0.01). Men who saw a radiation oncologist in addition to a urologist were more likely to choose radiation than surgery (OR = 6.0, p = 0.04). Men who consulted family or friends (OR = 2.6, p < 0.01; 3.7, p < 0.01) experienced greater decision-making difficulty. No personality traits (pessimism, optimism, or faith) were associated with treatment choice/decision-making quality measures. In addition to specialist seen, consulting friends increased men's likelihood of choosing curative treatment. Consulting family or friends increased decision-making difficulty.

  15. Decision support systems in water and wastewater treatment process selection and design: a review.

    PubMed

    Hamouda, M A; Anderson, W B; Huck, P M

    2009-01-01

    The continuously changing drivers of the water treatment industry, embodied by rigorous environmental and health regulations and the challenge of emerging contaminants, necessitates the development of decision support systems for the selection of appropriate treatment trains. This paper explores a systematic approach to developing decision support systems, which includes the analysis of the treatment problem(s), knowledge acquisition and representation, and the identification and evaluation of criteria controlling the selection of optimal treatment systems. The objective of this article is to review approaches and methods used in decision support systems developed to aid in the selection, sequencing of unit processes and design of drinking water, domestic wastewater, and industrial wastewater treatment systems. Not surprisingly, technical considerations were found to dominate the logic of the developed systems. Most of the existing decision-support tools employ heuristic knowledge. It has been determined that there is a need to develop integrated decision support systems that are generic, usable and consider a system analysis approach.

  16. Ignorance- versus evidence-based decision making: a decision time analysis of the recognition heuristic.

    PubMed

    Hilbig, Benjamin E; Pohl, Rüdiger F

    2009-09-01

    According to part of the adaptive toolbox notion of decision making known as the recognition heuristic (RH), the decision process in comparative judgments-and its duration-is determined by whether recognition discriminates between objects. By contrast, some recently proposed alternative models predict that choices largely depend on the amount of evidence speaking for each of the objects and that decision times thus depend on the evidential difference between objects, or the degree of conflict between options. This article presents 3 experiments that tested predictions derived from the RH against those from alternative models. All experiments used naturally recognized objects without teaching participants any information and thus provided optimal conditions for application of the RH. However, results supported the alternative, evidence-based models and often conflicted with the RH. Recognition was not the key determinant of decision times, whereas differences between objects with respect to (both positive and negative) evidence predicted effects well. In sum, alternative models that allow for the integration of different pieces of information may well provide a better account of comparative judgments. (c) 2009 APA, all rights reserved.

  17. Effective use of integrated hydrological models in basin-scale water resources management: surrogate modeling approaches

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Wu, B.; Wu, X.

    2015-12-01

    Integrated hydrological models (IHMs) consider surface water and subsurface water as a unified system, and have been widely adopted in basin-scale water resources studies. However, due to IHMs' mathematical complexity and high computational cost, it is difficult to implement them in an iterative model evaluation process (e.g., Monte Carlo Simulation, simulation-optimization analysis, etc.), which diminishes their applicability for supporting decision-making in real-world situations. Our studies investigated how to effectively use complex IHMs to address real-world water issues via surrogate modeling. Three surrogate modeling approaches were considered, including 1) DYCORS (DYnamic COordinate search using Response Surface models), a well-established response surface-based optimization algorithm; 2) SOIM (Surrogate-based Optimization for Integrated surface water-groundwater Modeling), a response surface-based optimization algorithm that we developed specifically for IHMs; and 3) Probabilistic Collocation Method (PCM), a stochastic response surface approach. Our investigation was based on a modeling case study in the Heihe River Basin (HRB), China's second largest endorheic river basin. The GSFLOW (Coupled Ground-Water and Surface-Water Flow Model) model was employed. Two decision problems were discussed. One is to optimize, both in time and in space, the conjunctive use of surface water and groundwater for agricultural irrigation in the middle HRB region; and the other is to cost-effectively collect hydrological data based on a data-worth evaluation. Overall, our study results highlight the value of incorporating an IHM in making decisions of water resources management and hydrological data collection. An IHM like GSFLOW can provide great flexibility to formulating proper objective functions and constraints for various optimization problems. On the other hand, it has been demonstrated that surrogate modeling approaches can pave the path for such incorporation in real-world situations, since they can dramatically reduce the computational cost of using IHMs in an iterative model evaluation process. In addition, our studies generated insights into the human-nature water conflicts in the specific study area and suggested potential solutions to address them.

  18. Understanding Optimal Decision-Making in Wargaming III

    DTIC Science & Technology

    2015-10-01

    attention - deficit / hyperactivity disorder assessed by the Keio version of the Wisconsin card sorting test. Brain and Development, 34(5), 354-359...immediate feedback regarding friendly, enemy, and total damage. In addition to latency response (LR), attention to feedback also was measured by...measures can detect poor attention allocation. This material is based upon work supported in part by the Army Research Office (62626- NS). The

  19. a Novel Approach to Support Majority Voting in Spatial Group Mcdm Using Density Induced Owa Operator for Seismic Vulnerability Assessment

    NASA Astrophysics Data System (ADS)

    Moradi, M.; Delavar, M. R.; Moshiri, B.; Khamespanah, F.

    2014-10-01

    Being one of the most frightening disasters, earthquakes frequently cause huge damages to buildings, facilities and human beings. Although the prediction of characteristics of an earthquake seems to be impossible, its loss and damage is predictable in advance. Seismic loss estimation models tend to evaluate the extent to which the urban areas are vulnerable to earthquakes. Many factors contribute to the vulnerability of urban areas against earthquakes including age and height of buildings, the quality of the materials, the density of population and the location of flammable facilities. Therefore, seismic vulnerability assessment is a multi-criteria problem. A number of multi criteria decision making models have been proposed based on a single expert. The main objective of this paper is to propose a model which facilitates group multi criteria decision making based on the concept of majority voting. The main idea of majority voting is providing a computational tool to measure the degree to which different experts support each other's opinions and make a decision regarding this measure. The applicability of this model is examined in Tehran metropolitan area which is located in a seismically active region. The results indicate that neglecting the experts which get lower degrees of support from others enables the decision makers to avoid the extreme strategies. Moreover, a computational method is proposed to calculate the degree of optimism in the experts' opinions.

  20. Optimal allocation model of construction land based on two-level system optimization theory

    NASA Astrophysics Data System (ADS)

    Liu, Min; Liu, Yanfang; Xia, Yuping; Lei, Qihong

    2007-06-01

    The allocation of construction land is an important task in land-use planning. Whether implementation of planning decisions is a success or not, usually depends on a reasonable and scientific distribution method. Considering the constitution of land-use planning system and planning process in China, multiple levels and multiple objective decision problems is its essence. Also, planning quantity decomposition is a two-level system optimization problem and an optimal resource allocation decision problem between a decision-maker in the topper and a number of parallel decision-makers in the lower. According the characteristics of the decision-making process of two-level decision-making system, this paper develops an optimal allocation model of construction land based on two-level linear planning. In order to verify the rationality and the validity of our model, Baoan district of Shenzhen City has been taken as a test case. Under the assistance of the allocation model, construction land is allocated to ten townships of Baoan district. The result obtained from our model is compared to that of traditional method, and results show that our model is reasonable and usable. In the end, the paper points out the shortcomings of the model and further research directions.

  1. A Web-Based Tool to Support Shared Decision Making for People With a Psychotic Disorder: Randomized Controlled Trial and Process Evaluation

    PubMed Central

    Emerencia, Ando C; Boonstra, Nynke; Wunderink, Lex; de Jonge, Peter; Sytema, Sjoerd

    2013-01-01

    Background Mental health policy makers encourage the development of electronic decision aids to increase patient participation in medical decision making. Evidence is needed to determine whether these decision aids are helpful in clinical practice and whether they lead to increased patient involvement and better outcomes. Objective This study reports the outcome of a randomized controlled trial and process evaluation of a Web-based intervention to facilitate shared decision making for people with psychotic disorders. Methods The study was carried out in a Dutch mental health institution. Patients were recruited from 2 outpatient teams for patients with psychosis (N=250). Patients in the intervention condition (n=124) were provided an account to access a Web-based information and decision tool aimed to support patients in acquiring an overview of their needs and appropriate treatment options provided by their mental health care organization. Patients were given the opportunity to use the Web-based tool either on their own (at their home computer or at a computer of the service) or with the support of an assistant. Patients in the control group received care as usual (n=126). Half of the patients in the sample were patients experiencing a first episode of psychosis; the other half were patients with a chronic psychosis. Primary outcome was patient-perceived involvement in medical decision making, measured with the Combined Outcome Measure for Risk Communication and Treatment Decision-making Effectiveness (COMRADE). Process evaluation consisted of questionnaire-based surveys, open interviews, and researcher observation. Results In all, 73 patients completed the follow-up measurement and were included in the final analysis (response rate 29.2%). More than one-third (48/124, 38.7%) of the patients who were provided access to the Web-based decision aid used it, and most used its full functionality. No differences were found between the intervention and control conditions on perceived involvement in medical decision making (COMRADE satisfaction with communication: F1,68=0.422, P=.52; COMRADE confidence in decision: F1,67=0.086, P=.77). In addition, results of the process evaluation suggest that the intervention did not optimally fit in with routine practice of the participating teams. Conclusions The development of electronic decision aids to facilitate shared medical decision making is encouraged and many people with a psychotic disorder can work with them. This holds for both first-episode patients and long-term care patients, although the latter group might need more assistance. However, results of this paper could not support the assumption that the use of electronic decision aids increases patient involvement in medical decision making. This may be because of weak implementation of the study protocol and a low response rate. Trial Registration Dutch Trial Register (NTR) trial number: 10340; http://www.trialregister.nl/trialreg/admin/rctsearch.asp?Term=10340 (Archived by WebCite at http://www.webcitation.org/6Jj5umAeS). PMID:24100091

  2. A control-theory model for human decision-making

    NASA Technical Reports Server (NTRS)

    Levison, W. H.; Tanner, R. B.

    1971-01-01

    A model for human decision making is an adaptation of an optimal control model for pilot/vehicle systems. The models for decision and control both contain concepts of time delay, observation noise, optimal prediction, and optimal estimation. The decision making model was intended for situations in which the human bases his decision on his estimate of the state of a linear plant. Experiments are described for the following task situations: (a) single decision tasks, (b) two-decision tasks, and (c) simultaneous manual control and decision making. Using fixed values for model parameters, single-task and two-task decision performance can be predicted to within an accuracy of 10 percent. Agreement is less good for the simultaneous decision and control situation.

  3. A conceptual framework for economic optimization of single hazard surveillance in livestock production chains.

    PubMed

    Guo, Xuezhen; Claassen, G D H; Oude Lansink, A G J M; Saatkamp, H W

    2014-06-01

    Economic analysis of hazard surveillance in livestock production chains is essential for surveillance organizations (such as food safety authorities) when making scientifically based decisions on optimization of resource allocation. To enable this, quantitative decision support tools are required at two levels of analysis: (1) single-hazard surveillance system and (2) surveillance portfolio. This paper addresses the first level by presenting a conceptual approach for the economic analysis of single-hazard surveillance systems. The concept includes objective and subjective aspects of single-hazard surveillance system analysis: (1) a simulation part to derive an efficient set of surveillance setups based on the technical surveillance performance parameters (TSPPs) and the corresponding surveillance costs, i.e., objective analysis, and (2) a multi-criteria decision making model to evaluate the impacts of the hazard surveillance, i.e., subjective analysis. The conceptual approach was checked for (1) conceptual validity and (2) data validity. Issues regarding the practical use of the approach, particularly the data requirement, were discussed. We concluded that the conceptual approach is scientifically credible for economic analysis of single-hazard surveillance systems and that the practicability of the approach depends on data availability. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Understanding Optimal Military Decision Making: Year 2 Progress Report

    DTIC Science & Technology

    2014-01-01

    measures. ARMY RELEVANCY AND MILITARY APPLICATION AREAS Objectively defining, measuring, and developing a means to assess military optimal decision making...has the potential to enhance training and refine procedures supporting more efficient learning and task accomplishment. Through the application of...26.79 (12.39) 7.94 (62.38) N/A = Not applicable ; as it is not possible to calculate this particular variable. Table 2. Descriptive statistics of

  5. Key elements of optimal treatment decision-making for surgeons and older patients with colorectal or pancreatic cancer: A qualitative study.

    PubMed

    Geessink, Noralie H; Schoon, Yvonne; van Herk, Hanneke C P; van Goor, Harry; Olde Rikkert, Marcel G M

    2017-03-01

    To identify key elements of optimal treatment decision-making for surgeons and older patients with colorectal (CRC) or pancreatic cancer (PC). Six focus groups with different participants were performed: three with older CRC/PC patients and relatives, and three with physicians. Supplementary in-depth interviews were conducted in another seven patients. Framework analysis was used to identify key elements in decision-making. 23 physicians, 22 patients and 14 relatives participated. Three interacting components were revealed: preconditions, content and facilitators of decision-making. To provide optimal information about treatments' impact on an older patient's daily life, physicians should obtain an overall picture and take into account patients' frailty. Depending on patients' preferences and capacities, dividing decision-making into more sessions will be helpful and simultaneously emphasize patients' own responsibility. GPs may have a valuable contribution because of their background knowledge and supportive role. Stakeholders identified several crucial elements in the complex surgical decision-making of older CRC/PC patients. Structured qualitative research may also be of great help in optimizing other treatment directed decision-making processes. Surgeons should be trained in examining preconditions and useful facilitators in decision-making in older CRC/PC patients to optimize its content and to improve the quality of shared care. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Integrating forest stand projections with wildlife occupancy models to develop a decision support tool

    Treesearch

    Michelle F. Tacconelli; Edward F. Loewenstein

    2012-01-01

    Natural resource managers must often balance multiple objectives on a single property. When these objectives are seemingly conflicting, the manager’s job can be extremely difficult and complex. This paper presents a decision support tool, designed to aid land managers in optimizing wildlife habitat needs while accomplishing additional objectives such as ecosystem...

  7. A Compensatory Approach to Optimal Selection with Mastery Scores. Research Report 94-2.

    ERIC Educational Resources Information Center

    van der Linden, Wim J.; Vos, Hans J.

    This paper presents some Bayesian theories of simultaneous optimization of decision rules for test-based decisions. Simultaneous decision making arises when an institution has to make a series of selection, placement, or mastery decisions with respect to subjects from a population. An obvious example is the use of individualized instruction in…

  8. Value of information analysis in healthcare: a review of principles and applications.

    PubMed

    Tuffaha, Haitham W; Gordon, Louisa G; Scuffham, Paul A

    2014-06-01

    Economic evaluations are increasingly utilized to inform decisions in healthcare; however, decisions remain uncertain when they are not based on adequate evidence. Value of information (VOI) analysis has been proposed as a systematic approach to measure decision uncertainty and assess whether there is sufficient evidence to support new technologies. The objective of this paper is to review the principles and applications of VOI analysis in healthcare. Relevant databases were systematically searched to identify VOI articles. The findings from the selected articles were summarized and narratively presented. Various VOI methods have been developed and applied to inform decision-making, optimally designing research studies and setting research priorities. However, the application of this approach in healthcare remains limited due to technical and policy challenges. There is a need to create more awareness about VOI analysis, simplify its current methods, and align them with the needs of decision-making organizations.

  9. Portable parallel portfolio optimization in the Aurora Financial Management System

    NASA Astrophysics Data System (ADS)

    Laure, Erwin; Moritsch, Hans

    2001-07-01

    Financial planning problems are formulated as large scale, stochastic, multiperiod, tree structured optimization problems. An efficient technique for solving this kind of problems is the nested Benders decomposition method. In this paper we present a parallel, portable, asynchronous implementation of this technique. To achieve our portability goals we elected the programming language Java for our implementation and used a high level Java based framework, called OpusJava, for expressing the parallelism potential as well as synchronization constraints. Our implementation is embedded within a modular decision support tool for portfolio and asset liability management, the Aurora Financial Management System.

  10. WMOST 2.0 Download Page

    EPA Pesticide Factsheets

    The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that facilitates integrated water management at the local or small watershed scale. WMOST models the environmental effects and costs of managemen

  11. WMOST 3.0 Download Page

    EPA Pesticide Factsheets

    The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that facilitates integrated water management at the local or small watershed scale. WMOST models the environmental effects and costs of management.

  12. Departures From Optimality When Pursuing Multiple Approach or Avoidance Goals

    PubMed Central

    2016-01-01

    This article examines how people depart from optimality during multiple-goal pursuit. The authors operationalized optimality using dynamic programming, which is a mathematical model used to calculate expected value in multistage decisions. Drawing on prospect theory, they predicted that people are risk-averse when pursuing approach goals and are therefore more likely to prioritize the goal in the best position than the dynamic programming model suggests is optimal. The authors predicted that people are risk-seeking when pursuing avoidance goals and are therefore more likely to prioritize the goal in the worst position than is optimal. These predictions were supported by results from an experimental paradigm in which participants made a series of prioritization decisions while pursuing either 2 approach or 2 avoidance goals. This research demonstrates the usefulness of using decision-making theories and normative models to understand multiple-goal pursuit. PMID:26963081

  13. Equalizing access to pandemic influenza vaccines through optimal allocation to public health distribution points.

    PubMed

    Huang, Hsin-Chan; Singh, Bismark; Morton, David P; Johnson, Gregory P; Clements, Bruce; Meyers, Lauren Ancel

    2017-01-01

    Vaccines are arguably the most important means of pandemic influenza mitigation. However, as during the 2009 H1N1 pandemic, mass immunization with an effective vaccine may not begin until a pandemic is well underway. In the U.S., state-level public health agencies are responsible for quickly and fairly allocating vaccines as they become available to populations prioritized to receive vaccines. Allocation decisions can be ethically and logistically complex, given several vaccine types in limited and uncertain supply and given competing priority groups with distinct risk profiles and vaccine acceptabilities. We introduce a model for optimizing statewide allocation of multiple vaccine types to multiple priority groups, maximizing equal access. We assume a large fraction of available vaccines are distributed to healthcare providers based on their requests, and then optimize county-level allocation of the remaining doses to achieve equity. We have applied the model to the state of Texas, and incorporated it in a Web-based decision-support tool for the Texas Department of State Health Services (DSHS). Based on vaccine quantities delivered to registered healthcare providers in response to their requests during the 2009 H1N1 pandemic, we find that a relatively small cache of discretionary doses (DSHS reserved 6.8% in 2009) suffices to achieve equity across all counties in Texas.

  14. Optimal design of supply chain network under uncertainty environment using hybrid analytical and simulation modeling approach

    NASA Astrophysics Data System (ADS)

    Chiadamrong, N.; Piyathanavong, V.

    2017-12-01

    Models that aim to optimize the design of supply chain networks have gained more interest in the supply chain literature. Mixed-integer linear programming and discrete-event simulation are widely used for such an optimization problem. We present a hybrid approach to support decisions for supply chain network design using a combination of analytical and discrete-event simulation models. The proposed approach is based on iterative procedures until the difference between subsequent solutions satisfies the pre-determined termination criteria. The effectiveness of proposed approach is illustrated by an example, which shows closer to optimal results with much faster solving time than the results obtained from the conventional simulation-based optimization model. The efficacy of this proposed hybrid approach is promising and can be applied as a powerful tool in designing a real supply chain network. It also provides the possibility to model and solve more realistic problems, which incorporate dynamism and uncertainty.

  15. Optimization of Airport Surface Traffic: A Case-Study of Incheon International Airport

    NASA Technical Reports Server (NTRS)

    Eun, Yeonju; Jeon, Daekeun; Lee, Hanbong; Jung, Yoon C.; Zhu, Zhifan; Jeong, Myeongsook; Kim, Hyounkong; Oh, Eunmi; Hong, Sungkwon

    2017-01-01

    This study aims to develop a controllers decision support tool for departure and surface management of ICN. Airport surface traffic optimization for Incheon International Airport (ICN) in South Korea was studied based on the operational characteristics of ICN and airspace of Korea. For surface traffic optimization, a multiple runway scheduling problem and a taxi scheduling problem were formulated into two Mixed Integer Linear Programming (MILP) optimization models. The Miles-In-Trail (MIT) separation constraint at the departure fix shared by the departure flights from multiple runways and the runway crossing constraints due to the taxi route configuration specific to ICN were incorporated into the runway scheduling and taxiway scheduling problems, respectively. Since the MILP-based optimization model for the multiple runway scheduling problem may be computationally intensive, computation times and delay costs of different solving methods were compared for a practical implementation. This research was a collaboration between Korea Aerospace Research Institute (KARI) and National Aeronautics and Space Administration (NASA).

  16. Optimization of Airport Surface Traffic: A Case-Study of Incheon International Airport

    NASA Technical Reports Server (NTRS)

    Eun, Yeonju; Jeon, Daekeun; Lee, Hanbong; Jung, Yoon Chul; Zhu, Zhifan; Jeong, Myeong-Sook; Kim, Hyoun Kyoung; Oh, Eunmi; Hong, Sungkwon

    2017-01-01

    This study aims to develop a controllers' decision support tool for departure and surface management of ICN. Airport surface traffic optimization for Incheon International Airport (ICN) in South Korea was studied based on the operational characteristics of ICN and airspace of Korea. For surface traffic optimization, a multiple runway scheduling problem and a taxi scheduling problem were formulated into two Mixed Integer Linear Programming (MILP) optimization models. The Miles-In-Trail (MIT) separation constraint at the departure fix shared by the departure flights from multiple runways and the runway crossing constraints due to the taxi route configuration specific to ICN were incorporated into the runway scheduling and taxiway scheduling problems, respectively. Since the MILP-based optimization model for the multiple runway scheduling problem may be computationally intensive, computation times and delay costs of different solving methods were compared for a practical implementation. This research was a collaboration between Korea Aerospace Research Institute (KARI) and National Aeronautics and Space Administration (NASA).

  17. A pre-operative planning for endoprosthetic human tracheal implantation: a decision support system based on robust design of experiments.

    PubMed

    Trabelsi, O; Villalobos, J L López; Ginel, A; Cortes, E Barrot; Doblaré, M

    2014-05-01

    Swallowing depends on physiological variables that have a decisive influence on the swallowing capacity and on the tracheal stress distribution. Prosthetic implantation modifies these values and the overall performance of the trachea. The objective of this work was to develop a decision support system based on experimental, numerical and statistical approaches, with clinical verification, to help the thoracic surgeon in deciding the position and appropriate dimensions of a Dumon prosthesis for a specific patient in an optimal time and with sufficient robustness. A code for mesh adaptation to any tracheal geometry was implemented and used to develop a robust experimental design, based on the Taguchi's method and the analysis of variance. This design was able to establish the main swallowing influencing factors. The equations to fit the stress and the vertical displacement distributions were obtained. The resulting fitted values were compared to those calculated directly by the finite element method (FEM). Finally, a checking and clinical validation of the statistical study were made, by studying two cases of real patients. The vertical displacements and principal stress distribution obtained for the specific tracheal model were in agreement with those calculated by FE simulations with a maximum absolute error of 1.2 mm and 0.17 MPa, respectively. It was concluded that the resulting decision support tool provides a fast, accurate and simple tool for the thoracic surgeon to predict the stress state of the trachea and the reduction in the ability to swallow after implantation. Thus, it will help them in taking decisions during pre-operative planning of tracheal interventions.

  18. The online community based decision making support system for mitigating biased decision making

    NASA Astrophysics Data System (ADS)

    Kang, Sunghyun; Seo, Jiwan; Choi, Seungjin; Kim, Junho; Han, Sangyong

    2016-10-01

    As the Internet technology and social media advance, various information and opinions are shared and distributed through the online communities. However, the existence of implicit and explicit bias of opinions may have a potential influence on the outcomes. Compared to the importance of mitigating biased information, the study in this field is relatively young and does not address many important issues. In this paper we propose the noble approach to mitigate the biased opinions using conventional machine learning methods. The proposed method extracts the useful features such as inclination and sentiment of the community members. They are classified based on their previous behavior, and the propensity of the members is understood. This information on each community and its members is very useful and improve the ability to make an unbiased decision. The proposed method presented in this paper is shown to have the ability to assist optimal, fair and good decision making while also reducing the influence of implicit bias.

  19. Issue a Boil-Water Advisory or Wait for Definitive Information? A Decision Analysis

    PubMed Central

    Wagner, Michael M.; Wallstrom, Garrick L.; Onisko, Agnieszka

    2005-01-01

    Objective Study the decision to issue a boil-water advisory in response to a spike in sales of diarrhea remedies or wait 72 hours for the results of definitive testing of water and people. Methods Decision analysis. Results In the base-case analysis, the optimal decision is test-and-wait. If the cost of issuing a boil-water advisory is less than 13.92 cents per person per day, the optimal decision is to issue the boil-water advisory immediately. Conclusions Decisions based on surveillance data that are suggestive but not conclusive about the existence of a disease outbreak can be modeled. PMID:16779145

  20. Choosing employment: factors that impact employment decisions for individuals with intellectual disability.

    PubMed

    Timmons, Jaimie Ciulla; Hall, Allison Cohen; Bose, Jennifer; Wolfe, Ashley; Winsor, Jean

    2011-08-01

    Little is known about the factors that shape the employment-related decisions of individuals with intellectual and/or developmental disabilities. Findings from qualitative interviews with individuals, their family members, and employment-support professionals from four community rehabilitation providers throughout Massachusetts were reported. Recognizing the value of participatory action research, we also included a co-researcher with intellectual disability who participated in all facets of the research process. Findings revealed a collection of people and factors considered influential in employment-related decision-making. The family in the formative years, school-based staff and early employment experiences, the culture of the community rehabilitation providers, the job developer, and personal preferences all influenced participants' decisions. Through understanding these persuasive elements, we offer recommendations to those in the intellectual and developmental disabilities field to optimize employment choices and outcomes.

  1. Assessing infant and maternal readiness for newborn discharge.

    PubMed

    Jing, Ling; Bethancourt, Casidhe-Nicole; McDonagh, Thomas

    2017-10-01

    The review highlights the shift from prescribed length of stay (LOS) to mother-infant dyad readiness as the basis for making discharge decisions for healthy term newborns. We describe the components of readiness that should be considered in making the decision, focusing on infant clinical readiness, and maternal and familial readiness. Although the Newborns' and Mothers' Health Protection Act of 1996 aimed to protect infants and mothers by establishing a minimum LOS, the American Academy of Pediatrics 2015 policy on newborn discharge acknowledges the shift from LOS-based to readiness-based discharge decision-making. Healthcare providers must consider a variety of infant and maternal characteristics in determining the appropriate time to discharge a dyad, and mothers should be actively involved in the decision-making process. Criteria for infant clinical readiness include the following: establishment of effective feeding, evaluation of jaundice risk, review and discussion of infant and household vaccination status, obtainment of specimen for metabolic screening, tests of hearing ability, assessment of sepsis risk factors, screening for congenital heart disease, and evaluation of parental knowledge about infant safety measures. Important consideration should also be given to the mother's sociodemographic vulnerabilities, maternal confidence and perception of discharge readiness, and availability of postdischarge care continuity. The timing of newborn discharge should be a joint decision made by the mother and healthcare providers based on readiness. The decision should consider the infant's health status, the mother's health status, the mother's perception of readiness, and the availability of social and familial support for the mother and infant. Accessible and comprehensive support postdischarge is also important for helping infants achieve optimal health outcomes.

  2. Extending BPM Environments of Your Choice with Performance Related Decision Support

    NASA Astrophysics Data System (ADS)

    Fritzsche, Mathias; Picht, Michael; Gilani, Wasif; Spence, Ivor; Brown, John; Kilpatrick, Peter

    What-if Simulations have been identified as one solution for business performance related decision support. Such support is especially useful in cases where it can be automatically generated out of Business Process Management (BPM) Environments from the existing business process models and performance parameters monitored from the executed business process instances. Currently, some of the available BPM Environments offer basic-level performance prediction capabilities. However, these functionalities are normally too limited to be generally useful for performance related decision support at business process level. In this paper, an approach is presented which allows the non-intrusive integration of sophisticated tooling for what-if simulations, analytic performance prediction tools, process optimizations or a combination of such solutions into already existing BPM environments. The approach abstracts from process modelling techniques which enable automatic decision support spanning processes across numerous BPM Environments. For instance, this enables end-to-end decision support for composite processes modelled with the Business Process Modelling Notation (BPMN) on top of existing Enterprise Resource Planning (ERP) processes modelled with proprietary languages.

  3. A Review of Shared Decision-Making and Patient Decision Aids in Radiation Oncology.

    PubMed

    Woodhouse, Kristina Demas; Tremont, Katie; Vachani, Anil; Schapira, Marilyn M; Vapiwala, Neha; Simone, Charles B; Berman, Abigail T

    2017-06-01

    Cancer treatment decisions are complex and may be challenging for patients, as multiple treatment options can often be reasonably considered. As a result, decisional support tools have been developed to assist patients in the decision-making process. A commonly used intervention to facilitate shared decision-making is a decision aid, which provides evidence-based outcomes information and guides patients towards choosing the treatment option that best aligns with their preferences and values. To ensure high quality, systematic frameworks and standards have been proposed for the development of an optimal aid for decision making. Studies have examined the impact of these tools on facilitating treatment decisions and improving decision-related outcomes. In radiation oncology, randomized controlled trials have demonstrated that decision aids have the potential to improve patient outcomes, including increased knowledge about treatment options and decreased decisional conflict with decision-making. This article provides an overview of the shared-decision making process and summarizes the development, validation, and implementation of decision aids as patient educational tools in radiation oncology. Finally, this article reviews the findings from decision aid studies in radiation oncology and offers various strategies to effectively implement shared decision-making into clinical practice.

  4. Fast-Solving Quasi-Optimal LS-S3VM Based on an Extended Candidate Set.

    PubMed

    Ma, Yuefeng; Liang, Xun; Kwok, James T; Li, Jianping; Zhou, Xiaoping; Zhang, Haiyan

    2018-04-01

    The semisupervised least squares support vector machine (LS-S 3 VM) is an important enhancement of least squares support vector machines in semisupervised learning. Given that most data collected from the real world are without labels, semisupervised approaches are more applicable than standard supervised approaches. Although a few training methods for LS-S 3 VM exist, the problem of deriving the optimal decision hyperplane efficiently and effectually has not been solved. In this paper, a fully weighted model of LS-S 3 VM is proposed, and a simple integer programming (IP) model is introduced through an equivalent transformation to solve the model. Based on the distances between the unlabeled data and the decision hyperplane, a new indicator is designed to represent the possibility that the label of an unlabeled datum should be reversed in each iteration during training. Using the indicator, we construct an extended candidate set consisting of the indices of unlabeled data with high possibilities, which integrates more information from unlabeled data. Our algorithm is degenerated into a special scenario of the previous algorithm when the extended candidate set is reduced into a set with only one element. Two strategies are utilized to determine the descent directions based on the extended candidate set. Furthermore, we developed a novel method for locating a good starting point based on the properties of the equivalent IP model. Combined with the extended candidate set and the carefully computed starting point, a fast algorithm to solve LS-S 3 VM quasi-optimally is proposed. The choice of quasi-optimal solutions results in low computational cost and avoidance of overfitting. Experiments show that our algorithm equipped with the two designed strategies is more effective than other algorithms in at least one of the following three aspects: 1) computational complexity; 2) generalization ability; and 3) flexibility. However, our algorithm and other algorithms have similar levels of performance in the remaining aspects.

  5. Info-gap robust-satisficing model of foraging behavior: do foragers optimize or satisfice?

    PubMed

    Carmel, Yohay; Ben-Haim, Yakov

    2005-11-01

    In this note we compare two mathematical models of foraging that reflect two competing theories of animal behavior: optimizing and robust satisficing. The optimal-foraging model is based on the marginal value theorem (MVT). The robust-satisficing model developed here is an application of info-gap decision theory. The info-gap robust-satisficing model relates to the same circumstances described by the MVT. We show how these two alternatives translate into specific predictions that at some points are quite disparate. We test these alternative predictions against available data collected in numerous field studies with a large number of species from diverse taxonomic groups. We show that a large majority of studies appear to support the robust-satisficing model and reject the optimal-foraging model.

  6. Putting flow-ecology relationships into practice: A decision-support system to assess fish community response to water-management scenarios

    USGS Publications Warehouse

    Cartwright, Jennifer M.; Caldwell, Casey; Nebiker, Steven; Knight, Rodney

    2017-01-01

    This paper presents a conceptual framework to operationalize flow–ecology relationships into decision-support systems of practical use to water-resource managers, who are commonly tasked with balancing multiple competing socioeconomic and environmental priorities. We illustrate this framework with a case study, whereby fish community responses to various water-management scenarios were predicted in a partially regulated river system at a local watershed scale. This case study simulates management scenarios based on interactive effects of dam operation protocols, withdrawals for municipal water supply, effluent discharges from wastewater treatment, and inter-basin water transfers. Modeled streamflow was integrated with flow–ecology relationships relating hydrologic departure from reference conditions to fish species richness, stratified by trophic, reproductive, and habitat characteristics. Adding a hypothetical new water-withdrawal site was predicted to increase the frequency of low-flow conditions with adverse effects for several fish groups. Imposition of new reservoir release requirements was predicted to enhance flow and fish species richness immediately downstream of the reservoir, but these effects were dissipated further downstream. The framework presented here can be used to translate flow–ecology relationships into evidence-based management by developing decision-support systems for conservation of riverine biodiversity while optimizing water availability for human use.

  7. A decision support system and rule-based algorithm to augment the human interpretation of the 12-lead electrocardiogram.

    PubMed

    Cairns, Andrew W; Bond, Raymond R; Finlay, Dewar D; Guldenring, Daniel; Badilini, Fabio; Libretti, Guido; Peace, Aaron J; Leslie, Stephen J

    The 12-lead Electrocardiogram (ECG) has been used to detect cardiac abnormalities in the same format for more than 70years. However, due to the complex nature of 12-lead ECG interpretation, there is a significant cognitive workload required from the interpreter. This complexity in ECG interpretation often leads to errors in diagnosis and subsequent treatment. We have previously reported on the development of an ECG interpretation support system designed to augment the human interpretation process. This computerised decision support system has been named 'Interactive Progressive based Interpretation' (IPI). In this study, a decision support algorithm was built into the IPI system to suggest potential diagnoses based on the interpreter's annotations of the 12-lead ECG. We hypothesise semi-automatic interpretation using a digital assistant can be an optimal man-machine model for ECG interpretation. To improve interpretation accuracy and reduce missed co-abnormalities. The Differential Diagnoses Algorithm (DDA) was developed using web technologies where diagnostic ECG criteria are defined in an open storage format, Javascript Object Notation (JSON), which is queried using a rule-based reasoning algorithm to suggest diagnoses. To test our hypothesis, a counterbalanced trial was designed where subjects interpreted ECGs using the conventional approach and using the IPI+DDA approach. A total of 375 interpretations were collected. The IPI+DDA approach was shown to improve diagnostic accuracy by 8.7% (although not statistically significant, p-value=0.1852), the IPI+DDA suggested the correct interpretation more often than the human interpreter in 7/10 cases (varying statistical significance). Human interpretation accuracy increased to 70% when seven suggestions were generated. Although results were not found to be statistically significant, we found; 1) our decision support tool increased the number of correct interpretations, 2) the DDA algorithm suggested the correct interpretation more often than humans, and 3) as many as 7 computerised diagnostic suggestions augmented human decision making in ECG interpretation. Statistical significance may be achieved by expanding sample size. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Game Theory and Risk-Based Levee System Design

    NASA Astrophysics Data System (ADS)

    Hui, R.; Lund, J. R.; Madani, K.

    2014-12-01

    Risk-based analysis has been developed for optimal levee design for economic efficiency. Along many rivers, two levees on opposite riverbanks act as a simple levee system. Being rational and self-interested, land owners on each river bank would tend to independently optimize their levees with risk-based analysis, resulting in a Pareto-inefficient levee system design from the social planner's perspective. Game theory is applied in this study to analyze decision making process in a simple levee system in which the land owners on each river bank develop their design strategies using risk-based economic optimization. For each land owner, the annual expected total cost includes expected annual damage cost and annualized construction cost. The non-cooperative Nash equilibrium is identified and compared to the social planner's optimal distribution of flood risk and damage cost throughout the system which results in the minimum total flood cost for the system. The social planner's optimal solution is not feasible without appropriate level of compensation for the transferred flood risk to guarantee and improve conditions for all parties. Therefore, cooperative game theory is then employed to develop an economically optimal design that can be implemented in practice. By examining the game in the reversible and irreversible decision making modes, the cost of decision making myopia is calculated to underline the significance of considering the externalities and evolution path of dynamic water resource problems for optimal decision making.

  9. Multi-Criteria Decision Making for a Spatial Decision Support System on the Analysis of Changing Risk

    NASA Astrophysics Data System (ADS)

    Olyazadeh, Roya; van Westen, Cees; Bakker, Wim H.; Aye, Zar Chi; Jaboyedoff, Michel; Derron, Marc-Henri

    2014-05-01

    Natural hazard risk management requires decision making in several stages. Decision making on alternatives for risk reduction planning starts with an intelligence phase for recognition of the decision problems and identifying the objectives. Development of the alternatives and assigning the variable by decision makers to each alternative are employed to the design phase. Final phase evaluates the optimal choice by comparing the alternatives, defining indicators, assigning a weight to each and ranking them. This process is referred to as Multi-Criteria Decision Making analysis (MCDM), Multi-Criteria Evaluation (MCE) or Multi-Criteria Analysis (MCA). In the framework of the ongoing 7th Framework Program "CHANGES" (2011-2014, Grant Agreement No. 263953) of the European Commission, a Spatial Decision Support System is under development, that has the aim to analyse changes in hydro-meteorological risk and provide support to selecting the best risk reduction alternative. This paper describes the module for Multi-Criteria Decision Making analysis (MCDM) that incorporates monetary and non-monetary criteria in the analysis of the optimal alternative. The MCDM module consists of several components. The first step is to define criteria (or Indicators) which are subdivided into disadvantages (criteria that indicate the difficulty for implementing the risk reduction strategy, also referred to as Costs) and advantages (criteria that indicate the favorability, also referred to as benefits). In the next step the stakeholders can use the developed web-based tool for prioritizing criteria and decision matrix. Public participation plays a role in decision making and this is also planned through the use of a mobile web-version where the general local public can indicate their agreement on the proposed alternatives. The application is being tested through a case study related to risk reduction of a mountainous valley in the Alps affected by flooding. Four alternatives are evaluated in this case study namely: construction of defense structures, relocation, implementation of an early warning system and spatial planning regulations. Some of the criteria are determined partly in other modules of the CHANGES SDSS, such as the costs for implementation, the risk reduction in monetary values, and societal risk. Other criteria, which could be environmental, economic, cultural, perception in nature, are defined by different stakeholders such as local authorities, expert organizations, private sector, and local public. In the next step, the stakeholders weight the importance of the criteria by pairwise comparison and visualize the decision matrix, which is a matrix based on criteria versus alternatives values. Finally alternatives are ranked by Analytic Hierarchy Process (AHP) method. We expect that this approach will help the decision makers to ease their works and reduce their costs, because the process is more transparent, more accurate and involves a group decision. In that way there will be more confidence in the overall decision making process. Keywords: MCDM, Analytic Hierarchy Process (AHP), SDSS, Natural Hazard Risk Management

  10. Facilitating informed choice in prenatal testing: how well are we doing?

    PubMed

    Marteau, T M; Dormandy, E

    2001-01-01

    There is a consensus that prenatal testing services need to provide the information and support necessary for women to make informed choices about prenatal testing. Informed choices are those based on relevant information that reflect the decision-maker's values. To date, most research has focused on the information provided to women deciding whether to undergo tests. This has highlighted the poor quality of information provided to many women. There is agreement on the need to provide information on three key aspects of any test: the condition for which testing is being offered, characteristics of the test, and the implications of testing. Very little research has been conducted on decisions after the diagnosis of a fetal abnormality and how information and emotional and decisional support are and should be provided. Research is now needed in four key areas: first, on the optimal ways of organizing services to facilitate choices that are not only based on relevant information, but also reflect the decision-maker's values; second, on the most effective ways of framing information needed for the different decisions involved in prenatal testing; third, on the most effective media in which to deliver information; and, fourth, to identify aspects of counseling that facilitate informed choices following diagnoses of fetal abnormality. If we value women's ability to make informed choices about prenatal tests as highly as we value reliable laboratory tests, evidence-based quality standards need to be developed for the information and support women are given at all stages of the process of prenatal testing.

  11. Evolutionary and Neural Computing Based Decision Support System for Disease Diagnosis from Clinical Data Sets in Medical Practice.

    PubMed

    Sudha, M

    2017-09-27

    As a recent trend, various computational intelligence and machine learning approaches have been used for mining inferences hidden in the large clinical databases to assist the clinician in strategic decision making. In any target data the irrelevant information may be detrimental, causing confusion for the mining algorithm and degrades the prediction outcome. To address this issue, this study attempts to identify an intelligent approach to assist disease diagnostic procedure using an optimal set of attributes instead of all attributes present in the clinical data set. In this proposed Application Specific Intelligent Computing (ASIC) decision support system, a rough set based genetic algorithm is employed in pre-processing phase and a back propagation neural network is applied in training and testing phase. ASIC has two phases, the first phase handles outliers, noisy data, and missing values to obtain a qualitative target data to generate appropriate attribute reduct sets from the input data using rough computing based genetic algorithm centred on a relative fitness function measure. The succeeding phase of this system involves both training and testing of back propagation neural network classifier on the selected reducts. The model performance is evaluated with widely adopted existing classifiers. The proposed ASIC system for clinical decision support has been tested with breast cancer, fertility diagnosis and heart disease data set from the University of California at Irvine (UCI) machine learning repository. The proposed system outperformed the existing approaches attaining the accuracy rate of 95.33%, 97.61%, and 93.04% for breast cancer, fertility issue and heart disease diagnosis.

  12. Interval-parameter semi-infinite fuzzy-stochastic mixed-integer programming approach for environmental management under multiple uncertainties.

    PubMed

    Guo, P; Huang, G H

    2010-03-01

    In this study, an interval-parameter semi-infinite fuzzy-chance-constrained mixed-integer linear programming (ISIFCIP) approach is developed for supporting long-term planning of waste-management systems under multiple uncertainties in the City of Regina, Canada. The method improves upon the existing interval-parameter semi-infinite programming (ISIP) and fuzzy-chance-constrained programming (FCCP) by incorporating uncertainties expressed as dual uncertainties of functional intervals and multiple uncertainties of distributions with fuzzy-interval admissible probability of violating constraint within a general optimization framework. The binary-variable solutions represent the decisions of waste-management-facility expansion, and the continuous ones are related to decisions of waste-flow allocation. The interval solutions can help decision-makers to obtain multiple decision alternatives, as well as provide bases for further analyses of tradeoffs between waste-management cost and system-failure risk. In the application to the City of Regina, Canada, two scenarios are considered. In Scenario 1, the City's waste-management practices would be based on the existing policy over the next 25 years. The total diversion rate for the residential waste would be approximately 14%. Scenario 2 is associated with a policy for waste minimization and diversion, where 35% diversion of residential waste should be achieved within 15 years, and 50% diversion over 25 years. In this scenario, not only landfill would be expanded, but also CF and MRF would be expanded. Through the scenario analyses, useful decision support for the City's solid-waste managers and decision-makers has been generated. Three special characteristics of the proposed method make it unique compared with other optimization techniques that deal with uncertainties. Firstly, it is useful for tackling multiple uncertainties expressed as intervals, functional intervals, probability distributions, fuzzy sets, and their combinations; secondly, it has capability in addressing the temporal variations of the functional intervals; thirdly, it can facilitate dynamic analysis for decisions of facility-expansion planning and waste-flow allocation within a multi-facility, multi-period and multi-option context. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. WIPCast: Probabilistic Forecasting for Aviation Decision Aid Applications

    DTIC Science & Technology

    2011-06-01

    traders, or families planning an outing – manage weather-related risk. By quantifying risk , probabilistic forecasting enables optimization of actions via...confidence interval to the user’s risk tolerance helps drive highly effective and innovative decision support mechanisms for visually quantifying risk for

  14. IMPROVED SCIENCE AND DECISION SUPPORT FOR MANAGING WATERSHED NUTRIENT LOADS

    EPA Science Inventory

    The proposed research addresses two critical gaps in the TMDL process: (1) the inadequacy of presently existing receiving water models to accurately simulate nutrient-sediment-water interactions and fixed plants; and (2) the lack of decision-oriented optimization f...

  15. Evidence-based periodontal therapy: An overview

    PubMed Central

    Vijayalakshmi, R.; Anitha, V.; Ramakrishnan, T.; Sudhakar, Uma

    2008-01-01

    Dentists need to make clinical decisions based on limited scientific evidence. In clinical practice, a clinician must weigh a myriad of evidences every day. The goal of evidence-based dentistry is to help practitioners provide their patients with optimal care. This is achieved by integrating sound research evidence with personal clinical expertise and patient values to determine the best course of treatment. Periodontology has a rich background of research and scholarship. Therefore, efficient use of this wealth of research data needs to be a part of periodontal practice. Evidence-based periodontology aims to facilitate such an approach and it offers a bridge from science to clinical practice. The clinician must integrate the evidence with patient preference, scientific knowledge, and personal experience. Most important, it allows us to care for our patients. Therefore, evidence-based periodontology is a tool to support decision-making and integrating the best evidence available with clinical practice. PMID:20142947

  16. Bi-Level Decision Making for Supporting Energy and Water Nexus

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Vesselinov, V. V.

    2016-12-01

    The inseparable relationship between energy production and water resources has led to the emerging energy-water nexus concept, which provides a means for integrated management and decision making of these two critical resources. However, the energy-water nexus frequently involves decision makers with different and competing management objectives. Furthermore, there is a challenge that decision makers and stakeholders might be making decisions sequentially from a higher level to a lower level, instead of at the same decision level, whereby the objective of a decision maker at a higher level should be satisfied first. In this study, a bi-level decision model is advanced to handle such decision-making situations for managing the energy-water nexus. The work represents a unique contribution to developing an integrated decision-support framework/tool to quantify and analyze the tradeoffs between the two-level energy-water nexus decision makers. Here, plans for electricity generation, fuel supply, water supply, capacity expansion of the power plants and environmental impacts are optimized to provide effective decision support. The developed decision-support framework is implemented in Julia (a high-level, high-performance dynamic programming language for technical computing) and is a part of the MADS (Model Analyses & Decision Support) framework (http://mads.lanl.gov). To demonstrate the capabilities of the developed methodology, a series of analyses are performed for synthetic problems consistent with actual real-world energy-water nexus management problems.

  17. Efficient GIS-based model-driven method for flood risk management and its application in central China

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Zhou, J.; Song, L.; Zou, Q.; Guo, J.; Wang, Y.

    2014-02-01

    In recent years, an important development in flood management has been the focal shift from flood protection towards flood risk management. This change greatly promoted the progress of flood control research in a multidisciplinary way. Moreover, given the growing complexity and uncertainty in many decision situations of flood risk management, traditional methods, e.g., tight-coupling integration of one or more quantitative models, are not enough to provide decision support for managers. Within this context, this paper presents a beneficial methodological framework to enhance the effectiveness of decision support systems, through the dynamic adaptation of support regarding the needs of the decision-maker. In addition, we illustrate a loose-coupling technical prototype for integrating heterogeneous elements, such as multi-source data, multidisciplinary models, GIS tools and existing systems. The main innovation is the application of model-driven concepts, which put the system in a state of continuous iterative optimization. We define the new system as a model-driven decision support system (MDSS ). Two characteristics that differentiate the MDSS are as follows: (1) it is made accessible to non-technical specialists; and (2) it has a higher level of adaptability and compatibility. Furthermore, the MDSS was employed to manage the flood risk in the Jingjiang flood diversion area, located in central China near the Yangtze River. Compared with traditional solutions, we believe that this model-driven method is efficient, adaptable and flexible, and thus has bright prospects of application for comprehensive flood risk management.

  18. A stochastic multi-agent optimization model for energy infrastructure planning under uncertainty and competition.

    DOT National Transportation Integrated Search

    2017-07-04

    This paper presents a stochastic multi-agent optimization model that supports energy infrastruc- : ture planning under uncertainty. The interdependence between dierent decision entities in the : system is captured in an energy supply chain network, w...

  19. An intelligent case-adjustment algorithm for the automated design of population-based quality auditing protocols.

    PubMed

    Advani, Aneel; Jones, Neil; Shahar, Yuval; Goldstein, Mary K; Musen, Mark A

    2004-01-01

    We develop a method and algorithm for deciding the optimal approach to creating quality-auditing protocols for guideline-based clinical performance measures. An important element of the audit protocol design problem is deciding which guide-line elements to audit. Specifically, the problem is how and when to aggregate individual patient case-specific guideline elements into population-based quality measures. The key statistical issue involved is the trade-off between increased reliability with more general population-based quality measures versus increased validity from individually case-adjusted but more restricted measures done at a greater audit cost. Our intelligent algorithm for auditing protocol design is based on hierarchically modeling incrementally case-adjusted quality constraints. We select quality constraints to measure using an optimization criterion based on statistical generalizability coefficients. We present results of the approach from a deployed decision support system for a hypertension guideline.

  20. Fuzzy Naive Bayesian model for medical diagnostic decision support.

    PubMed

    Wagholikar, Kavishwar B; Vijayraghavan, Sundararajan; Deshpande, Ashok W

    2009-01-01

    This work relates to the development of computational algorithms to provide decision support to physicians. The authors propose a Fuzzy Naive Bayesian (FNB) model for medical diagnosis, which extends the Fuzzy Bayesian approach proposed by Okuda. A physician's interview based method is described to define a orthogonal fuzzy symptom information system, required to apply the model. For the purpose of elaboration and elicitation of characteristics, the algorithm is applied to a simple simulated dataset, and compared with conventional Naive Bayes (NB) approach. As a preliminary evaluation of FNB in real world scenario, the comparison is repeated on a real fuzzy dataset of 81 patients diagnosed with infectious diseases. The case study on simulated dataset elucidates that FNB can be optimal over NB for diagnosing patients with imprecise-fuzzy information, on account of the following characteristics - 1) it can model the information that, values of some attributes are semantically closer than values of other attributes, and 2) it offers a mechanism to temper exaggerations in patient information. Although the algorithm requires precise training data, its utility for fuzzy training data is argued for. This is supported by the case study on infectious disease dataset, which indicates optimality of FNB over NB for the infectious disease domain. Further case studies on large datasets are required to establish utility of FNB.

  1. Modelling decision-making by pilots

    NASA Technical Reports Server (NTRS)

    Patrick, Nicholas J. M.

    1993-01-01

    Our scientific goal is to understand the process of human decision-making. Specifically, a model of human decision-making in piloting modern commercial aircraft which prescribes optimal behavior, and against which we can measure human sub-optimality is sought. This model should help us understand such diverse aspects of piloting as strategic decision-making, and the implicit decisions involved in attention allocation. Our engineering goal is to provide design specifications for (1) better computer-based decision-aids, and (2) better training programs for the human pilot (or human decision-maker, DM).

  2. Reconsidering the Gatekeeper Paradigm for Percutaneous Coronary Intervention in Stable Coronary Disease Management.

    PubMed

    Schulman-Marcus, Joshua; Weintraub, William S; Boden, William E

    2017-10-15

    Major randomized clinical trials over the last decade support the role of optimal medical therapy for the initial management approach for patients with stable coronary artery disease (CAD), whereas percutaneous coronary intervention (PCI) ought to be reserved for patients with persistent symptoms despite optimal medical therapy. Likewise, several studies have continued to demonstrate the superiority of coronary artery bypass grafting surgery over PCI in many patients with extensive multivessel CAD, especially those with diabetes. Nevertheless, the decision-making paradigm for patients with stable CAD often continues to propagate the upfront use of "ad hoc PCI" and disadvantages alternative therapeutic approaches. In our editorial, we discuss how multiple systemic and interpersonal factors continue to favor early revascularization with PCI in stable patients. We discuss whether the interventional cardiologist can be an unbiased "gatekeeper" for the use of PCI or whether other physicians should also be involved with the patient in decision-making. Finally, we offer suggestions that can redefine the gatekeeper role to facilitate an evidence-based approach that embraces shared decision-making. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Decision Support Model for Mosque Renovation and Rehabilitation (Case Study: Ten Mosques in Jakarta Barat, Indonesia)

    NASA Astrophysics Data System (ADS)

    Utama, D. N.; Triana, Y. S.; Iqbal, M. M.; Iksal, M.; Fikri, I.; Dharmawan, T.

    2018-03-01

    Mosque, for Muslim, is not only a place for daily worshipping, however as a center of culture as well. It is an important and valuable building to be well managed. For a responsible department or institution (such as Religion or Plan Department in Indonesia), to practically manage a lot of mosques is not simple task to handle. The challenge is in relation to data number and characteristic problems tackled. Specifically for renovating and rehabilitating the damaged mosques, a decision to determine the first damaged mosque priority to be renovated and rehabilitated is problematic. Through two types of optimization method, simulated-annealing and hill-climbing, a decision support model for mosque renovation and rehabilitation was systematically constructed. The method fuzzy-logic was also operated to establish the priority of eleven selected parameters. The constructed model is able to simulate an efficiency comparison between two optimization methods used and suggest the most objective decision coming from 196 generated alternatives.

  4. BMP analysis system for watershed-based stormwater management.

    PubMed

    Zhen, Jenny; Shoemaker, Leslie; Riverson, John; Alvi, Khalid; Cheng, Mow-Soung

    2006-01-01

    Best Management Practices (BMPs) are measures for mitigating nonpoint source (NPS) pollution caused mainly by stormwater runoff. Established urban and newly developing areas must develop cost effective means for restoring or minimizing impacts, and planning future growth. Prince George's County in Maryland, USA, a fast-growing region in the Washington, DC metropolitan area, has developed a number of tools to support analysis and decision making for stormwater management planning and design at the watershed level. These tools support watershed analysis, innovative BMPs, and optimization. Application of these tools can help achieve environmental goals and lead to significant cost savings. This project includes software development that utilizes GIS information and technology, integrates BMP processes simulation models, and applies system optimization techniques for BMP planning and selection. The system employs the ESRI ArcGIS as the platform, and provides GIS-based visualization and support for developing networks including sequences of land uses, BMPs, and stream reaches. The system also provides interfaces for BMP placement, BMP attribute data input, and decision optimization management. The system includes a stand-alone BMP simulation and evaluation module, which complements both research and regulatory nonpoint source control assessment efforts, and allows flexibility in the examining various BMP design alternatives. Process based simulation of BMPs provides a technique that is sensitive to local climate and rainfall patterns. The system incorporates a meta-heuristic optimization technique to find the most cost-effective BMP placement and implementation plan given a control target, or a fixed cost. A case study is presented to demonstrate the application of the Prince George's County system. The case study involves a highly urbanized area in the Anacostia River (a tributary to Potomac River) watershed southeast of Washington, DC. An innovative system of management practices is proposed to minimize runoff, improve water quality, and provide water reuse opportunities. Proposed management techniques include bioretention, green roof, and rooftop runoff collection (rain barrel) systems. The modeling system was used to identify the most cost-effective combinations of management practices to help minimize frequency and size of runoff events and resulting combined sewer overflows to the Anacostia River.

  5. Technological innovations in the development of cardiovascular clinical information systems.

    PubMed

    Hsieh, Nan-Chen; Chang, Chung-Yi; Lee, Kuo-Chen; Chen, Jeen-Chen; Chan, Chien-Hui

    2012-04-01

    Recent studies have shown that computerized clinical case management and decision support systems can be used to assist surgeons in the diagnosis of disease, optimize surgical operation, aid in drug therapy and decrease the cost of medical treatment. Therefore, medical informatics has become an extensive field of research and many of these approaches have demonstrated potential value for improving medical quality. The aim of this study was to develop a web-based cardiovascular clinical information system (CIS) based on innovative techniques, such as electronic medical records, electronic registries and automatic feature surveillance schemes, to provide effective tools and support for clinical care, decision-making, biomedical research and training activities. The CIS developed for this study contained monitoring, surveillance and model construction functions. The monitoring layer function provided a visual user interface. At the surveillance and model construction layers, we explored the application of model construction and intelligent prognosis to aid in making preoperative and postoperative predictions. With the use of the CIS, surgeons can provide reasonable conclusions and explanations in uncertain environments.

  6. A Predictive Analysis of the Department of Defense Distribution System Utilizing Random Forests

    DTIC Science & Technology

    2016-06-01

    resources capable of meeting both customer and individual resource constraints and goals while also maximizing the global benefit to the supply...and probability rules to determine the optimal red wine distribution network for an Italian-based wine producer. The decision support model for...combinations of factors that will result in delivery of the highest quality wines . The model’s first stage inputs basic logistics information to look

  7. How Decision Support Systems Can Benefit from a Theory of Change Approach.

    PubMed

    Allen, Will; Cruz, Jennyffer; Warburton, Bruce

    2017-06-01

    Decision support systems are now mostly computer and internet-based information systems designed to support land managers with complex decision-making. However, there is concern that many environmental and agricultural decision support systems remain underutilized and ineffective. Recent efforts to improve decision support systems use have focused on enhancing stakeholder participation in their development, but a mismatch between stakeholders' expectations and the reality of decision support systems outputs continues to limit uptake. Additional challenges remain in problem-framing and evaluation. We propose using an outcomes-based approach called theory of change in conjunction with decision support systems development to support both wider problem-framing and outcomes-based monitoring and evaluation. The theory of change helps framing by placing the decision support systems within a wider context. It highlights how decision support systems use can "contribute" to long-term outcomes, and helps align decision support systems outputs with these larger goals. We illustrate the benefits of linking decision support systems development and application with a theory of change approach using an example of pest rabbit management in Australia. We develop a theory of change that outlines the activities required to achieve the outcomes desired from an effective rabbit management program, and two decision support systems that contribute to specific aspects of decision making in this wider problem context. Using a theory of change in this way should increase acceptance of the role of decision support systems by end-users, clarify their limitations and, importantly, increase effectiveness of rabbit management. The use of a theory of change should benefit those seeking to improve decision support systems design, use and, evaluation.

  8. How Decision Support Systems Can Benefit from a Theory of Change Approach

    NASA Astrophysics Data System (ADS)

    Allen, Will; Cruz, Jennyffer; Warburton, Bruce

    2017-06-01

    Decision support systems are now mostly computer and internet-based information systems designed to support land managers with complex decision-making. However, there is concern that many environmental and agricultural decision support systems remain underutilized and ineffective. Recent efforts to improve decision support systems use have focused on enhancing stakeholder participation in their development, but a mismatch between stakeholders' expectations and the reality of decision support systems outputs continues to limit uptake. Additional challenges remain in problem-framing and evaluation. We propose using an outcomes-based approach called theory of change in conjunction with decision support systems development to support both wider problem-framing and outcomes-based monitoring and evaluation. The theory of change helps framing by placing the decision support systems within a wider context. It highlights how decision support systems use can "contribute" to long-term outcomes, and helps align decision support systems outputs with these larger goals. We illustrate the benefits of linking decision support systems development and application with a theory of change approach using an example of pest rabbit management in Australia. We develop a theory of change that outlines the activities required to achieve the outcomes desired from an effective rabbit management program, and two decision support systems that contribute to specific aspects of decision making in this wider problem context. Using a theory of change in this way should increase acceptance of the role of decision support systems by end-users, clarify their limitations and, importantly, increase effectiveness of rabbit management. The use of a theory of change should benefit those seeking to improve decision support systems design, use and, evaluation.

  9. Interactive Resource Planning—An Anticipative Concept in the Simulation-Based Decision Support System EXPOSIM

    NASA Astrophysics Data System (ADS)

    Leopold-Wildburger, Ulrike; Pickl, Stefan

    2008-10-01

    In our research we intend to use experiments to study human behavior in a simulation environment based on a simple Lotka-Volterra predator-prey ecology. The aim is to study the influence of participants' harvesting strategies and certain personality traits derived from [1] on the outcome in terms of sustainability and economic performance. Such an approach is embedded in a research program which intends to develop and understand interactive resource planning processes. We present the general framework as well as the new decision support system EXPOSIM. The key element is the combination of experimental design, analytical understanding of time-discrete systems (especially Lotka-Volterra systems) and economic performance. In the first part, the general role of laboratory experiments is discussed. The second part summarizes the concept of sustainable development. It is taken from [18]. As we use Lotka-Volterra systems as the basis for our simulations a theoretical framework is described afterwards. It is possible to determine optimal behavior for those systems. The empirical setting is based on the empirical approach that the subjects are put into the position of a decision-maker. They are able to model the environment in such a way that harvesting can be observed. We suggest an experimental setting which might lead to new insights in an anticipatory sense.

  10. Development of a Tailored Intervention With Computerized Clinical Decision Support to Improve Quality of Care for Patients With Knee Osteoarthritis: Multi-Method Study.

    PubMed

    Van de Velde, Stijn; Kortteisto, Tiina; Spitaels, David; Jamtvedt, Gro; Roshanov, Pavel; Kunnamo, Ilkka; Aertgeerts, Bert; Vandvik, Per Olav; Flottorp, Signe

    2018-06-11

    Clinical practice patterns greatly diverge from evidence-based recommendations to manage knee osteoarthritis conservatively before resorting to surgery. This study aimed to tailor a guideline-based computerized decision support (CDS) intervention that facilitates the conservative management of knee osteoarthritis. Experts with backgrounds in clinical medicine, research, implementation, or health informatics suggested the most important recommendations for implementation, how to develop an implementation strategy, and how to form the CDS algorithms. In 6 focus group sessions, 8 general practitioners and 22 patients from Norway, Belgium, and Finland discussed the suggested CDS intervention and identified factors that would be most critical for the success of the intervention. The focus group moderators used the GUideline Implementation with DEcision Support checklist, which we developed to support consideration of CDS success factors. The experts prioritized 9 out of 22 recommendations for implementation. We formed the concept for 6 CDS algorithms to support implementation of these recommendations. The focus group suggested 59 unique factors that could affect the success of the presented CDS intervention. Five factors (out of the 59) were prioritized by focus group participants in every country, including the perceived potential to address the information needs of both patients and general practitioners; the credibility of CDS information; the timing of CDS for patients; and the need for personal dialogue about CDS between the general practitioner and the patient. The focus group participants supported the CDS intervention as a tool to improve the quality of care for patients with knee osteoarthritis through shared, evidence-based decision making. We aim to develop and implement the CDS based on these study results. Future research should address optimal ways to (1) provide patient-directed CDS, (2) enable more patient-specific CDS within the context of patient complexity, and (3) maintain user engagement with CDS over time. ©Stijn Van de Velde, Tiina Kortteisto, David Spitaels, Gro Jamtvedt, Pavel Roshanov, Ilkka Kunnamo, Bert Aertgeerts, Per Olav Vandvik, Signe Flottorp. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 11.06.2018.

  11. A Decision Support Tool for Appropriate Glucose-Lowering Therapy in Patients with Type 2 Diabetes

    PubMed Central

    Benhamou, Pierre Yves; Charpentier, Guillaume; Consoli, Agostino; Diamant, Michaela; Gallwitz, Baptist; Khunti, Kamlesh; Mathieu, Chantal; Ridderstråle, Martin; Seufert, Jochen; Tack, Cees; Vilsbøll, Tina; Phan, Tra-Mi; Stoevelaar, Herman

    2015-01-01

    Abstract Background: Optimal glucose-lowering therapy in type 2 diabetes mellitus requires a patient-specific approach. Although a good framework, current guidelines are insufficiently detailed to address the different phenotypes and individual needs of patients seen in daily practice. We developed a patient-specific decision support tool based on a systematic analysis of expert opinion. Materials and Methods: Based on the American Diabetes Association (ADA)/European Association for the Study of Diabetes (EASD) 2012 position statement, a panel of 12 European experts rated the appropriateness (RAND/UCLA Appropriateness Method) of treatment strategies for 930 clinical scenarios, which were permutations of clinical variables considered relevant to treatment choice. These included current treatment, hemoglobin A1c difference from individualized target, risk of hypoglycemia, body mass index, life expectancy, and comorbidities. Treatment options included addition of a second or third agent, drug switches, and replacement by monotherapies if the patient was metformin-intolerant. Treatment costs were not considered. Appropriateness (appropriate, inappropriate, uncertain) was based on the median score and expert agreement. The panel recommendations were embedded in an online decision support tool (DiaScope®; Novo Nordisk Health Care AG, Zürich, Switzerland). Results: Treatment appropriateness was associated with (combinations of) the patient variables mentioned above. As second-line agents, dipeptidyl peptidase-4 inhibitors were considered appropriate in all scenarios, followed by glucagon-like peptide-1 receptor agonists (50%), insulins (33%), and sulfonylureas (25%), but not pioglitazone (0%). Ratings of third-line combinations followed a similar pattern. Disagreement was highest for regimens including pioglitazone, sulfonylureas, or insulins and was partly due to differences in panelists' opinions and in drug availability and reimbursement across European countries (although costs were disregarded in the rating process). Conclusions: A novel decision support tool based on the ADA/EASD 2012 position statement and a systematic analysis of expert opinion has been developed to help healthcare professionals to individualize glucose-lowering therapy in daily clinical situations. PMID:25347226

  12. A decision support tool for appropriate glucose-lowering therapy in patients with type 2 diabetes.

    PubMed

    Ampudia-Blasco, F Javier; Benhamou, Pierre Yves; Charpentier, Guillaume; Consoli, Agostino; Diamant, Michaela; Gallwitz, Baptist; Khunti, Kamlesh; Mathieu, Chantal; Ridderstråle, Martin; Seufert, Jochen; Tack, Cees; Vilsbøll, Tina; Phan, Tra-Mi; Stoevelaar, Herman

    2015-03-01

    Optimal glucose-lowering therapy in type 2 diabetes mellitus requires a patient-specific approach. Although a good framework, current guidelines are insufficiently detailed to address the different phenotypes and individual needs of patients seen in daily practice. We developed a patient-specific decision support tool based on a systematic analysis of expert opinion. Based on the American Diabetes Association (ADA)/European Association for the Study of Diabetes (EASD) 2012 position statement, a panel of 12 European experts rated the appropriateness (RAND/UCLA Appropriateness Method) of treatment strategies for 930 clinical scenarios, which were permutations of clinical variables considered relevant to treatment choice. These included current treatment, hemoglobin A1c difference from individualized target, risk of hypoglycemia, body mass index, life expectancy, and comorbidities. Treatment options included addition of a second or third agent, drug switches, and replacement by monotherapies if the patient was metformin-intolerant. Treatment costs were not considered. Appropriateness (appropriate, inappropriate, uncertain) was based on the median score and expert agreement. The panel recommendations were embedded in an online decision support tool (DiaScope(®); Novo Nordisk Health Care AG, Zürich, Switzerland). Treatment appropriateness was associated with (combinations of) the patient variables mentioned above. As second-line agents, dipeptidyl peptidase-4 inhibitors were considered appropriate in all scenarios, followed by glucagon-like peptide-1 receptor agonists (50%), insulins (33%), and sulfonylureas (25%), but not pioglitazone (0%). Ratings of third-line combinations followed a similar pattern. Disagreement was highest for regimens including pioglitazone, sulfonylureas, or insulins and was partly due to differences in panelists' opinions and in drug availability and reimbursement across European countries (although costs were disregarded in the rating process). A novel decision support tool based on the ADA/EASD 2012 position statement and a systematic analysis of expert opinion has been developed to help healthcare professionals to individualize glucose-lowering therapy in daily clinical situations.

  13. Computer-based physician order entry: the state of the art.

    PubMed Central

    Sittig, D F; Stead, W W

    1994-01-01

    Direct computer-based physician order entry has been the subject of debate for over 20 years. Many sites have implemented systems successfully. Others have failed outright or flirted with disaster, incurring substantial delays, cost overruns, and threatened work actions. The rationale for physician order entry includes process improvement, support of cost-conscious decision making, clinical decision support, and optimization of physicians' time. Barriers to physician order entry result from the changes required in practice patterns, roles within the care team, teaching patterns, and institutional policies. Key ingredients for successful implementation include: the system must be fast and easy to use, the user interface must behave consistently in all situations, the institution must have broad and committed involvement and direction by clinicians prior to implementation, the top leadership of the organization must be committed to the project, and a group of problem solvers and users must meet regularly to work out procedural issues. This article reviews the peer-reviewed scientific literature to present the current state of the art of computer-based physician order entry. PMID:7719793

  14. Improving healthcare services using web based platform for management of medical case studies.

    PubMed

    Ogescu, Cristina; Plaisanu, Claudiu; Udrescu, Florian; Dumitru, Silviu

    2008-01-01

    The paper presents a web based platform for management of medical cases, support for healthcare specialists in taking the best clinical decision. Research has been oriented mostly on multimedia data management, classification algorithms for querying, retrieving and processing different medical data types (text and images). The medical case studies can be accessed by healthcare specialists and by students as anonymous case studies providing trust and confidentiality in Internet virtual environment. The MIDAS platform develops an intelligent framework to manage sets of medical data (text, static or dynamic images), in order to optimize the diagnosis and the decision process, which will reduce the medical errors and will increase the quality of medical act. MIDAS is an integrated project working on medical information retrieval from heterogeneous, distributed medical multimedia database.

  15. Dispositional optimism, self-framing and medical decision-making.

    PubMed

    Zhao, Xu; Huang, Chunlei; Li, Xuesong; Zhao, Xin; Peng, Jiaxi

    2015-03-01

    Self-framing is an important but underinvestigated area in risk communication and behavioural decision-making, especially in medical settings. The present study aimed to investigate the relationship among dispositional optimism, self-frame and decision-making. Participants (N = 500) responded to the Life Orientation Test-Revised and self-framing test of medical decision-making problem. The participants whose scores were higher than the middle value were regarded as highly optimistic individuals. The rest were regarded as low optimistic individuals. The results showed that compared to the high dispositional optimism group, participants from the low dispositional optimism group showed a greater tendency to use negative vocabulary to construct their self-frame, and tended to choose the radiation therapy with high treatment survival rate, but low 5-year survival rate. Based on the current findings, it can be concluded that self-framing effect still exists in medical situation and individual differences in dispositional optimism can influence the processing of information in a framed decision task, as well as risky decision-making. © 2014 International Union of Psychological Science.

  16. People adopt optimal policies in simple decision-making, after practice and guidance.

    PubMed

    Evans, Nathan J; Brown, Scott D

    2017-04-01

    Organisms making repeated simple decisions are faced with a tradeoff between urgent and cautious strategies. While animals can adopt a statistically optimal policy for this tradeoff, findings about human decision-makers have been mixed. Some studies have shown that people can optimize this "speed-accuracy tradeoff", while others have identified a systematic bias towards excessive caution. These issues have driven theoretical development and spurred debate about the nature of human decision-making. We investigated a potential resolution to the debate, based on two factors that routinely differ between human and animal studies of decision-making: the effects of practice, and of longer-term feedback. Our study replicated the finding that most people, by default, are overly cautious. When given both practice and detailed feedback, people moved rapidly towards the optimal policy, with many participants reaching optimality with less than 1 h of practice. Our findings have theoretical implications for cognitive and neural models of simple decision-making, as well as methodological implications.

  17. A Generalized Decision Framework Using Multi-objective Optimization for Water Resources Planning

    NASA Astrophysics Data System (ADS)

    Basdekas, L.; Stewart, N.; Triana, E.

    2013-12-01

    Colorado Springs Utilities (CSU) is currently engaged in an Integrated Water Resource Plan (IWRP) to address the complex planning scenarios, across multiple time scales, currently faced by CSU. The modeling framework developed for the IWRP uses a flexible data-centered Decision Support System (DSS) with a MODSIM-based modeling system to represent the operation of the current CSU raw water system coupled with a state-of-the-art multi-objective optimization algorithm. Three basic components are required for the framework, which can be implemented for planning horizons ranging from seasonal to interdecadal. First, a water resources system model is required that is capable of reasonable system simulation to resolve performance metrics at the appropriate temporal and spatial scales of interest. The system model should be an existing simulation model, or one developed during the planning process with stakeholders, so that 'buy-in' has already been achieved. Second, a hydrologic scenario tool(s) capable of generating a range of plausible inflows for the planning period of interest is required. This may include paleo informed or climate change informed sequences. Third, a multi-objective optimization model that can be wrapped around the system simulation model is required. The new generation of multi-objective optimization models do not require parameterization which greatly reduces problem complexity. Bridging the gap between research and practice will be evident as we use a case study from CSU's planning process to demonstrate this framework with specific competing water management objectives. Careful formulation of objective functions, choice of decision variables, and system constraints will be discussed. Rather than treating results as theoretically Pareto optimal in a planning process, we use the powerful multi-objective optimization models as tools to more efficiently and effectively move out of the inferior decision space. The use of this framework will help CSU evaluate tradeoffs in a continually changing world.

  18. Dynamic Excitatory and Inhibitory Gain Modulation Can Produce Flexible, Robust and Optimal Decision-making

    PubMed Central

    Niyogi, Ritwik K.; Wong-Lin, KongFatt

    2013-01-01

    Behavioural and neurophysiological studies in primates have increasingly shown the involvement of urgency signals during the temporal integration of sensory evidence in perceptual decision-making. Neuronal correlates of such signals have been found in the parietal cortex, and in separate studies, demonstrated attention-induced gain modulation of both excitatory and inhibitory neurons. Although previous computational models of decision-making have incorporated gain modulation, their abstract forms do not permit an understanding of the contribution of inhibitory gain modulation. Thus, the effects of co-modulating both excitatory and inhibitory neuronal gains on decision-making dynamics and behavioural performance remain unclear. In this work, we incorporate time-dependent co-modulation of the gains of both excitatory and inhibitory neurons into our previous biologically based decision circuit model. We base our computational study in the context of two classic motion-discrimination tasks performed in animals. Our model shows that by simultaneously increasing the gains of both excitatory and inhibitory neurons, a variety of the observed dynamic neuronal firing activities can be replicated. In particular, the model can exhibit winner-take-all decision-making behaviour with higher firing rates and within a significantly more robust model parameter range. It also exhibits short-tailed reaction time distributions even when operating near a dynamical bifurcation point. The model further shows that neuronal gain modulation can compensate for weaker recurrent excitation in a decision neural circuit, and support decision formation and storage. Higher neuronal gain is also suggested in the more cognitively demanding reaction time than in the fixed delay version of the task. Using the exact temporal delays from the animal experiments, fast recruitment of gain co-modulation is shown to maximize reward rate, with a timescale that is surprisingly near the experimentally fitted value. Our work provides insights into the simultaneous and rapid modulation of excitatory and inhibitory neuronal gains, which enables flexible, robust, and optimal decision-making. PMID:23825935

  19. Research on web-based decision support system for sports competitions

    NASA Astrophysics Data System (ADS)

    Huo, Hanqiang

    2010-07-01

    This paper describes the system architecture and implementation technology of the decision support system for sports competitions, discusses the design of decision-making modules, management modules and security of the system, and proposes the development idea of building a web-based decision support system for sports competitions.

  20. Optimization Research of Generation Investment Based on Linear Programming Model

    NASA Astrophysics Data System (ADS)

    Wu, Juan; Ge, Xueqian

    Linear programming is an important branch of operational research and it is a mathematical method to assist the people to carry out scientific management. GAMS is an advanced simulation and optimization modeling language and it will combine a large number of complex mathematical programming, such as linear programming LP, nonlinear programming NLP, MIP and other mixed-integer programming with the system simulation. In this paper, based on the linear programming model, the optimized investment decision-making of generation is simulated and analyzed. At last, the optimal installed capacity of power plants and the final total cost are got, which provides the rational decision-making basis for optimized investments.

  1. Combining Interactive Infrastructure Modeling and Evolutionary Algorithm Optimization for Sustainable Water Resources Design

    NASA Astrophysics Data System (ADS)

    Smith, R.; Kasprzyk, J. R.; Zagona, E. A.

    2013-12-01

    Population growth and climate change, combined with difficulties in building new infrastructure, motivate portfolio-based solutions to ensuring sufficient water supply. Powerful simulation models with graphical user interfaces (GUI) are often used to evaluate infrastructure portfolios; these GUI based models require manual modification of the system parameters, such as reservoir operation rules, water transfer schemes, or system capacities. Multiobjective evolutionary algorithm (MOEA) based optimization can be employed to balance multiple objectives and automatically suggest designs for infrastructure systems, but MOEA based decision support typically uses a fixed problem formulation (i.e., a single set of objectives, decisions, and constraints). This presentation suggests a dynamic framework for linking GUI-based infrastructure models with MOEA search. The framework begins with an initial formulation which is solved using a MOEA. Then, stakeholders can interact with candidate solutions, viewing their properties in the GUI model. This is followed by changes in the formulation which represent users' evolving understanding of exigent system properties. Our case study is built using RiverWare, an object-oriented, data-centered model that facilitates the representation of a diverse array of water resources systems. Results suggest that assumptions within the initial MOEA search are violated after investigating tradeoffs and reveal how formulations should be modified to better capture stakeholders' preferences.

  2. Decision support system in an international-voice-services business company

    NASA Astrophysics Data System (ADS)

    Hadianti, R.; Uttunggadewa, S.; Syamsuddin, M.; Soewono, E.

    2017-01-01

    We consider a problem facing by an international telecommunication services company in maximizing its profit. From voice services by controlling cost and business partnership. The competitiveness in this industry is very high, so that any efficiency from controlling cost and business partnership can help the company to survive in the very high competitiveness situation. The company trades voice traffic with a large number of business partners. There are four trading schemes that can be chosen by this company, namely, flat rate, class tiering, volume commitment, and revenue capped. Each scheme has a specific characteristic on the rate and volume deal, where the last three schemes are regarded as strategic schemes to be offered to business partner to ensure incoming traffic volume for both parties. This company and each business partner need to choose an optimal agreement in a certain period of time that can maximize the company’s profit. In this agreement, both parties agree to use a certain trading scheme, rate and rate/volume/revenue deal. A decision support system is then needed in order to give a comprehensive information to the sales officers to deal with the business partners. This paper discusses the mathematical model of the optimal decision for incoming traffic volume control, which is a part of the analysis needed to build the decision support system. The mathematical model is built by first performing data analysis to see how elastic the incoming traffic volume is. As the level of elasticity is obtained, we then derive a mathematical modelling that can simulate the impact of any decision on trading to the revenue of the company. The optimal decision can be obtained from these simulations results. To evaluate the performance of the proposed method we implement our decision model to the historical data. A software tool incorporating our methodology is currently in construction.

  3. Case study: technology initiative led to advanced lead optimization screening processes at Bristol-Myers Squibb, 2004-2009.

    PubMed

    Zhang, Litao; Cvijic, Mary Ellen; Lippy, Jonathan; Myslik, James; Brenner, Stephen L; Binnie, Alastair; Houston, John G

    2012-07-01

    In this paper, we review the key solutions that enabled evolution of the lead optimization screening support process at Bristol-Myers Squibb (BMS) between 2004 and 2009. During this time, technology infrastructure investment and scientific expertise integration laid the foundations to build and tailor lead optimization screening support models across all therapeutic groups at BMS. Together, harnessing advanced screening technology platforms and expanding panel screening strategy led to a paradigm shift at BMS in supporting lead optimization screening capability. Parallel SAR and structure liability relationship (SLR) screening approaches were first and broadly introduced to empower more-rapid and -informed decisions about chemical synthesis strategy and to broaden options for identifying high-quality drug candidates during lead optimization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Water quality monitoring strategies - A review and future perspectives.

    PubMed

    Behmel, S; Damour, M; Ludwig, R; Rodriguez, M J

    2016-11-15

    The reliable assessment of water quality through water quality monitoring programs (WQMPs) is crucial in order for decision-makers to understand, interpret and use this information in support of their management activities aiming at protecting the resource. The challenge of water quality monitoring has been widely addressed in the literature since the 1940s. However, there is still no generally accepted, holistic and practical strategy to support all phases of WQMPs. The purpose of this paper is to report on the use cases a watershed manager has to address to plan or optimize a WQMP from the challenge of identifying monitoring objectives; selecting sampling sites and water quality parameters; identifying sampling frequencies; considering logistics and resources to the implementation of actions based on information acquired through the WQMP. An inventory and critique of the information, approaches and tools placed at the disposal of watershed managers was proposed to evaluate how the existing information could be integrated in a holistic, user-friendly and evolvable solution. Given the differences in regulatory requirements, water quality standards, geographical and geological differences, land-use variations, and other site specificities, a one-in-all solution is not possible. However, we advance that an intelligent decision support system (IDSS) based on expert knowledge that integrates existing approaches and past research can guide a watershed manager through the process according to his/her site-specific requirements. It is also necessary to tap into local knowledge and to identify the knowledge needs of all the stakeholders through participative approaches based on geographical information systems and adaptive survey-based questionnaires. We believe that future research should focus on developing such participative approaches and further investigate the benefits of IDSS's that can be updated quickly and make it possible for a watershed manager to obtain a timely, holistic view and support for every aspect of planning and optimizing a WQMP. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. An Ontology-Based, Mobile-Optimized System for Pharmacogenomic Decision Support at the Point-of-Care

    PubMed Central

    Miñarro-Giménez, Jose Antonio; Blagec, Kathrin; Boyce, Richard D.; Adlassnig, Klaus-Peter; Samwald, Matthias

    2014-01-01

    Background The development of genotyping and genetic sequencing techniques and their evolution towards low costs and quick turnaround have encouraged a wide range of applications. One of the most promising applications is pharmacogenomics, where genetic profiles are used to predict the most suitable drugs and drug dosages for the individual patient. This approach aims to ensure appropriate medical treatment and avoid, or properly manage, undesired side effects. Results We developed the Medicine Safety Code (MSC) service, a novel pharmacogenomics decision support system, to provide physicians and patients with the ability to represent pharmacogenomic data in computable form and to provide pharmacogenomic guidance at the point-of-care. Pharmacogenomic data of individual patients are encoded as Quick Response (QR) codes and can be decoded and interpreted with common mobile devices without requiring a centralized repository for storing genetic patient data. In this paper, we present the first fully functional release of this system and describe its architecture, which utilizes Web Ontology Language 2 (OWL 2) ontologies to formalize pharmacogenomic knowledge and to provide clinical decision support functionalities. Conclusions The MSC system provides a novel approach for enabling the implementation of personalized medicine in clinical routine. PMID:24787444

  6. An ontology-based, mobile-optimized system for pharmacogenomic decision support at the point-of-care.

    PubMed

    Miñarro-Giménez, Jose Antonio; Blagec, Kathrin; Boyce, Richard D; Adlassnig, Klaus-Peter; Samwald, Matthias

    2014-01-01

    The development of genotyping and genetic sequencing techniques and their evolution towards low costs and quick turnaround have encouraged a wide range of applications. One of the most promising applications is pharmacogenomics, where genetic profiles are used to predict the most suitable drugs and drug dosages for the individual patient. This approach aims to ensure appropriate medical treatment and avoid, or properly manage, undesired side effects. We developed the Medicine Safety Code (MSC) service, a novel pharmacogenomics decision support system, to provide physicians and patients with the ability to represent pharmacogenomic data in computable form and to provide pharmacogenomic guidance at the point-of-care. Pharmacogenomic data of individual patients are encoded as Quick Response (QR) codes and can be decoded and interpreted with common mobile devices without requiring a centralized repository for storing genetic patient data. In this paper, we present the first fully functional release of this system and describe its architecture, which utilizes Web Ontology Language 2 (OWL 2) ontologies to formalize pharmacogenomic knowledge and to provide clinical decision support functionalities. The MSC system provides a novel approach for enabling the implementation of personalized medicine in clinical routine.

  7. Combined Economic and Hydrologic Modeling to Support Collaborative Decision Making Processes

    NASA Astrophysics Data System (ADS)

    Sheer, D. P.

    2008-12-01

    For more than a decade, the core concept of the author's efforts in support of collaborative decision making has been a combination of hydrologic simulation and multi-objective optimization. The modeling has generally been used to support collaborative decision making processes. The OASIS model developed by HydroLogics Inc. solves a multi-objective optimization at each time step using a mixed integer linear program (MILP). The MILP can be configured to include any user defined objective, including but not limited too economic objectives. For example, an estimated marginal value for water for crops and M&I use were included in the objective function to drive trades in a model of the lower Rio Grande. The formulation of the MILP, constraints and objectives, in any time step is conditional: it changes based on the value of state variables and dynamic external forcing functions, such as rainfall, hydrology, market prices, arrival of migratory fish, water temperature, etc. It therefore acts as a dynamic short term multi-objective economic optimization for each time step. MILP is capable of solving a general problem that includes a very realistic representation of the physical system characteristics in addition to the normal multi-objective optimization objectives and constraints included in economic models. In all of these models, the short term objective function is a surrogate for achieving long term multi-objective results. The long term performance for any alternative (especially including operating strategies) is evaluated by simulation. An operating rule is the combination of conditions, parameters, constraints and objectives used to determine the formulation of the short term optimization in each time step. Heuristic wrappers for the simulation program have been developed improve the parameters of an operating rule, and are initiating research on a wrapper that will allow us to employ a genetic algorithm to improve the form of the rule (conditions, constraints, and short term objectives) as well. In the models operating rules represent different models of human behavior, and the objective of the modeling is to find rules for human behavior that perform well in terms of long term human objectives. The conceptual model used to represent human behavior incorporates economic multi-objective optimization for surrogate objectives, and rules that set those objectives based on current conditions and accounting for uncertainty, at least implicitly. The author asserts that real world operating rules follow this form and have evolved because they have been perceived as successful in the past. Thus, the modeling efforts focus on human behavior in much the same way that economic models focus on human behavior. This paper illustrates the above concepts with real world examples.

  8. A Fuzzy Rule Based Decision Support System for Identifying Location of Water Harvesting Technologies in Rainfed Agricultural Regions

    NASA Astrophysics Data System (ADS)

    Chaubey, I.; Vema, V. K.; Sudheer, K.

    2016-12-01

    Site suitability evaluation of water conservation structures in water scarce rainfed agricultural areas consist of assessment of various landscape characteristics and various criterion. Many of these landscape characteristic attributes are conveyed through linguistic terms rather than precise numeric values. Fuzzy rule based system are capable of incorporating uncertainty and vagueness, when various decision making criteria expressed in linguistic terms are expressed as fuzzy rules. In this study a fuzzy rule based decision support system is developed, for optimal site selection of water harvesting technologies. Water conservation technologies like farm ponds, Check dams, Rock filled dams and percolation ponds aid in conserving water for irrigation and recharging aquifers and development of such a system will aid in improving the efficiency of the structures. Attributes and criteria involved in decision making are classified into different groups to estimate the suitability of the particular technology. The developed model is applied and tested on an Indian watershed. The input attributes are prepared in raster format in ArcGIS software and suitability of each raster cell is calculated and output is generated in the form of a thematic map showing the suitability of the cells pertaining to different technologies. The output of the developed model is compared against the already existing structures and results are satisfactory. This developed model will aid in improving the sustainability and efficiency of the watershed management programs aimed at enhancing in situ moisture content.

  9. Impact of electronic clinical decision support on adherence to guideline-recommended treatment for hyperlipidaemia, atrial fibrillation and heart failure: protocol for a cluster randomised trial

    PubMed Central

    Kessler, Maya Elizabeth; Cook, David A; Kor, Daryl Jon; McKie, Paul M; Pencille, Laurie J; Scheitel, Marianne R; Chaudhry, Rajeev

    2017-01-01

    Introduction Clinical practice guidelines facilitate optimal clinical practice. Point of care access, interpretation and application of such guidelines, however, is inconsistent. Informatics-based tools may help clinicians apply guidelines more consistently. We have developed a novel clinical decision support tool that presents guideline-relevant information and actionable items to clinicians at the point of care. We aim to test whether this tool improves the management of hyperlipidaemia, atrial fibrillation and heart failure by primary care clinicians. Methods/analysis Clinician care teams were cluster randomised to receive access to the clinical decision support tool or passive access to institutional guidelines on 16 May 2016. The trial began on 1 June 2016 when access to the tool was granted to the intervention clinicians. The trial will be run for 6 months to ensure a sufficient number of patient encounters to achieve 80% power to detect a twofold increase in the primary outcome at the 0.05 level of significance. The primary outcome measure will be the percentage of guideline-based recommendations acted on by clinicians for hyperlipidaemia, atrial fibrillation and heart failure. We hypothesise care teams with access to the clinical decision support tool will act on recommendations at a higher rate than care teams in the standard of care arm. Ethics and dissemination The Mayo Clinic Institutional Review Board approved all study procedures. Informed consent was obtained from clinicians. A waiver of informed consent and of Health Insurance Portability and Accountability Act (HIPAA) authorisation for patients managed by clinicians in the study was granted. In addition to publication, results will be disseminated via meetings and newsletters. Trial registration number NCT02742545. PMID:29208620

  10. Imaging informatics-based multimedia ePR system for data management and decision support in rehabilitation research

    NASA Astrophysics Data System (ADS)

    Wang, Ximing; Verma, Sneha; Qin, Yi; Sterling, Josh; Zhou, Alyssa; Zhang, Jeffrey; Martinez, Clarisa; Casebeer, Narissa; Koh, Hyunwook; Winstein, Carolee; Liu, Brent

    2013-03-01

    With the rapid development of science and technology, large-scale rehabilitation centers and clinical rehabilitation trials usually involve significant volumes of multimedia data. Due to the global aging crisis, millions of new patients with age-related chronic diseases will produce huge amounts of data and contribute to soaring costs of medical care. Hence, a solution for effective data management and decision support will significantly reduce the expenditure and finally improve the patient life quality. Inspired from the concept of the electronic patient record (ePR), we developed a prototype system for the field of rehabilitation engineering. The system is subject or patient-oriented and customized for specific projects. The system components include data entry modules, multimedia data presentation and data retrieval. To process the multimedia data, the system includes a DICOM viewer with annotation tools and video/audio player. The system also serves as a platform for integrating decision-support tools and data mining tools. Based on the prototype system design, we developed two specific applications: 1) DOSE (a phase 1 randomized clinical trial to determine the optimal dose of therapy for rehabilitation of the arm and hand after stroke.); and 2) NEXUS project from the Rehabilitation Engineering Research Center(RERC, a NIDRR funded Rehabilitation Engineering Research Center). Currently, the system is being evaluated in the context of the DOSE trial with a projected enrollment of 60 participants over 5 years, and will be evaluated by the NEXUS project with 30 subjects. By applying the ePR concept, we developed a system in order to improve the current research workflow, reduce the cost of managing data, and provide a platform for the rapid development of future decision-support tools.

  11. From guideline modeling to guideline execution: defining guideline-based decision-support services.

    PubMed Central

    Tu, S. W.; Musen, M. A.

    2000-01-01

    We describe our task-based approach to defining the guideline-based decision-support services that the EON system provides. We categorize uses of guidelines in patient-specific decision support into a set of generic tasks--making of decisions, specification of work to be performed, interpretation of data, setting of goals, and issuance of alert and reminders--that can be solved using various techniques. Our model includes constructs required for representing the knowledge used by these techniques. These constructs form a toolkit from which developers can select modeling solutions for guideline task. Based on the tasks and the guideline model, we define a guideline-execution architecture and a model of interactions between a decision-support server and clients that invoke services provided by the server. These services use generic interfaces derived from guideline tasks and their associated modeling constructs. We describe two implementations of these decision-support services and discuss how this work can be generalized. We argue that a well-defined specification of guideline-based decision-support services will facilitate sharing of tools that implement computable clinical guidelines. PMID:11080007

  12. Clinical decision support of radiotherapy treatment planning: A data-driven machine learning strategy for patient-specific dosimetric decision making.

    PubMed

    Valdes, Gilmer; Simone, Charles B; Chen, Josephine; Lin, Alexander; Yom, Sue S; Pattison, Adam J; Carpenter, Colin M; Solberg, Timothy D

    2017-12-01

    Clinical decision support systems are a growing class of tools with the potential to impact healthcare. This study investigates the construction of a decision support system through which clinicians can efficiently identify which previously approved historical treatment plans are achievable for a new patient to aid in selection of therapy. Treatment data were collected for early-stage lung and postoperative oropharyngeal cancers treated using photon (lung and head and neck) and proton (head and neck) radiotherapy. Machine-learning classifiers were constructed using patient-specific feature-sets and a library of historical plans. Model accuracy was analyzed using learning curves, and historical treatment plan matching was investigated. Learning curves demonstrate that for these datasets, approximately 45, 60, and 30 patients are needed for a sufficiently accurate classification model for radiotherapy for early-stage lung, postoperative oropharyngeal photon, and postoperative oropharyngeal proton, respectively. The resulting classification model provides a database of previously approved treatment plans that are achievable for a new patient. An exemplary case, highlighting tradeoffs between the heart and chest wall dose while holding target dose constant in two historical plans is provided. We report on the first artificial-intelligence based clinical decision support system that connects patients to past discrete treatment plans in radiation oncology and demonstrate for the first time how this tool can enable clinicians to use past decisions to help inform current assessments. Clinicians can be informed of dose tradeoffs between critical structures early in the treatment process, enabling more time spent on finding the optimal course of treatment for individual patients. Copyright © 2017. Published by Elsevier B.V.

  13. Lead optimization attrition analysis (LOAA): a novel and general methodology for medicinal chemistry.

    PubMed

    Munson, Mark; Lieberman, Harvey; Tserlin, Elina; Rocnik, Jennifer; Ge, Jie; Fitzgerald, Maria; Patel, Vinod; Garcia-Echeverria, Carlos

    2015-08-01

    Herein, we report a novel and general method, lead optimization attrition analysis (LOAA), to benchmark two distinct small-molecule lead series using a relatively unbiased, simple technique and commercially available software. We illustrate this approach with data collected during lead optimization of two independent oncology programs as a case study. Easily generated graphics and attrition curves enabled us to calibrate progress and support go/no go decisions on each program. We believe that this data-driven technique could be used broadly by medicinal chemists and management to guide strategic decisions during drug discovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Comparing efficacy of reduced-toxicity allogeneic hematopoietic cell transplantation with conventional chemo-(immuno) therapy in patients with relapsed or refractory CLL: a Markov decision analysis.

    PubMed

    Kharfan-Dabaja, M A; Pidala, J; Kumar, A; Terasawa, T; Djulbegovic, B

    2012-09-01

    Despite therapeutic advances, relapsed/refractory CLL, particularly after fludarabine-based regimens, remains a major challenge for which optimal therapy is undefined. No randomized comparative data exist to suggest the superiority of reduced-toxicity allogeneic hematopoietic cell transplantation (RT-allo-HCT) over conventional chemo-(immuno) therapy (CCIT). By using estimates from a systematic review and by meta-analysis of available published evidence, we constructed a Markov decision model to examine these competing modalities. Cohort analysis demonstrated superior outcome for RT-allo-HCT, with a 10-month overall life expectancy (and 6-month quality-adjusted life expectancy (QALE)) advantage over CCIT. Although the model was sensitive to changes in base-case assumptions and transition probabilities, RT-allo-HCT provided superior overall life expectancy through a range of values supported by the meta-analysis. QALE was superior for RT-allo-HCT compared with CCIT. This conclusion was sensitive to change in the anticipated state utility associated with the post-allogeneic HCT state; however, RT-allo-HCT remained the optimal strategy for values supported by existing literature. This analysis provides a quantitative comparison of outcomes between RT-allo-HCT and CCIT for relapsed/refractory CLL in the absence of randomized comparative trials. Confirmation of these findings requires a prospective randomized trial, which compares the most effective RT-allo-HCT and CCIT regimens for relapsed/refractory CLL.

  15. Optimizing Negotiation Conflict in the Cloud Service Negotiation Framework Using Probabilistic Decision Making Model

    PubMed Central

    Rajavel, Rajkumar; Thangarathinam, Mala

    2015-01-01

    Optimization of negotiation conflict in the cloud service negotiation framework is identified as one of the major challenging issues. This negotiation conflict occurs during the bilateral negotiation process between the participants due to the misperception, aggressive behavior, and uncertain preferences and goals about their opponents. Existing research work focuses on the prerequest context of negotiation conflict optimization by grouping similar negotiation pairs using distance, binary, context-dependent, and fuzzy similarity approaches. For some extent, these approaches can maximize the success rate and minimize the communication overhead among the participants. To further optimize the success rate and communication overhead, the proposed research work introduces a novel probabilistic decision making model for optimizing the negotiation conflict in the long-term negotiation context. This decision model formulates the problem of managing different types of negotiation conflict that occurs during negotiation process as a multistage Markov decision problem. At each stage of negotiation process, the proposed decision model generates the heuristic decision based on the past negotiation state information without causing any break-off among the participants. In addition, this heuristic decision using the stochastic decision tree scenario can maximize the revenue among the participants available in the cloud service negotiation framework. PMID:26543899

  16. Optimizing Negotiation Conflict in the Cloud Service Negotiation Framework Using Probabilistic Decision Making Model.

    PubMed

    Rajavel, Rajkumar; Thangarathinam, Mala

    2015-01-01

    Optimization of negotiation conflict in the cloud service negotiation framework is identified as one of the major challenging issues. This negotiation conflict occurs during the bilateral negotiation process between the participants due to the misperception, aggressive behavior, and uncertain preferences and goals about their opponents. Existing research work focuses on the prerequest context of negotiation conflict optimization by grouping similar negotiation pairs using distance, binary, context-dependent, and fuzzy similarity approaches. For some extent, these approaches can maximize the success rate and minimize the communication overhead among the participants. To further optimize the success rate and communication overhead, the proposed research work introduces a novel probabilistic decision making model for optimizing the negotiation conflict in the long-term negotiation context. This decision model formulates the problem of managing different types of negotiation conflict that occurs during negotiation process as a multistage Markov decision problem. At each stage of negotiation process, the proposed decision model generates the heuristic decision based on the past negotiation state information without causing any break-off among the participants. In addition, this heuristic decision using the stochastic decision tree scenario can maximize the revenue among the participants available in the cloud service negotiation framework.

  17. Acquisition of decision making criteria: reward rate ultimately beats accuracy.

    PubMed

    Balci, Fuat; Simen, Patrick; Niyogi, Ritwik; Saxe, Andrew; Hughes, Jessica A; Holmes, Philip; Cohen, Jonathan D

    2011-02-01

    Speed-accuracy trade-offs strongly influence the rate of reward that can be earned in many decision-making tasks. Previous reports suggest that human participants often adopt suboptimal speed-accuracy trade-offs in single session, two-alternative forced-choice tasks. We investigated whether humans acquired optimal speed-accuracy trade-offs when extensively trained with multiple signal qualities. When performance was characterized in terms of decision time and accuracy, our participants eventually performed nearly optimally in the case of higher signal qualities. Rather than adopting decision criteria that were individually optimal for each signal quality, participants adopted a single threshold that was nearly optimal for most signal qualities. However, setting a single threshold for different coherence conditions resulted in only negligible decrements in the maximum possible reward rate. Finally, we tested two hypotheses regarding the possible sources of suboptimal performance: (1) favoring accuracy over reward rate and (2) misestimating the reward rate due to timing uncertainty. Our findings provide support for both hypotheses, but also for the hypothesis that participants can learn to approach optimality. We find specifically that an accuracy bias dominates early performance, but diminishes greatly with practice. The residual discrepancy between optimal and observed performance can be explained by an adaptive response to uncertainty in time estimation.

  18. A nonlinear bi-level programming approach for product portfolio management.

    PubMed

    Ma, Shuang

    2016-01-01

    Product portfolio management (PPM) is a critical decision-making for companies across various industries in today's competitive environment. Traditional studies on PPM problem have been motivated toward engineering feasibilities and marketing which relatively pay less attention to other competitors' actions and the competitive relations, especially in mathematical optimization domain. The key challenge lies in that how to construct a mathematical optimization model to describe this Stackelberg game-based leader-follower PPM problem and the competitive relations between them. The primary work of this paper is the representation of a decision framework and the optimization model to leverage the PPM problem of leader and follower. A nonlinear, integer bi-level programming model is developed based on the decision framework. Furthermore, a bi-level nested genetic algorithm is put forward to solve this nonlinear bi-level programming model for leader-follower PPM problem. A case study of notebook computer product portfolio optimization is reported. Results and analyses reveal that the leader-follower bi-level optimization model is robust and can empower product portfolio optimization.

  19. Randomized pilot study and qualitative evaluation of a clinical decision support system for brain tumour diagnosis based on SV ¹H MRS: evaluation as an additional information procedure for novice radiologists.

    PubMed

    Sáez, Carlos; Martí-Bonmatí, Luis; Alberich-Bayarri, Angel; Robles, Montserrat; García-Gómez, Juan M

    2014-02-01

    The results of a randomized pilot study and qualitative evaluation of the clinical decision support system Curiam BT are reported. We evaluated the system's feasibility and potential value as a radiological information procedure complementary to magnetic resonance (MR) imaging to assist novice radiologists in diagnosing brain tumours using MR spectroscopy (1.5 and 3.0T). Fifty-five cases were analysed at three hospitals according to four non-exclusive diagnostic questions. Our results show that Curiam BT improved the diagnostic accuracy in all the four questions. Additionally, we discuss the findings of the users' feedback about the system, and the further work to optimize it for real environments and to conduct a large clinical trial. © 2013 Published by Elsevier Ltd.

  20. Constructive Engineering of Simulations

    NASA Technical Reports Server (NTRS)

    Snyder, Daniel R.; Barsness, Brendan

    2011-01-01

    Joint experimentation that investigates sensor optimization, re-tasking and management has far reaching implications for Department of Defense, Interagency and multinational partners. An adaption of traditional human in the loop (HITL) Modeling and Simulation (M&S) was one approach used to generate the findings necessary to derive and support these implications. Here an entity-based simulation was re-engineered to run on USJFCOM's High Performance Computer (HPC). The HPC was used to support the vast number of constructive runs necessary to produce statistically significant data in a timely manner. Then from the resulting sensitivity analysis, event designers blended the necessary visualization and decision making components into a synthetic environment for the HITL simulations trials. These trials focused on areas where human decision making had the greatest impact on the sensor investigations. Thus, this paper discusses how re-engineering existing M&S for constructive applications can positively influence the design of an associated HITL experiment.

  1. Weighting Statistical Inputs for Data Used to Support Effective Decision Making During Severe Emergency Weather and Environmental Events

    NASA Technical Reports Server (NTRS)

    Gardner, Adrian

    2010-01-01

    National Aeronautical and Space Administration (NASA) weather and atmospheric environmental organizations are insatiable consumers of geophysical, hydrometeorological and solar weather statistics. The expanding array of internet-worked sensors producing targeted physical measurements has generated an almost factorial explosion of near real-time inputs to topical statistical datasets. Normalizing and value-based parsing of such statistical datasets in support of time-constrained weather and environmental alerts and warnings is essential, even with dedicated high-performance computational capabilities. What are the optimal indicators for advanced decision making? How do we recognize the line between sufficient statistical sampling and excessive, mission destructive sampling ? How do we assure that the normalization and parsing process, when interpolated through numerical models, yields accurate and actionable alerts and warnings? This presentation will address the integrated means and methods to achieve desired outputs for NASA and consumers of its data.

  2. Implementation of workflow engine technology to deliver basic clinical decision support functionality.

    PubMed

    Huser, Vojtech; Rasmussen, Luke V; Oberg, Ryan; Starren, Justin B

    2011-04-10

    Workflow engine technology represents a new class of software with the ability to graphically model step-based knowledge. We present application of this novel technology to the domain of clinical decision support. Successful implementation of decision support within an electronic health record (EHR) remains an unsolved research challenge. Previous research efforts were mostly based on healthcare-specific representation standards and execution engines and did not reach wide adoption. We focus on two challenges in decision support systems: the ability to test decision logic on retrospective data prior prospective deployment and the challenge of user-friendly representation of clinical logic. We present our implementation of a workflow engine technology that addresses the two above-described challenges in delivering clinical decision support. Our system is based on a cross-industry standard of XML (extensible markup language) process definition language (XPDL). The core components of the system are a workflow editor for modeling clinical scenarios and a workflow engine for execution of those scenarios. We demonstrate, with an open-source and publicly available workflow suite, that clinical decision support logic can be executed on retrospective data. The same flowchart-based representation can also function in a prospective mode where the system can be integrated with an EHR system and respond to real-time clinical events. We limit the scope of our implementation to decision support content generation (which can be EHR system vendor independent). We do not focus on supporting complex decision support content delivery mechanisms due to lack of standardization of EHR systems in this area. We present results of our evaluation of the flowchart-based graphical notation as well as architectural evaluation of our implementation using an established evaluation framework for clinical decision support architecture. We describe an implementation of a free workflow technology software suite (available at http://code.google.com/p/healthflow) and its application in the domain of clinical decision support. Our implementation seamlessly supports clinical logic testing on retrospective data and offers a user-friendly knowledge representation paradigm. With the presented software implementation, we demonstrate that workflow engine technology can provide a decision support platform which evaluates well against an established clinical decision support architecture evaluation framework. Due to cross-industry usage of workflow engine technology, we can expect significant future functionality enhancements that will further improve the technology's capacity to serve as a clinical decision support platform.

  3. Rotorcraft Diagnostics

    NASA Technical Reports Server (NTRS)

    Haste, Deepak; Azam, Mohammad; Ghoshal, Sudipto; Monte, James

    2012-01-01

    Health management (HM) in any engineering systems requires adequate understanding about the system s functioning; a sufficient amount of monitored data; the capability to extract, analyze, and collate information; and the capability to combine understanding and information for HM-related estimation and decision-making. Rotorcraft systems are, in general, highly complex. Obtaining adequate understanding about functioning of such systems is quite difficult, because of the proprietary (restricted access) nature of their designs and dynamic models. Development of an EIM (exact inverse map) solution for rotorcraft requires a process that can overcome the abovementioned difficulties and maximally utilize monitored information for HM facilitation via employing advanced analytic techniques. The goal was to develop a versatile HM solution for rotorcraft for facilitation of the Condition Based Maintenance Plus (CBM+) capabilities. The effort was geared towards developing analytic and reasoning techniques, and proving the ability to embed the required capabilities on a rotorcraft platform, paving the way for implementing the solution on an aircraft-level system for consolidation and reporting. The solution for rotorcraft can he used offboard or embedded directly onto a rotorcraft system. The envisioned solution utilizes available monitored and archived data for real-time fault detection and identification, failure precursor identification, and offline fault detection and diagnostics, health condition forecasting, optimal guided troubleshooting, and maintenance decision support. A variant of the onboard version is a self-contained hardware and software (HW+SW) package that can be embedded on rotorcraft systems. The HM solution comprises components that gather/ingest data and information, perform information/feature extraction, analyze information in conjunction with the dependency/diagnostic model of the target system, facilitate optimal guided troubleshooting, and offer decision support for optimal maintenance.

  4. Combining MLC and SVM Classifiers for Learning Based Decision Making: Analysis and Evaluations

    PubMed Central

    Zhang, Yi; Ren, Jinchang; Jiang, Jianmin

    2015-01-01

    Maximum likelihood classifier (MLC) and support vector machines (SVM) are two commonly used approaches in machine learning. MLC is based on Bayesian theory in estimating parameters of a probabilistic model, whilst SVM is an optimization based nonparametric method in this context. Recently, it is found that SVM in some cases is equivalent to MLC in probabilistically modeling the learning process. In this paper, MLC and SVM are combined in learning and classification, which helps to yield probabilistic output for SVM and facilitate soft decision making. In total four groups of data are used for evaluations, covering sonar, vehicle, breast cancer, and DNA sequences. The data samples are characterized in terms of Gaussian/non-Gaussian distributed and balanced/unbalanced samples which are then further used for performance assessment in comparing the SVM and the combined SVM-MLC classifier. Interesting results are reported to indicate how the combined classifier may work under various conditions. PMID:26089862

  5. Combining MLC and SVM Classifiers for Learning Based Decision Making: Analysis and Evaluations.

    PubMed

    Zhang, Yi; Ren, Jinchang; Jiang, Jianmin

    2015-01-01

    Maximum likelihood classifier (MLC) and support vector machines (SVM) are two commonly used approaches in machine learning. MLC is based on Bayesian theory in estimating parameters of a probabilistic model, whilst SVM is an optimization based nonparametric method in this context. Recently, it is found that SVM in some cases is equivalent to MLC in probabilistically modeling the learning process. In this paper, MLC and SVM are combined in learning and classification, which helps to yield probabilistic output for SVM and facilitate soft decision making. In total four groups of data are used for evaluations, covering sonar, vehicle, breast cancer, and DNA sequences. The data samples are characterized in terms of Gaussian/non-Gaussian distributed and balanced/unbalanced samples which are then further used for performance assessment in comparing the SVM and the combined SVM-MLC classifier. Interesting results are reported to indicate how the combined classifier may work under various conditions.

  6. Web-services-based spatial decision support system to facilitate nuclear waste siting

    NASA Astrophysics Data System (ADS)

    Huang, L. Xinglai; Sheng, Grant

    2006-10-01

    The availability of spatial web services enables data sharing among managers, decision and policy makers and other stakeholders in much simpler ways than before and subsequently has created completely new opportunities in the process of spatial decision making. Though generally designed for a certain problem domain, web-services-based spatial decision support systems (WSDSS) can provide a flexible problem-solving environment to explore the decision problem, understand and refine problem definition, and generate and evaluate multiple alternatives for decision. This paper presents a new framework for the development of a web-services-based spatial decision support system. The WSDSS is comprised of distributed web services that either have their own functions or provide different geospatial data and may reside in different computers and locations. WSDSS includes six key components, namely: database management system, catalog, analysis functions and models, GIS viewers and editors, report generators, and graphical user interfaces. In this study, the architecture of a web-services-based spatial decision support system to facilitate nuclear waste siting is described as an example. The theoretical, conceptual and methodological challenges and issues associated with developing web services-based spatial decision support system are described.

  7. Identification of the Criteria for Decision Making of Cut-Away Peatland Reuse

    NASA Astrophysics Data System (ADS)

    Padur, Kadi; Ilomets, Mati; Põder, Tõnis

    2017-03-01

    The total area of abandoned milled peatlands which need to be rehabilitated for sustainable land-use is nearly 10,000 ha in Estonia. According to the agreement between Estonia and the European Union, Estonia has to create suitable conditions for restoration of 2000 ha of abandoned cut-away peatlands by 2023. The decisions on rehabilitation of abandoned milled peatlands have so far relied on a limited knowledgebase with unestablished methodologies, thus the decision making process needs a significant improvement. This study aims to improve the methodology by identifying the criteria for optimal decision making to ensure sustainable land use planning after peat extraction. Therefore relevant environmental, social and economic restrictive and weighted comparison criteria, which assess reuse alternatives suitability for achieving the goal, is developed in cooperation with stakeholders. Restrictive criteria are arranged into a decision tree to help to determine the implementable reuse alternatives in various situations. Weighted comparison criteria are developed in cooperation with stakeholders to rank the reuse alternatives. The comparison criteria are organised hierarchically into a value tree. In the situation, where the selection of a suitable rehabilitation alternative for a specific milled peatland is going to be made, the weighted comparison criteria values need to be identified and the presented approach supports the optimal and transparent decision making. In addition to Estonian context the general results of the study could also be applied to a cut-away peatlands in other regions with need-based site-dependent modifications of criteria values and weights.

  8. Identification of the Criteria for Decision Making of Cut-Away Peatland Reuse.

    PubMed

    Padur, Kadi; Ilomets, Mati; Põder, Tõnis

    2017-03-01

    The total area of abandoned milled peatlands which need to be rehabilitated for sustainable land-use is nearly 10,000 ha in Estonia. According to the agreement between Estonia and the European Union, Estonia has to create suitable conditions for restoration of 2000 ha of abandoned cut-away peatlands by 2023. The decisions on rehabilitation of abandoned milled peatlands have so far relied on a limited knowledgebase with unestablished methodologies, thus the decision making process needs a significant improvement. This study aims to improve the methodology by identifying the criteria for optimal decision making to ensure sustainable land use planning after peat extraction. Therefore relevant environmental, social and economic restrictive and weighted comparison criteria, which assess reuse alternatives suitability for achieving the goal, is developed in cooperation with stakeholders. Restrictive criteria are arranged into a decision tree to help to determine the implementable reuse alternatives in various situations. Weighted comparison criteria are developed in cooperation with stakeholders to rank the reuse alternatives. The comparison criteria are organised hierarchically into a value tree. In the situation, where the selection of a suitable rehabilitation alternative for a specific milled peatland is going to be made, the weighted comparison criteria values need to be identified and the presented approach supports the optimal and transparent decision making. In addition to Estonian context the general results of the study could also be applied to a cut-away peatlands in other regions with need-based site-dependent modifications of criteria values and weights.

  9. The role of optimization in the next generation of computer-based design tools

    NASA Technical Reports Server (NTRS)

    Rogan, J. Edward

    1989-01-01

    There is a close relationship between design optimization and the emerging new generation of computer-based tools for engineering design. With some notable exceptions, the development of these new tools has not taken full advantage of recent advances in numerical design optimization theory and practice. Recent work in the field of design process architecture has included an assessment of the impact of next-generation computer-based design tools on the design process. These results are summarized, and insights into the role of optimization in a design process based on these next-generation tools are presented. An example problem has been worked out to illustrate the application of this technique. The example problem - layout of an aircraft main landing gear - is one that is simple enough to be solved by many other techniques. Although the mathematical relationships describing the objective function and constraints for the landing gear layout problem can be written explicitly and are quite straightforward, an approximation technique has been used in the solution of this problem that can just as easily be applied to integrate supportability or producibility assessments using theory of measurement techniques into the design decision-making process.

  10. Theory-informed design of values clarification methods: a cognitive psychological perspective on patient health-related decision making.

    PubMed

    Pieterse, Arwen H; de Vries, Marieke; Kunneman, Marleen; Stiggelbout, Anne M; Feldman-Stewart, Deb

    2013-01-01

    Healthcare decisions, particularly those involving weighing benefits and harms that may significantly affect quality and/or length of life, should reflect patients' preferences. To support patients in making choices, patient decision aids and values clarification methods (VCM) in particular have been developed. VCM intend to help patients to determine the aspects of the choices that are important to their selection of a preferred option. Several types of VCM exist. However, they are often designed without clear reference to theory, which makes it difficult for their development to be systematic and internally coherent. Our goal was to provide theory-informed recommendations for the design of VCM. Process theories of decision making specify components of decision processes, thus, identify particular processes that VCM could aim to facilitate. We conducted a review of the MEDLINE and PsycINFO databases and of references to theories included in retrieved papers, to identify process theories of decision making. We selected a theory if (a) it fulfilled criteria for a process theory; (b) provided a coherent description of the whole process of decision making; and (c) empirical evidence supports at least some of its postulates. Four theories met our criteria: Image Theory, Differentiation and Consolidation theory, Parallel Constraint Satisfaction theory, and Fuzzy-trace Theory. Based on these, we propose that VCM should: help optimize mental representations; encourage considering all potentially appropriate options; delay selection of an initially favoured option; facilitate the retrieval of relevant values from memory; facilitate the comparison of options and their attributes; and offer time to decide. In conclusion, our theory-based design recommendations are explicit and transparent, providing an opportunity to test each in a systematic manner. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. The role of risk aversion in non-conscious decision making.

    PubMed

    Wang, Shuo; Krajbich, Ian; Adolphs, Ralph; Tsuchiya, Naotsugu

    2012-01-01

    To what extent can people choose advantageously without knowing why they are making those choices? This hotly debated question has capitalized on the Iowa Gambling Task (IGT), in which people often learn to choose advantageously without appearing to know why. However, because the IGT is unconstrained in many respects, this finding remains debated and other interpretations are possible (e.g., risk aversion, ambiguity aversion, limits of working memory, or insensitivity to reward/punishment can explain the finding of the IGT). Here we devised an improved variant of the IGT in which the deck-payoff contingency switches after subjects repeatedly choose from a good deck, offering the statistical power of repeated within-subject measures based on learning the reward contingencies associated with each deck. We found that participants exhibited low confidence in their choices, as probed with post-decision wagering, despite high accuracy in selecting advantageous decks in the task, which is putative evidence for non-conscious decision making. However, such a behavioral dissociation could also be explained by risk aversion, a tendency to avoid risky decisions under uncertainty. By explicitly measuring risk aversion for each individual, we predicted subjects' post-decision wagering using Bayesian modeling. We found that risk aversion indeed does play a role, but that it did not explain the entire effect. Moreover, independently measured risk aversion was uncorrelated with risk aversion exhibited during our version of the IGT, raising the possibility that the latter risk aversion may be non-conscious. Our findings support the idea that people can make optimal choices without being fully aware of the basis of their decision. We suggest that non-conscious decision making may be mediated by emotional feelings of risk that are based on mechanisms distinct from those that support cognitive assessment of risk.

  12. The Role of Risk Aversion in Non-Conscious Decision Making

    PubMed Central

    Wang, Shuo; Krajbich, Ian; Adolphs, Ralph; Tsuchiya, Naotsugu

    2012-01-01

    To what extent can people choose advantageously without knowing why they are making those choices? This hotly debated question has capitalized on the Iowa Gambling Task (IGT), in which people often learn to choose advantageously without appearing to know why. However, because the IGT is unconstrained in many respects, this finding remains debated and other interpretations are possible (e.g., risk aversion, ambiguity aversion, limits of working memory, or insensitivity to reward/punishment can explain the finding of the IGT). Here we devised an improved variant of the IGT in which the deck-payoff contingency switches after subjects repeatedly choose from a good deck, offering the statistical power of repeated within-subject measures based on learning the reward contingencies associated with each deck. We found that participants exhibited low confidence in their choices, as probed with post-decision wagering, despite high accuracy in selecting advantageous decks in the task, which is putative evidence for non-conscious decision making. However, such a behavioral dissociation could also be explained by risk aversion, a tendency to avoid risky decisions under uncertainty. By explicitly measuring risk aversion for each individual, we predicted subjects’ post-decision wagering using Bayesian modeling. We found that risk aversion indeed does play a role, but that it did not explain the entire effect. Moreover, independently measured risk aversion was uncorrelated with risk aversion exhibited during our version of the IGT, raising the possibility that the latter risk aversion may be non-conscious. Our findings support the idea that people can make optimal choices without being fully aware of the basis of their decision. We suggest that non-conscious decision making may be mediated by emotional feelings of risk that are based on mechanisms distinct from those that support cognitive assessment of risk. PMID:22375133

  13. Optimal GENCO bidding strategy

    NASA Astrophysics Data System (ADS)

    Gao, Feng

    Electricity industries worldwide are undergoing a period of profound upheaval. The conventional vertically integrated mechanism is being replaced by a competitive market environment. Generation companies have incentives to apply novel technologies to lower production costs, for example: Combined Cycle units. Economic dispatch with Combined Cycle units becomes a non-convex optimization problem, which is difficult if not impossible to solve by conventional methods. Several techniques are proposed here: Mixed Integer Linear Programming, a hybrid method, as well as Evolutionary Algorithms. Evolutionary Algorithms share a common mechanism, stochastic searching per generation. The stochastic property makes evolutionary algorithms robust and adaptive enough to solve a non-convex optimization problem. This research implements GA, EP, and PS algorithms for economic dispatch with Combined Cycle units, and makes a comparison with classical Mixed Integer Linear Programming. The electricity market equilibrium model not only helps Independent System Operator/Regulator analyze market performance and market power, but also provides Market Participants the ability to build optimal bidding strategies based on Microeconomics analysis. Supply Function Equilibrium (SFE) is attractive compared to traditional models. This research identifies a proper SFE model, which can be applied to a multiple period situation. The equilibrium condition using discrete time optimal control is then developed for fuel resource constraints. Finally, the research discusses the issues of multiple equilibria and mixed strategies, which are caused by the transmission network. Additionally, an advantage of the proposed model for merchant transmission planning is discussed. A market simulator is a valuable training and evaluation tool to assist sellers, buyers, and regulators to understand market performance and make better decisions. A traditional optimization model may not be enough to consider the distributed, large-scale, and complex energy market. This research compares the performance and searching paths of different artificial life techniques such as Genetic Algorithm (GA), Evolutionary Programming (EP), and Particle Swarm (PS), and look for a proper method to emulate Generation Companies' (GENCOs) bidding strategies. After deregulation, GENCOs face risk and uncertainty associated with the fast-changing market environment. A profit-based bidding decision support system is critical for GENCOs to keep a competitive position in the new environment. Most past research do not pay special attention to the piecewise staircase characteristic of generator offer curves. This research proposes an optimal bidding strategy based on Parametric Linear Programming. The proposed algorithm is able to handle actual piecewise staircase energy offer curves. The proposed method is then extended to incorporate incomplete information based on Decision Analysis. Finally, the author develops an optimal bidding tool (GenBidding) and applies it to the RTS96 test system.

  14. Big-Data Based Decision-Support Systems to Improve Clinicians' Cognition.

    PubMed

    Roosan, Don; Samore, Matthew; Jones, Makoto; Livnat, Yarden; Clutter, Justin

    2016-01-01

    Complex clinical decision-making could be facilitated by using population health data to inform clinicians. In two previous studies, we interviewed 16 infectious disease experts to understand complex clinical reasoning. For this study, we focused on answers from the experts on how clinical reasoning can be supported by population-based Big-Data. We found cognitive strategies such as trajectory tracking, perspective taking, and metacognition has the potential to improve clinicians' cognition to deal with complex problems. These cognitive strategies could be supported by population health data, and all have important implications for the design of Big-Data based decision-support tools that could be embedded in electronic health records. Our findings provide directions for task allocation and design of decision-support applications for health care industry development of Big data based decision-support systems.

  15. Big-Data Based Decision-Support Systems to Improve Clinicians’ Cognition

    PubMed Central

    Roosan, Don; Samore, Matthew; Jones, Makoto; Livnat, Yarden; Clutter, Justin

    2016-01-01

    Complex clinical decision-making could be facilitated by using population health data to inform clinicians. In two previous studies, we interviewed 16 infectious disease experts to understand complex clinical reasoning. For this study, we focused on answers from the experts on how clinical reasoning can be supported by population-based Big-Data. We found cognitive strategies such as trajectory tracking, perspective taking, and metacognition has the potential to improve clinicians’ cognition to deal with complex problems. These cognitive strategies could be supported by population health data, and all have important implications for the design of Big-Data based decision-support tools that could be embedded in electronic health records. Our findings provide directions for task allocation and design of decision-support applications for health care industry development of Big data based decision-support systems. PMID:27990498

  16. An Optimization Model for the Allocation of University Based Merit Aid

    ERIC Educational Resources Information Center

    Sugrue, Paul K.

    2010-01-01

    The allocation of merit-based financial aid during the college admissions process presents postsecondary institutions with complex and financially expensive decisions. This article describes the application of linear programming as a decision tool in merit based financial aid decisions at a medium size private university. The objective defined for…

  17. Bayesian Phase II optimization for time-to-event data based on historical information.

    PubMed

    Bertsche, Anja; Fleischer, Frank; Beyersmann, Jan; Nehmiz, Gerhard

    2017-01-01

    After exploratory drug development, companies face the decision whether to initiate confirmatory trials based on limited efficacy information. This proof-of-concept decision is typically performed after a Phase II trial studying a novel treatment versus either placebo or an active comparator. The article aims to optimize the design of such a proof-of-concept trial with respect to decision making. We incorporate historical information and develop pre-specified decision criteria accounting for the uncertainty of the observed treatment effect. We optimize these criteria based on sensitivity and specificity, given the historical information. Specifically, time-to-event data are considered in a randomized 2-arm trial with additional prior information on the control treatment. The proof-of-concept criterion uses treatment effect size, rather than significance. Criteria are defined on the posterior distribution of the hazard ratio given the Phase II data and the historical control information. Event times are exponentially modeled within groups, allowing for group-specific conjugate prior-to-posterior calculation. While a non-informative prior is placed on the investigational treatment, the control prior is constructed via the meta-analytic-predictive approach. The design parameters including sample size and allocation ratio are then optimized, maximizing the probability of taking the right decision. The approach is illustrated with an example in lung cancer.

  18. Optimizing model: insemination, replacement, seasonal production, and cash flow.

    PubMed

    DeLorenzo, M A; Spreen, T H; Bryan, G R; Beede, D K; Van Arendonk, J A

    1992-03-01

    Dynamic programming to solve the Markov decision process problem of optimal insemination and replacement decisions was adapted to address large dairy herd management decision problems in the US. Expected net present values of cow states (151,200) were used to determine the optimal policy. States were specified by class of parity (n = 12), production level (n = 15), month of calving (n = 12), month of lactation (n = 16), and days open (n = 7). Methodology optimized decisions based on net present value of an individual cow and all replacements over a 20-yr decision horizon. Length of decision horizon was chosen to ensure that optimal policies were determined for an infinite planning horizon. Optimization took 286 s of central processing unit time. The final probability transition matrix was determined, in part, by the optimal policy. It was estimated iteratively to determine post-optimization steady state herd structure, milk production, replacement, feed inputs and costs, and resulting cash flow on a calendar month and annual basis if optimal policies were implemented. Implementation of the model included seasonal effects on lactation curve shapes, estrus detection rates, pregnancy rates, milk prices, replacement costs, cull prices, and genetic progress. Other inputs included calf values, values of dietary TDN and CP per kilogram, and discount rate. Stochastic elements included conception (and, thus, subsequent freshening), cow milk production level within herd, and survival. Validation of optimized solutions was by separate simulation model, which implemented policies on a simulated herd and also described herd dynamics during transition to optimized structure.

  19. Final findings on the development and evaluation of an en-route fuel optimal conflict resolution algorithm to support strategic decision-making.

    DOT National Transportation Integrated Search

    2012-01-01

    The novel strategic conflict-resolution algorithm for fuel minimization that is documented in this report : provides air traffic controllers and/or pilots with fuel-optimal heading, speed, and altitude : recommendations in the en route flight phase, ...

  20. SU-G-BRC-13: Model Based Classification for Optimal Position Selection for Left-Sided Breast Radiotherapy: Free Breathing, DIBH, Or Prone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, H; Liu, T; Xu, X

    Purpose: There are clinical decision challenges to select optimal treatment positions for left-sided breast cancer patients—supine free breathing (FB), supine Deep Inspiration Breath Hold (DIBH) and prone free breathing (prone). Physicians often make the decision based on experiences and trials, which might not always result optimal OAR doses. We herein propose a mathematical model to predict the lowest OAR doses among these three positions, providing a quantitative tool for corresponding clinical decision. Methods: Patients were scanned in FB, DIBH, and prone positions under an IRB approved protocol. Tangential beam plans were generated for each position, and OAR doses were calculated.more » The position with least OAR doses is defined as the optimal position. The following features were extracted from each scan to build the model: heart, ipsilateral lung, breast volume, in-field heart, ipsilateral lung volume, distance between heart and target, laterality of heart, and dose to heart and ipsilateral lung. Principal Components Analysis (PCA) was applied to remove the co-linearity of the input data and also to lower the data dimensionality. Feature selection, another method to reduce dimensionality, was applied as a comparison. Support Vector Machine (SVM) was then used for classification. Thirtyseven patient data were acquired; up to now, five patient plans were available. K-fold cross validation was used to validate the accuracy of the classifier model with small training size. Results: The classification results and K-fold cross validation demonstrated the model is capable of predicting the optimal position for patients. The accuracy of K-fold cross validations has reached 80%. Compared to PCA, feature selection allows causal features of dose to be determined. This provides more clinical insights. Conclusion: The proposed classification system appeared to be feasible. We are generating plans for the rest of the 37 patient images, and more statistically significant results are to be presented.« less

  1. Towards Optimal Operation of the Reservoir System in Upper Yellow River: Incorporating Long- and Short-term Operations and Using Rolling Updated Hydrologic Forecast Information

    NASA Astrophysics Data System (ADS)

    Si, Y.; Li, X.; Li, T.; Huang, Y.; Yin, D.

    2016-12-01

    The cascade reservoirs in Upper Yellow River (UYR), one of the largest hydropower bases in China, play a vital role in peak load and frequency regulation for Northwest China Power Grid. The joint operation of this system has been put forward for years whereas has not come into effect due to management difficulties and inflow uncertainties, and thus there is still considerable improvement room for hydropower production. This study presents a decision support framework incorporating long- and short-term operation of the reservoir system. For long-term operation, we maximize hydropower production of the reservoir system using historical hydrological data of multiple years, and derive operating rule curves for storage reservoirs. For short-term operation, we develop a program consisting of three modules, namely hydrologic forecast module, reservoir operation module and coordination module. The coordination module is responsible for calling the hydrologic forecast module to acquire predicted inflow within a short-term horizon, and transferring the information to the reservoir operation module to generate optimal release decision. With the hydrologic forecast information updated, the rolling short-term optimization is iterated until the end of operation period, where the long-term operating curves serve as the ending storage target. As an application, the Digital Yellow River Integrated Model (referred to as "DYRIM", which is specially designed for runoff-sediment simulation in the Yellow River basin by Tsinghua University) is used in the hydrologic forecast module, and the successive linear programming (SLP) in the reservoir operation module. The application in the reservoir system of UYR demonstrates that the framework can effectively support real-time decision making, and ensure both computational accuracy and speed. Furthermore, it is worth noting that the general framework can be extended to any other reservoir system with any or combination of hydrological model(s) to forecast and any solver to optimize the operation of reservoir system.

  2. Performance Assessment for Pump-and-Treat Closure or Transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truex, Michael J.; Johnson, Christian D.; Becker, Dave J.

    2015-09-29

    A structured performance assessment approach is useful to evaluate pump-and-treat (P&T) groundwater remediation, which has been applied at numerous sites. Consistent with the U.S. Environmental Protection Agency’s Groundwater Road Map, performance assessment during remedy implementation may be needed, and should consider remedy optimization, transition to alternative remedies, or remedy closure. In addition, a recent National Research Council study examined groundwater remediation at complex contaminated sites and concluded that it may be beneficial to evaluate remedy performance and the potential need for transition to alternative approaches at these sites. The intent of this document is to provide a structured approach formore » assessing P&T performance to support a decision to optimize, transition, or close a P&T remedy. The process presented in this document for gathering information and performing evaluations to support P&T remedy decisions includes use of decision elements to distinguish between potential outcomes of a remedy decision. Case studies are used to augment descriptions of decision elements and to illustrate each type of outcome identified in the performance assessment approach. The document provides references to resources for tools and other guidance relevant to conducting the P&T assessment.« less

  3. Practical considerations to guide development of access controls and decision support for genetic information in electronic medical records.

    PubMed

    Darcy, Diana C; Lewis, Eleanor T; Ormond, Kelly E; Clark, David J; Trafton, Jodie A

    2011-11-02

    Genetic testing is increasingly used as a tool throughout the health care system. In 2011 the number of clinically available genetic tests is approaching 2,000, and wide variation exists between these tests in their sensitivity, specificity, and clinical implications, as well as the potential for discrimination based on the results. As health care systems increasingly implement electronic medical record systems (EMRs) they must carefully consider how to use information from this wide spectrum of genetic tests, with whom to share information, and how to provide decision support for clinicians to properly interpret the information. Although some characteristics of genetic tests overlap with other medical test results, there are reasons to make genetic test results widely available to health care providers and counterbalancing reasons to restrict access to these test results to honor patient preferences, and avoid distracting or confusing clinicians with irrelevant but complex information. Electronic medical records can facilitate and provide reasonable restrictions on access to genetic test results and deliver education and decision support tools to guide appropriate interpretation and use. This paper will serve to review some of the key characteristics of genetic tests as they relate to design of access control and decision support of genetic test information in the EMR, emphasizing the clear need for health information technology (HIT) to be part of optimal implementation of genetic medicine, and the importance of understanding key characteristics of genetic tests when designing HIT applications.

  4. An Integrated Gate Turnaround Management Concept Leveraging Big Data/Analytics for NAS Performance Improvements

    NASA Technical Reports Server (NTRS)

    Chung, William; Chachad, Girish; Hochstetler, Ronald

    2016-01-01

    The Integrated Gate Turnaround Management (IGTM) concept was developed to improve the gate turnaround performance at the airport by leveraging relevant historical data to support optimization of airport gate operations, which include: taxi to the gate, gate services, push back, taxi to the runway, and takeoff, based on available resources, constraints, and uncertainties. By analyzing events of gate operations, primary performance dependent attributes of these events were identified for the historical data analysis such that performance models can be developed based on uncertainties to support descriptive, predictive, and prescriptive functions. A system architecture was developed to examine system requirements in support of such a concept. An IGTM prototype was developed to demonstrate the concept using a distributed network and collaborative decision tools for stakeholders to meet on time pushback performance under uncertainties.

  5. Optimal assignment of workers to supporting services in a hospital

    NASA Astrophysics Data System (ADS)

    Sawik, Bartosz; Mikulik, Jerzy

    2008-01-01

    Supporting services play an important role in health care institutions such as hospitals. This paper presents an application of operations research model for optimal allocation of workers among supporting services in a public hospital. The services include logistics, inventory management, financial management, operations management, medical analysis, etc. The optimality criterion of the problem is to minimize operations costs of supporting services subject to some specific constraints. The constraints represent specific conditions for resource allocation in a hospital. The overall problem is formulated as an integer program in the literature known as the assignment problem, where the decision variables represent the assignment of people to various jobs. The results of some computational experiments modeled on a real data from a selected Polish hospital are reported.

  6. Workflow management in large distributed systems

    NASA Astrophysics Data System (ADS)

    Legrand, I.; Newman, H.; Voicu, R.; Dobre, C.; Grigoras, C.

    2011-12-01

    The MonALISA (Monitoring Agents using a Large Integrated Services Architecture) framework provides a distributed service system capable of controlling and optimizing large-scale, data-intensive applications. An essential part of managing large-scale, distributed data-processing facilities is a monitoring system for computing facilities, storage, networks, and the very large number of applications running on these systems in near realtime. All this monitoring information gathered for all the subsystems is essential for developing the required higher-level services—the components that provide decision support and some degree of automated decisions—and for maintaining and optimizing workflow in large-scale distributed systems. These management and global optimization functions are performed by higher-level agent-based services. We present several applications of MonALISA's higher-level services including optimized dynamic routing, control, data-transfer scheduling, distributed job scheduling, dynamic allocation of storage resource to running jobs and automated management of remote services among a large set of grid facilities.

  7. GLIMPSE: A decision support tool for simultaneously achieving our air quality management and climate change mitigation goals

    NASA Astrophysics Data System (ADS)

    Pinder, R. W.; Akhtar, F.; Loughlin, D. H.; Henze, D. K.; Bowman, K. W.

    2012-12-01

    Poor air quality, ecosystem damages, and climate change all are caused by the combustion of fossil fuels, yet environmental management often addresses each of these challenges separately. This can lead to sub-optimal strategies and unintended consequences. Here we present GLIMPSE -- a decision support tool for simultaneously achieving our air quality and climate change mitigation goals. GLIMPSE comprises of two types of models, (i) the adjoint of the GEOS-Chem chemical transport model, to calculate the relationship between emissions and impacts at high spatial resolution, and (ii) the MARKAL energy system model, to calculate the relationship between energy technologies and emissions. This presentation will demonstrate how GLIMPSE can be used to explore energy scenarios to better achieve both improved air quality and mitigate climate change. Second, this presentation will discuss how space-based observations can be incorporated into GLIMPSE to improve decision-making. NASA satellite products, namely ozone radiative forcing from the Tropospheric Emission Spectrometer (TES), are used to extend GLIMPSE to include the impact of emissions on ozone radiative forcing. This provides a much needed observational constraint on ozone radiative forcing.

  8. Intelligent support of e-management for consumer-focused virtual enterprises

    NASA Astrophysics Data System (ADS)

    Chandra, Charu; Smirnov, Alexander V.

    2000-10-01

    The interest in consumer-focused virtual enterprises (VE) decision-making problem is growing fast. The purpose of this type of enterprise is to transform incomplete information about customer orders and available resources into-co-ordinated plans for production and replenishment of goods and services in the temporal network formed by collaborating units. This implies that information in the consumer-focused VE can be shared via Internet, Intranet, and Extranet for business-to-consumer (B2C), business-to-business service (B2B-S), and business-to-business goods (B2B-G) transactions. One of the goals of Internet-Based Management (e-management) is to facilitate transfer and sharing of data and knowledge in the context of enterprise collaboration. This paper discusses a generic framework of e-management that integrates intelligent information support group-decision making, and agreement modeling for a VE network. It offers the platform for design and modeling of diverse implementation strategies related to the type of agreement, optimization policies, decision-making strategies, organization structures, and information sharing strategies and mechanisms, and business policies for the VE.

  9. Knowledge Visualizations: A Tool to Achieve Optimized Operational Decision Making and Data Integration

    DTIC Science & Technology

    2015-06-01

    Hadoop Distributed File System (HDFS) without any integration with Accumulo-based Knowledge Stores based on OWL/RDF. 4. Cloud Based The Apache Software...BTW, 7(12), pp. 227–241. Godin, A. & Akins, D. (2014). Extending DCGS-N naval tactical clouds from in-storage to in-memory for the integrated fires...VISUALIZATIONS: A TOOL TO ACHIEVE OPTIMIZED OPERATIONAL DECISION MAKING AND DATA INTEGRATION by Paul C. Hudson Jeffrey A. Rzasa June 2015 Thesis

  10. Introduction to Decision Support Systems for Risk Based Management of Contaminated Sites

    EPA Science Inventory

    A book on Decision Support Systems for Risk-based Management of contaminated sites is appealing for two reasons. First, it addresses the problem of contaminated sites, which has worldwide importance. Second, it presents Decision Support Systems (DSSs), which are powerful comput...

  11. GIS-Based Suitability Model for Assessment of Forest Biomass Energy Potential in a Region of Portugal

    NASA Astrophysics Data System (ADS)

    Quinta-Nova, Luis; Fernandez, Paulo; Pedro, Nuno

    2017-12-01

    This work focuses on developed a decision support system based on multicriteria spatial analysis to assess the potential for generation of biomass residues from forestry sources in a region of Portugal (Beira Baixa). A set of environmental, economic and social criteria was defined, evaluated and weighted in the context of Saaty’s analytic hierarchies. The best alternatives were obtained after applying Analytic Hierarchy Process (AHP). The model was applied to the central region of Portugal where forest and agriculture are the most representative land uses. Finally, sensitivity analysis of the set of factors and their associated weights was performed to test the robustness of the model. The proposed evaluation model provides a valuable reference for decision makers in establishing a standardized means of selecting the optimal location for new biomass plants.

  12. Inventory-transportation integrated optimization for maintenance spare parts of high-speed trains

    PubMed Central

    Wang, Jiaxi; Wang, Huasheng; Wang, Zhongkai; Li, Jian; Lin, Ruixi; Xiao, Jie; Wu, Jianping

    2017-01-01

    This paper presents a 0–1 programming model aimed at obtaining the optimal inventory policy and transportation mode for maintenance spare parts of high-speed trains. To obtain the model parameters for occasionally-replaced spare parts, a demand estimation method based on the maintenance strategies of China’s high-speed railway system is proposed. In addition, we analyse the shortage time using PERT, and then calculate the unit time shortage cost from the viewpoint of train operation revenue. Finally, a real-world case study from Shanghai Depot is conducted to demonstrate our method. Computational results offer an effective and efficient decision support for inventory managers. PMID:28472097

  13. Intergroup Conflict and Rational Decision Making

    PubMed Central

    Martínez-Tur, Vicente; Peñarroja, Vicente; Serrano, Miguel A.; Hidalgo, Vanesa; Moliner, Carolina; Salvador, Alicia; Alacreu-Crespo, Adrián; Gracia, Esther; Molina, Agustín

    2014-01-01

    The literature has been relatively silent about post-conflict processes. However, understanding the way humans deal with post-conflict situations is a challenge in our societies. With this in mind, we focus the present study on the rationality of cooperative decision making after an intergroup conflict, i.e., the extent to which groups take advantage of post-conflict situations to obtain benefits from collaborating with the other group involved in the conflict. Based on dual-process theories of thinking and affect heuristic, we propose that intergroup conflict hinders the rationality of cooperative decision making. We also hypothesize that this rationality improves when groups are involved in an in-group deliberative discussion. Results of a laboratory experiment support the idea that intergroup conflict –associated with indicators of the activation of negative feelings (negative affect state and heart rate)– has a negative effect on the aforementioned rationality over time and on both group and individual decision making. Although intergroup conflict leads to sub-optimal decision making, rationality improves when groups and individuals subjected to intergroup conflict make decisions after an in-group deliberative discussion. Additionally, the increased rationality of the group decision making after the deliberative discussion is transferred to subsequent individual decision making. PMID:25461384

  14. Intergroup conflict and rational decision making.

    PubMed

    Martínez-Tur, Vicente; Peñarroja, Vicente; Serrano, Miguel A; Hidalgo, Vanesa; Moliner, Carolina; Salvador, Alicia; Alacreu-Crespo, Adrián; Gracia, Esther; Molina, Agustín

    2014-01-01

    The literature has been relatively silent about post-conflict processes. However, understanding the way humans deal with post-conflict situations is a challenge in our societies. With this in mind, we focus the present study on the rationality of cooperative decision making after an intergroup conflict, i.e., the extent to which groups take advantage of post-conflict situations to obtain benefits from collaborating with the other group involved in the conflict. Based on dual-process theories of thinking and affect heuristic, we propose that intergroup conflict hinders the rationality of cooperative decision making. We also hypothesize that this rationality improves when groups are involved in an in-group deliberative discussion. Results of a laboratory experiment support the idea that intergroup conflict -associated with indicators of the activation of negative feelings (negative affect state and heart rate)- has a negative effect on the aforementioned rationality over time and on both group and individual decision making. Although intergroup conflict leads to sub-optimal decision making, rationality improves when groups and individuals subjected to intergroup conflict make decisions after an in-group deliberative discussion. Additionally, the increased rationality of the group decision making after the deliberative discussion is transferred to subsequent individual decision making.

  15. Analysis of Nursing Clinical Decision Support Requests and Strategic Plan in a Large Academic Health System.

    PubMed

    Whalen, Kimberly; Bavuso, Karen; Bouyer-Ferullo, Sharon; Goldsmith, Denise; Fairbanks, Amanda; Gesner, Emily; Lagor, Charles; Collins, Sarah

    2016-01-01

    To understand requests for nursing Clinical Decision Support (CDS) interventions at a large integrated health system undergoing vendor-based EHR implementation. In addition, to establish a process to guide both short-term implementation and long-term strategic goals to meet nursing CDS needs. We conducted an environmental scan to understand current state of nursing CDS over three months. The environmental scan consisted of a literature review and an analysis of CDS requests received from across our health system. We identified existing high priority CDS and paper-based tools used in nursing practice at our health system that guide decision-making. A total of 46 nursing CDS requests were received. Fifty-six percent (n=26) were specific to a clinical specialty; 22 percent (n=10) were focused on facilitating clinical consults in the inpatient setting. "Risk Assessments/Risk Reduction/Promotion of Healthy Habits" (n=23) was the most requested High Priority Category received for nursing CDS. A continuum of types of nursing CDS needs emerged using the Data-Information-Knowledge-Wisdom Conceptual Framework: 1) facilitating data capture, 2) meeting information needs, 3) guiding knowledge-based decision making, and 4) exposing analytics for wisdom-based clinical interpretation by the nurse. Identifying and prioritizing paper-based tools that can be modified into electronic CDS is a challenge. CDS strategy is an evolving process that relies on close collaboration and engagement with clinical sites for short-term implementation and should be incorporated into a long-term strategic plan that can be optimized and achieved overtime. The Data-Information-Knowledge-Wisdom Conceptual Framework in conjunction with the High Priority Categories established may be a useful tool to guide a strategic approach for meeting short-term nursing CDS needs and aligning with the organizational strategic plan.

  16. A simulation based optimization approach to model and design life support systems for manned space missions

    NASA Astrophysics Data System (ADS)

    Aydogan, Selen

    This dissertation considers the problem of process synthesis and design of life-support systems for manned space missions. A life-support system is a set of technologies to support human life for short and long-term spaceflights, via providing the basic life-support elements, such as oxygen, potable water, and food. The design of the system needs to meet the crewmember demand for the basic life-support elements (products of the system) and it must process the loads generated by the crewmembers. The system is subject to a myriad of uncertainties because most of the technologies involved are still under development. The result is high levels of uncertainties in the estimates of the model parameters, such as recovery rates or process efficiencies. Moreover, due to the high recycle rates within the system, the uncertainties are amplified and propagated within the system, resulting in a complex problem. In this dissertation, two algorithms have been successfully developed to help making design decisions for life-support systems. The algorithms utilize a simulation-based optimization approach that combines a stochastic discrete-event simulation and a deterministic mathematical programming approach to generate multiple, unique realizations of the controlled evolution of the system. The timelines are analyzed using time series data mining techniques and statistical tools to determine the necessary technologies, their deployment schedules and capacities, and the necessary basic life-support element amounts to support crew life and activities for the mission duration.

  17. An imaging informatics-based ePR (electronic patient record) system for providing decision support in evaluating dose optimization in stroke rehabilitation

    NASA Astrophysics Data System (ADS)

    Liu, Brent J.; Winstein, Carolee; Wang, Ximing; Konersman, Matt; Martinez, Clarisa; Schweighofer, Nicolas

    2012-02-01

    Stroke is one of the major causes of death and disability in America. After stroke, about 65% of survivors still suffer from severe paresis, while rehabilitation treatment strategy after stroke plays an essential role in recovery. Currently, there is a clinical trial (NIH award #HD065438) to determine the optimal dose of rehabilitation for persistent recovery of arm and hand paresis. For DOSE (Dose Optimization Stroke Evaluation), laboratory-based measurements, such as the Wolf Motor Function test, behavioral questionnaires (e.g. Motor Activity Log-MAL), and MR, DTI, and Transcranial Magnetic Stimulation (TMS) imaging studies are planned. Current data collection processes are tedious and reside in various standalone systems including hardcopy forms. In order to improve the efficiency of this clinical trial and facilitate decision support, a web-based imaging informatics system has been implemented together with utilizing mobile devices (eg, iPAD, tablet PC's, laptops) for collecting input data and integrating all multi-media data into a single system. The system aims to provide clinical imaging informatics management and a platform to develop tools to predict the treatment effect based on the imaging studies and the treatment dosage with mathematical models. Since there is a large amount of information to be recorded within the DOSE project, the system provides clinical data entry through mobile device applications thus allowing users to collect data at the point of patient interaction without typing into a desktop computer, which is inconvenient. Imaging analysis tools will also be developed for structural MRI, DTI, and TMS imaging studies that will be integrated within the system and correlated with the clinical and behavioral data. This system provides a research platform for future development of mathematical models to evaluate the differences between prediction and reality and thus improve and refine the models rapidly and efficiently.

  18. Decision Support Systems and the Conflict Model of Decision Making: A Stimulus for New Computer-Assisted Careers Guidance Systems.

    ERIC Educational Resources Information Center

    Ballantine, R. Malcolm

    Decision Support Systems (DSSs) are computer-based decision aids to use when making decisions which are partially amenable to rational decision-making procedures but contain elements where intuitive judgment is an essential component. In such situations, DSSs are used to improve the quality of decision-making. The DSS approach is based on Simon's…

  19. A fast inverse treatment planning strategy facilitating optimized catheter selection in image-guided high-dose-rate interstitial gynecologic brachytherapy.

    PubMed

    Guthier, Christian V; Damato, Antonio L; Hesser, Juergen W; Viswanathan, Akila N; Cormack, Robert A

    2017-12-01

    Interstitial high-dose rate (HDR) brachytherapy is an important therapeutic strategy for the treatment of locally advanced gynecologic (GYN) cancers. The outcome of this therapy is determined by the quality of dose distribution achieved. This paper focuses on a novel yet simple heuristic for catheter selection for GYN HDR brachytherapy and their comparison against state of the art optimization strategies. The proposed technique is intended to act as a decision-supporting tool to select a favorable needle configuration. The presented heuristic for catheter optimization is based on a shrinkage-type algorithm (SACO). It is compared against state of the art planning in a retrospective study of 20 patients who previously received image-guided interstitial HDR brachytherapy using a Syed Neblett template. From those plans, template orientation and position are estimated via a rigid registration of the template with the actual catheter trajectories. All potential straight trajectories intersecting the contoured clinical target volume (CTV) are considered for catheter optimization. Retrospectively generated plans and clinical plans are compared with respect to dosimetric performance and optimization time. All plans were generated with one single run of the optimizer lasting 0.6-97.4 s. Compared to manual optimization, SACO yields a statistically significant (P ≤ 0.05) improved target coverage while at the same time fulfilling all dosimetric constraints for organs at risk (OARs). Comparing inverse planning strategies, dosimetric evaluation for SACO and "hybrid inverse planning and optimization" (HIPO), as gold standard, shows no statistically significant difference (P > 0.05). However, SACO provides the potential to reduce the number of used catheters without compromising plan quality. The proposed heuristic for needle selection provides fast catheter selection with optimization times suited for intraoperative treatment planning. Compared to manual optimization, the proposed methodology results in fewer catheters without a clinically significant loss in plan quality. The proposed approach can be used as a decision support tool that guides the user to find the ideal number and configuration of catheters. © 2017 American Association of Physicists in Medicine.

  20. Advancing research in transitional care: challenges of culture, language and health literacy in Asian American and native Hawaiian elders.

    PubMed

    Nishita, Christy; Browne, Colette

    2013-02-01

    Recent federal policy supports an individual's preference for home and community-based long-term care, even among nursing home residents. Optimizing transitions from the nursing home to home is a complex undertaking that requires addressing the interrelationships between health literacy and cultural-linguistic factors in the nation's increasingly diverse older adult population. We look at four Asian American and Pacific Islander elder populations to illustrate that differing health profiles and cultural-linguistic values can affect the type of care and support needed and preferred. A research gap exists that links these factors together for optimal transitional care. The paper presents a conceptual framework and proposes a six-point research agenda that includes family assessments of health literacy abilities, exploring the relationship between culture, health, and decision-making, and the development/adaptation of transition planning tools.

  1. Systematic Review of Medical Informatics-Supported Medication Decision Making.

    PubMed

    Melton, Brittany L

    2017-01-01

    This systematic review sought to assess the applications and implications of current medical informatics-based decision support systems related to medication prescribing and use. Studies published between January 2006 and July 2016 which were indexed in PubMed and written in English were reviewed, and 39 studies were ultimately included. Most of the studies looked at computerized provider order entry or clinical decision support systems. Most studies examined decision support systems as a means of reducing errors or risk, particularly associated with medication prescribing, whereas a few studies evaluated the impact medical informatics-based decision support systems have on workflow or operations efficiency. Most studies identified benefits associated with decision support systems, but some indicate there is room for improvement.

  2. Who Chokes Under Pressure? The Big Five Personality Traits and Decision-Making under Pressure.

    PubMed

    Byrne, Kaileigh A; Silasi-Mansat, Crina D; Worthy, Darrell A

    2015-02-01

    The purpose of the present study was to examine whether the Big Five personality factors could predict who thrives or chokes under pressure during decision-making. The effects of the Big Five personality factors on decision-making ability and performance under social (Experiment 1) and combined social and time pressure (Experiment 2) were examined using the Big Five Personality Inventory and a dynamic decision-making task that required participants to learn an optimal strategy. In Experiment 1, a hierarchical multiple regression analysis showed an interaction between neuroticism and pressure condition. Neuroticism negatively predicted performance under social pressure, but did not affect decision-making under low pressure. Additionally, the negative effect of neuroticism under pressure was replicated using a combined social and time pressure manipulation in Experiment 2. These results support distraction theory whereby pressure taxes highly neurotic individuals' cognitive resources, leading to sub-optimal performance. Agreeableness also negatively predicted performance in both experiments.

  3. Estimation of power lithium-ion battery SOC based on fuzzy optimal decision

    NASA Astrophysics Data System (ADS)

    He, Dongmei; Hou, Enguang; Qiao, Xin; Liu, Guangmin

    2018-06-01

    In order to improve vehicle performance and safety, need to accurately estimate the power lithium battery state of charge (SOC), analyzing the common SOC estimation methods, according to the characteristics open circuit voltage and Kalman filter algorithm, using T - S fuzzy model, established a lithium battery SOC estimation method based on the fuzzy optimal decision. Simulation results show that the battery model accuracy can be improved.

  4. Canonical Duality Theory and Algorithms for Solving Some Challenging Problems in Global Optimization and Decision Science

    DTIC Science & Technology

    2015-09-24

    algorithms for solving real- world problems. Within the past five years, 2 books, 5 journal special issues, and about 60 papers have been published...Four international conferences have been organized, including the 3rd World Congress of Global Optimization. A unified methodology and algorithm have...been developed with real- world applications. This grant has been used to support and co-support three post-doctors, three PhD students, one part

  5. Home care decision support using an Arden engine--merging smart home and vital signs data.

    PubMed

    Marschollek, Michael; Bott, Oliver J; Wolf, Klaus-H; Gietzelt, Matthias; Plischke, Maik; Madiesh, Moaaz; Song, Bianying; Haux, Reinhold

    2009-01-01

    The demographic change with a rising proportion of very old people and diminishing resources leads to an intensification of the use of telemedicine and home care concepts. To provide individualized decision support, data from different sources, e.g. vital signs sensors and home environmental sensors, need to be combined and analyzed together. Furthermore, a standardized decision support approach is necessary. The aim of our research work is to present a laboratory prototype home care architecture that integrates data from different sources and uses a decision support system based on the HL7 standard Arden Syntax for Medical Logical Modules. Data from environmental sensors connected to a home bus system are stored in a data base along with data from wireless medical sensors. All data are analyzed using an Arden engine with the medical knowledge represented in Medical Logic Modules. Multi-modal data from four different sensors in the home environment are stored in a single data base and are analyzed using an HL7 standard conformant decision support system. Individualized home care decision support must be based on all data available, including context data from smart home systems and medical data from electronic health records. Our prototype implementation shows the feasibility of using an Arden engine for decision support in a home setting. Our future work will include the utilization of medical background knowledge for individualized decision support, as there is no one-size-fits-all knowledge base in medicine.

  6. Implementation of workflow engine technology to deliver basic clinical decision support functionality

    PubMed Central

    2011-01-01

    Background Workflow engine technology represents a new class of software with the ability to graphically model step-based knowledge. We present application of this novel technology to the domain of clinical decision support. Successful implementation of decision support within an electronic health record (EHR) remains an unsolved research challenge. Previous research efforts were mostly based on healthcare-specific representation standards and execution engines and did not reach wide adoption. We focus on two challenges in decision support systems: the ability to test decision logic on retrospective data prior prospective deployment and the challenge of user-friendly representation of clinical logic. Results We present our implementation of a workflow engine technology that addresses the two above-described challenges in delivering clinical decision support. Our system is based on a cross-industry standard of XML (extensible markup language) process definition language (XPDL). The core components of the system are a workflow editor for modeling clinical scenarios and a workflow engine for execution of those scenarios. We demonstrate, with an open-source and publicly available workflow suite, that clinical decision support logic can be executed on retrospective data. The same flowchart-based representation can also function in a prospective mode where the system can be integrated with an EHR system and respond to real-time clinical events. We limit the scope of our implementation to decision support content generation (which can be EHR system vendor independent). We do not focus on supporting complex decision support content delivery mechanisms due to lack of standardization of EHR systems in this area. We present results of our evaluation of the flowchart-based graphical notation as well as architectural evaluation of our implementation using an established evaluation framework for clinical decision support architecture. Conclusions We describe an implementation of a free workflow technology software suite (available at http://code.google.com/p/healthflow) and its application in the domain of clinical decision support. Our implementation seamlessly supports clinical logic testing on retrospective data and offers a user-friendly knowledge representation paradigm. With the presented software implementation, we demonstrate that workflow engine technology can provide a decision support platform which evaluates well against an established clinical decision support architecture evaluation framework. Due to cross-industry usage of workflow engine technology, we can expect significant future functionality enhancements that will further improve the technology's capacity to serve as a clinical decision support platform. PMID:21477364

  7. Estimating and communicating prognosis in advanced neurologic disease

    PubMed Central

    Gramling, Robert; Kelly, Adam G.

    2013-01-01

    Prognosis can no longer be relegated behind diagnosis and therapy in high-quality neurologic care. High-stakes decisions that patients (or their surrogates) make often rest upon perceptions and beliefs about prognosis, many of which are poorly informed. The new science of prognostication—the estimating and communication “what to expect”—is in its infancy and the evidence base to support “best practices” is lacking. We propose a framework for formulating a prediction and communicating “what to expect” with patients, families, and surrogates in the context of common neurologic illnesses. Because neurologic disease affects function as much as survival, we specifically address 2 important prognostic questions: “How long?” and “How well?” We provide a summary of prognostic information and highlight key points when tailoring a prognosis for common neurologic diseases. We discuss the challenges of managing prognostic uncertainty, balancing hope and realism, and ways to effectively engage surrogate decision-makers. We also describe what is known about the nocebo effects and the self-fulfilling prophecy when communicating prognoses. There is an urgent need to establish research and educational priorities to build a credible evidence base to support best practices, improve communication skills, and optimize decision-making. Confronting the challenges of prognosis is necessary to fulfill the promise of delivering high-quality, patient-centered care. PMID:23420894

  8. Web-Based Cancer Communication and Decision Making Systems: Connecting Patients, Caregivers, and Clinicians for Improved Health Outcomes

    PubMed Central

    DuBenske, Lori L.; Gustafson, David H.; Shaw, Bret R.; Cleary, James F.

    2011-01-01

    Over the cancer disease trajectory, from diagnosis and treatment to remission or end of life, patients and their families face difficult decisions. The provision of information and support when most relevant can optimize cancer decision making and coping. An interactive health communication system (IHCS) offers the potential to bridge the communication gaps that occur among patients, family, and clinicians and to empower each to actively engage in cancer care and shared decision making. This is a report of the authors' experience (with a discussion of relevant literature) in developing and testing a Web-based IHCS—the Comprehensive Health Enhancement Support System (CHESS)—for patients with advanced lung cancer and their family caregivers. CHESS provides information, communication, and coaching resources as well as a symptom tracking system that reports health status to the clinical team. Development of an IHCS includes a needs assessment of the target audience and applied theory informed by continued stakeholder involvement in early testing. Critical issues of IHCS implementation include 1) need for interventions that accommodate a variety of format preferences and technology comfort ranges; 2) IHCS user training, 3) clinician investment in IHCS promotion, and 4) IHCS integration with existing medical systems. In creating such comprehensive systems, development strategies need to be grounded in population needs with appropriate use of technology that serves the target users, including the patient/family, clinical team, and health care organization. Implementation strategies should address timing, personnel, and environmental factors to facilitate continued use and benefit from IHCS. An interactive health communication system (IHCS) offers one platform for providing the information, communication, and coaching resources that cancer patients and their families need to understand the disease, find support, and develop decision-making and coping skills. One such IHCS—the Comprehensive Health Enhancement Support System (CHESS)—has evolved over the past 20 years. Based on our recent experience creating and testing a new version of CHESS—“Coping with Lung Cancer: A Network of Support”—this article outlines the issues faced in developing and implementing such a system within the cancer context. PMID:21041539

  9. Optimal strategies for electric energy contract decision making

    NASA Astrophysics Data System (ADS)

    Song, Haili

    2000-10-01

    The power industry restructuring in various countries in recent years has created an environment where trading of electric energy is conducted in a market environment. In such an environment, electric power companies compete for the market share through spot and bilateral markets. Being profit driven, electric power companies need to make decisions on spot market bidding, contract evaluation, and risk management. New methods and software tools are required to meet these upcoming needs. In this research, bidding strategy and contract pricing are studied from a market participant's viewpoint; new methods are developed to guide a market participant in spot and bilateral market operation. A supplier's spot market bidding decision is studied. Stochastic optimization is formulated to calculate a supplier's optimal bids in a single time period. This decision making problem is also formulated as a Markov Decision Process. All the competitors are represented by their bidding parameters with corresponding probabilities. A systematic method is developed to calculate transition probabilities and rewards. The optimal strategy is calculated to maximize the expected reward over a planning horizon. Besides the spot market, a power producer can also trade in the bilateral markets. Bidding strategies in a bilateral market are studied with game theory techniques. Necessary and sufficient conditions of Nash Equilibrium (NE) bidding strategy are derived based on the generators' cost and the loads' willingness to pay. The study shows that in any NE, market efficiency is achieved. Furthermore, all Nash equilibria are revenue equivalent for the generators. The pricing of "Flexible" contracts, which allow delivery flexibility over a period of time with a fixed total amount of electricity to be delivered, is analyzed based on the no-arbitrage pricing principle. The proposed algorithm calculates the price based on the optimality condition of the stochastic optimization formulation. Simulation examples illustrate the tradeoffs between prices and scheduling flexibility. Spot bidding and contract pricing are not independent decision processes. The interaction between spot bidding and contract evaluation is demonstrated with game theory equilibrium model and market simulation results. It leads to the conclusion that a market participant's contract decision making needs to be further investigated as an integrated optimization formulation.

  10. A hybrid system dynamics and optimization approach for supporting sustainable water resources planning in Zhengzhou City, China

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Li, Chunhui; Wang, Xuan; Peng, Cong; Cai, Yanpeng; Huang, Weichen

    2018-01-01

    Problems with water resources restrict the sustainable development of a city with water shortages. Based on system dynamics (SD) theory, a model of sustainable utilization of water resources using the STELLA software has been established. This model consists of four subsystems: population system, economic system, water supply system and water demand system. The boundaries of the four subsystems are vague, but they are closely related and interdependent. The model is applied to Zhengzhou City, China, which has a serious water shortage. The difference between the water supply and demand is very prominent in Zhengzhou City. The model was verified with data from 2009 to 2013. The results show that water demand of Zhengzhou City will reach 2.57 billion m3 in 2020. A water resources optimization model is developed based on interval-parameter two-stage stochastic programming. The objective of the model is to allocate water resources to each water sector and make the lowest cost under the minimum water demand. Using the simulation results, decision makers can easily weigh the costs of the system, the water allocation objectives, and the system risk. The hybrid system dynamics method and optimization model is a rational try to support water resources management in many cities, particularly for cities with potential water shortage and it is solidly supported with previous studies and collected data.

  11. Medical decision-making in children and adolescents: developmental and neuroscientific aspects.

    PubMed

    Grootens-Wiegers, Petronella; Hein, Irma M; van den Broek, Jos M; de Vries, Martine C

    2017-05-08

    Various international laws and guidelines stress the importance of respecting the developing autonomy of children and involving minors in decision-making regarding treatment and research participation. However, no universal agreement exists as to at what age minors should be deemed decision-making competent. Minors of the same age may show different levels of maturity. In addition, patients deemed rational conversation-partners as a child can suddenly become noncompliant as an adolescent. Age, context and development all play a role in decision-making competence. In this article we adopt a perspective on competence that specifically focuses on the impact of brain development on the child's decision-making process. We believe that the discussion on decision-making competence of minors can greatly benefit from a multidisciplinary approach. We adopted such an approach in order to contribute to the understanding on how to deal with children in decision-making situations. Evidence emerging from neuroscience research concerning the developing brain structures in minors is combined with insights from various other fields, such as psychology, decision-making science and ethics. Four capacities have been described that are required for (medical) decision-making: (1) communicating a choice; (2) understanding; (3) reasoning; and (4) appreciation. Each capacity is related to a number of specific skills and abilities that need to be sufficiently developed to support the capacity. Based on this approach it can be concluded that at the age of 12 children can have the capacity to be decision-making competent. However, this age coincides with the onset of adolescence. Early development of the brain's reward system combined with late development of the control system diminishes decision-making competence in adolescents in specific contexts. We conclude that even adolescents possessing capacities required for decision-making, may need support of facilitating environmental factors. This paper intends to offer insight in neuroscientific mechanisms underlying the medical decision-making capacities in minors and to stimulate practices for optimal involvement of minors. Developing minors become increasingly capable of decision-making, but the neurobiological development in adolescence affects competence in specific contexts. Adequate support should be offered in order to create a context in which minors can make competently make decisions.

  12. A Web-Based Tool to Support Data-Based Early Intervention Decision Making

    ERIC Educational Resources Information Center

    Buzhardt, Jay; Greenwood, Charles; Walker, Dale; Carta, Judith; Terry, Barbara; Garrett, Matthew

    2010-01-01

    Progress monitoring and data-based intervention decision making have become key components of providing evidence-based early childhood special education services. Unfortunately, there is a lack of tools to support early childhood service providers' decision-making efforts. The authors describe a Web-based system that guides service providers…

  13. An Internationally Consented Standard for Nursing Process-Clinical Decision Support Systems in Electronic Health Records.

    PubMed

    Müller-Staub, Maria; de Graaf-Waar, Helen; Paans, Wolter

    2016-11-01

    Nurses are accountable to apply the nursing process, which is key for patient care: It is a problem-solving process providing the structure for care plans and documentation. The state-of-the art nursing process is based on classifications that contain standardized concepts, and therefore, it is named Advanced Nursing Process. It contains valid assessments, nursing diagnoses, interventions, and nursing-sensitive patient outcomes. Electronic decision support systems can assist nurses to apply the Advanced Nursing Process. However, nursing decision support systems are missing, and no "gold standard" is available. The study aim is to develop a valid Nursing Process-Clinical Decision Support System Standard to guide future developments of clinical decision support systems. In a multistep approach, a Nursing Process-Clinical Decision Support System Standard with 28 criteria was developed. After pilot testing (N = 29 nurses), the criteria were reduced to 25. The Nursing Process-Clinical Decision Support System Standard was then presented to eight internationally known experts, who performed qualitative interviews according to Mayring. Fourteen categories demonstrate expert consensus on the Nursing Process-Clinical Decision Support System Standard and its content validity. All experts agreed the Advanced Nursing Process should be the centerpiece for the Nursing Process-Clinical Decision Support System and should suggest research-based, predefined nursing diagnoses and correct linkages between diagnoses, evidence-based interventions, and patient outcomes.

  14. A Natural Language Processing-based Model to Automate MRI Brain Protocol Selection and Prioritization.

    PubMed

    Brown, Andrew D; Marotta, Thomas R

    2017-02-01

    Incorrect imaging protocol selection can contribute to increased healthcare cost and waste. To help healthcare providers improve the quality and safety of medical imaging services, we developed and evaluated three natural language processing (NLP) models to determine whether NLP techniques could be employed to aid in clinical decision support for protocoling and prioritization of magnetic resonance imaging (MRI) brain examinations. To test the feasibility of using an NLP model to support clinical decision making for MRI brain examinations, we designed three different medical imaging prediction tasks, each with a unique outcome: selecting an examination protocol, evaluating the need for contrast administration, and determining priority. We created three models for each prediction task, each using a different classification algorithm-random forest, support vector machine, or k-nearest neighbor-to predict outcomes based on the narrative clinical indications and demographic data associated with 13,982 MRI brain examinations performed from January 1, 2013 to June 30, 2015. Test datasets were used to calculate the accuracy, sensitivity and specificity, predictive values, and the area under the curve. Our optimal results show an accuracy of 82.9%, 83.0%, and 88.2% for the protocol selection, contrast administration, and prioritization tasks, respectively, demonstrating that predictive algorithms can be used to aid in clinical decision support for examination protocoling. NLP models developed from the narrative clinical information provided by referring clinicians and demographic data are feasible methods to predict the protocol and priority of MRI brain examinations. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  15. Urban Rain Gauge Siting Selection Based on Gis-Multicriteria Analysis

    NASA Astrophysics Data System (ADS)

    Fu, Yanli; Jing, Changfeng; Du, Mingyi

    2016-06-01

    With the increasingly rapid growth of urbanization and climate change, urban rainfall monitoring as well as urban waterlogging has widely been paid attention. In the light of conventional siting selection methods do not take into consideration of geographic surroundings and spatial-temporal scale for the urban rain gauge site selection, this paper primarily aims at finding the appropriate siting selection rules and methods for rain gauge in urban area. Additionally, for optimization gauge location, a spatial decision support system (DSS) aided by geographical information system (GIS) has been developed. In terms of a series of criteria, the rain gauge optimal site-search problem can be addressed by a multicriteria decision analysis (MCDA). A series of spatial analytical techniques are required for MCDA to identify the prospective sites. With the platform of GIS, using spatial kernel density analysis can reflect the population density; GIS buffer analysis is used to optimize the location with the rain gauge signal transmission character. Experiment results show that the rules and the proposed method are proper for the rain gauge site selection in urban areas, which is significant for the siting selection of urban hydrological facilities and infrastructure, such as water gauge.

  16. An Optimization Model For Strategy Decision Support to Select Kind of CPO’s Ship

    NASA Astrophysics Data System (ADS)

    Suaibah Nst, Siti; Nababan, Esther; Mawengkang, Herman

    2018-01-01

    The selection of marine transport for the distribution of crude palm oil (CPO) is one of strategy that can be considered in reducing cost of transport. The cost of CPO’s transport from one area to CPO’s factory located at the port of destination may affect the level of CPO’s prices and the number of demands. In order to maintain the availability of CPO a strategy is required to minimize the cost of transporting. In this study, the strategy used to select kind of charter ships as barge or chemical tanker. This study aims to determine an optimization model for strategy decision support in selecting kind of CPO’s ship by minimizing costs of transport. The select of ship was done randomly, so that two-stage stochastic programming model was used to select the kind of ship. Model can help decision makers to select either barge or chemical tanker to distribute CPO.

  17. Reengineering for optimized control of DC networks

    NASA Astrophysics Data System (ADS)

    Vintea, Adela; Schiopu, Paul

    2015-02-01

    The management of the Independent Power Grids is the global body/structure with flexible technological support for Command-Control-Communications and Informatized Management having the responsibility for providing the conditions and information (the informational flux of decision) for the decision-maker aiming at predictable and harmonic administration of the situations (crises) and for generating the harmonic situations (results).

  18. Base norms and discrimination of generalized quantum channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenčová, A.

    2014-02-15

    We introduce and study norms in the space of hermitian matrices, obtained from base norms in positively generated subspaces. These norms are closely related to discrimination of so-called generalized quantum channels, including quantum states, channels, and networks. We further introduce generalized quantum decision problems and show that the maximal average payoffs of decision procedures are again given by these norms. We also study optimality of decision procedures, in particular, we obtain a necessary and sufficient condition under which an optimal 1-tester for discrimination of quantum channels exists, such that the input state is maximally entangled.

  19. Semantic Clinical Guideline Documents

    PubMed Central

    Eriksson, Henrik; Tu, Samson W.; Musen, Mark

    2005-01-01

    Decision-support systems based on clinical practice guidelines can support physicians and other health-care personnel in the process of following best practice consistently. A knowledge-based approach to represent guidelines makes it possible to encode computer-interpretable guidelines in a formal manner, perform consistency checks, and use the guidelines directly in decision-support systems. Decision-support authors and guideline users require guidelines in human-readable formats in addition to computer-interpretable ones (e.g., for guideline review and quality assurance). We propose a new document-oriented information architecture that combines knowledge-representation models with electronic and paper documents. The approach integrates decision-support modes with standard document formats to create a combined clinical-guideline model that supports on-line viewing, printing, and decision support. PMID:16779037

  20. Using Cotton Model Simulations to Estimate Optimally Profitable Irrigation Strategies

    NASA Astrophysics Data System (ADS)

    Mauget, S. A.; Leiker, G.; Sapkota, P.; Johnson, J.; Maas, S.

    2011-12-01

    In recent decades irrigation pumping from the Ogallala Aquifer has led to declines in saturated thickness that have not been compensated for by natural recharge, which has led to questions about the long-term viability of agriculture in the cotton producing areas of west Texas. Adopting irrigation management strategies that optimize profitability while reducing irrigation waste is one way of conserving the aquifer's water resource. Here, a database of modeled cotton yields generated under drip and center pivot irrigated and dryland production scenarios is used in a stochastic dominance analysis that identifies such strategies under varying commodity price and pumping cost conditions. This database and analysis approach will serve as the foundation for a web-based decision support tool that will help producers identify optimal irrigation treatments under specified cotton price, electricity cost, and depth to water table conditions.

  1. Creation of a Tool for Assessing Knowledge in Evidence-Based Decision-Making in Practicing Health Care Providers.

    PubMed

    Spurr, Kathy; Dechman, Gail; Lackie, Kelly; Gilbert, Robert

    2016-01-01

    Evidence-based decision-making (EBDM) is the process health care providers (HCPs) use to identify and appraise potential evidence. It supports the integration of best research evidence with clinical expertise and patient values into the decision-making process for patient care. Competence in this process is essential to delivery of optimal care. There is no objective tool that assesses EBDM across HCP groups. This research aimed to develop a content valid tool to assess knowledge of the principles of evidence-based medicine and the EBDM process, for use with all HCPs. A Delphi process was used in the creation of the tool. Pilot testing established its content validity with the added benefit of evaluating HCPs' knowledge of EBDM. Descriptive statistics and multivariate mixed models were used to evaluate individual survey responses in total, as well as within each EBDM component. The tool consisted of 26 multiple-choice questions. A total of 12,884 HCPs in Nova Scotia were invited to participate in the web-based validation study, yielding 818 (6.3%) participants, 471 of whom completed all questions. The mean overall score was 68%. Knowledge in one component, integration of evidence with clinical expertise and patient preferences, was identified as needing development across all HCPs surveyed. A content valid tool for assessing HCP EBDM knowledge was created and can be used to support the development of continuing education programs to enhance EBDM competency.

  2. A decision support model for improving a multi-family housing complex based on CO2 emission from electricity consumption.

    PubMed

    Hong, Taehoon; Koo, Choongwan; Kim, Hyunjoong

    2012-12-15

    The number of deteriorated multi-family housing complexes in South Korea continues to rise, and consequently their electricity consumption is also increasing. This needs to be addressed as part of the nation's efforts to reduce energy consumption. The objective of this research was to develop a decision support model for determining the need to improve multi-family housing complexes. In this research, 1664 cases located in Seoul were selected for model development. The research team collected the characteristics and electricity energy consumption data of these projects in 2009-2010. The following were carried out in this research: (i) using the Decision Tree, multi-family housing complexes were clustered based on their electricity energy consumption; (ii) using Case-Based Reasoning, similar cases were retrieved from the same cluster; and (iii) using a combination of Multiple Regression Analysis, Artificial Neural Network, and Genetic Algorithm, the prediction performance of the developed model was improved. The results of this research can be used as follows: (i) as basic research data for continuously managing several energy consumption data of multi-family housing complexes; (ii) as advanced research data for predicting energy consumption based on the project characteristics; (iii) as practical research data for selecting the most optimal multi-family housing complex with the most potential in terms of energy savings; and (iv) as consistent and objective criteria for incentives and penalties. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Neurons in the Frontal Lobe Encode the Value of Multiple Decision Variables

    PubMed Central

    Kennerley, Steven W.; Dahmubed, Aspandiar F.; Lara, Antonio H.; Wallis, Jonathan D.

    2009-01-01

    A central question in behavioral science is how we select among choice alternatives to obtain consistently the most beneficial outcomes. Three variables are particularly important when making a decision: the potential payoff, the probability of success, and the cost in terms of time and effort. A key brain region in decision making is the frontal cortex as damage here impairs the ability to make optimal choices across a range of decision types. We simultaneously recorded the activity of multiple single neurons in the frontal cortex while subjects made choices involving the three aforementioned decision variables. This enabled us to contrast the relative contribution of the anterior cingulate cortex (ACC), the orbito-frontal cortex, and the lateral prefrontal cortex to the decision-making process. Neurons in all three areas encoded value relating to choices involving probability, payoff, or cost manipulations. However, the most significant signals were in the ACC, where neurons encoded multiplexed representations of the three different decision variables. This supports the notion that the ACC is an important component of the neural circuitry underlying optimal decision making. PMID:18752411

  4. Passenger Flow Forecasting Research for Airport Terminal Based on SARIMA Time Series Model

    NASA Astrophysics Data System (ADS)

    Li, Ziyu; Bi, Jun; Li, Zhiyin

    2017-12-01

    Based on the data of practical operating of Kunming Changshui International Airport during2016, this paper proposes Seasonal Autoregressive Integrated Moving Average (SARIMA) model to predict the passenger flow. This article not only considers the non-stationary and autocorrelation of the sequence, but also considers the daily periodicity of the sequence. The prediction results can accurately describe the change trend of airport passenger flow and provide scientific decision support for the optimal allocation of airport resources and optimization of departure process. The result shows that this model is applicable to the short-term prediction of airport terminal departure passenger traffic and the average error ranges from 1% to 3%. The difference between the predicted and the true values of passenger traffic flow is quite small, which indicates that the model has fairly good passenger traffic flow prediction ability.

  5. A knowledge-based system for controlling automobile traffic

    NASA Technical Reports Server (NTRS)

    Maravas, Alexander; Stengel, Robert F.

    1994-01-01

    Transportation network capacity variations arising from accidents, roadway maintenance activity, and special events as well as fluctuations in commuters' travel demands complicate traffic management. Artificial intelligence concepts and expert systems can be useful in framing policies for incident detection, congestion anticipation, and optimal traffic management. This paper examines the applicability of intelligent route guidance and control as decision aids for traffic management. Basic requirements for managing traffic are reviewed, concepts for studying traffic flow are introduced, and mathematical models for modeling traffic flow are examined. Measures for quantifying transportation network performance levels are chosen, and surveillance and control strategies are evaluated. It can be concluded that automated decision support holds great promise for aiding the efficient flow of automobile traffic over limited-access roadways, bridges, and tunnels.

  6. Optimizing Distribution of Pandemic Influenza Antiviral Drugs

    PubMed Central

    Huang, Hsin-Chan; Morton, David P.; Johnson, Gregory P.; Gutfraind, Alexander; Galvani, Alison P.; Clements, Bruce; Meyers, Lauren A.

    2015-01-01

    We provide a data-driven method for optimizing pharmacy-based distribution of antiviral drugs during an influenza pandemic in terms of overall access for a target population and apply it to the state of Texas, USA. We found that during the 2009 influenza pandemic, the Texas Department of State Health Services achieved an estimated statewide access of 88% (proportion of population willing to travel to the nearest dispensing point). However, access reached only 34.5% of US postal code (ZIP code) areas containing <1,000 underinsured persons. Optimized distribution networks increased expected access to 91% overall and 60% in hard-to-reach regions, and 2 or 3 major pharmacy chains achieved near maximal coverage in well-populated areas. Independent pharmacies were essential for reaching ZIP code areas containing <1,000 underinsured persons. This model was developed during a collaboration between academic researchers and public health officials and is available as a decision support tool for Texas Department of State Health Services at a Web-based interface. PMID:25625858

  7. Watermark: An Application and Methodology and Application for Interactive and intelligent Decision Support for Groundwater Systems

    NASA Astrophysics Data System (ADS)

    Pierce, S. A.; Wagner, K.; Schwartz, S.; Gentle, J. N., Jr.

    2016-12-01

    Critical water resources face the effects of historic drought, increased demand, and potential contamination, the need has never been greater to develop resources to effectively communicate conservation and protection across a broad audience and geographical area. The Watermark application and macro-analysis methodology merges topical analysis of context rich corpus from policy texts with multi-attributed solution sets from integrated models of water resource and other subsystems, such as mineral, food, energy, or environmental systems to construct a scalable, robust, and reproducible approach for identifying links between policy and science knowledge bases. The Watermark application is an open-source, interactive workspace to support science-based visualization and decision making. Designed with generalization in mind, Watermark is a flexible platform that allows for data analysis and inclusion of large datasets with an interactive front-end capable of connecting with other applications as well as advanced computing resources. In addition, the Watermark analysis methodology offers functionality that streamlines communication with non-technical users for policy, education, or engagement with groups around scientific topics of societal relevance. The technology stack for Watermark was selected with the goal of creating a robust and dynamic modular codebase that can be adjusted to fit many use cases and scale to support usage loads that range between simple data display to complex scientific simulation-based modelling and analytics. The methodology uses to topical analysis and simulation-optimization to systematically analyze the policy and management realities of resource systems and explicitly connect the social and problem contexts with science-based and engineering knowledge from models. A case example demonstrates use in a complex groundwater resources management study highlighting multi-criteria spatial decision making and uncertainty comparisons.

  8. An enhanced export coefficient based optimization model for supporting agricultural nonpoint source pollution mitigation under uncertainty.

    PubMed

    Rong, Qiangqiang; Cai, Yanpeng; Chen, Bing; Yue, Wencong; Yin, Xin'an; Tan, Qian

    2017-02-15

    In this research, an export coefficient based dual inexact two-stage stochastic credibility constrained programming (ECDITSCCP) model was developed through integrating an improved export coefficient model (ECM), interval linear programming (ILP), fuzzy credibility constrained programming (FCCP) and a fuzzy expected value equation within a general two stage programming (TSP) framework. The proposed ECDITSCCP model can effectively address multiple uncertainties expressed as random variables, fuzzy numbers, pure and dual intervals. Also, the model can provide a direct linkage between pre-regulated management policies and the associated economic implications. Moreover, the solutions under multiple credibility levels can be obtained for providing potential decision alternatives for decision makers. The proposed model was then applied to identify optimal land use structures for agricultural NPS pollution mitigation in a representative upstream subcatchment of the Miyun Reservoir watershed in north China. Optimal solutions of the model were successfully obtained, indicating desired land use patterns and nutrient discharge schemes to get a maximum agricultural system benefits under a limited discharge permit. Also, numerous results under multiple credibility levels could provide policy makers with several options, which could help get an appropriate balance between system benefits and pollution mitigation. The developed ECDITSCCP model can be effectively applied to addressing the uncertain information in agricultural systems and shows great applicability to the land use adjustment for agricultural NPS pollution mitigation. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A decision modeling for phasor measurement unit location selection in smart grid systems

    NASA Astrophysics Data System (ADS)

    Lee, Seung Yup

    As a key technology for enhancing the smart grid system, Phasor Measurement Unit (PMU) provides synchronized phasor measurements of voltages and currents of wide-area electric power grid. With various benefits from its application, one of the critical issues in utilizing PMUs is the optimal site selection of units. The main aim of this research is to develop a decision support system, which can be used in resource allocation task for smart grid system analysis. As an effort to suggest a robust decision model and standardize the decision modeling process, a harmonized modeling framework, which considers operational circumstances of component, is proposed in connection with a deterministic approach utilizing integer programming. With the results obtained from the optimal PMU placement problem, the advantages and potential that the harmonized modeling process possesses are assessed and discussed.

  10. Adaptation of a Knowledge-Based Decision-Support System in the Tactical Environment.

    DTIC Science & Technology

    1981-12-01

    002-04-6411S1CURITY CL All PICATION OF 1,416 PAGE (00HIR Onto ea0aOW .L10 *GU9WVC 4bGSI.CAYON S. Voss 10466lVka t... OftesoE ’ making decisons . The...noe..aaw Ad tdlalttt’ IV 680011 MMib) Artificial Intelligence; Decision-Support Systems; Tactical Decision- making ; Knowledge-based Decision-support...tactical information to assist tactical commanders in making decisions. The system, TAC*, for "Tactical Adaptable Consultant," incorporates a database

  11. A plastic corticostriatal circuit model of adaptation in perceptual decision making

    PubMed Central

    Hsiao, Pao-Yueh; Lo, Chung-Chuan

    2013-01-01

    The ability to optimize decisions and adapt them to changing environments is a crucial brain function that increase survivability. Although much has been learned about the neuronal activity in various brain regions that are associated with decision making, and about how the nervous systems may learn to achieve optimization, the underlying neuronal mechanisms of how the nervous systems optimize decision strategies with preference given to speed or accuracy, and how the systems adapt to changes in the environment, remain unclear. Based on extensive empirical observations, we addressed the question by extending a previously described cortico-basal ganglia circuit model of perceptual decisions with the inclusion of a dynamic dopamine (DA) system that modulates spike-timing dependent plasticity (STDP). We found that, once an optimal model setting that maximized the reward rate was selected, the same setting automatically optimized decisions across different task environments through dynamic balancing between the facilitating and depressing components of the DA dynamics. Interestingly, other model parameters were also optimal if we considered the reward rate that was weighted by the subject's preferences for speed or accuracy. Specifically, the circuit model favored speed if we increased the phasic DA response to the reward prediction error, whereas the model favored accuracy if we reduced the tonic DA activity or the phasic DA responses to the estimated reward probability. The proposed model provides insight into the roles of different components of DA responses in decision adaptation and optimization in a changing environment. PMID:24339814

  12. EMDS users guide (version 2.0): knowledge-based decision support for ecological assessment.

    Treesearch

    Keith M. Reynolds

    1999-01-01

    The USDA Forest Service Pacific Northwest Research Station in Corvallis, Oregon, has developed the ecosystem management decision support (EMDS) system. The system integrates the logical formalism of knowledge-based reasoning into a geographic information system (GIS) environment to provide decision support for ecological landscape assessment and evaluation. The...

  13. Optimal and Nonoptimal Computer-Based Test Designs for Making Pass-Fail Decisions

    ERIC Educational Resources Information Center

    Hambleton, Ronald K.; Xing, Dehui

    2006-01-01

    Now that many credentialing exams are being routinely administered by computer, new computer-based test designs, along with item response theory models, are being aggressively researched to identify specific designs that can increase the decision consistency and accuracy of pass-fail decisions. The purpose of this study was to investigate the…

  14. Incentives for Optimal Multi-level Allocation of HIV Prevention Resources

    PubMed Central

    Malvankar, Monali M.; Zaric, Gregory S.

    2013-01-01

    HIV/AIDS prevention funds are often allocated at multiple levels of decision-making. Optimal allocation of HIV prevention funds maximizes the number of HIV infections averted. However, decision makers often allocate using simple heuristics such as proportional allocation. We evaluate the impact of using incentives to encourage optimal allocation in a two-level decision-making process. We model an incentive based decision-making process consisting of an upper-level decision maker allocating funds to a single lower-level decision maker who then distributes funds to local programs. We assume that the lower-level utility function is linear in the amount of the budget received from the upper-level, the fraction of funds reserved for proportional allocation, and the number of infections averted. We assume that the upper level objective is to maximize the number of infections averted. We illustrate with an example using data from California, U.S. PMID:23766551

  15. The effectiveness of Teratology Information Services (TIS).

    PubMed

    Hancock, Rebecca L; Koren, Gideon; Einarson, Adrienne; Ungar, Wendy J

    2007-02-01

    Women and their health care providers have few reliable sources of information regarding the safety of exposures in pregnancy and lactation. Evidence-based information on these topics is provided by Teratology Information Services (TIS). Access to TIS, however, is limited in many regions, and many services have difficulty maintaining ongoing funding. The objective of this review is to highlight published reports of the effectiveness of TIS in improving maternal and neonatal health. A search of the Pub Med and Econ Lit databases was performed with no date restriction, using the search terms teratology, information, counseling, pregnancy, effectiveness, birth defects. Information disseminated from TIS has been shown to prevent congenital malformations, unnecessary pregnancy terminations, and occupational risks. TIS support optimal nutritional supplementation in pregnancy and optimal drug therapy in pregnancy and breast-feeding. In addition, they correct misperceptions of risk and facilitate knowledge transfer and translation. TIS have the potential to provide health care cost savings. TIS are vital services in supporting optimal maternal and neonatal health. A formal economic evaluation of TIS is required in order to inform resource allocation decision-making and continued funding of these services.

  16. Does Work Contribute to Successful Aging Outcomes in Older Workers?

    ERIC Educational Resources Information Center

    Sanders, Martha J.; McCready, Jack W.

    2010-01-01

    Older workers are the fastest growing segment of the labor force, yet little is known about designing jobs for older workers that optimize their experiences relative to aging successfully. This study examined the contribution of workplace job design (opportunities for decision-making, skill variety, coworker support, supervisor support) to…

  17. Decision support for evidence-based integration of disease control: A proof of concept for malaria and schistosomiasis

    PubMed Central

    Graeden, Ellie; Kerr, Justin; Sorrell, Erin M.; Katz, Rebecca

    2018-01-01

    Managing infectious disease requires rapid and effective response to support decision making. The decisions are complex and require understanding of the diseases, disease intervention and control measures, and the disease-relevant characteristics of the local community. Though disease modeling frameworks have been developed to address these questions, the complexity of current models presents a significant barrier to community-level decision makers in using the outputs of the most scientifically robust methods to support pragmatic decisions about implementing a public health response effort, even for endemic diseases with which they are already familiar. Here, we describe the development of an application available on the internet, including from mobile devices, with a simple user interface, to support on-the-ground decision-making for integrating disease control programs, given local conditions and practical constraints. The model upon which the tool is built provides predictive analysis for the effectiveness of integration of schistosomiasis and malaria control, two diseases with extensive geographical and epidemiological overlap, and which result in significant morbidity and mortality in affected regions. Working with data from countries across sub-Saharan Africa and the Middle East, we present a proof-of-principle method and corresponding prototype tool to provide guidance on how to optimize integration of vertical disease control programs. This method and tool demonstrate significant progress in effectively translating the best available scientific models to support practical decision making on the ground with the potential to significantly increase the efficacy and cost-effectiveness of disease control. Author summary Designing and implementing effective programs for infectious disease control requires complex decision-making, informed by an understanding of the diseases, the types of disease interventions and control measures available, and the disease-relevant characteristics of the local community. Though disease modeling frameworks have been developed to address these questions and support decision-making, the complexity of current models presents a significant barrier to on-the-ground end users. The picture is further complicated when considering approaches for integration of different disease control programs, where co-infection dynamics, treatment interactions, and other variables must also be taken into account. Here, we describe the development of an application available on the internet with a simple user interface, to support on-the-ground decision-making for integrating disease control, given local conditions and practical constraints. The model upon which the tool is built provides predictive analysis for the effectiveness of integration of schistosomiasis and malaria control, two diseases with extensive geographical and epidemiological overlap. This proof-of-concept method and tool demonstrate significant progress in effectively translating the best available scientific models to support pragmatic decision-making on the ground, with the potential to significantly increase the impact and cost-effectiveness of disease control. PMID:29649260

  18. Integrative image segmentation optimization and machine learning approach for high quality land-use and land-cover mapping using multisource remote sensing data

    NASA Astrophysics Data System (ADS)

    Gibril, Mohamed Barakat A.; Idrees, Mohammed Oludare; Yao, Kouame; Shafri, Helmi Zulhaidi Mohd

    2018-01-01

    The growing use of optimization for geographic object-based image analysis and the possibility to derive a wide range of information about the image in textual form makes machine learning (data mining) a versatile tool for information extraction from multiple data sources. This paper presents application of data mining for land-cover classification by fusing SPOT-6, RADARSAT-2, and derived dataset. First, the images and other derived indices (normalized difference vegetation index, normalized difference water index, and soil adjusted vegetation index) were combined and subjected to segmentation process with optimal segmentation parameters obtained using combination of spatial and Taguchi statistical optimization. The image objects, which carry all the attributes of the input datasets, were extracted and related to the target land-cover classes through data mining algorithms (decision tree) for classification. To evaluate the performance, the result was compared with two nonparametric classifiers: support vector machine (SVM) and random forest (RF). Furthermore, the decision tree classification result was evaluated against six unoptimized trials segmented using arbitrary parameter combinations. The result shows that the optimized process produces better land-use land-cover classification with overall classification accuracy of 91.79%, 87.25%, and 88.69% for SVM and RF, respectively, while the results of the six unoptimized classifications yield overall accuracy between 84.44% and 88.08%. Higher accuracy of the optimized data mining classification approach compared to the unoptimized results indicates that the optimization process has significant impact on the classification quality.

  19. Patient information leaflets (PILs) for UK randomised controlled trials: a feasibility study exploring whether they contain information to support decision making about trial participation.

    PubMed

    Gillies, Katie; Huang, Wan; Skea, Zoë; Brehaut, Jamie; Cotton, Seonaidh

    2014-02-18

    Informed consent is regarded as a cornerstone of ethical healthcare research and is a requirement for most clinical research studies. Guidelines suggest that prospective randomised controlled trial (RCT) participants should understand a basic amount of key information about the RCTs they are being asked to enrol in in order to provide valid informed consent. This information is usually provided to potential participants in a patient information leaflet (PIL). There is evidence that some trial participants fail to understand key components of trial processes or rationale. As such, the existing approach to information provision for potential RCT participants may not be optimal. Decision aids have been used for a variety of treatment and screening decisions to improve knowledge, but focus more on overall decision quality, and may be helpful to those making decisions about participating in an RCT. We investigated the feasibility of using a tool to identify which items recommended for good quality decision making are present in UK PILs. PILs were sampled from UK registered Clinical Trials Unit websites across a range of clinical areas. The evaluation tool, which is based on standards for supporting decision making, was applied to 20 PILs. Two researchers independently rated each PIL using the tool. In addition, word count and readability were assessed. PILs scored poorly on the evaluation tool with the majority of leaflets scoring less than 50%. Specifically, presenting probabilities, clarifying and expressing values and structured guidance in deliberation and communication sub-sections scored consistently poorly. Tool score was associated with word count (r=0.802, P <0.01); there was no association between score and readability (r=-0.372, P=0.106). The tool was feasible to use to evaluate PILs for UK RCTs. PILs did not meet current standards of information to support good quality decision making. Writers of information leaflets could use the evaluation tool as a framework during PIL development to help ensure that items are included which promote and support more informed decisions about trial participation. Further research is required to evaluate the inclusion of such information.

  20. Uncertainty and probability in wildfire management decision support: An example from the United States [Chapter 4

    Treesearch

    Matthew Thompson; David Calkin; Joe H. Scott; Michael Hand

    2017-01-01

    Wildfire risk assessment is increasingly being adopted to support federal wildfire management decisions in the United States. Existing decision support systems, specifically the Wildland Fire Decision Support System (WFDSS), provide a rich set of probabilistic and risk‐based information to support the management of active wildfire incidents. WFDSS offers a wide range...

  1. Pavement maintenance optimization model using Markov Decision Processes

    NASA Astrophysics Data System (ADS)

    Mandiartha, P.; Duffield, C. F.; Razelan, I. S. b. M.; Ismail, A. b. H.

    2017-09-01

    This paper presents an optimization model for selection of pavement maintenance intervention using a theory of Markov Decision Processes (MDP). There are some particular characteristics of the MDP developed in this paper which distinguish it from other similar studies or optimization models intended for pavement maintenance policy development. These unique characteristics include a direct inclusion of constraints into the formulation of MDP, the use of an average cost method of MDP, and the policy development process based on the dual linear programming solution. The limited information or discussions that are available on these matters in terms of stochastic based optimization model in road network management motivates this study. This paper uses a data set acquired from road authorities of state of Victoria, Australia, to test the model and recommends steps in the computation of MDP based stochastic optimization model, leading to the development of optimum pavement maintenance policy.

  2. Optimal management of colorectal liver metastases in older patients: a decision analysis

    PubMed Central

    Yang, Simon; Alibhai, Shabbir MH; Kennedy, Erin D; El-Sedfy, Abraham; Dixon, Matthew; Coburn, Natalie; Kiss, Alex; Law, Calvin HL

    2014-01-01

    Background Comparative trials evaluating management strategies for colorectal cancer liver metastases (CLM) are lacking, especially for older patients. This study developed a decision-analytic model to quantify outcomes associated with treatment strategies for CLM in older patients. Methods A Markov-decision model was built to examine the effect on life expectancy (LE) and quality-adjusted life expectancy (QALE) for best supportive care (BSC), systemic chemotherapy (SC), radiofrequency ablation (RFA) and hepatic resection (HR). The baseline patient cohort assumptions included healthy 70-year-old CLM patients after a primary cancer resection. Event and transition probabilities and utilities were derived from a literature review. Deterministic and probabilistic sensitivity analyses were performed on all study parameters. Results In base case analysis, BSC, SC, RFA and HR yielded LEs of 11.9, 23.1, 34.8 and 37.0 months, and QALEs of 7.8, 13.2, 22.0 and 25.0 months, respectively. Model results were sensitive to age, comorbidity, length of model simulation and utility after HR. Probabilistic sensitivity analysis showed increasing preference for RFA over HR with increasing patient age. Conclusions HR may be optimal for healthy 70-year-old patients with CLM. In older patients with comorbidities, RFA may provide better LE and QALE. Treatment decisions in older cancer patients should account for patient age, comorbidities, local expertise and individual values. PMID:24961482

  3. Design and Implementation of a Wireless Sensor and Actuator Network to Support the Intelligent Control of Efficient Energy Usage.

    PubMed

    Blanco, Jesús; García, Andrés; Morenas, Javier de Las

    2018-06-09

    Energy saving has become a major concern for the developed society of our days. This paper presents a Wireless Sensor and Actuator Network (WSAN) designed to provide support to an automatic intelligent system, based on the Internet of Things (IoT), which enables a responsible consumption of energy. The proposed overall system performs an efficient energetic management of devices, machines and processes, optimizing their operation to achieve a reduction in their overall energy usage at any given time. For this purpose, relevant data is collected from intelligent sensors, which are in-stalled at the required locations, as well as from the energy market through the Internet. This information is analysed to provide knowledge about energy utilization, and to improve efficiency. The system takes autonomous decisions automatically, based on the available information and the specific requirements in each case. The proposed system has been implanted and tested in a food factory. Results show a great optimization of energy efficiency and a substantial improvement on energy and costs savings.

  4. Solving for Efficiency or Decision Criteria: When the Non-unique Nature of Solutions Becomes a Benefit

    NASA Astrophysics Data System (ADS)

    Pierce, S. A.; Ciarleglio, M.; Dulay, M.; Lowry, T. S.; Sharp, J. M.; Barnes, J. W.; Eaton, D. J.; Tidwell, V. C.

    2006-12-01

    Work in the literature for groundwater allocation emphasizes finding a truly optimal solution, often with the drawback of limiting the reported results to either maximizing net benefit in regional scale models or minimizing pumping costs for localized cases. From a policy perspective, limited insight can be gained from these studies because the results are restricted to a single, efficient solution and they neglect non-market values that may influence a management decision. Conversely, economically derived objective functions tend to exhibit a plateau upon nearing the optimal value. This plateau effect, or non-uniqueness, is actually a positive feature in the behavior of groundwater systems because it demonstrates that multiple management strategies, serving numerous community preferences, may be considered while still achieving similar quantitative results. An optimization problem takes the same set of initial conditions and looks for the most efficient solution while a decision problem looks at a situation and asks for a solution that meets certain user-defined criteria. In other words, the election of an alternative course of action using a decision support system will not always result in selection of the most `optimized' alternative. To broaden the analytical toolset available for science and policy interaction, we have developed a groundwater decision support system (GWDSS) that generates a suite of management alternatives by pairing a combinatorial search algorithm with a numerical groundwater model for consideration by decision makers and stakeholders. Subject to constraints as defined by community concerns, the tabu optimization engine systematically creates hypothetical management scenarios running hundreds, and even thousands, of simulations, and then saving the best performing realizations. Results of the search are then evaluated against stakeholder preference sets using ranking methods to aid in identifying a subset of alternatives for final consideration. Here we present the development of the GWDSS and its use in the decision making process for the Barton Springs segment of the Edwards Aquifer located in Austin Texas. Using hydrogeologic metrics, together with economic estimates and impervious cover valuations, representative rankings are determined. Post search multi-objective analysis reveals that some highly ranked alternatives meet the preference sets of more than one stakeholder and achieve similar quantitative aquifer performance. These results are important to both modelers and policy makers alike.

  5. [Clinical economics: a concept to optimize healthcare services].

    PubMed

    Porzsolt, F; Bauer, K; Henne-Bruns, D

    2012-03-01

    Clinical economics strives to support healthcare decisions by economic considerations. Making economic decisions does not mean saving costs but rather comparing the gained added value with the burden which has to be accepted. The necessary rules are offered in various disciplines, such as economy, epidemiology and ethics. Medical doctors have recognized these rules but are not applying them in daily clinical practice. This lacking orientation leads to preventable errors. Examples of these errors are shown for diagnosis, screening, prognosis and therapy. As these errors can be prevented by application of clinical economic principles the possible consequences for optimization of healthcare are discussed.

  6. A risk explicit interval linear programming model for uncertainty-based environmental economic optimization in the Lake Fuxian watershed, China.

    PubMed

    Zhang, Xiaoling; Huang, Kai; Zou, Rui; Liu, Yong; Yu, Yajuan

    2013-01-01

    The conflict of water environment protection and economic development has brought severe water pollution and restricted the sustainable development in the watershed. A risk explicit interval linear programming (REILP) method was used to solve integrated watershed environmental-economic optimization problem. Interval linear programming (ILP) and REILP models for uncertainty-based environmental economic optimization at the watershed scale were developed for the management of Lake Fuxian watershed, China. Scenario analysis was introduced into model solution process to ensure the practicality and operability of optimization schemes. Decision makers' preferences for risk levels can be expressed through inputting different discrete aspiration level values into the REILP model in three periods under two scenarios. Through balancing the optimal system returns and corresponding system risks, decision makers can develop an efficient industrial restructuring scheme based directly on the window of "low risk and high return efficiency" in the trade-off curve. The representative schemes at the turning points of two scenarios were interpreted and compared to identify a preferable planning alternative, which has the relatively low risks and nearly maximum benefits. This study provides new insights and proposes a tool, which was REILP, for decision makers to develop an effectively environmental economic optimization scheme in integrated watershed management.

  7. A Risk Explicit Interval Linear Programming Model for Uncertainty-Based Environmental Economic Optimization in the Lake Fuxian Watershed, China

    PubMed Central

    Zou, Rui; Liu, Yong; Yu, Yajuan

    2013-01-01

    The conflict of water environment protection and economic development has brought severe water pollution and restricted the sustainable development in the watershed. A risk explicit interval linear programming (REILP) method was used to solve integrated watershed environmental-economic optimization problem. Interval linear programming (ILP) and REILP models for uncertainty-based environmental economic optimization at the watershed scale were developed for the management of Lake Fuxian watershed, China. Scenario analysis was introduced into model solution process to ensure the practicality and operability of optimization schemes. Decision makers' preferences for risk levels can be expressed through inputting different discrete aspiration level values into the REILP model in three periods under two scenarios. Through balancing the optimal system returns and corresponding system risks, decision makers can develop an efficient industrial restructuring scheme based directly on the window of “low risk and high return efficiency” in the trade-off curve. The representative schemes at the turning points of two scenarios were interpreted and compared to identify a preferable planning alternative, which has the relatively low risks and nearly maximum benefits. This study provides new insights and proposes a tool, which was REILP, for decision makers to develop an effectively environmental economic optimization scheme in integrated watershed management. PMID:24191144

  8. Interpretable Decision Sets: A Joint Framework for Description and Prediction

    PubMed Central

    Lakkaraju, Himabindu; Bach, Stephen H.; Jure, Leskovec

    2016-01-01

    One of the most important obstacles to deploying predictive models is the fact that humans do not understand and trust them. Knowing which variables are important in a model’s prediction and how they are combined can be very powerful in helping people understand and trust automatic decision making systems. Here we propose interpretable decision sets, a framework for building predictive models that are highly accurate, yet also highly interpretable. Decision sets are sets of independent if-then rules. Because each rule can be applied independently, decision sets are simple, concise, and easily interpretable. We formalize decision set learning through an objective function that simultaneously optimizes accuracy and interpretability of the rules. In particular, our approach learns short, accurate, and non-overlapping rules that cover the whole feature space and pay attention to small but important classes. Moreover, we prove that our objective is a non-monotone submodular function, which we efficiently optimize to find a near-optimal set of rules. Experiments show that interpretable decision sets are as accurate at classification as state-of-the-art machine learning techniques. They are also three times smaller on average than rule-based models learned by other methods. Finally, results of a user study show that people are able to answer multiple-choice questions about the decision boundaries of interpretable decision sets and write descriptions of classes based on them faster and more accurately than with other rule-based models that were designed for interpretability. Overall, our framework provides a new approach to interpretable machine learning that balances accuracy, interpretability, and computational efficiency. PMID:27853627

  9. Knowledge-Based Information Management in Decision Support for Ecosystem Management

    Treesearch

    Keith Reynolds; Micahel Saunders; Richard Olson; Daniel Schmoldt; Michael Foster; Donald Latham; Bruce Miller; John Steffenson; Lawrence Bednar; Patrick Cunningham

    1995-01-01

    The Pacific Northwest Research Station (USDA Forest Service) is developing a knowledge-based information management system to provide decision support for watershed analysis in the Pacific Northwest region of the U.S. The decision support system includes: (1) a GIS interface that allows users to graphically navigate to specific provinces and watersheds and display a...

  10. A two-stage clinical decision support system for early recognition and stratification of patients with sepsis: an observational cohort study.

    PubMed

    Amland, Robert C; Lyons, Jason J; Greene, Tracy L; Haley, James M

    2015-10-01

    To examine the diagnostic accuracy of a two-stage clinical decision support system for early recognition and stratification of patients with sepsis. Observational cohort study employing a two-stage sepsis clinical decision support to recognise and stratify patients with sepsis. The stage one component was comprised of a cloud-based clinical decision support with 24/7 surveillance to detect patients at risk of sepsis. The cloud-based clinical decision support delivered notifications to the patients' designated nurse, who then electronically contacted a provider. The second stage component comprised a sepsis screening and stratification form integrated into the patient electronic health record, essentially an evidence-based decision aid, used by providers to assess patients at bedside. Urban, 284 acute bed community hospital in the USA; 16,000 hospitalisations annually. Data on 2620 adult patients were collected retrospectively in 2014 after the clinical decision support was implemented. 'Suspected infection' was the established gold standard to assess clinical decision support clinimetric performance. A sepsis alert activated on 417 (16%) of 2620 adult patients hospitalised. Applying 'suspected infection' as standard, the patient population characteristics showed 72% sensitivity and 73% positive predictive value. A postalert screening conducted by providers at bedside of 417 patients achieved 81% sensitivity and 94% positive predictive value. Providers documented against 89% patients with an alert activated by clinical decision support and completed 75% of bedside screening and stratification of patients with sepsis within one hour from notification. A clinical decision support binary alarm system with cross-checking functionality improves early recognition and facilitates stratification of patients with sepsis.

  11. Pricing and Enrollment Planning.

    ERIC Educational Resources Information Center

    Martin, Robert E.

    2003-01-01

    Presents a management model for pricing and enrollment planning that yields optimal pricing decisions relative to student fees and average scholarship, the institution's financial ability to support students, and an average cost-pricing rule. (SLD)

  12. Evidence-based coverage decisions? Primum non nocere.

    PubMed

    McElwee, Newell E; Ho, S Yin; McGuigan, Kimberly A; Horn, Mark L

    2006-01-01

    Drug class reviews are blunt tools for medical decision making. The practice of evidence-based medicine is far more than simply systematic reviews: The patient and doctor are integral. Here we highlight areas of evidence-based coverage decision making where greater balance and transparency could serve to improve the current process, and we recommend elements of a more positive approach that could optimize patient outcomes under resource constraints.

  13. The Integrated Medical Model - Optimizing In-flight Space Medical Systems to Reduce Crew Health Risk and Mission Impacts

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Walton, Marlei; Minard, Charles; Saile, Lynn; Myers, Jerry; Butler, Doug; Lyengar, Sriram; Fitts, Mary; Johnson-Throop, Kathy

    2009-01-01

    The Integrated Medical Model (IMM) is a decision support tool used by medical system planners and designers as they prepare for exploration planning activities of the Constellation program (CxP). IMM provides an evidence-based approach to help optimize the allocation of in-flight medical resources for a specified level of risk within spacecraft operational constraints. Eighty medical conditions and associated resources are represented in IMM. Nine conditions are due to Space Adaptation Syndrome. The IMM helps answer fundamental medical mission planning questions such as What medical conditions can be expected? What type and quantity of medical resources are most likely to be used?", and "What is the probability of crew death or evacuation due to medical events?" For a specified mission and crew profile, the IMM effectively characterizes the sequence of events that could potentially occur should a medical condition happen. The mathematical relationships among mission and crew attributes, medical conditions and incidence data, in-flight medical resources, potential clinical and crew health end states are established to generate end state probabilities. A Monte Carlo computational method is used to determine the probable outcomes and requires up to 25,000 mission trials to reach convergence. For each mission trial, the pharmaceuticals and supplies required to diagnose and treat prevalent medical conditions are tracked and decremented. The uncertainty of patient response to treatment is bounded via a best-case, worst-case, untreated case algorithm. A Crew Health Index (CHI) metric, developed to account for functional impairment due to a medical condition, provides a quantified measure of risk and enables risk comparisons across mission scenarios. The use of historical in-flight medical data, terrestrial surrogate data as appropriate, and space medicine subject matter expertise has enabled the development of a probabilistic, stochastic decision support tool capable of optimizing in-flight medical systems based on crew and mission parameters. This presentation will illustrate how to apply quantitative risk assessment methods to optimize the mass and volume of space-based medical systems for a space flight mission given the level of crew health and mission risk.

  14. A problem of optimal control and observation for distributed homogeneous multi-agent system

    NASA Astrophysics Data System (ADS)

    Kruglikov, Sergey V.

    2017-12-01

    The paper considers the implementation of a algorithm for controlling a distributed complex of several mobile multi-robots. The concept of a unified information space of the controlling system is applied. The presented information and mathematical models of participants and obstacles, as real agents, and goals and scenarios, as virtual agents, create the base forming the algorithmic and software background for computer decision support system. The controlling scheme assumes the indirect management of the robotic team on the basis of optimal control and observation problem predicting intellectual behavior in a dynamic, hostile environment. A basic content problem is a compound cargo transportation by a group of participants in the case of a distributed control scheme in the terrain with multiple obstacles.

  15. Launching a virtual decision lab: development and field-testing of a web-based patient decision support research platform.

    PubMed

    Hoffman, Aubri S; Llewellyn-Thomas, Hilary A; Tosteson, Anna N A; O'Connor, Annette M; Volk, Robert J; Tomek, Ivan M; Andrews, Steven B; Bartels, Stephen J

    2014-12-12

    Over 100 trials show that patient decision aids effectively improve patients' information comprehension and values-based decision making. However, gaps remain in our understanding of several fundamental and applied questions, particularly related to the design of interactive, personalized decision aids. This paper describes an interdisciplinary development process for, and early field testing of, a web-based patient decision support research platform, or virtual decision lab, to address these questions. An interdisciplinary stakeholder panel designed the web-based research platform with three components: a) an introduction to shared decision making, b) a web-based patient decision aid, and c) interactive data collection items. Iterative focus groups provided feedback on paper drafts and online prototypes. A field test assessed a) feasibility for using the research platform, in terms of recruitment, usage, and acceptability; and b) feasibility of using the web-based decision aid component, compared to performance of a videobooklet decision aid in clinical care. This interdisciplinary, theory-based, patient-centered design approach produced a prototype for field-testing in six months. Participants (n = 126) reported that: the decision aid component was easy to use (98%), information was clear (90%), the length was appropriate (100%), it was appropriately detailed (90%), and it held their interest (97%). They spent a mean of 36 minutes using the decision aid and 100% preferred using their home/library computer. Participants scored a mean of 75% correct on the Decision Quality, Knowledge Subscale, and 74 out of 100 on the Preparation for Decision Making Scale. Completing the web-based decision aid reduced mean Decisional Conflict scores from 31.1 to 19.5 (p < 0.01). Combining decision science and health informatics approaches facilitated rapid development of a web-based patient decision support research platform that was feasible for use in research studies in terms of recruitment, acceptability, and usage. Within this platform, the web-based decision aid component performed comparably with the videobooklet decision aid used in clinical practice. Future studies may use this interactive research platform to study patients' decision making processes in real-time, explore interdisciplinary approaches to designing web-based decision aids, and test strategies for tailoring decision support to meet patients' needs and preferences.

  16. Distributed sensor architecture for intelligent control that supports quality of control and quality of service.

    PubMed

    Poza-Lujan, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, José-Enrique; Simarro, Raúl; Benet, Ginés

    2015-02-25

    This paper is part of a study of intelligent architectures for distributed control and communications systems. The study focuses on optimizing control systems by evaluating the performance of middleware through quality of service (QoS) parameters and the optimization of control using Quality of Control (QoC) parameters. The main aim of this work is to study, design, develop, and evaluate a distributed control architecture based on the Data-Distribution Service for Real-Time Systems (DDS) communication standard as proposed by the Object Management Group (OMG). As a result of the study, an architecture called Frame-Sensor-Adapter to Control (FSACtrl) has been developed. FSACtrl provides a model to implement an intelligent distributed Event-Based Control (EBC) system with support to measure QoS and QoC parameters. The novelty consists of using, simultaneously, the measured QoS and QoC parameters to make decisions about the control action with a new method called Event Based Quality Integral Cycle. To validate the architecture, the first five Braitenberg vehicles have been implemented using the FSACtrl architecture. The experimental outcomes, demonstrate the convenience of using jointly QoS and QoC parameters in distributed control systems.

  17. Distributed Sensor Architecture for Intelligent Control that Supports Quality of Control and Quality of Service

    PubMed Central

    Poza-Lujan, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, José-Enrique; Simarro, Raúl; Benet, Ginés

    2015-01-01

    This paper is part of a study of intelligent architectures for distributed control and communications systems. The study focuses on optimizing control systems by evaluating the performance of middleware through quality of service (QoS) parameters and the optimization of control using Quality of Control (QoC) parameters. The main aim of this work is to study, design, develop, and evaluate a distributed control architecture based on the Data-Distribution Service for Real-Time Systems (DDS) communication standard as proposed by the Object Management Group (OMG). As a result of the study, an architecture called Frame-Sensor-Adapter to Control (FSACtrl) has been developed. FSACtrl provides a model to implement an intelligent distributed Event-Based Control (EBC) system with support to measure QoS and QoC parameters. The novelty consists of using, simultaneously, the measured QoS and QoC parameters to make decisions about the control action with a new method called Event Based Quality Integral Cycle. To validate the architecture, the first five Braitenberg vehicles have been implemented using the FSACtrl architecture. The experimental outcomes, demonstrate the convenience of using jointly QoS and QoC parameters in distributed control systems. PMID:25723145

  18. How to deal with climate change uncertainty in the planning of engineering systems

    NASA Astrophysics Data System (ADS)

    Spackova, Olga; Dittes, Beatrice; Straub, Daniel

    2016-04-01

    The effect of extreme events such as floods on the infrastructure and built environment is associated with significant uncertainties: These include the uncertain effect of climate change, uncertainty on extreme event frequency estimation due to limited historic data and imperfect models, and, not least, uncertainty on future socio-economic developments, which determine the damage potential. One option for dealing with these uncertainties is the use of adaptable (flexible) infrastructure that can easily be adjusted in the future without excessive costs. The challenge is in quantifying the value of adaptability and in finding the optimal sequence of decision. Is it worth to build a (potentially more expensive) adaptable system that can be adjusted in the future depending on the future conditions? Or is it more cost-effective to make a conservative design without counting with the possible future changes to the system? What is the optimal timing of the decision to build/adjust the system? We develop a quantitative decision-support framework for evaluation of alternative infrastructure designs under uncertainties, which: • probabilistically models the uncertain future (trough a Bayesian approach) • includes the adaptability of the systems (the costs of future changes) • takes into account the fact that future decisions will be made under uncertainty as well (using pre-posterior decision analysis) • allows to identify the optimal capacity and optimal timing to build/adjust the infrastructure. Application of the decision framework will be demonstrated on an example of flood mitigation planning in Bavaria.

  19. Heuristic decomposition for non-hierarchic systems

    NASA Technical Reports Server (NTRS)

    Bloebaum, Christina L.; Hajela, P.

    1991-01-01

    Design and optimization is substantially more complex in multidisciplinary and large-scale engineering applications due to the existing inherently coupled interactions. The paper introduces a quasi-procedural methodology for multidisciplinary optimization that is applicable for nonhierarchic systems. The necessary decision-making support for the design process is provided by means of an embedded expert systems capability. The method employs a decomposition approach whose modularity allows for implementation of specialized methods for analysis and optimization within disciplines.

  20. Design and realization of tourism spatial decision support system based on GIS

    NASA Astrophysics Data System (ADS)

    Ma, Zhangbao; Qi, Qingwen; Xu, Li

    2008-10-01

    In this paper, the existing problems of current tourism management information system are analyzed. GIS, tourism as well as spatial decision support system are introduced, and the application of geographic information system technology and spatial decision support system to tourism management and the establishment of tourism spatial decision support system based on GIS are proposed. System total structure, system hardware and software environment, database design and structure module design of this system are introduced. Finally, realization methods of this systemic core functions are elaborated.

  1. CorRECTreatment: A Web-based Decision Support Tool for Rectal Cancer Treatment that Uses the Analytic Hierarchy Process and Decision Tree

    PubMed Central

    Karakülah, G.; Dicle, O.; Sökmen, S.; Çelikoğlu, C.C.

    2015-01-01

    Summary Background The selection of appropriate rectal cancer treatment is a complex multi-criteria decision making process, in which clinical decision support systems might be used to assist and enrich physicians’ decision making. Objective The objective of the study was to develop a web-based clinical decision support tool for physicians in the selection of potentially beneficial treatment options for patients with rectal cancer. Methods The updated decision model contained 8 and 10 criteria in the first and second steps respectively. The decision support model, developed in our previous study by combining the Analytic Hierarchy Process (AHP) method which determines the priority of criteria and decision tree that formed using these priorities, was updated and applied to 388 patients data collected retrospectively. Later, a web-based decision support tool named corRECTreatment was developed. The compatibility of the treatment recommendations by the expert opinion and the decision support tool was examined for its consistency. Two surgeons were requested to recommend a treatment and an overall survival value for the treatment among 20 different cases that we selected and turned into a scenario among the most common and rare treatment options in the patient data set. Results In the AHP analyses of the criteria, it was found that the matrices, generated for both decision steps, were consistent (consistency ratio<0.1). Depending on the decisions of experts, the consistency value for the most frequent cases was found to be 80% for the first decision step and 100% for the second decision step. Similarly, for rare cases consistency was 50% for the first decision step and 80% for the second decision step. Conclusions The decision model and corRECTreatment, developed by applying these on real patient data, are expected to provide potential users with decision support in rectal cancer treatment processes and facilitate them in making projections about treatment options. PMID:25848413

  2. CorRECTreatment: a web-based decision support tool for rectal cancer treatment that uses the analytic hierarchy process and decision tree.

    PubMed

    Suner, A; Karakülah, G; Dicle, O; Sökmen, S; Çelikoğlu, C C

    2015-01-01

    The selection of appropriate rectal cancer treatment is a complex multi-criteria decision making process, in which clinical decision support systems might be used to assist and enrich physicians' decision making. The objective of the study was to develop a web-based clinical decision support tool for physicians in the selection of potentially beneficial treatment options for patients with rectal cancer. The updated decision model contained 8 and 10 criteria in the first and second steps respectively. The decision support model, developed in our previous study by combining the Analytic Hierarchy Process (AHP) method which determines the priority of criteria and decision tree that formed using these priorities, was updated and applied to 388 patients data collected retrospectively. Later, a web-based decision support tool named corRECTreatment was developed. The compatibility of the treatment recommendations by the expert opinion and the decision support tool was examined for its consistency. Two surgeons were requested to recommend a treatment and an overall survival value for the treatment among 20 different cases that we selected and turned into a scenario among the most common and rare treatment options in the patient data set. In the AHP analyses of the criteria, it was found that the matrices, generated for both decision steps, were consistent (consistency ratio<0.1). Depending on the decisions of experts, the consistency value for the most frequent cases was found to be 80% for the first decision step and 100% for the second decision step. Similarly, for rare cases consistency was 50% for the first decision step and 80% for the second decision step. The decision model and corRECTreatment, developed by applying these on real patient data, are expected to provide potential users with decision support in rectal cancer treatment processes and facilitate them in making projections about treatment options.

  3. Derivative Trade Optimizing Model Utilizing GP Based on Behavioral Finance Theory

    NASA Astrophysics Data System (ADS)

    Matsumura, Koki; Kawamoto, Masaru

    This paper proposed a new technique which makes the strategy trees for the derivative (option) trading investment decision based on the behavioral finance theory and optimizes it using evolutionary computation, in order to achieve high profitability. The strategy tree uses a technical analysis based on a statistical, experienced technique for the investment decision. The trading model is represented by various technical indexes, and the strategy tree is optimized by the genetic programming(GP) which is one of the evolutionary computations. Moreover, this paper proposed a method using the prospect theory based on the behavioral finance theory to set psychological bias for profit and deficit and attempted to select the appropriate strike price of option for the higher investment efficiency. As a result, this technique produced a good result and found the effectiveness of this trading model by the optimized dealings strategy.

  4. Geospatial Data Fusion and Multigroup Decision Support for Surface Water Quality Management

    NASA Astrophysics Data System (ADS)

    Sun, A. Y.; Osidele, O.; Green, R. T.; Xie, H.

    2010-12-01

    Social networking and social media have gained significant popularity and brought fundamental changes to many facets of our everyday life. With the ever-increasing adoption of GPS-enabled gadgets and technology, location-based content is likely to play a central role in social networking sites. While location-based content is not new to the geoscience community, where geographic information systems (GIS) are extensively used, the delivery of useful geospatial data to targeted user groups for decision support is new. Decision makers and modelers ought to make more effective use of the new web-based tools to expand the scope of environmental awareness education, public outreach, and stakeholder interaction. Environmental decision processes are often rife with uncertainty and controversy, requiring integration of multiple sources of information and compromises between diverse interests. Fusing of multisource, multiscale environmental data for multigroup decision support is a challenging task. Toward this goal, a multigroup decision support platform should strive to achieve transparency, impartiality, and timely synthesis of information. The latter criterion often constitutes a major technical bottleneck to traditional GIS-based media, featuring large file or image sizes and requiring special processing before web deployment. Many tools and design patterns have appeared in recent years to ease the situation somewhat. In this project, we explore the use of Web 2.0 technologies for “pushing” location-based content to multigroups involved in surface water quality management and decision making. In particular, our granular bottom-up approach facilitates effective delivery of information to most relevant user groups. Our location-based content includes in-situ and remotely sensed data disseminated by NASA and other national and local agencies. Our project is demonstrated for managing the total maximum daily load (TMDL) program in the Arroyo Colorado coastal river basin in Texas. The overall design focuses on assigning spatial information to decision support elements and on efficiently using Web 2.0 technologies to relay scientific information to the nonscientific community. We conclude that (i) social networking, if appropriately used, has great potential for mitigating difficulty associated with multigroup decision making; (ii) all potential stakeholder groups should be involved in creating a useful decision support system; and (iii) environmental decision support systems should be considered a must-have, instead of an optional component of TMDL decision support projects. Acknowledgment: This project was supported by NASA grant NNX09AR63G.

  5. ANFIS multi criteria decision making for overseas construction projects: a methodology

    NASA Astrophysics Data System (ADS)

    Utama, W. P.; Chan, A. P. C.; Zulherman; Zahoor, H.; Gao, R.; Jumas, D. Y.

    2018-02-01

    A critical part when a company targeting a foreign market is how to make a better decision in connection with potential project selection. Since different attributes of information are often incomplete, imprecise and ill-defined in overseas projects selection, the process of decision making by relying on the experiences and intuition is a risky attitude. This paper aims to demonstrate a decision support method in deciding overseas construction projects (OCPs). An Adaptive Neuro-Fuzzy Inference System (ANFIS), the amalgamation of Neural Network and Fuzzy Theory, was used as decision support tool to decide to go or not go on OCPs. Root mean square error (RMSE) and coefficient of correlation (R) were employed to identify the ANFIS system indicating an optimum and efficient result. The optimum result was obtained from ANFIS network with two input membership functions, Gaussian membership function (gaussmf) and hybrid optimization method. The result shows that ANFIS may help the decision-making process for go/not go decision in OCPs.

  6. Bicriteria Network Optimization Problem using Priority-based Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Gen, Mitsuo; Lin, Lin; Cheng, Runwei

    Network optimization is being an increasingly important and fundamental issue in the fields such as engineering, computer science, operations research, transportation, telecommunication, decision support systems, manufacturing, and airline scheduling. In many applications, however, there are several criteria associated with traversing each edge of a network. For example, cost and flow measures are both important in the networks. As a result, there has been recent interest in solving Bicriteria Network Optimization Problem. The Bicriteria Network Optimization Problem is known a NP-hard. The efficient set of paths may be very large, possibly exponential in size. Thus the computational effort required to solve it can increase exponentially with the problem size in the worst case. In this paper, we propose a genetic algorithm (GA) approach used a priority-based chromosome for solving the bicriteria network optimization problem including maximum flow (MXF) model and minimum cost flow (MCF) model. The objective is to find the set of Pareto optimal solutions that give possible maximum flow with minimum cost. This paper also combines Adaptive Weight Approach (AWA) that utilizes some useful information from the current population to readjust weights for obtaining a search pressure toward a positive ideal point. Computer simulations show the several numerical experiments by using some difficult-to-solve network design problems, and show the effectiveness of the proposed method.

  7. DECISION-MAKING ALIGNED WITH RAPID-CYCLE EVALUATION IN HEALTH CARE.

    PubMed

    Schneeweiss, Sebastian; Shrank, William H; Ruhl, Michael; Maclure, Malcolm

    2015-01-01

    Availability of real-time electronic healthcare data provides new opportunities for rapid-cycle evaluation (RCE) of health technologies, including healthcare delivery and payment programs. We aim to align decision-making processes with stages of RCE to optimize the usefulness and impact of rapid results. Rational decisions about program adoption depend on program effect size in relation to externalities, including implementation cost, sustainability, and likelihood of broad adoption. Drawing on case studies and experience from drug safety monitoring, we examine how decision makers have used scientific evidence on complex interventions in the past. We clarify how RCE alters the nature of policy decisions; develop the RAPID framework for synchronizing decision-maker activities with stages of RCE; and provide guidelines on evidence thresholds for incremental decision-making. In contrast to traditional evaluations, RCE provides early evidence on effectiveness and facilitates a stepped approach to decision making in expectation of future regularly updated evidence. RCE allows for identification of trends in adjusted effect size. It supports adapting a program in midstream in response to interim findings, or adapting the evaluation strategy to identify true improvements earlier. The 5-step RAPID approach that utilizes the cumulating evidence of program effectiveness over time could increase policy-makers' confidence in expediting decisions. RCE enables a step-wise approach to HTA decision-making, based on gradually emerging evidence, reducing delays in decision-making processes after traditional one-time evaluations.

  8. Social cognitive theory, metacognition, and simulation learning in nursing education.

    PubMed

    Burke, Helen; Mancuso, Lorraine

    2012-10-01

    Simulation learning encompasses simple, introductory scenarios requiring response to patients' needs during basic hygienic care and during situations demanding complex decision making. Simulation integrates principles of social cognitive theory (SCT) into an interactive approach to learning that encompasses the core principles of intentionality, forethought, self-reactiveness, and self-reflectiveness. Effective simulation requires an environment conducive to learning and introduces activities that foster symbolic coding operations and mastery of new skills; debriefing builds self-efficacy and supports self-regulation of behavior. Tailoring the level of difficulty to students' mastery level supports successful outcomes and motivation to set higher standards. Mindful selection of simulation complexity and structure matches course learning objectives and supports progressive development of metacognition. Theory-based facilitation of simulated learning optimizes efficacy of this learning method to foster maturation of cognitive processes of SCT, metacognition, and self-directedness. Examples of metacognition that are supported through mindful, theory-based implementation of simulation learning are provided. Copyright 2012, SLACK Incorporated.

  9. Beyond Control Centers

    NASA Technical Reports Server (NTRS)

    Trimble, Jay

    2017-01-01

    For NASA's Resource Prospector (RP) Lunar Rover Mission, we are moving away from a control center concept, to a fully distributed operation utilizing control nodes, with decision support from anywhere via mobile devices. This operations concept will utilize distributed information systems, notifications, mobile data access, and optimized mobile data display for off-console decision support. We see this concept of operations as a step in the evolution of mission operations from a central control center concept to a mission operations anywhere concept. The RP example is part of a trend, in which mission expertise for design, development and operations is distributed across countries and across the globe. Future spacecraft operations will be most cost efficient and flexible by following this distributed expertise, enabling operations from anywhere. For the RP mission we arrived at the decision to utilize a fully distributed operations team, where everyone operates from their home institution, based on evaluating the following factors: the requirement for physical proximity for near-real time command and control decisions; the cost of distributed control nodes vs. a centralized control center; the impact on training and mission preparation of flying the team to a central location. Physical proximity for operational decisions is seldom required, though certain categories of decisions, such as launch abort, or close coordination for mission or safety-critical near-real-time command and control decisions may benefit from co-location. The cost of facilities and operational infrastructure has not been found to be a driving factor for location in our studies. Mission training and preparation benefit from having all operators train and operate from home institutions.

  10. Visualization-based decision support for value-driven system design

    NASA Astrophysics Data System (ADS)

    Tibor, Elliott

    In the past 50 years, the military, communication, and transportation systems that permeate our world, have grown exponentially in size and complexity. The development and production of these systems has seen ballooning costs and increased risk. This is particularly critical for the aerospace industry. The inability to deal with growing system complexity is a crippling force in the advancement of engineered systems. Value-Driven Design represents a paradigm shift in the field of design engineering that has potential to help counteract this trend. The philosophy of Value-Driven Design places the desires of the stakeholder at the forefront of the design process to capture true preferences and reveal system alternatives that were never previously thought possible. Modern aerospace engineering design problems are large, complex, and involve multiple levels of decision-making. To find the best design, the decision-maker is often required to analyze hundreds or thousands of combinations of design variables and attributes. Visualization can be used to support these decisions, by communicating large amounts of data in a meaningful way. Understanding the design space, the subsystem relationships, and the design uncertainties is vital to the advancement of Value-Driven Design as an accepted process for the development of more effective, efficient, robust, and elegant aerospace systems. This research investigates the use of multi-dimensional data visualization tools to support decision-making under uncertainty during the Value-Driven Design process. A satellite design system comprising a satellite, ground station, and launch vehicle is used to demonstrate effectiveness of new visualization methods to aid in decision support during complex aerospace system design. These methods are used to facilitate the exploration of the feasible design space by representing the value impact of system attribute changes and comparing the results of multi-objective optimization formulations with a Value-Driven Design formulation. The visualization methods are also used to assist in the decomposition of a value function, by representing attribute sensitivities to aid with trade-off studies. Lastly, visualization is used to enable greater understanding of the subsystem relationships, by displaying derivative-based couplings, and the design uncertainties, through implementation of utility theory. The use of these visualization methods is shown to enhance the decision-making capabilities of the designer by granting them a more holistic view of the complex design space.

  11. The Modular Modeling System (MMS): A modeling framework for water- and environmental-resources management

    USGS Publications Warehouse

    Leavesley, G.H.; Markstrom, S.L.; Viger, R.J.

    2004-01-01

    The interdisciplinary nature and increasing complexity of water- and environmental-resource problems require the use of modeling approaches that can incorporate knowledge from a broad range of scientific disciplines. The large number of distributed hydrological and ecosystem models currently available are composed of a variety of different conceptualizations of the associated processes they simulate. Assessment of the capabilities of these distributed models requires evaluation of the conceptualizations of the individual processes, and the identification of which conceptualizations are most appropriate for various combinations of criteria, such as problem objectives, data constraints, and spatial and temporal scales of application. With this knowledge, "optimal" models for specific sets of criteria can be created and applied. The U.S. Geological Survey (USGS) Modular Modeling System (MMS) is an integrated system of computer software that has been developed to provide these model development and application capabilities. MMS supports the integration of models and tools at a variety of levels of modular design. These include individual process models, tightly coupled models, loosely coupled models, and fully-integrated decision support systems. A variety of visualization and statistical tools are also provided. MMS has been coupled with the Bureau of Reclamation (BOR) object-oriented reservoir and river-system modeling framework, RiverWare, under a joint USGS-BOR program called the Watershed and River System Management Program. MMS and RiverWare are linked using a shared relational database. The resulting database-centered decision support system provides tools for evaluating and applying optimal resource-allocation and management strategies to complex, operational decisions on multipurpose reservoir systems and watersheds. Management issues being addressed include efficiency of water-resources management, environmental concerns such as meeting flow needs for endangered species, and optimizing operations within the constraints of multiple objectives such as power generation, irrigation, and water conservation. This decision support system approach is being developed, tested, and implemented in the Gunni-son, Yakima, San Juan, Rio Grande, and Truckee River basins of the western United States. Copyright ASCE 2004.

  12. For Third Enrollment Period, Marketplaces Expand Decision Support Tools To Assist Consumers.

    PubMed

    Wong, Charlene A; Polsky, Daniel E; Jones, Arthur T; Weiner, Janet; Town, Robert J; Baker, Tom

    2016-04-01

    The design of the Affordable Care Act's online health insurance Marketplaces can improve how consumers make complex health plan choices. We examined the choice environment on the state-based Marketplaces and HealthCare.gov in the third open enrollment period. Compared to previous enrollment periods, we found greater adoption of some decision support tools, such as total cost estimators and integrated provider lookups. Total cost estimators differed in how they generated estimates: In some Marketplaces, consumers categorized their own utilization, while in others, consumers answered detailed questions and were assigned a utilization profile. The tools available before creating an account (in the window-shopping period) and afterward (in the real-shopping period) differed in several Marketplaces. For example, five Marketplaces provided total cost estimators to window shoppers, but only two provided them to real shoppers. Further research is needed on the impact of different choice environments and on which tools are most effective in helping consumers pick optimal plans. Project HOPE—The People-to-People Health Foundation, Inc.

  13. Fuzzy logic controller optimization

    DOEpatents

    Sepe, Jr., Raymond B; Miller, John Michael

    2004-03-23

    A method is provided for optimizing a rotating induction machine system fuzzy logic controller. The fuzzy logic controller has at least one input and at least one output. Each input accepts a machine system operating parameter. Each output produces at least one machine system control parameter. The fuzzy logic controller generates each output based on at least one input and on fuzzy logic decision parameters. Optimization begins by obtaining a set of data relating each control parameter to at least one operating parameter for each machine operating region. A model is constructed for each machine operating region based on the machine operating region data obtained. The fuzzy logic controller is simulated with at least one created model in a feedback loop from a fuzzy logic output to a fuzzy logic input. Fuzzy logic decision parameters are optimized based on the simulation.

  14. Rule Extracting based on MCG with its Application in Helicopter Power Train Fault Diagnosis

    NASA Astrophysics Data System (ADS)

    Wang, M.; Hu, N. Q.; Qin, G. J.

    2011-07-01

    In order to extract decision rules for fault diagnosis from incomplete historical test records for knowledge-based damage assessment of helicopter power train structure. A method that can directly extract the optimal generalized decision rules from incomplete information based on GrC was proposed. Based on semantic analysis of unknown attribute value, the granule was extended to handle incomplete information. Maximum characteristic granule (MCG) was defined based on characteristic relation, and MCG was used to construct the resolution function matrix. The optimal general decision rule was introduced, with the basic equivalent forms of propositional logic, the rules were extracted and reduction from incomplete information table. Combined with a fault diagnosis example of power train, the application approach of the method was present, and the validity of this method in knowledge acquisition was proved.

  15. Advanced construction management for lunar base construction - Surface operations planner

    NASA Technical Reports Server (NTRS)

    Kehoe, Robert P.

    1992-01-01

    The study proposes a conceptual solution and lays the framework for developing a new, sophisticated and intelligent tool for a lunar base construction crew to use. This concept integrates expert systems for critical decision making, virtual reality for training, logistics and laydown optimization, automated productivity measurements, and an advanced scheduling tool to form a unique new planning tool. The concept features extensive use of computers and expert systems software to support the actual work, while allowing the crew to control the project from the lunar surface. Consideration is given to a logistics data base, laydown area management, flexible critical progress scheduler, video simulation of assembly tasks, and assembly information and tracking documentation.

  16. Effectiveness guidance document (EGD) for acupuncture research - a consensus document for conducting trials

    PubMed Central

    2012-01-01

    Background There is a need for more Comparative Effectiveness Research (CER) to strengthen the evidence base for clinical and policy decision-making. Effectiveness Guidance Documents (EGD) are targeted to clinical researchers. The aim of this EGD is to provide specific recommendations for the design of prospective acupuncture studies to support optimal use of resources for generating evidence that will inform stakeholder decision-making. Methods Document development based on multiple systematic consensus procedures (written Delphi rounds, interactive consensus workshop, international expert review). To balance aspects of internal and external validity, multiple stakeholders including patients, clinicians and payers were involved. Results Recommendations focused mainly on randomized studies and were developed for the following areas: overall research strategy, treatment protocol, expertise and setting, outcomes, study design and statistical analyses, economic evaluation, and publication. Conclusion The present EGD, based on an international consensus developed with multiple stakeholder involvement, provides the first systematic methodological guidance for future CER on acupuncture. PMID:22953730

  17. From community preferences to design: Investigation of human-centered optimization algorithms in web-based, democratic planning of watershed restoration

    NASA Astrophysics Data System (ADS)

    Babbar-Sebens, M.; Mukhopadhyay, S.

    2014-12-01

    Web 2.0 technologies are useful resources for reaching out to larger stakeholder communities and involve them in policy making and planning efforts. While these technologies have been used in the past to support education and communication endeavors, we have developed a novel, web-based, interactive planning tool that involves the community in using science-based methods for the design of potential runoff management strategies on their landscape. The tool, Watershed REstoration using Spatio-Temporal Optimization of Resources (WRESTORE), uses a democratic voting process coupled with visualization interfaces, computational simulation and optimization models, and user modeling techniques to support a human-centered design approach. The tool can be used to engage diverse watershed stakeholders and landowners via the internet, thereby improving opportunities for outreach and collaborations. Users are able to (a) design multiple types of conservation practices at their field-scale catchment and at the entire watershed scale, (b) examine impacts and limitations of their decisions on their neighboring catchments and on the entire watershed, (c) compare alternatives via a cost-benefit analysis, (d) vote on their "favorite" designs based on their preferences and constraints, and (e) propose their "favorite" alternatives to policy makers and other stakeholders. In this presentation, we will demonstrate the effectiveness of WRESTORE for designing alternatives of conservation practices to reduce peak flows in a Midwestern watershed, present results on multiple approaches for engaging with larger communities, and discuss potential for future developments.

  18. Mission Planning and Decision Support for Underwater Glider Networks: A Sampling on-Demand Approach

    PubMed Central

    Ferri, Gabriele; Cococcioni, Marco; Alvarez, Alberto

    2015-01-01

    This paper describes an optimal sampling approach to support glider fleet operators and marine scientists during the complex task of planning the missions of fleets of underwater gliders. Optimal sampling, which has gained considerable attention in the last decade, consists in planning the paths of gliders to minimize a specific criterion pertinent to the phenomenon under investigation. Different criteria (e.g., A, G, or E optimality), used in geosciences to obtain an optimum design, lead to different sampling strategies. In particular, the A criterion produces paths for the gliders that minimize the overall level of uncertainty over the area of interest. However, there are commonly operative situations in which the marine scientists may prefer not to minimize the overall uncertainty of a certain area, but instead they may be interested in achieving an acceptable uncertainty sufficient for the scientific or operational needs of the mission. We propose and discuss here an approach named sampling on-demand that explicitly addresses this need. In our approach the user provides an objective map, setting both the amount and the geographic distribution of the uncertainty to be achieved after assimilating the information gathered by the fleet. A novel optimality criterion, called Aη, is proposed and the resulting minimization problem is solved by using a Simulated Annealing based optimizer that takes into account the constraints imposed by the glider navigation features, the desired geometry of the paths and the problems of reachability caused by ocean currents. This planning strategy has been implemented in a Matlab toolbox called SoDDS (Sampling on-Demand and Decision Support). The tool is able to automatically download the ocean fields data from MyOcean repository and also provides graphical user interfaces to ease the input process of mission parameters and targets. The results obtained by running SoDDS on three different scenarios are provided and show that SoDDS, which is currently used at NATO STO Centre for Maritime Research and Experimentation (CMRE), can represent a step forward towards a systematic mission planning of glider fleets, dramatically reducing the efforts of glider operators. PMID:26712763

  19. Mission Planning and Decision Support for Underwater Glider Networks: A Sampling on-Demand Approach.

    PubMed

    Ferri, Gabriele; Cococcioni, Marco; Alvarez, Alberto

    2015-12-26

    This paper describes an optimal sampling approach to support glider fleet operators and marine scientists during the complex task of planning the missions of fleets of underwater gliders. Optimal sampling, which has gained considerable attention in the last decade, consists in planning the paths of gliders to minimize a specific criterion pertinent to the phenomenon under investigation. Different criteria (e.g., A, G, or E optimality), used in geosciences to obtain an optimum design, lead to different sampling strategies. In particular, the A criterion produces paths for the gliders that minimize the overall level of uncertainty over the area of interest. However, there are commonly operative situations in which the marine scientists may prefer not to minimize the overall uncertainty of a certain area, but instead they may be interested in achieving an acceptable uncertainty sufficient for the scientific or operational needs of the mission. We propose and discuss here an approach named sampling on-demand that explicitly addresses this need. In our approach the user provides an objective map, setting both the amount and the geographic distribution of the uncertainty to be achieved after assimilating the information gathered by the fleet. A novel optimality criterion, called A η , is proposed and the resulting minimization problem is solved by using a Simulated Annealing based optimizer that takes into account the constraints imposed by the glider navigation features, the desired geometry of the paths and the problems of reachability caused by ocean currents. This planning strategy has been implemented in a Matlab toolbox called SoDDS (Sampling on-Demand and Decision Support). The tool is able to automatically download the ocean fields data from MyOcean repository and also provides graphical user interfaces to ease the input process of mission parameters and targets. The results obtained by running SoDDS on three different scenarios are provided and show that SoDDS, which is currently used at NATO STO Centre for Maritime Research and Experimentation (CMRE), can represent a step forward towards a systematic mission planning of glider fleets, dramatically reducing the efforts of glider operators.

  20. Flood risk assessment and robust management under deep uncertainty: Application to Dhaka City

    NASA Astrophysics Data System (ADS)

    Mojtahed, Vahid; Gain, Animesh Kumar; Giupponi, Carlo

    2014-05-01

    The socio-economic changes as well as climatic changes have been the main drivers of uncertainty in environmental risk assessment and in particular flood. The level of future uncertainty that researchers face when dealing with problems in a future perspective with focus on climate change is known as Deep Uncertainty (also known as Knightian uncertainty), since nobody has already experienced and undergone those changes before and our knowledge is limited to the extent that we have no notion of probabilities, and therefore consolidated risk management approaches have limited potential.. Deep uncertainty is referred to circumstances that analysts and experts do not know or parties to decision making cannot agree on: i) the appropriate models describing the interaction among system variables, ii) probability distributions to represent uncertainty about key parameters in the model 3) how to value the desirability of alternative outcomes. The need thus emerges to assist policy-makers by providing them with not a single and optimal solution to the problem at hand, such as crisp estimates for the costs of damages of natural hazards considered, but instead ranges of possible future costs, based on the outcomes of ensembles of assessment models and sets of plausible scenarios. Accordingly, we need to substitute optimality as a decision criterion with robustness. Under conditions of deep uncertainty, the decision-makers do not have statistical and mathematical bases to identify optimal solutions, while instead they should prefer to implement "robust" decisions that perform relatively well over all conceivable outcomes out of all future unknown scenarios. Under deep uncertainty, analysts cannot employ probability theory or other statistics that usually can be derived from observed historical data and therefore, we turn to non-statistical measures such as scenario analysis. We construct several plausible scenarios with each scenario being a full description of what may happen in future and based on a meaningful synthesis of parameters' values with control of their correlations for maintaining internal consistencies. This paper aims at incorporating a set of data mining and sampling tools to assess uncertainty of model outputs under future climatic and socio-economic changes for Dhaka city and providing a decision support system for robust flood management and mitigation policies. After constructing an uncertainty matrix to identify the main sources of uncertainty for Dhaka City, we identify several hazard and vulnerability maps based on future climatic and socio-economic scenarios. The vulnerability of each flood management alternative under different set of scenarios is determined and finally the robustness of each plausible solution considered is defined based on the above assessment.

  1. A knowledge-based decision support system for payload scheduling

    NASA Technical Reports Server (NTRS)

    Floyd, Stephen; Ford, Donnie

    1988-01-01

    The role that artificial intelligence/expert systems technologies play in the development and implementation of effective decision support systems is illustrated. A recently developed prototype system for supporting the scheduling of subsystems and payloads/experiments for NASA's Space Station program is presented and serves to highlight various concepts. The potential integration of knowledge based systems and decision support systems which has been proposed in several recent articles and presentations is illustrated.

  2. Joint-layer encoder optimization for HEVC scalable extensions

    NASA Astrophysics Data System (ADS)

    Tsai, Chia-Ming; He, Yuwen; Dong, Jie; Ye, Yan; Xiu, Xiaoyu; He, Yong

    2014-09-01

    Scalable video coding provides an efficient solution to support video playback on heterogeneous devices with various channel conditions in heterogeneous networks. SHVC is the latest scalable video coding standard based on the HEVC standard. To improve enhancement layer coding efficiency, inter-layer prediction including texture and motion information generated from the base layer is used for enhancement layer coding. However, the overall performance of the SHVC reference encoder is not fully optimized because rate-distortion optimization (RDO) processes in the base and enhancement layers are independently considered. It is difficult to directly extend the existing joint-layer optimization methods to SHVC due to the complicated coding tree block splitting decisions and in-loop filtering process (e.g., deblocking and sample adaptive offset (SAO) filtering) in HEVC. To solve those problems, a joint-layer optimization method is proposed by adjusting the quantization parameter (QP) to optimally allocate the bit resource between layers. Furthermore, to make more proper resource allocation, the proposed method also considers the viewing probability of base and enhancement layers according to packet loss rate. Based on the viewing probability, a novel joint-layer RD cost function is proposed for joint-layer RDO encoding. The QP values of those coding tree units (CTUs) belonging to lower layers referenced by higher layers are decreased accordingly, and the QP values of those remaining CTUs are increased to keep total bits unchanged. Finally the QP values with minimal joint-layer RD cost are selected to match the viewing probability. The proposed method was applied to the third temporal level (TL-3) pictures in the Random Access configuration. Simulation results demonstrate that the proposed joint-layer optimization method can improve coding performance by 1.3% for these TL-3 pictures compared to the SHVC reference encoder without joint-layer optimization.

  3. Ant groups optimally amplify the effect of transiently informed individuals

    NASA Astrophysics Data System (ADS)

    Gelblum, Aviram; Pinkoviezky, Itai; Fonio, Ehud; Ghosh, Abhijit; Gov, Nir; Feinerman, Ofer

    2015-07-01

    To cooperatively transport a large load, it is important that carriers conform in their efforts and align their forces. A downside of behavioural conformism is that it may decrease the group's responsiveness to external information. Combining experiment and theory, we show how ants optimize collective transport. On the single-ant scale, optimization stems from decision rules that balance individuality and compliance. Macroscopically, these rules poise the system at the transition between random walk and ballistic motion where the collective response to the steering of a single informed ant is maximized. We relate this peak in response to the divergence of susceptibility at a phase transition. Our theoretical models predict that the ant-load system can be transitioned through the critical point of this mesoscopic system by varying its size; we present experiments supporting these predictions. Our findings show that efficient group-level processes can arise from transient amplification of individual-based knowledge.

  4. Ant groups optimally amplify the effect of transiently informed individuals

    PubMed Central

    Gelblum, Aviram; Pinkoviezky, Itai; Fonio, Ehud; Ghosh, Abhijit; Gov, Nir; Feinerman, Ofer

    2015-01-01

    To cooperatively transport a large load, it is important that carriers conform in their efforts and align their forces. A downside of behavioural conformism is that it may decrease the group's responsiveness to external information. Combining experiment and theory, we show how ants optimize collective transport. On the single-ant scale, optimization stems from decision rules that balance individuality and compliance. Macroscopically, these rules poise the system at the transition between random walk and ballistic motion where the collective response to the steering of a single informed ant is maximized. We relate this peak in response to the divergence of susceptibility at a phase transition. Our theoretical models predict that the ant-load system can be transitioned through the critical point of this mesoscopic system by varying its size; we present experiments supporting these predictions. Our findings show that efficient group-level processes can arise from transient amplification of individual-based knowledge. PMID:26218613

  5. Information Engineering and Workflow Design in a Clinical Decision Support System for Colorectal Cancer Screening in Iran.

    PubMed

    Maserat, Elham; Seied Farajollah, Seiede Sedigheh; Safdari, Reza; Ghazisaeedi, Marjan; Aghdaei, Hamid Asadzadeh; Zali, Mohammad Reza

    2015-01-01

    Colorectal cancer is a major cause of morbidity and mortality throughout the world. Colorectal cancer screening is an optimal way for reducing of morbidity and mortality and a clinical decision support system (CDSS) plays an important role in predicting success of screening processes. DSS is a computer-based information system that improves the delivery of preventive care services. The aim of this article was to detail engineering of information requirements and work flow design of CDSS for a colorectal cancer screening program. In the first stage a screening minimum data set was determined. Developed and developing countries were analyzed for identifying this data set. Then information deficiencies and gaps were determined by check list. The second stage was a qualitative survey with a semi-structured interview as the study tool. A total of 15 users and stakeholders' perspectives about workflow of CDSS were studied. Finally workflow of DSS of control program was designed by standard clinical practice guidelines and perspectives. Screening minimum data set of national colorectal cancer screening program was defined in five sections, including colonoscopy data set, surgery, pathology, genetics and pedigree data set. Deficiencies and information gaps were analyzed. Then we designed a work process standard of screening. Finally workflow of DSS and entry stage were determined. A CDSS facilitates complex decision making for screening and has key roles in designing optimal interactions between colonoscopy, pathology and laboratory departments. Also workflow analysis is useful to identify data reconciliation strategies to address documentation gaps. Following recommendations of CDSS should improve quality of colorectal cancer screening.

  6. Optimization of PSA screening policies: a comparison of the patient and societal perspectives.

    PubMed

    Zhang, Jingyu; Denton, Brian T; Balasubramanian, Hari; Shah, Nilay D; Inman, Brant A

    2012-01-01

    To estimate the benefit of PSA-based screening for prostate cancer from the patient and societal perspectives. A partially observable Markov decision process model was used to optimize PSA screening decisions. Age-specific prostate cancer incidence rates and the mortality rates from prostate cancer and competing causes were considered. The model trades off the potential benefit of early detection with the cost of screening and loss of patient quality of life due to screening and treatment. PSA testing and biopsy decisions are made based on the patient's probability of having prostate cancer. Probabilities are inferred based on the patient's complete PSA history using Bayesian updating. The results of all PSA tests and biopsies done in Olmsted County, Minnesota, from 1993 to 2005 (11,872 men and 50,589 PSA test results). Patients' perspective: to maximize expected quality-adjusted life years (QALYs); societal perspective: to maximize the expected monetary value based on societal willingness to pay for QALYs and the cost of PSA testing, prostate biopsies, and treatment. From the patient perspective, the optimal policy recommends stopping PSA testing and biopsy at age 76. From the societal perspective, the stopping age is 71. The expected incremental benefit of optimal screening over the traditional guideline of annual PSA screening with threshold 4.0 ng/mL for biopsy is estimated to be 0.165 QALYs per person from the patient perspective and 0.161 QALYs per person from the societal perspective. PSA screening based on traditional guidelines is found to be worse than no screening at all. PSA testing done with traditional guidelines underperforms and therefore underestimates the potential benefit of screening. Optimal screening guidelines differ significantly depending on the perspective of the decision maker.

  7. Clinical decision support provided within physician order entry systems: a systematic review of features effective for changing clinician behavior.

    PubMed

    Kawamoto, Kensaku; Lobach, David F

    2003-01-01

    Computerized physician order entry (CPOE) systems represent an important tool for providing clinical decision support. In undertaking this systematic review, our objective was to identify the features of CPOE-based clinical decision support systems (CDSSs) most effective at modifying clinician behavior. For this review, two independent reviewers systematically identified randomized controlled trials that evaluated the effectiveness of CPOE-based CDSSs in changing clinician behavior. Furthermore, each included study was assessed for the presence of 14 CDSS features. We screened 10,023 citations and included 11 studies. Of the 10 studies comparing a CPOE-based CDSS intervention against a non-CDSS control group, 7 reported a significant desired change in professional practice. Moreover, meta-regression analysis revealed that automatic provision of the decision support was strongly associated with improved professional practice (adjusted odds ratio, 23.72; 95% confidence interval, 1.75-infiniti). Thus, we conclude that automatic provision of decision support is a critical feature of successful CPOE-based CDSS interventions.

  8. Bionic models for identification of biological systems

    NASA Astrophysics Data System (ADS)

    Gerget, O. M.

    2017-01-01

    This article proposes a clinical decision support system that processes biomedical data. For this purpose a bionic model has been designed based on neural networks, genetic algorithms and immune systems. The developed system has been tested on data from pregnant women. The paper focuses on the approach to enable selection of control actions that can minimize the risk of adverse outcome. The control actions (hyperparameters of a new type) are further used as an additional input signal. Its values are defined by a hyperparameter optimization method. A software developed with Python is briefly described.

  9. Comprehensive evaluation of garment assembly line with simulation

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Thomassey, S.; Chen, Y.; Zeng, X.

    2017-10-01

    In this paper, a comprehensive evaluation system is established to assess the garment production performance. It is based on performance indicators and supported with the corresponding results obtained by manual calculation or computer simulation. The assembly lines of a typical men’s shirt are taken as the study objects. With the comprehensive evaluation results, garments production arrangement scenarios are better analysed and then the appropriate one is supposed to be put into actual production. This will be a guidance given to companies on quick decision-making and multi-objective optimization of garment production.

  10. Emergency material allocation with time-varying supply-demand based on dynamic optimization method for river chemical spills.

    PubMed

    Liu, Jie; Guo, Liang; Jiang, Jiping; Jiang, Dexun; Wang, Peng

    2018-04-13

    Aiming to minimize the damage caused by river chemical spills, efficient emergency material allocation is critical for an actual emergency rescue decision-making in a quick response. In this study, an emergency material allocation framework based on time-varying supply-demand constraint is developed to allocate emergency material, minimize the emergency response time, and satisfy the dynamic emergency material requirements in post-accident phases dealing with river chemical spills. In this study, the theoretically critical emergency response time is firstly obtained for the emergency material allocation system to select a series of appropriate emergency material warehouses as potential supportive centers. Then, an enumeration method is applied to identify the practically critical emergency response time, the optimum emergency material allocation and replenishment scheme. Finally, the developed framework is applied to a computational experiment based on south-to-north water transfer project in China. The results illustrate that the proposed methodology is a simple and flexible tool for appropriately allocating emergency material to satisfy time-dynamic demands during emergency decision-making. Therefore, the decision-makers can identify an appropriate emergency material allocation scheme in a balance between time-effective and cost-effective objectives under the different emergency pollution conditions.

  11. Optimizing support vector machine learning for semi-arid vegetation mapping by using clustering analysis

    NASA Astrophysics Data System (ADS)

    Su, Lihong

    In remote sensing communities, support vector machine (SVM) learning has recently received increasing attention. SVM learning usually requires large memory and enormous amounts of computation time on large training sets. According to SVM algorithms, the SVM classification decision function is fully determined by support vectors, which compose a subset of the training sets. In this regard, a solution to optimize SVM learning is to efficiently reduce training sets. In this paper, a data reduction method based on agglomerative hierarchical clustering is proposed to obtain smaller training sets for SVM learning. Using a multiple angle remote sensing dataset of a semi-arid region, the effectiveness of the proposed method is evaluated by classification experiments with a series of reduced training sets. The experiments show that there is no loss of SVM accuracy when the original training set is reduced to 34% using the proposed approach. Maximum likelihood classification (MLC) also is applied on the reduced training sets. The results show that MLC can also maintain the classification accuracy. This implies that the most informative data instances can be retained by this approach.

  12. EBMPracticeNet: A Bilingual National Electronic Point-Of-Care Project for Retrieval of Evidence-Based Clinical Guideline Information and Decision Support

    PubMed Central

    2013-01-01

    Background In Belgium, the construction of a national electronic point-of-care information service, EBMPracticeNet, was initiated in 2011 to optimize quality of care by promoting evidence-based decision-making. The collaboration of the government, health care providers, evidence-based medicine (EBM) partners, and vendors of electronic health records (EHR) is unique to this project. All Belgian health care professionals get free access to an up-to-date database of validated Belgian and nearly 1000 international guidelines, incorporated in a portal that also provides EBM information from other sources than guidelines, including computerized clinical decision support that is integrated in the EHRs. Objective The objective of this paper was to describe the development strategy, the overall content, and the management of EBMPracticeNet which may be of relevance to other health organizations creating national or regional electronic point-of-care information services. Methods Several candidate providers of comprehensive guideline solutions were evaluated and one database was selected. Translation of the guidelines to Dutch and French was done with translation software, post-editing by translators and medical proofreading. A strategy is determined to adapt the guideline content to the Belgian context. Acceptance of the computerized clinical decision support tool has been tested and a randomized controlled trial is planned to evaluate the effect on process and patient outcomes. Results Currently, EBMPracticeNet is in "work in progress" state. Reference is made to the results of a pilot study and to further planned research including a randomized controlled trial. Conclusions The collaboration of government, health care providers, EBM partners, and vendors of EHRs is unique. The potential value of the project is great. The link between all the EHRs from different vendors and a national database held on a single platform that is controlled by all EBM organizations in Belgium are the strengths of EBMPracticeNet. PMID:23842038

  13. Decision analysis framing study; in-valley drainage management strategies for the western San Joaquin Valley, California

    USGS Publications Warehouse

    Presser, Theresa S.; Jenni, Karen E.; Nieman, Timothy; Coleman, James

    2010-01-01

    Constraints on drainage management in the western San Joaquin Valley and implications of proposed approaches to management were recently evaluated by the U.S. Geological Survey (USGS). The USGS found that a significant amount of data for relevant technical issues was available and that a structured, analytical decision support tool could help optimize combinations of specific in-valley drainage management strategies, address uncertainties, and document underlying data analysis for future use. To follow-up on USGS's technical analysis and to help define a scientific basis for decisionmaking in implementing in-valley drainage management strategies, this report describes the first step (that is, a framing study) in a Decision Analysis process. In general, a Decision Analysis process includes four steps: (1) problem framing to establish the scope of the decision problem(s) and a set of fundamental objectives to evaluate potential solutions, (2) generation of strategies to address identified decision problem(s), (3) identification of uncertainties and their relationships, and (4) construction of a decision support model. Participation in such a systematic approach can help to promote consensus and to build a record of qualified supporting data for planning and implementation. In December 2008, a Decision Analysis framing study was initiated with a series of meetings designed to obtain preliminary input from key stakeholder groups on the scope of decisions relevant to drainage management that were of interest to them, and on the fundamental objectives each group considered relevant to those decisions. Two key findings of this framing study are: (1) participating stakeholders have many drainage management objectives in common; and (2) understanding the links between drainage management and water management is necessary both for sound science-based decisionmaking and for resolving stakeholder differences about the value of proposed drainage management solutions. Citing ongoing legal processes associated with drainage management in the western San Joaquin Valley, the U.S. Bureau of Reclamation (USBR) withdrew from the Decision Analysis process early in the proceedings. Without the involvement of the USBR, the USGS discontinued further development of this study.

  14. The use of the Dutch Self-Sufficiency Matrix (SSM-D) to inform allocation decisions to public mental health care for homeless people.

    PubMed

    Lauriks, Steve; de Wit, Matty A S; Buster, Marcel C A; Fassaert, Thijs J L; van Wifferen, Ron; Klazinga, Niek S

    2014-10-01

    The current study set out to develop a decision support tool based on the Self-Sufficiency Matrix (Dutch version; SSM-D) for the clinical decision to allocate homeless people to the public mental health care system at the central access point of public mental health care in Amsterdam, The Netherlands. Logistic regression and receiver operating characteristic-curve analyses were used to model professional decisions and establish four decision categories based on SSM-D scores from half of the research population (Total n = 612). The model and decision categories were found to be accurate and reliable in predicting professional decisions in the second half of the population. Results indicate that the decision support tool based on the SSM-D is useful and feasible. The method to develop the SSM-D as a decision support tool could be applied to decision-making processes in other systems and services where the SSM-D has been implemented, to further increase the utility of the instrument.

  15. A gain-loss framework based on ensemble flow forecasts to switch the urban drainage-wastewater system management towards energy optimization during dry periods

    NASA Astrophysics Data System (ADS)

    Courdent, Vianney; Grum, Morten; Munk-Nielsen, Thomas; Mikkelsen, Peter S.

    2017-05-01

    Precipitation is the cause of major perturbation to the flow in urban drainage and wastewater systems. Flow forecasts, generated by coupling rainfall predictions with a hydrologic runoff model, can potentially be used to optimize the operation of integrated urban drainage-wastewater systems (IUDWSs) during both wet and dry weather periods. Numerical weather prediction (NWP) models have significantly improved in recent years, having increased their spatial and temporal resolution. Finer resolution NWP are suitable for urban-catchment-scale applications, providing longer lead time than radar extrapolation. However, forecasts are inevitably uncertain, and fine resolution is especially challenging for NWP. This uncertainty is commonly addressed in meteorology with ensemble prediction systems (EPSs). Handling uncertainty is challenging for decision makers and hence tools are necessary to provide insight on ensemble forecast usage and to support the rationality of decisions (i.e. forecasts are uncertain and therefore errors will be made; decision makers need tools to justify their choices, demonstrating that these choices are beneficial in the long run). This study presents an economic framework to support the decision-making process by providing information on when acting on the forecast is beneficial and how to handle the EPS. The relative economic value (REV) approach associates economic values with the potential outcomes and determines the preferential use of the EPS forecast. The envelope curve of the REV diagram combines the results from each probability forecast to provide the highest relative economic value for a given gain-loss ratio. This approach is traditionally used at larger scales to assess mitigation measures for adverse events (i.e. the actions are taken when events are forecast). The specificity of this study is to optimize the energy consumption in IUDWS during low-flow periods by exploiting the electrical smart grid market (i.e. the actions are taken when no events are forecast). Furthermore, the results demonstrate the benefit of NWP neighbourhood post-processing methods to enhance the forecast skill and increase the range of beneficial uses.

  16. An optimization modeling approach to awarding large fire support wildfire helicopter contracts from the US Forest Service

    Treesearch

    Stephanie A. Snyder; Keith D. Stockmann; Gaylord E. Morris

    2012-01-01

    The US Forest Service used contracted helicopter services as part of its wildfire suppression strategy. An optimization decision-modeling system was developed to assist in the contract selection process. Three contract award selection criteria were considered: cost per pound of delivered water, total contract cost, and quality ratings of the aircraft and vendors....

  17. Optimal tactics for close support operations. III - Degraded intelligence and communications

    NASA Astrophysics Data System (ADS)

    Hess, J.; Kalaba, R.; Kagiwada, H.; Spingarn, K.; Tsokos, C.

    1980-04-01

    A new generation of C3 (command, control, and communication) models for military cybernetics is developed. Recursive equations for the solution of the C3 problem are derived for an amphibious campaign with linear time-varying dynamics. Air and ground commanders are assumed to have no intelligence and no communications. Numerical results are given for the optimal decision rules.

  18. Three-Dimension Visualization for Primary Wheat Diseases Based on Simulation Model

    NASA Astrophysics Data System (ADS)

    Shijuan, Li; Yeping, Zhu

    Crop simulation model has been becoming the core of agricultural production management and resource optimization management. Displaying crop growth process makes user observe the crop growth and development intuitionisticly. On the basis of understanding and grasping the occurrence condition, popularity season, key impact factors for main wheat diseases of stripe rust, leaf rust, stem rust, head blight and powdery mildew from research material and literature, we designed 3D visualization model for wheat growth and diseases occurrence. The model system will help farmer, technician and decision-maker to use crop growth simulation model better and provide decision-making support. Now 3D visualization model for wheat growth on the basis of simulation model has been developed, and the visualization model for primary wheat diseases is in the process of development.

  19. Towards an internal model in pilot training.

    PubMed

    Braune, R J; Trollip, S R

    1982-10-01

    Optimal decision making requires an information seeking behavior which reflects the comprehension of the overall system dynamics. Research in the area of human monitors in man-machine systems supports the notion of an internal model with built-in expectancies. It is doubtful that the current approach to pilot training helps develop this internal model in the most efficient way. But this is crucial since the role of the pilot is changing to a systems' manager and decision maker. An extension of the behavioral framework of pilot training might help to prepare the pilot better for the increasingly complex flight environment. This extension is based on the theoretical model of schema theory, which evolved out of psychological research. The technological advances in aircraft simulators and in-flight performance measurement devices allow investigation of the still-unresolved issues.

  20. Preemptive clinical pharmacogenetics implementation: current programs in five US medical centers.

    PubMed

    Dunnenberger, Henry M; Crews, Kristine R; Hoffman, James M; Caudle, Kelly E; Broeckel, Ulrich; Howard, Scott C; Hunkler, Robert J; Klein, Teri E; Evans, William E; Relling, Mary V

    2015-01-01

    Although the field of pharmacogenetics has existed for decades, practioners have been slow to implement pharmacogenetic testing in clinical care. Numerous publications describe the barriers to clinical implementation of pharmacogenetics. Recently, several freely available resources have been developed to help address these barriers. In this review, we discuss current programs that use preemptive genotyping to optimize the pharmacotherapy of patients. Array-based preemptive testing includes a large number of relevant pharmacogenes that impact multiple high-risk drugs. Using a preemptive approach allows genotyping results to be available prior to any prescribing decision so that genomic variation may be considered as an inherent patient characteristic in the planning of therapy. This review describes the common elements among programs that have implemented preemptive genotyping and highlights key processes for implementation, including clinical decision support.

  1. Implementing an evidence-based computerized decision support system linked to electronic health records to improve care for cancer patients: the ONCO-CODES study protocol for a randomized controlled trial.

    PubMed

    Moja, Lorenzo; Passardi, Alessandro; Capobussi, Matteo; Banzi, Rita; Ruggiero, Francesca; Kwag, Koren; Liberati, Elisa Giulia; Mangia, Massimo; Kunnamo, Ilkka; Cinquini, Michela; Vespignani, Roberto; Colamartini, Americo; Di Iorio, Valentina; Massa, Ilaria; González-Lorenzo, Marien; Bertizzolo, Lorenzo; Nyberg, Peter; Grimshaw, Jeremy; Bonovas, Stefanos; Nanni, Oriana

    2016-11-25

    Computerized decision support systems (CDSSs) are computer programs that provide doctors with person-specific, actionable recommendations, or management options that are intelligently filtered or presented at appropriate times to enhance health care. CDSSs might be integrated with patient electronic health records (EHRs) and evidence-based knowledge. The Computerized DEcision Support in ONCOlogy (ONCO-CODES) trial is a pragmatic, parallel group, randomized controlled study with 1:1 allocation ratio. The trial is designed to evaluate the effectiveness on clinical practice and quality of care of a multi-specialty collection of patient-specific reminders generated by a CDSS in the IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) hospital. We hypothesize that the intervention can increase clinician adherence to guidelines and, eventually, improve the quality of care offered to cancer patients. The primary outcome is the rate at which the issues reported by the reminders are resolved, aggregating specialty and primary care reminders. We will include all the patients admitted to hospital services. All analyses will follow the intention-to-treat principle. The results of our study will contribute to the current understanding of the effectiveness of CDSSs in cancer hospitals, thereby informing healthcare policy about the potential role of CDSS use. Furthermore, the study will inform whether CDSS may facilitate the integration of primary care in cancer settings, known to be usually limited. The increasing use of and familiarity with advanced technology among new generations of physicians may support integrated approaches to be tested in pragmatic studies determining the optimal interface between primary and oncology care. ClinicalTrials.gov, NCT02645357.

  2. Using genetic algorithms to optimise current and future health planning--the example of ambulance locations.

    PubMed

    Sasaki, Satoshi; Comber, Alexis J; Suzuki, Hiroshi; Brunsdon, Chris

    2010-01-28

    Ambulance response time is a crucial factor in patient survival. The number of emergency cases (EMS cases) requiring an ambulance is increasing due to changes in population demographics. This is decreasing ambulance response times to the emergency scene. This paper predicts EMS cases for 5-year intervals from 2020, to 2050 by correlating current EMS cases with demographic factors at the level of the census area and predicted population changes. It then applies a modified grouping genetic algorithm to compare current and future optimal locations and numbers of ambulances. Sets of potential locations were evaluated in terms of the (current and predicted) EMS case distances to those locations. Future EMS demands were predicted to increase by 2030 using the model (R2 = 0.71). The optimal locations of ambulances based on future EMS cases were compared with current locations and with optimal locations modelled on current EMS case data. Optimising the location of ambulance stations locations reduced the average response times by 57 seconds. Current and predicted future EMS demand at modelled locations were calculated and compared. The reallocation of ambulances to optimal locations improved response times and could contribute to higher survival rates from life-threatening medical events. Modelling EMS case 'demand' over census areas allows the data to be correlated to population characteristics and optimal 'supply' locations to be identified. Comparing current and future optimal scenarios allows more nuanced planning decisions to be made. This is a generic methodology that could be used to provide evidence in support of public health planning and decision making.

  3. Study on optimized decision-making model of offshore wind power projects investment

    NASA Astrophysics Data System (ADS)

    Zhao, Tian; Yang, Shangdong; Gao, Guowei; Ma, Li

    2018-02-01

    China’s offshore wind energy is of great potential and plays an important role in promoting China’s energy structure adjustment. However, the current development of offshore wind power in China is inadequate, and is much less developed than that of onshore wind power. On the basis of considering all kinds of risks faced by offshore wind power development, an optimized model of offshore wind power investment decision is established in this paper by proposing the risk-benefit assessment method. To prove the practicability of this method in improving the selection of wind power projects, python programming is used to simulate the investment analysis of a large number of projects. Therefore, the paper is dedicated to provide decision-making support for the sound development of offshore wind power industry.

  4. Physicians in Postgraduate Training Characteristics and Support of Palliative Sedation for Existential Distress.

    PubMed

    Cripe, Larry D; Perkins, Susan M; Cottingham, Ann; Tong, Yan; Kozak, Mary Ann; Mehta, Rakesh

    2017-09-01

    Palliative sedation for refractory existential distress (PS-ED) is ethically troubling but potentially critical to quality end-of-life (EOL) care. Physicians' in postgraduate training support toward PS-ED is unknown nor is it known how empathy, hope, optimism, or intrinsic religious motivation (IRM) affect their support. These knowledge gaps hinder efforts to support physicians who struggle with patients' EOL care preferences. One hundred thirty-four postgraduate physicians rated their support of PS for refractory physical pain (PS-PP) or PS-ED, ranked the importance of patient preferences in ethically challenging situations, and completed measures of empathy, hope, optimism, and IRM. Predictors of PS-ED and PS-PP support were examined using binary and multinomial logistic regression. Only 22.7% of residents were very supportive of PS-ED, and 82.0% were very supportive of PS-PP. Support for PS-PP or PS-ED did not correlate with levels of empathy, hope, optimism, or IRM; however, for residents with lower IRM, greater optimism was associated with greater PS-ED support. In contrast, among residents with higher IRM, optimism was not associated with PS-ED support. Comparing current results to published surveys, a similar proportion of residents and practicing physicians support PS-ED and PS-PP. In contrast to practicing physicians, however, IRM does not directly influence residents' supportiveness. The interaction between optimism and IRM suggests residents' beliefs and characteristics are salient to their EOL decisions. End-of-life curricula should provide physicians opportunities to reflect on the personal and ethical factors that influence their support for PS-ED.

  5. Optimal in vitro fertilization in 2020 should reduce treatment burden and enhance care delivery for patients and staff.

    PubMed

    Gameiro, Sofia; Boivin, Jacky; Domar, Alice

    2013-08-01

    This review argues that optimal in vitro fertilization in 2020 should include a way of enhancing the delivery of treatment for patients and staff by the minimization of patient, treatment, and clinic sources of burden. Two specific sources of burden are addressed. First, patient vulnerability can be tackled by implementation of pretreatment evidence-based screening for psychological distress, appropriate referral for support, elimination of barriers to acceptance of psychosocial support, and implementation of a routine care flowchart that identifies the specific stages of treatment when psychosocial support should be provided. Second, negative patient-staff interactions can be avoided by training staff in communication/interaction skills, promoting shared decision making, prioritizing psychological interventions that address aspects of care equally problematic for patients and staff, and monitoring the impact of change on patient, staff, and clinic outcomes. In addition, optimal in vitro fertilization should ensure now that the future generations of young adults know what "achieving parenthood" actually entails in the context of the many desired goals of adulthood, greater variety of reproductive techniques available, later age of first births, and, consequently, longer exposure to risk factors (e.g., smoking) that affect fertility. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  6. Maximizing the U.S. Army’s Future Contribution to Global Security Using the Capability Portfolio Analysis Tool (CPAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Scott J.; Edwards, Shatiel B.; Teper, Gerald E.

    We report that recent budget reductions have posed tremendous challenges to the U.S. Army in managing its portfolio of ground combat systems (tanks and other fighting vehicles), thus placing many important programs at risk. To address these challenges, the Army and a supporting team developed and applied the Capability Portfolio Analysis Tool (CPAT) to optimally invest in ground combat modernization over the next 25–35 years. CPAT provides the Army with the analytical rigor needed to help senior Army decision makers allocate scarce modernization dollars to protect soldiers and maintain capability overmatch. CPAT delivers unparalleled insight into multiple-decade modernization planning usingmore » a novel multiphase mixed-integer linear programming technique and illustrates a cultural shift toward analytics in the Army’s acquisition thinking and processes. CPAT analysis helped shape decisions to continue modernization of the $10 billion Stryker family of vehicles (originally slated for cancellation) and to strategically reallocate over $20 billion to existing modernization programs by not pursuing the Ground Combat Vehicle program as originally envisioned. Ultimately, more than 40 studies have been completed using CPAT, applying operations research methods to optimally prioritize billions of taxpayer dollars and allowing Army acquisition executives to base investment decisions on analytically rigorous evaluations of portfolio trade-offs.« less

  7. Maximizing the U.S. Army’s Future Contribution to Global Security Using the Capability Portfolio Analysis Tool (CPAT)

    DOE PAGES

    Davis, Scott J.; Edwards, Shatiel B.; Teper, Gerald E.; ...

    2016-02-01

    We report that recent budget reductions have posed tremendous challenges to the U.S. Army in managing its portfolio of ground combat systems (tanks and other fighting vehicles), thus placing many important programs at risk. To address these challenges, the Army and a supporting team developed and applied the Capability Portfolio Analysis Tool (CPAT) to optimally invest in ground combat modernization over the next 25–35 years. CPAT provides the Army with the analytical rigor needed to help senior Army decision makers allocate scarce modernization dollars to protect soldiers and maintain capability overmatch. CPAT delivers unparalleled insight into multiple-decade modernization planning usingmore » a novel multiphase mixed-integer linear programming technique and illustrates a cultural shift toward analytics in the Army’s acquisition thinking and processes. CPAT analysis helped shape decisions to continue modernization of the $10 billion Stryker family of vehicles (originally slated for cancellation) and to strategically reallocate over $20 billion to existing modernization programs by not pursuing the Ground Combat Vehicle program as originally envisioned. Ultimately, more than 40 studies have been completed using CPAT, applying operations research methods to optimally prioritize billions of taxpayer dollars and allowing Army acquisition executives to base investment decisions on analytically rigorous evaluations of portfolio trade-offs.« less

  8. Optimal Decision Stimuli for Risky Choice Experiments: An Adaptive Approach.

    PubMed

    Cavagnaro, Daniel R; Gonzalez, Richard; Myung, Jay I; Pitt, Mark A

    2013-02-01

    Collecting data to discriminate between models of risky choice requires careful selection of decision stimuli. Models of decision making aim to predict decisions across a wide range of possible stimuli, but practical limitations force experimenters to select only a handful of them for actual testing. Some stimuli are more diagnostic between models than others, so the choice of stimuli is critical. This paper provides the theoretical background and a methodological framework for adaptive selection of optimal stimuli for discriminating among models of risky choice. The approach, called Adaptive Design Optimization (ADO), adapts the stimulus in each experimental trial based on the results of the preceding trials. We demonstrate the validity of the approach with simulation studies aiming to discriminate Expected Utility, Weighted Expected Utility, Original Prospect Theory, and Cumulative Prospect Theory models.

  9. Decision making with epistemic uncertainty under safety constraints: An application to seismic design

    USGS Publications Warehouse

    Veneziano, D.; Agarwal, A.; Karaca, E.

    2009-01-01

    The problem of accounting for epistemic uncertainty in risk management decisions is conceptually straightforward, but is riddled with practical difficulties. Simple approximations are often used whereby future variations in epistemic uncertainty are ignored or worst-case scenarios are postulated. These strategies tend to produce sub-optimal decisions. We develop a general framework based on Bayesian decision theory and exemplify it for the case of seismic design of buildings. When temporal fluctuations of the epistemic uncertainties and regulatory safety constraints are included, the optimal level of seismic protection exceeds the normative level at the time of construction. Optimal Bayesian decisions do not depend on the aleatory or epistemic nature of the uncertainties, but only on the total (epistemic plus aleatory) uncertainty and how that total uncertainty varies randomly during the lifetime of the project. ?? 2009 Elsevier Ltd. All rights reserved.

  10. Spatio-Temporal Process Variability in Watershed Scale Wetland Restoration Planning

    NASA Astrophysics Data System (ADS)

    Evenson, G. R.

    2012-12-01

    Watershed scale restoration decision making processes are increasingly informed by quantitative methodologies providing site-specific restoration recommendations - sometimes referred to as "systematic planning." The more advanced of these methodologies are characterized by a coupling of search algorithms and ecological models to discover restoration plans that optimize environmental outcomes. Yet while these methods have exhibited clear utility as decision support toolsets, they may be critiqued for flawed evaluations of spatio-temporally variable processes fundamental to watershed scale restoration. Hydrologic and non-hydrologic mediated process connectivity along with post-restoration habitat dynamics, for example, are commonly ignored yet known to appreciably affect restoration outcomes. This talk will present a methodology to evaluate such spatio-temporally complex processes in the production of watershed scale wetland restoration plans. Using the Tuscarawas Watershed in Eastern Ohio as a case study, a genetic algorithm will be coupled with the Soil and Water Assessment Tool (SWAT) to reveal optimal wetland restoration plans as measured by their capacity to maximize nutrient reductions. Then, a so-called "graphical" representation of the optimization problem will be implemented in-parallel to promote hydrologic and non-hydrologic mediated connectivity amongst existing wetlands and sites selected for restoration. Further, various search algorithm mechanisms will be discussed as a means of accounting for temporal complexities such as post-restoration habitat dynamics. Finally, generalized patterns of restoration plan optimality will be discussed as an alternative and possibly superior decision support toolset given the complexity and stochastic nature of spatio-temporal process variability.

  11. Designing a data-driven decision support tool for nurse scheduling in the emergency department: a case study of a southern New Jersey emergency department.

    PubMed

    Otegbeye, Mojisola; Scriber, Roslyn; Ducoin, Donna; Glasofer, Amy

    2015-01-01

    A health system serving Burlington and Camden Counties, New Jersey, sought to improve labor productivity for its emergency departments, with emphasis on optimizing nursing staff schedules. Using historical emergency department visit data and operating constraints, a decision support tool was designed to recommend the number of emergency nurses needed in each hour for each day of the week. The pilot emergency department nurse managers used the decision support tool's recommendations to redeploy nurse hours from weekends into a float pool to support periods of demand spikes on weekdays. Productivity improved significantly, with no unfavorable impact on patient throughput, and patient and staff satisfaction. Today's emergency department manager can leverage the increasing ease of access to the emergency department information system's data repository to successfully design a simple but effective tool to support the alignment of its nursing schedule with demand patterns. Copyright © 2015 Emergency Nurses Association. Published by Elsevier Inc. All rights reserved.

  12. Decision theory, reinforcement learning, and the brain.

    PubMed

    Dayan, Peter; Daw, Nathaniel D

    2008-12-01

    Decision making is a core competence for animals and humans acting and surviving in environments they only partially comprehend, gaining rewards and punishments for their troubles. Decision-theoretic concepts permeate experiments and computational models in ethology, psychology, and neuroscience. Here, we review a well-known, coherent Bayesian approach to decision making, showing how it unifies issues in Markovian decision problems, signal detection psychophysics, sequential sampling, and optimal exploration and discuss paradigmatic psychological and neural examples of each problem. We discuss computational issues concerning what subjects know about their task and how ambitious they are in seeking optimal solutions; we address algorithmic topics concerning model-based and model-free methods for making choices; and we highlight key aspects of the neural implementation of decision making.

  13. A decision-based perspective for the design of methods for systems design

    NASA Technical Reports Server (NTRS)

    Mistree, Farrokh; Muster, Douglas; Shupe, Jon A.; Allen, Janet K.

    1989-01-01

    Organization of material, a definition of decision based design, a hierarchy of decision based design, the decision support problem technique, a conceptual model design that can be manufactured and maintained, meta-design, computer-based design, action learning, and the characteristics of decisions are among the topics covered.

  14. Decision support system for health care resources allocation

    PubMed Central

    Sebaa, Abderrazak; Nouicer, Amina; Tari, AbdelKamel; Tarik, Ramtani; Abdellah, Ouhab

    2017-01-01

    Background A study about healthcare resources can improve decisions regarding the allotment and mobilization of medical resources and to better guide future investment in the health sector. Aim The aim of this work was to design and implement a decision support system to improve medical resources allocation of Bejaia region. Methods To achieve the retrospective cohort study, we integrated existing clinical databases from different Bejaia department health sector institutions (an Algerian department) to collect information about patients from January 2015 through December 2015. Data integration was performed in a data warehouse using the multi-dimensional model and OLAP cube. During implementation, we used Microsoft SQL server 2012 and Microsoft Excel 2010. Results A medical decision support platform was introduced, and was implemented during the planning stages allowing the management of different medical orientations, it provides better apportionment and allotment of medical resources, and ensures that the allocation of health care resources has optimal effects on improving health. Conclusion In this study, we designed and implemented a decision support system which would improve health care in Bejaia department to especially assist in the selection of the optimum location of health center and hospital, the specialty of the health center, the medical equipment and the medical staff. PMID:28848645

  15. Decision support system for health care resources allocation.

    PubMed

    Sebaa, Abderrazak; Nouicer, Amina; Tari, AbdelKamel; Tarik, Ramtani; Abdellah, Ouhab

    2017-06-01

    A study about healthcare resources can improve decisions regarding the allotment and mobilization of medical resources and to better guide future investment in the health sector. The aim of this work was to design and implement a decision support system to improve medical resources allocation of Bejaia region. To achieve the retrospective cohort study, we integrated existing clinical databases from different Bejaia department health sector institutions (an Algerian department) to collect information about patients from January 2015 through December 2015. Data integration was performed in a data warehouse using the multi-dimensional model and OLAP cube. During implementation, we used Microsoft SQL server 2012 and Microsoft Excel 2010. A medical decision support platform was introduced, and was implemented during the planning stages allowing the management of different medical orientations, it provides better apportionment and allotment of medical resources, and ensures that the allocation of health care resources has optimal effects on improving health. In this study, we designed and implemented a decision support system which would improve health care in Bejaia department to especially assist in the selection of the optimum location of health center and hospital, the specialty of the health center, the medical equipment and the medical staff.

  16. Distinct Roles of Dopamine and Subthalamic Nucleus in Learning and Probabilistic Decision Making

    ERIC Educational Resources Information Center

    Coulthard, Elizabeth J.; Bogacz, Rafal; Javed, Shazia; Mooney, Lucy K.; Murphy, Gillian; Keeley, Sophie; Whone, Alan L.

    2012-01-01

    Even simple behaviour requires us to make decisions based on combining multiple pieces of learned and new information. Making such decisions requires both learning the optimal response to each given stimulus as well as combining probabilistic information from multiple stimuli before selecting a response. Computational theories of decision making…

  17. On decentralized design: Rationale, dynamics, and effects on decision-making

    NASA Astrophysics Data System (ADS)

    Chanron, Vincent

    The focus of this dissertation is the design of complex systems, including engineering systems such as cars, airplanes, and satellites. Companies who design these systems are under constant pressure to design better products that meet customer expectations, and competition forces them to develop them faster. One of the responses of the industry to these conflicting challenges has been the decentralization of the design responsibilities. The current lack of understanding of the dynamics of decentralized design processes is the main motivation for this research, and places value on the descriptive base. It identifies the main reasons and the true benefits for companies to decentralize the design of their products. It also demonstrates the limitations of this approach by listing the relevant issues and problems created by the decentralization of decisions. Based on these observations, a game-theoretic approach to decentralized design is proposed to model the decisions made during the design process. The dynamics are modeled using mathematical formulations inspired from control theory. Building upon this formalism, the issue of convergence in decentralized design is analyzed: the equilibrium points of the design space are identified and convergent and divergent patterns are recognized. This rigorous investigation of the design process provides motivation and support for proposing new approaches to decentralized design problems. Two methods are developed, which aim at improving the design process in two ways: decreasing the product development time, and increasing the optimality of the final design. The frame of these methods are inspired by eigenstructure decomposition and set-based design, respectively. The value of the research detailed within this dissertation is in the proposed methods which are built upon the sound mathematical formalism developed. The contribution of this work is two fold: rigorous investigation of the design process, and practical support to decision-making in decentralized environments.

  18. SANDS: a service-oriented architecture for clinical decision support in a National Health Information Network.

    PubMed

    Wright, Adam; Sittig, Dean F

    2008-12-01

    In this paper, we describe and evaluate a new distributed architecture for clinical decision support called SANDS (Service-oriented Architecture for NHIN Decision Support), which leverages current health information exchange efforts and is based on the principles of a service-oriented architecture. The architecture allows disparate clinical information systems and clinical decision support systems to be seamlessly integrated over a network according to a set of interfaces and protocols described in this paper. The architecture described is fully defined and developed, and six use cases have been developed and tested using a prototype electronic health record which links to one of the existing prototype National Health Information Networks (NHIN): drug interaction checking, syndromic surveillance, diagnostic decision support, inappropriate prescribing in older adults, information at the point of care and a simple personal health record. Some of these use cases utilize existing decision support systems, which are either commercially or freely available at present, and developed outside of the SANDS project, while other use cases are based on decision support systems developed specifically for the project. Open source code for many of these components is available, and an open source reference parser is also available for comparison and testing of other clinical information systems and clinical decision support systems that wish to implement the SANDS architecture. The SANDS architecture for decision support has several significant advantages over other architectures for clinical decision support. The most salient of these are:

  19. Improving medical diagnosis reliability using Boosted C5.0 decision tree empowered by Particle Swarm Optimization.

    PubMed

    Pashaei, Elnaz; Ozen, Mustafa; Aydin, Nizamettin

    2015-08-01

    Improving accuracy of supervised classification algorithms in biomedical applications is one of active area of research. In this study, we improve the performance of Particle Swarm Optimization (PSO) combined with C4.5 decision tree (PSO+C4.5) classifier by applying Boosted C5.0 decision tree as the fitness function. To evaluate the effectiveness of our proposed method, it is implemented on 1 microarray dataset and 5 different medical data sets obtained from UCI machine learning databases. Moreover, the results of PSO + Boosted C5.0 implementation are compared to eight well-known benchmark classification methods (PSO+C4.5, support vector machine under the kernel of Radial Basis Function, Classification And Regression Tree (CART), C4.5 decision tree, C5.0 decision tree, Boosted C5.0 decision tree, Naive Bayes and Weighted K-Nearest neighbor). Repeated five-fold cross-validation method was used to justify the performance of classifiers. Experimental results show that our proposed method not only improve the performance of PSO+C4.5 but also obtains higher classification accuracy compared to the other classification methods.

  20. Artificial Intelligence based technique for BTS placement

    NASA Astrophysics Data System (ADS)

    Alenoghena, C. O.; Emagbetere, J. O.; Aibinu, A. M.

    2013-12-01

    The increase of the base transceiver station (BTS) in most urban areas can be traced to the drive by network providers to meet demand for coverage and capacity. In traditional network planning, the final decision of BTS placement is taken by a team of radio planners, this decision is not fool proof against regulatory requirements. In this paper, an intelligent based algorithm for optimal BTS site placement has been proposed. The proposed technique takes into consideration neighbour and regulation considerations objectively while determining cell site. The application will lead to a quantitatively unbiased evaluated decision making process in BTS placement. An experimental data of a 2km by 3km territory was simulated for testing the new algorithm, results obtained show a 100% performance of the neighbour constrained algorithm in BTS placement optimization. Results on the application of GA with neighbourhood constraint indicate that the choices of location can be unbiased and optimization of facility placement for network design can be carried out.

  1. Who to Blame: Irrational Decision-Makers or Stupid Modelers? (Arne Richter Award for Outstanding Young Scientists Lecture)

    NASA Astrophysics Data System (ADS)

    Madani, Kaveh

    2016-04-01

    Water management benefits from a suite of modelling tools and techniques that help simplifying and understanding the complexities involved in managing water resource systems. Early water management models were mainly concerned with optimizing a single objective, related to the design, operations or management of water resource systems (e.g. economic cost, hydroelectricity production, reliability of water deliveries). Significant improvements in methodologies, computational capacity, and data availability over the last decades have resulted in developing more complex water management models that can now incorporate multiple objectives, various uncertainties, and big data. These models provide an improved understanding of complex water resource systems and provide opportunities for making positive impacts. Nevertheless, there remains an alarming mismatch between the optimal solutions developed by these models and the decisions made by managers and stakeholders of water resource systems. Modelers continue to consider decision makers as irrational agents who fail to implement the optimal solutions developed by sophisticated and mathematically rigours water management models. On the other hand, decision makers and stakeholders accuse modelers of being idealist, lacking a perfect understanding of reality, and developing 'smart' solutions that are not practical (stable). In this talk I will have a closer look at the mismatch between the optimality and stability of solutions and argue that conventional water resources management models suffer inherently from a full-cooperation assumption. According to this assumption, water resources management decisions are based on group rationality where in practice decisions are often based on individual rationality, making the group's optimal solution unstable for individually rational decision makers. I discuss how game theory can be used as an appropriate framework for addressing the irrational "rationality assumption" of water resources management models and for better capturing the social aspects of decision making in water management systems with multiple stakeholders.

  2. An automatic CFD-based flow diverter optimization principle for patient-specific intracranial aneurysms.

    PubMed

    Janiga, Gábor; Daróczy, László; Berg, Philipp; Thévenin, Dominique; Skalej, Martin; Beuing, Oliver

    2015-11-05

    The optimal treatment of intracranial aneurysms using flow diverting devices is a fundamental issue for neuroradiologists as well as neurosurgeons. Due to highly irregular manifold aneurysm shapes and locations, the choice of the stent and the patient-specific deployment strategy can be a very difficult decision. To support the therapy planning, a new method is introduced that combines a three-dimensional CFD-based optimization with a realistic deployment of a virtual flow diverting stent for a given aneurysm. To demonstrate the feasibility of this method, it was applied to a patient-specific intracranial giant aneurysm that was successfully treated using a commercial flow diverter. Eight treatment scenarios with different local compressions were considered in a fully automated simulation loop. The impact on the corresponding blood flow behavior was evaluated qualitatively as well as quantitatively, and the optimal configuration for this specific case was identified. The virtual deployment of an uncompressed flow diverter reduced the inflow into the aneurysm by 24.4% compared to the untreated case. Depending on the positioning of the local stent compression below the ostium, blood flow reduction could vary between 27.3% and 33.4%. Therefore, a broad range of potential treatment outcomes was identified, illustrating the variability of a given flow diverter deployment in general. This method represents a proof of concept to automatically identify the optimal treatment for a patient in a virtual study under certain assumptions. Hence, it contributes to the improvement of virtual stenting for intracranial aneurysms and can support physicians during therapy planning in the future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The anatomy of decision support during inpatient care provider order entry (CPOE): Empirical observations from a decade of CPOE experience at Vanderbilt

    PubMed Central

    Miller, Randolph A.; Waitman, Lemuel R.; Chen, Sutin; Rosenbloom, S. Trent

    2006-01-01

    The authors describe a pragmatic approach to the introduction of clinical decision support at the point of care, based on a decade of experience in developing and evolving Vanderbilt’s inpatient “WizOrder” care provider order entry (CPOE) system. The inpatient care setting provides a unique opportunity to interject CPOE-based decision support features that restructure clinical workflows, deliver focused relevant educational materials, and influence how care is delivered to patients. From their empirical observations, the authors have developed a generic model for decision support within inpatient CPOE systems. They believe that the model’s utility extends beyond Vanderbilt, because it is based on characteristics of end-user workflows and on decision support considerations that are common to a variety of inpatient settings and CPOE systems. The specific approach to implementing a given clinical decision support feature within a CPOE system should involve evaluation along three axes: what type of intervention to create (for which the authors describe 4 general categories); when to introduce the intervention into the user’s workflow (for which the authors present 7 categories), and how disruptive, during use of the system, the intervention might be to end-users’ workflows (for which the authors describe 6 categories). Framing decision support in this manner may help both developers and clinical end-users plan future alterations to their systems when needs for new decision support features arise. PMID:16290243

  4. An Integrated Decision-Making Model for Categorizing Weather Products and Decision Aids

    NASA Technical Reports Server (NTRS)

    Elgin, Peter D.; Thomas, Rickey P.

    2004-01-01

    The National Airspace System s capacity will experience considerable growth in the next few decades. Weather adversely affects safe air travel. The FAA and NASA are working to develop new technologies that display weather information to support situation awareness and optimize pilot decision-making in avoiding hazardous weather. Understanding situation awareness and naturalistic decision-making is an important step in achieving this goal. Information representation and situation time stress greatly influence attentional resource allocation and working memory capacity, potentially obstructing accurate situation awareness assessments. Three naturalistic decision-making theories were integrated to provide an understanding of the levels of decision making incorporated in three operational situations and two conditions. The task characteristics associated with each phase of flight govern the level of situation awareness attained and the decision making processes utilized. Weather product s attributes and situation task characteristics combine to classify weather products according to the decision-making processes best supported. In addition, a graphical interface is described that affords intuitive selection of the appropriate weather product relative to the pilot s current flight situation.

  5. Medical Problem-Solving: A Critique of the Literature.

    ERIC Educational Resources Information Center

    McGuire, Christine H.

    1985-01-01

    Prescriptive, decision-analysis of medical problem-solving has been based on decision theory that involves calculation and manipulation of complex probability and utility values to arrive at optimal decisions that will maximize patient benefits. The studies offer a methodology for improving clinical judgment. (Author/MLW)

  6. An international observational study suggests that artificial intelligence for clinical decision support optimizes anemia management in hemodialysis patients.

    PubMed

    Barbieri, Carlo; Molina, Manuel; Ponce, Pedro; Tothova, Monika; Cattinelli, Isabella; Ion Titapiccolo, Jasmine; Mari, Flavio; Amato, Claudia; Leipold, Frank; Wehmeyer, Wolfgang; Stuard, Stefano; Stopper, Andrea; Canaud, Bernard

    2016-08-01

    Managing anemia in hemodialysis patients can be challenging because of competing therapeutic targets and individual variability. Because therapy recommendations provided by a decision support system can benefit both patients and doctors, we evaluated the impact of an artificial intelligence decision support system, the Anemia Control Model (ACM), on anemia outcomes. Based on patient profiles, the ACM was built to recommend suitable erythropoietic-stimulating agent doses. Our retrospective study consisted of a 12-month control phase (standard anemia care), followed by a 12-month observation phase (ACM-guided care) encompassing 752 patients undergoing hemodialysis therapy in 3 NephroCare clinics located in separate countries. The percentage of hemoglobin values on target, the median darbepoetin dose, and individual hemoglobin fluctuation (estimated from the intrapatient hemoglobin standard deviation) were deemed primary outcomes. In the observation phase, median darbepoetin consumption significantly decreased from 0.63 to 0.46 μg/kg/month, whereas on-target hemoglobin values significantly increased from 70.6% to 76.6%, reaching 83.2% when the ACM suggestions were implemented. Moreover, ACM introduction led to a significant decrease in hemoglobin fluctuation (intrapatient standard deviation decreased from 0.95 g/dl to 0.83 g/dl). Thus, ACM support helped improve anemia outcomes of hemodialysis patients, minimizing erythropoietic-stimulating agent use with the potential to reduce the cost of treatment. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  7. Using multiobjective tradeoff sets and Multivariate Regression Trees to identify critical and robust decisions for long term water utility planning

    NASA Astrophysics Data System (ADS)

    Smith, R.; Kasprzyk, J. R.; Balaji, R.

    2017-12-01

    In light of deeply uncertain factors like future climate change and population shifts, responsible resource management will require new types of information and strategies. For water utilities, this entails potential expansion and efficient management of water supply infrastructure systems for changes in overall supply; changes in frequency and severity of climate extremes such as droughts and floods; and variable demands, all while accounting for conflicting long and short term performance objectives. Multiobjective Evolutionary Algorithms (MOEAs) are emerging decision support tools that have been used by researchers and, more recently, water utilities to efficiently generate and evaluate thousands of planning portfolios. The tradeoffs between conflicting objectives are explored in an automated way to produce (often large) suites of portfolios that strike different balances of performance. Once generated, the sets of optimized portfolios are used to support relatively subjective assertions of priorities and human reasoning, leading to adoption of a plan. These large tradeoff sets contain information about complex relationships between decisions and between groups of decisions and performance that, until now, has not been quantitatively described. We present a novel use of Multivariate Regression Trees (MRTs) to analyze tradeoff sets to reveal these relationships and critical decisions. Additionally, when MRTs are applied to tradeoff sets developed for different realizations of an uncertain future, they can identify decisions that are robust across a wide range of conditions and produce fundamental insights about the system being optimized.

  8. Multi-criteria clinical decision support: A primer on the use of multiple criteria decision making methods to promote evidence-based, patient-centered healthcare.

    PubMed

    Dolan, James G

    2010-01-01

    Current models of healthcare quality recommend that patient management decisions be evidence-based and patient-centered. Evidence-based decisions require a thorough understanding of current information regarding the natural history of disease and the anticipated outcomes of different management options. Patient-centered decisions incorporate patient preferences, values, and unique personal circumstances into the decision making process and actively involve both patients along with health care providers as much as possible. Fundamentally, therefore, evidence-based, patient-centered decisions are multi-dimensional and typically involve multiple decision makers.Advances in the decision sciences have led to the development of a number of multiple criteria decision making methods. These multi-criteria methods are designed to help people make better choices when faced with complex decisions involving several dimensions. They are especially helpful when there is a need to combine "hard data" with subjective preferences, to make trade-offs between desired outcomes, and to involve multiple decision makers. Evidence-based, patient-centered clinical decision making has all of these characteristics. This close match suggests that clinical decision support systems based on multi-criteria decision making techniques have the potential to enable patients and providers to carry out the tasks required to implement evidence-based, patient-centered care effectively and efficiently in clinical settings.The goal of this paper is to give readers a general introduction to the range of multi-criteria methods available and show how they could be used to support clinical decision-making. Methods discussed include the balance sheet, the even swap method, ordinal ranking methods, direct weighting methods, multi-attribute decision analysis, and the analytic hierarchy process (AHP).

  9. Multi-criteria clinical decision support: A primer on the use of multiple criteria decision making methods to promote evidence-based, patient-centered healthcare

    PubMed Central

    Dolan, James G.

    2010-01-01

    Current models of healthcare quality recommend that patient management decisions be evidence-based and patient-centered. Evidence-based decisions require a thorough understanding of current information regarding the natural history of disease and the anticipated outcomes of different management options. Patient-centered decisions incorporate patient preferences, values, and unique personal circumstances into the decision making process and actively involve both patients along with health care providers as much as possible. Fundamentally, therefore, evidence-based, patient-centered decisions are multi-dimensional and typically involve multiple decision makers. Advances in the decision sciences have led to the development of a number of multiple criteria decision making methods. These multi-criteria methods are designed to help people make better choices when faced with complex decisions involving several dimensions. They are especially helpful when there is a need to combine “hard data” with subjective preferences, to make trade-offs between desired outcomes, and to involve multiple decision makers. Evidence-based, patient-centered clinical decision making has all of these characteristics. This close match suggests that clinical decision support systems based on multi-criteria decision making techniques have the potential to enable patients and providers to carry out the tasks required to implement evidence-based, patient-centered care effectively and efficiently in clinical settings. The goal of this paper is to give readers a general introduction to the range of multi-criteria methods available and show how they could be used to support clinical decision-making. Methods discussed include the balance sheet, the even swap method, ordinal ranking methods, direct weighting methods, multi-attribute decision analysis, and the analytic hierarchy process (AHP) PMID:21394218

  10. Game theory and risk-based leveed river system planning with noncooperation

    NASA Astrophysics Data System (ADS)

    Hui, Rui; Lund, Jay R.; Madani, Kaveh

    2016-01-01

    Optimal risk-based levee designs are usually developed for economic efficiency. However, in river systems with multiple levees, the planning and maintenance of different levees are controlled by different agencies or groups. For example, along many rivers, levees on opposite riverbanks constitute a simple leveed river system with each levee designed and controlled separately. Collaborative planning of the two levees can be economically optimal for the whole system. Independent and self-interested landholders on opposite riversides often are willing to separately determine their individual optimal levee plans, resulting in a less efficient leveed river system from an overall society-wide perspective (the tragedy of commons). We apply game theory to simple leveed river system planning where landholders on each riverside independently determine their optimal risk-based levee plans. Outcomes from noncooperative games are analyzed and compared with the overall economically optimal outcome, which minimizes net flood cost system-wide. The system-wide economically optimal solution generally transfers residual flood risk to the lower-valued side of the river, but is often impractical without compensating for flood risk transfer to improve outcomes for all individuals involved. Such compensation can be determined and implemented with landholders' agreements on collaboration to develop an economically optimal plan. By examining iterative multiple-shot noncooperative games with reversible and irreversible decisions, the costs of myopia for the future in making levee planning decisions show the significance of considering the externalities and evolution path of dynamic water resource problems to improve decision-making.

  11. Systematic design for trait introgression projects.

    PubMed

    Cameron, John N; Han, Ye; Wang, Lizhi; Beavis, William D

    2017-10-01

    Using an Operations Research approach, we demonstrate design of optimal trait introgression projects with respect to competing objectives. We demonstrate an innovative approach for designing Trait Introgression (TI) projects based on optimization principles from Operations Research. If the designs of TI projects are based on clear and measurable objectives, they can be translated into mathematical models with decision variables and constraints that can be translated into Pareto optimality plots associated with any arbitrary selection strategy. The Pareto plots can be used to make rational decisions concerning the trade-offs between maximizing the probability of success while minimizing costs and time. The systematic rigor associated with a cost, time and probability of success (CTP) framework is well suited to designing TI projects that require dynamic decision making. The CTP framework also revealed that previously identified 'best' strategies can be improved to be at least twice as effective without increasing time or expenses.

  12. Effect of clinical decision rules, patient cost and malpractice information on clinician brain CT image ordering: a randomized controlled trial.

    PubMed

    Gimbel, Ronald W; Pirrallo, Ronald G; Lowe, Steven C; Wright, David W; Zhang, Lu; Woo, Min-Jae; Fontelo, Paul; Liu, Fang; Connor, Zachary

    2018-03-12

    The frequency of head computed tomography (CT) imaging for mild head trauma patients has raised safety and cost concerns. Validated clinical decision rules exist in the published literature and on-line sources to guide medical image ordering but are often not used by emergency department (ED) clinicians. Using simulation, we explored whether the presentation of a clinical decision rule (i.e. Canadian CT Head Rule - CCHR), findings from malpractice cases related to clinicians not ordering CT imaging in mild head trauma cases, and estimated patient out-of-pocket cost might influence clinician brain CT ordering. Understanding what type and how information may influence clinical decision making in the ordering advanced medical imaging is important in shaping the optimal design and implementation of related clinical decision support systems. Multi-center, double-blinded simulation-based randomized controlled trial. Following standardized clinical vignette presentation, clinicians made an initial imaging decision for the patient. This was followed by additional information on decision support rules, malpractice outcome review, and patient cost; each with opportunity to modify their initial order. The malpractice and cost information differed by assigned group to test the any temporal relationship. The simulation closed with a second vignette and an imaging decision. One hundred sixteen of the 167 participants (66.9%) initially ordered a brain CT scan. After CCHR presentation, the number of clinicians ordering a CT dropped to 76 (45.8%), representing a 21.1% reduction in CT ordering (P = 0.002). This reduction in CT ordering was maintained, in comparison to initial imaging orders, when presented with malpractice review information (p = 0.002) and patient cost information (p = 0.002). About 57% of clinicians changed their order during study, while 43% never modified their imaging order. This study suggests that ED clinician brain CT imaging decisions may be influenced by clinical decision support rules, patient out-of-pocket cost information and findings from malpractice case review. NCT03449862 , February 27, 2018, Retrospectively registered.

  13. Evaluating a Web-Based MMR Decision Aid to Support Informed Decision-Making by UK Parents: A Before-and-After Feasibility Study

    ERIC Educational Resources Information Center

    Jackson, Cath; Cheater, Francine M.; Peacock, Rose; Leask, Julie; Trevena, Lyndal

    2010-01-01

    Objective: The objective of this feasibility study was to evaluate the acceptability and potential effectiveness of a web-based MMR decision aid in supporting informed decision-making for the MMR vaccine. Design: This was a prospective before-and-after evaluation. Setting: Thirty parents of children eligible for MMR vaccination were recruited from…

  14. User-centered design to improve clinical decision support in primary care.

    PubMed

    Brunner, Julian; Chuang, Emmeline; Goldzweig, Caroline; Cain, Cindy L; Sugar, Catherine; Yano, Elizabeth M

    2017-08-01

    A growing literature has demonstrated the ability of user-centered design to make clinical decision support systems more effective and easier to use. However, studies of user-centered design have rarely examined more than a handful of sites at a time, and have frequently neglected the implementation climate and organizational resources that influence clinical decision support. The inclusion of such factors was identified by a systematic review as "the most important improvement that can be made in health IT evaluations." (1) Identify the prevalence of four user-centered design practices at United States Veterans Affairs (VA) primary care clinics and assess the perceived utility of clinical decision support at those clinics; (2) Evaluate the association between those user-centered design practices and the perceived utility of clinical decision support. We analyzed clinic-level survey data collected in 2006-2007 from 170 VA primary care clinics. We examined four user-centered design practices: 1) pilot testing, 2) provider satisfaction assessment, 3) formal usability assessment, and 4) analysis of impact on performance improvement. We used a regression model to evaluate the association between user-centered design practices and the perceived utility of clinical decision support, while accounting for other important factors at those clinics, including implementation climate, available resources, and structural characteristics. We also examined associations separately at community-based clinics and at hospital-based clinics. User-centered design practices for clinical decision support varied across clinics: 74% conducted pilot testing, 62% conducted provider satisfaction assessment, 36% conducted a formal usability assessment, and 79% conducted an analysis of impact on performance improvement. Overall perceived utility of clinical decision support was high, with a mean rating of 4.17 (±.67) out of 5 on a composite measure. "Analysis of impact on performance improvement" was the only user-centered design practice significantly associated with perceived utility of clinical decision support, b=.47 (p<.001). This association was present in hospital-based clinics, b=.34 (p<.05), but was stronger at community-based clinics, b=.61 (p<.001). Our findings are highly supportive of the practice of analyzing the impact of clinical decision support on performance metrics. This was the most common user-centered design practice in our study, and was the practice associated with higher perceived utility of clinical decision support. This practice may be particularly helpful at community-based clinics, which are typically less connected to VA medical center resources. Published by Elsevier B.V.

  15. Modelling optimal location for pre-hospital helicopter emergency medical services.

    PubMed

    Schuurman, Nadine; Bell, Nathaniel J; L'Heureux, Randy; Hameed, Syed M

    2009-05-09

    Increasing the range and scope of early activation/auto launch helicopter emergency medical services (HEMS) may alleviate unnecessary injury mortality that disproportionately affects rural populations. To date, attempts to develop a quantitative framework for the optimal location of HEMS facilities have been absent. Our analysis used five years of critical care data from tertiary health care facilities, spatial data on origin of transport and accurate road travel time catchments for tertiary centres. A location optimization model was developed to identify where the expansion of HEMS would cover the greatest population among those currently underserved. The protocol was developed using geographic information systems (GIS) to measure populations, distances and accessibility to services. Our model determined Royal Inland Hospital (RIH) was the optimal site for an expanded HEMS - based on denominator population, distance to services and historical usage patterns. GIS based protocols for location of emergency medical resources can provide supportive evidence for allocation decisions - especially when resources are limited. In this study, we were able to demonstrate conclusively that a logical choice exists for location of additional HEMS. This protocol could be extended to location analysis for other emergency and health services.

  16. Techniques for optimal crop selection in a controlled ecological life support system

    NASA Technical Reports Server (NTRS)

    Mccormack, Ann; Finn, Cory; Dunsky, Betsy

    1993-01-01

    A Controlled Ecological Life Support System (CELSS) utilizes a plant's natural ability to regenerate air and water while being grown as a food source in a closed life support system. Current plant research is directed toward obtaining quantitative empirical data on the regenerative ability of each species of plant and the system volume and power requirements. Two techniques were adapted to optimize crop species selection while at the same time minimizing the system volume and power requirements. Each allows the level of life support supplied by the plants to be selected, as well as other system parameters. The first technique uses decision analysis in the form of a spreadsheet. The second method, which is used as a comparison with and validation of the first, utilizes standard design optimization techniques. Simple models of plant processes are used in the development of these methods.

  17. Techniques for optimal crop selection in a controlled ecological life support system

    NASA Technical Reports Server (NTRS)

    Mccormack, Ann; Finn, Cory; Dunsky, Betsy

    1992-01-01

    A Controlled Ecological Life Support System (CELSS) utilizes a plant's natural ability to regenerate air and water while being grown as a food source in a closed life support system. Current plant research is directed toward obtaining quantitative empirical data on the regenerative ability of each species of plant and the system volume and power requirements. Two techniques were adapted to optimize crop species selection while at the same time minimizing the system volume and power requirements. Each allows the level of life support supplied by the plants to be selected, as well as other system parameters. The first technique uses decision analysis in the form of a spreadsheet. The second method, which is used as a comparison with and validation of the first, utilizes standard design optimization techniques. Simple models of plant processes are used in the development of these methods.

  18. Web-based cancer communication and decision making systems: connecting patients, caregivers, and clinicians for improved health outcomes.

    PubMed

    DuBenske, Lori L; Gustafson, David H; Shaw, Bret R; Cleary, James F

    2010-01-01

    Over the cancer disease trajectory, from diagnosis and treatment to remission or end of life, patients and their families face difficult decisions. The provision of information and support when most relevant can optimize cancer decision making and coping. An interactive health communication system (IHCS) offers the potential to bridge the communication gaps that occur among patients, family, and clinicians and to empower each to actively engage in cancer care and shared decision making. This is a report of the authors' experience (with a discussion of relevant literature) in developing and testing a Web-based IHCS-the Comprehensive Health Enhancement Support System (CHESS)-for patients with advanced lung cancer and their family caregivers. CHESS provides information, communication, and coaching resources as well as a symptom tracking system that reports health status to the clinical team. Development of an IHCS includes a needs assessment of the target audience and applied theory informed by continued stakeholder involvement in early testing. Critical issues of IHCS implementation include 1) need for interventions that accommodate a variety of format preferences and technology comfort ranges; 2) IHCS user training, 3) clinician investment in IHCS promotion, and 4) IHCS integration with existing medical systems. In creating such comprehensive systems, development strategies need to be grounded in population needs with appropriate use of technology that serves the target users, including the patient/family, clinical team, and health care organization. Implementation strategies should address timing, personnel, and environmental factors to facilitate continued use and benefit from IHCS.

  19. Invited review: Helping dairy farmers to improve economic performance utilizing data-driving decision support tools.

    PubMed

    Cabrera, V E

    2018-01-01

    The objective of this review paper is to describe the development and application of a suite of more than 40 computerized dairy farm decision support tools contained at the University of Wisconsin-Madison (UW) Dairy Management website http://DairyMGT.info. These data-driven decision support tools are aimed to help dairy farmers improve their decision-making, environmental stewardship and economic performance. Dairy farm systems are highly dynamic in which changing market conditions and prices, evolving policies and environmental restrictions together with every time more variable climate conditions determine performance. Dairy farm systems are also highly integrated with heavily interrelated components such as the dairy herd, soils, crops, weather and management. Under these premises, it is critical to evaluate a dairy farm following a dynamic integrated system approach. For this approach, it is crucial to use meaningful data records, which are every time more available. These data records should be used within decision support tools for optimal decision-making and economic performance. Decision support tools in the UW-Dairy Management website (http://DairyMGT.info) had been developed using combination and adaptation of multiple methods together with empirical techniques always with the primary goal for these tools to be: (1) highly user-friendly, (2) using the latest software and computer technologies, (3) farm and user specific, (4) grounded on the best scientific information available, (5) remaining relevant throughout time and (6) providing fast, concrete and simple answers to complex farmers' questions. DairyMGT.info is a translational innovative research website in various areas of dairy farm management that include nutrition, reproduction, calf and heifer management, replacement, price risk and environment. This paper discusses the development and application of 20 selected (http://DairyMGT.info) decision support tools.

  20. Bridging groundwater models and decision support with a Bayesian network

    USGS Publications Warehouse

    Fienen, Michael N.; Masterson, John P.; Plant, Nathaniel G.; Gutierrez, Benjamin T.; Thieler, E. Robert

    2013-01-01

    Resource managers need to make decisions to plan for future environmental conditions, particularly sea level rise, in the face of substantial uncertainty. Many interacting processes factor in to the decisions they face. Advances in process models and the quantification of uncertainty have made models a valuable tool for this purpose. Long-simulation runtimes and, often, numerical instability make linking process models impractical in many cases. A method for emulating the important connections between model input and forecasts, while propagating uncertainty, has the potential to provide a bridge between complicated numerical process models and the efficiency and stability needed for decision making. We explore this using a Bayesian network (BN) to emulate a groundwater flow model. We expand on previous approaches to validating a BN by calculating forecasting skill using cross validation of a groundwater model of Assateague Island in Virginia and Maryland, USA. This BN emulation was shown to capture the important groundwater-flow characteristics and uncertainty of the groundwater system because of its connection to island morphology and sea level. Forecast power metrics associated with the validation of multiple alternative BN designs guided the selection of an optimal level of BN complexity. Assateague island is an ideal test case for exploring a forecasting tool based on current conditions because the unique hydrogeomorphological variability of the island includes a range of settings indicative of past, current, and future conditions. The resulting BN is a valuable tool for exploring the response of groundwater conditions to sea level rise in decision support.

  1. A systematic review of clinical decision support systems for antimicrobial management: are we failing to investigate these interventions appropriately?

    PubMed

    Rawson, T M; Moore, L S P; Hernandez, B; Charani, E; Castro-Sanchez, E; Herrero, P; Hayhoe, B; Hope, W; Georgiou, P; Holmes, A H

    2017-08-01

    Clinical decision support systems (CDSS) for antimicrobial management can support clinicians to optimize antimicrobial therapy. We reviewed all original literature (qualitative and quantitative) to understand the current scope of CDSS for antimicrobial management and analyse existing methods used to evaluate and report such systems. PRISMA guidelines were followed. Medline, EMBASE, HMIC Health and Management and Global Health databases were searched from 1 January 1980 to 31 October 2015. All primary research studies describing CDSS for antimicrobial management in adults in primary or secondary care were included. For qualitative studies, thematic synthesis was performed. Quality was assessed using Integrated quality Criteria for the Review Of Multiple Study designs (ICROMS) criteria. CDSS reporting was assessed against a reporting framework for behaviour change intervention implementation. Fifty-eight original articles were included describing 38 independent CDSS. The majority of systems target antimicrobial prescribing (29/38;76%), are platforms integrated with electronic medical records (28/38;74%), and have a rules-based infrastructure providing decision support (29/38;76%). On evaluation against the intervention reporting framework, CDSS studies fail to report consideration of the non-expert, end-user workflow. They have narrow focus, such as antimicrobial selection, and use proxy outcome measures. Engagement with CDSS by clinicians was poor. Greater consideration of the factors that drive non-expert decision making must be considered when designing CDSS interventions. Future work must aim to expand CDSS beyond simply selecting appropriate antimicrobials with clear and systematic reporting frameworks for CDSS interventions developed to address current gaps identified in the reporting of evidence. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Optimizing Decision Support for Tailored Health Behavior Change Applications.

    PubMed

    Kukafka, Rita; Jeong, In cheol; Finkelstein, Joseph

    2015-01-01

    The Tailored Lifestyle Change Decision Aid (TLC DA) system was designed to provide support for a person to make an informed choice about which behavior change to work on when multiple unhealthy behaviors are present. TLC DA can be delivered via web, smartphones and tablets. The system collects a significant amount of information that is used to generate tailored messages to consumers to persuade them in certain healthy lifestyles. One limitation is the necessity to collect vast amounts of information from users who manually enter. By identifying an optimal set of self-reported parameters we will be able to minimize the data entry burden of the app users. The study was to identify primary determinants of health behavior choices made by patients after using the system. Using discriminant analysis an optimal set of predictors was identified. The resulting set included smoking status, smoking cessation success estimate, self-efficacy, body mass index and diet status. Predicting smoking cessation choice was the most accurate, followed by weight management. Physical activity and diet choices were better identified in a combined cluster.

  3. A Concept and Implementation of Optimized Operations of Airport Surface Traffic

    NASA Technical Reports Server (NTRS)

    Jung, Yoon C.; Hoang, Ty; Montoya, Justin; Gupta, Gautam; Malik, Waqar; Tobias, Leonard

    2010-01-01

    This paper presents a new concept of optimized surface operations at busy airports to improve the efficiency of taxi operations, as well as reduce environmental impacts. The suggested system architecture consists of the integration of two decoupled optimization algorithms. The Spot Release Planner provides sequence and timing advisories to tower controllers for releasing departure aircraft into the movement area to reduce taxi delay while achieving maximum throughput. The Runway Scheduler provides take-off sequence and arrival runway crossing sequence to the controllers to maximize the runway usage. The description of a prototype implementation of this integrated decision support tool for the airport control tower controllers is also provided. The prototype decision support tool was evaluated through a human-in-the-loop experiment, where both the Spot Release Planner and Runway Scheduler provided advisories to the Ground and Local Controllers. Initial results indicate the average number of stops made by each departure aircraft in the departure runway queue was reduced by more than half when the controllers were using the advisories, which resulted in reduced taxi times in the departure queue.

  4. Intelligent Case Based Decision Support System for Online Diagnosis of Automated Production System

    NASA Astrophysics Data System (ADS)

    Ben Rabah, N.; Saddem, R.; Ben Hmida, F.; Carre-Menetrier, V.; Tagina, M.

    2017-01-01

    Diagnosis of Automated Production System (APS) is a decision-making process designed to detect, locate and identify a particular failure caused by the control law. In the literature, there are three major types of reasoning for industrial diagnosis: the first is model-based, the second is rule-based and the third is case-based. The common and major limitation of the first and the second reasonings is that they do not have automated learning ability. This paper presents an interactive and effective Case Based Decision Support System for online Diagnosis (CB-DSSD) of an APS. It offers a synergy between the Case Based Reasoning (CBR) and the Decision Support System (DSS) in order to support and assist Human Operator of Supervision (HOS) in his/her decision process. Indeed, the experimental evaluation performed on an Interactive Training System for PLC (ITS PLC) that allows the control of a Programmable Logic Controller (PLC), simulating sensors or/and actuators failures and validating the control algorithm through a real time interactive experience, showed the efficiency of our approach.

  5. Complex Decision-Making in Heart Failure: A Systematic Review and Thematic Analysis.

    PubMed

    Hamel, Aimee V; Gaugler, Joseph E; Porta, Carolyn M; Hadidi, Niloufar Niakosari

    Heart failure follows a highly variable and difficult course. Patients face complex decisions, including treatment with implantable cardiac defibrillators, mechanical circulatory support, and heart transplantation. The course of decision-making across multiple treatments is unclear yet integral to providing informed and shared decision-making. Recognizing commonalities across treatment decisions could help nurses and physicians to identify opportunities to introduce discussions and support shared decision-making. The specific aims of this review are to examine complex treatment decision-making, specifically implantable cardiac defibrillators, ventricular assist device, and cardiac transplantation, and to recognize commonalities and key points in the decisional process. MEDLINE, CINAHL, PsycINFO, and Web of Science were searched for English-language studies that included qualitative findings reflecting the complexity of heart failure decision-making. Using a 3-step process, findings were synthesized into themes and subthemes. Twelve articles met criteria for inclusion. Participants included patients, caregivers, and clinicians and included decisions to undergo and decline treatment. Emergent themes were "processing the decision," "timing and prognostication," and "considering the future." Subthemes described how participants received and understood information about the therapy, making and changing a treatment decision, timing their decision and gauging health status outcomes in the context of their decision, the influence of a life or death decision, and the future as a factor in their decisional process. Commonalities were present across therapies, which involved the timing of discussions, the delivery of information, and considerations of the future. Exploring this further could help support patient-centered care and optimize shared decision-making interventions.

  6. Decision Support System for Reservoir Management and Operation in Africa

    NASA Astrophysics Data System (ADS)

    Navar, D. A.

    2016-12-01

    Africa is currently experiencing a surge in dam construction for flood control, water supply and hydropower production, but ineffective reservoir management has caused problems in the region, such as water shortages, flooding and loss of potential hydropower generation. Our research aims to remedy ineffective reservoir management by developing a novel Decision Support System(DSS) to equip water managers with a technical planning tool based on the state of the art in hydrological sciences. The DSS incorporates a climate forecast model, a hydraulic model of the watershed, and an optimization model to effectively plan for the operation of a system of cascade large-scale reservoirs for hydropower production, while treating water supply and flood control as constraints. Our team will use the newly constructed hydropower plants in the Omo Gibe basin of Ethiopia as the test case. Using the basic HIDROTERM software developed in Brazil, the General Algebraic Modeling System (GAMS) utilizes a combination of linear programing (LP) and non-linear programming (NLP) in conjunction with real time hydrologic and energy demand data to optimize the monthly and daily operations of the reservoir system. We compare the DSS model results with the current reservoir operating policy used by the water managers of that region. We also hope the DSS will eliminate the current dangers associated with the mismanagement of large scale water resources projects in Africa.

  7. Analysis of Nursing Clinical Decision Support Requests and Strategic Plan in a Large Academic Health System

    PubMed Central

    Bavuso, Karen; Bouyer-Ferullo, Sharon; Goldsmith, Denise; Fairbanks, Amanda; Gesner, Emily; Lagor, Charles; Collins, Sarah

    2016-01-01

    Summary Objectives To understand requests for nursing Clinical Decision Support (CDS) interventions at a large integrated health system undergoing vendor-based EHR implementation. In addition, to establish a process to guide both short-term implementation and long-term strategic goals to meet nursing CDS needs. Materials and Methods We conducted an environmental scan to understand current state of nursing CDS over three months. The environmental scan consisted of a literature review and an analysis of CDS requests received from across our health system. We identified existing high priority CDS and paper-based tools used in nursing practice at our health system that guide decision-making. Results A total of 46 nursing CDS requests were received. Fifty-six percent (n=26) were specific to a clinical specialty; 22 percent (n=10) were focused on facilitating clinical consults in the inpatient setting. “Risk Assessments/Risk Reduction/Promotion of Healthy Habits” (n=23) was the most requested High Priority Category received for nursing CDS. A continuum of types of nursing CDS needs emerged using the Data-Information-Knowledge-Wisdom Conceptual Framework: 1) facilitating data capture, 2) meeting information needs, 3) guiding knowledge-based decision making, and 4) exposing analytics for wisdom-based clinical interpretation by the nurse. Conclusion Identifying and prioritizing paper-based tools that can be modified into electronic CDS is a challenge. CDS strategy is an evolving process that relies on close collaboration and engagement with clinical sites for short-term implementation and should be incorporated into a long-term strategic plan that can be optimized and achieved overtime. The Data-Information-Knowledge-Wisdom Conceptual Framework in conjunction with the High Priority Categories established may be a useful tool to guide a strategic approach for meeting short-term nursing CDS needs and aligning with the organizational strategic plan. PMID:27437036

  8. A decision support tool for selecting the optimal sewage sludge treatment.

    PubMed

    Turunen, Ville; Sorvari, Jaana; Mikola, Anna

    2018-02-01

    Sewage sludge contains significant amounts of resources, such as nutrients and organic matter. At the same time, the organic contaminants (OC) found in sewage sludge are of growing concern. Consequently, in many European countries incineration is currently favored over recycling in agriculture. This study presents a Multi-Attribute Value Theory (MAVT)-based decision support tool (DST) for facilitating sludge treatment decisions. Essential decision criteria were recognized and prioritized, i.e., weighted, by experts from water utilities. Since the fate of organic contaminants was in focus, a simple scoring method was developed to take into account their environmental risks. The final DST assigns each sludge treatment method a preference score expressing its superiority compared to alternative methods. The DST was validated by testing it with data from two Finnish municipal wastewater treatment plants (WWTP). The validation results of the first case study preferred sludge pyrolysis (preference score: 0.629) to other alternatives: composting and incineration (score 0.580, and 0.484 respectively). The preference scores were influenced by WWTP dependent factors, i.e., the operating environment and the weighting of the criteria. A lack of data emerged as the main practical limitation. Therefore, not all of the relevant criteria could be included in the value tree. More data are needed on the effects of treatment methods on the availability of nutrients, the quality of organic matter and sludge-borne OCs. Despite these shortcomings, the DST proved useful and adaptable in decision-making. It can also help achieve a more transparent, understandable and comprehensive decision-making process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Algorithms for synthesizing management solutions based on OLAP-technologies

    NASA Astrophysics Data System (ADS)

    Pishchukhin, A. M.; Akhmedyanova, G. F.

    2018-05-01

    OLAP technologies are a convenient means of analyzing large amounts of information. An attempt was made in their work to improve the synthesis of optimal management decisions. The developed algorithms allow forecasting the needs and accepted management decisions on the main types of the enterprise resources. Their advantage is the efficiency, based on the simplicity of quadratic functions and differential equations of only the first order. At the same time, the optimal redistribution of resources between different types of products from the assortment of the enterprise is carried out, and the optimal allocation of allocated resources in time. The proposed solutions can be placed on additional specially entered coordinates of the hypercube representing the data warehouse.

  10. Real-time energy-saving metro train rescheduling with primary delay identification

    PubMed Central

    Li, Keping; Schonfeld, Paul

    2018-01-01

    This paper aims to reschedule online metro trains in delay scenarios. A graph representation and a mixed integer programming model are proposed to formulate the optimization problem. The solution approach is a two-stage optimization method. In the first stage, based on a proposed train state graph and system analysis, the primary and flow-on delays are specifically analyzed and identified with a critical path algorithm. For the second stage a hybrid genetic algorithm is designed to optimize the schedule, with the delay identification results as input. Then, based on the infrastructure data of Beijing Subway Line 4 of China, case studies are presented to demonstrate the effectiveness and efficiency of the solution approach. The results show that the algorithm can quickly and accurately identify primary delays among different types of delays. The economic cost of energy consumption and total delay is considerably reduced (by more than 10% in each case). The computation time of the Hybrid-GA is low enough for rescheduling online. Sensitivity analyses further demonstrate that the proposed approach can be used as a decision-making support tool for operators. PMID:29474471

  11. Optimal Decision Stimuli for Risky Choice Experiments: An Adaptive Approach

    PubMed Central

    Cavagnaro, Daniel R.; Gonzalez, Richard; Myung, Jay I.; Pitt, Mark A.

    2014-01-01

    Collecting data to discriminate between models of risky choice requires careful selection of decision stimuli. Models of decision making aim to predict decisions across a wide range of possible stimuli, but practical limitations force experimenters to select only a handful of them for actual testing. Some stimuli are more diagnostic between models than others, so the choice of stimuli is critical. This paper provides the theoretical background and a methodological framework for adaptive selection of optimal stimuli for discriminating among models of risky choice. The approach, called Adaptive Design Optimization (ADO), adapts the stimulus in each experimental trial based on the results of the preceding trials. We demonstrate the validity of the approach with simulation studies aiming to discriminate Expected Utility, Weighted Expected Utility, Original Prospect Theory, and Cumulative Prospect Theory models. PMID:24532856

  12. Decision-making when data and inferences are not conclusive: risk-benefit and acceptable regret approach.

    PubMed

    Hozo, Iztok; Schell, Michael J; Djulbegovic, Benjamin

    2008-07-01

    The absolute truth in research is unobtainable, as no evidence or research hypothesis is ever 100% conclusive. Therefore, all data and inferences can in principle be considered as "inconclusive." Scientific inference and decision-making need to take into account errors, which are unavoidable in the research enterprise. The errors can occur at the level of conclusions that aim to discern the truthfulness of research hypothesis based on the accuracy of research evidence and hypothesis, and decisions, the goal of which is to enable optimal decision-making under present and specific circumstances. To optimize the chance of both correct conclusions and correct decisions, the synthesis of all major statistical approaches to clinical research is needed. The integration of these approaches (frequentist, Bayesian, and decision-analytic) can be accomplished through formal risk:benefit (R:B) analysis. This chapter illustrates the rational choice of a research hypothesis using R:B analysis based on decision-theoretic expected utility theory framework and the concept of "acceptable regret" to calculate the threshold probability of the "truth" above which the benefit of accepting a research hypothesis outweighs its risks.

  13. Decision-Aiding and Optimization for Vertical Navigation of Long-Haul Aircraft

    NASA Technical Reports Server (NTRS)

    Patrick, Nicholas J. M.; Sheridan, Thomas B.

    1996-01-01

    Most decisions made in the cockpit are related to safety, and have therefore been proceduralized in order to reduce risk. There are very few which are made on the basis of a value metric such as economic cost. One which can be shown to be value based, however, is the selection of a flight profile. Fuel consumption and flight time both have a substantial effect on aircraft operating cost, but they cannot be minimized simultaneously. In addition, winds, turbulence, and performance vary widely with altitude and time. These factors make it important and difficult for pilots to (a) evaluate the outcomes associated with a particular trajectory before it is flown and (b) decide among possible trajectories. The two elements of this problem considered here are: (1) determining what constitutes optimality, and (2) finding optimal trajectories. Pilots and dispatchers from major u.s. airlines were surveyed to determine which attributes of the outcome of a flight they considered the most important. Avoiding turbulence-for passenger comfort-topped the list of items which were not safety related. Pilots' decision making about the selection of flight profile on the basis of flight time, fuel burn, and exposure to turbulence was then observed. Of the several behavioral and prescriptive decision models invoked to explain the pilots' choices, utility maximization is shown to best reproduce the pilots' decisions. After considering more traditional methods for optimizing trajectories, a novel method is developed using a genetic algorithm (GA) operating on a discrete representation of the trajectory search space. The representation is a sequence of command altitudes, and was chosen to be compatible with the constraints imposed by Air Traffic Control, and with the training given to pilots. Since trajectory evaluation for the GA is performed holistically, a wide class of objective functions can be optimized easily. Also, using the GA it is possible to compare the costs associated with different airspace design and air traffic management policies. A decision aid is proposed which would combine the pilot's notion of optimality with the GA-based optimization, provide the pilot with a number of alternative pareto-optimal trajectories, and allow him to consider unmodelled attributes and constraints in choosing among them. A solution to the problem of displaying alternatives in a multi-attribute decision space is also presented.

  14. Visualising Pareto-optimal trade-offs helps move beyond monetary-only criteria for water management decisions

    NASA Astrophysics Data System (ADS)

    Hurford, Anthony; Harou, Julien

    2014-05-01

    Water related eco-system services are important to the livelihoods of the poorest sectors of society in developing countries. Degradation or loss of these services can increase the vulnerability of people decreasing their capacity to support themselves. New approaches to help guide water resources management decisions are needed which account for the non-market value of ecosystem goods and services. In case studies from Brazil and Kenya we demonstrate the capability of many objective Pareto-optimal trade-off analysis to help decision makers balance economic and non-market benefits from the management of existing multi-reservoir systems. A multi-criteria search algorithm is coupled to a water resources management simulator of each basin to generate a set of Pareto-approximate trade-offs representing the best case management decisions. In both cases, volume dependent reservoir release rules are the management decisions being optimised. In the Kenyan case we further assess the impacts of proposed irrigation investments, and how the possibility of new investments impacts the system's trade-offs. During the multi-criteria search (optimisation), performance of different sets of management decisions (policies) is assessed against case-specific objective functions representing provision of water supply and irrigation, hydropower generation and maintenance of ecosystem services. Results are visualised as trade-off surfaces to help decision makers understand the impacts of different policies on a broad range of stakeholders and to assist in decision-making. These case studies show how the approach can reveal unexpected opportunities for win-win solutions, and quantify the trade-offs between investing to increase agricultural revenue and negative impacts on protected ecosystems which support rural livelihoods.

  15. Nanotoxicology and nanomedicine: making development decisions in an evolving governance environment

    NASA Astrophysics Data System (ADS)

    Rycroft, Taylor; Trump, Benjamin; Poinsatte-Jones, Kelsey; Linkov, Igor

    2018-02-01

    The fields of nanomedicine, risk analysis, and decision science have evolved considerably in the past decade, providing developers of nano-enabled therapies and diagnostic tools with more complete information than ever before and shifting a fundamental requisite of the nanomedical community from the need for more information about nanomaterials to the need for a streamlined method of integrating the abundance of nano-specific information into higher-certainty product design decisions. The crucial question facing nanomedicine developers that must select the optimal nanotechnology in a given situation has shifted from "how do we estimate nanomaterial risk in the absence of good risk data?" to "how can we derive a holistic characterization of the risks and benefits that a given nanomaterial may pose within a specific nanomedical application?" Many decision support frameworks have been proposed to assist with this inquiry; however, those based in multicriteria decision analysis have proven to be most adaptive in the rapidly evolving field of nanomedicine—from the early stages of the field when conditions of significant uncertainty and incomplete information dominated, to today when nanotoxicology and nano-environmental health and safety information is abundant but foundational paradigms such as chemical risk assessment, risk governance, life cycle assessment, safety-by-design, and stakeholder engagement are undergoing substantial reformation in an effort to address the needs of emerging technologies. In this paper, we reflect upon 10 years of developments in nanomedical engineering and demonstrate how the rich knowledgebase of nano-focused toxicological and risk assessment information developed over the last decade enhances the capability of multicriteria decision analysis approaches and underscores the need to continue the transition from traditional risk assessment towards risk-based decision-making and alternatives-based governance for emerging technologies.

  16. Optimal Sequential Rules for Computer-Based Instruction.

    ERIC Educational Resources Information Center

    Vos, Hans J.

    1998-01-01

    Formulates sequential rules for adapting the appropriate amount of instruction to learning needs in the context of computer-based instruction. Topics include Bayesian decision theory, threshold and linear-utility structure, psychometric model, optimal sequential number of test questions, and an empirical example of sequential instructional…

  17. YouTube Video Educational Package Increased Acceptance of Antibiotic Clinical Decision Support System Recommendations

    PubMed Central

    Heng, Shi Thong; Tan, Michelle; Young, Barnaby; Lye, David; Ng, Tat Ming

    2017-01-01

    Abstract Background Antibiotic clinical decision support systems (CDSS) were implemented to provide stewardship at the point of ordering of broad-spectrum antibiotics (piperacillin-tazobactam and carbapenems). We postulated that a YouTube based educational video package (EP) with quizzes can help to improve CDSS acceptance. Methods A before-after study was conducted in general wards at Tan Tock Seng Hospital from April 2016 to March 2017. Baseline data were collected for 6 months before EP was implemented and during the next 6 months with EP dissemination to all doctors. Acceptance of CDSS recommendations between both phases were compared. Independent factors associated with acceptance of specific CDSS recommendations were identified by logistic regression. Results Patients recruited before and after EP was 1642 and 1313 respectively. Overall CDSS acceptance rate was similar before and after EP. There was improved acceptance for recommendations for dose optimizaton, antibiotic optimization and set duration (Figures 1 and 2). Independent factors of CDSS acceptance for dose optimizaton, antibiotic optimization and set duration are shown in Table 1. EP implementation was independently associated with acceptance of recommendations to set duration and optimize antibiotics. Conclusion EP was independently associated with increased CDSS acceptance on antibiotic duration and antibiotic optimization. Although acceptance of dose optimization was improved, EP was not associated independently with acceptance of the recommendations. Figure 2 Acceptance of CDSS recommendations by classifications of recommendations Table 1 3 multivariate models of acceptance of CDSS recommendations on antibiotic optimization, dose optimization and duration setting Set duration Antibiotic optimization Dose optimization Factor Odds ratio [95% CI] Lung infection 2.71[2.13–3.45] 2.08[1.71–2.52] 2.79[2.19-3.55] Unknown sepsis source 1.73[1.27–2.35] – 1.44[1.05-1.96] Piperacillin-tazobactam use 3.02[2.17–4.19] – – Temperature during initiation of antibiotics 0.86[0.79–0.94] – – The presence of oxygen supplementation during initiation of antibiotics – 0.76[0.64–0.91] 0.76[0.64–0.91] EP implementation 1.38[1.18–1.62] 1.21[1.02–1.43] - Disclosures All authors: No reported disclosures.

  18. Green material selection for sustainability: A hybrid MCDM approach.

    PubMed

    Zhang, Honghao; Peng, Yong; Tian, Guangdong; Wang, Danqi; Xie, Pengpeng

    2017-01-01

    Green material selection is a crucial step for the material industry to comprehensively improve material properties and promote sustainable development. However, because of the subjectivity and conflicting evaluation criteria in its process, green material selection, as a multi-criteria decision making (MCDM) problem, has been a widespread concern to the relevant experts. Thus, this study proposes a hybrid MCDM approach that combines decision making and evaluation laboratory (DEMATEL), analytical network process (ANP), grey relational analysis (GRA) and technique for order performance by similarity to ideal solution (TOPSIS) to select the optimal green material for sustainability based on the product's needs. A nonlinear programming model with constraints was proposed to obtain the integrated closeness index. Subsequently, an empirical application of rubbish bins was used to illustrate the proposed method. In addition, a sensitivity analysis and a comparison with existing methods were employed to validate the accuracy and stability of the obtained final results. We found that this method provides a more accurate and effective decision support tool for alternative evaluation or strategy selection.

  19. Green material selection for sustainability: A hybrid MCDM approach

    PubMed Central

    Zhang, Honghao; Peng, Yong; Tian, Guangdong; Wang, Danqi; Xie, Pengpeng

    2017-01-01

    Green material selection is a crucial step for the material industry to comprehensively improve material properties and promote sustainable development. However, because of the subjectivity and conflicting evaluation criteria in its process, green material selection, as a multi-criteria decision making (MCDM) problem, has been a widespread concern to the relevant experts. Thus, this study proposes a hybrid MCDM approach that combines decision making and evaluation laboratory (DEMATEL), analytical network process (ANP), grey relational analysis (GRA) and technique for order performance by similarity to ideal solution (TOPSIS) to select the optimal green material for sustainability based on the product's needs. A nonlinear programming model with constraints was proposed to obtain the integrated closeness index. Subsequently, an empirical application of rubbish bins was used to illustrate the proposed method. In addition, a sensitivity analysis and a comparison with existing methods were employed to validate the accuracy and stability of the obtained final results. We found that this method provides a more accurate and effective decision support tool for alternative evaluation or strategy selection. PMID:28498864

  20. Electronic decision support in general practice. What's the hold up?

    PubMed

    Liaw, S T; Schattner, P

    2003-11-01

    The uptake of computers in Australian general practice has been for administrative use and prescribing, but the development of electronic decision support (EDS) has been particularly slow. Therefore, computers are not being used to their full potential in assisting general practitioners to care for their patients. This article examines current barriers to EDS in general practice and possible strategies to increase its uptake. Barriers to the uptake of EDS include a lack of a business case, shifting of costs for data collection and management to the clinician, uncertainty about the optimal level of decision support, lack of technical and semantic standards, and resistance to EDS use by the time conscious GP. There is a need for a more strategic and attractive incentives program, greater national coordination, and more effective collaboration between government, the computer industry and the medical profession if current inertia is to be overcome.

  1. Remote Sensing Decision Support System for Optimal Access Restoration in Post Disaster Environments

    DOT National Transportation Integrated Search

    2017-01-01

    Access restoration is an extremely important part of disaster response. Without access to the site, critically important emergency functions like search and rescue, emergency evacuation, and relief distribution, cannot commence. Frequently, roads are...

  2. Analysis of decision support system for dredging operations management.

    DOT National Transportation Integrated Search

    2005-12-01

    This research developed an improved method for optimizing the disposal of dredged material : at offshore disposal sites. A nonlinear programming model has been developed to assist in : the development of dredging plans at open water disposal sites. T...

  3. The Linear Quadratic Gaussian Multistage Game with Nonclassical Information Pattern Using a Direct Solution Method

    NASA Astrophysics Data System (ADS)

    Clemens, Joshua William

    Game theory has application across multiple fields, spanning from economic strategy to optimal control of an aircraft and missile on an intercept trajectory. The idea of game theory is fascinating in that we can actually mathematically model real-world scenarios and determine optimal decision making. It may not always be easy to mathematically model certain real-world scenarios, nonetheless, game theory gives us an appreciation for the complexity involved in decision making. This complexity is especially apparent when the players involved have access to different information upon which to base their decision making (a nonclassical information pattern). Here we will focus on the class of adversarial two-player games (sometimes referred to as pursuit-evasion games) with nonclassical information pattern. We present a two-sided (simultaneous) optimization solution method for the two-player linear quadratic Gaussian (LQG) multistage game. This direct solution method allows for further interpretation of each player's decision making (strategy) as compared to previously used formal solution methods. In addition to the optimal control strategies, we present a saddle point proof and we derive an expression for the optimal performance index value. We provide some numerical results in order to further interpret the optimal control strategies and to highlight real-world application of this game-theoretic optimal solution.

  4. An Integrated Web-based Decision Support System in Disaster Risk Management

    NASA Astrophysics Data System (ADS)

    Aye, Z. C.; Jaboyedoff, M.; Derron, M. H.

    2012-04-01

    Nowadays, web based decision support systems (DSS) play an essential role in disaster risk management because of their supporting abilities which help the decision makers to improve their performances and make better decisions without needing to solve complex problems while reducing human resources and time. Since the decision making process is one of the main factors which highly influence the damages and losses of society, it is extremely important to make right decisions at right time by combining available risk information with advanced web technology of Geographic Information System (GIS) and Decision Support System (DSS). This paper presents an integrated web-based decision support system (DSS) of how to use risk information in risk management efficiently and effectively while highlighting the importance of a decision support system in the field of risk reduction. Beyond the conventional systems, it provides the users to define their own strategies starting from risk identification to the risk reduction, which leads to an integrated approach in risk management. In addition, it also considers the complexity of changing environment from different perspectives and sectors with diverse stakeholders' involvement in the development process. The aim of this platform is to contribute a part towards the natural hazards and geosciences society by developing an open-source web platform where the users can analyze risk profiles and make decisions by performing cost benefit analysis, Environmental Impact Assessment (EIA) and Strategic Environmental Assessment (SEA) with the support of others tools and resources provided. There are different access rights to the system depending on the user profiles and their responsibilities. The system is still under development and the current version provides maps viewing, basic GIS functionality, assessment of important infrastructures (e.g. bridge, hospital, etc.) affected by landslides and visualization of the impact-probability matrix in terms of socio-economic dimension.

  5. Quantitative Decision Making.

    ERIC Educational Resources Information Center

    Baldwin, Grover H.

    The use of quantitative decision making tools provides the decision maker with a range of alternatives among which to decide, permits acceptance and use of the optimal solution, and decreases risk. Training line administrators in the use of these tools can help school business officials obtain reliable information upon which to base district…

  6. Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibilitgy modeling in a high-frequency tropical cyclone area using GIS

    NASA Astrophysics Data System (ADS)

    Tien Bui, Dieu; Pradhan, Biswajeet; Nampak, Haleh; Bui, Quang-Thanh; Tran, Quynh-An; Nguyen, Quoc-Phi

    2016-09-01

    This paper proposes a new artificial intelligence approach based on neural fuzzy inference system and metaheuristic optimization for flood susceptibility modeling, namely MONF. In the new approach, the neural fuzzy inference system was used to create an initial flood susceptibility model and then the model was optimized using two metaheuristic algorithms, Evolutionary Genetic and Particle Swarm Optimization. A high-frequency tropical cyclone area of the Tuong Duong district in Central Vietnam was used as a case study. First, a GIS database for the study area was constructed. The database that includes 76 historical flood inundated areas and ten flood influencing factors was used to develop and validate the proposed model. Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Receiver Operating Characteristic (ROC) curve, and area under the ROC curve (AUC) were used to assess the model performance and its prediction capability. Experimental results showed that the proposed model has high performance on both the training (RMSE = 0.306, MAE = 0.094, AUC = 0.962) and validation dataset (RMSE = 0.362, MAE = 0.130, AUC = 0.911). The usability of the proposed model was evaluated by comparing with those obtained from state-of-the art benchmark soft computing techniques such as J48 Decision Tree, Random Forest, Multi-layer Perceptron Neural Network, Support Vector Machine, and Adaptive Neuro Fuzzy Inference System. The results show that the proposed MONF model outperforms the above benchmark models; we conclude that the MONF model is a new alternative tool that should be used in flood susceptibility mapping. The result in this study is useful for planners and decision makers for sustainable management of flood-prone areas.

  7. Automation of the electron-beam welding process

    NASA Astrophysics Data System (ADS)

    Koleva, E.; Dzharov, V.; Kardjiev, M.; Mladenov, G.

    2016-03-01

    In this work, the automatic control is considered of the vacuum and cooling systems of the located in the IE-BAS equipment for electron-beam welding, evaporation and surface modification. A project was elaborated for the control and management based on the development of an engineering support system using existing and additional technical means of automation. Optimization of the indicators, which are critical for the duration of reaching the working regime and stopping the operation of the installation, can be made using experimentally obtained transient characteristics. The automation of the available equipment aimed at improving its efficiency and the repeatability of the obtained results, as well as at stabilizing the process parameters, should be integrated in an Engineering Support System which, besides the operator supervision, consists of several subsystems for equipment control, data acquisition, information analysis, system management and decision-making support.

  8. Using Data-Based Inquiry and Decision Making To Improve Instruction.

    ERIC Educational Resources Information Center

    Feldman, Jay; Tung, Rosann

    2001-01-01

    Discusses a study of six schools using data-based inquiry and decision-making process to improve instruction. Findings identified two conditions to support successful implementation of the process: administrative support, especially in providing teachers learning time, and teacher leadership to encourage and support colleagues to own the process.…

  9. The value of participatory development to support antimicrobial stewardship with a clinical decision support system.

    PubMed

    Beerlage-de Jong, Nienke; Wentzel, Jobke; Hendrix, Ron; van Gemert-Pijnen, Lisette

    2017-04-01

    Current clinical decision support systems (CDSSs) for antimicrobial stewardship programs (ASPs) are guideline- or expert-driven. They are focused on (clinical) content, not on supporting real-time workflow. Thus, CDSSs fail to optimally support prudent antimicrobial prescribing in daily practice. Our aim was to demonstrate why and how participatory development (involving end-users and other stakeholders) can contribute to the success of CDSSs in ASPs. A mixed-methods approach was applied, combining scenario-based prototype evaluations (to support verbalization of work processes and out-of-the-box thinking) among 6 medical resident physicians with an online questionnaire (to cross-reference findings of the prototype evaluations) among 54 Dutch physicians. The prototype evaluations resulted in insight into the end-users and their way of working, as well as their needs and expectations. The online questionnaire that was distributed among a larger group of medical specialists, including lung and infection experts, complemented the findings of the prototype evaluations. It revealed a say/do problem concerning the unrecognized need of support for selecting diagnostic tests. Low-fidelity prototypes of a technology allow researchers to get to know the end-users, their way of working, and their work context. Involving experts allows technology developers to continuously check the fit between technology and clinical practice. The combination enables the participatory development of technology to successfully support ASPs. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  10. A trial-based economic evaluation of 2 nurse-led disease management programs in heart failure.

    PubMed

    Postmus, Douwe; Pari, Anees A Abdul; Jaarsma, Tiny; Luttik, Marie Louise; van Veldhuisen, Dirk J; Hillege, Hans L; Buskens, Erik

    2011-12-01

    Although previously conducted meta-analyses suggest that nurse-led disease management programs in heart failure (HF) can improve patient outcomes, uncertainty regarding the cost-effectiveness of such programs remains. To compare the relative merits of 2 variants of a nurse-led disease management program (basic or intensive support by a nurse specialized in the management of patients with HF) against care as usual (routine follow-up by a cardiologist), a trial-based economic evaluation was conducted alongside the COACH study. In terms of costs per life-year, basic support was found to dominate care as usual, whereas the incremental cost-effectiveness ratio between intensive support and basic support was found to be equal to €532,762 per life-year; in terms of costs per quality-adjusted life-year (QALY), basic support was found to dominate both care as usual and intensive support. An assessment of the uncertainty surrounding these findings showed that, at a threshold value of €20,000 per life-year/€20,000 per QALY, basic support was found to have a probability of 69/62% of being optimal against 17/30% and 14/8% for care as usual and intensive support, respectively. The results of our subgroup analysis suggest that a stratified approach based on offering basic support to patients with mild to moderate HF and intensive support to patients with severe HF would be optimal if the willingness-to-pay threshold exceeds €45,345 per life-year/€59,289 per QALY. Although the differences in costs and effects among the 3 study groups were not statistically significant, from a decision-making perspective, basic support still had a relatively large probability of generating the highest health outcomes at the lowest costs. Our results also substantiated that a stratified approach based on offering basic support to patients with mild to moderate HF and intensive support to patients with severe HF could further improve health outcomes at slightly higher costs. Copyright © 2011 Mosby, Inc. All rights reserved.

  11. The option value of delay in health technology assessment.

    PubMed

    Eckermann, Simon; Willan, Andrew R

    2008-01-01

    Processes of health technology assessment (HTA) inform decisions under uncertainty about whether to invest in new technologies based on evidence of incremental effects, incremental cost, and incremental net benefit monetary (INMB). An option value to delaying such decisions to wait for further evidence is suggested in the usual case of interest, in which the prior distribution of INMB is positive but uncertain. of estimating the option value of delaying decisions to invest have previously been developed when investments are irreversible with an uncertain payoff over time and information is assumed fixed. However, in HTA decision uncertainty relates to information (evidence) on the distribution of INMB. This article demonstrates that the option value of delaying decisions to allow collection of further evidence can be estimated as the expected value of sample of information (EVSI). For irreversible decisions, delay and trial (DT) is demonstrated to be preferred to adopt and no trial (AN) when the EVSI exceeds expected costs of information, including expected opportunity costs of not treating patients with the new therapy. For reversible decisions, adopt and trial (AT) becomes a potentially optimal strategy, but costs of reversal are shown to reduce the EVSI of this strategy due to both a lower probability of reversal being optimal and lower payoffs when reversal is optimal. Hence, decision makers are generally shown to face joint research and reimbursement decisions (AN, DT and AT), with the optimal choice dependent on costs of reversal as well as opportunity costs of delay and the distribution of prior INMB.

  12. Supporting decision-making processes for evidence-based mental health promotion.

    PubMed

    Jané-Llopis, Eva; Katschnig, Heinz; McDaid, David; Wahlbeck, Kristian

    2011-12-01

    The use of evidence is critical in guiding decision-making, but evidence from effect studies will be only one of a number of factors that will need to be taken into account in the decision-making processes. Equally important for policymakers will be the use of different types of evidence including implementation essentials and other decision-making principles such as social justice, political, ethical, equity issues, reflecting public attitudes and the level of resources available, rather than be based on health outcomes alone. This paper, aimed to support decision-makers, highlights the importance of commissioning high-quality evaluations, the key aspects to assess levels of evidence, the importance of supporting evidence-based implementation and what to look out for before, during and after implementation of mental health promotion and mental disorder prevention programmes.

  13. Multi-Agent Architecture with Support to Quality of Service and Quality of Control

    NASA Astrophysics Data System (ADS)

    Poza-Luján, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, Jose-Enrique

    Multi Agent Systems (MAS) are one of the most suitable frameworks for the implementation of intelligent distributed control system. Agents provide suitable flexibility to give support to implied heterogeneity in cyber-physical systems. Quality of Service (QoS) and Quality of Control (QoC) parameters are commonly utilized to evaluate the efficiency of the communications and the control loop. Agents can use the quality measures to take a wide range of decisions, like suitable placement on the control node or to change the workload to save energy. This article describes the architecture of a multi agent system that provides support to QoS and QoC parameters to optimize de system. The architecture uses a Publish-Subscriber model, based on Data Distribution Service (DDS) to send the control messages. Due to the nature of the Publish-Subscribe model, the architecture is suitable to implement event-based control (EBC) systems. The architecture has been called FSACtrl.

  14. Optimization of Operations Resources via Discrete Event Simulation Modeling

    NASA Technical Reports Server (NTRS)

    Joshi, B.; Morris, D.; White, N.; Unal, R.

    1996-01-01

    The resource levels required for operation and support of reusable launch vehicles are typically defined through discrete event simulation modeling. Minimizing these resources constitutes an optimization problem involving discrete variables and simulation. Conventional approaches to solve such optimization problems involving integer valued decision variables are the pattern search and statistical methods. However, in a simulation environment that is characterized by search spaces of unknown topology and stochastic measures, these optimization approaches often prove inadequate. In this paper, we have explored the applicability of genetic algorithms to the simulation domain. Genetic algorithms provide a robust search strategy that does not require continuity and differentiability of the problem domain. The genetic algorithm successfully minimized the operation and support activities for a space vehicle, through a discrete event simulation model. The practical issues associated with simulation optimization, such as stochastic variables and constraints, were also taken into consideration.

  15. Analysis and optimization of hybrid electric vehicle thermal management systems

    NASA Astrophysics Data System (ADS)

    Hamut, H. S.; Dincer, I.; Naterer, G. F.

    2014-02-01

    In this study, the thermal management system of a hybrid electric vehicle is optimized using single and multi-objective evolutionary algorithms in order to maximize the exergy efficiency and minimize the cost and environmental impact of the system. The objective functions are defined and decision variables, along with their respective system constraints, are selected for the analysis. In the multi-objective optimization, a Pareto frontier is obtained and a single desirable optimal solution is selected based on LINMAP decision-making process. The corresponding solutions are compared against the exergetic, exergoeconomic and exergoenvironmental single objective optimization results. The results show that the exergy efficiency, total cost rate and environmental impact rate for the baseline system are determined to be 0.29, ¢28 h-1 and 77.3 mPts h-1 respectively. Moreover, based on the exergoeconomic optimization, 14% higher exergy efficiency and 5% lower cost can be achieved, compared to baseline parameters at an expense of a 14% increase in the environmental impact. Based on the exergoenvironmental optimization, a 13% higher exergy efficiency and 5% lower environmental impact can be achieved at the expense of a 27% increase in the total cost.

  16. Modeling human decision making behavior in supervisory control

    NASA Technical Reports Server (NTRS)

    Tulga, M. K.; Sheridan, T. B.

    1977-01-01

    An optimal decision control model was developed, which is based primarily on a dynamic programming algorithm which looks at all the available task possibilities, charts an optimal trajectory, and commits itself to do the first step (i.e., follow the optimal trajectory during the next time period), and then iterates the calculation. A Bayesian estimator was included which estimates the tasks which might occur in the immediate future and provides this information to the dynamic programming routine. Preliminary trials comparing the human subject's performance to that of the optimal model show a great similarity, but indicate that the human skips certain movements which require quick change in strategy.

  17. Optimizing psychosocial support during office-based buprenorphine treatment in primary care: patients’ experiences and preferences

    PubMed Central

    Fox, Aaron D.; Masyukova, Mariya; Cunningham, Chinazo O.

    2015-01-01

    Background Buprenorphine maintenance treatment is effective and has been successfully integrated into HIV and primary care settings. However, one key barrier to providers prescribing buprenorphine is their perception that they are unable to provide adequate counseling or psychosocial support to patients with opioid addiction. This qualitative study investigated supportive elements of office-based buprenorphine treatment that patients perceived to be most valuable. Methods We conducted five focus groups with 33 buprenorphine treatment-experienced participants. Focus groups were audio-recorded and transcribed. Iterative readings of transcripts and grounded theory analysis revealed common themes. Results Overall, participants perceived that buprenorphine treatment helped them to achieve their treatment goals and valued the flexibility, accessibility, and privacy of treatment. Participants identified interpersonal and structural elements of buprenorphine treatment that provided psychosocial support. Participants desired good physician-patient relationships, but also valued care delivery models that were patient-centered, created a safe place for self-disclosure, and utilized coordinated team-based care. Conclusions Participants derived psychosocial support from their prescribing physician, but were also open to collaborative or team-based models of care, as long as they were voluntary and confidential. Buprenorphine prescribing physicians without access to referral options for psychosocial counseling could focus on maintaining non-judgmental attitudes and shared decision making during patient encounters. Adding structure and psychosocial support to buprenorphine treatment through coordinated team-based care also seems to have great promise. PMID:26566712

  18. Preemptive Clinical Pharmacogenetics Implementation: Current programs in five United States medical centers

    PubMed Central

    Dunnenberger, Henry M.; Crews, Kristine R.; Hoffman, James M.; Caudle, Kelly E.; Broeckel, Ulrich; Howard, Scott C.; Hunkler, Robert J.; Klein, Teri E.; Evans, William E.; Relling, Mary V.

    2015-01-01

    Although the field of pharmacogenetics has existed for decades, the implementation of, pharmacogenetic testing in clinical care has been slow. There are numerous publications, describing the barriers to clinical implementation of pharmacogenetics. Recently, several freely, available resources have been developed to help address these barriers. In this review we, discuss current programs that use preemptive genotyping to optimize the pharmacotherapy of, patients. Array-based preemptive testing includes a large number of relevant pharmacogenes, that impact multiple high-risk drugs. Using a preemptive approach allows genotyping results to, be available prior to any prescribing decision so that genomic variation may be considered as, an inherent patient characteristic in the planning of therapy. This review describes the common, elements among programs that have implemented preemptive genotyping and highlights key, processes for implementation, including clinical decision support. PMID:25292429

  19. Relational Algebra in Spatial Decision Support Systems Ontologies.

    PubMed

    Diomidous, Marianna; Chardalias, Kostis; Koutonias, Panagiotis; Magnita, Adrianna; Andrianopoulos, Charalampos; Zimeras, Stelios; Mechili, Enkeleint Aggelos

    2017-01-01

    Decision Support Systems (DSS) is a powerful tool, for facilitates researchers to choose the correct decision based on their final results. Especially in medical cases where doctors could use these systems, to overcome the problem with the clinical misunderstanding. Based on these systems, queries must be constructed based on the particular questions that doctors must answer. In this work, combination between questions and queries would be presented via relational algebra.

  20. The Dopaminergic Midbrain Encodes the Expected Certainty about Desired Outcomes.

    PubMed

    Schwartenbeck, Philipp; FitzGerald, Thomas H B; Mathys, Christoph; Dolan, Ray; Friston, Karl

    2015-10-01

    Dopamine plays a key role in learning; however, its exact function in decision making and choice remains unclear. Recently, we proposed a generic model based on active (Bayesian) inference wherein dopamine encodes the precision of beliefs about optimal policies. Put simply, dopamine discharges reflect the confidence that a chosen policy will lead to desired outcomes. We designed a novel task to test this hypothesis, where subjects played a "limited offer" game in a functional magnetic resonance imaging experiment. Subjects had to decide how long to wait for a high offer before accepting a low offer, with the risk of losing everything if they waited too long. Bayesian model comparison showed that behavior strongly supported active inference, based on surprise minimization, over classical utility maximization schemes. Furthermore, midbrain activity, encompassing dopamine projection neurons, was accurately predicted by trial-by-trial variations in model-based estimates of precision. Our findings demonstrate that human subjects infer both optimal policies and the precision of those inferences, and thus support the notion that humans perform hierarchical probabilistic Bayesian inference. In other words, subjects have to infer both what they should do as well as how confident they are in their choices, where confidence may be encoded by dopaminergic firing. © The Author 2014. Published by Oxford University Press.

Top